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Minimum rank problem (simple and loop)
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∗ ? ∗
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21 3
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∗ ∗ 0
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0 ∗ 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 1 0
1 2 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦

smallest possible rank
largest possible nullity

mr(P3) = 2
M(P3) = 1

mr(P3) = 3
M(P3) = 0
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Zero forcing number (simple and loop)

21 3 21 3

M(P3) = 1
Z(P3) = 1

M(P3) = 0
Z(P3) = 0

minimum number of blue vertices
to force all vertices blue

simple If y is the only white neighbor of x and x is blue,
then x → y .

loop If y is the only white neighbor of x and x is blue,
then x → y . (x , y are possibly the same.)
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Max Nullity vs Zero Forcing

▸ M(G) ≤ Z(G) for all simple graph [AIM 2008];
M(G) ≤ Z(G) for all loop graph [Hogben 2010].

▸ M(G) = Z(G) whenever ∣V (G)∣ ≤ 7 or G is a tree, a cycle;
not always true for outerplanar graphs.

▸ M(G) = Z(G) whenever ∣V (G)∣ ≤ 2 or G is a loop
configuration of a tree; not always true for cycles or
outerplanar graphs.
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An example with M(G) ≠ Z(G)
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7 8

Z(G) = 3
Ẑ(G) = maxG Z(G) = 2

M(G) = 2
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An example with M(G) ≠ Z(G)

▸ M(Cn) = Z(Cn) if Cn is not a loopless odd cycle;
M(C0

2k+1) = 0 but Z(C0
2k+1) = 1.

▸ MR(C0
2k+1) = 0 but MF2(C0

2k+1) = 1.

1

2

3 4

5

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e1 e2k+1
e1 0 e2

e2 ⋱ ⋱
⋱ e2k

e2k+1 e2k 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2
2k+1

∏
i=1

ei
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Max Nullity vs Zero Forcing Revisit

▸ M(G) ≤ Z(G) for all simple graph [AIM 2008];
M(G) ≤ Z(G) for all loop graph [Hogben 2010].

▸ For simple graphs with ∣V (G)∣ ≤ 7, M(G) = Z(G).

▸ For the simple graph K3,3,3, M(K3,3,3) = 6 and Ẑ(K3,3,3) = 7.

▸ For the loop graph C0
3, M(C0

3) = 0 and Z(C0
3) = 1.

▸ The fact MF (C0
2k+1) = 0 is true whenever the considered

matrix is symmetric and char ≠ 2.
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Proof of M ≤ Z

21 3

1 2 3
1
2
3

⎡⎢⎢⎢⎢⎢⎣

∗ ∗ 0
∗ ∗ ∗
0 ∗ 0

⎤⎥⎥⎥⎥⎥⎦

3→ 2
1→ 1
2→ 3

3 1 2
2
1
3

⎡⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦

Odd cycle zero forcing & min rank Problem 8/16 Department of Mathematics, Iowa State University



Try to generalize the “triangle”

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ? ? ? ?
0 a2,2 ? ? ?
0 0 a3,3 ? ?
? ? ? ? ?
? ? ? ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 3
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Try to generalize the “triangle”

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 ? ? ? ?
O A2,2 ? ? ?
O O A3,3 ? ?
? ? ? ? ?
? ? ? ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥
3

∑
i=1

rank(Ai ,i)
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Try to generalize the “triangle”

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(C0
5) ? ? ? ?

O A(C0
7) ? ? ?

O O A(C0
3) ? ?

? ? ? ? ?
? ? ? ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 5 + 7 + 3 = 15
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Odd cycle zero forcing number

▸ The color-change rule for loop graphs is:
▸ if y is the only white neighbor of x and x is blue, then x → y .

(x , y are possibly the same.)
▸ if W is the set of white vertices, and G[W ] has a connected

component C such that C ≅ C0
2k+1, then all vertices in V (C)

turn blue.
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Odd cycle zero forcing number

▸ The color-change rule for loop graphs is:
▸ if y is the only white neighbor of x and x is blue, then x → y .

(x , y are possibly the same.)
▸ if W is the set of white vertices, and G[W ] has a connected

component C such that C ≅ C0
2k+1, then all vertices in V (C)

turn blue.

▸ Zoc(G) is the minimum number of blue vertices required to
force all graph blue.

▸ MF (G) ≤ Zoc(G) whenever charF ≠ 2 and matrices are
symmetric.

▸ The enhanced odd cycle zero forcing number is defined as
Ẑoc(G) = maxG Zoc(G), where G runs over all loop
configurations of G .
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Max Nullity vs Zero Forcing Revisit

▸ M(G) ≤ Z(G) for all simple graph [AIM 2008];
M(G) ≤ Z(G) for all loop graph [Hogben 2010].

▸ For simple graphs with ∣V (G)∣ ≤ 7, M(G) = Z(G).

▸ For the simple graph K3,3,3, M(K3,3,3) = 6 and Ẑ(K3,3,3) = 7.

▸ For the loop graph C0
3, M(C0

3) = 0 and Z(C0
3) = 1.

▸ M(K3,3,3) = 6 = Ẑoc(K3,3,3).

▸ M(C0
2k+1) = 0 = Zoc(C0

2k+1).
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Example: K3,3,3
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Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = Z(K3,3,3) = 7.
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Example: K3,3,3
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1,2,3 have loops

others are unknown

Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = Z(K3,3,3) = 7.
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Example: K3,3,3
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Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = Z(K3,3,3) = 7.

Odd cycle zero forcing & min rank Problem 12/16 Department of Mathematics, Iowa State University



Field matters

▸ Let A be the adjacency matrix.

▸ null(A) = 6 =M(K3,3,3) = Ẑoc(K3,3,3).

▸ nullF2(A) = 7 =MF2(K3,3,3) = Z(K3,3,3).

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Odd cycle zero forcing & min rank Problem 13/16 Department of Mathematics, Iowa State University



C0
3 vs K3,3,3
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Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = Z(K3,3,3) = 7.
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Graph & Matrix blowups




0 1 0
1 4 7
0 7 0







0 0 1 1 1 0
0 0 1 1 1 0
1 1 4 4 4 7
1 1 4 4 4 7
1 1 4 4 4 7
0 0 7 7 7 0




loop graph G simple graph H

A ∈ SF (G) A′ ∈ SF (H)

(2, 3, 1)-blowup

(2, 3, 1)-blowup
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