
Using new zero forcing parameters to guarantee
the Strong Arnold Property

Jephian C.-H. Lin

Department of Mathematics, Iowa State University

May 15, 2016
Western Canada Linear Algebra Meeting, University of

Mannitoba, Winnipeg, MB

Using Zero Forcing to guarantee the SAP 1/28 Department of Mathematics, Iowa State University



Maximum nullity

▸ For a simple graph G , let S(G) be the family of real,
symmetric matrices A = [ai ,j] such that

ai ,j

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

≠ 0 if i ∼ j , i ≠ j
= 0 if i ≁ j , i ≠ j
∈ R if i = j

▸ The maximum nullity is the largest possible nullity happens in
S(G). That is,

M(G) = max{null(A) ∶ A ∈ S(G)}
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Example of M(G)

▸ Let G = P5. Then the matrices in S(G) looks like

? ∗ 0 0 0

∗ ? ∗ 0 0

0 ∗ ? ∗ 0

0 0 ∗ ? ∗

0 0 0 ∗ ?

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸ The Laplacian matrix is in S(G) and has nullity 1.

▸ M(G) = 1.
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Example of M(G)

▸ Let G = P5. Then the matrices in S(G) looks like

? ∗ 0 0 0

∗ ? ∗ 0 0

0 ∗ ? ∗ 0

0 0 ∗ ? ∗

0 0 0 ∗ ?

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸ The Laplacian matrix is in S(G) and has nullity 1.

▸ M(G) = 1.
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Zero forcing number

▸ Zero forcing game: All vertices are either blue or white. At
the beginning, pick some vertices to be blue, then trying to
use the color change rule repeatedly to force all vertices to
turn blue.

▸ Color change rule: if x is a blue vertex and y is the only white
neighbor of x , then y turns blue. (Denoted by x → y .)

▸ If beginning with a set S of blue vertices and all vertices can
turn blue, then S is called a zero forcing set.

▸ The zero forcing number Z(G) is the minimum cardinality of
zero forcing sets on G .
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Example of Z(G)

1 2 3 4 5

▸ Initially set 1 as blue.

▸ 1→ 2, 2→ 3, 3→ 4, 4→ 5.

▸ One blue vertex is enough, and also required, so Z(G) = 1.
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Example of Z(G)

1 2 3 4 51

▸ Initially set 1 as blue.

▸ 1→ 2, 2→ 3, 3→ 4, 4→ 5.

▸ One blue vertex is enough, and also required, so Z(G) = 1.
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Example of Z(G)

1 2 3 4 51 2

▸ Initially set 1 as blue.

▸ 1→ 2, 2→ 3, 3→ 4, 4→ 5.

▸ One blue vertex is enough, and also required, so Z(G) = 1.
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Example of Z(G)

1 2 3 4 51 2 3

▸ Initially set 1 as blue.

▸ 1→ 2, 2→ 3, 3→ 4, 4→ 5.

▸ One blue vertex is enough, and also required, so Z(G) = 1.
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Example of Z(G)

1 2 3 4 51 2 3 4

▸ Initially set 1 as blue.

▸ 1→ 2, 2→ 3, 3→ 4, 4→ 5.

▸ One blue vertex is enough, and also required, so Z(G) = 1.
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Example of Z(G)

1 2 3 4 51 2 3 4 5

▸ Initially set 1 as blue.

▸ 1→ 2, 2→ 3, 3→ 4, 4→ 5.

▸ One blue vertex is enough, and also required, so Z(G) = 1.
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M(G) ≤ Z(G)

▸ For all graph G , M(G) ≤ Z(G)[AIM (2008)].

▸ M(G) = Z(G) for small graphs up to 7 vertices. [DGHMST
(2010)]

▸ M(G) = Z(G) for trees, cycles, hypercube, block-clique
graphs ...
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Strong Arnold Property

▸ A real symmetric matrix A is said to have the Strong Arnold
Property (SAP) if the only real symmetric matrix X that
satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A ○X = O
I ○X = O
AX = O

is X = O. Here ○ is the Hadamard (entrywise) product.

▸ If A is nonsingular, then A has the SAP.

