
Solutions to Linear Algebra, Fourth Edition,

Stephen H. Friedberg, Arnold J. Insel,

Lawrence E. Spence

Jephian Lin, Shia Su, Zazastone Lai

July 6, 2016



Copyright © 2011 Chin-Hung Lin. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

1



Prologue

This is Solution to Linear Algebra written by Friedberg, Insel, and Spence. And
this file is generated during the Linear Algebra courses in Fall 2010 and Spring
2011. I was a TA in these courses. Although this file will be uploaded to the
course website for students, the main purpose to write the solution is to do some
exercises and find some ideas about my master thesis, which is related to some
topic in graph theory called the minimum rank problem.

Here are some important things for students and other users. The first is
that there must be several typoes and errors in this file. I would be very glad if
someone send me an email, jlch3554@hotmail.com, and give me some comments
or corrections. Second, for students, the answers here could not be the answer
on any of your answer sheet of any test. The reason is the answers here are
simplistic and have some error sometimes. So it will not be a good excuse that
your answers is as same as answers here when your scores flied away and leave
you alone.

The file is made by MikTex and Notepad++ while the graphs in this file
is drawn by IPE. Some answers is mostly computed by wxMaxima and little
computed by WolframAlpha. The English vocabulary is taught by Google Dic-
tionary. I appreciate those persons who ever gave me a hand including people
related to those mentioned softwares, those persons who buttressed me, and of
course those instructors who ever taught me.

Thanks.

-Jephian Lin
Department of Mathematrics, National Taiwan University

2011, 5/1

A successful and happy life requires life long hard working.

Prof. Peter Shiue
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Version Info

� 2011, 7/27—First release with GNU Free Documentation License.

� 2016, 7/6—Minor correction; thanks to Calvin Wu.
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Chapter 1

Vector Spaces

1.1 Introduction

1. (a) No. 3
6
≠ 1

4

(b) Yes. −3(−3,1,7) = (9,−3,−21)
(c) No.

(d) No.

2. Here t is in F.

(a) (3,−2,4) + t(−8,9,−3)
(b) (2,4,0) + t(−5,−10,0)
(c) (3,7,2) + t(0,0,−10)
(d) (−2,−1,5) + t(5,10,2)

3. Here s and t are in F.

(a) (2,−5,−1) + s(−2,9,7) + t(−5,12,2)
(b) (3,−6,7) + s(−5,6,−11) + t(2,−3,−9)
(c) (−8,2,0) + s(9,1,0) + t(14,3,0)
(d) (1,1,1) + s(4,4,4) + t(−7,3,1)

4. Additive identity, 0, should be the zero vector, (0,0, . . . ,0) in Rn.

5. Since x = (a1, a2) − (0,0) = (a1, a2), we have tx = (ta1, ta2). Hence the
head of that vector will be (0,0) + (ta1, ta2) = (ta1, ta2).

6. The vector that emanates from (a, b) and terminates at the midpoint
should be 1

2
(c−a, d− b). So the coordinate of the midpoint will be (a, b)+

1
2
(c − a, d − b) = ((a + c)/2, (b + d)/2).
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7. Let the four vertices of the parallelogram be A, B, C, D counterclockwise.
Say x = A⃗B and y = A⃗D. Then the line joining points B and D should
be x + s(y − x), where s is in F. And the line joining points A and C
should be t(x + y), where t is in F. To find the intersection of the two
lines we should solve s and t such that x + s(y − x) = t(x + y). Hence we
have (1− s− t)x = (t− s)y. But since x and y can not be parallel, we have
1− s− t = 0 and t− s = 0. So s = t = 1

2
and the midpoint would be the head

of the vector 1
2
(x + y) emanating from A and by the previous exercise we

know it’s the midpoint of segment AC or segment BD.

1.2 Vector Spaces

1. (a) Yes. It’s condition (VS 3).

(b) No. If x, y are both zero vectors. Then by condition (VS 3) x =
x + y = y.

(c) No. Let e be the zero vector. We have 1e = 2e.

(d) No. It will be false when a = 0.

(e) Yes.

(f) No. It has m rows and n columns.

(g) No.

(h) No. For example, we have that x + (−x) = 0.

(i) Yes.

(j) Yes.

(k) Yes. That’s the definition.

2. It’s the 3 × 4 matrix with all entries =0.

3. M13 = 3, M21 = 4, M22 = 5.

4. (a) ( 6 3 2
−4 3 9

).

(b)
⎛
⎜
⎝

1 −1
3 −5
3 8

⎞
⎟
⎠

.

(c) ( 8 20 −12
4 0 28

).

(d)
⎛
⎜
⎝

30 −20
−15 10
−5 −40

⎞
⎟
⎠

.

(e) 2x4 + x3 + 2x2 − 2x + 10.

(f) −x3 + 7x2 + 4.

7



(g) 10x7 − 30x4 + 40x2 − 15x.

(h) 3x5 − 6x3 + 12x + 6.

5.
⎛
⎜
⎝

8 3 1
3 0 0
3 0 0

⎞
⎟
⎠
+
⎛
⎜
⎝

9 1 4
3 0 0
1 1 0

⎞
⎟
⎠
=
⎛
⎜
⎝

17 4 5
6 0 0
4 1 0

⎞
⎟
⎠

.

6. M =
⎛
⎜
⎝

4 2 1 3
5 1 1 4
3 1 2 6

⎞
⎟
⎠

. Since all the entries has been doubled, we have 2M

can describe the inventory in June. Next, the matrix 2M −A can describe
the list of sold items. And the number of total sold items is the sum of all
entries of 2M −A. It equals 24.

7. It’s enough to check f(0) + g(0) = 2 = h(0) and f(1) + g(1) = 6 = h(1).

8. By (VS 7) and (VS 8), we have (a + b)(x + y) = a(x + y) + b(x + y) =
ax + ay + bx + by.

9. For two zero vectors 00 and 01, by Thm 1.1 we have that 00+x = x = 01+x
implies 00 = 01, where x is an arbitrary vector. If for vector x we have two
inverse vectors y0 and y1. Then we have that x + y0 = 0 = x + y1 implies
y0 = y1. Finally we have 0a + 1a = (0 + 1)a = 1a = 0 + 1a and so 0a = 0.

10. We have sum of two differentiable real-valued functions or product of scalar
and one differentiable real-valued function are again that kind of function.
And the function f = 0 would be the 0 in a vector space. Of course, here
the field should be the real numbers.

11. All condition is easy to check because there is only one element.

12. We have f(−t)+g(−t) = f(t)+g(t) and cf(−t) = cf(t) if f and g are both
even function. Futhermore, f = 0 is the zero vector. And the field here
should be the real numbers.

13. No. If it’s a vector space, we have 0(a1, a2) = (0, a2) be the zero vector.
But since a2 is arbitrary, this is a contradiction to the uniqueness of zero
vector.

14. Yes. All the condition are preserved when the field is the real numbers.

15. No. Because a real-valued vector scalar multiply with a complex number
will not always be a real-valued vector.

16. Yes. All the condition are preserved when the field is the rational numbers.

17. No. Since 0(a1, a2) = (a1,0) is the zero vector but this will make the zero
vector not be unique, it cannot be a vector space.

