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The maximum nullity M(G) and the Colin de Verdière type 
parameter ξ(G) both consider the largest possible nullity 
over matrices in S(G), which is the family of real symmetric 
matrices whose i, j-entry, i �= j, is nonzero if i is adjacent 
to j, and zero otherwise; however, ξ(G) restricts to those 
matrices A in S(G) with the Strong Arnold Property, which 
means X = O is the only symmetric matrix that satisfies 
A ◦X = O, I ◦X = O, and AX = O. This paper introduces 
zero forcing parameters ZSAP(G) and Zvc(G), and proves that 
ZSAP(G) = 0 implies every matrix A ∈ S(G) has the Strong 
Arnold Property and that the inequality M(G) − Zvc(G) ≤
ξ(G) holds for every graph G. Finally, the values of ξ(G)
are computed for all graphs up to 7 vertices, establishing 
ξ(G) = �Z�(G) for these graphs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A minimum rank problem for a graph G is to determine what is the smallest possible 
rank, or equivalently the largest possible nullity, among a family of matrices associated 
with G. One classical way to associate matrices to a graph G is through S(G), which is 
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defined as the set of all real symmetric matrices whose i, j-entry, i �= j, is nonzero when-
ever i and j are adjacent in G, and zero otherwise. Note that the diagonal entries can 
be any real number. Another association is S+(G), which is the set of positive semidef-
inite matrices in S(G). Thus, the maximum nullity M(G) and the positive semidefinite 
maximum nullity M+(G) are defined as

M(G) = max{null(A) : A ∈ S(G)}, and

M+(G) = max{null(A) : A ∈ S+(G)}.

The classical minimum rank problem is a branch of the inverse eigenvalue problem, 
which asks for a given multi-set of real numbers, is there a matrix in S(G) such that 
its spectrum is composed of these real numbers. If λ is an eigenvalue of some matrix 
A ∈ S(G), then its multiplicity should be no higher than M(G), for otherwise A − λI

has nullity higher than M(G). Similarly, M+(G) provides an upper bound for the mul-
tiplicities of the smallest and the largest eigenvalues. Also, M+(G) is closely related to 
faithful orthogonal representations [12].

Other families of matrices are defined through the Strong Arnold Property. A matrix A

is said to have the Strong Arnold Property (or SAP) if the zero matrix is the only 
symmetric matrix X that satisfies the three conditions A ◦ X = O, I ◦ X = O, and 
AX = O. Here I and O are the identity matrix and the zero matrix of the same size 
as A, respectively, and ◦ is the Hadamard (entrywise) product of matrices. By adding 
the SAP to the conditions of the abovementioned families, the Colin de Verdière type 
parameters are defined as

ξ(G) = max{null(A) : A ∈ S(G), A has the SAP} [5], and

ν(G) = max{null(A) : A ∈ S+(G), A has the SAP} [8].

These parameters are variations of the original Colin de Verdière parameter μ(G) [7], 
which is defined as the maximum nullity over matrices A such that

• A ∈ S(G) and every off-diagonal entry of A is non-positive (called a generalized 
Laplacian of G),

• A has exactly one negative eigenvalue including the multiplicity, and
• A has the SAP.

In order to see how the SAP makes a difference between these parameters, we define 
Mμ(G) as the maximum nullity of the same family of matrices by ignoring the SAP, 
i.e. the maximum nullity of a generalized Laplacian A of G such that A has exactly one 
negative eigenvalue.

The SAP gives ξ(G), ν(G), and μ(G) nice properties. For example, they are minor 
monotone [12]. A graph H is a minor of a graph G if H can be obtained from G by a 
sequence of deleting edges, deleting vertices, and contracting edges; a graph parameter ζ
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is said to be minor monotone if ζ(H) ≤ ζ(G) whenever H is a minor of G. By the graph 
minor theorem (e.g., see [10]), for a given integer d and a minor monotone parameter ζ, 
the minimal forbidden minors for ζ(G) ≤ d consist of only finitely many graphs. Here 
ζ can be ξ, ν or μ. More specifically, μ(G) ≤ 3 if and only if G is a planar graph [18], 
which is characterized by the forbidden minors K5 and K3,3.

However, the SAP also makes the Colin de Verdière type parameters less controllable 
by the existing tools. For example, zero forcing parameters, which will be defined in 
Section 1.2, were used extensively as a bound for the minimum rank problem. For the 
classical zero forcing number Z(G), it is known that M(G) ≤ Z(G) for all graphs [2]; 
and M(G) = Z(G) when G is a tree or |V (G)| ≤ 7 [2,9]. An analogy for ξ(G) is the 
minor monotone floor of the zero forcing number, which is denoted as �Z�(G) and will 
be defined in Section 4. It is known that ξ(G) ≤ �Z�(G) for all graphs [4]. The similar 
statement ξ(G) = �Z�(G) is not always true when G is a tree [4], and no results about 
ξ(G) and �Z�(G) for small graphs are known.

The main goal of this paper is to establish a connection between zero forcing param-
eters and the SAP, and derive consequences. This leads to some questions. Does some 
graph structure guarantee that every A ∈ S(G) has the SAP? Thus, the maximum nullity 
does not change when the SAP condition is added. Specifically, when A is a generalized 
Laplacian of some graph G and has exactly one negative eigenvalue, some graph struc-
tures do guarantee that A has the SAP [15,21]; however, general results on this problem 
remain unknown. On the other hand, is there a strategy to perturb any given matrix 
such that it guarantees the SAP? Thus, the rank changed by the perturbation gives an 
upper bound for M(G) − ξ(G).

In Section 2, we introduce a new parameter ZSAP(G) and its variants Z�
SAP and 

Z+
SAP, and prove in Theorem 2.6 that under the condition ZSAP(G) = 0, every matrix 

A ∈ S(G) has the SAP. Thus, ξ(G) = M(G), ν(G) = M+(G), and μ(G) = Mμ(G) when 
ZSAP(G) = 0, so finding the values of Colin de Verdière type parameters is equivalent 
to finding the values of the corresponding parameters. Table 1 in Section 2.2 indicates 
that there are actually a considerable proportion of graphs that have this property.

In Section 3, another parameter Zvc(G) and its variant Z�
vc(G) are defined, and Theo-

rem 3.2 states that M(G) −ξ(G) ≤ Zvc(G) for every graph G. With the help of ZSAP(G), 
Zvc(G), and some existing theorems, Section 4 provides the result that ξ(G) = �Z�(G)
for graphs G up to 7 vertices.

All parameters introduced in this paper and their relations are illustrated in Fig. 1. 
A brief description of the related theorems is given on the sides. A line between two 
parameters means the lower one is less than or equal to the upper one.

