Applications of zero forcing number to the minimum rank problem

Advisor: Professor Gerard Jennhwa Chang, Ph.D. Student: Chin-Hung Lin

Department of Mathematics, National Taiwan University

$$
5 / 252011
$$

Abstract

- Introduction and some related properties
- Exhaustive zero forcing number and sieving process
- Summary and a counterexample to a problem on edge spread

Relation between Matrices and Graphs

\mathcal{G} :real symmetric matrices \rightarrow graphs. $\left(\begin{array}{ccc}-3 & 3 & 0 \\ 3 & -5 & 2 \\ 0 & 2 & -2\end{array}\right) \quad \xrightarrow{\mathcal{G}}$

Relation between Matrices and Graphs

\mathcal{G} :real symmetric matrices \rightarrow graphs.

$$
\left(\begin{array}{ccc}
-3 & 3 & 0 \\
3 & -5 & 2 \\
0 & 2 & -2
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

$$
\mathcal{S}(G)=\left\{A \in M_{n \times n}(\mathbb{R}): A=A^{t}, \mathcal{G}(A)=G\right\} .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\}
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)| .
$$

Minimum Rank

- The minimum rank of a graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)| .
$$

- The minimum rank problem of a graph G is to determine the number $\operatorname{mr}(G)$ or $M(G)$.

Related Parameters

- The zero forcing process on a graph G is the color-changing process using the following rules.

Related Parameters

- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.

Related Parameters

- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
- The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.
- The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
- A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
- The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.
- The path cover number $P(G)$ of a graph G is the minimum number of vertex disjoint induced paths of G that cover $V(G)$.

Example for Three Parameters

$$
\left(\begin{array}{cccc}
? & * & * & * \\
* & ? & 0 & 0 \\
* & 0 & ? & 0 \\
* & 0 & 0 & ?
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

- $\operatorname{rank} \geq 2$.

Example for Three Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

- rank ≥ 2.
- 2 is achievable.

Example for Three Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

- rank ≥ 2.
- 2 is achievable.
- $\operatorname{mr}\left(K_{1,3}\right)=2$ and $M\left(K_{1,3}\right)=4-2=2$.

Example for Three Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \xrightarrow{\mathcal{G}}
$$

- $\operatorname{rank} \geq 2$.
- 2 is achievable.
- $\operatorname{mr}\left(K_{1,3}\right)=2$ and $M\left(K_{1,3}\right)=4-2=2$.
- $Z(G)=2$.

Example for Three Parameters

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\mathcal{G}}
$$

- rank ≥ 2.
- 2 is achievable.
- $\operatorname{mr}\left(K_{1,3}\right)=2$ and $M\left(K_{1,3}\right)=4-2=2$.
- $Z(G)=2$.
- $P(G)=2$.

Basic Properties

- For all graph $G, M(G) \leq Z(G)$.[1]

Basic Properties

- For all graph $G, M(G) \leq Z(G)$.[1]
- For all graph $G, P(G) \leq Z(G)$.[2]

Basic Properties

- For all graph $G, M(G) \leq Z(G)$.[1]
- For all graph $G, P(G) \leq Z(G)$.[2]
- For outerplanar graph $G, M(G) \leq P(G) \leq Z(G)$.[12]

Basic Properties

- For all graph $G, M(G) \leq Z(G)$.[1]
- For all graph $G, P(G) \leq Z(G)$.[2]
- For outerplanar graph $G, M(G) \leq P(G) \leq Z(G)$.[12]
- $M(G)$ and $P(G)$ are not comparable in general.

Terminologies for $Z(G)$

- A chronological list record the order of forces.

$$
\begin{aligned}
& \text { chronological list } \\
& 1 \rightarrow 2 \quad 4 \rightarrow 3 \\
& 5 \rightarrow 6 \quad 8 \rightarrow 10 \\
& 7 \rightarrow 8 \quad 10 \rightarrow 9 \\
& 6 \rightarrow 4 \\
& \text { maximal chains } \\
& 1 \rightarrow 2 \\
& 5 \rightarrow 6 \rightarrow 4 \rightarrow 3 \\
& 7 \rightarrow 8 \rightarrow 10 \rightarrow 9
\end{aligned}
$$

Terminologies for $Z(G)$

- A chronological list record the order of forces.
- A chain of a chronological list is a sequence of consecutive forcing list.

chronological list

$1 \rightarrow 2 \quad 4 \rightarrow 3$
$5 \rightarrow 6 \rightarrow 10$
$7 \rightarrow 8 \quad 10 \rightarrow 9$
$6 \rightarrow 4$
maximal chains
$1 \rightarrow 2$
$\rightarrow 6 \rightarrow 4 \rightarrow 3$
$7 \rightarrow 8 \rightarrow 10 \rightarrow 9$

Terminologies for $Z(G)$

- A chronological list record the order of forces.
- A chain of a chronological list is a sequence of consecutive forcing list.
- The set of maximal chains forms a path cover.

chronological list
$\begin{aligned} & 1 \rightarrow 2 \quad 4 \rightarrow 3 \\ & 5 \rightarrow 6 \quad 8 \rightarrow 10 \\ & 7 \rightarrow 8 \quad 10 \rightarrow 9 \\ & 6 \rightarrow 4 \\ & \text { maximal chains } \\ & 1 \rightarrow 2 \\ & 5 \rightarrow 6 \rightarrow 4 \rightarrow 3 \\ & 7 \rightarrow 8 \rightarrow 10 \rightarrow 9\end{aligned}$

Terminologies for $Z(G)$

- A chronological list record the order of forces.
- A chain of a chronological list is a sequence of consecutive forcing list.
- The set of maximal chains forms a path cover.
- The inverse chronological list gives another zero forcing set called reversal.

Vertex-sum Operation

- The vertex-sum of G_{1} and G_{2} at the vertex v is the graph $G_{1} \oplus_{v} G_{2}$ obtained by identifying the vertex v.

Vertex-sum Operation

- The vertex-sum of G_{1} and G_{2} at the vertex v is the graph $G_{1} \oplus_{v} G_{2}$ obtained by identifying the vertex v.
- If $G=G_{1} \oplus_{\nu} G_{2}$, then
$M(G)=\max \left\{M\left(G_{1}\right)+M\left(G_{2}\right)-1, M\left(G_{1}-v\right)+M\left(G_{2}-v\right)-1\right\} .[4]$

G_{1}

G_{2}

$$
G_{1} \oplus_{v} G_{2}
$$

Reduction Formula for $P(G)$

- A vertex v is doubly terminal if v is a one-vertex path in some optimal path cover.

Reduction Formula for $P(G)$

- A vertex v is doubly terminal if v is a one-vertex path in some optimal path cover.
- A vertex v is simply terminal if v is an endpoint of a path in some optimal path cover and v is not doubly terminal.