18. No. We have ((a1, a2) + (b1, b2)) + (c1, c2) = (a1 + 2b1 + 2c1, a2 + 3b2 + 3c2)
but (a1, a2) + ((b1, b2) + (c1, c2)) = (a1 + 2b1 + 4c1, a2 + 3b2 + 9c2).
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19. No. Because (c+ d)(a1, a2) = ((c+ d)a1, a2c+d) may not equal to c(a1, a2)+
d(a1, a2) = (ca1 + dc1, a2c + a2

d
).

20. A sequence can just be seen as a vector with countable-infinite dimensions.
Or we can just check all the condition carefully.

21. Let 0V and 0W be the zero vector in V and W respectly. Then we have
(0V ,0W ) will be the zero vector in Z. The other condition could also be
checked carefully. This space is called the direct product of V and W .

22. Since each entries could be 1 or 0 and there are m × n entries, there are
2m×n vectors in that space.

1.3 Subspaces

1. (a) No. This should make sure that the field and the operations of V and
W are the same. Otherwise for example, V = R and W = Q respectly.
Then W is a vector space over Q but not a space over R and so not
a subspace of V .

(b) No. We should have that any subspace contains 0.

(c) Yes. We can choose W = 0.

(d) No. Let V = R, E0 = {0} and E1 = {1}. Then we have E0 ∩E1 = ∅ is
not a subspace.

(e) Yes. Only entries on diagonal could be nonzero.

(f) No. It’s the summation of that.

(g) No. But it’s called isomorphism. That is, they are the same in view
of structure.

2. (a) ( −4 5
2 −1

) with tr= −5.

(b)
⎛
⎜
⎝

0 3
8 4
−6 7

⎞
⎟
⎠

.

(c) ( −3 0 6
9 −2 1

).

(d)
⎛
⎜
⎝

10 2 −5
0 −4 7
−8 3 6

⎞
⎟
⎠

with tr= 12.

(e)

⎛
⎜⎜⎜
⎝

1
−1
3
5

⎞
⎟⎟⎟
⎠

.
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(f)

⎛
⎜⎜⎜
⎝

−2 7
5 0
1 1
4 −6

⎞
⎟⎟⎟
⎠

.

(g) ( 5 6 7 ).

(h)
⎛
⎜
⎝

−4 0 6
0 1 −3
6 −3 5

⎞
⎟
⎠

with tr= 2.

3. Let M = aA+bB and N = aAt+bBt. Then we have Mij = aAij+bBij = Nji
and so M t = N .

4. We have Atij = Aji and so Atji = Aij .

5. By the previous exercises we have (A +At)t = At + (At)t = At +A and so
it’s symmetric.

6. We have that tr(aA + bB) = ∑ni=1 aAii + bBii = a∑ni=1Aii + b∑
n
i=1Bii =

atr(A) + btr(B).

7. If A is a diagonal matrix, we have Aij = 0 = Aji when i ≠ j.

8. Just check whether it’s closed under addition and scalar multiplication
and whether it contains 0. And here s and t are in R.

(a) Yes. It’s a line t(3,1,−1).
(b) No. It contains no (0,0,0).
(c) Yes. It’s a plane with normal vector (2,−7,1).
(d) Yes. It’s a plane with normal vector (1,−4,−1).
(e) No. It contains no (0,0,0).
(f) No. We have both (

√
3,

√
5,0) and (0,

√
6,

√
3) art elements of W6

but their sum (
√

3,
√

5 +
√

6,
√

3) is not an element of W6.

9. We have W1 ∩W3 = {0}, W1 ∩W4 =W1, and W3 ∩W4 is a line t(11,3,−1).

10. We have W1 is a subspace since it’s a plane with normal vector (1,1, . . . ,1).
But this should be checked carefully. And since 0 ∉ W2, W2 is not a
subspace.

11. No in general but Yes when n = 1. Since W is not closed under addition.
For example, when n = 2, (x2 + x) + (−x2) = x is not in W .

12. Directly check that sum of two upper triangular matrix and product of one
scalar and one upper triangular matrix are again uppe triangular matrices.
And of course zero matrix is upper triangular.

13. It’s closed under addition since (f + g)(s0) = 0 + 0 = 0. It’s closed under
scalar multiplication since cf(s0) = c0 = 0. And zero function is in the set.
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14. It’s closed under addition since the number of nonzero points of f+g is less
than the number of union of nonzero points of f and g. It’s closed under
scalar multiplication since the number of nonzero points of cf equals to
the number of f . And zero function is in the set.

15. Yes. Since sum of two differentiable functions and product of one scalar
and one differentiable function are again differentiable. The zero function
is differentiable.

16. If f (n) and g(n) are the nth derivative of f and g. Then f (n)+g(n) will be
the nth derivative of f + g. And it will continuous if both f (n) and g(n)

are continuous. Similarly cf (n) is the nth derivative of cf and it will be
continuous. This space has zero function as the zero vector.

17. There are only one condition different from that in Theorem 1.3. If W is
a subspace, then 0 ∈ W implies W ≠ ∅. If W is a subset satisfying the
conditions of this question, then we can pick x ∈ W since it’t not empty
and the other condition assure 0x = 0 will be a element of W .

18. We may compare the conditions here with the conditions in Theorem 1.3.
First let W be a subspace. We have cx will be contained in W and so is
cx + y if x and y are elements of W . Second let W is a subset satisfying
the conditions of this question. Then by picking a = 1 or y = 0 we get the
conditions in Theorem 1.3.

19. It’s easy to say that is sufficient since if we have W1 ⊂W2 or W2 ⊂W1 then
the union of W1 and W2 will be W1 or W2, a space of course. To say it’s
necessary we may assume that neither W1 ⊂ W2 nor W2 ⊂ W1 holds and
then we can find some x ∈W1/W2 and y ∈W2/W1. Thus by the condition
of subspace we have x + y is a vector in W1 or in W2, say W1. But this
will make y = (x + y) − x should be in W1. It will be contradictory to the
original hypothesis that y ∈W2/W1.

20. We have that aiwi ∈W for all i. And we can get the conclusion that a1w1,
a1w1 + a2w2, a1w1 + a2w2 + a3w3 are in W inductively.

21. In calculus course it will be proven that {an+bn} and {can} will converge.
And zero sequence, that is sequence with all entris zero, will be the zero
vector.

22. The fact that it’s closed has been proved in the previous exercise. And a
zero function is either a even function or odd function.

23. (a) We have (x1 + x2) + (y1 + y2) = (x1 + y1) + (x2 + y2) ∈ W1 +W2 and
c(x1 + x2) = cx1 + cx2 ∈W1 +W2 if x1, y1 ∈W1 and x2, y2 ∈W2. And
we have 0 = 0 + 0 ∈W1 +W2. Finally W1 = {x + 0 ∶ x ∈W1,0 ∈W2} ⊂
W1 +W2 and it’s similar for the case of W2.

(b) If U is a subspace contains both W1 and W2 then x + y should be a
vector in U for all x ∈W1 and y ∈W2.

