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Abstract

For a given simple graph G, we associate a family S(G) of real
symmetric matrices whose i, j-entry, i ≠ j, is nonzero whenever ij is
an edge, and zero otherwise. We put no restriction on the diagonal
entries. The minimum rank problem is to determine the minimum
rank mr(G) among matrices in S(G), or equivalently, to determine
the maximum nullity M(G) among matrices S(G). The zero forcing
number Z(G) and the enhanced zero forcing number Ẑ(G) of a graph
G were introduced as upper bounds of M(G); M(G) ≤ Ẑ(G) ≤ Z(G)
for all graphs G [1, 3]. However, Ẑ(G) is in general hard to compute,
and examples show that M(G) < Ẑ(G) is possible. The purpose of
this paper is to provide a method, the sieving process, to analyze the
zero-nonzero patterns on the diagonal entries of optimal matrices,
and use it to get new upper bounds for M(G). This technique can
also simplify the computation of Ẑ(G). Most graphs for which it is
known that M(G) < Z(G) can be explained by this technique; at the
same time, the diagonal patterns become clear through this process.

Keywords: minimum rank, maximum nullity, zero forcing number,
enhanced zero forcing number, sieving process, elimination lemma.

1 Introduction

For a given simple graph G = (V (G),E(G)), define a family S(G) of n×n
real symmetric matrices whose i, j-entry, i ≠ j, is:

� zero if i is not adjacent to j;

∗E-mail: chlin@iastate.edu.
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� nonzero if i is adjacent to j.

The minimum rank mr(G) is defined as the smallest possible rank among
matrices in S(G), and the maximum nullity M(G) is defined as the largest
possible rank among the same set of matrices. The minimum rank prob-
lem is to determine the minimum rank mr(G) for a given graph G, or
equivalently, to determine the maximum nullity M(G) by the fact that
mr(G) +M(G) = ∣V (G)∣.

The main goal of this article is to use the sieving process to find bounds
for the minimum rank problem, and to achieve this goal, we are forced to
look at graphs containing loops or more than one edge between two vertices;
this terminology will be discussed in detail later.

In 2008, AIM minimum rank-special graphs work group [1] introduced
the zero forcing number Z(G), defined as follows, as an upper bound of
M(G). The zero forcing process (for simple graphs) is a color-change rule
such that:

� a set B of vertices are set blue initially, while others remain white;

� if a vertex x is blue and has exactly one white neighbor y, y becomes
blue at next step.

If the set B can force all vertices to blue, it is called a zero forcing set. The
zero forcing number Z(G) is defined as the minimum cardinality of a zero
forcing set, and was proved [1] to have the relation

M(G) ≤ Z(G),

which is equivalent to

mr(G) ≥ ∣V (G)∣ −Z(G).

So finding a lower bound for mr(G) between mr(G) and ∣V (G)∣ −Z(G) is
the same with finding an upper bound for M(G) between M(G) and Z(G),
and we state the results for M(G), instead of mr(G). Also, zero forcing
as just defined was independently introduced by mathematical physicists
[7] for control of quantum systems. Variants of zero forcing are cops and
robbers games [3].

Even though Z(G) agrees with M(G) for small graphs [10] and for
many structured graphs [1], there are still many graphs G with M(G) <

Z(G). Some are listed in Table 1, and in fact these parameters diverge
for large random graphs [12, 15]. To improve the bound, Barioli et. al. [3]
proposed the enhanced zero forcing number, which will be defined later,
by considering the zero forcing process on looped graphs. On the other
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hand, Hein van der Holst [13] provided a reduction formula for M(G) by
considering the maximum nullity of multigraphs. These results indicate a
generalization to looped multigraphs is desirable.

We use the notation e(i, j) = e(j, i) to denote the number of edges
between vertex i and j. Unless stated otherwise, i and j are not necessarily
different vertices. In the case i = j, this edge with two endpoints on i is
called a loop, and we write e(i) ∶= e(i, i) as the number of loops on i.

