Applications of zero forcing number to the minimum rank problem

Advisor: Professor Gerard Jennhwa Chang, Ph.D. Student: Chin-Hung Lin

Department of Mathematics, National Taiwan University

8/6 2011 in Tamkang University

Abstract

- Introduction
- Exhaustive zero forcing number
- Sieving process

Relation between Matrices and Graphs

\mathcal{G} :real symmetric matrices \rightarrow graphs. $\left(\begin{array}{ccc}-3 & 3 & 0 \\ 3 & -5 & 2 \\ 0 & 2 & -2\end{array}\right) \quad \xrightarrow{\mathcal{G}}$

Relation between Matrices and Graphs

\mathcal{G} :real symmetric matrices \rightarrow graphs.

$$
\left(\begin{array}{ccc}
-3 & 3 & 0 \\
3 & -5 & 2 \\
0 & 2 & -2
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

$$
\mathcal{S}(G)=\left\{A \in M_{n \times n}(\mathbb{R}): A=A^{t}, \mathcal{G}(A)=G\right\} .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\}
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)| .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)| .
$$

- The minimum rank problem of a graph G is to determine the number $\operatorname{mr}(G)$ or $M(G)$.

Related Parameters

- The zero forcing process on a graph G is the color-changing process using the following rules.

Related Parameters

- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.

Related Parameters

- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
- The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.
- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
- The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.
- For all graph $G, M(G) \leq Z(G)$.[1]

Example for These Parameters

$$
\left(\begin{array}{cccc}
? & * & * & * \\
* & ? & 0 & 0 \\
* & 0 & ? & 0 \\
* & 0 & 0 & ?
\end{array}\right) \quad \longrightarrow
$$

- $\operatorname{rank} \geq 2$.

Example for These Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- $\operatorname{rank} \geq 2$.
- 2 is achievable.

Example for These Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

- rank ≥ 2.
- 2 is achievable.
- $\operatorname{mr}\left(K_{1,3}\right)=2$ and $M\left(K_{1,3}\right)=4-2=2$.

Example for These Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

- rank ≥ 2.
- 2 is achievable.
- $\operatorname{mr}\left(K_{1,3}\right)=2$ and $M\left(K_{1,3}\right)=4-2=2$.
- $Z(G)=2$.

General Strategy to Determine $M(G)$

- Upper bound: $M(G) \leq Z(G)$.

General Strategy to Determine $M(G)$

- Upper bound: $M(G) \leq Z(G)$.
- Lower bound: $k \leq M(G)$ if $k=\operatorname{rank}(A)$ for some $A \in \mathcal{S}(G)$.

General Strategy to Determine $M(G)$

- Upper bound: $M(G) \leq Z(G)$.
- Lower bound: $k \leq M(G)$ if $k=\operatorname{rank}(A)$ for some $A \in \mathcal{S}(G)$.
- If two bounds meet, then the value would be $M(G)$.

General Strategy to Determine $M(G)$

- Upper bound: $M(G) \leq Z(G)$.
- Lower bound: $k \leq M(G)$ if $k=\operatorname{rank}(A)$ for some $A \in \mathcal{S}(G)$.
- If two bounds meet, then the value would be $M(G)$.
- The 5 -sun H_{5} has $M\left(H_{5}\right)=2$ but $M\left(H_{5}\right)=3$!

General Strategy to Determine $M(G)$

- Upper bound: $M(G) \leq Z(G)$.
- Lower bound: $k \leq M(G)$ if $k=\operatorname{rank}(A)$ for some $A \in \mathcal{S}(G)$.
- If two bounds meet, then the value would be $M(G)$.
- The 5 -sun H_{5} has $M\left(H_{5}\right)=2$ but $M\left(H_{5}\right)=3$!
- Attack the Upper bound!

Minimum Rank of A Pattern

- A sign set is $\{0, *, u\}$. A real number r matchs 0 if $r=0, *$ if $r \neq 0$, while u if r matchs 0 or *.

Minimum Rank of A Pattern

- A sign set is $\{0, *, u\}$. A real number r matchs 0 if $r=0, *$ if $r \neq 0$, while u if r matchs 0 or $*$.
- A pattern matrix Q is a matrix over S.

