Odd cycle zero forcing parameters and the minimum rank of graph blowups

Jephian C.-H. Lin
Department of Mathematics, Iowa State University

Feb 16, 2015
Discrete Math Seminar

Minimum rank problem (simple and loop)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
? & * & 0 \\
* & ? & * \\
0 & * & ?
\end{array}\right]} \\
& \left.\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] \text { smallest possible rank } \begin{array}{lll}
{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & * & 0 \\
* & * & * \\
0 & * & 0
\end{array}\right]} \\
m r\left(P_{3}\right)=2 & 1 \\
M\left(P_{3}\right)=1 & 1 & 0
\end{array}\right] \\
& m r\left(\mathfrak{P}_{3}\right)=3 \\
& M\left(\mathfrak{P}_{3}\right)=0
\end{aligned}
$$

Zero forcing number (simple and loop)

$M\left(P_{3}\right)=1$
$Z\left(P_{3}\right)=1$

$M\left(\mathfrak{P}_{3}\right)=0$
$Z\left(\mathfrak{P}_{3}\right)=0$
minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$$
M\left(P_{3}\right)=1
$$

$$
M\left(\mathfrak{P}_{3}\right)=0
$$

$$
Z\left(P_{3}\right)=1
$$

$$
Z\left(\mathfrak{P}_{3}\right)=0
$$

minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$$
\begin{aligned}
& M\left(P_{3}\right)=1 \\
& Z\left(P_{3}\right)=1
\end{aligned}
$$

minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$$
\begin{aligned}
& M\left(P_{3}\right)=1 \\
& Z\left(P_{3}\right)=1
\end{aligned}
$$

$$
M\left(\mathfrak{P}_{3}\right)=0
$$

$$
Z\left(\mathfrak{P}_{3}\right)=0
$$

minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$M\left(P_{3}\right)=1$
$Z\left(P_{3}\right)=1$

$M\left(\mathfrak{P}_{3}\right)=0$
$Z\left(\mathfrak{P}_{3}\right)=0$
minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$$
\begin{aligned}
& M\left(P_{3}\right)=1 \\
& Z\left(P_{3}\right)=1
\end{aligned}
$$

$$
M\left(\mathfrak{P}_{3}\right)=0
$$

$$
Z\left(\mathfrak{P}_{3}\right)=0
$$

minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$$
\begin{aligned}
& M\left(P_{3}\right)=1 \\
& Z\left(P_{3}\right)=1
\end{aligned}
$$

$$
M\left(\mathfrak{P}_{3}\right)=0
$$

$$
Z\left(\mathfrak{P}_{3}\right)=0
$$

minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Zero forcing number (simple and loop)

$$
\begin{aligned}
& M\left(P_{3}\right)=1 \\
& Z\left(P_{3}\right)=1
\end{aligned}
$$

$$
M\left(\mathfrak{P}_{3}\right)=0
$$

$$
Z\left(\mathfrak{P}_{3}\right)=0
$$

minimum number of blue vertices to force all vertices blue
simple If y is the only white neighbor of x and x is blue, then $x \rightarrow y$.
loop If y is the only white neighbor of x and x is blue, then $x \rightarrow y .(x, y$ are possibly the same.)

Max Nullity vs Zero Forcing

- $M(G) \leq Z(G)$ for all simple graph [AIM 2008]; $M(\mathfrak{G}) \leq Z(\mathfrak{G})$ for all loop graph [Hogben 2010].
- $M(G)=Z(G)$ whenever $|V(G)| \leq 7$ or G is a tree, a cycle; not always true for outerplanar graphs.
- $M(\mathfrak{G})=Z(\mathfrak{G})$ whenever $|V(\mathfrak{G})| \leq 2$ or \mathfrak{G} is a loop configuration of a tree; not always true for cycles or outerplanar graphs.

An example with $M(G) \neq Z(G)$

An example with $M(\mathfrak{G}) \neq Z(\mathfrak{G})$

- $M\left(\mathfrak{C}_{n}\right)=Z\left(\mathfrak{C}_{n}\right)$ if \mathfrak{C}_{n} is not a loopless odd cycle;

$$
M\left(\mathfrak{C}_{2 k+1}^{0}\right)=0 \text { but } Z\left(\mathfrak{C}_{2 k+1}^{0}\right)=1
$$

- $M^{\mathbb{R}}\left(\mathfrak{C}_{2 k+1}^{0}\right)=0$ but $M^{\mathbb{F}_{2}}\left(\mathfrak{C}_{2 k+1}^{0}\right)=1$.