To avoid ambiguity, all types of graphs to be considered are now de-
fined. A simple graph is a graph where 0 ≥ e(i, j) ≤ 1 for i ≠ j and e(i) = 0;
a multigraph is a graph where e(i, j) can be greater than 1 for i ≠ j and
e(i) = 0. Also, a looped graph is a graph where 0 ≤ e(i, j) ≤ 1 for i ≠ j yet
e(i) can be greater than 1; a looped multigraph is a graph where e(i, j),
including e(i), can be greater than 1. Note that our looped graphs al-
low two or more loops on a vertex. The neighborhood of a vertex i is
N(i) ∶= {j ∶ e(i, j) > 0}. So a vertex with a loop on it is a neighbor of itself,
and the number of neighbors does not count multiplicity. That is, no mat-
ter what is the value of e(i, j), j is one neighbor of i whenever e(i, j) > 0.
Since it looks the same between a simple graph and a looped graph without
loops, throughout this article, a simple graph is denoted as G in general,
and a graph that allows loops is denoted as Ĝ. These agreements enable
us to discuss our problems with ease.

Now we turn to the minimum rank and the zero forcing number of
looped multigraphs. The definitions below are simply a combination of
those in previous works [3, 13].

For a given looped multigraph Ĝ, define a family S(Ĝ) of n × n real
symmetric matrix whose i, j-entry, where i, j are not necessarily distinct,
is:

� zero if e(i, j) = 0 in Ĝ;

� nonzero if e(i, j) = 1 in Ĝ;

� any real number if e(i, j) ≥ 2 in Ĝ.

The minimum rank mr(Ĝ) is the smallest possible rank of matrices in
S(Ĝ), while the maximum nullity M(Ĝ) is the largest possible nullity of
matrices in S(Ĝ). Similarly, mr(Ĝ) +M(Ĝ) = ∣V (G)∣. We emphasize that
the set S(Ĝ) puts no restriction on those entries corresponding to two or
more edges, but has additional conditions on diagonal entries from loops,
unlike the case in simple graphs.

The zero forcing process (for looped multigraphs) is a color-change
rule such that:
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� a set B of vertices are set blue initially, while others remain white;

� if a vertex x, which is not necessarily blue, has exactly one white
neighbor y, and e(x, y) = 1, y becomes blue at next step.

If the set B can force all vertices to blue, it is called a zero forcing set. The
zero forcing number Z(Ĝ) is defined as the minimum cardinality of a zero
forcing set.

Example 1. Let Ĝ1 and Ĝ2 be the looped multigraphs in Figure 1. Then

a matrix in S(Ĝ1) is of the form (
∗ ∗

∗ ∗
), so M(Ĝ1) = 1. And Z(Ĝ1) = 1,

since by setting 1 blue, 2 can force itself.

On the other hand, a matrix in S(Ĝ2) is of the form (
0 ∗

∗ ∗
), and so

M(Ĝ2) = 0. Also, since 1 can force 2 in Ĝ2 without itself being blue first,
the empty set is a zero forcing set for Ĝ2 and so Z(Ĝ2) = 0.

Following the definitions of mr(Ĝ) and Z(Ĝ), there is no difference
between e(i, j) = 2 and e(i, j) ≥ 2, so we automatically adjust the value
e(i, j) to 2 whenever the e(i, j) ≥ 2. And we just say there is a double edge
between i and j, which includes the case of a double loop.

Next we define some important looped multigraphs from a simple
graph. Let G be a simple graph and I ⊆ V (G). Throughout this arti-
cle, ĜI is the looped multigraph obtained from G by adding one loop to
each vertex in I; the doubly looped multigraph Ĝ`` is obtained from G by
adding two loops to every vertex. The enhanced zero forcing number Ẑ(G)

is defined as maxI⊆V (G)Z(ĜI).

Observation 2. For a simple graph G, M(G) = M(Ĝ``) and Z(G) =

Z(Ĝ``).

