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a b s t r a c t

Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring
vertices white and blue and then repeatedly applies the following rule: if any blue vertex
has a unique (out-)neighbor that is colored white, then that neighbor is forced to change
color from white to blue. An initial set of blue vertices that can force the entire graph
to blue is called a zero forcing set. In this paper we consider the minimum number of
iterations needed for this color change rule to color all of the vertices blue, also known
as the propagation time, for oriented graphs. We produce oriented graphs with both high
and low propagation times, consider the possible propagation times for the orientations of
a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given a directed graph with no loops or multiple arcs (i.e., a simple digraph), there are many possible processes that can
be used to simulate information spreading. In the simplest model, each vertex can have two states, knowing or not knowing
(using the colors blue and white, respectively), and then have a color change rule for changing a vertex from not knowing
to knowing (i.e., changes from white to blue). For each possible color change rule there are a variety of questions including
finding the minimum number of vertices that if initially colored blue will eventually change all the vertices blue, or finding
the length of time it takes for a graph to become blue. The goal in this paper is to consider a particular color change rule,
known as zero forcing, and to focus on the amount of time it takes to turn all the vertices blue, known as propagation time,
on digraphs and specifically oriented graphs.

The zero forcing process on a simple digraph is based on an initial coloring of each vertex as blue orwhite and the repeated
application of the following coloring rule: If a blue vertex has exactly one white out-neighbor, then that out-neighbor will
change from white to blue. In terms of rumor spreading, this can be rephrased in the following way: ‘‘If I know a secret and
all except one of my friends knows the same secret, then I will share that secret with my friend that doesn’t know’’. The zero
forcing number is the minimum number of vertices initially colored blue that can transform the entire graph to blue.
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The process of zero forcing was introduced originally for (simple, undirected) graphs by mathematical physicists in [8]
and by combinatorial matrix theorists in [2]. A set of vertices that can color the entire graph blue can also control the
quantum system [7]. Themaximum nullity of a graph is themaximum of the nullities of symmetric matrices whose nonzero
off-diagonal pattern is described by the edges of the graph. The zero forcing number of the graph is an upper bound on nullity
of such a matrix [2] (in fact, the term ‘‘zero forcing’’ comes from forcing zeros in a null vector of such a matrix).

In general, the zero forcing number can be determined computationally but the problem of computing the zero forcing
number is NP-hard [1]. However, the zero forcing number has been determined for several families of graphs (see, for
example, the recent survey by Fallat and Hogben [12]), and bounds have been established in some cases [3,13,17]. There
has also been additional work done on applications to control of quantum systems [7] and structural control [19]. Variants
such as the k-forcing number [3] and fractional zero forcing [16] have recently been introduced and studied. Zero forcing
was extended to digraphs in Barioli et al. [4]. Zero forcing for simple digraphs was studied in [5,14].

Most of the focus of the literature has been on the determination of the zero forcing number. However, given a minimum
set of vertices initially colored blue that can transform the entire graph to blue, another natural question to examine is the
amount of time it takes to turn all of the vertices blue (i.e., the propagation time). This study was initiated for undirected
graphs in Hogben et al. [15] where extremal configurations were determined (i.e., n-vertex graphs that propagate as quickly
or as slowly as possible) and in Chilakamarri et al. [11] where propagation time (there called iteration index) was computed
for some families of graphs. This paper expands the study of propagation time to oriented graphs. In particular, there are
some subtle and important distinctions between undirected graphs and oriented graphs.

In the remainder of the introduction we introduce the notation and give precise terminology. In Section 2 we show that
the propagation time is not affected when the direction of each arc in a simple digraph is reversed. In Sections 3 and 4 we
consider orientations of graphs that have low and high propagation times, respectively. For a given graph G there are many
possible orientations and this gives rise to the following problem: For a given graph G, find the propagation time of

−→
G as

−→
G ranges over all possible orientations of G. In Section 5 we consider such orientation propagation intervals. In Section 6
we consider what happens when we balance the size of the zero forcing set with the propagation time; in particular we
show that, unlike in simple graphs, we cannot always obtain significant savings in the sum by increasing the size of the zero
forcing set. Finally, in Section 7we discuss other approaches to propagation time for oriented graphs, including computation
of propagation time for a given oriented graph and consideration of variation of propagation times across more than one
minimum zero forcing set.

1.1. Terminology and definitions

A simple graph (respectively, simple digraph) is a finite undirected (respectively, directed) graph that does not allow loops
or more than one copy of one edge or arc; a simple digraph does allow double arcs, i.e., both the arcs (u, v) and (v, u). We
use G = (V (G), E(G)) to denote a simple graph and Γ = (V (Γ ), E(Γ )) to denote a simple digraph, where V and E are the
vertex and edge (or arc) sets, respectively. Furthermore, we let |G| = |V (G)| denote the number of vertices of G, and similar
notation is used for digraphs. An oriented graph is a simple digraph in which there are no double arcs, i.e., if (u, v) is an arc in
Γ then (v, u) is not an arc in Γ . For a simple graph G, we also let

−→
G denote an orientation of G,1 i.e.,

−→
G is an oriented graph

such that ignoring the orientations of the arcs gives the graph G.
For a digraph Γ having u, v ∈ V (Γ ) and (u, v) ∈ E(Γ ), we say that v is an out-neighbor of u and that u is an in-neighbor of

v. The set of all in-neighbors of v is denoted by N−(v) and the cardinality of N−(v) is the in-degree of v, denoted by deg−(v).
Similarly, the set of all out-neighbors of v is N+(v) and the cardinality of N+(v) is the out-degree, denoted by deg+(v).

For a simple digraph Γ , the zero forcing propagation process can be described as follows. Let B ⊆ V (Γ ), let B(0)
:= B

and iteratively define B(t+1) as the set of vertices w where for some v ∈
⋃t

i=0B
(i) we have that w is the unique out-neighbor

of v that is not in
⋃t

i=0B
(i). Here B(0) represents the initial set of vertices colored blue, and at each stage we color as many

vertices blue as possible (i.e., we apply the coloring rule simultaneously to all vertices). We say a set B is a zero forcing
set if

⋃t
i=0B

(i)
= V (Γ ) for some t . Further, the propagation time of B, denoted by pt(Γ , B), is the minimum t so that⋃t

i=0B
(i)

= V (Γ ) (i.e., the minimum amount of time needed for B to color the entire graph blue).
Oneway to achieve fast propagation is to simply letB = V (Γ ), and bedone at time0.However,we are primarily interested

in the propagation time of a zero forcing set B of minimum cardinality, called a minimum zero forcing set. In particular, for a
simple digraph Γ , we let Z(Γ ) denote the cardinality of a minimum zero forcing set for Γ . We then define propagation time
as follows:

pt(Γ ) = min{pt(Γ , B) : B is a minimum zero forcing set}.

Example 1.1. Consider the oriented graph
−→
G shown in Fig. 1. Since the vertices c , d and f are not the out-neighbors of any

vertices, they cannot be changed to blue by the coloring rule. Therefore these three vertices must be in every zero forcing
set of

−→
G . We now show that these three vertices form a zero forcing set (and in particular this is the unique minimum

cardinality zero forcing set), allowing us to conclude Z(
−→
G ) = 3. Suppose that B(0)

= {c, d, f } and mark these vertices by

1 For visual simplicity, the arrow is only over the main symbol, e.g., an orientation of Kn is denoted by
−→
K n rather than

−→
Kn .
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Fig. 1. An example of propagation for the zero forcing process.

coloring them blue (see t = 0 in Fig. 1). Since e is the unique white out-neighbor of f , we can color e blue. But this is the only
vertex that can be colored at this time, and so we have B(1)

= {e}. The state of our coloring at time t = 1 is shown in Fig. 1.
Now b is the unique white out-neighbor of e and a is the unique white out-neighbor of d, and so we can color both of them
and we have B(2)

= {a, b}. At this stage all the vertices are blue and so the propagation time corresponding to this set is 2.
As already noted, {c, d, f } is the unique minimum zero forcing set, so pt(

−→
G ) = 2.

The oriented graph
−→
G in Example 1.1 has a unique minimum zero forcing set B = {c, d, f }, so pt(

−→
G ) = pt(

−→
G , B).

However, it is often the case that an oriented graph has more than one minimum zero forcing set, and the propagation time
of minimum zero forcing sets may vary. This topic is discussed further in Section 7.

Consider the zero forcing propagation process for a simple digraph Γ and zero forcing set B. When a white vertex v is
the unique white out-neighbor of a blue vertex u, then we say that u forces v to change its color, and we write u → v. Given
a set B we can consider the set of arcs that correspond to forces that were used in coloring the graph. This collection of arcs
is known as a set of forces, and denoted by F . When there is a white vertex that could be changed to blue by two different
in-neighbors we put only one of the corresponding arcs inF . In particular, for a given set B there are possibly many different
sets of forces for the propagation process. However, whether or not B is a zero forcing set, and similarly the propagation
time, is not dependent on which choices made when including forcing arcs (see [6] and [15] for more information).

