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1. Introduction

In the density matrix formulation of quantum mechanics, the state of a physical system 
is represented by a positive semi-definite matrix with unit trace called its density matrix. 
The von Neumann entropy of a quantum state is defined in terms of the eigenvalues of 
its density matrix, and provides a means of characterizing its information content, in 
analogy to the Shannon entropy of a statistical ensemble from classical information 
theory. Indeed, the von Neumann entropy of a state takes center stage in the burgeoning 
field of quantum information theory [6].

It is well known that the combinatorial Laplacian matrix L of a finite simple graph is 
positive semi-definite, and so the matrix 1

tr LL (which has unit trace) can be interpreted 
as the density matrix of a physical system. It is therefore natural to interpret the von 
Neumann entropy of such a density matrix as the von Neumann entropy of the corre-
sponding graph, with a view towards characterizing the information content of the graph 
[1,8].

In this note we study graphs that minimize or maximize von Neumann entropy and its 
well known generalization, the Rényi α-entropy, over (connected) graphs of fixed order. 
We show (Theorem 2.3) that almost all graphs of order n have von Neumann entropy at 
least as great as the star K1,n−1, all connected graphs of order n have Rényi 2-entropy 
at least as great as K1,n−1 (Theorem 3.8), and for α > 1 all graphs of order n have Rényi 
α-entropy no greater than that of the complete graph Kn (Corollary 3.2); it is known 
that Kn maximizes the von Neumann entropy. We also answer negatively a question 
from [8] about the effect of adding an edge on von Neumann entropy (Proposition 4.1). 
The von Neumann entropy and Rényi α-entropies of a graph are defined precisely below.

The Shannon entropy of a discrete probability distribution p = (p1, . . . , pn) is defined 
to be

S(p) :=
n∑

i=1
pi log2

1
pi

= −
n∑

i=1
pi log2 pi,

with 0 log2 0 defined to be zero. Let G be a graph that has at least one edge. Consider 
the (combinatorial) Laplacian scaled to have trace one, ρ(G) := 1

tr L(G)L(G), where 
L(G) = D(G) −A(G) with D(G) the diagonal matrix of degrees and A(G) the adjacency 
matrix. The von Neumann entropy of G is defined to be the Shannon entropy of the 
probability distribution represented by the eigenvalues of ρ(G),

S(G) :=
n∑

i=1
λi log2

1
λi

= −
n∑

i=1
λi log2 λi,

where {λi}ni=1 is the spectrum of ρ(G) (multiset of eigenvalues), which is denoted by 
spec(ρ(G)).

For α ≥ 0 and α �= 1, the Rényi entropy of a discrete probability distribution p =
(p1, . . . , pn) is defined as
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Hα(p) = 1
1 − α

log2

(
n∑

i=1
pαi

)
;

this is also called the Rényi α-entropy. The limit as α → 1 of Hα(p) is the Shannon 
entropy S(p), so as done in [9] we define H1(p) = S(p). Since Hα(p) is a non-increasing 
function of α for a fixed p [10], S(p) ≥ Hα(p) for α ≥ 1.

For a positive semidefinite matrix M with trace 1, we define S(M) (respectively, 
Hα(M)) to be equal to the Shannon entropy (respectively, the Rényi α-entropy) of 
the probability distribution given by the eigenvalues of M . For a graph G, we define 
Hα(G) = Hα(ρ(G)), the Rényi α-entropy of the scaled Laplacian. The Rényi 2-entropy 
is a useful tool in the study of von Neumann entropy, and Rényi α-entropy is interesting 
in its own right.

The graphs realizing the minimum and maximum von Neumann entropy over all 
graphs on n vertices are known, but minimizing over connected graphs is still an open 
question. A graph G has zero von Neumann entropy if and only if one eigenvalue is 1 
and the rest are 0. These spectra are achieved only by graphs of the form K2∪̇Kn−2.