▸ If A ∈ S(Kn), then A has the SAP.
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Example of not having the SAP

Let

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1
0 1 −1 0 0
0 −1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then A ○X = I ○X = O and AX = O, so A does not have the SAP.
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Colin de Verdiére parameter µ(G)

▸ For a simple graph G , the Colin de Verdière parameter µ(G)

[Colin de Verdière (1990)] is the maximum nullity over
matrices A such that

▸ A ∈ S(G) and all off-diagonal entries are zero or negative.
(Called generalized Laplacian.)

▸ A has exactly one negative eigenvalue (counting multiplicity).
▸ A has the SAP.

▸ Characterizations:
▸ µ(G) ≤ 1 iff G is a disjoint union of paths. (No K3 minor)
▸ µ(G) ≤ 2 iff G is outer planar. (No K4,K2,3 minor)
▸ µ(G) ≤ 3 iff G is planar. (No K5,K3,3 minor)

▸ It is conjectured that µ(G) + 1 ≥ χ(G).
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Other Colin de Verdiére type parameters

▸ ξ(G) = max{null(A) ∶ A ∈ S(G),A has the SAP}

▸ ν(G) = max{null(A) ∶ A ∈ S(G),A is PSD,A has the SAP}

▸ For Colin de Verdiére type parameters β ∈ {µ, ν, ξ}, they are
all minor monotone. That is, β(H) ≤ β(G) if H is a minor of
G . [C (1990), C (1998), BFH (2005)]

▸ By graph minor theorem, β(G) ≤ k if and only if G does not
contain a family of finite graphs as minors. (Called forbidden
minors.)
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Colin de Verdiére type parameters

M(G)

Z(G)

ξ(G)

µ(G)

M+(G)

ν(G)

S(G)

S(G),psd

S(G),psd,SAP

S(G)

SAP
gen Laplacian
1 neg eigen
SAP
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Colin de Verdiére type parameters

M(G)

Z(G)

ξ(G)

µ(G)

M+(G)

ν(G)

S(G)

S(G),psd

S(G),psd,SAP

S(G)

SAP
gen Laplacian
1 neg eigen
SAP

Mµ(G)

gen Laplacian
1 neg eigen
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M and ξ

▸ M is not minor monotone, but ξ is; and

ξ(G) ≤M(G).

▸ For a parameter β, we can consider

⌊β⌋(G) ∶= min{β(H) ∶ G is a minor of H}.

▸ For all graph M(G) ≤ Z(G), so ξ(G) ≤ ⌊M⌋(G) ≤ ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) can be computed. [BBFHHSvdDvdH (2013)]

▸ How to compute ξ(G)?

▸ For what graph ξ(G) =M(G) or ξ(G) = ⌊Z ⌋(G)?
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Graph structure guarantees the SAP?

▸ If G = Kn, then every matrix A ∈ S(G) has the SAP.

▸ If G is connected such that G is a matching, then every
matrix A ∈ S(G) has the SAP. [BFH (2005)]

▸ If G is connected such that G is a forest, then every matrix
A ∈ S(G) has the SAP.

▸ The SAP zero forcing number ZSAP will be defined later.

Theorem (JL)

If ZSAP(G) = 0, then every matrix A ∈ S(G) has the SAP.
Therefore, ξ(G) =M(G), M+(G) = ν(G), and Mµ(G) = µ(G).
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SAP zero forcing

▸ In an SAP zero forcing game, every non-edge has color either
blue or white.

▸ If BE is the set of blue non-edges, the local game on a given
vertex k is a conventional zero forcing game on G , with blue
vertices

φk(G ,BE) ∶= NG [k] ∪ N⟨BE ⟩
(k) .

The local game is denoted by φZ(G ,BE , k).

1

2 3

4

SAP zero forcing

φZ(G ,BE , k)

k = 1, BE = {{1,4}}

1

2 3

41

2

4

conventional zero forcing
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SAP zero forcing

▸ Color change rule-ZSAP:
▸ Forcing triple (k ∶ i → j): If i → j in φZ(G ,BE , k), then {j , k}

turns blue.
▸ Odd cycle rule (i → C): Let GW be the graph whose edges are

the white non-edges. If GW [NG(i)] contains a component
that is a odd cycle C . Then E(C) turns blue.

▸ ZSAP(G) is the minimum number of blue non-edges such that
all non-edges can turn blue eventually by CCR-ZSAP.