Throughout the paper, the neighborhood of a vertex i in a graph G is denoted as 
NG(i), while the closed neighborhood is denoted as NG[i], which equals NG(i) ∪ {i}. 
The induced subgraph on a vertex set W of G is denoted as G[W ]. If A is a matrix, 
U and W are subsets of the row and column indices of A respectively, then A[U, W ] is 
the submatrix of A induced on the rows of U and columns of W ; if U and W are ordered 
sets, then permute the rows and columns of this submatrix accordingly.
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ZSAP(G) = 0 implies
every A ∈ S(G) has the SAP
Theorem 2.6

ZSAP Zvc
M(G) − Zvc(G) ≤ ξ(G)

Theorem 3.2

Z�
SAP(G) = 0 implies

every A ∈ S�(G) has the SAP
Theorem 2.16

Z�
SAP Z�
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vc(G) ≤ ν(G)
Theorem 3.6
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SAP(G) = 0 implies

every A ∈ S+(G) has the SAP
Theorem 2.16

Z+
SAP

0 0

Fig. 1. Parameters introduced in this paper.

1.1. SAP system and its matrix representation

Let G be a graph on n vertices, and m = |E(G)|. In order to see if a matrix A ∈ S(G)
has the SAP or not, the matrix X can be viewed as a symmetric matrix with m variables 
at the positions of non-edges so that X satisfies A ◦ X = I ◦ X = O. Next, AX = O

leads to n2 restrictions on the m variables, which forms a linear system. Call this linear 
system the SAP system of A, which can also be written as an n2 ×m matrix.

Definition 1.1. Let G be a graph on n vertices, m = |E(G)|, and A = [ ai,j ] ∈ S(G). 
Given an order of the set of non-edges, the SAP matrix of A with respect to this order 
is an n2 ×m matrix Ψ whose rows are indexed by pairs (i, k) and columns are indexed 
by the non-edges {j, h} such that

Ψ(i,k),{j,h} =
{

0 if k /∈ {j, h},
ai,j if k ∈ {j, h} and k = h.

The rows follow the order (i, k) < (j, h) if and only if k < h, or k = h and i < j; the 
columns follow the order of the non-edges.

Remark 1.2. Let G be a graph, A ∈ S(G), and Ψ the SAP matrix of A with respect a 
given order of the non-edges. The columns of Ψ correspond to the m variables in X, and 
the row for (i, j) represents the equation (AX)i,j = 0. Therefore, a matrix has the SAP 
if and only if the corresponding SAP matrix is full-rank.

The rows of Ψ can be partitioned into n blocks, each having n elements. The k-th 
block are those rows indexed by (i, k) for 1 ≤ i ≤ n. Let vj be the j-th column of A. 
For the submatrix of Ψ induced by the rows in the k-th block, the {j, h} column is vj if 
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k ∈ {j, h} and k = h, and is a zero vector otherwise. Equivalently, on the {i, j} column 
of Ψ, the i-th block is vj , the j-th block is vi, while other blocks are zero vectors.

Example 1.3. Let G = P4 be the path on four vertices, with the vertices labeled by 
{1, 2, 3, 4} in the path order. Consider a matrix A ∈ S(G) and the matrix X with three 
variables, as shown below.

AX =

⎡
⎢⎢⎢⎣

1 2 3 4

1 −1 1 0 0
2 1 −1 1 0
3 0 1 −1 1
4 0 0 1 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 2 3 4

0 0 x{1,3} x{1,4}
0 0 0 x{2,4}

x{1,3} 0 0 0
x{1,4} x{2,4} 0 0

⎤
⎥⎥⎥⎦

The SAP matrix of A with respect to the order ({1, 3}, {1, 4}, {2, 4}) is a matrix Ψ
representing the linear system for AX = O with three variables x{1,3}, x{1,4}, x{2,4}. For 
convenience, write A = [v1 v2 v3 v4 ], where vj is the j-th column vector of A. 
Now AX = O means

∑
j /∈NG[k]

x{j,k}vj = 0 for each k ∈ V (G).

Thus,

Ψ =

⎡
⎢⎢⎢⎣

x{1,3} x{1,4} x{2,4}

1 v3 v4 0
2 0 0 v4

3 v1 0 0
4 0 v1 v2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x{1,3} x{1,4} x{2,4}

(1,1) 0 0 0
(2,1) 1 0 0
(3,1) −1 1 0
(4,1) 1 −1 0
(1,2) 0 0 0
(2,2) 0 0 0
(3,2) 0 0 1
(4,2) 0 0 −1
(1,3) −1 0 0
(2,3) 1 0 0
(3,3) 0 0 0
(4,3) 0 0 0
(1,4) 0 −1 1
(2,4) 0 1 −1
(3,4) 0 0 1
(4,4) 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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1.2. Zero forcing parameters

On a graph G, the conventional zero forcing game (ZFG) is a color-change game such 
that each vertex is colored blue or white initially, and then the color change rule (CCR) 
is applied repeatedly. If starting with an initial blue set B ⊆ V (G) and every vertex turns 
blue eventually, this set B is called a zero forcing set (ZFS). The zero forcing number is 
defined as the minimum cardinality of a ZFS.

Different types of zero forcing numbers are discussed in the literature (e.g., see [3,4,12]). 
Most of them serve as upper bounds of different types of maximum nullities. Here we 
consider three types of the zero forcing numbers Z, Z�, Z+ with the corresponding color 
change rules:

• (CCR-Z) If i is a blue vertex and j is the only white neighbor of i, then j may turn 
blue.

• (CCR-Z�) CCR-Z can be used to perform a force. Or if i is a white vertex without 
white neighbors and i is not isolated, then i may turn blue.

• (CCR-Z+) Let B be the set of blue vertices at some stage and W the vertices of a 
component of G −B. CCR-Z is applied to G[B ∪W ] with blue vertices B.

When a zero forcing game is mentioned, it is equipped with a color change rule, and we 
use i → j to denote a corresponding force (i.e. i forcing j to become blue). Note that 
for CCR-Z�, it is possible to have i → i. Also, at the same stage, the color change rule 
might be able to apply to different i and j (or W for CCR-Z+), so the player has the 
choice to decide where to apply the rule, though the final coloring where no more color 
change rules can be applied is always the same.

It is known [2–4] that

M(G) ≤ Z(G), M+(G) ≤ Z+(G), and Z+(G) ≤ Z�(G) ≤ Z(G).

Denote S�(G) as those matrices in S(G) whose i, i-entry is zero if and only if vertex i is 
an isolated vertex. Then every matrix A ∈ S�(G) has nullity at most Z�(G) [13].

All these results rely on Proposition 1.4.

Proposition 1.4. [2,3,13] Let G be a graph on n vertices. Suppose at some stage B is the 
set of blue vertices.

• If i → j under CCR-Z, then for any matrix A ∈ S(G) with column vectors {vs}ns=1, ∑
s/∈B xsvs = 0 implies xj = 0.

• If i → j under CCR-Z�, then for any matrix A ∈ S�(G) with column vectors {vs}ns=1, ∑
s/∈B xsvs = 0 implies xj = 0.

• If i → j under CCR-Z+, then for any matrix A ∈ S+(G) with column vectors 
{vs}ns=1, 

∑
s/∈B xsvs = 0 implies xj = 0.
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2. SAP zero forcing parameters

In this section, we introduce a new parameter ZSAP(G) and prove that if ZSAP(G) = 0
then every matrix A ∈ S(G) has the SAP, which implies M(G) = ξ(G). We also introduce 
similar parameters and results for other variants.