Max Nullity vs Zero Forcing Revisit

- $M(G) \leq Z(G)$ for all simple graph [AIM 2008]; $M(\mathfrak{G}) \leq Z(\mathfrak{G})$ for all loop graph [Hogben 2010].
- For simple graphs with $|V(G)| \leq 7, M(G)=Z(G)$.
- For the simple graph $K_{3,3,3}, M\left(K_{3,3,3}\right)=6$ and $\widehat{Z}\left(K_{3,3,3}\right)=7$.
- For the loop graph $\mathfrak{C}_{3}^{0}, M\left(\mathfrak{C}_{3}^{0}\right)=0$ and $Z\left(\mathfrak{C}_{3}^{0}\right)=1$.
- The fact $M^{F}\left(\mathfrak{C}_{2 k+1}^{0}\right)=0$ is true whenever the considered matrix is symmetric and char $\neq 2$.

Proof of $M \leq Z$

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2
\end{aligned}\left[\begin{array}{ccc}
1 & 2 & 3 \\
* & * & 0 \\
* & * & * \\
0 & * & 0
\end{array}\right]
$$

$$
\left|\begin{array}{l}
3 \rightarrow 2 \\
1 \rightarrow 1 \\
2 \rightarrow 3
\end{array}\right|
$$

Try to generalize the "triangle"

$$
\operatorname{rank}\left[\begin{array}{ccccc}
a_{1,1} & ? & ? & ? & ? \\
0 & a_{2,2} & ? & ? & ? \\
0 & 0 & a_{3,3} & ? & ? \\
? & ? & ? & ? & ? \\
? & ? & ? & ? & ?
\end{array}\right] \geq 3
$$

Try to generalize the "triangle"

$$
\operatorname{rank}\left[\begin{array}{ccccc}
A_{1,1} & ? & ? & ? & ? \\
O & A_{2,2} & ? & ? & ? \\
O & O & A_{3,3} & ? & ? \\
? & ? & ? & ? & ? \\
? & ? & ? & ? & ?
\end{array}\right] \geq \sum_{i=1}^{3} \operatorname{rank}\left(A_{i, i}\right)
$$

Try to generalize the "triangle"

$$
\operatorname{rank}\left[\begin{array}{ccccc}
A\left(\mathfrak{C}_{5}^{0}\right) & ? & ? & ? & ? \\
0 & A\left(\mathfrak{C}_{7}^{0}\right) & ? & ? & ? \\
0 & O & A\left(\mathfrak{C}_{3}^{0}\right) & ? & ? \\
? & ? & ? & ? & ? \\
? & ? & ? & ? & ?
\end{array}\right] \geq 5+7+3=15
$$

Odd cycle zero forcing number

- The color-change rule for loop graphs is:
- if y is the only white neighbor of x and x is blue, then $x \rightarrow y$. (x, y are possibly the same.)
- if W is the set of white vertices, and $\mathfrak{G}[W]$ has a connected component \mathfrak{C} such that $\mathfrak{C} \cong \mathfrak{C}_{2 k+1}^{0}$, then all vertices in $V(\mathfrak{C})$ turn blue.

Odd cycle zero forcing number

- The color-change rule for loop graphs is:
- if y is the only white neighbor of x and x is blue, then $x \rightarrow y$. (x, y are possibly the same.)
- if W is the set of white vertices, and $\mathfrak{G}[W]$ has a connected component \mathfrak{C} such that $\mathfrak{C} \cong \mathfrak{C}_{2 k+1}^{0}$, then all vertices in $V(\mathfrak{C})$ turn blue.

Odd cycle zero forcing number

- The color-change rule for loop graphs is:
- if y is the only white neighbor of x and x is blue, then $x \rightarrow y$. (x, y are possibly the same.)
- if W is the set of white vertices, and $\mathfrak{G}[W]$ has a connected component \mathfrak{C} such that $\mathfrak{C} \cong \mathfrak{C}_{2 k+1}^{0}$, then all vertices in $V(\mathfrak{C})$ turn blue.

Odd cycle zero forcing number

- The color-change rule for loop graphs is:
- if y is the only white neighbor of x and x is blue, then $x \rightarrow y$. (x, y are possibly the same.)
- if W is the set of white vertices, and $\mathfrak{G}[W]$ has a connected component \mathfrak{C} such that $\mathfrak{C} \cong \mathfrak{C}_{2 k+1}^{0}$, then all vertices in $V(\mathfrak{C})$ turn blue.