11



24. It’s natural that W1 ∩W2 = {0}. And we have Fn = {(a1, a2, . . . , an) ∶ ai ∈
F} = {(a1, a2, . . . , an−1,0) + (0,0, . . . , an) ∶ ai ∈ F} =W1 ⊕W2.

25. This is similar to the exercise 1.3.24.

26. This is similar to the exercise 1.3.24.

27. This is similar to the exercise 1.3.24.

28. By the previous exercise we have (M1+M2)t =M t
1+M t

2 = −(M1+M2) and
(cM)t = cM t = −cM . With addition that zero matrix is skew-symmetric
we have the set of all skew-symmetric matrices is a space. We have
Mn×n(F) = {A ∶ A ∈ Mn×n(F)} = {(A + At) + (A − At) ∶ A ∈ Mn×n(F)} =
W1 +W2 and W1 ∩W2 = {0}. The final equality is because A +At is sym-
metric and A −At is skew-symmetric. If F is of characteristic 2, we have
W1 =W2.

29. It’s easy thatW1∩W2 = {0}. And we haveMn×n(F) = {A ∶ A ∈Mn×n(F)} =
{(A−B(A))+B(A) ∶ A ∈Mn×n(F)} =W1+W2, where B(A) is the matrix
with Bij = Bji = Aij if i ≤ j.

30. If V =W1 ⊕W2 and some vector y ∈ V can be represented as y = x1 + x2 =
x′1 + x′2, where x1, x

′
1 ∈ W1 and x2, x

′
2 ∈ W2, then we have x1 − x′1 ∈ W1

and x1 − x′1 = x2 + x′2 ∈ W2. But since W1 ∩W2 = {0}, we have x1 = x′1
and x2 = x′2. Conversely, if each vector in V can be uniquely written as
x1 + x2, then V =W1 +W2. Now if x ∈W1 ∩W2 and x ≠ 0, then we have
that x = x+0 with x ∈W1 and 0 ∈W2 or x = 0+x with 0 ∈W1 and x ∈W2,
a contradiction.

31. (a) If v+W is a space, we have 0 = v+(−v) ∈ v+W and thus −v ∈W and
v ∈W . Conversely, if v ∈W we have actually v +W =W , a space.

(b) We can proof that v1 +W = v2 +W if and only if (v1 − v2) +W =W .
This is because (−v1) + (v1 +W ) = {−v + v + w ∶ w ∈ W} = W and
(−v1) + (v2 +W ) = {−v1 + v2 + w ∶ w ∈ W} = (−v1 + v2) +W . So if
(v1 −v2)+W =W , a space, then we have v1 −v2 ∈W by the previous
exercise. And if v1 − v2 ∈W we can conclude that (v1 − v2)+W =W .

(c) We have (v1 +W ) + (v2 +W ) = (v1 + v2) +W = (v′1 + v′2) +W =
(v′1+W )+(v′2+W ) since by the previous exercise we have v1−v′1 ∈W
and v2 − v′2 ∈ W and thus (v1 + v2) − (v′1 + v′2) ∈ W . On the other
hand, since v1 − v′1 ∈ W implies av1 − av′1 = a(v1 − v′1) ∈ W , we have
a(v1 +W ) = a(v′1 +W ).

(d) It closed because V is closed. The commutativeity and associativity
of addition is also because V is commutative and associative. For
the zero element we have (x +W ) +W = x +W . For the inverse
element we have (x+W )+(−x+W ) =W . For the identity element of
multiplication we have 1(x +W ) = x +W . The distribution law and
combination law are also followed by the original propositions in V .
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But there are one more thing should be checked, that is whether it
is well-defined. But this is the exercise 1.3.31.(c).

1.4 Linear Combinations and Systems of Linear
Equations

1. (a) Yes. Just pick any coeficient to be zero.

(b) No. By definition it should be {0}.

(c) Yes. Every subspaces of which S is a subset contains span(S) and
span(S) is a subspace.

(d) No. This action will change the solution of one system of linear
equations.

(e) Yes.

(f) No. For example, 0x = 3 has no solution.

2. (a) Original system⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 − x2 − 2x3 − x4 = −3
x3 + 2x4 = 4
4x3 + 8x4 = 16

. So we

have solution is {(5 + s − 3t, s,4 − 2t, t) ∶ s, t ∈ F}.

(b) {(−2,−4,−3)}.

(c) No solution.

(d) {(−16 − 8s,9 + 3s, s,2) ∶ s ∈ F}.

(e) {(−4 + 10s − 3t,3 − 3s + 2t, r, s,5) ∶ s, t ∈ F}.

(f) {(3,4,−2)}.

3. (a) Yes. Solve the equation x1(1,3,0) + x2(2,4,−1) = (−2,0,3) and we
have the solution (x1, x2) = (4,−3).

(b) Yes.

(c) No.

(d) No.

(e) No.

(f) Yes.

4. (a) Yes.

(b) No.

(c) Yes.

(d) Yes.

(e) No.

(f) No.
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5. (a) Yes.

(b) No.

(c) No.

(d) Yes.

(e) Yes.

(f) No.

(g) Yes.

(h) No.

6. For every (x1, x2, x3) ∈ F3 we may assume

y1(1,1,0) + y2(1,0,1) + y3(0,1,1) = (x1, x2, x3)

and solve the system of linear equation. We got (x1, x2, x3) = 1
2
(x1 − x2 +

x3)(1,1,0) + 1
2
(x1 + x2 − x3)(1,0,1) + 1

2
(−x1 + x2 + x3)(0,1,1).

7. For every (x1, x2, . . . xn) ∈ Fn we can write (x1, x2, . . . xn) = x1e1 + x2e2 +
⋯ + xnen.

8. It’s similar to exercise 1.4.7.

9. It’s similar to exercise 1.4.7.

10. For x ≠ 0 the statement is the definition of linear combination and the set
is a line. For x = 0 the both side of the equation is the set of zero vector
and the set is the origin.

11. To prove it’s sufficient we can use Theorem 1.5 and then we know W =
span(W ) is a subspace. To prove it’s necessary we can also use Theorem
1.5. Since W is a subspace contains W , we have span(W ) ⊂ W . On the
other hand, it’s natural that span(W ) ⊃W .

12. To prove span(S1) ⊂ span(S2) we may let v ∈ S1. Then we can write
v = a1x1 + a2x2 + ⋯ + a3x3 where xi is an element of S1 and so is S2 for
all n = 1,2, . . . , n. But this means v is a linear combination of S2 and we
complete the proof. If span(S1) = V , we know span(S2) is a subspace
containing span(S1). So it must be V .

13. We prove span(S1 ∪S2) ⊂ span(S1)+ span(S2) first. For v ∈ span(S1 ∪S2)
we have v = ∑ni=1 aixi +∑

m
j=1 bjyj with xi ∈ S1 and yj ∈ S2. Since the first

summation is in span(S1) and the second summation is in span(S2), we
have v ∈ span(S1) + span(S2). For the converse, let u + v ∈ span(S1) +
span(S2) with u ∈ span(S1) and v ∈ span(S2). We can right u + v =
∑ni=1 aixi + ∑

m
j=1 bjyj with xi ∈ S1 and yj ∈ S2 and this means u + v ∈

span(S1 ∪ S2).
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14. For v ∈ span(S1 ∩S2) we may write v = ∑ni=1 aixi with xi ∈ S1 and xi ∈ S2.
So v is an element of both span(S1) and span(S2) and hence an element
of span(S1)∩ span(S2). For example we have if S1 = S2 = (1,0) then they
are the same and if S1 = (1,0) and S2 = (0,1) then we have the left hand
side is the set of zero vector and the right hand side is the the plane R2.

