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Minimum rank problem

21 3

⎡⎢⎢⎢⎢⎢⎣

? ∗ 0
∗ ? ∗
0 ∗ ?

⎤⎥⎥⎥⎥⎥⎦
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Minimum rank problem

▸ Let G be a simple graph.

▸ Denote SF (G) as the family of symmetric matrices over the
field F whose i , j-entry, i ≠ j , is nonzero if i ∼ j and zero
otherwise. (Diagonal entries are free.)

▸ The minimum rank of G is defined as

mrF (G) = min{rank(A) ∶ A ∈ SF (G)}.

The maximum nullity is

MF (G) = max{null(A) ∶ A ∈ SF (G)}.

▸ MF (G) +mrF (G) = ∣V (G)∣ for any G and F .
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Example: Paths Pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 ⋯ 0
1 −2 1 ⋮
0 1 ⋱ ⋱ 0
⋮ ⋱ −2 1
0 ⋯ 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(G) ≠ 0 for all G .
M(G) = 1 iff G is a path.

[Fiedler (1969), Bento and Leal Duarte (2005)]
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Example: Complete Graphs Kn

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

M(G) = n iff G = Kn.
M(G) = n − 1 iff G = Kn ⋃̇Km, n ≥ 2.
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Inverse eigenvalue problem

21 3

⎡⎢⎢⎢⎢⎢⎣

? ∗ 0
∗ ? ∗
0 ∗ ?

⎤⎥⎥⎥⎥⎥⎦

Real, Symmetric
What is the possible spectrum?

▸ We know mr(G) = 2 and M(G) = 1 and Spec= {1,1 ±
√
2} is

possible.

▸ Can Spec= {1,5,5}?
▸ No, for otherwise null(A − 5I ) = 2 >M(G).
▸ Largest possible multiplicity =M(G).
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Inverse eigenvalue problem

Theorem (K. H. Monfared, B. L. Shader 2013)

For a graph G and distinct real numbers λ1, λ2, . . . , λn, there is a
matrix A ∈ SR(G) such that the spectrum of A is λ1, λ2, . . . , λn.
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Inverse eigenvalue problem

Theorem (K. H. Monfared, B. L. Shader 2013)

For a graph G and distinct real numbers λ1, λ2, . . . , λn, there is a
matrix A ∈ SR(G) such that the spectrum of A is λ1, λ2, . . . , λn.

For the case multiplicity ≠ 1, it is still unknown, but the minimum
rank problem provides a restriction.
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The landscape of minimum rank problems

M(G)

Ẑ(G)

Z(G)

M(G)

Z(G)

ξ(G)

µ(G)

M+(G)

ν(G)
δ(G)

max

max
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The landscape of minimum rank problems

M(G)

Ẑ(G)

Z(G)

M(G)

Z(G)

ξ(G)

µ(G)

M+(G)

ν(G)
δ(G)

max

max

maximum nullity

zero forcing number

psd maximum nullity

Colin de Verdière parameter
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Zero forcing number

▸ A zero forcing game on a simple graph G starts by setting a
set B ⊆ V (G) of vertices blue and the others white, and then
repeatedly applies the color-change rule (CCR):

▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue.

x y
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Zero forcing number

▸ A zero forcing game on a simple graph G starts by setting a
set B ⊆ V (G) of vertices blue and the others white, and then
repeatedly applies the color-change rule (CCR):

▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue.

▸ The final coloring is the set of blue vertices when no more
CCR applies.

▸ The initial set B is called a zero forcing set if its final coloring
is V (G).

▸ The zero forcing number of G , denoted as Z(G), is the
minimum cardinality of a zero forcing set on G .
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Example: 5-sun H5
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9
10

Z(H5) = 3.
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Triangle number

▸ Let Q be a pattern (a matrix with entries ∈ {0,∗, ?}).
▸ An upper triangular subpattern is a square submatrix of Q
such that the lower part is all 0, diagonals are * .

