Low mi

High mr

Schur Compleme Reduction

References

Minimum Rank of Graphs with Loops

Jephian C.-H. Lin, Gabi Maurer, Kathleen Nowak

Iowa State University

April 28, 2014

Outline

2 Low mr

4 Schur Complement Reduction

References 5

Loop Graphs

Introduction

- Low mr
- High mr
- Schur Complement Reduction
- References

Definition

- A loop graph is a pair 𝔅 = (V, E) where V is a set of vertices and E is a set of edges.
- Each edge is associated with two vertices (not necessarily distinct) called its endpoints.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• A loop is an edge whose endpoints are equal.

Loop Graphs

Introduction

- Low mr
- High mr
- Schur Complement Reduction
- References

Definition

- A loop graph is a pair 𝔅 = (V, E) where V is a set of vertices and E is a set of edges.
- Each edge is associated with two vertices (not necessarily distinct) called its endpoints.
- A loop is an edge whose endpoints are equal.
- We'll denote the edge with endpoints *u* and *v* by *uv*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

• All graphs discussed here are finite.

Loop Graphs

Loop Graph from a Real Symmetric Matrix

Introduction

- Low mr
- High mr
- Schur Complemen Reduction
- References

Definition

Let
$$A \in \mathbb{R}^{n \times n}$$
 with $A^T = A$.

The loop graph $\mathcal{G}_{\ell}(A) = (V, E)$ is the graph with • $V = \{1, 2, ..., n\}$

•
$$E = \{ij \mid a_{ij} \neq 0\}$$

Loop Graph from a Real Symmetric Matrix

Introduction

- Low mr
- High mr
- Schur Complemen Reduction
- References

Definition

Let
$$A \in \mathbb{R}^{n \times n}$$
 with $A^T = A$.

The loop graph $\mathcal{G}_{\ell}(A) = (V, E)$ is the graph with • $V = \{1, 2, ..., n\}$ • $E = \{ij \mid a_{ij} \neq 0\}$

Example

$$A = \begin{bmatrix} -1 & 2 & 5 & 0 \\ 2 & 0 & 1 & -3 \\ 5 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \end{bmatrix} \implies \begin{array}{c} 2 & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

(ヘロ・ 人間・ 人間・ 人間・ 人口・)

Minimum Rank of a Loop Graph

Introduction

- Low mr
- High mr
- Schur Complemen Reduction

References

Definition

Given a loop graph &, we define

$$\mathcal{S}_{\ell}(\mathfrak{G}) := \{A \in \mathbb{R}^{n imes n} \mid A^T = A, \ \mathcal{G}_{\ell}(A) = \mathfrak{G}\}$$

Minimum Rank of a Loop Graph

Introduction

- Low mr
- High mr
- Schur Complement Reduction

References

Definition

Given a loop graph &, we define

$$\mathcal{S}_{\ell}(\mathfrak{G}) := \{ A \in \mathbb{R}^{n \times n} \mid A^T = A, \ \mathcal{G}_{\ell}(A) = \mathfrak{G} \}$$

Definition

The minimum rank of a loop graph \mathfrak{G} is defined to be

 $mr(\mathfrak{G}) := min\{rank \ A \mid A \in \mathcal{S}_{\ell}(\mathfrak{G})\}$

Questions Asked

Definition and Notation

Introduction

Low mr

- High mr
- Schur Complemen Reduction
- References

Definition

- \Re_n is the complete graph on n vertices with all loops
- $\Re_{s,t}$ is the complete bipartite graph without loops
- $\dot{\cup}$ denotes the disjoint union of two graphs
- \lor denotes the join of two graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition and Notation

Introduction

Low mr

High mr

Schur Complement Reduction

References

Definition

Let \mathfrak{G} be a loop graph. The complement of \mathfrak{G} is the graph $\overline{\mathfrak{G}} = (V, \overline{E})$ where $E \cap \overline{E} = \emptyset$ and for $v_i, v_j \in V$ if an edge or a loop $v_i v_j \notin E$, then $v_i v_j \in \overline{E}$.