Proposition 1.1. ([1]) For all graphs on n vertices, the maximum von Neumann entropy 
is attained by Kn with S(Kn) = log2(n − 1), and the minimum von Neumann entropy 
of 0 is attained by K2∪̇Kn−2.

In [8] it was asked whether the star minimizes von Neumann entropy among connected 
graphs of fixed order, and we conjecture this.

Conjecture 1.2. For all connected graphs on n vertices, the minimum von Neumann 
entropy is attained by K1,n−1.

This conjecture is confirmed by Sage up to 8 vertices; when G is restricted to being a 
tree, it is true up to 15 vertices [4]. In Theorem 2.3 we show that it is true for almost all 
graphs as n → ∞ by use of the Rényi 2-entropy. We also make a conjecture about trees.

Conjecture 1.3. For all trees on n vertices, the maximum von Neumann entropy is at-
tained by Pn.

This conjecture is confirmed by Sage up to 15 vertices [4].
It is well known (and easy to show) that

spec(L(Ka,b)) =
{
a + b, b(a−1), a(b−1), 0

}
,

where λ(m) denotes the fact that λ has multiplicity m. The next result then follows by 
computation.

Proposition 1.4. For complete bipartite graphs, the von Neumann entropy is
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S(Ka,b) = 1 + b + 1
2b log2 a + a + 1

2a log2 b−
a + b

2ab log2(a + b).

Specifically, for stars

S(K1,n−1) = log2(2n− 2) − n

2n− 2 log2 n.

Building graphs from pieces is a standard technique and it is useful to have information 
about the effect of graph operations and constructions on von Neumann entropy. Let G
be a graph. Define dG to be the sum of degrees of all vertices, which is equal to the 
trace of the combinatorial Laplacian and also equal to twice the number of edges in G. 
In the case of a disjoint union, we can determine the von Neumann entropy of the whole 
exactly from the entropies of the pieces.

Proposition 1.5. Let G1, . . . , Gk be vertex-disjoint graphs and let

ci = dGi∑
j dGj

.

Then

S

(⋃̇k

i=1
Gi

)
=

k∑
i=1

ciS(Gi) +
k∑

i=1
ci log2

1
ci
.

Proof. Let spec(ρ(Gi)) = {λj(i) : j ∈ [ni]} for i ∈ [k]. Then

spec
(
ρ

(⋃̇k

i=1
Gi

))
=

k⋃
i=1

{ciλj(i) : j ∈ [ni]} .

Therefore, the von Neumann entropy is

S

(⋃̇k

i=1
Gi

)
=

k∑
i=1

ni∑
j=1

ciλj(i) log2
1

ciλj(i)

=
k∑

i=1

⎛
⎝ci

⎛
⎝ ni∑

j=1
λj(i) log2

1
λj(i)

⎞
⎠ + ci log2

1
ci

⎛
⎝ ni∑

j=1
λj(i)

⎞
⎠
⎞
⎠

=
k∑

i=1
ciS(Gi) +

k∑
i=1

ci log2
1
ci
. �

One way to think of the expression for S(∪̇Gi) given in the previous proposition is the 
following: the first summation is a convex combination of the von Neumann entropies 
of the Gi with coefficients ci, and the second summation is the Shannon entropy of the 
probability distribution (c1, . . . , ck).
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Theorem 1.6. ([8]) If G and H are two graphs on the same vertex set and E(G) ∩E(H) =
∅, then

S(G ∪H) ≥ dG
dG + dH

S(G) + dH
dG + dH

S(H).

In particular, if G is a graph and e ∈ E(G), then

S(G + e) ≥ dG
dG + 2S(G).

The question of whether the factor dG

dG+2 can be removed from the second statement 
was raised in [8].

Question 1.7. ([8]) Is the von Neumann entropy monotonically non-decreasing under edge 
addition?

We show in Proposition 4.1 that adding an edge can decrease the von Neumann 
entropy slightly, answering Question 1.7 negatively.