First we give two examples illustrating what we called in Definition 2.4 the forcing 
triple and the odd cycle rule.

Example 2.1. Consider the graph P4. Let A be the matrix as in Example 1.3 and vj its 
j-th column. In Example 1.3, we know the SAP matrix of A can be written as

⎡
⎢⎢⎢⎣

x{1,3} x{1,4} x{2,4}

1 v3 v4 0
2 0 0 v4

3 v1 0 0
4 0 v1 v2

⎤
⎥⎥⎥⎦.

Since v4 is the only nonzero vector on the second block-row, x{2,4} must be 0 in this linear 
system. Similarly, v1 is the only nonzero vector on the third block-row, so x{1,3} = 0. 
Provided that x{1,3} = x{2,4} = 0, the structure on the first block-row forces x{1,4} = 0. 
Since this argument holds for every matrix in S(G), every matrix in S(G) has the SAP.

Example 2.2. Let G = K1,3. Consider the matrices A and X as

A =

⎡
⎢⎢⎣
d1 a1 a2 a3
a1 d2 0 0
a2 0 d3 0
a3 0 0 d4

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣

0 0 0 0
0 0 x{2,3} x{2,4}
0 x{2,3} 0 x{3,4}
0 x{2,4} x{3,4} 0

⎤
⎥⎥⎦ .

Let vj be the j-th column of A. Then the SAP matrix of A with respect to the order 
({2, 3}, {3, 4}, {2, 3}) can be written as

Ψ =

⎡
⎢⎢⎢⎣

x{2,3} x{3,4} x{2,4}

1 0 0 0
2 v3 0 v4

3 v2 v4 0
4 0 v3 v2

⎤
⎥⎥⎥⎦.

Recall that the row with index (i, j) is the i-th row in the j-th block. Thus the submatrix 
induced by rows {(1, 2), (1, 3), (1, 4)} is

⎡
⎣ a2 0 a3
a1 a3 0

⎤
⎦ ,
0 a2 a1
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whose determinant is always nonzero if a1, a2, a3 �= 0. This means the SAP matrix of A
is always full-rank, regardless the choice of A ∈ S(G). Hence every matrix A ∈ S(G) has 
the SAP. The reason behind this is because a 3-cycle appears in G.

As shown in Example 2.1 and Example 2.2, some graph structures guarantee that 
every matrix described by the graph has the SAP. This assurance is given by forcing 
xe = 0 step by step or by the occurrence of some odd cycle inside G. Utilizing these 
ideas, we design the SAP zero forcing game, where the information xe = 0 is stored by 
coloring the non-edge e blue.

Different from the conventional zero forcing game, the SAP zero forcing game is 
coloring “non-edges” to be blue or white, instead of coloring vertices; also, a set of initial 
blue non-edges is called a zero forcing set if every non-edge turns blue eventually by 
repeated applications of the given color change rules.

Let G be a graph and i ∈ V (G). Recall that NG(i) is the neighborhood of i in G. For 
BE a set of edges (2-sets), by considering 〈BE〉 as the graph with its edge set BE on the 
required vertices, the notation N〈BE〉(i) denotes the vertices j with {i, j} ∈ BE .

The definition of ZSAP(G) uses the concept of local games, which we now define.

Definition 2.3. Let G be a graph with some non-edges BE colored blue, and k ∈ V (G). 
The local game φZ(G, BE , k) is the conventional zero forcing game on G equipped with 
CCR-Z and the initial blue set φk(G, BE) := NG[k] ∪N〈BE〉(k). When Z is replaced by 
another zero forcing rules, such as Z� or Z+, the setting remains the same but a different 
rule is applied.

Definition 2.4. For a graph G, the SAP zero forcing number ZSAP(G) is the minimum 
number of blue non-edges such that every non-edge will become blue by repeated appli-
cations of the color change rule for ZSAP (CCR-ZSAP):

• Suppose at some stage, BE is the set of blue non-edges and {j, k} is a white non-edge. 
If i → j in φZ(G, BE , k) for some vertex i, then the non-edge {j, k} may turn blue. 
This is denoted as (k : i → j).

• Let GW be the graph whose edges are the white non-edges. If for some vertex i, 
GW [NG(i)] contains a component that is an odd cycle C, then all edges in E(C) may 
turn blue. This is denoted as (i → C).

The three vertices i, j, and k in the first rule are called a forcing triple; the second rule 
is called the odd cycle rule.

Note that a complete graph G = Kn is considered as having all non-edges blue initially, 
so ZSAP(G) = 0. The odd cycle rule follows a similar idea from the odd cycle zero forcing 
number [20].
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Lemma 2.5. For any nonzero real numbers a1, a2, . . . , an with n odd, a matrix of the form
⎡
⎢⎢⎢⎢⎢⎢⎣

a2 0 · · · 0 an
a1 a3 0 0

0 a2
. . . . . .

...
... 0

. . . an 0
0 · · · 0 an−1 a1

⎤
⎥⎥⎥⎥⎥⎥⎦

is nonsingular.

Proof. Let A be a matrix of the described form. When n is odd,

det(A) = 2
n∏

i=1
ai,

which is nonzero provided that ai’s are all nonzero. Hence A is nonsingular. �
Theorem 2.6. Suppose G is a graph with ZSAP(G) = 0. Then every matrix in S(G) has 
the SAP. Therefore, M(G) = ξ(G), M+(G) = ν(G), and Mμ(G) = μ(G).

Proof. Let A = [ ai,j ] ∈ S(G) with vj as the j-th column vector. Pick an order for the 
set of non-edges, and let Ψ be the SAP matrix for A with respect to the given order. 
Suppose x is a vector such that Ψx = 0. Then x = (xe)e∈E(G) such that the entries of x
are indexed by the non-edges of G in the given order. We relate the SAP zero forcing 
game to the zero-nonzero pattern of x.

Claim 1: Suppose at some stage, BE is the set of blue non-edges, and (k : i → j) is a 
forcing triple. Then xe = 0 for all e ∈ BE implies x{j,k} = 0.

To establish the claim, recall that the condition Ψx = 0 on those rows in the k-th 
block means

∑
s/∈NG[k]

x{s,k}vs = 0.

Suppose xe = 0 for all e ∈ BE . Then this equality reduces to
∑

s/∈NG[k]∪N〈BE〉(k)

x{s,k}vs = 0.

Since by Definition 2.3 the set φk(G, BE) = NG[k] ∪N〈BE〉(k) is exactly the set of initial 
blue vertices in φZ(G, BE , k), the force i → j in φZ(G, BE , k) implies x{j,k} = 0 by 
Proposition 1.4.

Claim 2: Suppose at some stage, BE is the set of blue non-edges, and (i → C) is 
applied by the odd cycle rule. Then xe = 0 for all e ∈ BE implies xe = 0 for every 
e ∈ E(C).
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To establish the claim, let GW be the graph whose edges are the white non-edges at 
this stage. Since (i → C) is applied by the odd cycle rule, C is a component in GW [NG(i)]
and |V (C)| = d is an odd number. Following the cycle order, write the vertices in V (C)
as {ks}ds=1, and es = {ks, ks+1}, with the index taken modulo d.