Remark 3. Let Ĝ be a looped multigraph with e(i, j) = 2 for some not
necessarily distinct vertices i and j. Let Ĝ0, Ĝ1 be the looped multigraphs
obtained from Ĝ by setting e(i, j) to be 0 and 1 respectively. Then

M(Ĝ) = max{M(Ĝ0),M(Ĝ1)} and

Z(Ĝ) ≥ max{Z(Ĝ0), Z(Ĝ1)}.

The first equality comes from definition, while the second inequality is
because any zero forcing process that can be conducted on Ĝ can be applied
to Ĝ0 or Ĝ1.

Proposition 4 provides the relation between M(Ĝ) and Z(Ĝ), and the
proof is different from the original proof of M(G) ≤ Z(G). In a zero forcing
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process, one white vertex will be forced to blue at each step. We use the
notation xi → yi to indicate that at the i-th step, xi forces yi to blue because
yi is the only white neighbor of xi and e(xi, yi) = 1. For each yi, exactly one
xi is chosen to force yi even if there is more than one choice. The ordered
collection of all xi → yi is the chronological list of forces defined in [2].

Proposition 4. Let Ĝ be a looped multigraph. Then

M(Ĝ) ≤ Z(Ĝ).

Proof. Let ∣V (Ĝ)∣ = n. Let B be a zero forcing set with ∣B∣ = Z(Ĝ), and
F = (xi → yi ∶ i = 1,2, . . . , k) the corresponding chronological list of forces.
Since {yi}

k
i=1 is the set of all initial white vertices, k = n −Z(Ĝ).

Let A be a matrix in S(Ĝ) with null(A) = M(G). We permute the
rows and columns such that xi is the i-th column and yi is the i-th row.
This new matrix can be written as

(
Â11 Â12

Â21 Â22
) ,

where Â11 is a k × k submatrix indexed by {xi}
k
i=1 on columns and {yi}

k
i=1

on rows. Since e(xi, yi) = 1 for all i, the diagonal entries of Â11 are nonzero.
Also, at the i-th step, {yj}j>i are still white, which means there is no edge

between xi and any of {yj}j>i. Therefore, Â11 is of the form

⎛
⎜
⎜
⎜
⎝

∗ ?
∗

⋱

O ∗

⎞
⎟
⎟
⎟
⎠

.

So the rank of A is at least k, and M(Ĝ) = null(A) ≤ n − k = Z(Ĝ).

Corollary 5. [3] Let G be a simple graph. Then

M(G) ≤ Ẑ(G) ≤ Z(G).

Proof. Let A be a matrix in S(G) with nullity M(G). Then A ∈ S(ĜI) for
some index set I. That means

M(G) =M(ĜI) ≤ Z(ĜI) ≤ Ẑ(G),

by Proposition 4. And the fact Ẑ(G) ≤ Z(G) comes from Observation 2
and Remark 3.

We further define the addition of two looped multigraphs as the union
of vertex sets and the disjoint union of edge sets, as shown in Figure 1.

5



Ĝ1
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Figure 1: An example of the addition of two looped multigraphs.

Observation 6. Let Ĝ1 and Ĝ2 be two looped multigraphs, and A ∈ S(Ĝ1),
B ∈ S(Ĝ2). Then A +B ∈ S(Ĝ1 + Ĝ2).

Therefore the definitions of S(Ĝ) and addition of graphs are natural
in the sense of graphs and matrices.

Another parameter of interest in the study of minimun rank is the
path cover number of simple graphs. For a given simple graph G, the path
cover number P (G) is the minimum number of disjoint induced paths that
can cover the vertices of G. It is known that P (G) ≤ Z(G) [2]. In the case
when G is outerplanar, Sinkovic [16] proved that

M(G) ≤ P (G).

However, M(G) and P (G) are in general incomparable [4].

