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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

? ∗ 0 0 0
∗ ? ∗ ∗ 0
0 ∗ ? ∗ 0
0 ∗ ∗ ? ∗

0 0 0 ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For a real symmetric matrix of the pattern above, what is the
smallest possible rank?

3 is possible.

rank ≥ 3.
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Minimum Rank (for simple graphs)

1 2 3 4 5
1
2
3
4
5

⎛
⎜
⎜
⎜
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⎜
⎜
⎝

? ∗ 0 0 0
∗ ? ∗ ∗ 0
0 ∗ ? ∗ 0
0 ∗ ∗ ? ∗

0 0 0 ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1

2

3

4

5

edge = nonzero

no edge = zero

diagonal terms = free

(1)

S(G) = {A ∈Mn×n(R)∶ A = At , A satisfies (1)}.

The minimum rank of a simple graph G is

mr(G) = min{rank(A)∶ A ∈ S(G)}.

The minimum rank problem of a graph G is to determine the
value mr(G).
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Maximum Nullity (for simple graphs)

The maximum nullity of a graph G is

M(G) = max{null(A)∶ A ∈ S(G)}.

mr(G) +M(G) = ∣V (G)∣.

Finding mr(G) ≅ Finding M(G).

Finding lower bounds of mr(G) ≅ Finding upper bounds of
M(G).
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Zero Forcing Number (for simple graphs)

The zero forcing process on a graph G is the color-change
process using the following rules:

some vertices B ⊆ V (G) are set blue initially, while others
remain white;
If x is blue and has exactly one white neighbor y , change the
color of y to blue at next step.

If B ⊆ V (G) can force all vertices to blue, B is called a zero
forcing set.

The zero forcing number Z(G) of a graph G is the minimum
cardinality of a zero forcing set.
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Zero Forcing Number (for simple graphs)

The zero forcing process on a graph G is the color-change
process using the following rules:

some vertices B ⊆ V (G) are set blue initially, while others
remain white;
If x is blue and has exactly one white neighbor y , change the
color of y to blue at next step.

If B ⊆ V (G) can force all vertices to blue, B is called a zero
forcing set.

The zero forcing number Z(G) of a graph G is the minimum
cardinality of a zero forcing set.

Theorem (AIM, 08)

For all graph G , M(G) ≤ Z(G).
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Example for M(G) and Z(G)

1 2 3 4 5
1
2
3
4
5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
1 2 1 1 0
0 1 1 1 0
0 1 1 2 1
0 0 0 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1

2

3

4

5

mr(G) = 3, and M(G) = 5 − 3 = 2.

B = {1,5} is a zero forcing set.

2 =M(G) ≤ Z(G) = 2.

M(G) = Z(G) when G is a tree [AIM, 08], or ∣V (G)∣ ≤ 7
[DeLoss et. al. 10].
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Sketch of the proof of M(G) ≤ Z(G)

Find a minimum zero forcing set.

Write down all forces xi → yi in order.
Make xi be the i-th column; yi be the i-th row.

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

10

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

? ∗ 0 0 0 0 0 0 0 0
∗ ? 0 ∗ 0 0 0 0 0 ∗

0 0 ? ∗ 0 0 0 0 0 0
0 ∗ ∗ ? 0 ∗ 0 0 0 0
0 0 0 0 ? ∗ 0 0 0 0
0 0 0 ∗ ∗ ? 0 ∗ 0 0
0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 ∗ ∗ ? 0 ∗

0 0 0 0 0 0 0 0 ? ∗

0 ∗ 0 0 0 0 0 ∗ ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1

2
3

4

5

6

7

8

9
10
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3 → 4

5 → 6

4 → 2

2 → 10

6 → 8

10 → 9

8 → 7
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Sketch of the proof of M(G) ≤ Z(G)

Number of forces ≅ size of a triangle.

Finding minimum zero forcing set ≅ Finding largest triangle.

3 5 4 2 6 10 8 1 7 9
4
6
2

10
8
9
7
1
3
5

⎛
⎜
⎜
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0 0 0 0 0 0 ∗ 0 ? 0
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0 ? 0 0 ∗ 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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M(G) ≠ Z(G)

The previous graph H5 is called a 5-sun. It is an example of
M(G) ≨ Z(G).