Denote U = {(i, ks)}ds=1, W1 = {es}ds=1, and W2 as those white non-edges not in W1. 
Now {BE , W1, W2} forms a partition of E(G). We have no control about Ψ[U, BE], but 
will show Ψ[U, W1] is always nonsingular and Ψ[U, W2] = O. Consequently, xe = 0 for 
all e ∈ BE implies xe = 0 for every non-edge e ∈ W1 = E(C).

For each (i, ks) ∈ U , Ψ(i,ks),es−1 = ai,ks−1 and Ψ(i,ks),es = ai,ks+1 , while both of them 
are nonzero; at the same time, Ψ(i,ks),e = 0 for all e ∈ W1 other than es−1 and es, since 
e is not incident to ks. Therefore, Ψ[U, W1] is of the form described in Lemma 2.5, and 
it must be nonsingular.

On the other hand, consider a non-edge {j, h} ∈ W2 and (i, ks) ∈ U . If ks /∈ {j, h}, 
then Ψ(i,ks),{j,h} = 0. If ks ∈ {j, h}, say ks = h, then j /∈ NG(i) (for otherwise ks has 
degree at least 3 in GW [NG(i)] and the component containing ks cannot be an odd 
cycle); this means {i, j} /∈ E(G) and Ψ(i,ks),{j,h} = ai,j = 0. Therefore, Ψ[U, W2] = O.

By the claims, ZSAP(G) = 0 means all of the xe will be forced to zero, so x = 0 is the 
only vector in the right kernel of Ψ. This means Ψ is full-rank.

Since the argument works for every matrix A ∈ S(G), ZSAP(G) = 0 implies every 
matrix A ∈ S(G) has the SAP. Consequently, M(G) = ξ(G), M+(G) = ν(G), and 
Mμ(G) = μ(G). �
Remark 2.7. With and without the restriction of having the SAP, the inertia sets that 
can be achieved by matrices in S(G) are considered in the literature (e.g., see [1,6]). 
With the help of Theorem 2.6, if ZSAP(G) = 0, then these two inertia sets are the same.

Corollary 2.8. If G has no isolated vertices and G is a forest, then ZSAP(G) = 0 and 
every matrix in S(G) has the SAP.

Proof. Suppose at some stage GW is the graph whose edges are the white non-edges. 
Since G is a forest, GW always has a leaf k, unless GW contains no edges. Let j be the 
only neighbor of k in GW , and let i be one of the neighbors of j in G. Since G has no 
isolated vertices, i always exists. Thus, in the local game φZ(G, E(G) \E(GW ), k), every 
vertex is blue except j, so i → j. Therefore, (k : i → j) can be applied and {j, k} turns 
blue. Continuing this process, all non-edges become blue, so ZSAP(G) = 0. �

Note that the condition that G has no isolated vertices is crucial for Corollary 2.8. For 
example, ZSAP(K1,n) > 0 when n ≥ 1. In fact, ZSAP(G) = 0 does not happen only when 
G is a forest. Example 2.9 gives a graph G such that G is not a forest and ZSAP(G) = 0. 
We will see in Table 1 that there are a considerable number of graphs having the property 
ZSAP(G) = 0.
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1 2

3

4

5

Step Forcing triple Forced non-edge

1 (2 : 3 → 4) {2, 4}
2 (4 : 2 → 1) {4, 1}
3 (5 : 4 → 3) {5, 3}
4 (3 : 2 → 1) {3, 1}
5 (5 : 2 → 1) {5, 1}

Fig. 2. The graph G for Example 2.9 and the forcing process.

Example 2.9. Let G be the graph shown in Fig. 2. Following the steps listed in Fig. 2, 
every non-edge turns blue, so ZSAP(G) = 0. Observe that at the beginning, the graph 
GW of white non-edges is the same as G, and GW [NG(2)] is a 3-cycle C, so one can also 
use the odd cycle rule to perform (2 → C). This will accelerate the process but not change 
the result. By Theorem 2.6, every matrix A ∈ S(G) has the SAP, so ξ(G) = M(G). Since 
the number of vertices is no more than 7, M(G) = Z(G) = 2 and thus ξ(G) = 2.

Similar to Corollary 2.8, Remark 2.10 also provides some intuition of the SAP zero 
forcing process.

Remark 2.10. Suppose at some stage BE is the set of blue non-edges on a graph G. Let 
GW be the graph whose edges are the white non-edges. If for some vertex i, the induced 
subgraph GW [NG(i)] has a leaf k with its only neighbor j in GW [NG(i)], then (k : i → j)
can be applied on G, because in φZ(G, BE , k) every vertex in NG(i) is blue except j.

This means whenever GW [NG(i)] contains a component that is a tree, every non-edge 
in this tree can turn blue inductively by forcing triples. Consequently, if at some stage 
(i → C) can be applied but some non-edges from C turns blue because of some forcing 
triples or other odd cycle rules, all edges in E(C) can still turn blue by forcing triples, 
but not by (i → C).

Corollary 2.11. Let G be any graph with diameter 2 and maximum degree at most 3. 
Then ZSAP(G) = 0. In particular, when G is the Petersen graph, ZSAP(G) = 0, so 
ξ(G) = M(G) = 5.

Proof. For every white non-edge {j, k}, there is at least one common neighbor i of j
and k, since the diameter is 2. By the assumption, degG(i) ≤ 3. Since i has at least two 
neighbors, degG(i) ≥ 2. If degG(i) = 2, then (k : i → j). Suppose degG(i) = 3. On the 
set NG(i), the white non-edges can form P2, P3, or C3. In the case of P2 and P3, all 
non-edges in NG(i) turn blue by the argument in Remark 2.10. If it is C3, then apply 
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the odd cycle rule (i → C). Since this argument works for every white non-edge, all 
non-edges can turn blue. Hence ZSAP(G) = 0.

Let G be the Petersen graph. Then G is a 3-regular graph with diameter 2. Thus, 
ZSAP(G) = 0, and ξ(G) = M(G) by Theorem 2.6. It is known [2] that M(G) = 5. �

In [5], it is asked if ξ(G) ≤ ξ(G − v) + 1 for every graphs G and every vertex v of G. 
Theorem 2.6 answers this question in positive for a large number of graph-vertex pairs.

Corollary 2.12. Let G be a graph and v ∈ V (G). Suppose ZSAP(G − v) = 0. Then 
ξ(G) ≤ ξ(G − v) + 1.