Odd cycle zero forcing number

- The color-change rule for loop graphs is:
- if y is the only white neighbor of x and x is blue, then $x \rightarrow y$. (x, y are possibly the same.)
- if W is the set of white vertices, and $\mathfrak{G}[W]$ has a connected component \mathfrak{C} such that $\mathfrak{C} \cong \mathfrak{C}_{2 k+1}^{0}$, then all vertices in $V(\mathfrak{C})$ turn blue.

Odd cycle zero forcing number

- The color-change rule for loop graphs is:
- if y is the only white neighbor of x and x is blue, then $x \rightarrow y$. (x, y are possibly the same.)
- if W is the set of white vertices, and $\mathfrak{G}[W]$ has a connected component \mathfrak{C} such that $\mathfrak{C} \cong \mathfrak{C}_{2 k+1}^{0}$, then all vertices in $V(\mathfrak{C})$ turn blue.
- $Z_{o c}(\mathfrak{G})$ is the minimum number of blue vertices required to force all graph blue.
- $M^{F}(\mathfrak{G}) \leq Z_{o c}(\mathfrak{G})$ whenever char $F \neq 2$ and matrices are symmetric.
- The enhanced odd cycle zero forcing number is defined as $\widehat{Z}_{o c}(G)=\max _{\mathfrak{G}} Z_{o c}(\mathfrak{G})$, where \mathfrak{G} runs over all loop configurations of G.

Max Nullity vs Zero Forcing Revisit

- $M(G) \leq Z(G)$ for all simple graph [AIM 2008]; $M(\mathfrak{G}) \leq Z(\mathfrak{G})$ for all loop graph [Hogben 2010].
- For simple graphs with $|V(G)| \leq 7, M(G)=Z(G)$.
- For the simple graph $K_{3,3,3}, M\left(K_{3,3,3}\right)=6$ and $\widehat{Z}\left(K_{3,3,3}\right)=7$.
- For the loop graph $\mathfrak{C}_{3}^{0}, M\left(\mathfrak{C}_{3}^{0}\right)=0$ and $Z\left(\mathfrak{C}_{3}^{0}\right)=1$.
- $M\left(K_{3,3,3}\right)=6=\widehat{Z}_{o c}\left(K_{3,3,3}\right)$.
- $M\left(\mathfrak{C}_{2 k+1}^{0}\right)=0=Z_{o c}\left(\mathfrak{C}_{2 k+1}^{0}\right)$.

Example: $K_{3,3,3}$

Example: $K_{3,3,3}$

1,2,3 have loops others are unknown

$$
\widehat{Z}_{o c}\left(K_{3,3,3}\right)=6 \text { and } \widehat{Z}\left(K_{3,3,3}\right)=Z\left(K_{3,3,3}\right)=7 .
$$

Example: $K_{3,3,3}$

1,2,3 have loops others are unknown

$$
\widehat{Z}_{o c}\left(K_{3,3,3}\right)=6 \text { and } \widehat{Z}\left(K_{3,3,3}\right)=Z\left(K_{3,3,3}\right)=7 .
$$

Example: $K_{3,3,3}$

1,4,7 have no loops others are unknown

$$
\widehat{Z}_{o c}\left(K_{3,3,3}\right)=6 \text { and } \widehat{Z}\left(K_{3,3,3}\right)=Z\left(K_{3,3,3}\right)=7 .
$$

Example: $K_{3,3,3}$

1,4,7 have no loops others are unknown

$$
\widehat{Z}_{o c}\left(K_{3,3,3}\right)=6 \text { and } \widehat{Z}\left(K_{3,3,3}\right)=Z\left(K_{3,3,3}\right)=7 .
$$

Field matters

- Let A be the adjacency matrix.
- $\operatorname{null}(A)=6=M\left(K_{3,3,3}\right)=\widehat{Z}_{o c}\left(K_{3,3,3}\right)$.
- $\operatorname{null}^{\mathbb{F}_{2}}(A)=7=M^{\mathbb{F}_{2}}\left(K_{3,3,3}\right)=Z\left(K_{3,3,3}\right)$.

$$
A=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

\mathfrak{C}_{3}^{0} vs $K_{3,3,3}$

Graph \& Matrix blowups

loop graph \mathfrak{G}

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 4 & 7 \\
0 & 7 & 0
\end{array}\right]
$$

$$
A \in \mathcal{S}^{F}(\mathfrak{G})
$$

simple graph H

\[

\]

Max Nullity vs Blowups

Lemma

Let the simple graph H be the $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$-blowup of a loop graph \mathfrak{G}, and $\ell=\sum_{i=1}^{n}\left(t_{i}-1\right)$. Then $\operatorname{mr}(H) \leq \operatorname{mr}(\mathfrak{G})$ and $M(H) \geq M(\mathfrak{G})+\ell$.