The subdigraph (V ,F) of Γ = (V , E) is a collection of disjoint directed paths, where each vertex in B is the tail of a path.
In particular, at each time in the propagation process, at most one vertex is added to each path, and thus |B(t)

| ≤ |B| for all
t ≥ 0. The next observation is an immediate consequence.

Observation 1.2. For a simple digraph Γ ,
|Γ | − Z(Γ )

Z(Γ )
≤ pt(Γ ) ≤ |Γ | − Z(Γ ).

Without loss of generality we can assume that our digraphs are connected (meaning the underlying simple graph is
connected). This is because once the zero forcing numbers and propagation times on each component are known, the zero
forcing number and propagation time on the whole graph are known. This is summarized in the next observation (the
statement about zero forcing number appears in the literature, e.g., [6]).

Observation 1.3. For a simple digraph Γ with connected components Γ1, . . . , Γh,

Z(Γ ) =

h∑
i=1

Z(Γi) and pt(Γ ) = max
i

pt(Γi).

AHessenberg path is a simple digraphwith vertices {v1, v2, . . . , vn} that contains the arcs (v1, v2), (v2, v3), . . . , (vn−1, vn),
and does not contain any arc of the form (vi, vj) with j > i+1. Note that no restrictions are placed on arcs of the form (vi, vj)
with i > j + 1, i.e., back arcs are allowed. (A single isolated vertex is a Hessenberg path.)

2. Reversing arcs

Although our focus is on oriented graphs, the results in this section are true for simple digraphs, so we state them that
way. Given a simple digraph Γ , we let Γ T be the simple digraph where the direction of each arc has been reversed. (Note
that the adjacency matrix of Γ T is the transpose of the adjacency matrix of Γ , which motivates the notation.) Reversing the
arcs will generally change what the zero forcing sets are and how they propagate. However, we show in Theorem 2.5 that
pt(Γ T ) = pt(Γ ), following the arguments in [15].

Let Γ be a simple digraph, B a zero forcing set of Γ , and F a set of forces of B. The terminus of F , denoted by Term(F), is
the set of vertices that do not perform a force in F , i.e., these are the heads of the directed paths formed by F (note that if a
vertex in B never forces, then it is both the tail and head on a path with no arcs). Let Rev(F) correspond to the set of forces
found by reversing the direction of each arc of F . Note that F ⊆ E(Γ ) and Rev(F) ⊆ E(Γ T ).
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Proposition 2.1. [6] Let Γ be a simple digraph, B a zero forcing set of Γ , and F a set of forces of B. Then Term(F) is a zero
forcing set for Γ T and Rev(F) is a set of forces. Hence Z(Γ T ) = Z(Γ ).

We previously have defined propagation in terms of an initial set B, but we can also define propagation using the set of
forces F .

Definition 2.2. Let Γ = (V , E) be a simple digraph and B a zero forcing set of Γ . For a set of forces F of B that colors all
vertices, define F (0)

= B. For t ≥ 0, let F (t+1) be the set of vertices w such that for some v ∈
⋃t

i=0F
(i), the arc (v, w) appears

in F , w ̸∈
⋃t

i=0F
(i), and w is the only out-neighbor of v not in

⋃t
i=0F

(i). (Note that the set F is a collection of arcs, while
the sets F (i) are collections of vertices.) The propagation time of F in Γ , denoted by pt(Γ ,F), is the minimum t such that⋃t

i=0F
(i)

= V (Γ ).

We now give a connection between the propagation time given by F in Γ and the propagation time given by Rev(F) in
Γ T .

Lemma 2.3. Let Γ = (V , E) be a simple digraph, B a minimum zero forcing set, F a set of forces of B, and 1 ≤ t ≤ pt(Γ ,F). If
(v, u) ∈ F with u ∈ F (pt(Γ ,F)−t+1), then v ∈

⋃t
i=0 Rev(F)(i).

Proof. By Proposition 2.1 we have Term(F) is a zero forcing set for Γ T with forcing set Rev(F). We establish the result by
induction on t . For t = 1, let u ∈ F (pt(Γ ,F)). Then u ∈ Term(F) = Rev(F)(0). If x ̸= v is an in-neighbor of u in Γ , then x
cannot force in Γ since u ∈ F (pt(Γ ,F)). So x ∈ Term(F) = Rev(F)(0). Hence, v is the only white out-neighbor of u in Rev(F).
So v ∈ Rev(F)(1).

Assume that the claim is true for 1 ≤ s ≤ t . Suppose u ∈ F (pt(Γ ,F)−(t+1)+1). Then v → u at time pt(Γ ,F) − t in Γ , so u
cannot perform a force in Γ until pt(Γ ,F)− t + 1 or later. Thus u ∈

⋃t
i=0 Rev(F)(i), by the induction hypothesis in the case

that u performs a force, and since u ∈ Rev(F)(0) in the case that u does not perform a force. If x ̸= v is an in-neighbor of u in
F , then x cannot perform a force in Γ until pt(Γ ,F)− t + 1 or later. So x ∈

⋃t
i=0 Rev(F)(i). Thus, if v ̸∈

⋃t
i=0 Rev(F)(i), then

v ∈ Rev(F)(t+1), i.e., v ∈
⋃t+1

i=0 Rev(F)(i) as desired. □

Since Rev(Rev(F)) = F and (Γ T )T = Γ , Lemma 2.3 implies the next result.

Corollary 2.4. Let Γ = (V , E) be a simple digraph, B a minimum zero forcing set of Γ , and F a forcing set of B. Then
pt(Γ T , Rev(F)) = pt(Γ ,F).

A minimum zero forcing set B of Γ is said to be an efficient zero forcing set if pt(Γ , B) = pt(Γ ). A set of forces F of an
efficient forcing set B is efficient if pt(Γ ,F) = pt(Γ ).

Theorem 2.5. Let Γ = (V , E) be a simple digraph. Then pt(Γ T ) = pt(Γ ).

Proof. Choose an efficient zero forcing set B and efficient set of forces F , so pt(Γ ,F) = pt(Γ ). Then by Corollary 2.4,

pt(Γ T ) ≤ pt(Γ T , Rev(F)) = pt(Γ ,F) = pt(Γ ).

By reversing the roles of Γ and Γ T , we also obtain the reverse inequality. □

3. Orientations with low propagation times

The smallest possible propagation time is 0. It is easy to see that for a connected oriented graph
−→
G of order at least two,

Z(
−→
G ) ≤ |

−→
G | − 1 and pt(

−→
G ) ≥ 1. Thus, the only oriented graphs having propagation time equal to 0 are graphs with no

edges, i.e., graphs consisting only of isolated vertices.
We now consider graphs that have an orientation with propagation time one. For such orientation, every vertex is in the

zero forcing set or colored in the first time step, so we have the following observation.

Observation 3.1. For an oriented graph
−→
G with pt(

−→
G ) = 1, Z(

−→
G ) ≥

⌈
|
−→
G |

2

⌉
.

Therefore, the orientation must have a large zero forcing number (though this is not sufficient). Graphs having an
orientation with propagation time one are not easy to classify. Many graphs, including trees (see Theorem 3.3) and complete
graphs of order at least six (see Theorem 3.6), have such orientations. However, this is not true for all graphs. As the next
example shows, there is no orientation of K4 with propagation time one.

Example 3.2. All possible orientations of K4, up to relabeling, are shown in Fig. 2, taken from and labeled as in [18]. It is
known that Z(

−→
K 4) = 1 if

−→
K 4 is a Hessenberg path (D149, with path (1, 2, 3, 4)), in which case pt(

−→
K 4) = 3; for other

orientations Z(
−→
K 4) = 2 (see [5]). For D115 the only zero forcing set of cardinality two is B1 = {1, 3} and pt(D115, B1) = 2.

For D129 there are three possible zero forcing sets of cardinality two, but they are all equivalent by symmetry to B2 = {2, 3},
and pt(D129, B2) = 2. Since D122 is the reverse of D129, pt(D122) = 2.
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Fig. 2. Orientations of K4 .

3.1. Trees

In this section we show that any tree (and hence any forest) can be oriented to have propagation time one, unless it
consists entirely of isolated vertices.

Theorem 3.3. Let T be a tree on n ≥ 2 vertices. Then there is an orientation
−→
T of T such that pt(

−→
T ) = 1.

Proof. A connected oriented graph
−→
G of order at least two has pt(

−→
G ) ≥ 1, so it is sufficient to show that any tree T of order

at least two has an orientation
−→
T with pt(

−→
T ) ≤ 1. We prove this statement by induction.