▸ The triangle number of Q, denoted as tri(Q), is the largest
size of an upper triangular subpattern that can be found in Q
through row/column permutations.

⎡⎢⎢⎢⎢⎢⎣

∗ 0 0
? ∗ ?
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

? ∗ ?
∗ 0 0
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦
Ð→

⎡⎢⎢⎢⎢⎢⎣

∗ ? ?
0 ∗ 0
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦

▸ If Q is the pattern of a graph G , then mr(G) ≥ tri(Q) and
M(G) ≤ n − tri(Q).
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Triangle number of H5?

The pattern Q below is the pattern for H5. What is tri(Q)?

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

? ∗ 0 0 0 0 0 0 0 0
∗ ? 0 ∗ 0 0 0 0 0 ∗
0 0 ? ∗ 0 0 0 0 0 0
0 ∗ ∗ ? 0 ∗ 0 0 0 0
0 0 0 0 ? ∗ 0 0 0 0
0 0 0 ∗ ∗ ? 0 ∗ 0 0
0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 ∗ ∗ ? 0 ∗
0 0 0 0 0 0 0 0 ? ∗
0 ∗ 0 0 0 0 0 ∗ ∗ ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Triangle number of H5?

1
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1→ 2
5→ 6
7→ 8
6→ 4
8→ 10
4→ 3
10→ 9
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Triangle number of H5?

tri(Q) = 7 and Z(H5) = 3.

1 5 7 6 8 4 10 2 3 9
2
6
8
4
10
3
9
1
5
7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 0 0 0 ∗ ∗ ? 0 0
0 ∗ 0 ? ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ? 0 ∗ 0 0 0
0 0 0 ∗ 0 ? 0 ∗ ∗ 0
0 0 0 0 ∗ 0 ? ∗ 0 ∗
0 0 0 0 0 ∗ 0 0 ? 0
0 0 0 0 0 0 ∗ 0 0 ?
? 0 0 0 0 0 0 ∗ 0 0
0 ? 0 ∗ 0 0 0 0 0 0
0 0 ? 0 ∗ 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Zero forcing vs Triangle

▸ Number of forces xi → yi = size of triangle.

▸ Z(G) = n − tri(Q), where Q is the pattern of G .

▸ MF (G) ≤ Z(G), for any simple graph G , any field F [AIM
Group 2007].

▸ It doesn’t matter if SF (G) is defined to be symmetric or not.

▸ M(G) = Z(G) when ∣V (G)∣ ≤ 7 or G is a tree, a cycle, a
complete bipartite graph, ...

▸ Z(H5) = 3 but M(H5) = 2.
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The landscape of minimum rank problems

M(G)

Ẑ(G)

Z(G)

M(G)

Z(G)

ξ(G)

µ(G)

M+(G)

ν(G)
δ(G)

max

max

psd maximum nullity

orthogonal representations
Maehara Conjecture: δ(G) ≤M+(G)
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PSD maximum nullity

▸ Denote SF(G) as the family of symmetric matrices over F
whose i , j-entry, i ≠ j , is nonzero if i ∼ j and zero otherwise.
(Diagonal entries are free.)

▸ F = R, or C.
▸ mrF

+
(G) = min{rank(A) ∶ A ∈ SF(G), A is psd}.

▸ MF
+
(G) = max{null(A) ∶ A ∈ SF(G), A is psd}.

Params Related To The Min Rank Problem 15/48 Department of Mathematics, Iowa State University



PSD Decomposition

▸ Let A be an n × n (symmetric) psd matrix with rank(A) = r .
▸ Then

S∗S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− v∗1 −
− v∗2 −
⋮

− v∗n −

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∣ ∣ ∣
v1 v2 ⋯ vn
∣ ∣ ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [⟨vi , vj⟩],

where vi ∈ Fr .
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Orthogonal representation (faithful)

▸

S∗S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− v∗1 −− v∗2 −⋮− v∗n −

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∣ ∣ ∣
v1 v2 ⋯ vn∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎦
= [⟨vi , vj⟩],

where vi ∈ Fr .

