The minimum rank problem on loop graphs

Jephian C.-H. Lin
Department of Mathematics, lowa State University
Jan 7, 2017
2017 Joint Mathematics Meetings, Atlanta, GA

The minimum rank problem

- The minimum rank problem refers to finding the minimum rank or the maximum nullity of matrices under certain restrictions.
- The restrictions can be the zero-nonzero pattern, the inertia, or other properties of a matrix.
- The minimum rank problem is motivated by
- the inverse eigenvalue problem - Matrix theory, Engineering
- Colin de Verdière parameter, Lovász's orthogonal representation - Graph theory

Example of the maximum nullity

* =nonzero

$$
\left[\begin{array}{llll}
0 & * & * & 0 \\
* & * & * & 0 \\
* & * & * & * \\
0 & 0 & * & 0
\end{array}\right]
$$

Any matrix following this pattern is always nonsingular, meaning the maximum nullity of this pattern is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & * & * & 0 \\
* & * & * & 0 \\
* & * & * & * \\
0 & 0 & * & 0
\end{array}\right]
$$

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

\longrightarrow| 1 |
| :--- |
| 2 |
| 3 |\(\left[\begin{array}{llll}x_{1} \& x_{2} \& x_{3} \& x_{4}

0 \& * \& * \& 0

* \& * \& * \& 0

* \& * \& * \& *

0 \& 0 \& * \& 0\end{array}\right]\)

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

\longrightarrow| 1 |
| :---: |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{cccc}x_{1} \& x_{2} \& x_{3} \& x_{4}

0 \& *

* \& *

* \& *

0 \& 0 \& * \& *

0

0

*

0\end{array}\right]\)

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing I

Thinking the matrix as a linear system, if a variable is known as zero, then color it blue.

The only vector in the right kernel is $(0,0,0,0,0)$, so the maximum nullity is 0 .

Zero forcing II

Color x_{4} in advance. The remaining process is the same.
1
2
3
4 $\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ 0 & * & * & 0 \\ * & * & * & 0 \\ * & * & * & * \\ 0 & 0 & * & *\end{array}\right]$

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

The first three columns are always independent, so the the maximum nullity is at most 1 .

$$
\text { maximum nullity } \leq \# \text { initial blue variables }
$$

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

\longrightarrow| 1 |
| :---: |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{cccc}x_{1} \& x_{2} \& x_{3} \& x_{4}

0 \& *

* \& *

* \& *

0 \& 0 \& *

*\end{array}\right]\)

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing II

Color x_{4} in advance. The remaining process is the same.

The first three columns are always independent, so the the maximum nullity is at most 1 .
maximum nullity $\leq \#$ initial blue variables

Zero forcing III

The zero forcing is actually finding the largest lower triangular pattern.
maximum nullity $\leq \#$ initial blue variables

The minimum rank of loop graphs

The maximum nullity $M(\mathfrak{G})$ of a loop graph \mathfrak{G} is the maximum nullity over real symmetric matrices following its zero-nonzero pattern.

The zero forcing number $Z(\mathfrak{G})$ is the minimum number of initial blue vertices required to make all vertices blue by the color-change rule:

For a vertex x, if y is the only white neighbor of x, then y turns blue.

$M(\mathfrak{G})$ and $Z(\mathfrak{G})$

Theorem (Hogben '10)
For any loop graph $\mathfrak{G}, M(\mathfrak{G}) \leq Z(\mathfrak{G})$.
In general, $Z(\mathfrak{G})$ gives a nice bound; however, for loopless odd cycles $\mathfrak{C}_{2 k+1}^{0}, 0=M(\mathfrak{G})<Z(\mathfrak{G})=1$.

$$
\operatorname{det}\left[\begin{array}{lllll}
0 & a & 0 & 0 & f \\
a & 0 & b & 0 & 0 \\
0 & b & 0 & c & 0 \\
0 & 0 & c & 0 & d \\
f & 0 & 0 & d & 0
\end{array}\right]=2 a b c d f \neq 0, \text { if } a, b, c, d, f \neq 0 .
$$

Main idea: eliminate the odd cycles

The odd cycle zero forcing number $Z_{\text {oc }}(\mathfrak{G})$ of a loop graph \mathfrak{G} is the minimum number of initial blue vertices required to make all vertices blue by:

- If y is the only white neighbor of x, then y turns blue.
- If the subgraph induced by the white vertices contains a component, which is a loopless odd cycle, then all vertices in this component turn blue.

Theorem (JL '16)
For any loop graph $\mathfrak{G}, M(\mathfrak{G}) \leq Z_{\text {oc }}(\mathfrak{G}) \leq Z(\mathfrak{G})$.

Main idea: eliminate the odd cycles

The odd cycle zero forcing number $Z_{\text {oc }}(\mathfrak{G})$ of a loop graph \mathfrak{G} is the minimum number of initial blue vertices required to make all vertices blue by:

- If y is the only white neighbor of x, then y turns blue.
- If the subgraph induced by the white vertices contains a component, which is a loopless odd cycle, then all vertices in this component turn blue.

Theorem (JL '16)
For any loop graph $\mathfrak{G}, M(\mathfrak{G}) \leq Z_{\text {oc }}(\mathfrak{G}) \leq Z(\mathfrak{G})$.
Thank you

Odd cycle zero forcing

References I

E. Hogben.

Minimum rank problems.
Linear Algebra Appl., 432:1961-1974, 2010.
葍 J. C.-H. Lin.
Odd cycle zero forcing parameters and the minimum rank of graph blowups.
Electron. J. Linear Algebra, 31:42-59, 2016.