Reduction Formula for $P(G)$

- A vertex v is doubly terminal if v is a one-vertex path in some optimal path cover.
- A vertex v is simply terminal if v is an endpoint of a path in some optimal path cover and v is not doubly terminal.
- The path spread of G on v is

$$
p_{v}(G)=P(G)-P(G-v)
$$

Reduction Formula for $P(G)$

- A vertex v is doubly terminal if v is a one-vertex path in some optimal path cover.
- A vertex v is simply terminal if v is an endpoint of a path in some optimal path cover and v is not doubly terminal.
- The path spread of G on v is

$$
p_{v}(G)=P(G)-P(G-v)
$$

- If $G=G_{1} \oplus_{V} G_{2}$, then

$$
p_{v}(G)=\left\{\begin{array}{lc}
-1, & \text { if } v \text { is simply terminal } \\
\min \left\{p_{v}\left(G_{1}\right), p_{v}\left(G_{2}\right)\right\}, & \text { of } G_{1} \text { and } G_{2} ;
\end{array}\right.
$$

Reduction Formula for $Z(G)$

- A vertex v is doubly terminal if v is a one-vertex maximal chain in some optimal chronological list.

Reduction Formula for $Z(G)$

- A vertex v is doubly terminal if v is a one-vertex maximal chain in some optimal chronological list.
- A vertex v is simply terminal if v is an endpoint of a maximal chain in some optimal chronological list and v is not doubly terminal.

Reduction Formula for $Z(G)$

- A vertex v is doubly terminal if v is a one-vertex maximal chain in some optimal chronological list.
- A vertex v is simply terminal if v is an endpoint of a maximal chain in some optimal chronological list and v is not doubly terminal.
- The zero spread of G on v is

$$
z_{v}(G)=Z(G)-Z(G-v)
$$

Reduction Formula for $Z(G)$

- A vertex v is doubly terminal if v is a one-vertex maximal chain in some optimal chronological list.
- A vertex v is simply terminal if v is an endpoint of a maximal chain in some optimal chronological list and v is not doubly terminal.
- The zero spread of G on v is

$$
z_{v}(G)=Z(G)-Z(G-v)
$$

- If $G=G_{1} \oplus_{V} G_{2}$, then

$$
z_{v}(G)= \begin{cases}-1 & \text { if } v \text { is simply terminal } \\ \operatorname{of} G_{1} \text { and } G_{2} \\ \min \left\{z_{v}\left(G_{1}\right), z_{v}\left(G_{2}\right)\right\} & \text { otherwise }\end{cases}
$$

-

$$
\left\{\begin{array}{l}
-1 \leq z_{v}(G) \leq 1 . \\
v \text { is doubly terminal } \Leftrightarrow z_{v}=0 . \\
v \text { is simply terminal } \Rightarrow z_{v}=0 .
\end{array}\right.
$$

Sketch of Proof

0

$$
\left\{\begin{array}{l}
-1 \leq z_{v}(G) \leq 1 . \\
v \text { is doubly terminal } \Leftrightarrow z_{v}=0 . \\
v \text { is simply terminal } \Rightarrow z_{v}=0 .
\end{array}\right.
$$

- If v is simply terminal for G_{1} and G_{2}, then $z_{v}(G)=-1$, $z_{v}\left(G_{1}\right)=z_{v}\left(G_{2}\right)=0$.

Sketch of Proof

0

$$
\left\{\begin{array}{l}
-1 \leq z_{v}(G) \leq 1 . \\
v \text { is doubly terminal } \Leftrightarrow z_{v}=0 . \\
v \text { is simply terminal } \Rightarrow z_{v}=0 .
\end{array}\right.
$$

- If v is simply terminal for G_{1} and G_{2}, then $z_{v}(G)=-1$, $z_{v}\left(G_{1}\right)=z_{v}\left(G_{2}\right)=0$.

Sketch of Proof

- If $G=G_{1} \oplus_{v} G_{2}$, then

$$
\begin{gathered}
Z(G) \leq Z\left(G_{1}\right)+Z\left(G_{2}-v\right), Z(G) \leq Z\left(G_{1}-v\right)+Z\left(G_{2}\right), \\
Z(G) \geq Z\left(G_{1}\right)+Z\left(G_{2}\right)-1 .
\end{gathered}
$$

Sketch of Proof

- If $G=G_{1} \oplus_{v} G_{2}$, then

$$
\begin{gathered}
Z(G) \leq Z\left(G_{1}\right)+Z\left(G_{2}-v\right), Z(G) \leq Z\left(G_{1}-v\right)+Z\left(G_{2}\right), \\
Z(G) \geq Z\left(G_{1}\right)+Z\left(G_{2}\right)-1 .
\end{gathered}
$$

- If $G=G_{1} \oplus_{v} G_{2}$, then

$$
\begin{aligned}
& z_{v}(G) \leq \min \left\{z_{v}\left(G_{1}\right), z_{v}\left(G_{2}\right)\right\}, \\
& z_{v}(G) \geq z_{v}\left(G_{1}\right)+z_{v}\left(G_{2}\right)-1 .
\end{aligned}
$$

- If $G=G_{1} \oplus_{v} G_{2}$, then

$$
\begin{gathered}
Z(G) \leq Z\left(G_{1}\right)+Z\left(G_{2}-v\right), Z(G) \leq Z\left(G_{1}-v\right)+Z\left(G_{2}\right) \\
Z(G) \geq Z\left(G_{1}\right)+Z\left(G_{2}\right)-1
\end{gathered}
$$

- If $G=G_{1} \oplus_{v} G_{2}$, then

$$
\begin{aligned}
& z_{v}(G) \leq \min \left\{z_{v}\left(G_{1}\right), z_{v}\left(G_{2}\right)\right\}, \\
& z_{v}(G) \geq z_{v}\left(G_{1}\right)+z_{v}\left(G_{2}\right)-1
\end{aligned}
$$

- $z_{v}(G)=-1, z_{v}\left(G_{1}\right)=z_{v}\left(G_{2}\right)=0$ is the only possibility. This implies v is simply terminal for G_{1} and G_{2}.

Comparison of Reduction Formulae

- Denote $m_{v}(G)=M(G)-M(G-v)$, $p_{v}(G)=P(G)-P(G-v)$, and $z_{v}(G)=Z(G)-Z(G-v)$.

Comparison of Reduction Formulae

- Denote $m_{v}(G)=M(G)-M(G-v)$, $p_{v}(G)=P(G)-P(G-v)$, and $z_{v}(G)=Z(G)-Z(G-v)$.
- $-1 \leq m_{v}, p_{v}, r_{v} \leq 1$.

Comparison of Reduction Formulae

- Denote $m_{v}(G)=M(G)-M(G-v)$, $p_{v}(G)=P(G)-P(G-v)$, and $z_{v}(G)=Z(G)-Z(G-v)$.
- $-1 \leq m_{v}, p_{v}, r_{v} \leq 1$.
- If $G=G_{1} \oplus_{v} G_{2}$, they have similar behavior.