▸ A (faithful) orthogonal representation is a function:

V (G) Ð→ F
d

i z→ vi
such that ⟨vi , vj⟩ { ≠ 0 if i ∼ j

= 0 if i ≁ j .

▸ For a given graph G , min r = mind , so M+(G) = n −mind .
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delta conjecture

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

δ(G)

max

max

Lovász 1979
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delta conjecture

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)
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Ẑ(G)

Z(G)
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delta conjecture
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delta conjecture

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

δ(G)

max

max

Lovász 1979

Maehara 1987

κ(G)

Lovász et al. 1989
van der Holst

2002

Berman et al. 2008

T. Hall 2011+

Params Related To The Min Rank Problem 18/48 Department of Mathematics, Iowa State University



What is ν?

▸ We say a matrix A satisfies strong Arnol’d Hypothesis (SAH)
if there is no nonzero symmetric matrix X satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I ○X = O
A ○X = O
AX = O

,

where ○ is the Hadamard (entrywise) product.

▸ ν(G) = max{null(A) ∶ A ∈ SR(G), A is psd, SAH}
▸ Colin de Verdière (1998) proved that if H is a minor of G ,
then ν(H) ≤ ν(G).
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Colin de Verdière type parameters

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

δ(G)

max

max

SF (G)
SF (G),psd

SF (G),psd,SAH SF (G)
SAH

gen Laplacian
1 neg eigen
SAH
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Colin de Verdière parameter µ

▸ µ(G) is defined as the maximum nullity among matrices M
with the following properties:

▸ Generalized Laplacian: Mij

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if i ∼ j , i ≠ j
= 0 if i ≁ j , i ≠ j
free if i = j

.

▸ M has exactly one negative eigenvalue.
▸ M satisfies SAH.

▸ µ(G) bridges algebraic and topological properties of a graph
[Colin de Verdière, Robertson et al., Lovász et al.]:

▸ µ(G) ≤ 1 iff G is a disjoint union of paths;
▸ µ(G) ≤ 2 iff G is outerplanar;
▸ µ(G) ≤ 3 iff G is planar;
▸ µ(G) ≤ 4 iff G is linklessly embedable.

▸ Colin de Verdière conjectured χ(G) ≤ µ(G) + 1.
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Graph Complement Conjecture (GCC)

▸ Let G be a simple graph and β(G) a parameter of G . Then

GCC-β states that β(G) + β(G) ≥ n − 2.
▸ Kotlov (1997) conjectured GCC-µ.
▸ Brualdi et al. (2007) conjectured GCC-M.
▸ Barioli et al. (2012) conjectured GCC-M+ and GCC-ν.
▸ ISU EGR group (2011) proved GCC-Z , GCC-Z+, and GCC-tw.
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Graph Complement Conjecture

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

δ(G)κ(G)

max

max
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Graph Complement Conjecture

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)
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ν(G)
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Graph Complement Conjecture

M(G)
Ẑ(G)

Z(G)

Z+(G)
tw(G)

M(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

⌈δ(G)⌉⌈κ(G)⌉

max

max
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Loop graphs

▸ A loop graph G is a graph where loops are allowed. (Each
vertex has at most one loop.)

▸ A loop configuration G of a simple graph G is a loop graph
obtained from G by designating each vertex as having no loop
or one loop. (There are 2n possibilities.)

▸ MF (G) =
max{null(A) ∶ A ∈ SF (G),Ai ,i{ ≠ 0 if i has a loop;

= 0 if i has no loop.
}.

▸ MF (G) = maxGMF (G), where G runs over all loop
configurations of G.
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Z(G) for loop graphs / Ẑ(G) for simple graphs

▸ The color-change rule for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue. (x = y is possible.)

x y z
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Z(G) for loop graphs / Ẑ(G) for simple graphs

▸ The color-change rule for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue. (x = y is possible.)

x y zy
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Z(G) for loop graphs / Ẑ(G) for simple graphs

▸ The color-change rule for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue. (x = y is possible.)
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Z(G) for loop graphs / Ẑ(G) for simple graphs

▸ The color-change rule for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue. (x = y is possible.)
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Z(G) for loop graphs / Ẑ(G) for simple graphs

▸ The color-change rule for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue. (x = y is possible.)