2. Using Rényi 2-entropy as a lower bound for von Neumann entropy

In this section we give a lower bound for the von Neumann entropy in terms of the de-
gree sequences of graphs by using the Rényi 2-entropy, using the fact that for all graphs G,

S(G) ≥ H2(G). (1)

Remark 2.1. The Rényi 2-entropy of a trace one positive semidefinite matrix M can be 
expressed in the following useful manner:

H2(M) = − log2

(
n∑

i=1
λ2
i

)
= − log2 tr(M2) = − log2 sum(M ◦M),

where ◦ denotes the entrywise product (also called the Hadamard or Schur product) and 
sum(M) is the sum of the entries of M . For a graph G with vertex degrees di for i ∈ [n]
and degree sum dG, the Rényi 2-entropy of its scaled Laplacian ρ(G) is

H2(G) = − log2

(
dG +

∑
i d

2
i

d2
G

)
= log2

(
d2
G

dG +
∑

i d
2
i

)
. (2)

Theorem 2.2 (Rényi-Quantum Star Test). Let G be a graph on n vertices satisfying

d2
G∑n

i=1 d
2
i + dG

≥ 2n− 2
n

n
2n−2

. (3)

Then S(G) ≥ H2(G) ≥ S(K1,n).
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Table 1
Number of graphs with H2(G) < S(K1,n).

n # H2(G) < S(K1,n) # connected graphs Percentage
2 0 1 0.00
3 1 2 0.50
4 2 6 0.33
5 4 21 0.19
6 8 112 0.071
7 16 853 0.019
8 49 11117 0.0044
9 106 261080 0.00041
10 307 11716571 0.000026

Proof. Recall that by Proposition 1.4,

S(K1,n) = log2(2n− 2) − n

2n− 2 log2 n = log2

(
2n− 2
n

n
2n−2

)
.

The result then follows immediately from (1), (2), and the fact that log2 x is increas-
ing. �

As shown in Table 1, most graphs of small orders pass the Rényi-Quantum Star Test; 
the graphs that fail the Rényi-Quantum Star Test are shown in [4] for n ≤ 8.

All the graphs that fail the Rényi-Quantum Star Test are quite sparse, which led us 
to the following result.

Theorem 2.3. Let G be a graph on n vertices and m edges with

1√
n− 1

≤ m(
n
2
) , (4)

i.e., having density at least 1√
n−1 . Then S(G) ≥ H2(G) ≥ S(K1,n). As n → ∞, almost 

all graphs satisfy (4).

Proof. Theorem 1 from [2] gives the bound that 
∑n

i=1 d
2
i ≤ m 

(
2m
n−1 + n− 2

)
.

(
n

2

)(
1√
n− 1

)
≤ m

2n(n− 1) ≤ 4m(n1/2 − 1)

2(n− 1)m
(

2m
n− 1 + n

)
≤ 4m2n1/2

2(n− 1)
(
m

(
2m
n− 1 + n− 2

)
+ 2m

)
≤ 4m2n1/2

2(n− 1)
(

n∑
d2
i + dG

)
≤ d2

Gn
1/2.
i=1
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Since n
2n−2 ≥ 1

2 ,

2(n− 1)
n

n
2n−2

≤ 2(n− 1)
n1/2 ≤ d2

G∑n
i=1 d

2
i + dG

.

Thus we have satisfied the condition for Theorem 2.2 and thus H2(G) ≥ S(K1,n−1).
By [3, Theorem 3.2], if one chooses a graph G at random from all labeled graphs on 

n vertices, then |E(G)| ≥ 1
2
(
n
2
)
− n

√
2 lnn with probability at least 1 − n−2, justifying 

the last statement. �
Sufficient density implies a graph satisfies the Rényi-Quantum Star Test, but the 

converse is false. As an example, consider the path G = Pn, for which dG = 2n − 2 and ∑n
i=1 d

2
i = 4(n − 2) + 2 = 4n − 6. Thus the left hand side of (3) is

(2n− 2)2

4n− 6 + (2n− 2) ∼ Θ(n);

while the right hand side is Θ(n 1
2 ). So for large enough n, the Rényi-Quantum Star 

Test shows S(Pn) ≥ H2(Pn) ≥ S(K1,n). In fact, for n ≥ 6, H2(Pn) ≥ S(K1,n−1). This 
observation and Theorem 2.2 provide evidence for Conjecture 1.2.

