Note on von Neumann and Rényi entropies of a graph

Jephian C.-H. Lin

Department of Mathematics, Iowa State University

April 9, 2017 Graduate Student Combinatorics Conference 2017

Joshua Lockhart

Michael Dairyko

Leslie Hogben

David Roberson

Simone Severini

Michael Young

□ ▶ ▲ 臣 ▶ ▲ 臣 Department of Mathematics, Iowa State University

э

Entropy

Let $\mathbf{p} = (p_1, p_2, \dots, p_n)$ be a probability distribution, meaning

$$\sum_{i=1}^n p_i = 1 \text{ and } p_i \ge 0.$$

The Shannon entropy of **p** is

$$S(\mathbf{p}) = \sum_{i=1}^n p_i \log_2 \frac{1}{p_i}.$$

For a given $\alpha \geq 0$ with $\alpha \neq 1$, the Rényi entropy is

$$\mathcal{H}_{lpha}(\mathbf{p}) = rac{1}{1-lpha} \log_2 \left(\sum_{i=1}^n p_i^{lpha}
ight).$$

The function $x \log_2 \frac{1}{x}$

4/15

Department of Mathematics, Iowa State University

Convexity and Jensen's inequality

If f is a convex function, then Jensen's inequality says

$$\frac{1}{n}\sum f(p_i)\leq f\left(\frac{1}{n}\sum_{i=1}^n p_i\right).$$

Let $\overline{\mathbf{p}} = (\frac{1}{n}, \dots, \frac{1}{n})$. Since $x \log_2 \frac{1}{x} \ge 0$ is convex, $0 \le S(\mathbf{p}) \le S(\overline{\mathbf{p}})$ for all \mathbf{p} . Therefore, $S(\mathbf{p})$ is $\begin{cases} \text{maximized by } (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}), \\ \text{minimized by } (1, 0, \dots, 0). \end{cases}$

Entropy measures mixedness.

Convexity and Jensen's inequality

If f is a convex function, then Jensen's inequality says

$$\frac{1}{n}\sum f(p_i)\leq f\left(\frac{1}{n}\sum_{i=1}^n p_i\right).$$

Let $\overline{\mathbf{p}} = (\frac{1}{n}, \dots, \frac{1}{n})$. Since $x \log_2 \frac{1}{x} \ge 0$ is convex, $0 \le S(\mathbf{p}) \le S(\overline{\mathbf{p}})$ for all \mathbf{p} . Therefore, $S(\mathbf{p})$ is $\begin{cases} \text{maximized by } (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}), \\ \text{minimized by } (1, 0, \dots, 0). \end{cases}$

Entropy measures mixedness.

Density matrix

A density matrix M is a (symmetric) positive semi-definite matrix with trace one. Every density matrix has the spectral decomposition

$$M = QDQ^{\top} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top} = \sum_{i=1}^{n} \lambda_i E_i,$$

where $\lambda_i \geq 0$ and $\sum_{i=1}^n \lambda_i = tr(M) = 1$.

Each of E_i is of rank one and trace one; such a matrix is called a pure state in quantum information.

A density matrix is a convex combination of pure states with probability distribution $(\lambda_1, \ldots, \lambda_n)$.

Density matrix

A density matrix M is a (symmetric) positive semi-definite matrix with trace one. Every density matrix has the spectral decomposition

$$M = QDQ^{\top} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top} = \sum_{i=1}^{n} \lambda_i E_i,$$

where $\lambda_i \geq 0$ and $\sum_{i=1}^n \lambda_i = tr(M) = 1$.

Each of E_i is of rank one and trace one; such a matrix is called a pure state in quantum information.

A density matrix is a convex combination of pure states with probability distribution $(\lambda_1, \ldots, \lambda_n)$.

Density matrix of a graph

Let G be a graph. The Laplacian matrix of G is a matrix L with

$$\mathcal{L}_{i,j} = egin{cases} d_i & ext{if } i=j, \ -1 & ext{if } i\sim j, \ 0 & ext{otherwise.} \end{cases}$$

Any Laplacian matrix is positive semi-definite and has

$$\operatorname{tr}(L) = \sum_{i=1}^{n} d_i = 2|E(G)| =: d_G.$$

The density matrix of G is $\rho(G) = \frac{1}{d_G}L$.

Entropies of a graph

Let G be a graph and $\rho(G)$ its density matrix. Then spec($\rho(G)$) is a probability distribution.

The von Neumann entropy of a graph G is $S(G) = S(\operatorname{spec}(\rho(G)))$; the Rényi entropy of a graph G is $H_{\alpha}(G) = H_{\alpha}(\operatorname{spec}(\rho(G)))$.

Proposition

Let
$$G_1, \ldots, G_k$$
 be disjoint graphs, $c_i = \frac{d_{G_i}}{\sum_{i=1}^k d_{G_i}}$, and
 $\mathbf{c} = (c_1, \ldots, c_k)$. Then
 $S\left(\bigcup_{i=1}^k G_i\right) = c_1 S(G_1) + \cdots + c_k S(G_k) + S(\mathbf{c}_k)$

).

Union of graphs

Theorem (Passerini and Severini 2009)

If G_1 and G_2 are two graphs on the same vertex set and $E(G_1) \cap E(G_2) = \emptyset$, then

$$S(G_1\cup G_2)\geq c_1S(G_1)+c_2S(G_2),$$

where $c_i = \frac{d_{G_i}}{d_{G_1} + d_{G_2}}$.