For the base case, it can be seen that pt(
−→
T ) = 1 when n = 2. Assume every nontrivial tree with fewer than n vertices can

be oriented to have propagation time one and consider a tree T on n vertices. Choose a vertex y such that deg(y) ≥ 2 and at
most one component of T − y is a smaller tree T ′ of order two or more; any other components are isolated vertices which
we denote by z1, z2, . . . , zs. If there is no component of order two or more, orient the edges of T as zi → y, for i = 1, . . . , s,
so Z(

−→
T ) = n − 1 and pt(

−→
T ) = 1. Now assume there is a unique component T ′ of order at least two. By the induction

hypothesis, there is an orientation
−→
T

′

of T ′ with pt(
−→
T

′

) = 1. Let B be an efficient minimum zero forcing set of
−→
T

′

, and let
x denote the unique neighbor of y among V (T ′).

First suppose x ̸∈ B. Obtain
−→
T from

−→
T

′

by orienting edges of T not in T ′ so that deg+(y) = 0, i.e., x → y and zi → y,
1 ≤ i ≤ s. Observe that B∪ {zi}si=1 is a zero forcing set of

−→
T with propagation time one. We show that |B∪ {zi}si=1| = Z(

−→
T ).

Since deg−(zi) = 0 (1 ≤ i ≤ s), any minimum zero forcing set of
−→
T must be of the form B̂ ∪ {zi}si=1. In particular, B̂ must

force all vertices of
−→
T

′

without help from y or {zi}si=1, because y cannot contribute any forces to V (T ′). Therefore, |B| ≤ |B̂|
and

Z(
−→
T ) ≤ |B ∪ {zi}si=1| ≤ |B̂ ∪ {zi}si=1| = Z(

−→
T ).

Next suppose x ∈ B. Obtain
−→
T from

−→
T

′

by orienting edges of T not in T ′ so that deg−(y) = 0, i.e., y → x and
y → zi, for i = 1, . . . , s. Observe that B ∪ {y} ∪ {zi}s−1

i=1 is a zero forcing set of
−→
T with propagation time one. We show

that |B ∪ {y} ∪ {zi}s−1
i=1 | = Z(

−→
T ). Since deg−(y) = 0 and y can force at most one of {zi}si=1 blue, y and at least s − 1 of the

zi must be blue initially. Thus without loss of generality, a minimum zero forcing set of
−→
T has the form B̂ ∪ {y} ∪ {zi}s−1

i=1 . If
zs ∈ B̂, then (B̂ \ {zs}) ∪ {x} ∪ {y} ∪ {zi}s−1

i=1 is a zero forcing set with the same cardinality. Thus we can assume x ∈ B̂, so B̂
forces all vertices of

−→
T

′

without the help of {y} ∪ {zi}s−1
i=1 . Therefore, |B| ≤ |B̂| and

Z(
−→
T ) ≤ |B ∪ {y} ∪ {zi}s−1

i=1 | ≤ |B̂ ∪ {y} ∪ {zi}s−1
i=1 | = Z(

−→
T ).

This completes the induction, and thus the proof. □

Corollary 3.4. If T is a forest that contains an edge, then there is an orientation
−→
T of T such that pt(

−→
T ) = 1.

3.2. Tournaments

Trees are the sparsest connected graphs, i.e., those with the smallest possible number of edges. At the opposite extreme
are tournaments, which are orientations of complete graphs. However, we will see that for all but two positive integers n
there is a tournament on n vertices that has propagation time one. In particular, we see that minimum propagation time is
not strongly correlated with density.

Proposition 3.5. For n ̸= 2, there is an orientation
−→
K 2n with pt(

−→
K 2n) = 1.

Proof. Since the tournament of order 2 has propagation time one, we will assume n ≥ 3. Let Zn be the additive cyclic group
of order n. We partition the vertices into two parts U and L, and index the vertices by Zn, in other words, U := {ui : i ∈ Zn}

and L := {ℓi : i ∈ Zn}. Place arcs between these vertices as follows: A1 = {(ui, ℓi−1) : i ∈ Zn} and A2 = {(ℓj, ui) : j ̸= i − 1}.
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Also, define A3 = {(ui, uj) : j − i ∈ W }, where W = {1, 2, . . . , ⌊ n
2⌋} ⊆ Zn. If n is odd, then A3 is properly defined. For

n = 2k, each pair {ui, ui+k} is doubly directed in A3. In this case we modify A3 by randomly choosing one of the arcs (ui, ui+k)
or (ui+k, ui) for each pair {ui, ui+k}. Finally, we define A4 = {(ℓi, ℓj) : (ui, uj) ∈ A3} and

E = A1 ∪ A2 ∪ A3 ∪ A4.

Thus,
−→
K 2n = (V , E) is a tournament on 2n vertices, where V = U ∪ L. For convenience, we call U the upper part of

−→
K 2n and

L the lower part of
−→
K 2n, and refer to forcing up or down.

Observe that U forms a zero forcing set of
−→
K 2n, |U | = n, and pt(

−→
K 2n,U) = 1. Thus, it suffices to show that Z(

−→
K 2n) = n.

In order to prove this, we let S ⊂ V be a set of cardinality n − 1 of blue vertices and show it cannot be a zero forcing set.
Case 1: S ⊂ L.

By assumption, n ≥ 3, so every blue vertex has at least two white out-neighbors in U; hence S cannot be a zero forcing
set.
Case 2: S ⊂ U .

Since |S| = n − 1, by symmetry we assume u0 is the only vertex in U \ S. Let X := S ∩ N−(u0) and Y := S \ X . At the first
time step, the vertices in Y can force downward to color the set YL ⊂ L blue; observe ℓn−1 ̸∈ YL because the only in-neighbor
of ℓn−1 in U is u0 ̸∈ S. At this time, no ℓi ∈ YL can force any ℓj since u0 is a white out-neighbor of ℓi (since i ̸= n − 1). Also,
we observe that every vertex in Y has no white out-neighbors whereas every vertex in X has two white out-neighbors: One
is u0 and one is in L. Therefore the only possibility for an additional force is ℓi forces u0 for some i.

Now we consider two cases and show each is impossible. First if n = 2k + 1 is odd, then ℓi has k out-neighbors in L. But
YL, the set of blue vertices in L, contains only k vertices, including ℓi itself. So ℓi must have another white out-neighbor in L,
making it impossible to force u0. Second, if n = 2k is even, then |Y | can be either k−1 or k. If it is k−1, thenwe apply the same
argument as for n odd. So we may assume |Y | = k, in particular, uk is an out-neighbor of u0 and thus Y = {u1, u2, . . . , uk}.
By our construction, YL will be {ℓ0, ℓ1, . . . , ℓk−1} and ℓk is an out-neighbor of ℓ0. Under this assumption, for all i ̸= n − 1, ℓi
has at least one white out-neighbor in L, and u0 ∈ N+(ℓi). Thus for i ̸= n−1, ℓi cannot force. Since ℓn−1 is white, ℓn−1 cannot
force. Thus S is not a zero forcing set.
Case 3: S ∩ U and S ∩ L are not empty.

We start by carrying out the following shifting process: If some ui ∈ S ∩ U has only one white out-neighbor and it is in
U , say uj, then we replace S by (S \ {ℓi−1}) ∪ {uj}. Since in the new set ui can force ℓi−1, it is sufficient to show this new set is
not a zero forcing set. Continuing this process, we may assume the set S has the property that if ℓi−1 is blue, then either ui is
white or it has no unique white out-neighbor, which is in U . After completing the shifting process, assume S ∩ U and S ∩ L
are not empty, or else we may apply Case 1 and Case 2. Let Y denote the set of vertices ui in S ∩ U such that ℓi−1 is the only
white out-neighbor of ui (it is possible that Y = ∅).

Having completed the shifting process, we claim that |S ∩ U | = n − 2 and |S ∩ L| = 1. To see this, first observe that
|S ∩ U | ̸= n− 1, for otherwise S ∩ L = ∅. Suppose |S ∩ U | ≤ n− 3. Then initially there are at least three white vertices in U;
every vertex in Lwill have at least two white out-neighbors in U , so no vertex in L can perform a force at time t = 1. Also, no
vertex in U can force a vertex in U since we finished the shifting process. If Y = ∅, then no forces occur, so assume Y ̸= ∅.
The vertices in Y are the only vertices that can perform a force at t = 1, and the vertices in Y will force downward to color
the set YL ⊂ L blue. Let ui ∈ U be a blue vertex. If ui ∈ Y , then ui has no white out-neighbor after the forces at time t = 1. If
ui ̸∈ Y and ℓi−1 is white, then ui has at least one white out-neighbor in U \ S. If ui ̸∈ Y and ℓi−1 is blue, then ui has at least
two white out-neighbors in U \ S, since we finished the shifting process. This means at the second step, a blue vertex in U
cannot perform a force. Since each vertex in L still has two or more white out-neighbors in U , no vertex in L can perform a
force either. This means the whole process stops after time t = 1 with some white vertices still remaining, a contradiction.