$m_{v}\left(G_{1} \backslash G_{2}\right)$	-1	0	1
-1	-1	-1	-1
0	-1	-1	0
1	-1	0	1
$p_{v}, z_{v}\left(G_{1} \backslash G_{2}\right)$	-1	0	
-1	-1	-1	-1
0	-1	$-1 \backslash 0$	0
1	-1	0	1

Comparison of Reduction Formulae

- Denote $m_{v}(G)=M(G)-M(G-v)$, $p_{v}(G)=P(G)-P(G-v)$, and $z_{v}(G)=Z(G)-Z(G-v)$.
- $-1 \leq m_{v}, p_{v}, r_{v} \leq 1$.
- If $G=G_{1} \oplus_{v} G_{2}$, they have similar behavior.

$m_{v}\left(G_{1} \backslash G_{2}\right)$	-1	0	1
-1	-1	-1	-1
0	-1	-1	0
1	-1	0	1

- Hard to apply on induction.
- Recall that $P(G) \leq Z(G)$.
- Recall that $P(G) \leq Z(G)$.
- A graph G satisfies the $P Z$ condition iff $P(G)=Z(G)$.
- Recall that $P(G) \leq Z(G)$.
- A graph G satisfies the $P Z$ condition iff $P(G)=Z(G)$.
- PZ condition is not hereditary.

- Recall that $P(G) \leq Z(G)$.
- A graph G satisfies the PZ condition iff $P(G)=Z(G)$.
- PZ condition is not hereditary.
- PZ condition does not preserve under vertex-sum operation.

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Stong PZ condition $\Rightarrow P Z$ condition.

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Stong PZ condition $\Rightarrow P Z$ condition.
- Strong PZ condition is hereditary.

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Stong PZ condition $\Rightarrow P Z$ condition.
- Strong PZ condition is hereditary.

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Stong PZ condition $\Rightarrow P Z$ condition.
- Strong PZ condition is hereditary.
- Strong PZ condition preserves under vertex-sum operation.

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Stong PZ condition $\Rightarrow P Z$ condition.
- Strong PZ condition is hereditary.
- Strong PZ condition preserves under vertex-sum operation.

Cactus graphs

- A cactus is a graph whose blocks are all K_{2} or C_{n}.

Cactus graphs

- A cactus is a graph whose blocks are all K_{2} or C_{n}.
- A cactus G satisfies the strong PZ condition. Hence we have $P(G)=Z(G)$.

Large $Z(G)-M(G)$

- Let G_{k} be the $k 5$-sun sequence. Then

$$
P\left(G_{k}\right)=Z\left(G_{k}\right)=2 k+1 \text { and } M\left(G_{k}\right)=k+1
$$

Large $Z(G)-M(G)$

- Let G_{k} be the $k 5$-sun sequence. Then $P\left(G_{k}\right)=Z\left(G_{k}\right)=2 k+1$ and $M\left(G_{k}\right)=k+1$.
- Actually, for all $1 \leq p \leq q \leq 2 p-1$, there is a graph G such that $M(G)=p$ and $Z(G)=q$.

Large $Z(G)-M(G)$

- Let G_{k} be the $k 5$-sun sequence. Then
$P\left(G_{k}\right)=Z\left(G_{k}\right)=2 k+1$ and $M\left(G_{k}\right)=k+1$.
- Actually, for all $1 \leq p \leq q \leq 2 p-1$, there is a graph G such that $M(G)=p$ and $Z(G)=q$.
- Q: Will the inequality $Z(G) \leq 2 M(G)-1$ holds for all G ?

Minimum Rank of A Pattern

- A sign set is $\{0, *, u\}$. A real number r matchs 0 if $r=0, *$ if $r \neq 0$, while u if r matchs 0 or *.

Minimum Rank of A Pattern

- A sign set is $\{0, *, u\}$. A real number r matchs 0 if $r=0, *$ if $r \neq 0$, while u if r matchs 0 or $*$.
- A pattern matrix Q is a matrix over S.

Minimum Rank of A Pattern

- A sign set is $\{0, *, u\}$. A real number r matchs 0 if $r=0, *$ if $r \neq 0$, while u if r matchs 0 or $*$.
- A pattern matrix Q is a matrix over S.
- The minimum rank of a pattern Q is

$$
\operatorname{mr}(Q)=\min \{\operatorname{rank} A: A \cong Q\}
$$

Example for Minmum Rank of A Pattern

- The pattern

$$
Q=\left(\begin{array}{lll}
* & 0 & 0 \\
u & * & u
\end{array}\right)
$$

must have rank at least 2 .

Example for Minmum Rank of A Pattern

- The pattern

$$
Q=\left(\begin{array}{lll}
* & 0 & 0 \\
u & * & u
\end{array}\right)
$$

must have rank at least 2 .

- The rank 2 is achievable. Hence $\operatorname{mr}(Q)=2$.

Operation on S

- Define addition "+" and scalar multiplication " \times " on S.

$$
\begin{aligned}
& +: S \times S \rightarrow S \\
& \begin{array}{c|ccc}
+ & 0 & * & u \\
\hline 0 & 0 & * & u \\
* & * & u & u \\
u & u & u & u
\end{array} \\
& x:\{0, *\} \times S \rightarrow S \\
& \begin{array}{c|ccc}
\times & 0 & * & u \\
\hline 0 & 0 & 0 & 0 \\
* & 0 & * & u
\end{array}
\end{aligned}
$$

Independence

- A sign vector is a tuple with entris on S.

Independence

- A sign vector is a tuple with entris on S.
- We say a sign vector $v \sim 0$ iff v contains no $*$.

Independence

- A sign vector is a tuple with entris on S.
- We say a sign vector $v \sim 0$ iff v contains no $*$.
- A set of sign vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is independent iff

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots c_{n} v_{n} \sim 0
$$

implies $c_{1}=c_{2}=\cdots=c_{n}=0$.

Independence

- A sign vector is a tuple with entris on S.
- We say a sign vector $v \sim 0$ iff v contains no $*$.
- A set of sign vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is independent iff

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots c_{n} v_{n} \sim 0
$$

implies $c_{1}=c_{2}=\cdots=c_{n}=0$.

- The rank of a pattern is the maximum number of independent row sign vectors.

Independence in different senses

Lemma

Suppose $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a set of sign vectors, and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a set of sign vectors such that w_{i} is obtained from v_{i} by replacing entries u by 0 or $*$. If V is linearly independent, then so is W.
Suppose $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is a set of real vectors such that each entry in each vector matches the corresponding entry in elements of W. If W is linearly independent, then R is linearly independent as real vectors.