2 Sieving Process and Elimination Lemmas

The enhanced zero forcing number gives a powerful upper bound for M(G)

between M(G) and Z(G). This fact suggests that a considerable amount
of information is hidden in the zero-nonzero patterns of diagonal entries. In
fact, we can use Z(ĜI) as a tool to analyze the patterns on the diagonal.
For a given simple graph G we define

Ik(G) ∶= {I ⊆ V (G) ∶ Z(ĜI) ≥ k}.

For a matrix A ∈ S(G), if null(A) ≥ k then the diagonal pattern of A must
fall in Ik(G). And we may rewrite the enhanced zero forcing number as

Ẑ(G) = max{k ∶ Ik(G) ≠ ∅}.

Example 7. Let G be the complete graph K2 on two vertices. Then
Z(ĜI) = 1 only when I = {1,2}. Therefore,

I1(G) = {{1,2}}, I0(G) = {∅,{1},{2},{1,2}}.
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That means any matrix A ∈ S(G) with nullity 1 must has its diagonal
entries nonzero.

This example leads to the following definition.

Definition 8. Let i be a vertex of a simple graph G. The vertex i is a zero-
vertex in Ik(G) if i is not an element of any I ∈ Ik(G); it is a nonzero-vertex
in Ik(G) if i is an element of every I ∈ Ik(G).

This definition gives directly that each vertex in K2 is a nonzero-vertex
in I1(K2). In fact, every vertex in a complete graph Kn is a nonzero-vertex
in In−1(Kn) whenever n ≥ 2. And the reason for defining zero-vertex and
nonzero-vertex is because in so doing we can work on a “template” with
more information.

Definition 9. Let G be a simple graph and i ∈ V (G). The looped multi-
graph AT i(Ĝ) is obtained from G by adding one loop to i and two loops to
the others; the looped multigraph ZT i(Ĝ) is obtained from G by adding
two loops to all vertices except i.

Also, if N0 ⊆ V (G), then the DT N0(Ĝ) is obtained from G by adding
two loops to all vertices beside N0.

Observation 10. For a simple graph G, if i is a nonzero-vertex in Ik(G),
then any matrix A ∈ S(G) with null(A) ≥ k is also a matrix in S(AT i(Ĝ));
if i is a zero-vertex in Ik(G), then any matrix A ∈ S(G) with null(A) ≥ k is
also a matrix in S(ZT i(Ĝ)); if N0 is a set of some zero-vertices in Ik(G),
then any matrixA ∈ S(G) with null(A) ≥ k is also a matrix in S(DT N0(Ĝ)).

The following example demonstrates a general method for finding a
zero-vertex, or a nonzero-vertex.

Example 11. Let G be the 5-sun H5 in Figure 2. It is known that Z(G) = 3
[1], yet M(G) = 2 [4]. We claim vertex 1 is both a zero-vertex and a nonzero-
vertex in I3(G); this means I3(G) = ∅ and so M(G) ≤ Ẑ(G) ≤ 2.

To see 1 is a zero-vertex in I3(G), we suppose that 1 ∈ I for some
I ∈ I3(G) and obtain a contradiction. By Remark 3 and the fact I ∈ I3(G),
Z(AT 1(Ĝ)) ≥ Z(ĜI) ≥ 3. But B0 ∶= {3,5} is a zero forcing set of AT 1(Ĝ),
so Z(AT 1(Ĝ)) ≤ 2. This violates our assumption, so 1 is a zero-vertex.

Similarly, if 1 ∉ I for some I ∈ I3(G), Z(ZT 1(Ĝ)) ≥ Z(ĜI) ≥ 3 by
Remark 3. Then B0 = {3,9} is a zero forcing set of ZT 1(Ĝ), so the fact
Z(ZT 1(Ĝ)) ≤ 2 indicates 1 is also a nonzero-vertex.

As in the example, every vertex subset B of size k − 1 serves as a
sieve for Ik(G): if B is a zero forcing set for ĜI , then I cannot be an
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element in Ik(G). Through this sieving process, some zero-nonzero patterns
are guaranteed in Ik(G). Consequently, some submatrices are guaranteed
invertible, and so the Schur complement can be applied.