Without loss of generality, we may now assume U \ S = {u0, uj} for some j, (u0, uj) is an arc, and S ∩ L = {ℓi} for some
i. If i = j − 1 and S is a zero forcing set, then (S \ {ℓi}) ∪ {uj} is also a zero forcing set. This is because (S \ {ℓi}) ∪ {uj} can
immediately carry out the force uj → ℓi. However, (S \ {ℓi}) ∪ {uj} cannot be a zero forcing set by Case 2. Next we claim
that if i ̸= j − 1, then the process stops after time t = 1. The only vertices that can perform forces at t = 1 are vertices
in Y (again assume Y ̸= ∅, since otherwise the process already failed), and these vertices force downward to color YL blue.
After the first time step, every vertex in YL has at least two white out-neighbors, u0 and uj. No blue vertex in U has a unique
white out-neighbor (because of the shifting process done originally and the forces done at t = 1). If ui+1 ̸∈ {u0, uj}, then ℓi
has at least two white out-neighbors so cannot force. We have already shown that i ̸= j − 1, leaving the case i = n − 1. So
assume i = n − 1. We claim ℓi has two white out-neighbors ℓ0 and uj. This is because the arc (u0, uj) implies either j = 1 or
(u1, uj) is an arc, but both of these cases mean u1 is not in Y (since either u1 = uj is white, or u1 ̸= uj initially has at least two
white out-neighbors, uj and ℓ0) and so ℓ0 is white after t = 1. Therefore, the process stops after t = 1 with white vertices
remaining. This completes Case 3.

In every case, a set S of cardinality n − 1 cannot be a zero forcing set. □

Theorem 3.6. For all integers n ≥ 2, n ̸= 4, 5, there is an orientation
−→
K n for Kn such that pt(

−→
K n) = 1.

Proof. We have already seen that this statement is true for even n. For the case n = 2m+ 1, we construct
−→
K 2m+1 by adding

one vertex x to an orientation of
−→
K 2m constructed as in Proposition 3.5, and adding directed arcs from x to all vertices in

−→
K 2m.
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Table 1
Number of connected graphs on n vertices with given the propagation time as the minimum over all orientations.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

min−→
G pt(

−→
G ) = 1 1 2 5 20 106 820 10746 256568

min−→
G pt(

−→
G ) = 2 0 0 1 1 6 33 371 4512

Fig. 3. The connected graphs of order at most four (other than K4) with orientations having propagation time one.

Since the case
−→
K 3 is trivial, we assume m ≥ 3. In this case, every vertex in

−→
K 2m has in-degree (within

−→
K 2m) at least

one by the construction in Proposition 3.5. Let B be a minimum zero forcing set for
−→
K 2m+1. Since deg−(x) = 0, x ∈ B. Since

deg+(x) = 2m, x cannot perform a force until all but one vertex of
−→
K 2m =

−→
K 2m+1 − x are blue, at which point another

vertex can perform the force, since the in-degree within
−→
K 2m is positive for every vertex in

−→
K 2m. So B \ {x} is a zero forcing

set for
−→
K 2m, implying |B \ {x}| ≥ Z(

−→
K 2m) = m and |B| ≥ m+ 1. Therefore the propagation time of

−→
K 2m+1 is one, using the

efficient zero forcing set B′′
:= B′

∪ {x}, where B′ is an efficient zero forcing set for
−→
K 2m. □

3.3. Data for small graphs that allow propagation time one

We say that a simple graph G allows propagation time one if there is some orientation
−→
G of the graph Gwith pt(

−→
G ) = 1,

and say G requires propagation time at least k if there is no orientation
−→
G of the graph G with pt(

−→
G ) ≤ k − 1. Then natural

questions are, ‘‘Which graphs allow propagation time one?’’ and, ‘‘How common are such graphs?’’
We use min−→

G pt(
−→
G ) to denote the minimum propagation time of

−→
G where

−→
G runs over all orientations of G. Then ‘G

allows propagation time one’ is equivalent to min−→
G pt(

−→
G ) = 1 and ‘G requires at least propagation time k’ is equivalent to

min−→
G pt(

−→
G ) ≥ k. For all connected graphs of order at most nine, the minimum propagation time over all orientations was

determined by use of a Sage program [9] run on a computer, and we present the data in Table 1. Note that no graph of order
at most nine requires a propagation time of three or greater. At least for small graphs it appears that allowing propagation
time one is common.

We have already established that K4 does not allow propagation time one. A similar case analysis shows that K5 also does
not allow propagation time one. In Fig. 3 we give orientations for all the remaining connected graphs on at most 4 vertices,
and havemarked corresponding orientations andminimumzero forcing sets, to verify that they have pt(

−→
G ) = 1.We remark

here that the undirected graph underlying the oriented graph in Fig. 1 does not allow an orientation with propagation time
one.

In addition to the data given in the table, we have verified by computer that no graph of order 10 requires propagation
time of three or greater. This leads to the following open questions.

Question 3.7. Does there exist an undirected graph G with min−→
G pt(

−→
G ) ≥ 3? More generally, does there exist an undirected

graph G withmin−→
G pt(

−→
G ) ≥ k for k arbitrarily large?

4. Orientations with high propagation times

In this section we focus on orientations of graphs that have high propagation times. The two key elements to obtain high
propagation time are a small zero forcing set and few simultaneous forces occurring at each time step. Hessenberg paths
play a central role. Although our primary interest is oriented graphs, much of the literature deals with simple digraphs.

Combining [14, Lemma 2.15] (which shows that Z(Γ ) = 1 if and only if Γ is a Hessenberg path) and Observation 1.2 we
have the following.
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Fig. 4. A counterexample to the converse of Observation 4.4.

Observation 4.1. For any simple digraph Γ , the following are equivalent:

1. Z(Γ ) = 1.
2. pt(Γ ) = |Γ | − 1.
3. Γ is a Hessenberg path.

One natural question is whether a graph G can be oriented in such a way as to produce a specific propagation time. In
studying high propagation time, we ask which graphs G can be oriented to produce pt(

−→
G ) = |

−→
G | − 1. A Hamilton path in a

graph G is a subgraph that is a path and includes all vertices of G.

Proposition 4.2. A graph G has an orientation
−→
G with pt(

−→
G ) = |

−→
G | − 1 if and only if G has a Hamilton path.

Proof. If pt(
−→
G ) = |

−→
G | − 1, then

−→
G is a Hessenberg path on (v1, v2, . . . , vn), in which case (v1, v2, . . . , vn) is a Hamilton

path of G. If (v1, v2, . . . , vn) is a Hamilton path of G, then we can orient G so that
−→
G is a Hessenberg path on (v1, v2, . . . , vn)

by choosing the arcs (vi, vi+1) for i = 1, . . . , n− 1, and for every edge between vi and vj with j > i+ 1 choosing the back arc
(vj, vi). Since

−→
G is a Hessenberg path, pt(

−→
G ) = |

−→
G | − 1. □

A simple digraph Γ is a digraph of two parallel Hessenberg paths [6] if Γ is not itself a Hessenberg path and the vertices
of Γ can be partitioned as V (Γ ) = V (1)

∪̇V (2), with the notation V (h)
= {p(h)1 , . . . , p(h)sh } for h = 1, 2, so the following are

satisfied:

(i) P (h)
= Γ [V (h)

] is a Hessenberg path, and
(ii) there are no i, j, k, ℓ with i < j, k < ℓ, and (p(1)k , p(2)j ), (p(2)i , p(1)ℓ ) ∈ E(Γ ) (in other words, there are no forward crossing

arcs between the two Hessenberg paths).

Theorem 4.3. [6] For any simple digraph Γ , Z(Γ ) = 2 if and only if Γ is a digraph of two parallel Hessenberg paths.

If Γ is a digraph of two parallel Hessenberg paths on the Hessenberg paths P (h), h = 1, 2, we let Γ (P (1), P (2)) refer to this
particularway of decomposingΓ as a digraphof twoparallel Hessenberg paths. In this case,B = {p(1)1 , p(2)1 } is aminimumzero
forcing set for Γ . Moreover, if B′

= {v1, v2} is any minimum zero forcing set for Γ , then Γ can be expressed as Γ (P ′(1), P ′(2))
for two Hessenberg paths P ′(1) and P ′(2) with p′(1)

1 = v1 and p′(2)
1 = v2.

An oriented graph of two parallel Hessenberg paths
−→
G is a digraph of two parallel Hessenberg paths with no double arcs.

The next statement is now immediate from Observations 1.2 and 4.1, and Theorem 4.3.

