The sieving process and lower bounds of the minimum rank problem

Jephian C.-H. Lin
Department of Mathematics, lowa State University

March 3, 2014
45th Southeastern International Conference on Combinatorics, Graph Theory, and Computing in Boca, FL

$$
\left(\begin{array}{lllll}
? & * & 0 & 0 & 0 \\
* & ? & * & * & 0 \\
0 & * & ? & * & 0 \\
0 & * & * & ? & * \\
0 & 0 & 0 & * & ?
\end{array}\right)
$$

- For a real symmetric matrix of the pattern above, what is the smallest possible rank?

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

- For a real symmetric matrix of the pattern above, what is the smallest possible rank?
- 3 is possible.

$$
\left(\begin{array}{lllll}
? & * & 0 & 0 & 0 \\
* & ? & * & * & 0 \\
0 & * & ? & * & 0 \\
0 & * & * & ? & * \\
0 & 0 & 0 & * & ?
\end{array}\right)
$$

- For a real symmetric matrix of the pattern above, what is the smallest possible rank?
- 3 is possible.
- rank ≥ 3.

Minimum Rank (for simple graphs)

$$
\mathcal{S}(G)=\left\{A \in M_{n \times n}(\mathbb{R}): A=A^{t}, A \text { satisfies }(1)\right\} .
$$

- The minimum rank of a simple graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

Minimum Rank (for simple graphs)

1
2
3
4 $\quad\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ ? & * & 0 & 0 & 0 \\ * & ? & * & * & 0 \\ 0 & * & ? & * & 0 \\ 0 & * & * & ? & * \\ 0 & 0 & 0 & * & ?\end{array}\right)$

$$
\mathcal{S}(G)=\left\{A \in M_{n \times n}(\mathbb{R}): A=A^{t}, A \text { satisfies }(1)\right\} .
$$

- The minimum rank of a simple graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A): A \in \mathcal{S}(G)\} .
$$

- The minimum rank problem of a graph G is to determine the value $\operatorname{mr}(G)$.

Maximum Nullity (for simple graphs)

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

Maximum Nullity (for simple graphs)

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)| .
$$

Maximum Nullity (for simple graphs)

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)| .
$$

- Finding $\operatorname{mr}(G) \cong$ Finding $M(G)$.

Maximum Nullity (for simple graphs)

- The maximum nullity of a graph G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\} .
$$

-

$$
\operatorname{mr}(G)+M(G)=|V(G)|
$$

- Finding $\operatorname{mr}(G) \cong$ Finding $M(G)$.
- Finding lower bounds of $\operatorname{mr}(G) \cong$ Finding upper bounds of $M(G)$.

Zero Forcing Number (for simple graphs)

- The zero forcing process on a graph G is the color-change process using the following rules:

Zero Forcing Number (for simple graphs)

- The zero forcing process on a graph G is the color-change process using the following rules:
- some vertices $B \subseteq V(G)$ are set blue initially, while others remain white;

Zero Forcing Number (for simple graphs)

- The zero forcing process on a graph G is the color-change process using the following rules:
- some vertices $B \subseteq V(G)$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, change the color of y to blue at next step.

Zero Forcing Number (for simple graphs)

- The zero forcing process on a graph G is the color-change process using the following rules:
- some vertices $B \subseteq V(G)$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, change the color of y to blue at next step.
- If $B \subseteq V(G)$ can force all vertices to blue, B is called a zero forcing set.

Zero Forcing Number (for simple graphs)

- The zero forcing process on a graph G is the color-change process using the following rules:
- some vertices $B \subseteq V(G)$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, change the color of y to blue at next step.
- If $B \subseteq V(G)$ can force all vertices to blue, B is called a zero forcing set.
- The zero forcing number $Z(G)$ of a graph G is the minimum cardinality of a zero forcing set.