2 =M(H5) ≨ Z(H5) = 3

8 is the minimum rank; but maximum size of triangle is 7!

How do we know?

Proven by examining the number of zeros on the diagonal
[Barioli, Fallat, and Hogben, 04].

Jephian C.-H. Lin Sieving Process & Minimum Rank 8/11



M(G) ≠ Z(G)

The previous graph H5 is called a 5-sun. It is an example of
M(G) ≨ Z(G).

2 =M(H5) ≨ Z(H5) = 3

8 is the minimum rank; but maximum size of triangle is 7!

How do we know?

Proven by examining the number of zeros on the diagonal
[Barioli, Fallat, and Hogben, 04].

Jephian C.-H. Lin Sieving Process & Minimum Rank 8/11



M(G) ≠ Z(G)

The previous graph H5 is called a 5-sun. It is an example of
M(G) ≨ Z(G).

2 =M(H5) ≨ Z(H5) = 3

8 is the minimum rank; but maximum size of triangle is 7!

How do we know?

Proven by examining the number of zeros on the diagonal
[Barioli, Fallat, and Hogben, 04].

Jephian C.-H. Lin Sieving Process & Minimum Rank 8/11



M(G) ≠ Z(G)

The previous graph H5 is called a 5-sun. It is an example of
M(G) ≨ Z(G).

2 =M(H5) ≨ Z(H5) = 3

8 is the minimum rank; but maximum size of triangle is 7!

How do we know?

Proven by examining the number of zeros on the diagonal
[Barioli, Fallat, and Hogben, 04].

Jephian C.-H. Lin Sieving Process & Minimum Rank 8/11



Control diagonal pattern by loops

For a simple graph G , pick I ⊆ V (G) to add one loop, and
call it ĜI .

M(ĜI ): no loop ↔ 0; loop ↔ nonzero.

Z(ĜI ): If x is blue and has exactly one white neighbor y ,
change the color of y to blue at next step.

Triangle argument still can prove M(ĜI ) ≤ Z(ĜI )
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Interpretation on matrices

Pattern for H5

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

10

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0/∗ ∗ 0 0 0 0 0 0 0 0
∗ ? 0 ∗ 0 0 0 0 0 ∗

0 0 ? ∗ 0 0 0 0 0 0
0 ∗ ∗ ? 0 ∗ 0 0 0 0
0 0 0 0 ? ∗ 0 0 0 0
0 0 0 ∗ ∗ ? 0 ∗ 0 0
0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 ∗ ∗ ? 0 ∗

0 0 0 0 0 0 0 0 ? ∗

0 ∗ 0 0 0 0 0 ∗ ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Interpretation on matrices

Pattern for H5

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9

10

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∗ 0 0 0 0 0 0 0 0
∗ ? 0 ∗ 0 0 0 0 0 ∗

0 0 ? ∗ 0 0 0 0 0 0
0 ∗ ∗ ? 0 ∗ 0 0 0 0
0 0 0 0 ? ∗ 0 0 0 0
0 0 0 ∗ ∗ ? 0 ∗ 0 0
0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 ∗ ∗ ? 0 ∗

0 0 0 0 0 0 0 0 ? ∗

0 ∗ 0 0 0 0 0 ∗ ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Interpretation on matrices

Pattern for H5

1 3 9 2 4 10 6 8 5 7
2
4

10
1
6
8
5
7
3
9

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0 0 ? ∗ ∗ 0 0 0 0
0 ∗ 0 ∗ ? 0 ∗ 0 0 0
0 0 ∗ ∗ 0 ? 0 ∗ 0 0
0 0 0 ∗ 0 0 0 0 0 0
0 0 0 0 ∗ 0 ? ∗ ∗ 0
0 0 0 0 0 ∗ ∗ ? 0 ∗

0 0 0 0 0 0 ∗ 0 ? 0
0 0 0 0 0 0 0 ∗ 0 ?
0 ? 0 0 ∗ 0 0 0 0 0
0 0 ? 0 0 ∗ 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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0 ∗ 0 0 0 0 0 ∗ ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Interpretation on matrices