One could naturally ask whether the inequality S(G) ≥ Hα(G) is tight (α > 1), 
and for what graphs. For a given probability distribution p = (p1, . . . , pn), the Rényi 
α-entropy can be written as

Hα(p) = − 1
α− 1 log2(p1 · pα−1

1 + p2 · pα−1
2 + · · · + pn · pα−1

n )

≤ − 1
α− 1

[
p1 log2(pα−1

1 ) + p2 log2(pα−1
2 ) + · · · + pn log2(pα−1

n )
]

= S(p).

It follows from the strict convexity of − log2 that Hα(p) is strictly less than 
∑

i−pi log2(pi)
if and only if the nonzero pi are not all the same. Of course the latter quantity is just 
the Shannon entropy. Hence S(Kn) = Hα(Kn), and this is the only connected graph on 
n vertices that has S(G) = Hα(G) for α > 1.

3. Rényi entropy

For a fixed α, it is natural to ask which graph(s) maximize Hα(G) among graphs on 
n vertices, and which graph(s) minimize Hα(G), among graphs on n vertices and among 
connected graphs on n vertices.

Proposition 3.1. Fix α > 1 and an integer n ≥ 1. Over all probability distributions 
p = (p1, . . . , pn):
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1. The distribution p0 = (1, 0, . . . , 0) minimizes Hα(p) and this is the only probability 
distribution (up to permutation of the entries) that does so.

2. The constant distribution pc = ( 1
n , . . . , 

1
n ) maximizes Hα(p).

Proof. It is clear that 0 ≤ Hα(p) for all probability distributions p, and the only proba-
bility distribution that achieves α-entropy zero is p0.

Now consider p = (p1, . . . , pn). For all α > 1, xα is a convex function, so by Jensen’s 
inequality,

(
1
n

)α

=
(

n∑
i=1

pi
n

)α

≤
n∑

i=1

1
n
pi

α = 1
n

n∑
i=1

pi
α.

Thus 
∑n

i=1 p
α attains its minimum when p1 = · · · = pn = 1

n , and so − log2 (
∑n

i=1 p
α
i )

attains its maximum there. �
Corollary 3.2. Let α > 1. For all (possibly disconnected) graphs G on n vertices,

0 = Hα(K2 ∪̇Kn−2) ≤ Hα(G) ≤ Hα(Kn) = log2(n− 1).

Furthermore, K2 ∪̇Kn−2 is the only graph that minimizes Rényi α-entropy for α > 1.

Proof. It is known that spec(ρ(K2∪̇Kn−2)) =
{
1, 0(n−1)} and this is the only graph on n

vertices that realizes this spectrum. Therefore, K2∪̇Kn−2 is the only graph on n vertices 
with minimum Rényi α-entropy.

Observe that spec(ρ(Kn)) =
{

1
n−1

(n−1)
, 0
}

, so Hα(Kn) = log2(n − 1). Since any 

graph G has at least one Laplacian eigenvalue equal to zero, Hα(G) ≤ Hα(Kn) by 
Proposition 3.1. �

For the minimum over connected graphs, we make the following conjecture.

Conjecture 3.3. Let α > 1. For any connected graph G on n vertices,

Hα(K1,n−1) ≤ Hα(G).

The conjecture has been checked for α = 1.1, 1.5, 5, 10 for up to 8 vertices by Sage
using code in [4], and is proved for α = 2 in Theorem 3.8 below. Notice that since 
limα→1+ Hα(G) = S(G), Conjecture 3.3 implies Conjecture 1.2.