Observation 4.4. For any oriented graph
−→
G , if pt(

−→
G ) = |

−→
G | − 2, then Z(

−→
G ) = 2 and

−→
G is an oriented graph of two parallel

Hessenberg paths.

As is the case for graphs, the converse of Observation 4.4 is false, as shown in the next example.

Example 4.5. Let
−→
P4 be the oriented graph in Fig. 4. Then Z(

−→
P4 ) = 2 because vertices a and b have in-degree zero (and

−→
P4

is an oriented graph of two parallel Hessenberg paths), but pt(
−→
P4 ) = 1 ̸= |

−→
P4 | − 2.

By Observation 4.4, to achieve pt(
−→
G ) = |

−→
G |−2 it must be the case that Z(

−→
G ) = 2, and for everyminimum zero forcing

set exactly one force occurs at each time step.
We extend the notation and definitions in [15] to oriented graphs, but there are some significant differences caused by

the orientation, so the definition of zig-zag path in Definition 4.6 and the conditions in Theorem 4.7 are somewhat different
from those in [15]. Suppose

−→
G (P (1), P (2)) is an oriented graph of two parallel Hessenberg paths. The notation x ≺ ymeans x

and y are on the same path P (h) and for some i < j, x = p(h)i and y = p(h)j . Whenever the order of a subset of vertices of P (h)

is discussed, the order is the path order. For i > 1, we say that p(h)i−1 = prev(p(h)i ) and next(p(h)i−1) = p(h)i . Furthermore, alt(zi)
denotes the out-neighbors of zi not in the same Hessenberg path as zi.

Definition 4.6. An orientation of two parallel Hessenberg paths
−→
G (P (1), P (2)) is a zig-zag orientation, denoted by

−→
G (P (1), P (2),

Q ), if
−→
G (P (1), P (2)) contains a directed path Q = (z1, z2, . . . , zr ) satisfying the following conditions:
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1. zi ∈ V (1) for i odd, zi ∈ V (2) for i even.
2. zi ≺ zi+2 for 1 ≤ i ≤ r − 2.
3. For 1 ≤ i ≤ r − 1, if u ∈ alt(zi) then u ⪯ zi+1.
4. z1 = p(1)1 .
5. zr is the last vertex of its path.
6. If r = 1, then one of

(a) alt(z1) = ∅ or
(b) alt(z1) ̸= ∅, and for z the last vertex in alt(z1), z is not the first vertex in its path and prev(z) ∈ alt(z1) ∪ {p(2)1 }.

7. If r ≥ 2, then

(a) z2 ̸= p(2)1 .
(b) zr−1 is not the last vertex of its path.
(c) if alt(zr ) ̸= ∅, then either

i. u ⪯ zr−1 for all u ∈ alt(zr ) or
ii. for the last vertex z in alt(zr ), z ≻ zr−1 and prev(z) ∈ alt(zr ) ∪ {zr−1}.

Subject to the constraint of being an orientation of two parallel Hessenberg paths, extra arcs that are not part of either
Hessenberg path or the zig-zag path are permitted.

The following theorem characterizes whether a zero forcing set B of cardinality two achieves pt(
−→
G , B) = |

−→
G |−2, which

can be attained only by having exactly one force at each step. The key ideas are: Forcing occurs only within the paths P (1)

and P (2). Forcing starts with the first force on P (2). Forcing alternates between these two paths if r ≥ 2; specifically, when
zi, i ≥ 2 is forced, then the next force must occur on the other path as the current vertex on the path has out-degree at least
two (coming from P (i) and Q ). Note that the zig-zag path described in the theorem, chosen to capture the alternating forcing
between paths property, is usually not the only zig-zag path for this zero forcing set.

Theorem 4.7. Let
−→
G be a connected oriented graph of order n ≥ 3 with Z(

−→
G ) = 2 and minimum zero forcing set B. Then

pt(
−→
G , B) = |

−→
G | − 2 if and only if

−→
G can be written as a zig-zag orientation

−→
G (P (1), P (2),Q ) with B = {p(1)1 , p(2)1 }.

Proof. Assume
−→
G can be written as a zig-zag orientation

−→
G (P (1), P (2),Q ). The requirements of being a zig-zag orientation

will require that only one force may occur at each time step (and P (1), P (2) can be the forcing chains). The first force occurs
on P (2) and (if r ≥ 2) the forcing switches between the paths immediately after a vertex zi in Q is forced.

Conversely, if pt(
−→
G , B) = |

−→
G | − 2 and Z(

−→
G ) = 2, the set of forces of B induce two parallel Hessenberg paths P (1) and

P (2), with B = {p(1)1 , p(2)1 } as the zero forcing set. All forces are of the form p(h)i → p(h)i+1 for some i and h, and exactly one force
occurs at each time step. Since n ≥ 3, a force must occur. Without loss of generality, we assume that p(2)1 → p(2)2 is the first
force and set z1 = p(1)1 .

In the case forcing occurs only in P (2) (i.e., p(1)1 is the only vertex in P (1)), set r = 1. This means p(1)1 = z1 has no out-
neighbors (implying alt(z1) = ∅), or it is impossible for p(1)1 to perform a force until possibly the last step (in which case we
have chosen to have a vertex in P (2) perform the last force rather than having p(1)1 perform the last force). This implies 6(b)
from the definition of a zig-zag orientation (note that alt(z1) = {p(2)1 } is not permitted, because this would cause Z(

−→
G ) = 1).

Now assume forcing takes place in both paths. We identify the remaining vertices zi in Q by using the propagation
process. At any point in the propagation process, only one of the paths is forcing, i.e., is active, and the other cannot force,
i.e., is inactive. The path P (2) is initially active and forcing will continue along P (2) until some vertex, which we label z2, is
reached and the path P (2) becomes inactive, and P (1) becomes active. We continue this process of identifying the zig-zag
path by choosing as zi the vertex that was forced immediately before the path that is active switches. This process of labeling
continues until the last switch between active and inactive paths occurs; the last vertex where a switch happens is labeled
zr ; observe r ≥ 2.

Since zi could not force until zi+1 turned blue, the directed arc (zi, zi+1) must be present; this shows that these arcs form
a directed path Q . By definition z1 = p(1)1 , while the labeling will have z2 = p(2)k for some k > 1, the zi alternates between
the two paths, zi ≺ zi+2, and zr is the final vertex on one of the paths while zr−1 is not the final vertex on its path (because
it performs a force immediately after zr turns blue). To ensure

−→
G (P (1), P (2),Q ) is a zig-zag orientation, we need to verify

condition (3) of Definition 4.6. Suppose zi+1 ≺ u for some u ∈ alt(zi) with 1 ≤ i ≤ r − 1, then at the step right after zi+1
turns blue, zi has at least two white out-neighbors, namely next(zi) and u. If this happens, then the forcing process will stop
here, since we picked zi+1 as the vertex that cannot conduct the force zi+1 → next(zi+1) right after prev(zi+1) → zi+1. This
is a contradiction, so condition (3) of Definition 4.6 holds, and we have our zig-zag orientation.

We now need to verify that this zig-zag orientation satisfies the properties given in Definition 4.6. By construction (6)
does not apply, so it remains to show that all the parts of (7) hold. Properties 7(a) and 7(b) are satisfied because a force must
take place in P (2) before z2 is defined, and all remaining forces occur on the other path after zr is defined. For 7(c), assume
alt(zr ) ̸= ∅ and the last vertex z in alt(zr ) is after zr−1. Finally we have prev(z) = zr−1 or prev(z) ∈ alt(zr ). □
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Fig. 5. An oriented graph satisfying the properties of Theorem 4.7.

Fig. 6. Examples of zig-zag orientations conforming to Theorem 4.7 and showing other minimum zero forcing sets that have propagation time less than

|
−→
G | − 2.

Fig. 7. An oriented graph with two minimum zero forcing sets and propagation time |
−→
G | − 2.

Corollary 4.8. Let
−→
G be an orientation of a connected graph G for which Z(

−→
G ) = 2. Then pt(

−→
G ) = |

−→
G | − 2 if and only if for

every minimum zero forcing set B,
−→
G can be written as a zig-zag orientation

−→
G (P (1), P (2),Q ).

The oriented graph
−→
G shown in Fig. 5 illustrates Corollary 4.8. The set B = {p(1)1 , p(2)1 } is a zero forcing set for

−→
G that

satisfies the hypotheses of Theorem 4.7, and B is the only minimum zero forcing set (since p(1)1 and p(2)1 both have in-degree
zero). Thus pt(

−→
G ) = |

−→
G | − 2.

