Note on von Neumann and Rényi entropies of a graph

Jephian C.-H. Lin
Department of Mathematics, Iowa State University
April 9, 2017
Graduate Student Combinatorics Conference 2017

Joshua
Lockhart

David
Roberson

Michael
Dairyko

Simone
Severini

Leslie Hogben

Michael Young

Entropy

Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be a probability distribution, meaning

$$
\sum_{i=1}^{n} p_{i}=1 \text { and } p_{i} \geq 0
$$

The Shannon entropy of \mathbf{p} is

$$
S(\mathbf{p})=\sum_{i=1}^{n} p_{i} \log _{2} \frac{1}{p_{i}}
$$

For a given $\alpha \geq 0$ with $\alpha \neq 1$, the Rényi entropy is

$$
H_{\alpha}(\mathbf{p})=\frac{1}{1-\alpha} \log _{2}\left(\sum_{i=1}^{n} p_{i}^{\alpha}\right)
$$

The function $x \log _{2} \frac{1}{x}$

Convexity and Jensen's inequality

If f is a convex function, then Jensen's inequality says

$$
\frac{1}{n} \sum f\left(p_{i}\right) \leq f\left(\frac{1}{n} \sum_{i=1}^{n} p_{i}\right) .
$$

Let $\overline{\mathbf{p}}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$. Since $x \log _{2} \frac{1}{x} \geq 0$ is convex,

$$
0 \leq S(\mathbf{p}) \leq S(\overline{\mathbf{p}}) \text { for all } \mathbf{p}
$$

Therefore, $S(\mathbf{p})$ is $\left\{\begin{array}{l}\text { maximized by }\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), \\ \text { minimized by }(1,0, \ldots, 0) .\end{array}\right.$
Entropy measures mixedness.

Convexity and Jensen's inequality

If f is a convex function, then Jensen's inequality says

$$
\frac{1}{n} \sum f\left(p_{i}\right) \leq f\left(\frac{1}{n} \sum_{i=1}^{n} p_{i}\right) .
$$

Let $\overline{\mathbf{p}}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$. Since $x \log _{2} \frac{1}{x} \geq 0$ is convex,

$$
0 \leq S(\mathbf{p}) \leq S(\overline{\mathbf{p}}) \text { for all } \mathbf{p} .
$$

Therefore, $S(\mathbf{p})$ is $\left\{\begin{array}{l}\text { maximized by }\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), \\ \text { minimized by }(1,0, \ldots, 0) .\end{array}\right.$
Entropy measures mixedness.

Density matrix

A density matrix M is a (symmetric) positive semi-definite matrix with trace one. Every density matrix has the spectral decomposition

$$
M=Q D Q^{\top}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}=\sum_{i=1}^{n} \lambda_{i} E_{i}
$$

where $\lambda_{i} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(M)=1$.
Each of E_{i} is of rank one and trace one; such a matrix is called a pure state in quantum information.

A density matrix is a convex combination of pure states with probability distribution $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Density matrix

A density matrix M is a (symmetric) positive semi-definite matrix with trace one. Every density matrix has the spectral decomposition

$$
M=Q D Q^{\top}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}=\sum_{i=1}^{n} \lambda_{i} E_{i}
$$

where $\lambda_{i} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(M)=1$.
Each of E_{i} is of rank one and trace one; such a matrix is called a pure state in quantum information.

A density matrix is a convex combination of pure states with probability distribution $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Density matrix of a graph

Let G be a graph. The Laplacian matrix of G is a matrix L with

$$
L_{i, j}= \begin{cases}d_{i} & \text { if } i=j \\ -1 & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

Any Laplacian matrix is positive semi-definite and has

$$
\operatorname{tr}(L)=\sum_{i=1}^{n} d_{i}=2|E(G)|=: d_{G}
$$

The density matrix of G is $\rho(G)=\frac{1}{d_{G}} L$.

Entropies of a graph

Let G be a graph and $\rho(G)$ its density matrix. Then $\operatorname{spec}(\rho(G))$ is a probability distribution.

The von Neumann entropy of a graph G is $S(G)=S(\operatorname{spec}(\rho(G)))$; the Rényi entropy of a graph G is $H_{\alpha}(G)=H_{\alpha}(\operatorname{spec}(\rho(G)))$.

Proposition

Let G_{1}, \ldots, G_{k} be disjoint graphs, $c_{i}=\frac{d_{G_{i}}}{\sum_{i=1}^{k} d_{G_{i}}}$, and $\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$. Then

$$
S\left(\bigcup_{i=1}^{k} G_{i}\right)=c_{1} S\left(G_{1}\right)+\cdots+c_{k} S\left(G_{k}\right)+S(\mathbf{c})
$$

Union of graphs

Theorem (Passerini and Severini 2009)
If G_{1} and G_{2} are two graphs on the same vertex set and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$, then

$$
S\left(G_{1} \cup G_{2}\right) \geq c_{1} S\left(G_{1}\right)+c_{2} S\left(G_{2}\right),
$$

where $c_{i}=\frac{d_{G_{i}}}{d G_{1}+d \sigma_{2}}$.
In particular, for a graph G and $e \in E(\bar{G})$, then

$$
S(G+e) \geq \frac{d_{G}}{d_{G}+2} S(G) .
$$

Adding an edge can decrease the von Neumann entropy

$K_{2, n-2}$

$K_{2, n-2}+e$

$$
\begin{aligned}
S\left(K_{2, n-2}\right) & \sim 1+(n-3) \cdot \frac{1}{2 n-4} \log _{2}(2 n-4) \\
S\left(K_{2, n-2}+e\right) & \sim 1+(n-3) \cdot \frac{1}{2 n-3} \log _{2}(2 n-3)
\end{aligned}
$$