Minimum Rank of A Pattern

- A sign set is $\{0, *, u\}$. A real number r matchs 0 if $r=0, *$ if $r \neq 0$, while u if r matchs 0 or $*$.
- A pattern matrix Q is a matrix over S.
- The minimum rank of a pattern Q is

$$
\operatorname{mr}(Q)=\min \{\operatorname{rank} A: A \cong Q\}
$$

Example for Minmum Rank of A Pattern

- The pattern

$$
Q=\left(\begin{array}{lll}
* & 0 & 0 \\
u & * & u
\end{array}\right)
$$

must have rank at least 2 .

Example for Minmum Rank of A Pattern

- The pattern

$$
Q=\left(\begin{array}{lll}
* & 0 & 0 \\
u & * & u
\end{array}\right)
$$

must have rank at least 2 .

- The rank 2 is achievable. Hence $\operatorname{mr}(Q)=2$.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.
- Zero forcing number banned by $B Z(G, B)$: minimum size of F.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.
- Zero forcing number banned by $B Z(G, B)$: minimum size of F.
- Zero forcing number banned by B with support W $Z_{W}(G, B)$: minimum size of $F \supseteq W$.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.
- Zero forcing number banned by $B Z(G, B)$: minimum size of F.
- Zero forcing number banned by B with support W $Z_{W}(G, B)$: minimum size of $F \supseteq W$.
- When W and B is empty, $Z_{W}(G, B)=Z(G)$.

Natural Relation between Patterns and Bipartites

- Q is a given $m \times n$ pattern. $G=(X \cup Y, E)$ is the related bipartite defined by

$$
X=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, Y=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, E=\left\{a_{i} b_{j}: Q_{i j} \neq 0\right\}
$$

Natural Relation between Patterns and Bipartites

- Q is a given $m \times n$ pattern. $G=(X \cup Y, E)$ is the related bipartite defined by

$$
X=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, Y=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, E=\left\{a_{i} b_{j}: Q_{i j} \neq 0\right\}
$$

- $B=\left\{a_{i} b_{j}: Q_{i j}=u\right\}$.

$$
\left(\begin{array}{lll}
* & 0 & 0 \\
u & * & u
\end{array}\right)
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{mr}(Q) \geq m+n-Z_{Y}(G, B)
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{mr}(Q) \geq m+n-Z_{Y}(G, B)
$$

- For $n \times n$ square pattern Q, it becomes

$$
n-\operatorname{mr}(Q) \leq Z_{Y}(G, B)-n
$$

- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u and

$$
M(G) \leq n-\operatorname{mr}(Q) .
$$

- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u and

$$
M(G) \leq n-\operatorname{mr}(Q) .
$$

- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u and

$$
M(G) \leq n-\operatorname{mr}(Q) .
$$

- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- The inequality become

$$
M(G) \leq n-\operatorname{mr}(Q)=\max _{I \subseteq[n]}\left[n-\operatorname{mr}\left(Q_{I}\right)\right] \leq \max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n .
$$

- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u and

$$
M(G) \leq n-\operatorname{mr}(Q) .
$$

- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- The inequality become

$$
M(G) \leq n-\operatorname{mr}(Q)=\max _{I \subseteq[n]}\left[n-\operatorname{mr}\left(Q_{I}\right)\right] \leq \max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n .
$$

- The right most term is called the exhaustive zero forcing number of G. Denote it by $\widetilde{Z}(G)$.

The Exhaustive Zero Forcing Number

- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u and

$$
M(G) \leq n-\operatorname{mr}(Q) .
$$

- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by * if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- The inequality become

$$
M(G) \leq n-\operatorname{mr}(Q)=\max _{I \subseteq[n]}\left[n-\operatorname{mr}\left(Q_{I}\right)\right] \leq \max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n .
$$

- The right most term is called the exhaustive zero forcing number of G. Denote it by $\widetilde{Z}(G)$.
- It can be proven that $M(G) \leq \widetilde{Z}(G) \leq Z(G)$.

Example of Exhaustive Zero Forcing Number

- For $G=P_{3}$, the pattern is

$$
Q=\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) .
$$

Example of Exhaustive Zero Forcing Number

- For $G=P_{3}$, the pattern is

$$
Q=\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) .
$$

- For $I=\{1,3\} \subseteq[3]$, the pattern is

$$
Q=\left(\begin{array}{lll}
* & * & 0 \\
* & 0 & * \\
0 & * & *
\end{array}\right) .
$$

Example of Exhaustive Zero Forcing Number

- For $G=P_{3}$, the pattern is

$$
Q=\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) .
$$

- For $I=\{1,3\} \subseteq[3]$, the pattern is

$$
Q=\left(\begin{array}{lll}
* & * & 0 \\
* & 0 & * \\
0 & * & *
\end{array}\right) .
$$

- $1=M\left(P_{3}\right) \leq \widetilde{Z}\left(P_{3}\right) \leq Z\left(P_{3}\right)=1$. Hence $\widetilde{Z}(G)=1$.