Zero Forcing Number (for simple graphs)

- The zero forcing process on a graph G is the color-change process using the following rules:
- some vertices $B \subseteq V(G)$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, change the color of y to blue at next step.
- If $B \subseteq V(G)$ can force all vertices to blue, B is called a zero forcing set.
- The zero forcing number $Z(G)$ of a graph G is the minimum cardinality of a zero forcing set.

Theorem (AIM, 08)

For all graph $G, M(G) \leq Z(G)$.

Example for $M(G)$ and $Z(G)$

- $\operatorname{mr}(G)=3$, and $M(G)=5-3=2$.

Example for $M(G)$ and $Z(G)$

1
2
3
4
5 $\quad\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$

- $\operatorname{mr}(G)=3$, and $M(G)=5-3=2$.
- $B=\{1,5\}$ is a zero forcing set.

Example for $M(G)$ and $Z(G)$

1
2
3
4
5 $\quad\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$

- $\operatorname{mr}(G)=3$, and $M(G)=5-3=2$.
- $B=\{1,5\}$ is a zero forcing set.
- $2=M(G) \leq Z(G)=2$.

Example for $M(G)$ and $Z(G)$

1
2
3
4
5 $\quad\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$

- $\operatorname{mr}(G)=3$, and $M(G)=5-3=2$.
- $B=\{1,5\}$ is a zero forcing set.
- $2=M(G) \leq Z(G)=2$.
- $M(G)=Z(G)$ when G is a tree [AIM, 08], or $|V(G)| \leq 7$
[DeLoss et. al. 10].
- Find a minimum zero forcing set.
1
2
3
4
5
6
7
8
9
10 $\quad\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ ? & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & ? & 0 & * & 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & ? & * & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & ? & 0 & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & ? & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & ? & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & ? & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * & ? & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ? & * \\ 0 & * & 0 & 0 & 0 & 0 & 0 & * & * & ?\end{array}\right)$

- Find a minimum zero forcing set.
- Write down all forces $x_{i} \rightarrow y_{i}$ in order.
1
1
3
4
5
6
7
8
9
10 $\quad\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ ? & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & ? & 0 & * & 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & ? & * & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & ? & 0 & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & ? & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & ? & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & ? & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * & ? & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ? & * \\ 0 & * & 0 & 0 & 0 & 0 & 0 & * & * & ?\end{array}\right)$

$$
\begin{array}{ll}
3 \rightarrow 4 & 6 \rightarrow 8 \\
5 \rightarrow 6 & 10 \rightarrow 9 \\
4 \rightarrow 2 & 8 \rightarrow 7
\end{array}
$$

- Find a minimum zero forcing set.
- Write down all forces $x_{i} \rightarrow y_{i}$ in order.
- Make x_{i} be the i-th column; y_{i} be the i-th row.
4
6
2
10
8
9
7
1
3
5 $\quad\left(\begin{array}{cccccccccc}3 & 5 & 4 & 2 & 6 & 10 & 8 & 1 & 7 & 9 \\ * & 0 & ? & * & * & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & 0 & ? & 0 & * & 0 & 0 & 0 \\ 0 & 0 & * & ? & 0 & * & 0 & * & 0 & 0 \\ 0 & 0 & 0 & * & 0 & ? & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * & * & ? & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * & 0 & 0 & 0 & ? \\ 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? & 0 \\ 0 & 0 & 0 & * & 0 & 0 & 0 & ? & 0 & 0 \\ ? & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & ? & 0 & 0 & * & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\left|\begin{array}{l}
3 \rightarrow 4 \\
5 \rightarrow 6 \\
4 \rightarrow 2 \\
2 \rightarrow 10
\end{array}\right| \quad\left|\begin{array}{l}
6 \rightarrow 8 \\
10 \rightarrow 9 \\
8 \rightarrow 7
\end{array}\right|
$$

