Distance Spectra of Graphs

Jephian C.-H. Lin Joint work supported by GRWC

Department of Mathematics, Iowa State University

Oct 30, 2016 2016 AMS Fall Central Sectional Meeting, Minneapolis, MN

.

Rocky Mountain-Great Plains Graduate Research Workshop in Combinatorics

GRWC 2016 - Laramie. WY Application Instructions Funding **Organizing Committee** Participants Previous Workshops GRWC 2014 -Denver, CO GRWC 2015 -Ames, IA Problem Gardens **Research Papers** Workshop Format Sitemap

Previous Workshops > GRWC 2014 - Denver, CO

July 27 – August 9, 2014 --- Denver, CO Co - Hosted by

The University of Colorado Denver and The University of Denver

Distance Spectra of Graphs

Department of Mathematics, Iowa State University

(日) (同) (三) (三)

Ghodratollah Aalipour

Aida Abiad

Zhanar Berikkyzy

Jessica De Silva

Wei

Gao

Kristin Heysse

Franklin Michael Kenter Tait a roa

Distance Spectra of Graphs

Department of Mathematics, Iowa State University

Distance matrix

- Let G be a connected simple graph on vertex set
 V = {1,...,n}.
- ► The distance d_G(i,j) between two vertices i, j on G is the length of the shortest path.
- The distance matrix of G is an n × n matrix

$$\mathcal{D}=\left[d_{G}(i,j)\right].$$

$$1 - 2 - 3 - 4 - 5 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$

Motivation: Pierce's loop switching scheme

- How two build a phone call between two persons?
 - Root-USA-Iowa-Jephian
 - Root-USA-Illinois-Friend
 - Root-Taiwan-Taichung-Home

Motivation: Pierce's loop switching scheme

- How two build a phone call between two persons?
 - Root-USA-Iowa-Jephian
 - Root-USA-Illinois-Friend
 - Root-Taiwan-Taichung-Home

Motivation: Pierce's loop switching scheme

- How two build a phone call between two persons?
 - Root-USA-Iowa-Jephian
 - Root-USA-Illinois-Friend
 - Root-Taiwan-Taichung-Home

Graham and Pollak's model

- A model works for all graphs, not limited to trees.
- Each vertex is assigned with an address, and the distance between two vertices is the Hamming distance of the address.
- Find the neighbor that decrease the Hamming distance.

Graham and Pollak's model

- A model works for all graphs, not limited to trees.
- Each vertex is assigned with an address, and the distance between two vertices is the Hamming distance of the address.
- Find the neighbor that decrease the Hamming distance.

Graham and Pollak's model

- A model works for all graphs, not limited to trees.
- Each vertex is assigned with an address, and the distance between two vertices is the Hamming distance of the address.
- Find the neighbor that decrease the Hamming distance.

Length of the address

Theorem (Graham and Pollak 1971)

Let G be a graph and D its distance matrix. Then such an address always exist and its length is at least

 $\max\{n_{-}, n_{+}\},\$

where n_{-} , n_{+} are the negative and positive inertia.

Corollary (Graham and Pollak 1971)

When G is a complete graph or a tree, then the minimum length of the address is |V(G)| - 1.

Length of the address

Conjecture (Graham and Pollak 1971)

For any graph on n vertices, the address can be chosen with length at most n - 1.

Theorem (Winkler 1983)

The squashed cube conjecture is true.

Number of distinct eigenvalues

- Suppose A is a matrix. Let q(A) be the number of distinct eigenvalues.
- ▶ If A is the adjacency matrix of graph G, then

 $q(A) \ge \operatorname{diam}(G) + 1.$

• Key: When a matrix M is diagonalizable, then

q(M) = degree of min polynomial.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, A^2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, A^3 = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

٠

How about distance matrices?

- Distance matrices are dense (all off-diagonal entries are non-zero).
- Let Q_d be the *d*-dimensional hypercube. Then $q(\mathcal{D}(Q_d)) = 3$ and diam $(Q_d) = d$ for $d \ge 2$.
- What is the relation between $q(\mathcal{D}(G))$ and diam(G)?

How about distance matrices?

- Distance matrices are dense (all off-diagonal entries are non-zero).
- Let Q_d be the *d*-dimensional hypercube. Then $q(\mathcal{D}(Q_d)) = 3$ and diam $(Q_d) = d$ for $d \ge 2$.
- What is the relation between $q(\mathcal{D}(G))$ and diam(G)?

Theorem (Aalipour et al 2016) Let T be a tree and D its distance matrix. Then

$$q(\mathcal{D}) \ge \left\lceil \frac{\operatorname{diam}(T)}{2} \right\rceil$$

Proof.

- Let L(T) be the line graph of T and A the adjacency matrix of L(T).
- Note that A is $(n-1) \times (n-1)$ and \mathcal{D} is $n \times n$.
- ▶ spec $(-2(2I + A)^{-1})$ interlaces spec(D). [Merris 1990]
- $q(-2(2I + A)^{-1}) = q(A) \ge diam(L(T)) + 1 = diam(T).$
- $q(\mathcal{D}) \geq \left\lceil \frac{q(A)}{2} \right\rceil$.

Interlacing

 $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n-1}$ interlaces $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ if

$$\lambda_1 \le \mu_1 \le \lambda_2 \le \mu_2 \le \dots \le \mu_{n-1} \le \lambda_n$$

Examples of interlacing:

3

Distinct eignvalues of trees

It is true that $q(D) \ge \text{diam}(T) + 1$? Possible approaches:

- Show the interlacing does not collapse.
- Or consider the inverse:

$$\mathcal{D}^{-1} = -\frac{1}{2}L + \frac{1}{2(n-1)}\delta\delta^{\mathsf{T}},$$

where $\delta_i = 2 - d_i$. [Graham and Lovász 1978]

Checked by Sage up to 20 vertices; graphs with the inequality tight are extremely rare; e.g. when n = 15, only 7 graphs has $q(D) = \operatorname{diam}(T) + 1$.

Thank you!

Distinct eignvalues of trees

It is true that $q(D) \ge \text{diam}(T) + 1$? Possible approaches:

- Show the interlacing does not collapse.
- Or consider the inverse:

$$\mathcal{D}^{-1} = -\frac{1}{2}L + \frac{1}{2(n-1)}\delta\delta^{\mathsf{T}},$$

where $\delta_i = 2 - d_i$. [Graham and Lovász 1978]

Checked by Sage up to 20 vertices; graphs with the inequality tight are extremely rare; e.g. when n = 15, only 7 graphs has $q(D) = \operatorname{diam}(T) + 1$.

Thank you!

References I

- G. Aalipour, A. Abiad, Z. Berikkyzy, J. Cummings, J. De Silva, W. Gao, K. Heysse, L. Hogben, F. H. J. Kenter, J. C.-H. Lin, and M. Tait.
 On the distance spectra of graphs.
 <u>Linear Algebra Appl.</u>, 497:66–87, 2016.
- R. L. Graham and L. Lovász. Distance matrix polynomials of trees. <u>Adv. Math.</u>, 29:60–88, 1978.
- R. L. Graham and H. O. Pollak.
 On the addressing problem for loop switching.
 The Bell System Technical Journal, 50:2495–2519, 1971.

4 B K 4 B K

References II

R. Merris.

The distance spectrum of a tree.

J. Graph Theory, 14:365-369, 1990.

P. M. Winkler.

Proof of the squashed cube conjecture. Combinatorica, 3:135–139, 1983.