The relationship between H2(G) and H2(H) can be described in terms of the degrees 
of the vertices of G and H. Let d1, . . . , dn be the degree sequence of G. Define

tr2(G) :=
∑n

i=1 d
2
i + dG
2 = tr(ρ(G)2).
dG
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From (2), H2(G) = − log2 (tr2(G)), so tr2(G) ≥ tr2(H) if and only if H2(G) ≤ H2(H). 
Therefore, Conjecture 3.3 for α = 2 is equivalent to saying tr2(G) ≤ tr2(K1,n−1) for all 
connected graphs G on n vertices.

The base case of the proof involves trees, and is proved by using the notion of 
majorization. Let γ = {ci}ni=1 and β = {bi}ni=1 be two sequences of nonnegative in-
tegers with 

∑n
i=1 ci =

∑n
i=1 bi. Assuming the numbers are labeled such that c1 ≥ c2 ≥

· · · ≥ cn and b1 ≥ b2 ≥ · · · ≥ bn, we say that γ majorizes β if for all k
k∑

i=1
ci ≥

k∑
i=1

bi,

where the majorization is said to be strict if one of the inequalities is strict. The next 
proposition is well known (and easy to prove from the definition).

Proposition 3.4. Let γ = {ci}ni=1 and β = {bi}ni=1. If γ majorizes β, then 
∑n

i=1 c
2
i ≥∑n

i=1 b
2
i , and the inequality is strict if the majorization is strict.

Proposition 3.5. Among trees on n vertices, the star K1,n−1 is the unique tree that at-
tains the minimum Rényi 2-entropy, and the path Pn is the unique tree that attains the 
maximum Rényi 2-entropy.

Proof. For fixed n, let γ = {di}ni=1 be the degree sequence of a tree T , in non-increasing 
order. Since the degree sum for every tree is equal to 2n − 2, it is enough to show that 
the degree sequence of K1,n−1 strictly majorizes the degree sequence of any other tree 
and the degree sequence of any other tree strictly majorizes the degree sequence of Pn.

Since 1 ≤ di for all i and 
∑n

i=1 di = 2n − 2,
k∑

i=1
di ≤ (2n− 2) − (n− k)

and K1,n is the only tree that attains all equality, so H2(K1,n) < H2(T ) for all trees T
except K1,n itself.

On the other hand, every tree has at least two leaves, so dn−1 = dn = 1. Under this 
condition, Pn is the only graph such that {di}n−2

i=1 is evenly distributed. Hence every 
other sequence strictly majorizes the degree sequence of Pn, so H2(Pn) > H2(T ) for all 
trees T �= Pn. �

The next result is well known (and straightforward to prove).

Lemma 3.6. Let {si}ki=1 and {ti}ki=1 be positive real numbers. Then

min
i

{
si
ti

}
≤

∑k
i=1 si∑k
i=1 ti

≤ max
i

{
si
ti

}
.

If the ratios si are not constant, then both inequalities are strict.
ti
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Lemma 3.7. Let G be a connected graph and e ∈ E(G). If tr2(G) ≤ tr2(K1,n−1), then 
tr2(G + e) < tr2(K1,n−1).

Proof. Assume that e = uv with degG u = a and degG v = b. Let {di}ni=1 be the degree 
sequence of G. Then

tr2(G + e) =
(
2a + 2b + 2 +

∑n
i=1 d

2
i

)
+ (2 +

∑n
i=1 di)

(
∑n

i=1 di)
2 + 4 (

∑n
i=1 di) + 4

=
(∑n

i=1 d
2
i +

∑n
i=1 di

)
+ (2a + 2b + 4)

(
∑n

i=1 di)
2 + (4 + 4

∑n
i=1 di)

.