Sketch of the proof of $M(G) \leq Z(G)$

- Number of forces \cong size of a triangle.
4
6
2
10
8
9
7
1
3
5 $\quad\left(\begin{array}{cccccccccc}3 & 5 & 4 & 2 & 6 & 10 & 8 & 1 & 7 & 9 \\ * & 0 & ? & * & * & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & 0 & ? & 0 & * & 0 & 0 & 0 \\ 0 & 0 & * & ? & 0 & * & 0 & * & 0 & 0 \\ 0 & 0 & 0 & * & 0 & ? & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * & * & ? & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * & 0 & 0 & 0 & ? \\ 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? & 0 \\ 0 & 0 & 0 & * & 0 & 0 & 0 & ? & 0 & 0 \\ ? & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & ? & 0 & 0 & * & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Sketch of the proof of $M(G) \leq Z(G)$

- Number of forces \cong size of a triangle.
- Finding minimum zero forcing set \cong Finding largest triangle.
4
6
2
10
8
9
7
1
3
5 $\quad\left(\begin{array}{cccccccccc}3 & 5 & 4 & 2 & 6 & 10 & 8 & 1 & 7 & 9 \\ * & 0 & ? & * & * & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & 0 & ? & 0 & * & 0 & 0 & 0 \\ 0 & 0 & * & ? & 0 & * & 0 & * & 0 & 0 \\ 0 & 0 & 0 & * & 0 & ? & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * & * & ? & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * & 0 & 0 & 0 & ? \\ 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? & 0 \\ 0 & 0 & 0 & * & 0 & 0 & 0 & ? & 0 & 0 \\ ? & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & ? & 0 & 0 & * & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$M(G) \neq Z(G)$

- The previous graph H_{5} is called a 5-sun. It is an example of $M(G) \nsubseteq Z(G)$.

$$
2=M\left(H_{5}\right) \nsupseteq Z\left(H_{5}\right)=3
$$

$M(G) \neq Z(G)$

- The previous graph H_{5} is called a 5-sun. It is an example of $M(G) \nsubseteq Z(G)$.

$$
2=M\left(H_{5}\right) \nsupseteq Z\left(H_{5}\right)=3
$$

- 8 is the minimum rank; but maximum size of triangle is 7 !

$M(G) \neq Z(G)$

- The previous graph H_{5} is called a 5-sun. It is an example of $M(G) \nsubseteq Z(G)$.

$$
2=M\left(H_{5}\right) \nsupseteq Z\left(H_{5}\right)=3
$$

- 8 is the minimum rank; but maximum size of triangle is 7 !
- How do we know?

$M(G) \neq Z(G)$

- The previous graph H_{5} is called a 5-sun. It is an example of $M(G) \nsubseteq Z(G)$.

$$
2=M\left(H_{5}\right) \varsubsetneqq Z\left(H_{5}\right)=3
$$

- 8 is the minimum rank; but maximum size of triangle is 7 !
- How do we know?
- Proven by examining the number of zeros on the diagonal [Barioli, Fallat, and Hogben, 04].

Control diagonal pattern by loops

- For a simple graph G, pick $I \subseteq V(G)$ to add one loop, and call it \widehat{G}_{I}.

Control diagonal pattern by loops

- For a simple graph G, pick $I \subseteq V(G)$ to add one loop, and call it \widehat{G}_{l}.
- $M\left(\widehat{G}_{l}\right)$: no loop $\leftrightarrow 0$; loop \leftrightarrow nonzero.

Control diagonal pattern by loops

- For a simple graph G, pick $I \subseteq V(G)$ to add one loop, and call it \widehat{G}_{I}.
- $M\left(\widehat{G}_{l}\right)$: no loop $\leftrightarrow 0$; loop \leftrightarrow nonzero.
- $Z\left(\widehat{G}_{l}\right)$: If x is blue and has exactly one white neighbor y, change the color of y to blue at next step.