Independence in different senses

Lemma

Suppose $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a set of sign vectors, and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a set of sign vectors such that w_{i} is obtained from v_{i} by replacing entries u by 0 or $*$. If V is linearly independent, then so is W.
Suppose $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is a set of real vectors such that each entry in each vector matches the corresponding entry in elements of W. If W is linearly independent, then R is linearly independent as real vectors.

Theorem

If Q is a pattern matrix and U is the set of all pattern matrices obtained from Q by replacing u by 0 or *, then

$$
\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)
$$

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.
- Zero forcing number banned by $B Z(G, B)$: minimum size of F.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.
- Zero forcing number banned by $B Z(G, B)$: minimum size of F.
- Zero forcing number banned by B with support W $Z_{W}(G, B)$: minimum size of $F \supseteq W$.

Zero Forcing Number with Banned Edges And Given Support

- Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
- The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $x y \notin B$, then change the color of y to black.
- Zero forcing set banned by $B F: F$ can force $V(G)$ banned by B.
- Zero forcing number banned by $B Z(G, B)$: minimum size of F.
- Zero forcing number banned by B with support W $Z_{W}(G, B)$: minimum size of $F \supseteq W$.
- When W and B is empty, $Z_{W}(G, B)=Z(G)$.

Natural Relation between Patterns and Bipartites

- Q is a given $m \times n$ pattern. $G=(X \cup Y, E)$ is the related bipartite defined by

$$
X=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, Y=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, E=\left\{a_{i} b_{j}: Q_{i j} \neq 0\right\}
$$

Natural Relation between Patterns and Bipartites

- Q is a given $m \times n$ pattern. $G=(X \cup Y, E)$ is the related bipartite defined by

$$
X=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, Y=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, E=\left\{a_{i} b_{j}: Q_{i j} \neq 0\right\}
$$

- $B=\left\{a_{i} b_{j}: Q_{i j}=u\right\}$.

$$
\left(\begin{array}{lll}
* & 0 & 0 \\
u & * & u
\end{array}\right)
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{rank}(Q)+Z_{Y}(G, B)=m+n
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{rank}(Q)+Z_{Y}(G, B)=m+n
$$

- Each initial white vertex represent a sign vector.

$$
\begin{array}{r}
\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) \\
c_{1}\left(\begin{array}{l}
u \\
* \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
* \\
u \\
*
\end{array}\right) \sim 0
\end{array}
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{rank}(Q)+Z_{Y}(G, B)=m+n
$$

- Each initial white vertex represent a sign vector.
- The set of initial white vertices is independent iff it will be forced.

$$
c_{1}\left(\begin{array}{lll}
u \\
* \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \sim 0
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{rank}(Q)+Z_{Y}(G, B)=m+n
$$

- Each initial white vertex represent a sign vector.
- The set of initial white vertices is independent iff it will be forced.

$$
\begin{array}{r}
\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) \\
c_{1}\left(\begin{array}{l}
u \\
* \\
0
\end{array}\right)+0\left(\begin{array}{l}
* \\
u \\
*
\end{array}\right) \sim 0
\end{array}
$$

Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, If $G=(X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$
\operatorname{rank}(Q)+Z_{Y}(G, B)=m+n
$$

- Each initial white vertex represent a sign vector.
- The set of initial white vertices is independent iff it will be forced.

$$
\begin{gathered}
\left(\begin{array}{ccc}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) \\
*\left(\begin{array}{c}
u \\
* \\
0
\end{array}\right)+*\left(\begin{array}{c}
* \\
u \\
*
\end{array}\right)+*\left(\begin{array}{c}
0 \\
* \\
u
\end{array}\right)=\left(\begin{array}{c}
u \\
u \\
u
\end{array}\right) \sim 0
\end{gathered}
$$

- Recall that $\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)$. The middle term is called the exhaustive rank of Q.
- Recall that $\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)$. The middle term is called the exhaustive rank of Q.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.
- Recall that $\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)$. The middle term is called the exhaustive rank of Q.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.
- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.

The Exhaustive Zero Forcing Number

- Recall that $\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)$. The middle term is called the exhaustive rank of Q.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.
- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- The inequality become

$$
M(G) \leq \max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n \leq Z_{Y}\left(\widetilde{G}_{[n]}, B\right)-n .
$$

The Exhaustive Zero Forcing Number

- Recall that $\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)$. The middle term is called the exhaustive rank of Q.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.
- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- The inequality become

$$
M(G) \leq \max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n \leq Z_{Y}\left(\widetilde{G}_{[n]}, B\right)-n .
$$

- The second term is called the exhaustive zero forcing number of G. Denote it by $\widetilde{Z}(G)$. The third term could be proven to equal $Z(G)$.

The Exhaustive Zero Forcing Number

- Recall that $\operatorname{rank}(Q) \leq \min _{Q^{\prime} \in U}\left\{\operatorname{rank}\left(Q^{\prime}\right)\right\} \leq \operatorname{mr}(Q)$. The middle term is called the exhaustive rank of Q.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.
- Let $I \subseteq[n]$ and Q_{I} be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U=\left\{Q_{I}: I \subseteq[n]\right\}$. Define \widetilde{G}_{I} to be the bipartite given by Q_{I}.
- The inequality become

$$
M(G) \leq \max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n \leq Z_{Y}\left(\widetilde{G}_{[n]}, B\right)-n .
$$

- The second term is called the exhaustive zero forcing number of G. Denote it by $\widetilde{Z}(G)$. The third term could be proven to equal $Z(G)$.
- Hence $M(G) \leq \widetilde{Z}(G) \leq Z(G)$.

Example of Exhaustive Zero Forcing Number

- For $G=P_{3}$, the pattern is

$$
Q=\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) .
$$

Example of Exhaustive Zero Forcing Number

- For $G=P_{3}$, the pattern is

$$
Q=\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) .
$$

- For $I=\{1,3\} \subseteq[3]$, the pattern is

$$
Q=\left(\begin{array}{lll}
* & * & 0 \\
* & 0 & * \\
0 & * & *
\end{array}\right) .
$$

Example of Exhaustive Zero Forcing Number

- For $G=P_{3}$, the pattern is

$$
Q=\left(\begin{array}{lll}
u & * & 0 \\
* & u & * \\
0 & * & u
\end{array}\right) .
$$

- For $I=\{1,3\} \subseteq[3]$, the pattern is

$$
Q=\left(\begin{array}{lll}
* & * & 0 \\
* & 0 & * \\
0 & * & *
\end{array}\right) .
$$

- $1=M\left(P_{3}\right) \leq \widetilde{Z}\left(P_{3}\right) \leq Z\left(P_{3}\right)=1$. Hence $\widetilde{Z}(G)=1$.

Row Rank and Column Rank

Theorem

If G is the bipartite given by a pattern Q, then

$$
Z_{Y}(G, B)=Z_{X}(G, B)
$$

- Row rank: maximum number of rows; Column rank: maximum number of columns.