Next we show that

2a + 2b + 4
4 + 4

∑n
i=1 di

< tr2(K1,n−1) = 1
4 + 3

4(n− 1) ,

by showing

2a + 2b + 4 <

(
1 + 3

n− 1

)(
1 +

n∑
i=1

di

)
.

Since G must have at least a + b edges, 
∑n

i=1 di ≥ 2a + 2b; also, since G is connected, ∑n
i=1 di ≥ 2(n − 1). Thus

(
1 + 3

n− 1

)(
1 +

n∑
i=1

di

)
= 1 +

(
n∑

i=1
di

)
+ 3

n− 1 +
(

3
n− 1

n∑
i=1

di

)

> 1 + 2a + 2b + 3 · 2(n− 1)
n− 1

> 2a + 2b + 4.

Now by Lemma 3.6 and the assumption tr2(G) ≤ tr2(K1,n−1), we know tr2(G + e) <
tr2(K1,n−1). �
Theorem 3.8. Let G be a connected graph on n vertices other than K1,n−1. Then

H2(K1,n−1) < H2(G).

Proof. Since every connected graph has a spanning tree as a subgraph, by Theorem 3.5
and Lemma 3.7 we have tr2(G) < tr2(K1,n−1). Consequently, H2(K1,n−1) < H2(G). �
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4. Comparison of von Neumann entropy and graph operations and parameters

In this section we examine the effect on von Neumann entropy of adding an edge and 
show von Neumann entropy is not comparable to many graph parameters. The next result 
shows that adding an edge is able to decrease von Neumann entropy slightly, providing 
a negative answer to Question 1.7, which was first asked in [8]. It is straightforward to 
verify.

Proposition 4.1. Let v and u be the two vertices of degree n − 2 in K2,n−2, and define 
the edge e = vu. Then:

1. spec(ρ(K2,n−2)) =
{

n
4n−8 ,

n−2
4n−8 ,

1
2n−4

(n−3)
, 0
}

and

spec(ρ(K2,n−2 + e)) =
{

n
4n−6

(2), 1
2n−3

(n−3)
, 0
}

2. S(K2,n−2) = 1
2 + n

4n−8 log2
4n−8

n + n−3
2n−4 log2(2n − 4) and

S(K2,n−2 + e) = n
2n−3 log2

4n−6
n + n−3

2n−3 log2(2n − 3)

For n ≥ 5, S(K2,n−2) > S(K2,n−2 + e).

Proposition 4.1 gives a family of graphs K2,n−2 such that the ratio of S(K2,n−2 +
e)/S(K2,n−2) to dG

dG+2 goes to 1 as n goes to infinity; thus in the asymptotic sense the 
inequality is tight.

On the other hand, an examination of the proof [7, Proposition 3.1] for density ma-
trices and its extension to graphs in [8] shows that the inequalities in Theorem 1.6 are 
strict unless the density matrices of G and H are identical, which cannot happen for 
non-identical graphs (isomorphism does not suffice). Therefore, for any graphs G and H
with disjoint edge sets, the inequalities in Theorem 1.6 are always strict.

Inspired by “algebraic connectivity augmentation” of a graph, the computational com-
plexity of which is explored in [5], we define the following decision problem.

Problem. EntropyAugmentation

Input: A graph G = (V, E), a non-negative integer k, a positive real number x ∈ R
+.

Output: YES if and only if there exists a subset A ∈ E(G) of size |A| ≤ k such that the 
von Neumann entropy of the augmented graph S((V, E + A)) ≥ x.

Since algebraic connectivity augmentation is NP-complete, we suggest that by similar 
reasoning it may be possible to prove that this problem is NP-hard. Its inclusion in NP 
is of course trivial, the certificate being the edge e that “augments” the entropy by the 
required amount. We leave the following question open.

Question 4.2. Is EntropyAugmentation an NP-complete decision problem?
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Fig. 1. α′(G1) < α′(G2) and S(G1) > S(G2).

Fig. 2. diam(G1) < diam(G2) and S(G1) > S(G2).