In order to guarantee pt(
−→
G ) = |

−→
G | − 2, it is not enough to be able to write

−→
G as a zig-zag orientation

−→
G (P (1), P (2),Q )

satisfying the properties of Theorem 4.7 for some B = {p(1)1 , p(1)2 }. Although pt(
−→
G , B) = |

−→
G | − 2, there may be another

minimum zero forcing set B′ for which pt(
−→
G , B′) < |

−→
G | − 2; Fig. 6 presents several such examples.

Note that these examples have the property that one or both of the initial vertices of the P (i) have positive in-degree. In the
case when neither of the initial vertices have any in-arcs, then B is the unique minimum zero forcing set and so it is enough
that there is a zig-zag orientation starting with B that satisfies the hypotheses of Theorem 4.7. However, having a unique
minimum zero forcing set is not necessary for an oriented graph to have pt(

−→
G , B) = |

−→
G | − 2: The digraph

−→
K 1,3 shown in

Fig. 7 has two minimum zero forcing sets and pt(
−→
K 1,3) = 2 = 4 − 2. The problem of giving a complete classification of all

oriented graphs with pt(
−→
G ) = |

−→
G | − 2 remains open.

5. Orientation propagation intervals

We have seen in preceding sections that for the path Pn there are orientations with both high and low propagation times.
This leads to the following idea.

Definition 5.1. Let G be an undirected graph with m = min−→
G pt(

−→
G ) and M = max−→

G pt(
−→
G ). The interval [m,M] is called

the orientation propagation interval, and G has a full orientation propagation interval if for every k such thatm ≤ k ≤ M there
is some orientation

−→
G such that pt(

−→
G ) = k.

Determining if a graphhas a full orientation propagation interval is non-trivial, even for some simple graphs. The difficulty
is that the propagation parameter can be sensitive to small perturbations, as shown in the following example.

Example 5.2. Let n ≥ 9 and k = ⌊
n+3
2 ⌋. Consider the two oriented paths on n vertices shown in Fig. 8 where the vertices are

labeled 1 to n going from left to right. The top path has Z(
−→
P n) = 2, {1, k} is the unique minimum zero forcing set, and

−→
P n

has propagation time n−2. The bottom path has Z(
−→
P n) = 3 and {1, k, k+1} is aminimum zero forcing set with propagation

time of ⌈ n−5
2 ⌉. Thus the reversal of the arc between k − 2 and k − 1 changed the propagation time by at least ⌊

n+1
2 ⌋, which

can be arbitrarily large.
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Fig. 8. Reversing an arc produces a large change in propagation time.

Fig. 9. Possible orientations of C4 .

In this section we will show that paths have full orientation propagation time interval, while cycles do not. We comment
that the behavior and analysis of orientation propagation time intervals are far from understood.

5.1. Paths have a full orientation propagation time interval

By Theorem 3.3 we know for Pn that there is an orientation with propagation time one, and if we orient the edges of the
path as (i, i + 1) for 1 ≤ i ≤ n − 1, then the propagation time is n − 1. We will show that for Pn there is an orientation with
propagation time k for each 1 ≤ k ≤ n−1. The remaining propagation times are given in the proof of the following theorem.

Theorem 5.3. Let Pn be the path on n vertices and 1 ≤ k ≤ n − 1. Then there is an orientation
−→
P n such that pt(

−→
P n) = k.

Proof. We label the path with vertices 1, . . . , n and edges joining i and i + 1 for 1 ≤ i ≤ n − 1. To achieve a propagation
time of n − 2 for n ≥ 4, take the orientation (i, i + 1) for 1 ≤ i ≤ n − 3 together with (n − 1, n − 2) and (n − 1, n). Then
this orientation

−→
P n has Z(

−→
P n) = 2, and {1, n − 1} is the unique minimum zero forcing set; furthermore, no simultaneous

forces can occur, giving propagation time n − 2.
Now assume 2 ≤ k ≤ n − 3 and n ≥ 5. We consider the following orientation.

• (i, i + 1) for 1 ≤ i ≤ k + 1 (the initial segment).
• For k + 2 ≤ j ≤ n − 1 orient the edge between j and j + 1 by{

(j, j + 1) if j ≡ k or k + 1 (mod 4),
(j + 1, j) if j ≡ k + 2 or k + 3 (mod 4).

Aminimum zero forcing setmust contain 1, but no other vertex in the initial segment (as 1 can eventually force the initial
segment). In particular, vertex k+ 1 will not turn blue until the kth step of the propagation process (the vertex k+ 2 can be
turned blue earlier through its other neighbor). Therefore the propagation time of this orientation is at least k.

Consider the set S = {i : deg−(i) = 0}. The vertices in S must be in a zero forcing set since they cannot be turned blue
by a neighbor. If a vertex in S has deg+(i) = 2 then one of the neighbors must also be in the zero forcing set, i.e., only i can
change them to blue, but it cannot force both. As a consequence when we look at blocks of consecutive vertices between
vertices with deg−(i) = 2 we see that each block will have two elements in the zero forcing set and the block will propagate
in time two. Similar analysis shows that the tail will also propagate in time at most two.

We conclude that in two steps all vertices except some of those in the initial segment of the path have been turned blue;
however, the initial segmentwill not finish turning blue until time k, so the propagation time of this orientation of Pn is k. □

5.2. Cycles do not have a full orientation propagation time interval

Not all graphs have a full orientation propagation interval, as the following example shows.

Example 5.4. The four orientations on C4 up to isomorphism are shown in Fig. 9. No orientation has a propagation time of 2,
although there are orientations with propagation times 1 and 3. So C4 does not have a full orientation propagation interval.

If we orient the cycle Cn by (i, i + 1) for 1 ≤ i ≤ n (where we look at the entries modulo n), then any vertex can force the
entire graph and has pt(

−→
C n) = n − 1.
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Fig. 10. A cycle oriented as two parallel Hessenberg paths.

Now we reverse the arc between 1 and n to (1, n). Use the zero forcing set B = {1, 2}. Vertices 3 and n are forced in the
first step. Then at each subsequent step one vertex is forced, so B has propagation time n − 3. Every minimum zero forcing
set for this orientation is of the form {1, k}, and for k ≥ 3 this set has propagation time n − 2. Thus pt(

−→
C n) = n − 3.

However, the intermediate value of n−2 is impossible, as the next result shows. In particular, for n ≥ 4 the cycle Cn does
not have a full orientation propagation time interval.

Proposition 5.5. Let n ≥ 4. Then pt(
−→
C n) ̸= n − 2 for any orientation of Cn.

Proof. Suppose
−→
C n is an orientation of Cn with pt(

−→
C n) = n − 2. By Observation 1.2 we must have that Z(

−→
C n) = 2.

Moreover, it must be the case that precisely one vertex is forced at each time step for every minimum zero forcing set. Since
Z(

−→
G ) = 2,

−→
G is a graph of two parallel Hessenberg paths, with two arcs between the two paths so that a cycle is formed.

Since the initial vertices v and w of the two Hessenberg paths must be a zero forcing set and cannot both force initially,
without loss of generality the arcs must be oriented as shown in Fig. 10.

First suppose an out-neighbor u of v exists in the path containing v. Then {v, u} is a zero forcing set in which two forces
are performed initially, contradicting pt(

−→
G ) = n − 2. Thus u does not exist and {v, w} is a zero forcing set in which two

forces are performed initially (since n ≥ 4, y is not the last vertex in the lower path), contradicting pt(
−→
G ) = n − 2. □

6. Throttling on oriented graphs

To this point we have focused on the propagation time for zero forcing sets that have minimum cardinality. We can
relax the requirement to use minimum zero forcing sets and more generally consider any set that forces the entire graph.
In this situation there are several possible questions that could be investigated. Here we want to minimize the sum of the
cardinality of the zero forcing set and the speed at which it propagates through the graph, following the study of throttling
for undirected graphs in [10]. This study began in response to a question asked by Richard Brualdi during a presentation
about propagation time by Michael Young at the 2011 ILAS conference in Braunschweig, Germany. One perspective on this
question is to assume a cost to initially color a vertex and also a cost in waiting for all vertices to become blue; obviously
other weights could also be considered. A related question is discussed in Section 7.

Definition 6.1. Given an oriented graph
−→
G and a zero forcing set B of

−→
G , the throttling time of B for

−→
G is th(

−→
G , B) =

pt(
−→
G , B) + |B|. The minimum throttling time of an oriented graph

−→
G is

th(
−→
G ) = min{pt(

−→
G , B) + |B| : B is a zero forcing set of

−→
G }.

In [10] the (undirected version of the) throttling time of an undirected path Pn was determined to be approximately 2
√
n.

More generally it was shown that for any fixed value k there is a constant ck such that if the zero forcing number of a graph
on n vertices is at most k, then theminimum throttling time is at most ck

√
n. These results are best possible, up to a constant,

since the minimum possible throttling time of any n-vertex graph is 2
√
n − 1. On the other hand it is easy to come up with

graphs with throttling time which is linear in the number of vertices, e.g., large random graphs have this property since a
linear number of vertices are required to even carry out one force.