$mr \leq 2$ for simple graphs

Introduction

Low mr

- High mr
- Schur Complemen Reduction
- References

Theorem (Barrett, van der Holst, Loewy, 2004)

- Let G be a simple graph. The following are equivalent:
 - $mr(G) \leq 2.$
 - **②** *G* is {*P*₄, dart, \ltimes , *K*_{3,3,3}, *P*₃ $\dot{\cup}$ *K*₂, 3*K*₂}-free.
 - $\overline{G} = (K_{s_1} \cup K_{s_2} \cup K_{p_1,q_1} \cup \cdots \cup K_{p_k,q_k}) \vee K_r$ for some nonnegative s_1, s_2, k, p_i, q_i, r with $p_i + q_i \ge 1$ for $i = 1, \dots, k$.

$mr \leq 2$ for loop graphs

Set \mathcal{F} of forbidden induced subgraphs

$mr \leq 2$ for loop graphs

Introduction

Low mr

High mr

Schur Complement Reduction

References

Theorem

Let 𝔅 be a loop graph. The following are equivalent: ● mr(𝔅) < 2.

- **2** \mathfrak{G} is \mathcal{F} -free for the set \mathcal{F} of loop graphs
- $\overline{\mathfrak{G}} = (\mathfrak{K}_{s_1} \dot{\cup} \mathfrak{K}_{s_2} \dot{\cup} \mathfrak{K}_{p_1, q_1} \dot{\cup} \cdots \dot{\cup} \mathfrak{K}_{p_k, q_k}) \vee \mathfrak{K}_r$ for some nonnegative s_1, s_2, k, p_i, q_i, r with $p_i + q_i \ge 1$ for $i = 1, \ldots, k$.
- $\mathfrak{G} = (\mathfrak{K}_{\mathfrak{s}_1,\mathfrak{s}_2} \lor (\mathfrak{K}_{p_1} \dot{\cup} \mathfrak{K}_{q_1}) \lor \cdots \lor (\mathfrak{K}_{p_k} \dot{\cup} \mathfrak{K}_{q_k})) \dot{\cup} \overline{\mathfrak{K}_r}$ for some nonnegative $\mathfrak{s}_1, \mathfrak{s}_2, k, p_i, q_i, r$ with $p_i + q_i \ge 1$ for $i = 1, \ldots, k$.

Sketch of the Proof I

Introduction

Low mr

High mr

Schur Complemen Reduction

References

$\mathbf{3} \Leftrightarrow \mathbf{4} \Rightarrow \mathbf{1} \Rightarrow \mathbf{2}: \checkmark$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Sketch of the Proof I

Introduction

Low mr

High m

Schur Complemen Reduction

References

$\mathbf{3} \Leftrightarrow \mathbf{4} \Rightarrow \mathbf{1} \Rightarrow \mathbf{2}: \checkmark$

② ⇒ ③: Consider a \mathcal{F} -free loop graph \mathfrak{G}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Sketch of the Proof I

Introduction

Low mr

High m

Schur Complemen Reduction

References

$\mathbf{3} \Leftrightarrow \mathbf{4} \Rightarrow \mathbf{1} \Rightarrow \mathbf{2}: \checkmark$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Sketch of the Proof II

Introduction

Low mr

High m

Schur Compleme Reduction

References

The complement of the underlying simple graph of ${\mathfrak G}$ is

$$\overline{G} = \left(K_{s_1} \dot{\cup} K_{s_2} \dot{\cup} K_{p_1, q_1} \dot{\cup} \cdots \dot{\cup} K_{p_k, q_k} \right) \vee K_r$$

<□> <圖> < ≧> < ≧> < ≧> < ≧ < つへぐ

Sketch of the Proof II

Introduction

Low mr

High m

Schur Complemen Reduction

References

The complement of the underlying simple graph of $\boldsymbol{\mathfrak{G}}$ is

$$\overline{G} = \left(K_{s_1} \dot{\cup} K_{s_2} \dot{\cup} K_{p_1,q_1} \dot{\cup} \cdots \dot{\cup} K_{p_k,q_k} \right) \vee K_r$$

We do not have to consider the join with K_r .

