︠40ce4c56-6587-48d3-bc45-e2977bb3ab65i︠ %html

Hur man finner information

Sage stödjer tabulatorkomplettering vilket innebär att man endast behöver skriva inledningen av t.ex. en funktion och trycka på tab så fyller Sage ut resten av funktionsnamnet. Om det finns flera funktioner som inleds med samma följd bokstäver visas en lista över dem. ︡a9cf882e-fe07-43e0-9596-c913fc4924e9︡{"done":true,"html":"

\n Hur man finner information\n

\nSage stödjer tabulatorkomplettering vilket innebär att man endast behöver skriva inledningen av t.ex. en funktion och trycka på tab så fyller Sage ut resten av funktionsnamnet. Om det finns flera funktioner som inleds med samma följd bokstäver visas en lista över dem."} ︠493d8bb4-1f9c-4c70-8569-a7bf56754544i︠ %html

Manualer

SageMath - Help and Support finns ett stortt urval av manualer och liknande resurser som t.ex. Screencasts and Videos. ︡f91d3727-6808-4e7f-8867-6c43f6e2bc2d︡{"done":true,"html":"

\n Manualer\n

\nPå SageMath - Help and Support finns ett stortt urval av manualer och liknande resurser som t.ex. Screencasts and Videos."} ︠b163814f-33a1-4796-a6f1-d1bb51a4518ei︠ %html

Inbyggd hjälp

Förutom de manualer som du hittar på Sages officiella hemsida är varje funktion dokumenterad och tillgänglig med help eller ett frågetecken direkt efter funktionen. ︡b2574d49-2c42-4481-8468-7379ec1fda3d︡{"done":true,"html":"

\n Inbyggd hjälp\n

\nFörutom de manualer som du hittar på Sages officiella hemsida är varje funktion dokumenterad och tillgänglig med help eller ett frågetecken direkt efter funktionen."} ︠5a0e4972-d193-4294-924d-ec758fd8ae25s︠ gcd? ︡20a91e8c-12a7-451e-90d8-d6c0717809ea︡{"code":{"filename":null,"lineno":-1,"mode":"text/x-rst","source":"File: /projects/sage/sage-7.3/local/lib/python2.7/site-packages/sage/arith/misc.py\nSignature : gcd(a, b=None, **kwds)\nDocstring :\nThe greatest common divisor of a and b, or if a is a list and b is\nomitted the greatest common divisor of all elements of a.\n\nINPUT:\n\n* \"a,b\" - two elements of a ring with gcd or\n\n* \"a\" - a list or tuple of elements of a ring with gcd\n\nAdditional keyword arguments are passed to the respectively called\nmethods.\n\nOUTPUT:\n\nThe given elements are first coerced into a common parent. Then,\ntheir greatest common divisor *in that common parent* is returned.\n\nEXAMPLES:\n\n sage: GCD(97,100)\n 1\n sage: GCD(97*10^15, 19^20*97^2)\n 97\n sage: GCD(2/3, 4/5)\n 2/15\n sage: GCD([2,4,6,8])\n 2\n sage: GCD(srange(0,10000,10)) # fast !!\n 10\n\nNote that to take the gcd of n elements for n not= 2 you must put\nthe elements into a list by enclosing them in \"[..]\". Before #4988\nthe following wrongly returned 3 since the third parameter was just\nignored:\n\n sage: gcd(3,6,2)\n Traceback (most recent call last):\n ...\n TypeError: gcd() takes at most 2 arguments (3 given)\n sage: gcd([3,6,2])\n 1\n\nSimilarly, giving just one element (which is not a list) gives an\nerror:\n\n sage: gcd(3)\n Traceback (most recent call last):\n ...\n TypeError: 'sage.rings.integer.Integer' object is not iterable\n\nBy convention, the gcd of the empty list is (the integer) 0:\n\n sage: gcd([])\n 0\n sage: type(gcd([]))\n "}}︡{"done":true}︡ ︠7bf3809b-97a8-4e0f-b600-8d4a108c2076s︠ help(euler_phi) ︡52e25bad-26f6-4f80-a432-1b3cce706eaf︡{"stdout":"Help on instance of Euler_Phi in module sage.arith.misc:\n\nclass Euler_Phi\n | Return the value of the Euler phi function on the integer n. We\n | defined this to be the number of positive integers <= n that are\n | relatively prime to n. Thus if n<=0 then\n | ``euler_phi(n)`` is defined and equals 0.\n | \n | INPUT:\n | \n | \n | - ``n`` - an integer\n | \n | \n | EXAMPLES::\n | \n | sage: euler_phi(1)\n | 1\n | sage: euler_phi(2)\n | 1\n | sage: euler_phi(3)\n | 2\n | sage: euler_phi(12)\n | 4\n | sage: euler_phi(37)\n | 36\n | \n | Notice that euler_phi is defined to be 0 on negative numbers and\n | 0.\n | \n | ::\n | \n | sage: euler_phi(-1)\n | 0\n | sage: euler_phi(0)\n | 0\n | sage: type(euler_phi(0))\n | \n | \n | We verify directly that the phi function is correct for 21.\n | \n | ::\n | \n | sage: euler_phi(21)\n | 12\n | sage: [i for i in range(21) if gcd(21,i) == 1]\n | [1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]\n | \n | The length of the list of integers 'i' in range(n) such that the\n | gcd(i,n) == 1 equals euler_phi(n).\n | \n | ::\n | \n | sage: len([i for i in range(21) if gcd(21,i) == 1]) == euler_phi(21)\n | True\n | \n | The phi function also has a special plotting method.\n | \n | ::\n | \n | sage: P = plot(euler_phi, -3, 71)\n | \n | AUTHORS:\n | \n | - William Stein\n | \n | - Alex Clemesha (2006-01-10): some examples\n | \n | Methods defined here:\n | \n | __call__(self, n)\n | Calls the euler_phi function.\n | \n | EXAMPLES::\n | \n | sage: Euler_Phi()(10)\n | 4\n | sage: Euler_Phi()(720)\n | 192\n | \n | __repr__(self)\n | Returns a string describing this class.\n | \n | EXAMPLES::\n | \n | sage: Euler_Phi().__repr__()\n | 'Number of positive integers <=n but relatively prime to n'\n | \n | plot(self, xmin=1, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)\n | Plot the Euler phi function.\n | \n | INPUT:\n | \n | \n | - ``xmin`` - default: 1\n | \n | - ``xmax`` - default: 50\n | \n | - ``pointsize`` - default: 30\n | \n | - ``rgbcolor`` - default: (0,0,1)\n | \n | - ``join`` - default: True; whether to join the\n | points.\n | \n | - ``**kwds`` - passed on\n | \n | EXAMPLES::\n | \n | sage: p = Euler_Phi().plot()\n | sage: p.ymax()\n | 46.0\n\n"}︡{"done":true}︡ ︠3d107fd5-21bd-4ffe-a255-b56fb7840d02i︠ %html

Fritextsökning i dokumentation för Sage

Med funktionen search_doc skapar man en hyperlänk till Google. ︡694089e6-fa58-4cba-a176-ad3f46ea1a0f︡{"done":true,"html":"

\n Fritextsökning i dokumentation för Sage\n

\nMed funktionen search_doc skapar man en hyperlänk till Google."} ︠742f955b-bbb0-4d4b-86aa-1ce7ca93bfb8s︠ search_doc('find primitive root') ︡e7334da7-bca6-48ea-8604-b287a268e3b1︡{"html":"Use this link to search: find primitive root"}︡{"done":true}︡ ︠4d9e5e67-f278-4325-9fd5-b2e624f43e1d︠