Control diagonal pattern by loops

- For a simple graph G, pick $I \subseteq V(G)$ to add one loop, and call it \widehat{G}_{I}.
- $M\left(\widehat{G}_{l}\right)$: no loop $\leftrightarrow 0$; loop \leftrightarrow nonzero.
- $Z\left(\widehat{G}_{l}\right)$: If x is blue and has exactly one white neighbor y, change the color of y to blue at next step.
- Triangle argument still can prove $M\left(\widehat{G}_{l}\right) \leq Z\left(\widehat{G}_{l}\right)$

Pattern for H_{5}

1
2
3
4
5
6
7
8
9
10

0 / * \& * \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

* \& ? \& 0 \& * \& 0 \& 0 \& 0 \& 0 \& 0 \& *

0 \& 0 \& ? \& * \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& * \& * \& ? \& 0 \& * \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& ? \& * \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& * \& * \& ? \& 0 \& * \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& ? \& * \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& * \& * \& ? \& 0 \& *

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& ? \& *

0 \& * \& 0 \& 0 \& 0 \& 0 \& 0 \& * \& * \& ?\end{array}\right)\)

Pattern for H_{5}
1
1
3
4
5
6
7
8
9
10 $\quad\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & ? & 0 & * & 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & ? & * & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & ? & 0 & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & ? & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & ? & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & ? & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * & ? & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ? & * \\ 0 & * & 0 & 0 & 0 & 0 & 0 & * & * & ?\end{array}\right)$

Pattern for H_{5}
2
4
10
1
6
8
5
7
3
9 $\quad\left(\begin{array}{cccccccccc}1 & 3 & 9 & 2 & 4 & 10 & 6 & 8 & 5 & 7 \\ * & 0 & 0 & ? & * & * & 0 & 0 & 0 & 0 \\ 0 & * & 0 & * & ? & 0 & * & 0 & 0 & 0 \\ 0 & 0 & * & * & 0 & ? & 0 & * & 0 & 0 \\ 0 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & * & 0 & ? & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * & ? & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? \\ 0 & ? & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & ? & 0 & 0 & * & 0 & 0 & 0 & 0\end{array}\right)$

Pattern for H_{5}
1
1
2
4
5
6
7
8
9
10 $\quad\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & ? & 0 & * & 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & ? & * & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & ? & 0 & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & ? & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & ? & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & ? & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * & ? & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ? & * \\ 0 & * & 0 & 0 & 0 & 0 & 0 & * & * & ?\end{array}\right)$

Pattern for H_{5}

4
6
2
8
1
10
7
9
3
5 $\quad\left(\begin{array}{cccccccccc}3 & 5 & 4 & 6 & 1 & 2 & 8 & 10 & 7 & 9 \\ * & 0 & ? & * & 0 & * & 0 & 0 & 0 & 0 \\ 0 & * & * & ? & 0 & 0 & * & 0 & 0 & 0 \\ 0 & 0 & * & 0 & * & ? & 0 & * & 0 & 0 \\ 0 & 0 & 0 & * & 0 & 0 & ? & * & * & 0 \\ 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * & ? & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & ? \\ ? & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & ? & 0 & * & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Sieving Process

Suppose $M(G) \geq k$

- Many known graphs G with $M(G) \nsupseteq Z(G)$ can be explained by this process.

Sieving Process

Suppose $M(G) \geq k$

- Many known graphs G with $M(G) \nsupseteq Z(G)$ can be explained by this process.
- Thanks for your attention!

目 AIM Minimum Rank－Special Graphs Work Group（F．Barioli， W．Barrett，S．Butler，S．M．Cioaba，D．Cvetković，S．M． Fallat，C．Godsil，W．Haemers，L．Hogben，R．Mikkelson，S． Narayan，O．Pryporova，I．Sciriha，W．So，D．Stevanović，H． van der Holst，K．Vander Meulen，and A．Wangsness）．Zero forcing sets and the minimum rank of graphs．Lin．Alg．Appl．， 428：1628－1648， 2008.
囲 F．Barioli，W．Barrett，S．Fallat，H．T．Hall，L．Hogben，B． Shader，P．van den Driessche，and H．van der Holst． Parameters related to tree－width，zero forcing，and maximum nullity of a graph．J．Graph Theory，72：146－177， 2013.

國 F．Barioli，S．M．Fallat，and L．Hogben．Computation of minimal rank and path cover number for graphs．Lin．Alg． Appl．，392：289－303， 2004.