1

2 3

4

(1 ∶ 2→ 3)

φZ(G ,BE , k)

k = 1

1

2 3

41

2

4

2→ 3
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SAP zero forcing

▸ Color change rule-ZSAP:
▸ Forcing triple (k ∶ i → j): If i → j in φZ(G ,BE , k), then {j , k}

turns blue.
▸ Odd cycle rule (i → C): Let GW be the graph whose edges are

the white non-edges. If GW [NG(i)] contains a component
that is a odd cycle C . Then E(C) turns blue.

▸ ZSAP(G) is the minimum number of blue non-edges such that
all non-edges can turn blue eventually by CCR-ZSAP.

1

2 3

4

(1 ∶ 2→ 3)

φZ(G ,BE , k)

k = 1

1

2 3

41

2

4

2→ 3
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SAP zero forcing

▸ Color change rule-ZSAP:
▸ Forcing triple (k ∶ i → j): If i → j in φZ(G ,BE , k), then {j , k}

turns blue.
▸ Odd cycle rule (i → C): Let GW be the graph whose edges are

the white non-edges. If GW [NG(i)] contains a component
that is a odd cycle C . Then E(C) turns blue.

▸ ZSAP(G) is the minimum number of blue non-edges such that
all non-edges can turn blue eventually by CCR-ZSAP.

1

2 3

4

(4 ∶ 3→ 2)

φZ(G ,BE , k)

k = 4

1

2 3

41

3

4

3→ 2
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SAP zero forcing

▸ Color change rule-ZSAP:
▸ Forcing triple (k ∶ i → j): If i → j in φZ(G ,BE , k), then {j , k}

turns blue.
▸ Odd cycle rule (i → C): Let GW be the graph whose edges are

the white non-edges. If GW [NG(i)] contains a component
that is a odd cycle C . Then E(C) turns blue.

▸ ZSAP(G) is the minimum number of blue non-edges such that
all non-edges can turn blue eventually by CCR-ZSAP.

1

2 3

4

(4 ∶ 3→ 2)

φZ(G ,BE , k)

k = 4

1

2 3

41

3

4

3→ 2
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Example of ZSAP(G) = 0

1 2

3

4

5

local game

k = 2

1 2

3

4

5

1 2

3

5

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}
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Example of ZSAP(G) = 0

1 2

3

4

5

local game

k = 4

1 2

3

4

5

3

4

5

2

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}
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Example of ZSAP(G) = 0

1 2

3

4

5

local game

k = 5

1 2

3

4

5

2 4

5

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}
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Example of ZSAP(G) = 0

1 2

3

4

5

local game

k = 3

1 2

3

4

5

2

3

4

5

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}
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Example of ZSAP(G) = 0

1 2

3

4

5

local game

k = 5

1 2

3

4

5

2 4

5

3

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}
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Example of ZSAP(G) = 0

1 2

3

4

5

local game

1 2

3

4

5

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}
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Theorem (JL)

If ZSAP(G) = 0, then every matrix A ∈ S(G) has the SAP.
Therefore, ξ(G) =M(G), M+(G) = ν(G), and Mµ(G) = µ(G).
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How to test the SAP?

▸ Let G be a graph and A ∈ S(G) with vj its j-th column
vector. Let m = ∣E(G)∣.

▸ The SAP matrix Ψ of A is an n2 ×m matrix with
▸ row indexed by (i , j) with i , j ∈ {1, . . . ,n}
▸ column indexed by {i , j} ∈ E(G)
▸ the {i , j}-th column of Ψ is

(0, . . . ,0, vj
i-th block

,0, . . . ,0, vi
j-th block

,0, . . . ,0)⊺

▸ A has the SAP if and only if Ψ is full-rank.
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Example of the SAP matrix: forcing triples

▸ Recall the SAP: A ○X = I ○X = AX = O Ô⇒ X = O.

▸ Let G = P4 and A ∈ S(G) with vj its j-th column vector.

AX =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 a1 0 0
a1 d2 a2 0
0 a2 d3 a3
0 0 a3 d4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 x{1,3} x{1,4}
0 0 0 x{2,4}

x{1,3} 0 0 0
x{1,4} x{2,4} 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= O.

▸ This is equivalent to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v3 v4 0
0 0 v4
v1 0 0
0 v1 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{1,3}
x{1,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= Ψ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{1,3}
x{1,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0.

