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Loop Graphs

Definition

A loop graph is a pair G = (V ,E ) where V is a set of
vertices and E is a set of edges.

Each edge is associated with two vertices (not necessarily
distinct) called its endpoints.

A loop is an edge whose endpoints are equal.

We’ll denote the edge with endpoints u and v by uv .

All graphs discussed here are finite.
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Loop Graphs
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Loop Graph from a Real Symmetric Matrix

Definition

Let A ∈ Rn×n with AT = A.

The loop graph G`(A) = (V ,E ) is the graph with

V = {1, 2, ..., n}
E = {ij | aij 6= 0}

Example
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Minimum Rank of a Loop Graph

Definition

Given a loop graph G, we define

S`(G) := {A ∈ Rn×n | AT = A, G`(A) = G}

Definition

The minimum rank of a loop graph G is defined to be

mr(G) := min{rank A | A ∈ S`(G)}
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Questions Asked

Questions Posed

1 Given a loop graph G,

When is mr(G) ≤ 2?
When is mr(G) = |G |?

2 Can we determine the minimum rank for certain families
of loop graphs (Kn,Pn,Cn, etc)?
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Definition and Notation

Definition

Kn is the complete graph on n vertices with all loops

Ks,t is the complete bipartite graph without loops

∪̇ denotes the disjoint union of two graphs

∨ denotes the join of two graphs



Introduction

Low mr

High mr

Schur
Complement
Reduction

References

Definition and Notation

Definition

Let G be a loop graph. The complement of G is the graph
G = (V ,E ) where E ∩ E = ∅ and for vi , vj ∈ V if an edge or a
loop vivj /∈ E , then vivj ∈ E .
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mr ≤ 2 for simple graphs

Theorem (Barrett, van der Holst, Loewy, 2004)

Let G be a simple graph. The following are equivalent:

1 mr(G ) ≤ 2.

2 G is {P4, dart, n, K3,3,3,P3∪̇K2, 3K2}-free.

3 G =
(
Ks1∪̇Ks2∪̇Kp1,q1∪̇ · · · ∪̇Kpk ,qk

)
∨ Kr for some

nonnegative s1, s2, k , pi , qi , r with pi + qi ≥ 1 for
i = 1, . . . , k.
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mr ≤ 2 for loop graphs

Set F of forbidden induced subgraphs
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mr ≤ 2 for loop graphs

Theorem

Let G be a loop graph. The following are equivalent:

1 mr(G) ≤ 2.

2 G is F-free for the set F of loop graphs

3 G =
(
Ks1∪̇Ks2∪̇Kp1,q1∪̇ · · · ∪̇Kpk ,qk

)
∨ Kr for some

nonnegative s1, s2, k , pi , qi , r with pi + qi ≥ 1 for
i = 1, . . . , k.

4 G =
(
Ks1,s2 ∨ (Kp1∪̇Kq1) ∨ · · · ∨ (Kpk ∪̇Kqk )

)
∪̇Kr for some

nonnegative s1, s2, k , pi , qi , r with pi + qi ≥ 1 for
i = 1, . . . , k.
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Sketch of the Proof I

3 ⇔ 4 ⇒ 1 ⇒ 2 : X

2 ⇒ 3 :
Consider a F-free loop graph G
G is {P4, dart, n, K3,3,3,P3∪̇K2, 3K2}-free
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Sketch of the Proof II

The complement of the underlying simple graph of G is

G =
(
Ks1∪̇Ks2∪̇Kp1,q1∪̇ · · · ∪̇Kpk ,qk

)
∨ Kr

We do not have to consider the join with Kr .
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Sketch of the Proof II

The complement of the underlying simple graph of G is

G =
(
Ks1∪̇Ks2∪̇Kp1,q1∪̇ · · · ∪̇Kpk ,qk

)
∨ Kr

We do not have to consider the join with Kr .
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Sketch of the Proof III

Complements of the forbidden subgraphs
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Generalized Cycles

Definition

A generalized cycle of a loop graph G is a subgraph of G whose
connected components are either loops, single edges, or cycles.
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Generalized Cycles

Definition

The order of a generalized cycle is the number of vertices in
the generalized cycle. A generalized cycle of order |G| is said to
be spanning.
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Generalized Cycles

Definition

Given a generalized cycle C, define

nc(C) := the number of distinct cycles in C, and

ne(C) := the number of even components of C
For a loop graph G, define

cyck(G) := the set of all generalized cycles of order k.
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Permutation Association

With C, we can associate a permutation of the vertices as
follows:

For each cycle, fix an orientation and associate the
directed graph cycle (v1, v2, . . . , vk) with the cyclic
permutation (v1, v2, . . . vk).