國 L．DeLoss，J．Grout，L．Hogben，T．McKay，J．Smith，and G． Tims．Techniques for determining the minimum rank of a small graph．Lin．Alg．Appl．432：2995－3001， 2010.

囯 H. van der Holst. The maximum corank of graphs with a 2-separation. Lin. Alg. Appl. 428: 1587-1600, 2008.
C.R. Johnson and A. Leal Duarte. The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree. Lin. Multilin. Alg., 46: 139-144, 1999.

Looped Multigraph

- In 2013, Barioli et. al. proposed enhanced zero forcing number $\widehat{Z}(G)$,

$$
M(G) \leq \widehat{Z}(G) \leq Z(G)
$$

by considering looped graphs.

Looped Multigraph

- In 2013, Barioli et. al. proposed enhanced zero forcing number $\widehat{Z}(G)$,

$$
M(G) \leq \widehat{Z}(G) \leq Z(G)
$$

by considering looped graphs.

- In 2008, Holst gave a reduction formula on cut sets of size two, by considering multigraphs.

Looped Multigraph

- In 2013, Barioli et. al. proposed enhanced zero forcing number $\widehat{Z}(G)$,

$$
M(G) \leq \widehat{Z}(G) \leq Z(G)
$$

by considering looped graphs.

- In 2008, Holst gave a reduction formula on cut sets of size two, by considering multigraphs.
- Considering looped multigraphs \widehat{G} is a natural extension.

Minimum Rank for Looped Multigraphs

$$
\begin{aligned}
& \begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
* & * & 0 & 0 & 0 \\
* & 0 & * & ? & 0 \\
0 & * & 0 & * & 0 \\
0 & ? & * & 0 & * \\
0 & 0 & 0 & * & ?
\end{array}\right) \xrightarrow[\substack{\text { no edge }=\text { zero } \\
\text { edge }=\text { nonzero } \\
\geq 2 \text { edges }=\text { free } \\
(2)}]{\longrightarrow} \\
& \mathcal{S}(\widehat{G})=\left\{A \in M_{n \times n}(\mathbb{R}): A=A^{t}, A \text { satisfies }(2)\right\} .
\end{aligned}
$$

- The minimum rank of a looped multigraph \widehat{G} is

$$
\operatorname{mr}(\widehat{G})=\min \{\operatorname{rank}(A): A \in \mathcal{S}(\widehat{G})\} .
$$

Minimum Rank for Looped Multigraphs

- The minimum rank of a looped multigraph \widehat{G} is

$$
\operatorname{mr}(\widehat{G})=\min \{\operatorname{rank}(A): A \in \mathcal{S}(\widehat{G})\} .
$$

- Similarly,

$$
\begin{gathered}
M(\widehat{G})=\max \{\operatorname{null}(A): A \in \mathcal{S}(\widehat{G})\} \\
\operatorname{mr}(\widehat{G})+M(\widehat{G})=|V(\widehat{G})|
\end{gathered}
$$

Zero Forcing Number for Looped Multigraphs

- The zero forcing process on a looped multigraph \widehat{G} is the color-change process using the following rules:

Zero Forcing Number for Looped Multigraphs

- The zero forcing process on a looped multigraph \widehat{G} is the color-change process using the following rules:
- some vertices $B \subseteq V(\widehat{G})$ are set blue initially, while others remain white;

Zero Forcing Number for Looped Multigraphs

- The zero forcing process on a looped multigraph \widehat{G} is the color-change process using the following rules:
- some vertices $B \subseteq V(\widehat{G})$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, and there is exactly one edge between x and y, change the color of y to blue at next step.

Zero Forcing Number for Looped Multigraphs

- The zero forcing process on a looped multigraph \widehat{G} is the color-change process using the following rules:
- some vertices $B \subseteq V(\widehat{G})$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, and there is exactly one edge between x and y, change the color of y to blue at next step.
- If $B \subseteq V(\widehat{G})$ can force all vertices to blue, B is called a zero forcing set.