15. If we have both a1v1 + a2v2 +⋯+ anvn = b1v1 + b2v2 +⋯bnvn then we have
(a1 − b1)v1 + (a2 − b2)v2 + ⋯ + (an − bn)vn = 0. By the property we can
deduce that ai = bi for all i.

16. When W has finite element the statement holds. Otherwise W − {v},
where v ∈W will be a generating set of W . But there are infinitely many
v ∈W .

1.5 Linear Dependence and Linear Independence

1. (a) No. For example, take S = {(1,0), (2,0), (0,1)} and then (0,1) is not
a linear combination of the other two.

(b) Yes. It’s because 10⃗ = 0⃗.

(c) No. It’s independent by the remark after Definition of linearly inde-
pendent.

(d) No. For example, we have S = {(1,0), (2,0), (0,1)} but {(1,0), (0,1)}
is linearly independent.

(e) Yes. This is the contrapositive statement of Theorem 1.6.

(f) Yes. This is the definition.

2. (a) Linearly dependent. We have −2( 1 −3
−2 4

) = ( −2 6
4 −8

). So to

check the linearly dependency is to find the nontrivial solution of
equation a1x1 + a2x2 + ⋯ + anxn = 0. And x1 and x2 are the two
matrices here.

(b) Linearly independent.

(c) Linearly independent.

(d) Linearly dependent.

(e) Linearly dependent.

(f) Linearly independent.

(g) Linearly dependent.

(h) Linearly independent.

(i) Linearly independent.

(j) Linearly dependent.

3. LetM1,M2, . . . ,M5 be those matrices. We haveM1+M2+M3−M4−M5 = 0.
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4. If a1e1 + a2e2 +⋯+ anen = (a1, a2, . . . , an) = 0, then by comparing the i-th
entry of the vector of both side we have a1 = a2 = ⋯ = an = 0.

5. It’s similar to exercise 1.5.4.

6. it’s similar to exercise 1.5.4.

7. Let Eij be the matrix with the only nonzero ij-entry= 1. Then {E11,E22}
is the generating set.

8. (a) The equation x1(1,1,0)+x2(1,0,1)+x3(0,1,1) = 0 has only nontrivial
solution when F = R.

(b) When F has characteristic 2, we have 1 + 1 = 0 and so (1,1,0) +
(1,0,1) + (0,1,1) = (0,0,0).

9. It’s sufficient since if u = tv for some t ∈ F then we have u − tv = 0. While
it’s also necessary since if au+ bv = 0 for some a, b ∈ F with at least one of
the two coefficients not zero then we may assume a ≠ 0 and u = − b

a
v.

10. Pick v1 = (1,1,0), v2 = (1,0,0), v3 = (0,1,0). And we have that none of the
three is a multiple of another and they are dependent since v1−v2−v3 = 0.

11. Vector in span(S) are linear combinations of S and they all have different
representation by the remark after Definition of linear independent. So
there are 2n representations and so 2n vectors.

12. Since S1 is linearly dependent we have finite vectors x1, x2, . . . , xn in S1

and so in S2 such that a1x1+a2x2+⋯+anxn = 0 is a nontrivial representa-
tion. But the nontrivial representation is also a nontrivial representation
of S2. And the Corollary is just the contrapositive statement of the The-
orem 1.6.

13. (a) Sufficiency: If {u+v, u−v} is linearly independent we have a(u+v)+
b(u − v) = 0 implies a = b = 0. Assuming that cu + dv = 0, we can
deduce that c+d

2
(u+ v)+ c−d

2
(u− v) = 0 and hence c+d

2
= c−d

2
= 0. This

means c = d = 0 if the characteristc is not two. Necessity: If {u, v} is
linearly independent we have au + bv = 0 implies a = b = 0. Assuming
that c(u+ v)+ d(u− v) = 0, we can deduce that (c+ d)u+ (c− d)v = 0
and hence c+d = c−d = 0 and 2c = 2d = 0. This means c = d = 0 if the
characteristc is not two.

(b) Sufficiency: If au + bv + cw = 0 we have a+b−c
2

(u + v) + a−b+c
2

(u +w) +
−a+b+c

2
(v + w) = 0 and hence a = b = c = 0. Necessity: If a(u + v) +

b(u +w) + c(v +w) = 0 we have (a + b)u + (a + c)v + (b + c)w = 0 and
hence a = b = c = 0.

14. Sufficiency: It’s natural that 0 is linearly dependent. If v is a linear
combination of u1, u2, . . . , un , say v = a1u1+a2u2+⋯anun, then v−a1u1−
a2u2 − ⋯ − anun = 0 implies S is linearly dependent. Necessity: If S is
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linearly dependent and S ≠ {0} we have some nontrivial representation
a0u0 + a1u1 +⋯+ anun = 0 with at least one of the coefficients is zero, say
a0 = 0 without loss the generality. Then we can let v = u0 = − 1

a0
(a1u1 +

a2u2 +⋯ + anun).

15. Sufficiency: If u1 = 0 then S is linearly independent. If

uk+1 ∈ span({u1, u2, . . . , uk})

for some k, say uk+1 = a1u1+a2u2+⋯+akuk, then we have a1u1+a2u2+⋯+
akuk − uk+1 = 0 is a nontrivial representation. Necessary: If S is linearly
dependent, there are some integer k such that there is some nontrivial
representation a1u1 + a2u2 + ⋯ + akuk + ak+1uk+1 = 0. Furthermore we
may assume that ak+1 ≠ 0 otherwise we may choose less k until that
ak+1 ≠= 0. Hence we have ak+1 = − 1

ak+1
(a1u1 + a2u2 + ⋯ + akuk) and so

ak+1 ∈ span({u1, u2, . . . , uk}).

16. Sufficiency: We can prove it by contrapositive statement. If S is linearly
dependent we can find a1u1 + a2u2 +⋯+ anun = 0. But thus the finite set
{u1, u2, . . . , un} would be a finite subset of S and it’s linearly dependent.
Necessary: This is the Threorem 1.6.

17. Let C1,C2, . . . ,Cn be the columns of M . Let a1C1 + a2C2 +⋯ + anCn = 0
then we have an = 0 by comparing the n-th entry. And inductively we
have an−1 = 0, an−2 = 0, . . . , a1 = 0.

18. It’s similar to exercise 1.5.17.

19. We have a1A
t
1 + a2At2 +⋯ + akAtk = 0 implies a1A1 + a2A2 +⋯ + akAk = 0.

Then we have a1 = a2 = ⋯ = an = 0.

20. If {f, g} is linearly dependent, then we have f = kg. But this means
1 = f(0) = kg(0) = k × 1 and hence k = 1. And er = f(1) = kg(1) = es
means r = s.