Definition 12. Let A be an n × n matrix with rows and columns indexed
by V and α,β ⊆ V . Then A[α,β] is defined as the submatrix induced on
those rows in α and columns in β. For convention, we write A[α] ∶= A[α,α],
A(α) ∶= A[α,α], A(α,β] ∶= A[α,β], and A[β,α) ∶= A[β,α], where α is the
set V ∖α. If A[α] is invertible, then the matrix A(α)−A(α,α]A[α]−1A[α,α)
is called the Schur complement of A on α.

Remark 13. A matrix A and its Schur complement have the same nullity
[14].

Since the maximum nullity of a simple graph is still of our greatest
interest, we focus on the looped graphs instead of looped multigraphs. That
is, loops and double loops are allowed, so that we can analyze the diagonal
patterns. As a result, Definition 14, Lemma 15, and Theorem 16, 18, 21 all
start with looped graphs, but possibly end with looped multigraphs, as a
result of operations that render some entries unknown.

Definition 14. Let Ĝ be a looped graph with i ∈ V (Ĝ). Define AE i(Ĝ) to
be the looped multigraph on the vertex set V (Ĝ) ∖ {i} with e(x, y) = 1 for
all x, y ∈ N(i)∖ {i} and e(i, j) = 0 otherwise, where x, y are not necessarily
distinct.

If, in addition, j is a vertex other than i with e(i, j) = 1 in Ĝ, define
Ni ∶= N(i) ∖ {i, j} and Nj ∶= N(j) ∖ {i, j}, and ZEji (G) to be the looped

multigraph on the vertex set V (Ĝ) ∖ {i, j} with

� e(x, y) = 1 for x ∈ Ni, y ∈ Nj ∖Ni;

� e(x, y) = 2 for x, y ∈ Ni;

� e(x, y) = 0 otherwise,

where x, y are not necessarily distinct.

Also, define DEji (G) to be the looped multigraph defined on the vertex

set V (Ĝ) ∖ {i, j} with

� e(x, y) = 1 for x, y ∈ Ni ∪Nj but x, y are not both in one of Ni ∖Nj ,
Nj ∖Ni, or Ni ∩Nj ;

� e(x, y) = 2 for distinct x, y ∈ Ni ∩Nj ;

� e(x) = 1 for x ∈ Ni ∩Nj .
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� e(x, y) = 0 otherwise, where x, y are not necessarily distinct.

Lemma 15. Let Ĝ be a looped graph and A ∈ S(Ĝ). Let α ⊆ V (G) be an
index set such that A[α] is invertible and C ∶= A(α,α]A[α]−1A[α,α).

(1) If α = {i} ⊆ V (Ĝ) and e(i) = 1, then C ∈ S(AE i(Ĝ)).

(2) If α = {i, j} ⊆ V (Ĝ), e(i) = 0, and e(i, j) = 1, then C ∈ S(ZE
j
i (Ĝ)).

(3) If α = {i, j} ⊆ V (Ĝ), e(i) = e(j) = 0, and e(i, j) = 1, then C ∈

S(DE
j
i (Ĝ)).

Proof. For (1), since e(i) = 1 in Ĝ, the i, i-entry of A must be nonzero,
so C is defined. Each vertex in N(i) ∖ {i} represents a nonzero entry in
A(α,α], or A[α,α). Therefore C ∶= A(α,α]A[α]−1A[α,α) is a matrix with
the zero-nonzero pattern described by AE i(Ĝ).

For (2), since e(i) = 0 and e(i, j) = 1 in Ĝ, the matrix A[α] is of the
form

(
0 ∗

∗ ?
) ,

which is guaranteed invertible with A[α]−1 of the form

(
? ∗

∗ 0
) .

