Reduction identities of the minimum rank on loop graphs

Jephian C.-H. Lin
Department of Mathematics, Iowa State University

Aug 9, 2014
 19th International Linear Algebra Society Conference, Seoul, S. Korea

Joint work with Chassidy Bozeman, AnnaVictoria Ellsworth,
Leslie Hogben, Gabi Maurer, Kathleen Nowak, Aaron Rodriguez, and James Strickland.

Minimum Rank of Loop Graphs

$$
\begin{aligned}
1 \\
2
\end{aligned}\left(\begin{array}{cc}
1 & 2 \\
0 & * \\
* & *
\end{array}\right) \xrightarrow[\mathcal{G}(A)]{\mathcal{S}(\mathfrak{G})} \stackrel{1}{2}
$$

Example: K_{2}

$$
\begin{aligned}
& \text { Loop graph } \mathfrak{G} \\
& \left(\begin{array}{ll}
* & * \\
* & *
\end{array}\right) \quad\left(\begin{array}{ll}
0 & * \\
* & *
\end{array}\right) \quad\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right) \\
& \operatorname{mr}\left(\mathfrak{G}_{1}\right)=1 \\
& \operatorname{mr}\left(\mathfrak{G}_{2}\right)=2 \operatorname{mr}\left(\mathfrak{G}_{3}\right)=2 \xrightarrow{\min } \operatorname{mr}(G)=1
\end{aligned}
$$

Example: Complete Graphs

$$
\begin{aligned}
& \left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{lll}
0 & * & * \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{ccc}
0 & * & * \\
* & 0 & * \\
* & * & *
\end{array}\right)\left(\begin{array}{lll}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{array}\right) \\
& \operatorname{mr}\left(\mathfrak{G}_{1}\right)=1 \\
& \operatorname{mr}\left(\mathfrak{G}_{2}\right)=2 \\
& \operatorname{mr}\left(\mathfrak{G}_{3}\right)=2 \\
& \operatorname{det}\left(\begin{array}{lll}
0 & a & b \\
a & 0 & c \\
b & c & 0
\end{array}\right)=2 a b c \neq 0
\end{aligned}
$$

Paths and Cycles

$$
n-1=\operatorname{mr}\left(P_{n}\right) \leq \operatorname{mr}\left(\mathfrak{P}_{n}\right) \leq n
$$

$$
n-2=\operatorname{mr}\left(C_{n}\right) \leq \operatorname{mr}\left(\mathfrak{C}_{n}\right) \leq n
$$

Even Cycles

$n-1 \Leftrightarrow$ at least one of blue or red has exactly one loop; $n-2 \Leftrightarrow$ otherwise.

Odd Cycles

Main Lemma

Inverse of 2×2 matrices

$$
\begin{gathered}
\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \xrightarrow[\text { swap }]{ } \begin{array}{c}
\\
\left(\begin{array}{cc}
d & b \\
c & a
\end{array}\right) \\
\text { inverse } \\
\frac{1}{\operatorname{det}}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
\text { change } \left\lvert\, \begin{array}{l}
\text { sign } \\
-c
\end{array}\right. \\
-1 / \operatorname{det}
\end{array}\right)
\end{gathered}
$$

Symbolic Inverse

Symbolic Inverse

$$
\begin{aligned}
& \binom{*}{*} \xrightarrow[\text { swap }]{ }\left(\begin{array}{l}
* \\
* \\
*
\end{array}\right) \\
& \downarrow \text { inverse change } \downarrow \text { sign } \\
& \left(\begin{array}{ll}
* & * \\
*
\end{array}\right) \quad 1 / \operatorname{det} \quad\binom{*}{*}
\end{aligned}
$$

Graph Interpretation

$$
\begin{aligned}
& \left(\begin{array}{rr}
* & \sim \sim \\
* & \sim \sim \\
\sim \sim \sim \sim
\end{array}\right) \longrightarrow \\
& \left(\begin{array}{r}
* \sim \sim \\
* \\
\sim \sim \sim \sim \\
\sim \sim \sim
\end{array}\right) \longrightarrow
\end{aligned}
$$

Schur Complement

$$
\left(\begin{array}{ll}
A & B^{\top} \\
B & D
\end{array}\right) \xrightarrow{\text { row } 2-B A^{-1} \text { row } 1}\left(\begin{array}{cc}
A & B^{\top} \\
O & D-B A^{-1} B^{\top}
\end{array}\right)
$$

- If A is invertible, then
$D-B A^{-1} B^{\top}$ is called the Schur complement.
- Two matrices have the same rank.

Schur Complement on Graphs

$$
\begin{aligned}
& 80 \\
& \left(\begin{array}{ll}
* & \\
0 & *
\end{array}\right)\left({ }^{*} \begin{array}{ll}
*
\end{array}\right)\left(\begin{array}{ll}
* & \\
* & 0
\end{array}\right)=\left(\begin{array}{rrr}
* & 0 \\
* & & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Schur Complement on Graphs

$$
\begin{aligned}
& 40 \text { - } \\
& \left(\begin{array}{ll}
* & \\
0 & *
\end{array}\right)\binom{*}{0}\left(\begin{array}{ll}
* & \\
* & 0 \\
* & 0
\end{array}\right)=\left(\begin{array}{lll}
* & * & 0 \\
* & & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Main Lemma

Other Results

Other Results

Thank you.