1.6 Bases and Dimension

1. (a) No. The empty set is its basis.

(b) Yes. This is the result of Replacement Theorem.

(c) No. For example, the set of all polynomials has no finite basis.

(d) No. R2 has {(1,0), (1,1)} and {(1,0), (0,1)} as bases.

(e) Yes. This is the Corollary after Replacement Theorem.

(f) No. It’s n + 1.

(g) No. It’s m × n.

(h) Yes. This is the Replaceent Theorem.
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(i) No. For S = 1,2, a subset of R, then 5 = 1 × 1 + 2 × 2 = 3 × 1 + 1 × 2.

(j) Yes. This is Theorem 1.11.

(k) Yes. It’s {0} and V respectly.

(l) Yes. This is the Corollary 2 after Replacement Theorem.

2. It’s enough to check there are 3 vectors and the set is linear independent.

(a) Yes.

(b) No.

(c) Yes.

(d) Yes.

(e) No.

3. (a) No.

(b) Yes.

(c) Yes.

(d) Yes.

(e) No.

4. It’s impossible since the dimension of P3(R) is four.

5. It’s also impossible since the dimension of R3 is three.

6. Let Eij be the matrix with the only nonzero ij-entry= 1. Then the sets
{E11,E12,E21,E22}, {E11+E12,E12,E21,E22}, and {E11+E21,E12,E21,E22}
are bases of the space.

7. We have first {u1, u2} is linearly independent. And since u3 = −4u1 and
u4 = −3u1+7u2, we can check that {u1, u2, u5} is linearly independent and
hence it’s a basis.

8. To solve this kind of questions, we can write the vectors into a matrix as
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below and do the Gaussian elimintaion.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −3 4 −5 2
−6 9 −12 15 −6
3 −2 7 −9 1
2 −8 2 −2 6
−1 1 2 1 −3
0 −3 −18 9 12
1 0 −2 3 −2
2 −1 1 −9 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −3 8 −11 6
0 0 0 0 0
0 −2 13 −18 7
0 −8 6 −8 10
0 1 0 4 −5
0 1 6 −3 −4
1 0 −2 3 −2
0 −1 5 −15 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 26 −20 −6
0 0 0 0 0
0 0 1 4 −5
0 0 54 −32 −22
0 0 −6 −7 −1
0 1 6 −3 4
1 0 −2 3 −2
0 0 11 −18 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 −124 124
0 0 0 0 0
0 0 1 4 −5
0 0 0 −248 248
0 0 0 31 −31
0 1 6 −3 4
1 0 −2 3 −2
0 0 0 −62 62

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 −124 124
0 0 0 0 0
0 0 1 4 −5
0 0 0 0 0
0 0 0 0 0
0 1 6 −3 4
1 0 −2 3 −2
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

And the row with all entries 0 can be omitted1. So {u1, u3, u6, u7} would

1Which row with all entries is important here. So actually the operation here is not the
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be the basis for W (the answer here will not be unique).

9. If a1u1 + a2u2 + a3u3 + a4u4 = (a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4) = 0
we have a1 = 0 by comparing the first entry and then a2 = a3 = a4 = 0. For
the second question we can solve (a1, a2, a3, a4) = a1u1+(a2−a1)u2+(a3−
a2)u3 + (a4 − a3)u4.

10. The polynomials found by Lagrange interpolation formula would be the
answer. It would have the smallest degree since the set of those polyno-
mials of Lagrange interpolation formula is a basis.

(a) −4x2 − x + 8.

(b) −3x + 12.

(c) −x3 + 2x2 + 4x − 5.

(d) 2x3 − x2 − 6x + 15.

11. If {u, v} is a basis then the dimension of V would be two. So it’s enough
to check both {u+v, au} and {au, bv} are linearly independent. Assuming
s(u+ v)+ tau = (s+ ta)u+ sv = 0 we have s+ ta = s = 0 and hence s = t = 0.
Assuming sau + tbv = 0 we have sa = tb = 0 and hence s = t = 0.

12. If {u, v,w} is a basis then the dimension of V would be three. So it’s
enough to check {u + v +w, v +w,w} is lineaerly independent. Assuming
a(u + v + w) + b(v + w) + cw = au + (a + b)v + (a + b + c)w = 0 we have
a = a + b = a + b + c = 0 and hence a = b = c = 0.

13. We can substract the second equation by the two times of the first equa-
tion. And then we have

x1 − 2x2 + x3 = 0

x2 − x3 = 0

Let x3 = s and hence x2 = s and x1 = s. We have the solution would be
{(s, s, s) = s(1,1,1) ∶ s ∈ R}. And the basis would be {(1,1,1)}.

14. For W1 we can observe that by setting a2 = p, a3 = q, a4 = s, and a5 = t we
can solve a1 = q+s. SoW1 = {(q+s, p, q, s, t) = p(0,1,0,0,0)+q(1,0,1,0,0)+
s(1,0,0,1,0) + t(0,0,0,0,1) ∶ p, q, s, t ∈ F5}. And

{(0,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (0,0,0,0,1)}

is the basis. The dimension is four. And similarly for W2 we may set
a4 = s, a5 = t. And then we have a1 = −t, a2 = a3 = a4 = s and

W2 = {(−t, s, s, s, t) = s(0,1,1,1,0) + t(−1,0,0,0,1) ∶ s, t ∈ F5}

. And hence
{(0,1,1,1,0), (−1,0,0,0,1)}

is the basis of W2. The dimension is two.

standard Gaussian elimination since we can not change the order of two row here.
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15. Just solve A11+A22+⋯+Ann = 0 and hence {Eij}i≠j∪{Eii−Enn}i=1,2,...n−1}
is the basis, where {Eij} is the standard basis. And the dimension would
be n2 − 1.

16. We have Aij = 0 for all i > j. Hence the basis could be {Eij}i≤j} and the

dimension is n(n+1)
2

.

17. We have Aii = 0 and Aij = Aji. Hence the basis could be {Eij − Eji}i<j
and the dimension is n(n−1)

2
.

18. Let ei be the sequence with the only nonzero i-th term= 1. Then we
have {ei}i≥0 is a basis. To prove it, we have that every sequence is linear
combination of the basis since we only discuss the sequence with finite
nonzero entries. Furthermore we have for every finite subset of {ei}i≥0 is
linearly independent.

19. If every vector has a unique representation as linear combination of the set
β, this means every vector is a linear combination of β. Furthermore, if
there are nontrivial representation of 0, then we have there are two repre-
sentations, say the trivial and nontrivial one, of 0. This is a contradiction.

20. (a) If S = ∅ or S = {0}, then we have V = {0} and the empty set can
generate V . Otherwise we can choose a nonzero vector u1 in S, and
continuing pick uk+1 such that uk+1 ∉ span({u1, u2, . . . , uk}). The
process would teminate before k > n otherwise we can find linearly
independent set with size more than n. If it terminates at k = n,
then we knoew the set is the desired basis. If it terminates at k < n,
then this means we cannot find any vector to be the vector uk+1. So
any vectors in S is a linear combination of β = {u1, u2, . . . , uk} and
hence β can generate V since S can. But by Replacement Theorem
we have n ≤ k. This is impossible.