Row Rank and Column Rank

Theorem

If G is the bipartite given by a pattern Q, then

$$
Z_{Y}(G, B)=Z_{X}(G, B)
$$

- Row rank: maximum number of rows; Column rank: maximum number of columns.
- Row rank= Column rank!

- The n-sun is a graph obtained by adding n leaves to each vertices of C_{n}.
- The n-sun is a graph obtained by adding n leaves to each vertices of C_{n}.
- In [4], it was shown $M\left(H_{3}\right)=Z\left(H_{3}\right)=2$ and $M\left(H_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, $Z\left(H_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for $n \geq 4$.
- The n-sun is a graph obtained by adding n leaves to each vertices of C_{n}.
- In [4], it was shown $M\left(H_{3}\right)=Z\left(H_{3}\right)=2$ and $M\left(H_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, $Z\left(H_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for $n \geq 4$.
- But $M(G)=\widetilde{Z}\left(H_{n}\right)$ for all $n \geq 3$!
- The n-sun is a graph obtained by adding n leaves to each vertices of C_{n}.
- In [4], it was shown $M\left(H_{3}\right)=Z\left(H_{3}\right)=2$ and $M\left(H_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, $Z\left(H_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for $n \geq 4$.
- But $M(G)=\widetilde{Z}\left(H_{n}\right)$ for all $n \geq 3$!
- The computation could either by discussion on the patterns of those leaves or by the sieving process given below.
- The n-sun is a graph obtained by adding n leaves to each vertices of C_{n}.
- In [4], it was shown $M\left(H_{3}\right)=Z\left(H_{3}\right)=2$ and $M\left(H_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, $Z\left(H_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for $n \geq 4$.
- But $M(G)=\widetilde{Z}\left(H_{n}\right)$ for all $n \geq 3$!
- The computation could either by discussion on the patterns of those leaves or by the sieving process given below.
- The parameter $\tilde{Z}(G)$ is still not sharp for some cactus.

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Example for Sieving Process

- If $Z\left(\widetilde{H_{5}}\right)-10=3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.
-

$$
\widetilde{Z}(G)=12-10=2 .
$$

Edge vs Nonedge

- Edge: Increase number of neighbor; Increase possible route for passing.

Edge vs Nonedge

- Edge: Increase number of neighbor; Increase possible route for passing.
- Nonedge: Decrease number of neighbor; Decrease possible route for passing.

Edge vs Nonedge

- Edge: Increase number of neighbor; Increase possible route for passing.
- Nonedge: Decrease number of neighbor; Decrease possible route for passing.
- The BAD guy Banned Edge: Increase number of neighbor; Decrease possible route for passing.

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{I}\right)-n \text { for some } I\right\}
$$

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{I}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{I}\right)-n \text { for some } I\right\}
$$

- Let $\mathcal{I}_{k}(G)=\left\{I \subseteq[n]: Z_{Y}\left(\widetilde{G}_{I}\right)-n \geq k\right\}$.

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{l}\right)-n \text { for some } I\right\}
$$

- Let $\mathcal{I}_{k}(G)=\left\{I \subseteq[n]: Z_{Y}\left(\widetilde{G}_{l}\right)-n \geq k\right\}$.
- $\widetilde{Z}(G)=\max \left\{k: \mathcal{I}_{k} \neq \varnothing\right\}$.

Sieving Process

- Rewrite

$$
\widetilde{Z}(G)=\max _{I \subseteq[n]} Z_{Y}\left(\widetilde{G}_{l}\right)-n=\max \left\{k: k=Z_{Y}\left(\widetilde{G}_{l}\right)-n \text { for some } I\right\}
$$

- Let $\mathcal{I}_{k}(G)=\left\{I \subseteq[n]: Z_{Y}\left(\widetilde{G}_{l}\right)-n \geq k\right\}$.
- $\widetilde{Z}(G)=\max \left\{k: \mathcal{I}_{k} \neq \varnothing\right\}$.
- Each $F \supseteq Y$ with size $n+k-1$ is a sieve for $\mathcal{I}_{k}(G)$ to delete impossible index sets.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Each leaf in H_{5} is a zero-vertex and nonzero-vertex in $\mathcal{I}_{3}\left(H_{5}\right)$ simultaneously. Hence $\mathcal{I}_{3}\left(H_{5}\right)=\varnothing$.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Each leaf in H_{5} is a zero-vertex and nonzero-vertex in $\mathcal{I}_{3}\left(H_{5}\right)$ simultaneously. Hence $\mathcal{I}_{3}\left(H_{5}\right)=\varnothing$.
- For $G=K_{n}$, each vertex is a nonzero-vertex in $\mathcal{I}_{n-1}(G)$ for $n \geq 2$ while a zero-vertex in $\mathcal{I}_{1}(G)$.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Each leaf in H_{5} is a zero-vertex and nonzero-vertex in $\mathcal{I}_{3}\left(H_{5}\right)$ simultaneously. Hence $\mathcal{I}_{3}\left(H_{5}\right)=\varnothing$.
- For $G=K_{n}$, each vertex is a nonzero-vertex in $\mathcal{I}_{n-1}(G)$ for $n \geq 2$ while a zero-vertex in $\mathcal{I}_{1}(G)$.
- For $G=K_{1, t}, t \geq 2$, each leaf is a zero-vertex in $\mathcal{I}_{t-1}(G)$.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Each leaf in H_{5} is a zero-vertex and nonzero-vertex in $\mathcal{I}_{3}\left(H_{5}\right)$ simultaneously. Hence $\mathcal{I}_{3}\left(H_{5}\right)=\varnothing$.
- For $G=K_{n}$, each vertex is a nonzero-vertex in $\mathcal{I}_{n-1}(G)$ for $n \geq 2$ while a zero-vertex in $\mathcal{I}_{1}(G)$.
- For $G=K_{1, t}, t \geq 2$, each leaf is a zero-vertex in $\mathcal{I}_{t-1}(G)$.
- For multi-partite G with more than one part and more than two vertices in each parts, each vertex is a zero-vertex in $\mathcal{I}_{n-2}(G), n=|V(G)|$.

Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_{k}(G)$, then i is called a zero-vertex.
- Each leaf in H_{5} is a zero-vertex and nonzero-vertex in $\mathcal{I}_{3}\left(H_{5}\right)$ simultaneously. Hence $\mathcal{I}_{3}\left(H_{5}\right)=\varnothing$.
- For $G=K_{n}$, each vertex is a nonzero-vertex in $\mathcal{I}_{n-1}(G)$ for $n \geq 2$ while a zero-vertex in $\mathcal{I}_{1}(G)$.
- For $G=K_{1, t}, t \geq 2$, each leaf is a zero-vertex in $\mathcal{I}_{t-1}(G)$.
- For multi-partite G with more than one part and more than two vertices in each parts, each vertex is a zero-vertex in $\mathcal{I}_{n-2}(G), n=|V(G)|$.
- We know $Z\left(G_{k}\right)=2 k+1$ and $M\left(G_{k}\right)=k+1$. By sieving process, $\widetilde{Z}\left(G_{k}\right)=k+1$! Here G_{k} is the $k 5$-sun sequence.