Pattern for H5

3 5 4 6 1 2 8 10 7 9
4
6
2
8
1

10
7
9
3
5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0 ? ∗ 0 ∗ 0 0 0 0
0 ∗ ∗ ? 0 0 ∗ 0 0 0
0 0 ∗ 0 ∗ ? 0 ∗ 0 0
0 0 0 ∗ 0 0 ? ∗ ∗ 0
0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 ∗ ∗ ? 0 ∗

0 0 0 0 0 0 ∗ 0 ? 0
0 0 0 0 0 0 0 ∗ 0 ?
? 0 ∗ 0 0 0 0 0 0 0
0 ? 0 ∗ 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Sieving Process

B ⊆ V (G)

|B| = k − 1

Suppose M(G) ≥ k

I ⊆ V (G)
B cannot

force ĜI

Possible Patterns

nonzero-vertex ( ∗ )

zero-vertex

(
0 ∗
∗ ?

)

Many known graphs G with M(G) ≨ Z(G) can be explained
by this process.

Thanks for your attention!
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van der Holst, K. Vander Meulen, and A. Wangsness). Zero
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Looped Multigraph

In 2013, Barioli et. al. proposed enhanced zero forcing number
Ẑ(G),

M(G) ≤ Ẑ(G) ≤ Z(G),

by considering looped graphs.

In 2008, Holst gave a reduction formula on cut sets of size
two, by considering multigraphs.

Considering looped multigraphs Ĝ is a natural extension.
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Minimum Rank for Looped Multigraphs

1 2 3 4 5
1
2
3
4
5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ 0 0 0
∗ 0 ∗ ? 0
0 ∗ 0 ∗ 0
0 ? ∗ 0 ∗

0 0 0 ∗ ?

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1

2

3

4

5

edge = nonzero

no edge = zero

≥ 2 edges = free

(2)

S(Ĝ) = {A ∈Mn×n(R)∶ A = At , A satisfies (2)}.

The minimum rank of a looped multigraph Ĝ is

mr(Ĝ) = min{rank(A)∶ A ∈ S(Ĝ)}.

Similarly,
M(Ĝ) = max{null(A)∶ A ∈ S(Ĝ)}.

mr(Ĝ) +M(Ĝ) = ∣V (Ĝ)∣
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Zero Forcing Number for Looped Multigraphs

The zero forcing process on a looped multigraph Ĝ is the
color-change process using the following rules:

some vertices B ⊆ V (Ĝ) are set blue initially, while others
remain white;
If x is blue and has exactly one white neighbor y , and there is
exactly one edge between x and y , change the color of y to
blue at next step.

If B ⊆ V (Ĝ) can force all vertices to blue, B is called a zero
forcing set.

The zero forcing number Z(Ĝ) of a looped multigraph Ĝ is
the minimum cardinality of a zero forcing set.

For all looped multigraph Ĝ , M(Ĝ) ≤ Z(Ĝ).
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the minimum cardinality of a zero forcing set.

For all looped multigraph Ĝ , M(Ĝ) ≤ Z(Ĝ).
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What happens on H5? (if zero)

Suppose A = (aij) ∈ S(H5) with a11 = 0, then A ∈ S(Ĝ), Ĝ is
the looped multigraph below.

Then null(A) ≤M(Ĝ) ≤ Z(Ĝ) = 2.
That is, if M(G) = 3, then the corresponding a11 is nonzero!

1

2
3

4

5

6

7

8

9
10
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What happens on H5? (if nonzero)

Suppose A = (aij) ∈ S(H5) with a11 ≠ 0, then A ∈ S(Ĝ), Ĝ is
the looped multigraph below.

Then null(A) ≤M(Ĝ) ≤ Z(Ĝ) = 2.
That is, if M(G) = 3, then the corresponding a11 is zero!

1

2
3

4

5

6

7

8

9
10
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What happens on H5? (if nonzero)
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Sieving Process

In seeking of M(G), find a possible value k. (e.g. k = Z(G).)

Suppose M(G) = k , use a set B of size k-1 to find possible
diagonal patterns.

Find zero-vertex, or nonzero-vertex.

1 If a vertex is simultaneously a zero-vertex and a
nonzero-vertex, a contradiction.

2 Either zero-vertex or nonzero-vertex yields invertible principal
submatrix. Do the row/column operation, and focus on the
smaller graph.

Many known graphs G with M(G) ≨ Z(G) can be explained
by this process.

Thanks for your attention!
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