(b) If S has less than n vectors, the process must terminate at k < n. It’s
impossible.

21. Sufficiency: If the vector space V is finite-dimensional, say dim= n, and
it contains an infinite linearly independent subset β, then we can pick an
independent subset β′ of β such that the size of β′ is n + 1. Pick a basis
α with size n. Since α is a basis, it can generate V . By Replacement
Theorem we have n ≥ n+1. It’s a contradiction. Necessity: To find the in-
finite linearly independent subset, we can let S be the infinite-dimensional
vector space and do the process in exercise 1.6.20(a). It cannot terminate
at any k otherwise we find a linearly independent set generating the space
and hence we find a finite basis.

22. The condition would be that W1 ⊂W2. Let α and β be the basis of W1∩W2

and W1. Since W1 and W2 finite-dimensional, we have α and β are bases
with finite size. First if W1 is not a subset of W2, we have some vector
v ∈W1/W2. But this means that v ∉ span(β) and hence β∪{v} would be a
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independent set with size greater than that of β. So we can conclude that
dim(W1 ∩W2) =dim(W1). For the converse, if we have W1 ⊂W2, then we
have W1 ∩W2 =W1 and hence they have the same dimension.

23. Let α and β be the basis of W1 and W2. By the definition we have both
α and β are bases with finite size.

(a) The condition is that v ∈W1. If v ∉W1 = span(α), thus α∪{v} would
be a independent set with size greater than α. By Replacement The-
orem we have dim(W1) <dim(W2). For the converse, if v ∈ W1 =
span({v1, v2, . . . , vk}), we actually haveW2 = span({v1, v2, . . . , vk, v}) =
span({v1, v2, . . . , vk}) =W1 and hence they have the same dimension.

(b) Since we haveW1 ⊂W2, we have in general we have dim(W1) <dim(W2).

24. By exercise 1.5.18 we have β = {f (i)}i=0,1,...,n is independent since they
all have different degree. And since dim(Pn(R)) = n + 1 we can conclude
that β is a basis and hence it generate the space Pn(R)).

25. It would be m + n since (α,0) ∪ (0, β) would be a basis of Z if α and β
are the basis of V and W respectly, where (α,0) = {(u,0) ∈ Z ∶ u ∈ V } and
(0, β) = {(0, u) ∈ Z ∶ u ∈W}.

26. It would be n since {x − a, x2 − a2, . . . , xn − an} is a basis.

27. The dimension ofW1∩Pn(F) andW2∩Pn(F) are ⌊n+1
2

⌋ and ⌈n+1
2

⌉ respectly

since {xi} with 0 ≤ i ≤ n is an odd number and {xj} with 0 ≤ j ≤ n is a
even number are bases of the two spaces respectly.

28. If α is the basis of V over R, then we have α∪ iα is the basis of V over R,
where iα = {iv ∈ V ∶ v ∈ α}.

29. (a) Using the notation of the Hint, if we assume

k

∑
i=1

aiui +
m

∑
i=1

bivi +
n

∑
i=1

ciwi = 0

, then we have

v =
m

∑
i=1

bivi = −
k

∑
i=1

aiui −
n

∑
i=1

ciwi

is contained in both W1 and W2 and hence in W1 ∩ W2. But if
v ≠ 0 and can be express as u = ∑ki=1 a′iui, then we have ∑mi=1 bivi −
∑ki=1 a′iui = 0. This is contradictory to that {u1, . . . , v1, . . .} is a basis
of W1. Hence we have

v =
m

∑
i=1

bivi = −
k

∑
i=1

aiui −
n

∑
i=1

ciwi = 0
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, this means ai = bj = cl = 0 for all index i, j, and k. So the set
β = {u1, . . . , v1, . . . ,w1, . . .} is linearly independent. Furthermore, for
every x + y ∈ W1 +W2 with x ∈ W1 and y ∈ W2 we can find the
representation x = ∑ki=1 diui +∑

m
i=1 bivi and y = ∑ki=1 d′iui +∑

n
i=1 ciwi.

Hence we have

x + y =
k

∑
i=1

(di + d′i)ui +
m

∑
i=1

bivi +
n

∑
i=1

ciwi = 0

is linear combination of β. Finally we have dim(W1 +W2) = k +m +
n =dim(W1)+dim(W2)−dim(W1 ∩W2) and hence W1 +W2 is finite-
dimensional.

(b) With the formula in the previous exercise we have

dim(W1 +W2) = dim(W1) + dim(W2) − dim(W1 ∩W2)
= dim(W1) + dim(W2)

if and only if dim(W1 ∩W2) = 0. And dim(W1 ∩W2) = 0 if and only
if W1 ∩W2 = {0}. And this is the sufficient and necessary condition
for V =W1 ⊕W2.

30. It can be check W1 and W2 are subspaces with dimension 3 and 2. We

also can find out that W1 ∩ W2 = {( 0 a
−a 0

) ∈ V ∶ a, b ∈ F} and it

has dimension 1. By the formula of the previous exercise, we have that
dimension of W1 +W2 is 2 + 3 − 1 = 4.

31. (a) This is the conclusion of W1 ∩W2 ⊂W2.

(b) By the formula in 1.6.29(a) we have the left hand side

=m + n − dim(W1 ∩W2) ≤m + n

since dim(W1 ∩W2) ≥ 0.

32. (a) Let W1 be the xy-plane with m = 2 and W2 be the x-axis with n = 1.
Then we have W1 ∩W2 =W2 has dimension 1.

(b) Let W1 be the xy-plane with m = 2 and W2 be the z-axis with n = 1.
Then we have W1 +W2 = R3 has dimension 3 = 2 + 1.

(c) Let W1 be the xy-plane with m = 2 and W2 be the xz-axis with n = 2.
Then we have W1 ∩W2 is the x-axis with dimension 1 and W1 +W2

is R3 with dimension 3 ≠ 2 + 2.

33. (a) Since V = W1 ⊕W2 means W1 ∩W2 = {0} and a basis is linearly
independent and so contains no 0, we have β1 ∩ β2 = ∅. And it a
special case of exercise 1.6.29(a) that β1 ∪ β2 is a basis.
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(b) Let ui and vj are vectors in β1 and β2 respectly. If there is a nonzero
vector u ∈ W1 ∩W2, we can write u = ∑ni=1 aiui = ∑

m
j=1 bjvj . But it

impossible since it will cause

n

∑
i=1

aiui −
m

∑
j=1

bjvj = 0

. On the other hand, for any v ∈ V , we can write v = ∑ni=1 ciui +
∑mj=1 djvj ∈ W1 +W2. For any x + y ∈ W1 +W2 with x ∈ W1 and
y ∈ W2, we have x = ∑ni=1 eiui and y = ∑mj=1 fjvj . Thus we have
x + y = ∑ni=1 eiui +∑

m
j=1 fjvj ∈ V .

34. (a) Let β be the basis of V and α be the basis of W1. By Replacement
Theorem we can extend α to be a basis α′ of V such that α ⊂ α′. By
the previous exercise and let W2 =span(α′/α), we have V =W1⊕W2.