Example for Stronger Upper Bound 1

- $M(G) \leq Z(G)=7$. Each vertex is a zero-vertex in \mathcal{I}_{7}.

Example for Stronger Upper Bound 1

- $M(G) \leq Z(G)=7$. Each vertex is a zero-vertex in \mathcal{I}_{7}.
- If $A \in \mathcal{S}(G)$ has nullity 7 , we may assume

$$
A=\left(\begin{array}{ccc}
O & J & J \\
J & O & B^{t} \\
J & B & O
\end{array}\right) .
$$

Example for Stronger Upper Bound 1

- $M(G) \leq Z(G)=7$. Each vertex is a zero-vertex in \mathcal{I}_{7}.
- If $A \in \mathcal{S}(G)$ has nullity 7 , we may assume

$$
A=\left(\begin{array}{ccc}
O & J & J \\
J & O & B^{t} \\
J & B & O
\end{array}\right) .
$$

- The matrix

$$
\left(\begin{array}{ccc}
O & J & O \\
J & O & B^{t} \\
O & B & -B-B^{t}
\end{array}\right)
$$

has the same nullity 7 .

Example for Stronger Upper Bound 1

- $M(G) \leq Z(G)=7$. Each vertex is a zero-vertex in \mathcal{I}_{7}.
- If $A \in \mathcal{S}(G)$ has nullity 7 , we may assume

$$
A=\left(\begin{array}{ccc}
O & J & J \\
J & O & B^{t} \\
J & B & O
\end{array}\right) .
$$

- The matrix

$$
\left(\begin{array}{ccc}
O & J & O \\
J & O & B^{t} \\
O & B & -B-B^{t}
\end{array}\right)
$$

has the same nullity 7 .

- $-B-B^{t}=O$. It is impossible when char $\neq 2$.

Example for Stronger Upper Bound 1

- $M(G) \leq Z(G)=7$. Each vertex is a zero-vertex in \mathcal{I}_{7}.
- If $A \in \mathcal{S}(G)$ has nullity 7 , we may assume

$$
A=\left(\begin{array}{ccc}
O & J & J \\
J & O & B^{t} \\
J & B & O
\end{array}\right) .
$$

- The matrix

$$
\left(\begin{array}{ccc}
O & J & O \\
J & O & B^{t} \\
O & B & -B-B^{t}
\end{array}\right)
$$

has the same nullity 7 .

- $-B-B^{t}=O$. It is impossible when char $\neq 2$.
- $M(G) \leq 6$. And actually $M(G)=6$.

Nonzero Elimination Lemma

Theorem

For a graph G, suppose i is a nonzero-vertex in $\mathcal{I}_{k}(G)$. And $\eta_{i}(G)$ denote the set of those graphs obtained from G by the following rules:

- The vertex i should be deleted;
- For any neighbors x and y of i, the pair $x y$ should be an edge if $x y \notin E(G)$ and could be an edge or a non-edge if $x y \in E(G)$. If the nullity k is achievable by some matrix in $\mathcal{S}(G)$, then

$$
k \leq \max \left\{M(H): H \in \eta_{i}(G)\right\} .
$$

Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

$$
A=\left(\begin{array}{ccc}
1 & a^{t} & 0 \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right) .
$$

Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

$$
A=\left(\begin{array}{ccc}
1 & a^{t} & 0 \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

- The matrix Then the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \widehat{B}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

has the same nullity, where $\widehat{B}_{11}=\widehat{A}-a a^{t}$.

Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

$$
A=\left(\begin{array}{ccc}
1 & a^{t} & 0 \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

- The matrix Then the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \widehat{B}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

has the same nullity, where $\widehat{B}_{11}=\widehat{A}-a a^{t}$.

- The nullity of A should be less than the maximum nullity of each possible matrix P.

Zero Elimination Lemma

Theorem

For a graph G, suppose i is a zero-vertex in $\mathcal{I}_{k}(G)$ and j is a neighbor of i. Let

$$
N_{1}=\{v: i v \in E(G), v \neq j\}, N_{2}=\{v: j v \in E(G), i v \notin E(G), v \neq i\} .
$$

And $\eta_{i \rightarrow j}(G)$ denote the set of those graphs obtained from G by the following rules:

- The vertex i and j should be deleted;
- For $x \in N_{1}$ and $y \in N_{2}$, the pair $x y$ should be an edge if $x y \notin E(G)$ and could be an edge or a non-edge if $x y \in E(G)$;
- For x and y in N_{1}, the pair xy could be an edge or a non-edge. If the nullity k is achievable by some matrix in $\mathcal{S}(G)$, then

$$
k \leq \max \left\{M(H): H \in \eta_{i \rightarrow j}(G)\right\} .
$$

Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

$$
A=\left(\begin{array}{ccc}
\alpha & a^{t} & O \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right) .
$$

Here α has the form $\left(\begin{array}{ll}0 & * \\ * & u\end{array}\right)$ and α^{-1} has the form $\left(\begin{array}{ll}u & * \\ * & 0\end{array}\right)$.

Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

$$
A=\left(\begin{array}{ccc}
\alpha & a^{t} & O \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
O & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

Here α has the form $\left(\begin{array}{ll}0 & * \\ * & u\end{array}\right)$ and α^{-1} has the form $\left(\begin{array}{cc}u & * \\ * & 0\end{array}\right)$.

- The matrix Then the matrix

$$
P=\left(\begin{array}{ccc}
\alpha & O & O \\
O & \widehat{B}_{11} & \widehat{A}_{12} \\
O & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

has the same nullity, where $\widehat{B}_{11}=\widehat{A}-a \alpha^{-1} a^{t}$.

Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

$$
A=\left(\begin{array}{ccc}
\alpha & a^{t} & O \\
a & \widehat{A}_{11} & \widehat{A}_{12} \\
O & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

Here α has the form $\left(\begin{array}{ll}0 & * \\ * & u\end{array}\right)$ and α^{-1} has the form $\left(\begin{array}{cc}u & * \\ * & 0\end{array}\right)$.

- The matrix Then the matrix

$$
P=\left(\begin{array}{ccc}
\alpha & O & O \\
O & \widehat{B}_{11} & \widehat{A}_{12} \\
O & \widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right)
$$

has the same nullity, where $\widehat{B}_{11}=\widehat{A}-a \alpha^{-1} a^{t}$.

- The nullity of A should be less than the maximum nullity of each possible matrix P.

Example for Stronger Upper Bound 2

- $\tilde{Z}(G)=Z(G)=P(G)=3$.