In A(α,α], saying i ≤ j, each vertex in Ni∩Nj represents a row of the form
(∗ ∗); each vertex in Ni ∖Nj represents a row of the form (∗ 0); each

vertex in Nj ∖ Ni represents a row of the form (0 ∗); and each vertiex

not in Ni ∪Nj represents a row of the form (0 0). By doing the symbolic
matrix operation

⎛
⎜
⎜
⎜
⎝

∗ ∗

∗ 0
0 ∗

0 0

⎞
⎟
⎟
⎟
⎠

(
? ∗

∗ 0
)(

∗ ∗ 0 0
∗ 0 ∗ 0

) ∼

⎛
⎜
⎜
⎜
⎝

? ? ∗ 0
? ? ∗ 0
∗ ∗ 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

,

the zero-nonzero pattern of C agrees with that given by ZEji (Ĝ).

For (3), the conditions imply the matrix A[α] is of the form

(
0 ∗

∗ 0
) ,
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which is guaranteed invertible with A[α]−1 of the form

(
0 ∗

∗ 0
) .

Similarly, the symbolic matrix operation is

⎛
⎜
⎜
⎜
⎝

∗ ∗

∗ 0
0 ∗

0 0

⎞
⎟
⎟
⎟
⎠

(
0 ∗

∗ 0
)(

∗ ∗ 0 0
∗ 0 ∗ 0

) ∼

⎛
⎜
⎜
⎜
⎝

? ∗ ∗ 0
∗ 0 ∗ 0
∗ ∗ 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

.

Furthermore, if x is a vertex in Ni ∩Nj , then the x,x-entry in C is nonzero
since the i, j-entry and the j, i-entry are the same in A.

Theorem 16 (Nonzero Elimination Lemma). Let Ĝ be a looped graph with
i ∈ V (Ĝ). Suppose e(i) = 1 in Ĝ. If A ∈ S(Ĝ), then null(A) ≤M(Ĝ ∖ {i} +
AE i(Ĝ)).

In particular, on a simple graph G, if i is a nonzero-vertex in Ik(G)

and M(G) ≥ k, then k ≤M(AT i(Ĝ) ∖ {i} +AE i(Ĝ)).

Proof. Suppose A ∈ S(Ĝ). Let α = {i} and C ∶= A(α,α]A[α]−1A[α,α).
Then A(α) ∈ S(Ĝ ∖ {i}) and C ∈ S(AE i(Ĝ)) by Lemma 15. Consequently,
the Schur complement A(α) −C is in S(Ĝ ∖ {i} +AE i(Ĝ)), and so

null(A) = null(A(α) −C) ≤M(Ĝ ∖ {i} +AE i(Ĝ)).

For the case of a simple graph, if i is a nonzero-vertex in Ik(G) and
null(A) ≥ k for some A ∈ S(G), then A ∈ S(AT i(Ĝ)) by Observation 10.
Therefore, k ≤M(AT i(Ĝ) ∖ {i} +AE i(Ĝ)).

Example 17. Let G be the simple graph LH5 in Figure 2. Since there are 5
vertices of degree 1, Z(G) ≥ P (G) ≥ 3. We know Z(G) = 3, because {1,4,7}
is a zero forcing set, and M(G) = 2 by the cut-vertex reduction formula [4].
Furthermore, by considering I = {1,2, . . . ,15}, Z(ĜI) = 3 and so Ẑ(G) = 3.
Besides, a similar argument to Example 11 suggests the vertex 2 is both a
zero-vertex and a nonzero-vertex in I3(G ∖ {1}), so Ẑ(G ∖ {1}) = 2.

Now we choose B = {4,7} as our first sieve. If 1 is not in some I ∈

I3(G), then 1 can force 2 to blue, and B is a zero forcing set of size 2,
which is impossible. Therefore, 1 is a nonzero-vertex in I3(G).

Suppose M(G) = 3 and apply Theorem 16. The looped multigraph
AE1(Ĝ) is a bunch of isolated vertices with one loop on vertex 2, and
AT 1(Ĝ)∖{1} is the doubly looped multigraph of G∖{1}. So S(AT 1(Ĝ)∖
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{1} +AE1(Ĝ)) = S(H), where H is the simple graph G − 1. By Theorem
16,

3 ≤M(H) ≤ Ẑ(H) = 2,

a contradiction. As a consequence, we know M(G) ≤ 2.