Using Zero Forcing to guarantee the SAP 19/28 Department of Mathematics, Iowa State University



⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
−1 1 0
1 −1 0

0 0 0
0 0 0
0 0 1
0 0 −1

−1 0 0
1 0 0
0 0 0
0 0 0

0 −1 1
0 1 −1
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{1,3}
x{1,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1

2 3

41

2

(1 ∶ 2→ 3)

At block 1,
look at row 2,

then the only nonzero entry is at column {1,3}.
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
−1 1 0
1 −1 0

0 0 0
0 0 0
0 0 1
0 0 −1

−1 0 0
1 0 0
0 0 0
0 0 0

0 −1 1
0 1 −1
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{1,3}
x{1,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1

2 3

41

2 3

(1 ∶ 3→ 4)

At block 1,
look at row 3,

then the only nonzero entry is at column {1,4}.
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
−1 1 0
1 −1 0

0 0 0
0 0 0
0 0 1
0 0 −1

−1 0 0
1 0 0
0 0 0
0 0 0

0 −1 1
0 1 −1
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{1,3}
x{1,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1

2 3

41

2 3

(2 ∶ 3→ 4)

At block 2,
look at row 3,

then the only nonzero entry is at column {2,4}.
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
−1 1 0
1 −1 0

0 0 0
0 0 0
0 0 1
0 0 −1

−1 0 0
1 0 0
0 0 0
0 0 0

0 −1 1
0 1 −1
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{1,3}
x{1,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1

2 3

4
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Example of the SAP matrix: odd cycle rules

▸ Recall the SAP: A ○X = I ○X = AX = O Ô⇒ X = O.

▸ Let G = K1,3 and A ∈ S(G) with vj its j-th column vector.

AX =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 2 3 4
2 −1 0 0
3 0 −1 0
4 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 x{2,3} x{2,4}
0 x{2,3} 0 x{3,4}
0 x{2,4} x{3,4} 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= O.

▸ This is equivalent to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
v3 0 v4
v2 v4 0
0 v3 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{2,3}
x{3,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= Ψ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x{2,3}
x{3,4}
x{2,4}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0.
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Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
v3 0 v4
v2 v4 0
0 v3 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
3 0 4
0 0 0
−1 0 0
0 0 −1
2 4 0
−1 0 0
0 0 0
0 −1 0
0 3 2
0 0 −1
0 −1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ô⇒ full rank.
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Proof of the main theorem

Proof.

▸ Assume Ψx = 0, where x = (xe)e∈E(G).

▸ e is white means xe is possibly non-zero; e is blue means xe is
zero.

▸ Starting with all white:
▸ (k ∶ i → j) implies x{j,k} = 0.
▸ (i → C) implies xe = 0 for all e ∈ E(C).

▸ When all non-edges are blue, it means x = 0 is the only right
kernal. So Ψ is full-rank.
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Computational results

How many graphs has the property ZSAP(G) = 0? The table shows
for fixed n the proportion of graphs with ZSAP(G) in all connected
graphs. (Isomorphic graphs count only once.)

n ZSAP = 0

1 1.0
2 1.0
3 1.0
4 1.0
5 0.86
6 0.79
7 0.74
8 0.73
9 0.76

10 0.79

Using Zero Forcing to guarantee the SAP 24/28 Department of Mathematics, Iowa State University



Applications

Theorem (JL)

For all graph G up to 7 vertices, ξ(G) = ⌊Z ⌋(G).

Proof.
By Sage program, one of the following will happens:

▸ ZSAP(G) = 0 Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ G is a tree Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) =M(G) − Zvc(G) Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) = η(G) − 1 Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) = 3 and G contains a T3-minor Ô⇒ ξ(G) = ⌊Z ⌋(G).
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Applications

Theorem (JL)

For all graph G up to 7 vertices, ξ(G) = ⌊Z ⌋(G).

Proof.
By Sage program, one of the following will happens:

▸ ZSAP(G) = 0 Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ G is a tree Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) =M(G) − Zvc(G) Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) = η(G) − 1 Ô⇒ ξ(G) = ⌊Z ⌋(G).

▸ ⌊Z ⌋(G) = 3 and G contains a T3-minor Ô⇒ ξ(G) = ⌊Z ⌋(G).

Thank you!
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