Proof. Since ZSAP(G − v) = 0, ξ(G − v) = M(G − v) by Theorem 2.6. Therefore,

ξ(G) ≤ M(G) ≤ M(G− v) + 1 = ξ(G− v) + 1,

where the inequality M(G) ≤ M(G − v) + 1 is given in [11]. �
Example 2.13. Let G be one of the tetrahedron K4, cube Q3, octahedron G8, dodecahe-
dron G12, or icosahedron G20. Then, ZSAP(G) = 0. This is trivial for tetrahedron, since 
it is a complete graph. The complement of an octahedron is three disjoint edges, which 
is a forest, so ZSAP(G) = 0. For the other three graphs, pick one vertex i and look at 
its neighborhood NG(i). The induced subgraph of G on NG(i) is either a 3-cycle or a 
5-cycle. Thus the odd cycle rule or the argument in Remark 2.10 could be applied, and 
every non-edge in NG(i) turns blue. After doing this to every vertex, by picking one 
vertex and look at its local game, all white non-edges incident to this vertex will turn 
blue. Therefore, ξ(G) = M(G).

It is known [16] that M(K4) = 3 and M(Q3) = 4. Since the octahedron graph is 
strongly regular, in [2] it shows 4 ≤ M(G8); together with the fact Z(G8) ≤ 4, we know 
M(G8) = 4. For G12 and G20, the zero forcing numbers can be computed through the 
computer program and both equal to 6, but the maximum nullity is not yet known.

Definition 2.14. Let G be a graph with some non-edges BE colored blue. The color change 
rule for Z+

SAP (CCR-Z+
SAP) is the following:

• Let {j, k} be a non-edge. If i → j in φZ+(G, BE , k) for some vertex i, then the 
non-edge {j, k} may turn to blue. This is denoted as (k : i → j).

• The odd cycle rule can be used to perform a force.

Similarly, the color change rule of Z�
SAP (CCR-Z�

SAP) is defined through the local 
game φZ�

(G, BE , i). As usual, Z+
SAP(G) (respectively, Z�

SAP) is the minimum number 
of blue non-edges such that every non-edge will become blue by repeated applications of 
CCR-Z+

SAP (respectively, CCR-Z�
SAP).
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Observation 2.15. For any graph G, Z+
SAP(G) ≤ Z�

SAP(G) ≤ ZSAP(G).

By a proof analogous to that of Theorem 2.6, we can establish Theorem 2.16. Observe 
that Z�

SAP(G) = 0 implies Z+
SAP(G) = 0.

Theorem 2.16. Let G be a graph. If Z�
SAP(G) = 0, then every matrix in S�(G) has 

the SAP. If Z+
SAP(G) = 0, then every matrix in S+(G) has the SAP. Therefore, if 

Z+
SAP(G) = 0, then M+(G) = ν(G).

Corollary 2.17. Suppose G is a graph with Z+
SAP(G) = 0. Then ξ(G) ≥ M+(G).

Example 2.18. Let G = Kn1,n2,...,np
be a complete multi-partite graph with n1 ≥ n2 ≥

· · · ≥ np and p ≥ 2. Denote n =
∑p

t=1 nt. Then Z�
SAP(G) = Z+

SAP(G) = 0, so ν(G) =
M+(G) = n − n1 [12]. On the other hand, if n1 ≥ 4, then ZSAP(G) > 0, since none of 
the non-edges in this part can turn blue.

Example 2.19. If T is a tree, then Z+
SAP(T ) = 0. However, not every tree T has 

Z�
SAP(T ) = 0. For example, let G be the graph obtained from K1,4 by attaching four 

leaves to the four existing leaves. In this graph, only the non-edges incident to the center 
vertex can turn blue by CCR-Z�

SAP, so Z�
SAP(G) > 0.

2.1. Graph join

Since the SAP zero forcing process uses a propagation on non-edges, it is interesting 
to consider ZSAP(G) if G has two or more components; that is, G is a join of two or 
more graphs.

Proposition 2.20. Let G and H be two graphs. Then

ZSAP(G ∨H) = ZSAP(G ∨K1) + ZSAP(H ∨K1).

Proof. Let v be the vertex corresponding to the K1 in G ∨K1. Denote E1 = E(G) and 
E2 = E(H). Consider the mapping π : V (G ∨ H) → V (G ∨ K1) such that π(i) = i

if i ∈ V (G) and π(i) = v if i ∈ V (H). Fix a vertex u ∈ V (H), consider the mapping 
π−1 : V (G ∨K1) → V (G ∨H) such that π−1(i) = i if i ∈ V (G) and π−1(v) = u.

Suppose at some stage BE is the set of blue non-edges in G ∨ H, and BE ∩ E1
and BE ∩ E2 are the sets of blue non-edges in G ∨ K1 and H ∨ K1 respectively. Let 
e = {j, k} ∈ E1. If (k : i → j) happens in G ∨H, then (k : π(i) → j) can be applied in 
G ∨K1; if (k : i → j) happens in G ∨K1, then (k : π−1(i) → j) can be applied in G ∨H. 
Also, if e is in some cycle C and (i → C) happens in either G ∨H or G ∨K1, then by the 
definition of the odd cycle rule C must totally fall in V (G). If (i → C) in G ∨H, then 
(π(i) → C) in G ∨K1; if (i → C) in G ∨K1, then (π−1(i) → C) in G ∨H. Similarly, all 
these correspondences work when e ∈ E2.
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Therefore, we can conclude that BE is a ZFS-ZSAP in G ∨H if and only if BE ∩ E1
and BE ∩E2 are ZFS-ZSAP in G ∨K1 and H ∨K1 respectively. �
Example 2.21. The value of ZSAP(G ∨ K1) and the value of ZSAP(G) can vary a lot. 
For example, when G = Kn, we will show that ZSAP(Kn) =

(
n
2
)

and ZSAP(Kn ∨K1) =
ZSAP(K1,n) =

(
n−1

2
)
− 1 when n ≥ 3.

Since there are no edges in Kn, no vertices can make a force in any local game, and 
odd cycle rules cannot be applied, either. This means ZSAP(Kn) =

(
n
2
)
.

For K1,n, color some edges BE of K1,n blue so that the set of white non-edges forms 
a 3-cycle with n − 3 leaves attaching to a vertex of the 3-cycle. Then BE is a ZFS-ZSAP
for K1,n, since the n − 3 leaves can turn blue by forcing triples, and then the 3-cycle can 
turn blue by the odd cycle rule. Therefore, ZSAP(K1,n) ≤

(
n−1

2
)
− 1.

The inequality ZSAP(K1,3) ≤
(3−1

2
)
−1 = 0 implies ZSAP(K1,3) = 0, so we may assume 

n ≥ 4. Suppose BE is a ZFS-ZSAP of K1,n with |BE | =
(
n−1

2
)
− 2. Let GW be the graph 

whose edges are the white non-edges. Then |E(GW )| = n + 1. Obtain a subgraph H of 
GW by deleting leaves and isolated vertices repeatedly until there is no leaves or isolated 
vertices left. By the choice of H, it is either |V (H)| = 0 or H has the minimum degree 
at least two. Since deleting a leaf removes an edge and a vertex, |V (H)| + 1 ≤ |E(H)|, 
implying |E(H)| �= 0 and |V (H)| �= 0. Now H is a graph with minimum degree at least 
two and |V (H)| +1 ≤ |E(H)|; therefore, H must contain a component that is not a cycle 
(so in particular not an odd cycle). Let {j, k} be an edge in this component. If (k : i → j)
force {j, k} to turn blue for some i, then i must be the center vertex of K1,n. However, 
in φZ(G, BE , k), vertex i has at least two white neighbors, because k has degree at least 
two in H. Therefore, no edges in this component can turn blue by either a forcing triple 
or an odd cycle rule, a contradiction. Hence ZSAP(K1,n) =

(
n−1

2
)
− 1.