Zero Forcing Number for Looped Multigraphs

- The zero forcing process on a looped multigraph \widehat{G} is the color-change process using the following rules:
- some vertices $B \subseteq V(\widehat{G})$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, and there is exactly one edge between x and y, change the color of y to blue at next step.
- If $B \subseteq V(\widehat{G})$ can force all vertices to blue, B is called a zero forcing set.
- The zero forcing number $Z(\widehat{G})$ of a looped multigraph \widehat{G} is the minimum cardinality of a zero forcing set.

Zero Forcing Number for Looped Multigraphs

- The zero forcing process on a looped multigraph \widehat{G} is the color-change process using the following rules:
- some vertices $B \subseteq V(\widehat{G})$ are set blue initially, while others remain white;
- If x is blue and has exactly one white neighbor y, and there is exactly one edge between x and y, change the color of y to blue at next step.
- If $B \subseteq V(\widehat{G})$ can force all vertices to blue, B is called a zero forcing set.
- The zero forcing number $Z(\widehat{G})$ of a looped multigraph \widehat{G} is the minimum cardinality of a zero forcing set.
- For all looped multigraph $\widehat{G}, M(\widehat{G}) \leq Z(\widehat{G})$.

What happens on H_{5} ? (if zero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11}=0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.

What happens on H_{5} ? (if zero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11}=0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if zero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11}=0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if zero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11}=0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if zero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11}=0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if zero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11}=0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.
- That is, if $M(G)=3$, then the corresponding a_{11} is nonzero!

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.

What happens on H_{5} ? (if nonzero)

- Suppose $A=\left(a_{i j}\right) \in \mathcal{S}\left(H_{5}\right)$ with $a_{11} \neq 0$, then $A \in \mathcal{S}(\widehat{G}), \widehat{G}$ is the looped multigraph below.
- Then $\operatorname{null}(A) \leq M(\widehat{G}) \leq Z(\widehat{G})=2$.
- That is, if $M(G)=3$, then the corresponding a_{11} is zero!

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)
- Suppose $M(G)=k$, use a set B of size $k-1$ to find possible diagonal patterns.

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)
- Suppose $M(G)=k$, use a set B of size $k-1$ to find possible diagonal patterns.
- Find zero-vertex, or nonzero-vertex.

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)
- Suppose $M(G)=k$, use a set B of size $k-1$ to find possible diagonal patterns.
- Find zero-vertex, or nonzero-vertex.
(1) If a vertex is simultaneously a zero-vertex and a nonzero-vertex, a contradiction.

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)
- Suppose $M(G)=k$, use a set B of size $k-1$ to find possible diagonal patterns.
- Find zero-vertex, or nonzero-vertex.
(1) If a vertex is simultaneously a zero-vertex and a nonzero-vertex, a contradiction.
(2) Either zero-vertex or nonzero-vertex yields invertible principal submatrix. Do the row/column operation, and focus on the smaller graph.

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)
- Suppose $M(G)=k$, use a set B of size $k-1$ to find possible diagonal patterns.
- Find zero-vertex, or nonzero-vertex.
(1) If a vertex is simultaneously a zero-vertex and a nonzero-vertex, a contradiction.
(2) Either zero-vertex or nonzero-vertex yields invertible principal submatrix. Do the row/column operation, and focus on the smaller graph.
- Many known graphs G with $M(G) \nsupseteq Z(G)$ can be explained by this process.

Sieving Process

- In seeking of $M(G)$, find a possible value k. (e.g. $k=Z(G)$.)
- Suppose $M(G)=k$, use a set B of size $k-1$ to find possible diagonal patterns.
- Find zero-vertex, or nonzero-vertex.
(1) If a vertex is simultaneously a zero-vertex and a nonzero-vertex, a contradiction.
(2) Either zero-vertex or nonzero-vertex yields invertible principal submatrix. Do the row/column operation, and focus on the smaller graph.
- Many known graphs G with $M(G) \nsupseteq Z(G)$ can be explained by this process.
- Thanks for your attention!