Associate each edge v1v2 with the 2-cycle (v1v2).

Associate each loop v1v1 with the permutation (v1).

The permutation πC is then defined to be the product of these
associated permutation cycles.
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Generalized Cycles and Determinant

Theorem (Harary, 1962)

For A = [aij ] ∈ S(G), let Sk(A) denote the sum of all k × k
principal minors. Then

Sk(A) =
∑

C∈cyck (G`(A))

(−1)ne(C)2nc(C)ai1πC(i1) . . . aikπC(ik )

In particular,

det(A) = Sn(A) =
∑

C∈cycn(G`(A))

(−1)ne(C)2nc(C)ai1πC(i1) . . . ainπC(in)
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Auxiliary Result

Lemma

If p(x1, x2, ..., xq) is a nonzero homogeneous polynomial over
R, then there exist nonzero real numbers c1, c2, ..., cq such that
p(c1, c2, ..., cq) 6= 0.
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High Minimum Rank Characterization

Theorem

For every loop graph G, mr(G) = |G| if and only if G has a
unique spanning generalized cycle.

Proof Sketch:

(⇐) Clear.
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High Minimum Rank Characterization

(⇒) Now assume mr(G) = |G|.

If G is a loopless, then mr(G) = mr0(G) and the result has
been proven.

Otherwise, if G contains a loop uu, we proceed by
contradiction.
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High Minimum Rank Characterization

Consider a minimal counterexample H∗ = (V ∗,E ∗).
For a loop graph H = (V ,E ),

1 If |V | < |V ∗| and mr(H) = |V | ⇒ H has a unique
spanning generalized cycle.

2 If |V | = |V ∗|, |E | < |E ∗|, and mr(H) = |V | ⇒ H has a
unique spanning generalized cycle.

Cases:

1 uu participates in every spanning generalized cycle.

2 uu participates in no spanning generalized cycle.

3 uu participates in the cycle C1 but not in C2.
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Inverse of 2× 2 matrices




a b
c d







d b
c a







d −b
−c a




1
det




d −b
−c a




swap

change sign

1/det

inverse
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Symbolic Inverse




∗
∗







∗
∗







∗
∗







∗
∗




swap

change sign

1/det

inverse



Introduction

Low mr

High mr

Schur
Complement
Reduction

References

Symbolic Inverse




∗
∗ ∗







∗ ∗
∗







∗ ∗
∗







∗ ∗
∗




swap

change sign

1/det

inverse
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Graph Interpretation




∼ ∼
∼ ∼

∼ ∼ ∼ ∼
∼ ∼ ∼ ∼







∼ ∼
∼ ∼

∼ ∼ ∼ ∼
∼ ∼ ∼ ∼




∗
∗
∗

∗
∗
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Schur Complement



A B>

B D






A B>

O D −BA−1B>




row 2 − BA−1 row1

Two matrices have the same rank.

If A is invertible, then

D −BA−1B> is called the Schur complement.Schur complement
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Schur Complement on Graphs




∗ ∗ 0
∗ ∗ 0
∗
∗ ∼

0 0







∗
∗

∗
∗ ∼







∗
∗

0 0







∗
∗






∗ 0
∗ 0


 =




∗ 0
∗ 0
0 0 0




∗
∗

∗
∗

∗
∗
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Schur Complement on Graphs




∗ ∗ 0
∗ ∗ 0
∗
∗ ∼

0 0







∗
∗

∼







∗
∗

0 0






∗ ∗
∗






∗ 0
∗ 0


 =




∗ ∗ 0
∗ 0
0 0 0




∗
∗

∗
∗

∗
∗

∗
+**

∗
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Main Lemma

mr( ) = mr( )

mr( ))mr( =
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Proof of Main Lemma

=mr( ) mr( )5= =3+2=5




0 1 2 0 0

1 0 0 3 0

2 0 0 0 2

0 3 0 0 3

0 0 2 3 0







0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 1 0


 



0 1 0 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0




realized by

scale row 3
and row 4 Schur complement

definition
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Proof of Main Lemma

=mr( ) mr( )5= =3+2=5




0 1 2 0 0

1 0 0 3 0

2 0 0 0 2

0 3 0 0 3

0 0 2 3 0







0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 1 0


 



0 1 0 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0




reconstruction

realized by
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Other Results

Thank you.
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