Simplicial sets in Sage

John H. Palmieri

Department of Mathematics University of Washington

> Sage Days 74 1 June 2016 Meudon

Simplicial sets

A *simplicial set* is a combinatorial model for a topological space, consisting of

- a set X_n of n-simplices for each integer $n \ge 0$, and
- face maps d_i and degeneracy maps s_j between the sets X_n .

The maps have to satisfy certain "obvious" identities.

Face maps

Each *n*-simplex has n+1 faces, so there are n+1 face maps $d_i: X_n \to X_{n-1}, \quad 0 \le i \le n$.

Degeneracy maps

An *n*-simplex determines n+1 degenerate (n+1)-simplices, so there are n+1 degeneracy maps: $s_j: X_n \to X_{n+1}, \ 0 \le j \le n$.

A morphism of simplicial sets $X \to Y$ is the obvious thing: a collection of maps $X_n \to Y_n$ which are compatible with the face and degeneracy maps.

Example

The simplest examples are

- the empty simplicial set: $X_n = \emptyset$ for all n
- a point: $X_n = (\text{singleton})$ for all n

Any simplicial complex can be made into a simplicial set: just add degeneracies freely.

Example

Triangulation of S^1 :

$$\begin{split} X_0 &= \{0,1,2\} \\ X_1 &= \{01,02,12,s_0(0),s_0(1),s_1(2)\} \\ X_2 &= \{s_0(01),s_1(01),s_0(02),s_1(02),s_0(12),s_1(12),s_1s_0(0),s_1s_0(1),s_1s_0(2)\} \\ X_3 &= \{\dots \text{degenerate simplices}\dots\} \\ &\vdots \end{split}$$

The *n*-sphere, more efficiently:

One vertex v and one nondegenerate n-simplex σ (plus many degenerate simplices).

Example

n = 1:

$$X_0 = \{v\}$$
 $X_1 = \{\sigma, s_0 v\}$ $X_2 = \{s_0 \sigma, s_1 \sigma, s_1 s_0 v\}$...

Face maps: $d_0\sigma=d_1\sigma=\nu$. The others are automatic.

The *n*-sphere, more efficiently:

One vertex v and one nondegenerate n-simplex σ (plus many degenerate simplices).

Example

n = 2:

$$X_0 = \{v\}, X_1 = \{s_0v\}, X_2 = \{\sigma, s_1s_0v\}, \dots$$

Face maps: $d_i \sigma = s_0 v$ for all i. The others are automatic.

Motivation: size

As you can see from the sphere examples, simplicial sets can be more efficient than simplicial complexes if you ignore degenerate simplices.

Fortunately, you can frequently ignore them.

Motivation: Homotopy theory

From an abstract point of view, you can study homotopy theory purely using the category of simplicial sets.

- The homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces.
- For some homotopy theorists, "space" means "simplicial set".
- Some constructions are easier for simplicial sets, some for topological spaces.
- Some constructions are easier for simplicial sets, some for simplicial complexes.

Motivation: products

Simplicial complexes can be annoying to work with. For example, products: how do you triangulate the product of two simplices? (Known and understood, but requires a little work.)

Example

Taken from Sage documentation: if T, K are minimal triangulations of the torus and Klein bottle, with 14 and 16 facets respectively, then $T \times K$ has 1344 facets and takes a little time to compute.

Products of simplicial sets: if X and Y are simplicial sets, then their product has n-simplices $X_n \times Y_n$.

Products of simplicial sets: if X and Y are simplicial sets, then their product has n-simplices $X_n \times Y_n$. For example, if X and Y are both 1-simplices:

Motivation: Nerves

The nerve of a category (or group or monoid) is naturally constructed as a simplicial set.

The *nerve* (= *classifying space*) of a group:

- one vertex
- one edge for each element of the group
- one *n*-simplex for each *n*-tuple (a_1, a_2, \dots, a_n) , non-degenerate if $a_i \neq 1$ for all i
- face maps: multiply consecutive elements
- degeneracy maps: insert 1

Nerves

A little more detail:

•
$$d_0(a_1a_2\cdots a_n)=a_2\cdots a_n$$

$$d_n(a_1a_2\cdots a_n)=a_1\cdots a_{n-1}$$

•
$$d_i(a_1a_2\cdots a_n) = a_1\cdots(a_ia_{i+1})\cdots a_{n-1}, \ 1\leq i\leq n-1$$

• $s_j(a_1 \cdots a_n) = a_1 \cdots a_j 1 a_{j+1} \cdots a_n$, $0 \le j \le n$ (insert 1 in the jth spot).

Nerves

Similar for monoids or categories: one vertex for each object, one 1-simplex for each morphism, one n-simplex for each collection of n composable morphisms.

Also, given the nerve of a category, you can recover the category.

Question

Are categories in good enough shape in Sage to be able to define the nerve of a (finite) category?

Real projective space. $\mathbf{R}P^{\infty}$ is the classifying space of the group

Z/2**Z**. There is one non-degenerate simplex in each dimension.

 $\mathbf{R}P^n$ is its *n*-skeleton.

Look at the f-vectors for *simplicial complex* versions of $\mathbb{R}P^n$ for small values of n:

 $\mathbf{R}P^2$: (6, 15, 10)

 RP^3 : (11, 51, 80, 40)

 RP^4 : (16, 120, 330, 375, 150)

 RP^5 : (63, 903, 4200, 8400, 7560, 2520)

In comparison, as a simplicial set:

 RP^n : $(1,1,1,1,\cdots,1)$

As a result, computing is much faster with the simplicial set model.

Classifying space of C_3 . In Sage, the group C_3 (constructed via C3 = groups.misc.MultiplicativeAbelian([3])) has three elements, 1, f, f^2 . So its classifying space has two nondegenerate 1-simplices, four non-degenerate 2-simplices (f * f, $f^2 * f$, $f * f^2$, $f^2 * f^2$), eight non-degenerate 3-simplices, etc.

Example

Classifying space of Σ_3 and its fundamental group.

Complex projective space. $\mathbb{C}P^n$ is the 2n-skeleton of the classifying space of the Lie group S^1 . Sage can't construct it that way, but work of Sergeraert (Kenzo, CAT) leads to constructions we can use in Sage.

f-vectors as simplicial complexes:

 $\mathbf{C}P^2$: (9, 36, 84, 90, 36)

 $\mathbf{C}P^3$: not implemented

 $\mathbb{C}P^4$: not implemented

As simplicial sets:

 $\mathbf{C}P^2$: (1,0,2,3,3)

 $\mathbf{C}P^3$: (1,0,3,10,25,30,15)

 $\mathbf{C}P^4$: (1,0,4,22,97,255,390,315,105)

To do:

- good conversions from simplicial complexes (and other objects) to simplicial sets
- ullet simplicial abelian groups, k-skeleton of $K(\pi,n)$
- infinite simplicial sets
- general framework for simplicial objects in a category
- higher homotopy groups (?)