(b) We may set W2 to be the y-axis and W ′
2 to be {t(1,1) ∶ t ∈ R}.

35. (a) Since {u1, u2, . . . , un} is a basis, the linear combination of

{uk+1, uk+2, . . . , un}

can not be in span({u1, u2, . . . , uk}) =W . This can make sure that

{uk+1 +W,uk+2 +W, . . . , un +W}

is linearly independent by 1.3.31(b). For all u +W ∈ V /W we can
write

u +W = (a1u1 + a2u2 +⋯ + anun) +W
= (a1u1 + a2u2 +⋯ + akuk) + (ak+1uk+1 + ak+2uk+2 +⋯ + anun) +W
= (ak+1uk+1 + ak+2uk+2 +⋯ + anun) +W
= ak+1(uk+1 +W ) + ak+2(uk+2 +W ) +⋯ + an(un +W )

and hence it’s a basis.

(b) By preious argument we have dim(V /W ) = n− k =dim(V )−dim(W ).

1.7 Maximal Linearly Independent Subsets

1. (a) No. For example, the family {(0, n)}n≥1 of open intervals has no
maximal element.

(b) No. For example, the family {(0, n)}n≥1 of open intervals in the set
real numbers has no maximal element.

(c) No. For example, the two set in this family {1,2,2,3} are both
maximal element.
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(d) Yes. If there are two maximal elements A and B, we have A ⊂ B
or B ⊂ A since they are in a chain. But no matter A ⊂ B or B ⊂ A
implies A = B since they are both maximal elements.

(e) Yes. If there are some independent set containing a basis, then the
vector in that independent set but not in the basis cannot be a linear
combination of the basis.

(f) Yes. It’s naturally independent. And if there are some vector can not
be a linear combination of a maximal independent set. We can add
it to the maximal independent set and have the new set independent.
This is contradictory to the maximality.

2. Basis described in 1.6.18 is a infinite linearly independent subset. So the
set of convergent sequences is an infinite-dimensional subspace by 1.6.21.

3. Just as the hint, the set {π,π2, . . .} is infinite and independent. So V is
indinite-dimensional.

4. By Theorem 1.13 we can extend the basis of W to be a basis of V .

5. This is almost the same as the proof of Theorem 1.8 since the definition
of linear combination of a infinite subset β is the linear combinations of
finite subset of β.

6. Let F be the family of all linearly independent subsets of S2 that contain
S1. We may check there are some set containing each member of a chain
for all chain of F just as the proof in Theorem 1.13. So by Maximal
principle there is a maximal element β in F . By the maximality we
know β can generate S2 and hence can generate V . With addition of it’s
independence we know β is a basis.

7. Let F be the family of all linearly independent subset of β such that union
of it and S is independent. Then for each chain C of F we may choose
U as the union of all the members of C . We should check U is a member
of F . So we should check wether S ∪ U is independent. But this is easy
since if ∑ni=1 aivi +∑

m
j=1 bjuj = 0 with vi ∈ S and uj ∈ U , say uj ∈ Uj where

{Uj} are a members of C , then we can pick the maximal element, say U1,
of {Uj}. Thus we have uj ∈ U1 for all j. So S ∪ U is independent and
hence ai = bj = 0 for all i and j.

Next, by Maximal principle we can find a maximal element S1 of C . So
S∪S1 is independent. Furthermore by the maximality of S1 we know that
S ∪ S1 can generate β and hence can generate V . This means S ∪ S1 is a
basis for V .
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Chapter 2

Linear Transformations and
Matrices

2.1 Linear Transformations, Null Spaces, and
Ranges

1. (a) Yes. That’s the definition.

(b) No. Consider a map f from C over C to C over C by letting f(x+iy) =
x. Then we have f(x1 + iy1 + x2 + iy2) = x1 + x2 but f(iy) = 0 ≠=
if(y) = iy.

(c) No. This is right when T is a linear trasformation but not right in
general. For example,

T ∶R→ R
x↦ x + 1

It’s one-to-one but that T (x) = 0 means x = −1. For the counterex-
ample of converse statement, consider f(x) = ∣x∣.

(d) Yes. We have T (0V ) = T (0x) = 0T (0V )W = 0W , for arbitrary x ∈ V .

(e) No. It is dim(V ). For example, the transformation mapping the real
line to {0} will be.

(f) No. We can map a vector to zero.

(g) Yes. This is the Corollory after Theorem 2.6.

(h) No. If x2 = 2x1, then T (x2) must be 2T (x1) = 2y1.

2. It’s a linear transformation since we have

T ((a1, a2, a3)+(b1, b2, b3)) = T (a1+b1, a2+b2, a3+b3) = (a1+b1−a2−b2,2a3+2b3)

= (a1 − a2,2a3) + (b1 − b2,2b3) = T (a1, a2, a3) + T (b1, b2, b3)
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and
T (ca1, ca2, ca3) = (c(a1 − a2),2ca3) = cT (a1, a2, a3).

N(T ) = {(a1, a1,0)} with basis {(1,1,0)}; R(T ) = R2 with basis {(1,0), (0,1)}.
Hence T is not one-to-one but onto.

3. Similarly check this is a linear transformation. N(T ) = {0} with basis ∅;
R(T ) = {a1(1,0,2) + a2(1,0,−1)} with basis {(1,0,2), (1,0,−1)}. Hence
T is one-to-one but not onto.

4. It’s a linear transformation. And N(T ) = {( a11 2a11 −4a11
a21 a22 a23

)} with

basis

{( 1 2 −4
0 0 0

) ,( 0 0 0
1 0 0

) ,( 0 0 0
0 1 0

) ,( 0 0 0
0 0 1

)}

; R(T ) = {( s t
0 0

)} with basis {( 1 0
0 0

) ,( 0 1
0 0

)}.

5. It’s a linear transformation. And N(T ) = {0} with basis ∅; R(T ) =
{ax3 + b(x2 + 1)+ cx} with basis {x3, x2 + 1, x}. Hence T is one-to-one but
not onto.

6. N(T ) is the set of all matrix with trace zero. Hence its basis is {Eij}i≠j ∪
{Eii −Enn}i=1,2,...,n−1. R(T ) = F with basis 1.

7. For property 1, we have T (0) = T (0x) = 0T (x) = 0,where x is an arbitrary
element in V . For property 2, if T is linear, then T (cx+y) = T (cx)+T (y) =
cT (x)+T (y); if T (cx+ y) = cT (x)+T (y), then we may take c = 1 or y = 0
and conclude that T is linear. For property 3, just take c = −1 in property
3. For property 4, if T is linear, then

T (
n

∑
i=1

aixi) = T (a1x1) + T (
n−1

∑
i=1

aixi) = ⋯ =
n

∑
i=1

T (aixi) =
n

∑
i=1

aiT (xi);

if the equation holds, just take n = 2 and a1 = 1.

8. Just check the two condition of linear transformation.

9. (a) T (0,0) ≠ (0,0).
(b) T (2(0,1)) = (0,4) ≠ 2T (0,1) = (0,2).
(c) T (2π

2
,0) = (0,0) ≠ 2T (π

2
,0) = (2,0).