Proof.

- Let A be an optimal matrix for \mathfrak{G}.
- B, the $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$-blowup of A, is a matrix in $\mathcal{S}(G)$.
- $\operatorname{rank}(B)=\operatorname{rank}(A)$.
- $\operatorname{mr}(H) \leq \operatorname{rank}(B)=\operatorname{rank}(A)=\operatorname{mr}(\mathfrak{G})$.
- $|V(H)|=\sum_{i=1}^{n} t_{i}$, so $M(H) \geq M(\mathfrak{G})+\ell$.

Graph Complement Conjecture

Corollary
Let $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\leftrightarrows} \mathfrak{G}$ with $t_{i} \geq 2$. Then $M(H)+M(\bar{H}) \geq|V(H)|-2$, which means Graph Complement Conjecture is true for this H.

Proof.

- Since $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\rightleftarrows} \mathfrak{G}, \bar{H}{ }^{\left(t_{1}, t_{2}, \ldots, t_{n}\right)} \overline{\mathfrak{G}}$.
- Recall $\ell=\sum_{i=1}^{n}\left(t_{i}-1\right) \geq \frac{1}{2} \sum_{i=1}^{n} t_{i}=\frac{1}{2}|V(H)|$.
- $M(H) \geq M(\mathfrak{G})+\ell \geq \ell \geq \frac{1}{2}|V(H)|$.
- $M(\bar{H}) \geq M(\overline{\mathfrak{G}})+\ell \geq \ell \geq \frac{1}{2}|V(H)|$.
- $M(H)+M(\bar{H}) \geq|V(H)|>|V(H)|-2$.

Zero Forcing vs Blowups

Lemma

 where $\ell=\sum_{i=1}^{n}\left(t_{i}-1\right)$.

Corollary
Suppose $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\mathfrak{G}}$ with $t_{i} \geq 2$ and $M(\mathfrak{G})=Z(\mathfrak{G})$. Then $M(H)=\widehat{Z}(H)=Z(H)=M(\mathfrak{G})+\ell$.

Proof.

- $M(H) \leq Z(H)$.
- $M(H) \geq M(\mathfrak{G})+\ell=Z(\mathfrak{G})+\ell=Z(H)$.

Zero Forcing vs Blowups Revisit

Lemma

Let $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\rightleftarrows}$ with $t_{i} \geq 2$. Then $\widehat{Z}(H)=Z(H)=Z(\mathfrak{G})+\ell$, where $\ell=\sum_{i=1}^{n}\left(t_{i}-1\right)$.
Corollary
Suppose $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\leftrightarrows} \mathfrak{G}$ with $t_{i} \geq 2$ and $M(\mathfrak{G})=Z(\mathfrak{G})$. Then $M(H)=\widehat{Z}(H)=Z(H)=M(\mathfrak{G})+\ell$.

Proof.

- $M(H) \leq Z(H)$.
- $M(H) \geq M(\mathfrak{G})+\ell=Z(\mathfrak{G})+\ell=Z(H)$.

Odd Cycle Zero Forcing vs Blowups

Lemma

Let $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\leftrightarrows} \mathfrak{G}$ with $t_{i} \geq 3$. Then $\widehat{Z}_{o c}(H)=Z_{o c}(\mathfrak{G})+\ell$, where $\ell=\sum_{i=1}^{n}\left(t_{i}-1\right)$.

Corollary
Suppose $H \stackrel{\left(t_{1}, t_{2}, \ldots, t_{n}\right)}{\leftarrow} \mathfrak{G}$ with $t_{i} \geq 3$ and $M(\mathfrak{G})=Z_{\text {oc }}(\mathfrak{G})$. Then $M(H)=\widehat{Z}_{o c}(H)=M(\mathfrak{G})+\ell$.

References I

圊 AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. M. Cioabă, D. Cvetković, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen, and A. Wangsness). Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl., 428:1628-1648, 2008.

R L. Hogben.
Minimum rank problems.
Linear Algebra Appl., 432:1961-1974, 2010.