▸ Z(G) is the smallest cardinality of a zero forcing set on G

using CCR for loop graphs.

▸ MF (G) ≤ Z(G) for all loop graphs G and fields F [Hogben
(2010)].

▸ If G is a loop configuration of G , then Z(G) ≤ Z(G).
▸ The enhanced zero forcing number is defined as
Ẑ(G) = maxG Z(G), where G runs over all loop
configurations of G .
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H5 revisited
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Ẑ(H5) = 2 and Z(H5) = 3.
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Ẑ(H5) = 2 and Z(H5) = 3.
Params Related To The Min Rank Problem 26/48 Department of Mathematics, Iowa State University



H5 revisited

1

2

3
4

5

6

7

8

9
10

1 has a loop and
the others are unknown.

3

5

4

6

2

8
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H5 revisited
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Sage Data

▸ M(G) = Ẑ(G) = Z(G) if ∣V (G)∣ ≤ 7.
▸ For n = 8, there are 7 graphs with Ẑ(G) < Z(G).
▸ For n = 9, there are 412 graphs with Ẑ(G) < Z(G).
▸ For n = 10, there are 18700+ graphs with Ẑ(G) < Z(G).
▸ But M(K3,3,3) = 6 and Z(G) = Ẑ(G) = 7.
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New parameters Ẑoc(G) and Zoc(G)

M(G)
Ẑoc(G)
Ẑ(G)
Z(G)

M(G)
Zoc(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

δ(G)

max

max

max
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Odd cycles

▸ Ẑ(G) shows a bound for M(G) leads to a bound for M(G);
an improvement of bounds for loop graphs leads to an
improvement for simple graphs.

▸ Let C0
2k+1 be a loopless odd cycle, as a loop graph. Then

M(C0
2k+1) = 0 but Z(C0

2k+1) = 1.

1

2

3 4

5

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e1 e2k+1
e1 0 e2

e2 ⋱ ⋱⋱ e2k
e2k+1 e2k 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2
2k+1∏
i=1

ei
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Try to generalize triangle number

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ? ? ? ?
0 a2,2 ? ? ?
0 0 a3,3 ? ?
? ? ? ? ?
? ? ? ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 3
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Try to generalize triangle number

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 ? ? ? ?
O A2,2 ? ? ?
O O A3,3 ? ?
? ? ? ? ?
? ? ? ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 3∑
i=1

rank(Ai ,i)
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Try to generalize triangle number

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(C0
5) ? ? ? ?

O A(C0
7) ? ? ?

O O A(C0
3) ? ?

? ? ? ? ?
? ? ? ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 5 + 7 + 3 = 15
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Odd cycle zero forcing number

▸ The color-change rule CCR-Zoc for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue (x = y is possible);

▸ if W is the set of white vertices, and G[W ] has a connected
component C such that C ≅ C0

2k+1, then all vertices in V (C)
turn blue.
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Odd cycle zero forcing number

▸ The color-change rule CCR-Zoc for loop graphs is:
▸ if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is
blue, then y turns blue (x = y is possible);

▸ if W is the set of white vertices, and G[W ] has a connected
component C such that C ≅ C0

2k+1, then all vertices in V (C)
turn blue.

▸ Zoc(G) is the smallest cardinality of a zero forcing set on G

using CCR-Zoc for loop graphs.

▸ MF (G) ≤ Zoc(G) whenever charF ≠ 2 and matrices are
symmetric.