Here we look at throttling on complete Hessenberg paths and show that unlike undirected graphs, we cannot guarantee
a significant savings in throttling. A complete Hessenberg path is the unique tournament with a zero forcing number of one.
More precisely, the complete Hessenberg path of order n has vertex set {1, 2, . . . , n} and the following arcs:

{(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(i, j) : 3 ≤ i ≤ n and 1 ≤ j ≤ i − 2}.

For n ≥ 4, a simple check verifies that {1} is the unique minimum zero forcing set of this oriented graph. We show an
example with n = 5 in Fig. 11.

In particular, for the complete Hessenberg path −→
H , we show that th(−→H ) = ⌊

2n
3 ⌋ + 1. The key step is given in the next

lemma, which shows that we cannot engage in a large number of simultaneous forces on the complete Hessenberg path.

Lemma 6.2. Let −→
H be a complete Hessenberg path, and B a set of blue vertices. Then B can force at most 2 vertices at any given

time step.
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Fig. 11. A complete Hessenberg path on 5 vertices.

Proof. Let−→H be a complete Hessenberg path with vertex set {1, 2, . . . , n} and assume B is a set of blue vertices that forces 3
or more vertices at time step t . Assume a < b < c are the largest of the vertices that are forced at time t and thus are white
at time t − 1. Observe that c can only be forced by vertex c − 1 or by some vertex c + 2 or greater; but any vertex c + 2 or
greater has a, b and c as white out-neighbors so cannot perform any forces. This means c − 1 must force c. Since a vertex
must be blue to force, a < b < c − 1. Thus c − 1 has both a and c as white out-neighbors so cannot perform any forces. This
means that no vertex can force vertex c , which is a contradiction, and the result follows. □

Corollary 6.3. For any zero forcing set B of the complete Hessenberg path −→
H , we have 2 pt(−→H , B) + |B| ≥ n.

In the remainder of this section wewill find it convenient for the proofs to group the vertices of the complete Hessenberg
path on n vertices into sets of three. We will adopt the following notation: ℓ := ⌊n/3⌋ and for 1 ≤ j ≤ ℓ then
Ij = {3j − 2, 3j − 1, 3j} while Iℓ+1 will be the remaining vertices (if any).

Remark 6.4. Note that any zero forcing set must contain at least one vertex in I1: if this were not the case, then we could
never change I1 to blue because every vertex not in I1 is adjacent to two elements in I1.

Proposition 6.5. If −→
H is a complete Hessenberg path with |

−→
H | = n then th(−→H ) ≤

⌊ 2n
3

⌋
+ 1.

Proof. Define B := {1, 3, 6, 9, . . . , 3ℓ} and note that |B| =
⌊ n

3

⌋
+ 1. An easy inductive argument shows that vertices 3t − 2

and 3t will force vertices 3t − 1 and 3t + 1 in tth propagation round until no more forcing can occur, with the exception
that when n ≡ 0, 2 mod 3 there will be a single force in the last step. For n ≡ 1 mod 3, the 2(n−1)

3 white vertices are forced
in n−1

3 =
⌊ n

3

⌋
time steps. For n ≡ 0 mod 3, the 2n

3 − 1 white vertices are forced in n
3 =

⌊ n
3

⌋
time steps, with the last step

forcing only one vertex. Thus.

th(−→H , B) =

(⌊n
3

⌋
+ 1

)
+

⌊n
3

⌋
=

⌊
2n
3

⌋
+ 1.

For n ≡ 2 mod 3, the 2
⌊ n

3

⌋
+ 1 white vertices are forced in

⌊ n
3

⌋
+ 1 time steps, so pt(−→H , B) =

⌊ n
3

⌋
+ 1 and

th(−→H , B) =

(⌊n
3

⌋
+ 1

)
+

(⌊n
3

⌋
+ 1

)
=

⌊
2n
3

⌋
+ 1.

In all cases th(−→H , B) =
⌊ 2n

3

⌋
+ 1. □

Lemma 6.6. If −→
H is a complete Hessenberg path on n vertices and B is a zero forcing set such that |B| ≤ ⌊

n
3⌋ then there is some

time step when exactly one vertex is forced.

Proof. By Remark 6.4, I1 ∩ B ̸= ∅. Suppose first that for some 2 ≤ m ≤ ℓ that Im ∩ B = ∅. Now we set S = I1 ∪ · · · ∪ Im−1
and T = Im ∪ · · · ∪ Iℓ+1. Since every blue vertex in T is adjacent to two white vertices in Im, then nothing in T can force until
3m − 2 (the first element of T ) has been forced blue. Furthermore, when 3m − 2 has been forced, necessarily everything in
S has also already been forced: in order for 3m − 3 to force, 1, 2, . . . , 3m − 5 must be blue; if 3m − 4 is blue before 3m − 3
forces then the result holds, and otherwise 3m − 5 will force 3m − 4 at the same time that 3m − 3 forces 3m − 2. At this
stage 3m − 2 can force 3m − 1 and the only other vertex that can possibly be adjacent to only one white vertex is 3m + 1
adjacent to 3m − 1. Therefore, the only vertex that is forced at this stage is 3m − 1.

If all Im ∩ B ̸= ∅ then it must be that |Im ∩ B| = 1 for 1 ≤ m ≤ ℓ. Therefore every vertex numbered 4 or greater has at
least two white out-neighbors and so only the single blue vertex in I1 can force at the first step. □

Theorem 6.7. If −→
H is a complete Hessenberg path then th(−→H ) =

⌊ 2n
3

⌋
+ 1.

Proof. An easy verification establishes the result when the complete Hessenberg path−→
H has 1, 2 or 3 vertices. Wewill now

proceed by induction on n, the number of vertices of −→H . Assume that th(−→H ) = ⌊2k/3⌋ + 1 for 1 ≤ k ≤ n − 1. Consider the
complete Hessenberg path on n vertices and for the sake of contradiction we will assume we can find a zero forcing set B of
−→
H with th(−→H , B) ≤

⌊ 2n
3

⌋
. Then by Corollary 6.3 and this assumption we have

n ≤ pt(−→H , B) + pt(−→H , B) + |B| ≤ pt(−→H , B) +

⌊
2n
3

⌋
≤ pt(−→H , B) +

2n
3

.
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This tells us that n
3 ≤ pt(−→H , B), which in turn implies that |B| ≤ ⌊

n
3⌋. We now consider two cases (which exhaust all

possibilities by Remark 6.4).
Case 1: Im ∩ B = ∅ for some 2 ≤ m ≤ ℓ.

Proceeding as in the previous lemma we let S = I1 ∪ · · · ∪ Im−1 and T = Im ∪ · · · ∪ Iℓ+1 and note that no force happens
from the blue vertices in T until all vertices in S and x := 3m − 2 (the first vertex in T ) have been forced. Once x has been
forced the rest of the forcing can proceed as though S is not part of the graph. This shows we can split the propagation into
two distinct phases and so we have

pt(−→H , B) = pt(−→H [S ∪ {x}], B ∩ S) + pt(−→H [T ], (B ∩ T ) ∪ {x}).

Using this we get the following bound:

th(−→H , B) = pt(−→H , B) + |B|

= pt(−→H [S ∪ {x}], B ∩ S) + pt(−→H [T ], (B ∩ T ) ∪ {x}) + |B ∩ S| + |B ∩ T |

= th(−→H [S ∪ {x}], B ∩ S) + th(−→H [T ], (B ∩ T ) ∪ {x}) − 1
≥ ⌊2(|S| + 1)/3⌋ + 1 + ⌊2(n − |S|)/3⌋ + 1 − 1

≥

⌊
2n
3

⌋
+ 1.

The −1 term on the third line comes from accounting for {x}, and on the fourth line we have used the induction hypothesis.
This statement contradicts that th(−→H , B) ≤ ⌊

2n
3 ⌋, so this case cannot happen.

Case 2: Im ∩ B ̸= ∅ for all 1 ≤ m ≤ ℓ.
In this case we must then have that |B| = ⌊

n
3⌋ and so

th(−→H , B) ≥ 1 +
n − ⌊

n
3⌋ − 1
2

+

⌊n
3

⌋
.

The first two terms are a lower bound for pt(−→H , B), since by Lemma 6.6 there is some time step in the forcing process when
only one force occurs, and since for every other time step at most two forces can occur by Lemma 6.2. Since th(−→H , B) must
be a whole number this then implies that th(−→H , B) ≥ ⌊

2n
3 ⌋ + 1, which is again a contradiction to th(−→H , B) ≤ ⌊

2n
3 ⌋.