In particular, for a graph G and $e \in E(\overline{G})$, then

$$S(G+e) \geq rac{d_G}{d_G+2}S(G).$$

Adding an edge can decrease the von Neumann entropy

$$S(K_{2,n-2}) \sim 1 + (n-3) \cdot \frac{1}{2n-4} \log_2(2n-4)$$

 $S(K_{2,n-2}+e) \sim 1 + (n-3) \cdot \frac{1}{2n-3} \log_2(2n-3)$

Department of Mathematics, Iowa State University

10/15

Extreme values of the von Neumann entropy

Recall
$$S(\mathbf{p})$$
 is

$$\begin{cases}
\text{maximized by } \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right), \\
\text{minimized by } (1, 0, \dots, 0).
\end{cases}$$
For graphs on *n* vertices, $S(G)$ is

$$\begin{cases}
\text{maximized by } K_n, \\
\text{minimized by } K_2 \dot{\cup} (n-2)K_1.
\end{cases}$$

Conjecture (DHLLRSY 2017)

.

For connected graphs on n vertices, the minimum von Neumann entropy is attained by $K_{1,n-1}$.

A B > A B >

Computational results and possible approaches

By Sage, $S(K_{1,n-1}) \leq S(G)$ for all connected graphs G on $n \leq 8$ vertices, and $S(K_{1,n-1}) \leq S(T)$ for all trees T on $n \leq 20$ vertices.

The conjecture is still open, but we can prove assymptotically.

Idea: The Rényi entropy $H_{lpha}(\mathbf{p}) \nearrow S(\mathbf{p})$ as $lpha \searrow 1$. In particular,

 $H_2(G) \leq S(G).$

Computational results and possible approaches

By Sage, $S(K_{1,n-1}) \leq S(G)$ for all connected graphs G on $n \leq 8$ vertices, and $S(K_{1,n-1}) \leq S(T)$ for all trees T on $n \leq 20$ vertices.

The conjecture is still open, but we can prove assymptotically.

Idea: The Rényi entropy $H_{lpha}(\mathbf{p})
earrow S(\mathbf{p})$ as $lpha \searrow 1$. In particular,

 $H_2(G) \leq S(G).$

・吊 ・ ・ ラ ト ・ ラ ト ・ ラ

Computational results and possible approaches

By Sage, $S(K_{1,n-1}) \leq S(G)$ for all connected graphs G on $n \leq 8$ vertices, and $S(K_{1,n-1}) \leq S(T)$ for all trees T on $n \leq 20$ vertices.

The conjecture is still open, but we can prove assymptotically.

Idea: The Rényi entropy $H_{lpha}({f p})
earrow S({f p})$ as $lpha \searrow 1$. In particular,

 $H_2(G) \leq S(G).$

伺下 イヨト イヨト ニヨ

What's nice about $H_2(G)$?

Let $M = \rho(G)$. Then by definition, the Rényi entropy $H_2(G)$ is

$$\frac{1}{1-2}\log_2\left(\sum_{i=1}^n\lambda_i^2\right) = -\log_2(\operatorname{tr} M^2) = \log_2\left(\frac{d_G^2}{d_G + \sum_i d_i^2}\right).$$

Theorem (DHLLRSY 2017)

If
$$\frac{d_G^2}{d_G + \sum_{i=1}^n d_i^2} \geq \frac{2n-2}{n^{\frac{n}{2n-2}}}$$
, then $S(G) \geq H_2(G) \geq S(K_{1,n-1})$.

It is known that $\sum_{i=1}^{n} d_i^2 \leq m \left(\frac{2m}{n-1} + n - 2\right)$. By some computation, almost all graphs have $S(G) \geq S(K_{1,n-1})$ when $n \to \infty$.

Conclusion

Whether $S(G) \ge S(K_{1,n-1})$ for all G or not remains open.

Conjecture (DHLLRSY 2017)

For every connected graph G on n vertices and $\alpha > 1$,

 $H_{\alpha}(G) \geq H_{\alpha}(K_{1,n-1}).$

We are able to show $H_2(G) \ge H_2(K_{1,n-1})$ for every connected graphs on *n* vertices.

Thank You!

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusion

Whether $S(G) \ge S(K_{1,n-1})$ for all G or not remains open.

Conjecture (DHLLRSY 2017)

For every connected graph G on n vertices and $\alpha > 1$,

 $H_{\alpha}(G) \geq H_{\alpha}(K_{1,n-1}).$

We are able to show $H_2(G) \ge H_2(K_{1,n-1})$ for every connected graphs on *n* vertices.

Thank You!

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □

- D. de Caen. An upper bound on the sum of squares of degrees in a graph. *Discrete Math.*, 185:245–248, 1998.
- M. Dairyko, L. Hogben, J. C.-H. Lin, J. Lockhart, D. Roberson, S. Severini, and M. Young. Note on von Neumann and Rényi entropies of a graph. *Linear Algebra Appl.*, 521:240–253, 2017.
- F. Passerini and S. Severini. Quantifying complexity in networks: the von Neumann entropy. Int. J. Agent Technol. Syst., 1:58–68, 2009.