On the other hand, similar process can be done on a zero-vertex.

Theorem 18 (Zero Elimination Lemma). Let Ĝ be a looped graph with
distinct i, j ∈ V (Ĝ). Suppose e(i) = 0 and e(i, j) = 1 in Ĝ. If A ∈ S(Ĝ),
then null(A) ≤M(Ĝ ∖ {i} +ZEji (Ĝ)).

In particular, on a simple graph G with distinct i, j ∈ V (G), if i is a
zero-vertex in Ik(G), e(i, j) = 1, and M(G) ≥ k, then k ≤ M(ZT i(Ĝ) ∖

{i, j} +ZEji (Ĝ)).

Proof. Suppose A ∈ S(Ĝ). Let α = {i, j} and C ∶= A(α,α]A[α]−1A[α,α).
Then A(α) ∈ S(Ĝ∖{i, j}) and C ∈ S(ZE

j
i (Ĝ)) by Lemma 15. Consequently,

the Schur complement A(α) −C is in S(Ĝ ∖ {i, j} +ZEji (Ĝ)), and so

null(A) = null(A(α) −C) ≤M(Ĝ ∖ {i, j} +ZEji (Ĝ)).

For the case of a simple graph, if i is a zero-vertex in Ik(G), e(i, j) = 1,
and null(A) ≥ k for some A ∈ S(G), then A ∈ S(ZT i(Ĝ)) by Observation
10. Therefore, k ≤M(ZT i(Ĝ) ∖ {i, j} +ZEji (Ĝ)).

Example 19. Let G be the simple graph GM in Figure 2. We have Z(G) =

5 by use of the Sage minimum rank software [8].

Setting B = {8,9,13,14} as a sieve, B is always a zero forcing set of
ĜI whenever 1 ∈ I, and so 1 is a zero-vertex in I5(G). Suppose M(G) = 5
and apply Theorem 18 on vertices 1 and 2. Then N1 = {3} and N2 =

{3,7,13,15}. So the looped multigraph ZE21(Ĝ) has edges e(3,7) = e(3,13) =
e(3,15) = 1 and e(3) = 2, and ZT 1(Ĝ) ∖ {1,2} is the doubly looped multi-
graph of G∖{1,2}. Therefore, S(ZT 1(Ĝ)∖{1,2}+ZE21(Ĝ)) = S(H), where
H is the simple graph in Figure 3. By Theorem 18,

5 ≤M(H) ≤ Z(H) ≤ 4,

a contradiction. Hence M(G) ≤ 4, and actually M(G) = 4 by the reduction
formula [13].

Theorem 20 (Simple Elimination Lemma). Let G be a simple graph with
distinct i, j ∈ V (G) and e(i, j) = 1. Then

M(G) ≤ max{M(AT i(Ĝ)∖{i}+AE i(Ĝ)),M(ZT i(Ĝ)∖{i, j}+ZEji (Ĝ))}.
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Figure 3: The underlying graph of ZT 1(Ĝ) ∖ {1,2} +ZE21(Ĝ).

Proof. Let A ∈ S(G) be a matrix with nullity M(G). Then the i, i-entry
is either zero or nonzero. If it is nonzero, then A ∈ S(AT i(Ĝ)), and so
null(A) ≤M(AT i(Ĝ)∖{i}+AE i(Ĝ)) by Theorem 16; if it is zero, then A ∈

S(ZT i(Ĝ)), and so null(A) ≤M(ZT i(Ĝ) ∖ {i, j} +ZEji (Ĝ)) by Theorem
18. Consequently,

M(G) = null(A)

≤ max{M(AT i(Ĝ) ∖ {i} +AE i(Ĝ)),M(ZT i(Ĝ) ∖ {i, j} +ZEji (Ĝ))}.