Therefore we can conclude that th(−→H , B) ≥
⌊ 2n

3

⌋
+ 1 and the construction in Proposition 6.5 is tight. □

7. Discussion

The emphasis in this paper has been on choosing an orientation of a graph to give a particular propagation time, and in
Section 5we examined the possible propagation times over various orientations. Other perspectives include determining the
propagation time for a given oriented graph or family of graphs, and considering the propagation times of various minimum
zero forcing sets for a given oriented graph or family of graphs. Here we discuss these ideas briefly.

To aid in the computation of propagation time of a specific oriented graph, we have published a Sage program that allows
computation of the zero forcing number and propagation time of a simple digraph [9].

Computation of propagation time of certain families of graphs is done in [11]. A (labeled) graph withm edges has 2m ori-
entations, many of which are non-isomorphic. Thus the problem of determining propagation times over various orientations
of a family of graphs for any but the most obvious very sparse families such as paths and cycles, discussed in Section 5, is a
rather large problem.

Given a fixed graph, questions such as the various propagation times of its minimum zero forcing sets, techniques for
minimizing or maximizing propagation time among minimum zero forcing sets, and whether there are gaps in the interval
of propagation times of minimum zero forcing sets, are studied in [15]. The analog for oriented graphs involves fixing the
orientation as well as the graph. As with graphs, it is easy to find an example of an oriented graph that has minimum zero
forcing setswith different propagation times. For example, the second orientation of C4 shown in Fig. 9 has anotherminimum
zero forcing set with propagation time 2, whereas the minimum zero forcing set shown has propagation time 1.

One (theoretical) technique to find a minimum zero forcing set with minimum propagation time that works for both
graphs and oriented graphs is to search for (or design) a zero forcing set that allows multiple simultaneous forces. Of course
in practice this involves carrying out the propagation process, so this is not of great practical use, although it does play a
role in designing graphs or orientations that achieve low propagation times, or high propagation times by avoiding multiple
forces.

Regarding the issue of gaps in the interval of possible propagation times of minimum zero forcing sets for a fixed digraph,
the existence of such an example for graphs (Example 1.10 in [15]) immediately yields an example of a simple digraph with
such a gap, by doubly directing the graph (replacing each edge {u, v} by the two arcs (u, v) and (v, u)). The next example
shows that such gaps also exist for oriented graphs.
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Fig. 12. An oriented tree with a gap in propagation times of minimum zero forcing sets.

Example 7.1. Consider the oriented tree
−→
T shown in Fig. 12. The only minimum zero forcing sets of

−→
T are B1 = {1, 3} and

B2 = {1, 6}. The propagation times are pt(
−→
T , B1) = 2 and pt(

−→
T , B2) = 4.

Another generalization of throttling to consider is to determine the minimum propagation time over all zero forcing sets
of size k (for k at least as large as the zero forcing number). As an example, consider the complete Hessenberg path of length
n. There is a unique zero forcing set of size 1, which has a propagation time n−1. From Lemma 6.2 we note that at most two
forces can occur at a time, and moreover will only occur if the vertices 1, 2, . . . , ℓ and ℓ + 2 are blue and ℓ + 1 and ℓ + 3 is
white. In particular, for 2 ≤ k ≤

⌊ n−1
3

⌋
+1we initially color the vertices 1, 3, 6, . . . , 3k−3 blue allowing us to double force in

k−1 rounds and then single force for the remainder givingminimumpropagation time n−2k+1. For
⌊ n−1

3

⌋
+2 ≤ k ≤ n−1

then the optimal strategy is to set up as many double forces as possible (following the above strategy with the tail colored
blue), and in particular has propagation time

⌊ n−k+1
2

⌋
. Finally if all vertices are colored blue, then propagation time is 0. To

summarize, the minimum propagation time of a zero forcing set of size k for the complete Hessenberg path is as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n − 2k + 1 if 1 ≤ k ≤

⌊
n − 1
3

⌋
+ 1,⌊

n − k + 1
2

⌋
if

⌊
n − 1
3

⌋
+ 2 ≤ k ≤ n − 1,

0 if k = n.

It might be interesting to see what similar analysis gives for other classes of graphs (including for undirected graphs).

Acknowledgments

The authors thank the referees for many helpful suggestions that improved the paper. Last author’s research was
supported in part by NSF DMS 0946431.

References

[1] A. Aazami, Hardness Results and Approximation Algorithms for Some Problems on Graphs, (Ph.D. thesis), University of Waterloo, 2008.
[2] AIM Minimum Rank –Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.M. Cioaba, D. Cvetkovic, S. M. Fallat, C. Godsil, W. Haemers,

L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovic, H. van der Holst, K. Vander Meulen, A. Wangsness), Zero forcing
sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648.

[3] D. Amos, Y. Caro, R. Davila, R. Pepper, Upper bounds on the k-forcing number of a graph, Discrete Appl. Math. 181 (2015) 1–10.
[4] F. Barioli, S.M. Fallat, H.T. Hall, D. Hershkowitz, L. Hogben, H. van der holst, B. Shader, On the minimum rank of not necessarily symmetric matrices: a

preliminary study, Electron. J. Linear Algebra 18 (2009) 126–145.
[5] A. Berliner, C. Brown, J. Carlson, N. Cox, L. Hogben, J. Hu, K. Jacobs, K. Manternach, T. Peters, N. Warnberg, M. Young, Path cover number, maximum

nullity, and zero forcing number of oriented graphs and other simple digraphs, Involve 8 (2015) 147–167.
[6] A. Berliner, M. Catral, L. Hogben, M. Huynh, K. Lied, M. Young, Minimum rank maximum nullity and zero forcing number of simple digraphs, Electron.

J. Linear Algebra 26 (2013) 762–780.
[7] D. Burgarth, D. D’alessandro, L. Hogben, S. Severini, M. Young, Zero forcing linear and quantum controllability for systems evolving on networks, IEEE

Trans. Automat. Control 58 (2013) 2349–2354.
[8] D. Burgarth, V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. 99 (2007) 100501.
[9] S. Butler, Sage program for digraph propagation time. PDF available at http://orion.math.iastate.edu/lhogben/ZeroForcingDigraphs(Sage).pdf. Sage

worksheet available at https://sage.math.iastate.edu/home/pub/74/.
[10] S. Butler, M. Young, Throttling zero forcing propagation speed on graphs, Australas. J. Combin. 57 (2013) 65–71.
[11] K.B. Chilakamarri, N. Dean, C.X. Kang, E. Yi, Iteration index of a zero forcing set in a graph, Bull. Inst. Combin. Appl. 64 (2012) 57–72.
[12] S. Fallat, L. Hogben, Minimum rank, maximum nullity and zero forcing number of graphs, in: L. Hogben (Ed.), Handbook of Linear Algebra, second ed.,

CRC Press, Boca Raton, 2014.
[13] M. Gentner, L.D. Penso, D. Rautenbach, U.S. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math. 214 (2016) 196–200.
[14] L. Hogben, Minimum rank problems, Linear Algebra Appl. 432 (2010) 1961–1974.
[15] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young, Propagation time for zero forcing on a graph, Discrete Appl. Math. 160 (2012)

1994–2005.
[16] L. Hogben, K. Palmowski, D. Roberson, M. Young, Fractional zero forcing via three-color forcing games, Discrete Appl. Math. 213 (2016) 114–129.
[17] L. Lu, B. Wu, Z. Tang, Proof of a conjecture on the zero forcing number of a graph, Discrete Appl. Math. 213 (2016) 233–237.
[18] R.C. Read, R.J. Wilson, An Atlas of Graphs, Oxford University Press, Oxford, 1998.
[19] M. Trefois, J.-C. Delvenne, Zero forcing Number constrained matchings and strong structural controllability, Linear Algebra Appl. 484 (2015) 199–218.

http://refhub.elsevier.com/S0166-218X(17)30103-8/sb1
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb2
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb2
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb2
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb2
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb2
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb3
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb4
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb4
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb4
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb5
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb5
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb5
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb6
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb6
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb6
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb7
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb7
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb7
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb8
http://orion.math.iastate.edu/lhogben/ZeroForcingDigraphs%28Sage%29.pdf
https://sage.math.iastate.edu/home/pub/74/
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb10
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb11
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb12
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb12
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb12
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb13
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb14
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb15
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb15
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb15
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb16
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb17
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb18
http://refhub.elsevier.com/S0166-218X(17)30103-8/sb19

	Zero forcing propagation time on oriented graphs
	Introduction
	Terminology and definitions

	Reversing arcs
	Orientations with low propagation times
	Trees
	Tournaments
	Data for small graphs that allow propagation time one

	Orientations with high propagation times
	Orientation propagation intervals
	Paths have a full orientation propagation time interval
	Cycles do not have a full orientation propagation time interval

	Throttling on oriented graphs
	Discussion
	Acknowledgments
	References


