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Distance matrix

▸ Let G be a connected simple graph on vertex set
V = {1, . . . ,n}.

▸ The distance dG(i , j) between two vertices i , j on G is the
length of the shortest path.

▸ The distance matrix of G is an n × n matrix

D = [dG(i , j)] .

1 2 3 4 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Motivation: Pierce’s loop switching scheme

▸ How two build a phone call between two persons?
▸ Root-USA-Iowa-Jephian
▸ Root-USA-Illinois-Friend
▸ Root-Taiwan-Taichung-Home
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Graham and Pollak’s model

▸ A model works for all graphs, not limited to trees.

▸ Each vertex is assigned with an address, and the distance
between two vertices is the Hamming distance of the address.

▸ Find the neighbor that decrease the Hamming distance.
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Length of the address

Theorem (Graham and Pollak 1971)

Let G be a graph and D its distance matrix. Then such an address
always exist and its length is at least

max{n−,n+},

where n−,n+ are the negative and positive inertia.

Corollary (Graham and Pollak 1971)

When G is a complete graph or a tree, then the minimum length
of the address is ∣V (G)∣ − 1.

Distance Spectra of Graphs 7/15 Department of Mathematics, Iowa State University



Length of the address

Conjecture (Graham and Pollak 1971)

For any graph on n vertices, the address can be chosen with length
at most n − 1.

Theorem (Winkler 1983)

The squashed cube conjecture is true.
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Number of distinct eigenvalues

▸ Suppose A is a matrix. Let q(A) be the number of distinct
eigenvalues.

▸ If A is the adjacency matrix of graph G , then

q(A) ≥ diam(G) + 1.

▸ Key: When a matrix M is diagonalizable, then

q(M) = degree of min polynomial.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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How about distance matrices?

▸ Distance matrices are dense (all off-diagonal entries are
non-zero).

▸ Let Qd be the d-dimensional hypercube. Then q(D(Qd)) = 3
and diam(Qd) = d for d ≥ 2.

▸ What is the relation between q(D(G)) and diam(G)?
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Theorem (Aalipour et al 2016)

Let T be a tree and D its distance matrix. Then

q(D) ≥ ⌈diam(T )
2

⌉ .

Proof.

▸ Let L(T ) be the line graph of T and A the adjacency matrix
of L(T ).

▸ Note that A is (n − 1) × (n − 1) and D is n × n.

▸ spec(−2(2I +A)−1) interlaces spec(D). [Merris 1990]

▸ q(−2(2I +A)−1) = q(A) ≥ diam(L(T )) + 1 = diam(T ).

▸ q(D) ≥ ⌈q(A)2 ⌉.
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Interlacing

µ1 ≤ µ2 ≤ ⋯ ≤ µn−1 interlaces λ1 ≤ λ2 ≤ ⋯ ≤ λn if

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ ⋯ ≤ µn−1 ≤ λn

Examples of interlacing:

λ1 λ2 λ3 λ4 λ5 λ6

µ1 µ2 µ3 µ4 µ5

λ1 λ3 λ5λ2 λ4 λ6

µ1 µ2 µ3 µ4 µ5

= = =
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Distinct eignvalues of trees

It is true that q(D) ≥ diam(T ) + 1?
Possible approaches:

▸ Show the interlacing does not collapse.

▸ Or consider the inverse:

D−1 = −1

2
L + 1

2(n − 1)
δδ⊺,

where δi = 2 − di . [Graham and Lovász 1978]

Checked by Sage up to 20 vertices; graphs with the inequality tight
are extremely rare; e.g. when n = 15, only 7 graphs has
q(D) = diam(T ) + 1.

Thank you!
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