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Simplicial sets

A simplicial set is a combinatorial model for a topological space,
consisting of

a set Xn of n-simplices for each integer n ≥ 0, and

face maps di and degeneracy maps sj between the sets Xn.

The maps have to satisfy certain “obvious” identities.
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Face maps

Each n-simplex has n + 1 faces, so there are n + 1 face maps
di : Xn → Xn−1, 0 ≤ i ≤ n.

0 1 d1 d0

face maps

0 1

2

d2

d0d1
face maps
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Degeneracy maps

An n-simplex determines n + 1 degenerate (n + 1)-simplices, so
there are n + 1 degeneracy maps: sj : Xn → Xn+1, 0 ≤ j ≤ n.

0 (0, 0)

degeneracy

0 1

degeneracies

Two degenerate triangles:

(0,0,1) and (0,1,1)
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A morphism of simplicial sets X → Y is the obvious thing: a
collection of maps Xn → Yn which are compatible with the face
and degeneracy maps.
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Examples

Example

The simplest examples are

the empty simplicial set: Xn = ∅ for all n

a point: Xn = (singleton) for all n
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Examples

Any simplicial complex can be made into a simplicial set: just add
degeneracies freely.

Example

Triangulation of S1:

0 1

2

X0 = {0, 1, 2}
X1 = {01, 02, 12, s0(0), s0(1), s1(2)}
X2 = {s0(01),s1(01),s0(02),s1(02),s0(12),s1(12),s1s0(0),s1s0(1),s1s0(2)}

X3 = {. . . degenerate simplices . . .}
...



Introduction Motivation Implementation

Examples

The n-sphere, more efficiently:
One vertex v and one nondegenerate n-simplex σ (plus many
degenerate simplices).

Example

n = 1:
X0 = {v} X1 = {σ, s0v} X2 = {s0σ, s1σ, s1s0v} · · ·
Face maps: d0σ = d1σ = v . The others are automatic.

v

σ
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Examples

The n-sphere, more efficiently:
One vertex v and one nondegenerate n-simplex σ (plus many
degenerate simplices).

Example

n = 2:
X0 = {v}, X1 = {s0v}, X2 = {σ, s1s0v}, . . .
Face maps: diσ = s0v for all i . The others are automatic.

v

σ
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Motivation: size

As you can see from the sphere examples, simplicial sets can be
more efficient than simplicial complexes if you ignore degenerate
simplices.

Fortunately, you can frequently ignore them.
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Motivation: Homotopy theory

From an abstract point of view, you can study homotopy theory
purely using the category of simplicial sets.

The homotopy theory of simplicial sets is equivalent to the
homotopy theory of topological spaces.

For some homotopy theorists, “space” means “simplicial set”.

Some constructions are easier for simplicial sets, some for
topological spaces.

Some constructions are easier for simplicial sets, some for
simplicial complexes.
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Motivation: products

Simplicial complexes can be annoying to work with. For example,
products: how do you triangulate the product of two simplices?
(Known and understood, but requires a little work.)

Example

Taken from Sage documentation: if T , K are minimal
triangulations of the torus and Klein bottle, with 14 and 16 facets
respectively, then T × K has 1344 facets and takes a little time to
compute.

Products of simplicial sets: if X and Y are simplicial sets, then
their product has n-simplices Xn × Yn.
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Products of simplicial sets: if X and Y are simplicial sets, then
their product has n-simplices Xn × Yn. For example, if X and Y
are both 1-simplices:

a b

x

y

e

f

(a, x) (b, x)

(a, y) (b, y)

(e, s0x)

(s0b, f )
(e, f )

(s0a, f )

(e, s0y)

(s0e, s1f )

(s1e, s0f )
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Motivation: Nerves

The nerve of a category (or group or monoid) is naturally
constructed as a simplicial set.

The nerve (= classifying space) of a group:

one vertex

one edge for each element of the group

one n-simplex for each n-tuple (a1, a2, · · · , an),
non-degenerate if ai 6= 1 for all i

face maps: multiply consecutive elements

degeneracy maps: insert 1
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Nerves

A little more detail:

d0(a1a2 · · · an) = a2 · · · an
dn(a1a2 · · · an) = a1 · · · an−1
di (a1a2 · · · an) = a1 · · · (aiai+1) · · · an−1, 1 ≤ i ≤ n − 1

sj(a1 · · · an) = a1 · · · aj1aj+1 · · · an, 0 ≤ j ≤ n (insert 1 in the
jth spot).
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Nerves

Similar for monoids or categories: one vertex for each object, one
1-simplex for each morphism, one n-simplex for each collection of
n composable morphisms.

Also, given the nerve of a category, you can recover the category.

Question

Are categories in good enough shape in Sage to be able to define
the nerve of a (finite) category?
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Example

Real projective space. RP∞ is the classifying space of the group
Z/2Z. There is one non-degenerate simplex in each dimension.
RPn is its n-skeleton.
Look at the f -vectors for simplicial complex versions of RPn for
small values of n:

RP2: (6, 15, 10)
RP3: (11, 51, 80, 40)
RP4: (16, 120, 330, 375, 150)
RP5: (63, 903, 4200, 8400, 7560, 2520)

In comparison, as a simplicial set:
RPn: (1, 1, 1, 1, · · · , 1)

As a result, computing is much faster with the simplicial set model.
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Example

Classifying space of C3. In Sage, the group C3 (constructed via C3

= groups.misc.MultiplicativeAbelian([3])) has three
elements, 1, f , f 2. So its classifying space has two nondegenerate
1-simplices, four non-degenerate 2-simplices (f ∗ f , f 2 ∗ f , f ∗ f 2,
f 2 ∗ f 2), eight non-degenerate 3-simplices, etc.

Example

Classifying space of Σ3 and its fundamental group.
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Example

Complex projective space. CPn is the 2n-skeleton of the classifying
space of the Lie group S1. Sage can’t construct it that way, but
work of Sergeraert (Kenzo, CAT) leads to constructions we can use
in Sage.
f -vectors as simplicial complexes:
CP2: (9, 36, 84, 90, 36)
CP3: not implemented
CP4: not implemented

As simplicial sets:
CP2: (1, 0, 2, 3, 3)
CP3: (1, 0, 3, 10, 25, 30, 15)
CP4: (1, 0, 4, 22, 97, 255, 390, 315, 105)
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To do:

good conversions from simplicial complexes (and other
objects) to simplicial sets

simplicial abelian groups, k-skeleton of K (π, n)

infinite simplicial sets

general framework for simplicial objects in a category

higher homotopy groups (?)
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