E16M. 4

Let the z direction lie in the direction of the current and define the u direction to be perpendicular from z, pointing away from the wire.
a) By convention, since the step vectors are counter-clockwise around the loop, the direction of the area vector is determined by a RHR, so points out of the page, \odot. By the wire RHR, the magnetic field through the loop caused by the wire is into the page, \otimes. This means that for all $d \vec{A}$ tiles in the loop, the angle between \vec{B} and $d \vec{A}$ is 180°. Now we can see that

$$
\Phi_{\vec{B}}=\int_{d}^{d+W} \vec{B} \cdot d \vec{A}<0
$$

b) Since the magnetic field created by the current in the wire, at a distance u from the wire is given by $\vec{B}_{\text {wire }}=\frac{\mu_{0} I}{2 \pi u}$, we can see that the magnetic field varies with u, so we must recognize that $\|d \vec{A}\|=d z d u$ and evaluate a double integral to find the flux through the loop:

$$
\Phi_{\vec{B}}=\int_{d}^{d+W} \vec{B} \cdot d \vec{A}=-\int_{0}^{L} \int_{d}^{d+W} \frac{\mu_{0} I}{2 \pi u} d z d u=-\frac{\mu_{0} I L}{2 \pi} \int_{d}^{d+W} \frac{d u}{u}=-\frac{\mu_{0} I L}{2 \pi u} \ln \left(\frac{d+W}{d}\right) .
$$

c) The current in the loop is given by

$$
i=\frac{\mathcal{E}}{R}=\frac{-1}{R} \frac{d}{d t} \Phi_{\vec{B}}=\frac{\mu_{0} L}{2 \pi R} \ln \left(\frac{d+W}{d}\right) \frac{d I}{d t} .
$$

d) I in the wire is decreasing
$\Longrightarrow \vec{B}$ through the loop is decreasing into the page
$\Longrightarrow \vec{B}_{\text {ind }}$ (in coil) increases into the page
$\Longrightarrow i_{\text {ind }}$ (in coil) is clockwise (RHR).

I have upheld the highest principles of honesty and integrity in all of my academic work and have not witnessed a violation of the Honor Code.