Extreme values of the von Neumann entropy

Recall $S(\mathbf{p})$ is $\left\{\begin{array}{l}\text { maximized by }\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), \\ \text { minimized by }(1,0, \ldots, 0) .\end{array}\right.$
For graphs on n vertices, $S(G)$ is $\left\{\begin{array}{l}\text { maximized by } K_{n}, \\ \text { minimized by } K_{2} \dot{U}(n-2) K_{1} .\end{array}\right.$

Conjecture (DHLLRSY 2017)

For connected graphs on n vertices, the minimum von Neumann entropy is attained by $K_{1, n-1}$.

Computational results and possible approaches

By Sage, $S\left(K_{1, n-1}\right) \leq S(G)$ for all connected graphs G on $n \leq 8$ vertices, and $S\left(K_{1, n-1}\right) \leq S(T)$ for all trees T on $n \leq 20$ vertices.

The conjecture is still open, but we can prove assymptotically.
Idea: The Rényi entropy $H_{\alpha}(\mathbf{p}) \nearrow S(\mathbf{p})$ as $\alpha \searrow 1$. In particular,

$$
H_{2}(G) \leq S(G) .
$$

Computational results and possible approaches

By Sage, $S\left(K_{1, n-1}\right) \leq S(G)$ for all connected graphs G on $n \leq 8$ vertices, and $S\left(K_{1, n-1}\right) \leq S(T)$ for all trees T on $n \leq 20$ vertices.

The conjecture is still open, but we can prove assymptotically.
Idea: The Rényi entropy $H_{\alpha}(\mathbf{p}) \nearrow S(\mathbf{p})$ as $\alpha \searrow 1$. In particular,

$$
H_{2}(G) \leq S(G) .
$$

Computational results and possible approaches

By Sage, $S\left(K_{1, n-1}\right) \leq S(G)$ for all connected graphs G on $n \leq 8$ vertices, and $S\left(K_{1, n-1}\right) \leq S(T)$ for all trees T on $n \leq 20$ vertices.

The conjecture is still open, but we can prove assymptotically. Idea: The Rényi entropy $H_{\alpha}(\mathbf{p}) \nearrow S(\mathbf{p})$ as $\alpha \searrow 1$. In particular,

$$
H_{2}(G) \leq S(G)
$$

What's nice about $H_{2}(G)$?

Let $M=\rho(G)$. Then by definition, the Rényi entropy $H_{2}(G)$ is

$$
\frac{1}{1-2} \log _{2}\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)=-\log _{2}\left(\operatorname{tr} M^{2}\right)=\log _{2}\left(\frac{d_{G}^{2}}{d_{G}+\sum_{i} d_{i}^{2}}\right) .
$$

Theorem (DHLLRSY 2017)
If $\frac{d_{G}^{2}}{d_{G}+\sum_{i=1}^{n} d_{i}^{2}} \geq \frac{2 n-2}{n^{\frac{n}{2 n-2}}}$, then $S(G) \geq H_{2}(G) \geq S\left(K_{1, n-1}\right)$.
It is known that $\sum_{i=1}^{n} d_{i}^{2} \leq m\left(\frac{2 m}{n-1}+n-2\right)$. By some computation, almost all graphs have $S(G) \geq S\left(K_{1, n-1}\right)$ when $n \rightarrow \infty$.

Conclusion

Whether $S(G) \geq S\left(K_{1, n-1}\right)$ for all G or not remains open.
Conjecture (DHLLRSY 2017)
For every connected graph G on n vertices and $\alpha>1$,

$$
H_{\alpha}(G) \geq H_{\alpha}\left(K_{1, n-1}\right)
$$

We are able to show $H_{2}(G) \geq H_{2}\left(K_{1, n-1}\right)$ for every connected graphs on n vertices.

Conclusion

Whether $S(G) \geq S\left(K_{1, n-1}\right)$ for all G or not remains open.
Conjecture (DHLLRSY 2017)
For every connected graph G on n vertices and $\alpha>1$,

$$
H_{\alpha}(G) \geq H_{\alpha}\left(K_{1, n-1}\right)
$$

We are able to show $H_{2}(G) \geq H_{2}\left(K_{1, n-1}\right)$ for every connected graphs on n vertices.

Thank You!

(in D. de Caen. An upper bound on the sum of squares of degrees in a graph. Discrete Math., 185:245-248, 1998.
目 M. Dairyko, L. Hogben, J. C.-H. Lin, J. Lockhart, D. Roberson, S. Severini, and M. Young. Note on von Neumann and Rényi entropies of a graph. Linear Algebra Appl., 521:240-253, 2017.
目 F. Passerini and S. Severini. Quantifying complexity in networks: the von Neumann entropy. Int. J. Agent Technol. Syst., 1:58-68, 2009.