Fig. 3. Δ(G1) < Δ(G2) and S(G1) < S(G2).

We have tried to get von Neumann entropy to behave in concert with other graph 
parameters for a fixed number of vertices and edges. For example, it was suggested that 
α′(G) < α′(H) implies S(G) < S(H), where α′(G) is the matching number, but this is 
not true (see Example 4.3 below). Von Neumann entropy and diameter are noncompa-
rable (see Example 4.4 below), and von Neumann entropy and maximum degree are also 
noncomparable (see Example 4.5 below).

Example 4.3. Let G1 and G2 be the graphs shown in Fig. 1. Then α′(G1) = 2 < 3 =
α′(G2), but S(G1) ≈ 1.94466 > 1.94188 ≈ S(G2). Examples with the reverse relation 
are easy to find, such as α′(K1,3) = 1 < 2 = α′(P4) and S(K1,3) ≈ 1.25163 < 1.31888 ≈
S(P4).

Example 4.4. Let G1 and G2 be the graphs shown in Fig. 2. Then diam(G1) = 4 < 5 =
diam(G2), but S(G1) ≈ 2.37406 > 2.35254 ≈ S(G2). Examples with the reverse relation 
are easy to find, such as diam(K1,n−1) = 2 < 3 = diam(P4) and S(K1,3) < S(P4).

Example 4.5. Let G1 and G2 be the graphs shown in Fig. 3. Then Δ(G1) = 4 < 5 =
Δ(G2), but S(G1) ≈ 2.26678 < 2.27741 ≈ S(G2). Examples with the reverse relation 
are easy to find, such as Δ(K1,n−1) = n − 1 > 2 = Δ(Pn) and S(K1,n−1) < S(Pn), for 
n ≥ 4.

Early in the development of spectral graph theory it was asked whether there exist 
nonisomorphic cospectral graphs, i.e., graphs having the same spectrum (for a particular 
matrix associated with the graph). For each of the matrices associated with a graph, such 
as the adjacency and Laplacian matrices, nonisomorphic cospectral have been found. 
Thus it is natural to ask whether there exist noncospectral graphs having the same 
von Neumann entropy, i.e., coentropy graphs. A search with Sage produced numerous 
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Fig. 4. A graph G that has the same von Neumann entropy as K2,6 but a different spectrum.

examples of order eight coentropy graphs having different spectra, including those in 
Example 4.6.

Example 4.6. Let G be the graph shown in Fig. 4. Then S(G) = log2 14 − 4
7 log2 8 =

S(K2,6), but spec(ρ(G)) = {1
3 , 

1
6
(2)

, 18
(2)

, 1
24

(2)
, 0} whereas spec(ρ(K2,6)) =

{
1
3 ,

1
4 ,

1
12

(5)
, 0
}

.

5. Conclusion

The behavior of von Neumann entropy is challenging to understand. While many rules, 
such as ‘adding an edge raises entropy’ work ‘most of the time,’ as we saw in Proposi-
tion 4.1 adding an edge can decrease von Neumann entropy. Thus the Rényi-Quantum 
Star Test, which works for almost all graphs, seems natural for entropy. Understanding 
those graphs that fail this test may help to prove Conjecture 1.2.

Problem 5.1. Characterize graphs that fail the Rényi-Quantum Star Test.

We make the following observations on graphs of order at most eight that fail the 
Rényi-Quantum Star Test:

1. All those that fail have a leaf (degree one vertex).
2. All those that fail are planar.

Another approach to prove Conjecture 1.2 would be to establish Conjecture 3.3.
As noted in Section 4 we have not managed to find an interesting parameter that has 

nice correlation with (and is not trivially related to) the von Neumann entropy, i.e. a 
parameter β such that for any two graphs G and H, β(G) > β(H) implies S(G) > S(H).

Problem 5.2. Identify some interesting graph parameter(s) β(G) such that β(G) > β(H)
implies S(G) > S(H).
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