▸ The enhanced odd cycle zero forcing number is defined as
Ẑoc(G) = maxG Zoc(G), where G runs over all loop
configurations of G .
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Example: K3,3,3
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Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = Z(K3,3,3) = 7.
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Example: K3,3,3
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others are unknown
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Example: K3,3,3
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1,4,7 have no loops
others are unknown

Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = Z(K3,3,3) = 7.
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Example: K3,3,3
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others are unknown
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GCC-Ẑoc(G)

M(G)
Ẑoc(G)
Ẑ(G)
Z(G)

M(G)
Zoc(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

⌈δ(G)⌉

Z+(G)

tw(G)

max

max

max

⌈κ(G)⌉
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GCC-Ẑoc(G)

M(G)
Ẑoc(G)
Ẑ(G)
Z(G)

M(G)
Zoc(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

⌈δ(G)⌉

Z+(G)

tw(G)

max

max

max

⌈κ(G)⌉

Zµ?
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Bound µ above

▸ Recall that µ(G) is the maximum nullity among matrices M
with the following properties:

▸ Generalized Laplacian: Mij

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if i ∼ j , i ≠ j
= 0 if i ≁ j , i ≠ j
free if i = j

.

▸ M has exactly one negative eigenvalue.
▸ M satisfies SAH.

▸ Goldberg and Berman (2014) found Z± to bound M(Q±).
▸ Butler et al. (2014) found Zq to bound Mq(G).
▸ So µ(G) ≤ min{Z±(G),Z1(G)}, but can we do better?

▸ If such Zµ exists, is GCC-Zµ true or not?
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Transferring from ν to µ

M(G)
Ẑ(G)

Z(G)

M(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

δ(G)

max

max
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GCC-ν

▸ A k-tree is formed by starting from Kk+1 and repeatedly
adding one vertex joined to an existing k-clique.

▸ Sinkovic and van der Holst (2011) showed that if G is a
k-tree, then ν(G) ≥ n − 2 − k .

▸ So if G is a subgraph of a k-tree Tk and ν(G) ≥ k , then
GCC-ν holds.

ν(G) + ν(G) ≥ k + n − 2 − k = n − 2,
since Tk is a subgraph of G .

▸ Can we replace ν by µ?
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GCC-ν

▸ Barioli et al. (2012) showed that if either
▸ G and H each have an edge, or
▸ G has an edge and H = Kr with ν(G) ≤ ∣V (G)∣ − r ,
then ν(G ∨H) = min{∣V (G)∣ + ν(H), ν(G) + ∣V (H)∣};

Otherwise,
ν(G ∨H) = min{∣V (G)∣ + ν(H), ν(G) + ∣V (H)∣} − 1.

▸ Can we replace ν by µ?
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Partial answers

▸ µ(G) ≤ µ(G − v) + 1.
▸ µ(G ∨H) ≤ min{∣V (G)∣ + µ(H), µ(G) + ∣V (H)∣}.
▸ min{∣V (G)∣ + µ(H), µ(G) + ∣V (H)∣} − 1 ?≤ µ(G ∨H).
▸ Up to n ≤ 7, µ(G) can be determined.

▸ µ(G) ≤ 1 iff G is a disjoint union of paths;
▸ µ(G) ≤ 2 iff G is outerplanar;
▸ µ(G) ≤ 3 iff G is planar;
▸ µ(G) ≤ 4 iff G is linklessly embedable.
▸ µ(G) ≤ n − 1, with the equality holds when G is K2 or Kn.

▸ The inequality holds for graphs with n ≤ 8.
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Keep going

M(G)
Ẑoc(G)
Ẑ(G)
Z(G)

M(G)
Zoc(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

⌈δ(G)⌉

Z+(G)

tw(G)

⌈κ(G)⌉

max

max

max
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Keep going

M(G)
Ẑoc(G)
Ẑ(G)
Z(G)

M(G)
Zoc(G)
Z(G)

ξ(G)
µ(G)

M+(G)
ν(G)

⌈δ(G)⌉

Z+(G)

tw(G)

⌈κ(G)⌉

max

max

max謝謝
ShieShie
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