Proposition 2.22. For any graph G, ZSAP(G ∨K1) ≤ ZSAP(G). If G contains no isolated 
vertices, then ZSAP(G ∨K1) = ZSAP(G).

Proof. Every ZFS-ZSAP for G is a ZFS-ZSAP for G ∨K1, so ZSAP(G ∨K1) ≤ ZSAP(G).
Now consider the case that G has no isolated vertices. Suppose at some stage BE is the 

set of blue non-edges for both G ∨K1 and G. We claim that if a non-edge {j, k} ∈ E(G)
turns blue in G ∨K1, then it can also turn blue in G.

Label the vertex in V (K1) as v. If (k : i → j) in G ∨K1 with i �= v, then it is also a 
forcing triple in G. Suppose (k : v → j) happens in G ∨K1. Then it must be the case 
when j is the only white vertex in φZ(G ∨K1, BE , k), since v is a vertex that is adjacent 
to every vertex and it cannot make a force unless every vertex except j is already blue. 
Since j is not an isolated vertex, it has a neighbor i′ in V (G). Now (k : i′ → j) can force 
{j, k} to turn blue, since j is also the only white vertex in φZ(G, BE , k).

On the other hand, if (i → C) happens in G ∨ K1 with i �= v, then it can also 
happen in G. Suppose (v → C). Then every vertex in C is incident to exactly two 
white non-edges by the odd cycle rule, since v is adjacent to every vertex. Label the 
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vertices of C by {ks}ds=1 in the cycle order, with the index taken modulo d. In the 
local game φZ(G, BE , k2), there are only two white vertices, namely k1 and k3. Since G
has no isolated vertices, k1 has a neighbor i′ in V (G). If i′ is not adjacent to k3, then 
(k2 : i′ → k1) can be applied and then the argument in Remark 2.10 can force all edges 
in E(C) to turn blue. Therefore, we may assume i′ is adjacent to k3. By applying the 
same argument to k4, we know i′ is also adjacent to k5. Inductively, i′ is adjacent to all 
vertices in C, since C is an odd cycle. Therefore, (i′ → C) can happen in G.

In conclusion, ZSAP(G ∨K1) = ZSAP(G). �
Proposition 2.23. Let G be a graph. Then ZSAP(G ∨ K1) = 0 if and only if one of the 
following holds:

• G has no isolated vertices and ZSAP(G) = 0.
• G = K1 or G is a disjoint union of a connected graph H and an isolated vertex such 

that ZSAP(H) = 0.
• G = K3.

Proof. Let v be the vertex in V (K1) ⊆ V (G ∨K1). In the case that G has no isolated 
vertices, ZSAP(G ∨K1) = 0 if and only if ZSAP(G) = 0 by Proposition 2.22. If G = K1, 
then ZSAP(K2) = 0. If G = K3, then ZSAP(K1,3) = 0. Finally, suppose G is a disjoint 
union of a connected graph H and an isolated vertex w such that ZSAP(H) = 0. Then 
every forcing triple and every odd cycle rule in H can work in G ∨K1, so all non-edges 
of G ∨K1 that are in the part of H can turn blue. After that, (k : v → w) takes action 
in G ∨K1 for every k ∈ V (H). Thus, every non-edge in G ∨K1 is blue.

For the converse statement, suppose ZSAP(G ∨K1) = 0 and no initial blue non-edge 
is given for G ∨K1. Suppose G has p components with vertex sets V1, V2, . . . , Vp. Call a 
non-edge with two endpoints in different components in G as a crossing non-edge. We 
claim that if p ≥ 3, then no crossing non-edge can turn blue in G ∨K1 by any forcing 
triples. Let {j, k} be a crossing non-edge. Without loss of generality, let k ∈ V1 and 
j ∈ V2. Suppose at some stage BE is the set of blue non-edges and none of the crossing 
non-edges is blue. In the local game φZ(G ∨K1, BE , k), all blue vertices are contained 
in V1 ∪ {v}, since all the crossing non-edges are white. If (k : i → j) happens in G ∨K1, 
it must be the case that i = v, since v is the only blue neighbor of j in φZ(G ∨K1, BE , k). 
Pick a vertex u ∈ V3. Since both j and u are white neighbors of v in φZ(G ∨K1, BE , k), 
it is impossible that (k : i → j) is a forcing triple. In conclusion, if ZSAP(G ∨K1) = 0
and G contains at least three components, then the odd cycle rule must be applied to 
the crossing non-edges. Therefore, G must be K3 in this case.

If G has only one component, then G contains no isolated vertices, unless G = K1. 
Otherwise assume G has an isolated vertex and has exactly two components. Then G
must be a disjoint union of a connected graph H and an isolated vertex w. Now we build 
a sequence of forces for H according to the forces in G ∨K1. Suppose (k : i → j) happens 
in G ∨K1 with j, k ∈ V (H). If i ∈ V (H), then (k : i → j) also works in H. If i /∈ V (H), 
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then it must be (k : v → j). But v is adjacent to every vertex, so in φZ(G, BE , k) every 
vertex except j must be blue. Since H is connected, there must be a vertex i′ that is 
adjacent to j. Thus, (k : i′ → j) can force {j, k} to turn blue.

Suppose (i → C) for some i and odd cycle C. If i ∈ V (H), then V (C) ⊂ V (H) and 
(i → C) can be applied in H. Since i cannot be w, we assume i = v. If w ∈ V (C), then 
C − w forms a path and all edges on this path can turn blue in H, by the argument of 
Corollary 2.8.

Finally, we claim that (v → C) cannot happen in G ∨K1 when V (C) ⊆ V (H). For 
the purpose of obtaining a contradiction, suppose at some stage BE is the set of blue 
non-edges and (v → C) happens. Let GW be the graph whose edges are the white 
non-edges. Write V (C) = {ks}ds=1 in the cycle order, with the index taken modulo d. 
Since C is a component in GW [NG∨K1(v)], every non-edge {ks, w} with ks ∈ V (C) is 
blue at this stage. When all non-edges {ks, w} were all white, no odd cycle rule can 
force any of them to turn blue, since w is incident to at least d ≥ 3 white non-edges. 
Without loss of generality, assume that {k1, w} is the first non-edge to turn blue among 
{ks, w} with ks ∈ V (C). Only a forcing triple can possibly force {ks, w} to turn blue, 
and it must be (k1 : v → w) or (w : v → k1). Suppose this happened at the stage where 
BE0 was the set of blue non-edges. It cannot be (k1 : v → w) because v has at least 
three white neighbors k2, kd, and w in φZ(G ∨ K1, BE0 , k1); meanwhile, it cannot be 
(w : v → k1), since v has at least d ≥ 3 white neighbors in φZ(G ∨ K1, BE0 , w). This 
yields a contradiction.