Sketch of the Proof III

Complements of the forbidden subgraphs

Introduction

Low mr

High mr

Schur Complement Reduction

References

Definition

A generalized cycle of a loop graph & is a subgraph of & whose connected components are either loops, single edges, or cycles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Low mr

High mr

Schur Complement Reduction

References

Definition

The order of a generalized cycle is the number of vertices in the generalized cycle. A generalized cycle of order $|\mathfrak{G}|$ is said to be spanning.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction

Low mr

High mr

Schur Complement Reduction

References

Definition

The order of a generalized cycle is the number of vertices in the generalized cycle. A generalized cycle of order $|\mathfrak{G}|$ is said to be spanning.

generalized cycle of order 5

spanning generalized cycle

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Low mr

High mr

Schur Complement Reduction

References

Definition

Given a generalized cycle C, define

• nc(C) := the number of distinct cycles in C, and

• $ne(\mathcal{C}) := the number of even components of C$

For a loop graph &, define

cyc_k(𝔅) := the set of all generalized cycles of order k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Low mr

High mr

Schur Complement Reduction

References

Definition

Given a generalized cycle C, define

• nc(C) := the number of distinct cycles in C, and

• $ne(\mathcal{C}) := the number of even components of C$

For a loop graph &, define

• $cyc_k(\mathfrak{G}) :=$ the set of all generalized cycles of order k.

Permutation Association

Introduction

Low mr

High mr

Schur Complement Reduction

References

With $\ensuremath{\mathcal{C}}$, we can associate a permutation of the vertices as follows:

- For each cycle, fix an orientation and associate the directed graph cycle $(v_1, v_2, ..., v_k)$ with the cyclic permutation $(v_1, v_2, ..., v_k)$.
- Associate each edge v_1v_2 with the 2-cycle (v_1v_2) .
- Associate each loop v_1v_1 with the permutation (v_1) .

Permutation Association

Introduction

Low mr

High mr

Schur Complement Reduction

References

With $\ensuremath{\mathcal{C}}$, we can associate a permutation of the vertices as follows:

- For each cycle, fix an orientation and associate the directed graph cycle $(v_1, v_2, ..., v_k)$ with the cyclic permutation $(v_1, v_2, ..., v_k)$.
- Associate each edge v_1v_2 with the 2-cycle (v_1v_2) .
- Associate each loop v_1v_1 with the permutation (v_1) .

The permutation $\pi_{\mathcal{C}}$ is then defined to be the product of these associated permutation cycles.

Permutation Association

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Generalized Cycles and Determinant

Introduction

Low mr

High mr

Schur Complement Reduction

References

Theorem (Harary, 1962)

For $A = [a_{ij}] \in S(\mathfrak{G})$, let $S_k(A)$ denote the sum of all $k \times k$ principal minors. Then

$$S_k(A) = \sum_{\mathcal{C} \in cyc_k(\mathcal{G}_\ell(A))} (-1)^{ne(\mathcal{C})} 2^{nc(\mathcal{C})} a_{i_1 \pi_{\mathcal{C}}(i_1)} \cdots a_{i_k \pi_{\mathcal{C}}(i_k)}$$

Generalized Cycles and Determinant

Introduction

Low mr

High mr

Schur Complement Reduction

References

Theorem (Harary, 1962)

For $A = [a_{ij}] \in S(\mathfrak{G})$, let $S_k(A)$ denote the sum of all $k \times k$ principal minors. Then

$$S_k(A) = \sum_{\mathcal{C} \in cyc_k(\mathcal{G}_\ell(A))} (-1)^{ne(\mathcal{C})} 2^{nc(\mathcal{C})} a_{i_1 \pi_{\mathcal{C}}(i_1)} \dots a_{i_k \pi_{\mathcal{C}}(i_k)}$$