Example for Stronger Upper Bound 2

- $\widetilde{Z}(G)=Z(G)=P(G)=3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_{3}.

Example for Stronger Upper Bound 2

- $\widetilde{Z}(G)=Z(G)=P(G)=3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_{3}.
- $G-1$ is the only graph in $\eta_{1}(G)$.

Example for Stronger Upper Bound 2

- $\tilde{Z}(G)=Z(G)=P(G)=3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_{3}.
- $G-1$ is the only graph in $\eta_{1}(G)$.
- If 3 is achievable, then $3 \leq M(G-1) \leq 2$, a contradiction. Hence $M(G) \leq 2$.

Example for Stronger Upper Bound 3

- $Z(G)=4$ and $P(G)=3$.

Example for Stronger Upper Bound 3

- $Z(G)=4$ and $P(G)=3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_{4}.

Example for Stronger Upper Bound 3

- $Z(G)=4$ and $P(G)=3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_{4}.
- Let $e=23$. Then $G-1$ and $G-1-e$ are the only two graphs in $\eta_{1}(G)$.

Example for Stronger Upper Bound 3

- $Z(G)=4$ and $P(G)=3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_{4}.
- Let $e=23$. Then $G-1$ and $G-1-e$ are the only two graphs in $\eta_{1}(G)$.
- If 4 is achievable, then $4 \leq \max \{M(G-1), M(G-1-e)\} \leq 3$, a contradiction. Hence $M(G) \leq 3$.

Example for Stronger Upper Bound 4

- $Z(G)=P(G)=5$.

Example for Stronger Upper Bound 4

- $Z(G)=P(G)=5$.
- The vertex 1 is a zero-vertex.

Example for Stronger Upper Bound 4

- $Z(G)=P(G)=5$.
- The vertex 1 is a zero-vertex.
- $\eta_{1 \rightarrow}(G)$ contains only one graph H.

G

$\eta_{1 \rightarrow 2}(G)$

- $Z(G)=P(G)=5$.
- The vertex 1 is a zero-vertex.
- $\eta_{1 \rightarrow}(G)$ contains only one graph H.
- If 5 is achievable, then $5 \leq M(H) \leq 4$, a contradiction. Hence $M(G) \leq 4$.

G

$\eta_{1 \rightarrow 2}(G)$

Example for Stronger Upper Bound 5

- $Z(G)=P(G)=6$.

Example for Stronger Upper Bound 5

- $Z(G)=P(G)=6$.
- The vertex 5 is a nonzero-vertex.

Example for Stronger Upper Bound 5

- $Z(G)=P(G)=6$.
- The vertex 5 is a nonzero-vertex.
- List $\eta_{1}(G)$. $P\left(G_{i}\right) \leq 5$ for $i=1,2,3,4$. And they are outerplanar. $M\left(G_{5}\right)=5$ by reduction formula. $M\left(G_{4}\right) \leq 5$ by doing nonzero elimination lemma again on 1.

Example for Stronger Upper Bound 5

- $Z(G)=P(G)=6$.
- The vertex 5 is a nonzero-vertex.
- List $\eta_{1}(G)$. $P\left(G_{i}\right) \leq 5$ for $i=1,2,3,4$. And they are outerplanar. $M\left(G_{5}\right)=5$ by reduction formula. $M\left(G_{4}\right) \leq 5$ by doing nonzero elimination lemma again on 1.
- If 6 is achievable, then $6 \leq 5$, a contradiction. Hence $M(G) \leq 5$.

Simple Elimination Lemma

Corollary

If i is a vertex of a graph G and j is a neighbor of i, then

$$
M(G) \leq \max \left\{M(H): H \in \eta_{i}(G) \cup \eta_{i \rightarrow j}(G)\right\} .
$$

Enhanced Zero Forcing Number on Graph [9]

- A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.

Theorem

$\widetilde{Z}(G)=\widehat{Z}(G)$ for all graph G.

Enhanced Zero Forcing Number on Graph [9]

- A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.
- The zero forcing process on a looped graph \widehat{G} is the coloring process with the following rules:

Theorem

$\widetilde{Z}(G)=\widehat{Z}(G)$ for all graph G.

Enhanced Zero Forcing Number on Graph [9]

- A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.
- The zero forcing process on a looped graph \widehat{G} is the coloring process with the following rules:
- Each vertex of \widehat{G} is either black or white initially.

Theorem

$\widetilde{Z}(G)=\widehat{Z}(G)$ for all graph G.

Enhanced Zero Forcing Number on Graph [9]

- A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.
- The zero forcing process on a looped graph \widehat{G} is the coloring process with the following rules:
- Each vertex of \widehat{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.

Theorem

$\widetilde{Z}(G)=\widehat{Z}(G)$ for all graph G.

Enhanced Zero Forcing Number on Graph [9]

- A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.
- The zero forcing process on a looped graph \widehat{G} is the coloring process with the following rules:
- Each vertex of \widehat{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.
- The enhanced zero forcing number $\widehat{Z}(G)$ is the maximum of $Z(\widehat{G})$ over all looped graph \widehat{G} obtained from G by adding loops on vertices of G.

Theorem

$\widetilde{Z}(G)=\widehat{Z}(G)$ for all graph G.

Enhanced Zero Forcing Number on Graph [9]

- A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.
- The zero forcing process on a looped graph \widehat{G} is the coloring process with the following rules:
- Each vertex of \widehat{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.
- The enhanced zero forcing number $\widehat{Z}(G)$ is the maximum of $Z(\widehat{G})$ over all looped graph \widehat{G} obtained from G by adding loops on vertices of G.
- $M(G) \leq \widehat{Z}(G) \leq Z(G)$.[9]

Theorem

$\widetilde{Z}(G)=\widehat{Z}(G)$ for all graph G.

Triangle Number on Pattern[3]

- A t-triangle of Q is a $t \times t$ subpattern that is permutation similar to a pattern that is upper triangular with all diagonal entries nonzero.

Theorem

$\operatorname{rank}(Q)=\operatorname{tri}(Q)$ for all pattern Q.

Triangle Number on Pattern[3]

- A t-triangle of Q is a $t \times t$ subpattern that is permutation similar to a pattern that is upper triangular with all diagonal entries nonzero.
- The triangular number of pattern Q, denote by $\operatorname{tri}(Q)$, is the maximum size of triangle in Q.

Theorem

$\operatorname{rank}(Q)=\operatorname{tri}(Q)$ for all pattern Q.

Triangle Number on Pattern[3]

- A t-triangle of Q is a $t \times t$ subpattern that is permutation similar to a pattern that is upper triangular with all diagonal entries nonzero.
- The triangular number of pattern Q, denote by $\operatorname{tri}(Q)$, is the maximum size of triangle in Q.
- $\operatorname{mr}(Q) \geq \operatorname{tri}(Q)$.