In conclusion, every possible force in G ∨K1 corresponds to a force in H. Therefore, 
if ZSAP(G ∨K1) = 0, then ZSAP(H) = 0. �
2.2. Computational results for small graphs

Table 1 shows the proportions of graphs that have certain parameters equal to 0, 
over all connected graphs with a fixed number of vertices. Graphs are not labeled and 
isomorphic graphs are considered as the same. The computation is done by Sage and the 
code can be found in [19].

Table 1
The proportion of graphs that satisfies ζ(G) = 0, over all con-
nected graphs on n vertices.

n ZSAP = 0 Z�
SAP = 0 Z+

SAP = 0
1 1.0 1.0 1.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 0.86 0.95 0.95
6 0.79 0.92 0.92
7 0.74 0.89 0.89
8 0.73 0.88 0.88
9 0.76 0.89 0.89
10 0.79 0.90 0.91
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In Section 4, we apply these results to help compute the value of ξ(G) when 
|V (G)| ≤ 7.

3. A vertex cover version of the SAP zero forcing game

As Example 2.21 points out, for a connected graph G on n vertices, the value of 
ZSAP(G) can be much higher than n. This section considers a vertex cover version of the 
SAP zero forcing game. That is, if B is a set of vertices, then consider the complementary 
closure cl(B) as all those non-edges that are incident to any vertex in B. Now instead of 
picking some non-edges as blue at the beginning, we pick a set of vertices B, and color 
the set cl(B) blue initially.

Following this idea, a new parameter Zvc(G) is defined with 0 ≤ Zvc(G) ≤ n, and 
Theorem 3.2 shows that M(G) − Zvc(G) ≤ ξ(G).

Definition 3.1. For a graph G, the parameter Zvc(G) is the minimum number of ver-
tices B such that by coloring cl(B) blue, every non-edge will become blue by repeated 
applications of CCR-ZSAP with the restriction

• (k : i → j) cannot perform a force if i ∈ B and {i, k} ∈ E(G).

A set B ⊆ V (G) with this property is called a Zvc zero forcing set.

Theorem 3.2. Let G be a graph. Then

M(G) − Zvc(G) ≤ ξ(G).

Proof. For given G and A = [ ai,j ] ∈ S(G), let d = Zvc(G) and m = |E(G)|. Pick an 
order for the set of non-edges, and let Ψ be the SAP matrix for A with respect to the 
given order. Let B be a ZFS-Zvc with |B| = d. We will show that we can perturb the 
diagonal entries of A corresponding to B such that the new matrix has the SAP.

Let W = E(G) − cl(B) be the initial white non-edges. Since B is a ZFS-Zvc, every 
non-edge in W is forced to turn blue at some stage. Say at stage t, Wt is the set of white 
non-edges that are forced to turn blue. The set Wt can be one non-edge, or the edges of 
an odd cycle; thus, {Wt}st=1 forms a partition of W , where s is the number of stages it 
takes to make all non-edges turn blue. Define Ut as follows: If Wt is a non-edge forced 
to turn blue by the forcing triple (k : i → j), then Ut = {(i, k)}; if Wt is a cycle forced 
by the odd cycle rule (i → C), then Ut = {(i, v)}v∈V (C). Let U =

⋃s
t=1 Ut.

We first show that {Ut}st=1 are mutually disjoint. Let (i, k) ∈ Ut0 at some stage t0. 
Suppose (k : i → j) happens at stage t0. Right before the force, there must be exactly 
one white non-edge connecting k and NG(i), namely {j, k}, by CCR-Z. After the force, 
all white non-edges connecting k and NG(i) turn blue. Suppose (i → C) happens instead 
for some odd cycle C. Right before the force, there are exactly two white non-edges 
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connecting k and NG(i), namely the two edges incident to k in C. After the force, all 
such white non-edges turn blue already. Therefore, (i, k) can appear in only one stage, 
and {Ut}st=1 are mutually disjoint.

Next we show that Ψ[U, W ] is nonsingular. The proof of Theorem 2.6 shows that 
if Wt0 is given by the odd cycle rule for some step t0, then Ψ[Ut0 , Wt0 ] is nonsingular 
and Ψ[Ut0 , 

⋃s
t=t0+1 Wt] = O. We will see that the same property is also true when Wt0

a single non-edge. Suppose at stage t0, the set of blue non-edges is BE and (k : i → j)
is applied. Thus, Ut0 = {(i, k)} and Wt0 = {{j, k}}. By Definition 1.1,

Ψ[Ut0 ,Wt0 ] = [ Ψ(i,k),{j,k} ] = [ ai,j ] ,

which is nonsingular, since {i, j} is an edge. For any white non-edge e that is not incident 
to k, Ψ(i,k),e = 0. If e = {j′, k} is a white non-edge for some j′ �= j, then j′ is not 
a neighbor of i, for otherwise i has two white neighbors in φZ(G, BE , k); therefore, 
Ψ(i,k),e = ai,j′ = 0. By column/row permutations according to {Wt}dt=1 and {Ut}dt=1
respectively, Ψ[U, W ] becomes a lower triangular block matrix, with every diagonal block 
nonsingular. Hence Ψ[U, W ] is nonsingular.

Now give the non-edges in cl(B) an order. Following the order, for each non-edge {i, j}
in cl(B), put either (i, j) or (j, i) into another ordered set UB. Since Ψ(i,j),{i,j} = ai,i, 
the diagonal entries of Ψ[UB, cl(B)] are controlled by ai,i for some i ∈ B.

Consider the matrix

Ψ[U ∪ UB ,W ∪ cl(B)] =
[

Ψ[U,W ] Ψ[U, cl(B)]
Ψ[UB ,W ] Ψ[UB , cl(B)]

]
.

We claim that those entry ai,i with i ∈ B only appear on the diagonal of Ψ[UB, cl(B)]. 
For each i ∈ B, the only possible occurrence of ai,i is in the case Ψ(i,k),{i,k} = ai,i for some 
vertex k and non-edge {i, k} ∈ E(G). If i ∈ B and {i, k} ∈ E(G), then {i, k} ∈ cl(B). 
Therefore, Ψ[U, W ] and Ψ[UB , W ] do not have this type of ai,i with i ∈ B involved. 
Now it is enough to show (i, k) /∈ U . Recall that U =

⋃s
t=1 Ut. At stage t, if a forcing 

triple is applied, then (i, k) /∈ Ut since (k : i → j) is forbidden for any j by the definition; 
if the odd cycle rule is applied, then (i, k) /∈ Ut since {i, k} ∈ E(G). Therefore, Ψ[U, cl(B)]
contains no such ai,i with i ∈ B, either.

Let DB be the diagonal matrix indexed by V (G) with the i, i-entry 1 if i ∈ B and 0
otherwise. Consider the matrix A + xDB . By the discussion above, the SAP matrix of 
A + xDB contains the submatrix

[
Ψ[U,W ] Ψ[U, cl(B)]

Ψ[UB ,W ] Ψ[UB , cl(B)] + xI

]
.