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{I}\right)-n \text { for some } I\right\}
$$

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{I}\right)-n \text { for some } I\right\}
$$

- Let $\mathcal{I}_{k}(G)=\left\{I \subseteq[n]: Z_{Y}\left(\widetilde{G}_{I}\right)-n \geq k\right\}$.

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{l}\right)-n \text { for some } I\right\}
$$

- Let $\mathcal{I}_{k}(G)=\left\{I \subseteq[n]: Z_{Y}\left(\widetilde{G}_{l}\right)-n \geq k\right\}$.
- $\widetilde{Z}(G)=\max \left\{k: \mathcal{I}_{k} \neq \varnothing\right\}$.

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{l}\right)-n \text { for some } I\right\}
$$

- Let $\mathcal{I}_{k}(G)=\left\{I \subseteq[n]: Z_{Y}\left(\widetilde{G}_{l}\right)-n \geq k\right\}$.
- $\widetilde{Z}(G)=\max \left\{k: \mathcal{I}_{k} \neq \varnothing\right\}$.
- Each $F \supseteq Y$ with size $n+k-1$ is a sieve for $\mathcal{I}_{k}(G)$ to delete impossible index sets.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Nonzero:

$$
\left(\begin{array}{ccc}
1 & a^{t} & 0 \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \widehat{B}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Nonzero:

$$
\left(\begin{array}{ccc}
1 & a^{t} & 0 \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \widehat{B}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

- Zero:

$$
\left(\begin{array}{ccc}
\alpha & a^{t} & O \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
O & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\alpha & O & O \\
0 & \widehat{B}_{11} & \widehat{A}_{12} \\
O & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right) .
$$

Here α has the form $\left(\begin{array}{ll}0 & * \\ * & u\end{array}\right)$ and α^{-1} has the form $\left(\begin{array}{ll}u & * \\ * & 0\end{array}\right)$.

Thank my advisor.

Thank my advisor.

Thank the committee of this conference.

Thank my advisor.
Thank the committee of this conference.

I will be in army in $8 / 8$.

Thank my advisor.
Thank the committee of this conference.

I will be in army in $8 / 8$. Thank you.

囯 AIM minimum rank-special graphs work group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications 428 (2008) 1628-1648.
围 F. Barioli , W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche, and H. van der Holst, Zero forcing parameters and minimum rank problems, Linear Algebra and its Applications 433 (2010) 401-411.
ET F. Barioli S. M. Fallat, H. T. Hall, D. Hershkowitz, L. Hogben, H. van der Holst, and B. Shader, On the minimum rank of not necessarily symmetric matrices: A preliminary study, Electronic Journal of Linear Algebra 18 (2009) 126-145.
F. Barioli, S. Fallat, and L. Hogben, Computation of minimal rank and path cover number for certain graphs, Linear Algebra and its Applications 392 (2004) 289-303.

嗇 F．Barioli，S．Fallat，and L．Hogben，On the difference between the maximum multiplicity and path cover number for tree－like graphs，Linear Algebra and its Applications 409 （2005）13－31．
囯 W．Barrett，H．van der Holst，and R．Loewy，Graphs whose minimal rank is two，Electronic Journal of Linear Algebra 11 （2004）258－280．

围 C．J．Edholm，L．Hogben，M．Huynh，J．LaGrange，and D．D．Row，Vertex and edge spread of zero forcing number， maximum nullity，and maximum rank of a graph，Hogben＇s Homepage．

目 S．Fallat，L．Hogben，The minimum rank of symmetric matrices described by a graph：A survey，Linear Algebra and its Applications 426 （2007）558－582．

围 S．Fallat，L．Hogben，Variants on the minimum rank problem： A survey II，Hogben＇s Homepage．

R R. Fernandes, On the maximum multiplicity of an eigenvalue in a matrix whose graph contains exactly one cycle, Linear Algebra and its Applications 422 (2007) 1-16.
(H. van der Holst, The maximum corank of graphs with a 2-separation, Linear Algebra and its Applications 428 (2008) 1587-1600.
囯 P. M. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra and its Applications 248 (1996) 303-316.
目 J. Sinkovic, Maximum nullity of outer planar graphs and the path cover number, Linear Algebra and its Applications 432 (2010) 2052-2060.