In particular,

$$\det(A) = S_n(A) = \sum_{\mathcal{C} \in \mathsf{cyc}_n(\mathcal{G}_\ell(A))} (-1)^{\mathsf{ne}(\mathcal{C})} 2^{\mathsf{nc}(\mathcal{C})} a_{i_1 \pi_{\mathcal{C}}(i_1)} \dots a_{i_n \pi_{\mathcal{C}}(i_n)}$$

Auxiliary Result

Introduction

Low mi

High mr

Schur Complement Reduction

References

Lemma

If $p(x_1, x_2, ..., x_q)$ is a nonzero homogeneous polynomial over \mathbb{R} , then there exist nonzero real numbers $c_1, c_2, ..., c_q$ such that $p(c_1, c_2, ..., c_q) \neq 0$.

High Minimum Rank Characterization

Introduction

Low mr

High mr

Schur Complement Reduction

References

Theorem

For every loop graph \mathfrak{G} , $mr(\mathfrak{G}) = |\mathfrak{G}|$ if and only if \mathfrak{G} has a unique spanning generalized cycle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof Sketch:

 (\Leftarrow) Clear.

High Minimum Rank Characterization

Introduction

Low mr

High mr

Schur Complemen Reduction

References

$$(\Rightarrow)$$
 Now assume $mr(\mathfrak{G}) = |\mathfrak{G}|$.

If \mathfrak{G} is a loopless, then $mr(\mathfrak{G}) = mr_0(\mathfrak{G})$ and the result has been proven.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Otherwise, if \mathfrak{G} contains a loop uu, we proceed by contradiction.

High Minimum Rank Characterization

Introduction

Low mr

High mr

Schur Complement Reduction

References

Consider a minimal counterexample $\mathfrak{H}^* = (V^*, E^*)$. For a loop graph $\mathfrak{H} = (V, E)$,

- If |V| < |V^{*}| and mr(𝔅) = |V| ⇒ 𝔅 has a unique spanning generalized cycle.
- If |V| = |V*|, |E| < |E*|, and mr(𝔅) = |V| ⇒ 𝔅 has a unique spanning generalized cycle.

Cases:

- *uu* participates in every spanning generalized cycle.
- 2 uu participates in no spanning generalized cycle.
- **③** *uu* participates in the cycle C_1 but not in C_2 .

Inverse of 2×2 matrices

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ●

Symbolic Inverse

Symbolic Inverse

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ()~

Graph Interpretation

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ●

Schur Complement

Introduction

Low m

High mr

Schur Complement Reduction

References

$$\begin{array}{c} A & B^{\top} \\ B & D \end{array} \xrightarrow{\text{row } 2 - BA^{-1} \text{ row } 1} \left(\begin{array}{c} A & B^{\top} \\ O & D - BA^{-1}B^{\top} \end{array} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- If A is invertible, then
 D − BA⁻¹B^T is called the Schur complement.
- Two matrices have the same rank.

Schur Complement on Graphs

◆□> ◆□> ◆三> ◆三> ・三 のへの

.

Schur Complement on Graphs

.

Main Lemma

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof of Main Lemma

Proof of Main Lemma

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Other Results

- Introduction
- Low mr
- High mr
- Schur Complemen Reduction
- References

Other Results

- Introduction
- Low mr
- High mr
- Schur Complemen Reduction
- References

Thank you.

References I

- References

- W.W. Barrett, H. van der Holst, and R. Loewy. Graphs whose minimal rank is two. Elec. J. Lin. Alg., 11: 258-280, 2004.
- C. Grood, A. Harmse, L. Hogben, T.J. Hunter, B. Jacob, A. Klimas. S. McCathern. Minimum rank with zero diagonal. Under review.
- **F**. Harary. The determinant of the adjacency matrix of a graph. SIAM Review, 4: 202-210, 1962.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@