Since Ψ[U, W ] is nonsingular, the submatrix above is nonsingular when x is large enough.
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This means, by changing d = |B| diagonal entries of A, the corresponding SAP matrix 
becomes full-rank. Therefore,

M(G) − Zvc(G) ≤ null(A + xDB) ≤ ξ(G). �
Remark 3.3. Theorem 3.2 actually proves that if B is a ZFS-Zvc, then every matrix 
A ∈ S(G) attains the SAP by perturbing those diagonal entries corresponding to B.

In classical graph theory, a vertex cover of a graph G is a set of vertices S such that 
every edge in G is incident to some vertex in S; that is, G − S contains no edges. The 
vertex cover number β(G) is defined as the minimum cardinality of a vertex cover in the 
graph G. Corollary 3.4 below shows the relation between M(G), ξ(G), and β(G).

Corollary 3.4. Let G be a graph. Then

M(G) − β(G) ≤ ξ(G).

Proof. Let S be a vertex cover of G. Then S is a ZFS-Zvc, since every non-edge is 
blue initially. Therefore, Zvc(G) ≤ β(G) and the desired inequality comes from Theo-
rem 3.2. �
Example 3.5. Let G = K3 ∨K4. Then from the data in [9], M(G) = Z(G) = 5. Since G
is a subgraph of K3 ∨ P4, by minor monotonicity ξ(G) ≤ ξ(K3 ∨ P4) ≤ Z(K3 ∨ P4) ≤ 4. 
On the other hand, by picking one of the vertex in V (K4), it forms a ZFS-Zvc, since the 
initial white non-edges form a 3-cycle and the odd cycle rule applies. Thus Zvc(G) = 1
and ξ(G) ≥ M(G) − Zvc(G) = 4. Therefore, ξ(G) = 4.

Notice that G contains a K4 minor but not a K5 minor, so we can only say ξ(G) ≥
ξ(K4) = 3 by considering Kp minors.

Similarly, we can define Z�
vc(G) by changing CCR-ZSAP to CCR-Z�

SAP. Then we have 
Theorem 3.6.

Theorem 3.6. Let G be a graph. Then

M+(G) − Z�
vc(G) ≤ ν(G).

Remark 3.7. The proof of Theorem 3.2 relies on the fact Ψ[U, W ] is a lower triangular 
block matrix. This is not always true for Z+. As a vertex can force two or more white 
vertices under CCR-Z+, the sets {Ut}st=1 might not be mutually disjoint and it is possible 
that |U | < |W |. Therefore, the same proof does not work for Z+.
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4. Values of ξ(G) for small graphs

Analogous to M(G) ≤ Z(G), it is shown in [4] that ξ(G) ≤ �Z�(G), where �Z�(G) is 
defined through a (conventional) zero forcing game with CCR-�Z�:

• CCR-Z can be used to perform a force. Or if i is blue, i has no white neighbors, and 
i was not used to make a force yet, then i may pick one white vertex j and force it 
to turn blue.

By using Sage and with the help of Theorem 2.6 and Theorem 3.2, we will see that 
�Z�(G) agrees with ξ(G) for graphs up to 7 vertices. This result also relies on some other 
lower bounds. The Hadwiger number η(G) is defined as the largest p such that G has a 
Kp minor. Since ξ(G) is minor monotone, it is known [4] that when η(G) = p

ξ(G) ≥ ξ(Kp) = p− 1 = η(G) − 1.

The T3-family is a family of six graphs [14, Fig. 2.1]. It is known [14] that a graph G
contains a minor in the T3-family if and only if ξ(G) ≥ 3.

Lemma 4.1. Let G be a connected graph with at most 7 vertices. Then at least one of the 
following is true:

• ZSAP(G) = 0, which implies ξ(G) = M(G).
• G is a tree, which implies ξ(G) = 2 if G is not a path, and ξ(G) = 1 otherwise.
• �Z�(G) = M(G) − Zvc(G), which implies ξ(G) = �Z�(G).
• �Z�(G) = η(G) − 1, which implies ξ(G) = �Z�(G).
• �Z�(G) = 3 and G contains a T3-family minor, which implies ξ(G) = 3.

Proof. By running a Sage program [19], one of the five cases will happen. If ZSAP(G) = 0, 
then ξ(G) = M(G) by Theorem 2.6. If G is a tree, then ξ(G) ≤ 2, and the equality holds 
only when G is not a path [5]. Both M(G) − Zvc(G) and η(G) − 1 are lower bounds 
of ξ(G) by Theorem 3.2 and [4]. When one of the lower bounds meets with the upper 
bound �Z�(G), ξ(G) = �Z�(G). Finally, if G has a T3-family minor, then ξ(G) ≥ 3 [14]. 
In this case, ξ(G) = 3 when �Z�(G) = 3. �

While ξ(T ) ≤ 2 for all tree T , the value of �Z�(T ) can be more than two. Exam-
ple A.11. of [4] gives a tree T with �Z�(T ) = 3; the graph T is shown in Fig. 3. However, 
ξ(G) = �Z�(G) is still true when G is a tree and |V (G)| ≤ 7.

Lemma 4.2. Let G be a tree with at most 7 vertices. Then ξ(G) = �Z�(G).

Proof. When G is a tree, it is known [5] that ξ(G) = 2 when G is not a path, and 
ξ(G) = 1 if G is a path. When G is a path, then ξ(G) = 1 = �Z�(G). Assume G is not 
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Fig. 3. An example of tree T with 
Z�(T ) = 3.

Fig. 4. A graph G on 8 vertices with ξ(G) = 2 but 
Z�(G) = 3.

a path. It is enough to show �Z�(G) ≤ 2. In this case, G must have a vertex v of degree 
at least 3. Call this type of vertex a high-degree vertex. If G has only one high degree 
vertex, then �Z�(G) ≤ 2 since any two leaves form a ZFS-�Z�. Since |V (G)| ≤ 7, there 
are at most two high-degree vertices. Pick two leaves such that the unique path between 
them contains only one high-degree vertex, then these two leaves form a ZFS-�Z�. �
Theorem 4.3. Let G be a graph with at most 7 vertices. Then ξ(G) = �Z�(G).

Proof. Let G be a graph with at most 7 vertices. Then M(G) = Z(G) [9]. If ZSAP(G) = 0, 
then ξ(G) = M(G) = Z(G). Since ξ(G) ≤ �Z�(G) ≤ Z(G), ξ(G) = �Z�(G). If G is a 
tree, then ξ(G) = �Z�(G) by Lemma 4.2. Then by Lemma 4.1, ξ(G) = �Z�(G) for all 
connected graph G up to 7 vertices. It is known that ξ(G1∪̇G2) = max{ξ(G1), ξ(G2)}
[5] and �Z�(G1∪̇G2) = max{�Z�(G1), �Z�(G2)} [4], so ξ(G) = �Z�(G) for any graph up 
to 7 vertices. �
Example 4.4. Let G be the graph shown in Fig. 4. It is known [17] that M(G) = 2. 
Since G is not a disjoint union of paths, ξ(G) = 2. Also, it can be computed that 
Z(G) = �Z�(G) = 3.
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