Theorem

$\operatorname{rank}(Q)=\operatorname{tri}(Q)$ for all pattern Q.

Edge Spread Problem

- The edge spread of zero forcing number on an edge e is $z_{e}(G)=Z(G)-Z(G-e)$.

Edge Spread Problem

- The edge spread of zero forcing number on an edge e is $z_{e}(G)=Z(G)-Z(G-e)$.
- Theorem 2.21 in [7] says that if $z_{e}(G)=-1$, then for every optimal zero forcing chain set of G, e is an edge in a chain.

Edge Spread Problem

- The edge spread of zero forcing number on an edge e is $z_{e}(G)=Z(G)-Z(G-e)$.
- Theorem 2.21 in [7] says that if $z_{e}(G)=-1$, then for every optimal zero forcing chain set of G, e is an edge in a chain.
- Question 2.22 in [7] ask whether the converse of Theorem 2.21 is true.

The Counterexample

- T is the turtle graph. $G=(X \cup Y, E)$ is construct from T by

$$
X=\left\{a_{1}, a_{2}, \ldots, a_{14}\right\}, Y=\left\{b_{1}, b_{2}, \ldots, b_{14}\right\}
$$

and

$$
E(G)=E_{1} \cup E_{2},
$$

where

$$
E_{1}=\left\{a_{i} a_{j}: i \neq j\right\} \cup\left\{b_{i} b_{j}: i \neq j\right\}, E_{2}=\left\{a_{i} b_{j}: i j \in E(T) \text { or } i=j\right\} .
$$

The Counterexample

- Each optimal zero forcing set of G is of the forms:

The Counterexample

- Each optimal zero forcing set of G is of the forms:
- F_{0} or its automorphism types. $F_{0}=Y \cup\{u, v\}$, where u could be a_{3} or a_{4} and v could be a_{6} or a_{7}.

The Counterexample

- Each optimal zero forcing set of G is of the forms:
- F_{0} or its automorphism types. $F_{0}=Y \cup\{u, v\}$, where u could be a_{3} or a_{4} and v could be a_{6} or a_{7}.
- $\left\{a_{3}, a_{4}, p\right\} \cup(Y-y)$ or $\left\{a_{6}, a_{7}, q\right\} \cup(Y-y)$ or its automorphism types, where p could be a_{6} or a_{7}, q could be a_{3} or a_{4}, and y is an arbitrarily vertex in Y.

- Each optimal zero forcing set of G is of the forms:
- F_{0} or its automorphism types. $F_{0}=Y \cup\{u, v\}$, where u could be a_{3} or a_{4} and v could be a_{6} or a_{7}.
- $\left\{a_{3}, a_{4}, p\right\} \cup(Y-y)$ or $\left\{a_{6}, a_{7}, q\right\} \cup(Y-y)$ or its automorphism types, where p could be a_{6} or a_{7}, q could be a_{3} or a_{4}, and y is an arbitrarily vertex in Y.
- The edge $e=a_{1} b_{1}$ is used in each optimal zero forcing set.

But $Z(G)=Z(G-e)=16$ and so $z_{e}(G)=0 \neq-1$.

Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.

Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
- Reduction Formula for $\widetilde{Z}(G)$.
- Reduction formula on k-separate.
- Reduction Formula for $\widetilde{Z}(G)$.
- "Symmetry" condition was seldom used. There must be some parameter between $\widetilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Reduction formula on k-separate.
- Reduction Formula for $\widetilde{Z}(G)$.
- "Symmetry" condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Sym and Not Sym is different! $m r(Q)=3$ if Sym while $\operatorname{mr}(Q)=2$ if Not Sym.

$$
Q=\left(\begin{array}{ccc}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{array}\right) .
$$

- Reduction formula on k-separate.
- Reduction Formula for $\widetilde{Z}(G)$.
- "Symmetry" condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Sym and Not Sym is different! $m r(Q)=3$ if Sym while $\operatorname{mr}(Q)=2$ if Not Sym.

$$
Q=\left(\begin{array}{ccc}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{array}\right) .
$$

- The proof in [13] of $M\left(C_{n}\right)=2$ could be generalized.
- Reduction formula on k-separate.
- Reduction Formula for $\widetilde{Z}(G)$.
- "Symmetry" condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Sym and Not Sym is different! $m r(Q)=3$ if Sym while $\operatorname{mr}(Q)=2$ if Not Sym.

$$
Q=\left(\begin{array}{ccc}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{array}\right) .
$$

- The proof in [13] of $M\left(C_{n}\right)=2$ could be generalized.
- $\operatorname{mr}(G)=\operatorname{mrs}(Q(G))=\min \left\{\operatorname{mrs}\left(Q_{l}(G)\right)\right\}$. So it is still valuable to consider zero-nonzero symmetric min rank problem.

囯 AIM minimum rank-special graphs work group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications 428 (2008) 1628-1648.
围 F. Barioli , W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche, and H. van der Holst, Zero forcing parameters and minimum rank problems, Linear Algebra and its Applications 433 (2010) 401-411.
ET F. Barioli S. M. Fallat, H. T. Hall, D. Hershkowitz, L. Hogben, H. van der Holst, and B. Shader, On the minimum rank of not necessarily symmetric matrices: A preliminary study, Electronic Journal of Linear Algebra 18 (2009) 126-145.
F. Barioli, S. Fallat, and L. Hogben, Computation of minimal rank and path cover number for certain graphs, Linear Algebra and its Applications 392 (2004) 289-303.

嗇 F．Barioli，S．Fallat，and L．Hogben，On the difference between the maximum multiplicity and path cover number for tree－like graphs，Linear Algebra and its Applications 409 （2005）13－31．
囯 W．Barrett，H．van der Holst，and R．Loewy，Graphs whose minimal rank is two，Electronic Journal of Linear Algebra 11 （2004）258－280．

围 C．J．Edholm，L．Hogben，M．Huynh，J．LaGrange，and D．D．Row，Vertex and edge spread of zero forcing number， maximum nullity，and maximum rank of a graph，Hogben＇s Homepage．

目 S．Fallat，L．Hogben，The minimum rank of symmetric matrices described by a graph：A survey，Linear Algebra and its Applications 426 （2007）558－582．

围 S．Fallat，L．Hogben，Variants on the minimum rank problem： A survey II，Hogben＇s Homepage．

R R. Fernandes, On the maximum multiplicity of an eigenvalue in a matrix whose graph contains exactly one cycle, Linear Algebra and its Applications 422 (2007) 1-16.
(H. van der Holst, The maximum corank of graphs with a 2-separation, Linear Algebra and its Applications 428 (2008) 1587-1600.
R J. Sinkovic, Maximum nullity of outer planar graphs and the path cover number, Linear Algebra and its Applications 432 (2010) 2052-2060.

图 P. M. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra and its Applications 248 (1996) 303-316.