Theorem 21 (Double Zero Elimination Lemma). Let Ĝ be a looped graph
with distinct i, j ∈ V (Ĝ). Suppose e(i) = e(j) = 0 and e(i, j) = 1. If
A ∈ S(Ĝ), then null(A) ≤M(Ĝ ∖ {i, j} +DEji (Ĝ)).

In particular, on a simple graph G, if N0 is a set of some zero-vertices
in Ik(G) with distinct i, j ∈ N0, e(i, j) = 1, and M(G) ≥ k, then k ≤

M(DT N0(Ĝ) ∖ {i, j} +DEji (Ĝ)).

Proof. Suppose A ∈ S(Ĝ). Let α = {i, j} and C ∶= A(α,α]A[α]−1A[α,α).
Then A(α) ∈ S(Ĝ∖{i, j}) and C ∈ S(DE

j
i (Ĝ)) by Lemma 15. Consequently,

the Schur complement A(α) −C is in S(Ĝ ∖ {i, j} +DEji (Ĝ)), and so

null(A) = null(A(α) −C) ≤M(Ĝ ∖ {i, j} +DEji (Ĝ)).

For the case of a simple graph, if N0 is a set of some zero-vertices
in Ik(G) with distinct i, j ∈ N0, e(i, j) = 1, and null(A) ≥ k for some
A ∈ S(G), then A ∈ S(DT N0(Ĝ)) by Observation 10. Therefore, k ≤

M(DT N0(Ĝ) ∖ {i, j} +DEji (Ĝ)).

Example 22. Let G be the simple graph K3,3,3 in Figure 2. It is known
Z(G) = 7 [1] and M(G) = 6 by [6].
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By setting B = {3,4,5,6,7,8} as a sieve, vertex 1 is a zero-vertex
in I7(G). Similar argument ensures that each vertex is a zero-vertex in
I7(G). Suppose M(G) = 7 and apply Theorem 21 to the vertices 1 and
4. The looped multigraph DT N0(Ĝ) ∖ {1,4} +DEji (Ĝ) has 7 vertices and
three of them have exactly one loop on each of them. That means 7 ≤

M(DT N0(Ĝ) ∖ {1,4} +DEji (Ĝ)) < 7, a contradiction. Hence M(G) ≤ 6.

Note. The third statement in Lemma 15 relies on the symmetry of matrices
and the fact a + a ≠ 0 whenever a is a nonzero real number. Therefore,
Theorem 21 fails when the considered field is of characteristic 2, or the
considered matrices are not necessarily symmetric. In fact, the maximum
nullity of K3,3,3 is 7 when the considered field is Z2 [11].

3 Conclusion

M Z Ẑ SP P
H5 2 3 2 2 3
LH5 2 3 3 2 3
Gk k + 1 2k + 1 k + 1 k + 1 2k + 1
K3,3,3 6 7 7 6 3
PW12 3 4 4 3 3
GM 4 5 4 4 5
G′

M 4 5 5 4 5

Table 1: M(G) and its upper bounds.

The sieving process and the elimination lemmas provide a new way
to find the upper bounds for M(G). In fact, many known graphs G with
M(G) < Z(G) can be explained by the sieving process and the elimination
lemmas. Figure 2 illustrates a collection of graphs whose maximum nullity
and zero forcing number are different; Table 1 provides their maximum
nullity M and many upper bounds, including the zero forcing number Z,
the enhanced zero forcing number Ẑ, and finally the upper bound SP given
by the sieving process. The path cover number is also listed, though K3,3,3

is not outerplanar.

The values in Table 1 were established in examples in Section 2, except
the values of the parameters of Gk, PW12 and G′

M can be found in [5, 2, 9]
respectively, or they can be obtained by software [8]; Z(G), P (G), and
Ẑ(G) are computed by either systematical arguments or brute force; while
detailed discussions of the bounds from sieving processes can be found in
[9].
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