(d) T ((1,0) + (−1,0)) = (0,0) ≠ T (1,0) + T (0,1) = (2,0).
(e) T (0,0) ≠ (0,0).

10. We may take U(a, b) = a(1,4) + b(1,1). By Theorem 2.6, the mapping
must be T = U . Hence we have T (2,3) = (5,11) and T is one-to-one.

27



11. This is the result of Theorem 2.6 since {(1,1), (2,3)} is a basis. And
T (8,11) = T (2(1,1) + 3(2,3)) = 2T (1,1) + 3T (2,3) = (5,−3,16).

12. No. We must have T (−2,0,−6) = −2T (1,0,3) = (2,2) ≠ (2,1).

13. Let ∑ki=0 aivi = 0. Then we have T (∑ki=0 aivi) = ∑
k
i=0 aiT (vi) = 0 and this

implies ai = 0 for all i.

14. (a) The sufficiency is due to that if T (x) = 0, {x} can not be independent
and hence x = 0. For the necessity, we may assume ∑aiT (vi) = 0.
Thus we have T (∑aivi) = 0. But since T is one-to-one we have

∑aivi = 0 and hence ai = 0 for all proper i.

(b) The sufficiency has been proven in Exercise 2.1.13. But note that
S may be an infinite set. And the necessity has been proven in the
previous exercise.

(c) Since T is one-to-one, we have T (β) is linear independent by the
previous exercise. And since T is onto, we have R(T ) =W and hence
span(T (β)) = R(T ) =W .

15. We actually have T (∑ni=0 aixi) = ∑
n
i=0

ai
i+1
xi+1. Hence by detailed check we

know it’s one-to-one. But it’s not onto since no function have integral= 1.

16. Similar to the previous exercise we have T (∑ni=0 aixi) = ∑
n
i=0 iaix

i−1. It’s
onto since T (∑ni=0 ai

i+1
xi+1) = ∑ni=0 aixi. But it’s not one-to-one since

T (1) = T (2) = 0.

17. (a) Because rank(T ) ≤dim(V ) <dim(W ) by Dimension Theorem, we
have R(T ) ⊊W .

(b) Because nullity(T ) =dim(V )−rank(T ) ≥dim(V )−dim(W ) > 0 by Di-
mension Theorem, we have N(T ) ≠ {0}.

18. Let T (x, y) = (y,0). Then we have N(T ) = R(T ) = {(x,0) ∶ x ∈ R}.

19. Let T ∶ R2 → R2 and T (x, y) = (y, x) and U is the identity map from
R2 → R2. Then we have N(T ) = N(U) = {0} and R(T ) = R(U) = R2.

20. To prove A = T (V1) is a subspace we can check first T (0) = 0 ∈ A. For
y1, y2 ∈ A, we have for some x1, x2 ∈ V1 such that T (x1) = y1 and T (x2) =
y2. Hence we have T (x1 + x2) = y1 + y2 and T (cx1) = xy1. This means
both y1 + y2 and cy1 are elements of A.

To prove that B = {x ∈ V ∶ T (x) ∈ W1} is a subspace we can check
T (0) = 0 ∈W1 and hence 0 ∈ B. For x1, x2 ∈ B, we have T (x1), T (x2) ∈W1.
Hence we have T (x1+x2) = T (x1), T (x2) ∈W1 and T (cx1) = cT (x1) ∈W1.
This means both x1 + x2 and cx1 are elements of B.

21. (a) To prove T is linear we can check

T (σ1 + σ2)(n) = σ1(n + 1) + σ2(n + 1) = T (σ1)(n) + T (σ2)(n)
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and
T (cσ)(n) = cσ(n + 1) = cT (σ)(n).

And it’s similar to prove that U is linear.

(b) It’s onto since for any σ in V . We may define another sequence τ
such that τ(0) = 0 and τ(n + 1) = σ(n) for all n ≥ 1. Then we have
T (τ) = σ. And it’s not one-to-one since we can define a new σ0 with
σ0(0) = 1 and σ0(n) = 0 for all n ≥ 2. Thus we have σ0 ≠ 0 but
T (σ0) = 0.

(c) If T (σ)(n) = σ(n− 1) = 0 for all n ≥ 2, we have σ(n) = 0 for all n ≥ 1.
And let σ0 be the same sequence in the the previous exercise. We
cannot find any sequence who maps to it.

22. Let T (1,0,0) = a, T (0,1,0) = b, and T (0,0,1) = c. Then we have

T (x, y, z) = xT (1,0,0) + yT (0,1,0) + zT (0,0,1) = ax + by + cz.

On the other hand, we have T (x1, x2, . . . , xn) = a1x1 + a2x2 +⋯ + anxn if
T is a mapping from Fn to F. To prove this, just set T (ei) = ai, where
{ei} is the standard of Fn.

For the case that T ∶ Fn → F, actually we have

T (x1, x2, . . . , xn) = (
n

∑
j=1

a1jxj ,
n

∑
j=2

a2jxj , . . . ,
n

∑
j=m

amjxj)

. To prove this, we may set T (ej) = (a1j , a2j , . . . , amj).

23. With the help of the previous exercise, we have

N(T ) = {(x, y, z) ∶ ax + by + cz = 0}.

Hence it’s a plane.

24. (a) It will be T (a, b) = (0, b), since (a, b) = (0, b) + (a,0).
(b) It will be T (a, b) = (0, b − a),since (a, b) = (0, b − a) + (a, a).

25. (a) LetW1 be the xy-plane andW2 be the z-axis. And (a, b, c) = (a, b,0)+
(0,0, c) would be the unique representation of W1 ⊕W2.

(b) Since (a, b, c) = (0,0, c) + (a, b,0), we have T (a, b, c) = (0,0, c).
(c) Since (a, b, c) = (a − c, b,0) + (c,0, c), we have T (a, b, c) = (a − c, b,0).

26. (a) Since V = W1 ⊕W2, every vector x have an unique representation
x = x1 + x2 with x1 ∈W1 and x2 ∈W2. So, now we have

T (x + cy) = T (x1 + x2 + cy1 + cy2)

= T ((x1 + cy1) + (x2 + cy2)) = x1 + cy1 = T (x) + cT (y).
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And hence it’s linear.

On the other hand, we have x = x + 0 and hence T (x) = x if x ∈W1.
And if x ∉W1, this means x = x1 + x2 with x2 ≠ 0 and hence we have
T (x) = x1 ≠ x1 + x2.

(b) If x1 ∈ W1 then we have T (x1 + 0) = x1 ∈ R(T ); and we also have
R(T ) ⊂W1. If x2 ∈W2 then we have T (x2) = T (0+x2) = 0 and hence
x2 ∈ N(T ); and if x ∈ N(T ), we have x = T (x) + x = 0 + x and hence
x ∈W2.

(c) It would be T (x) = x by (a).

(d) It would be T (x) = 0.

27. (a) Let {v1, v2, . . . , vk} be a basis for W and we can extend it to a basis
β = {v1, v2, . . . , vn} of V . Then we may setW ′ =span({vk+1, vk+2, . . . , vn}).
Thus we have V =W ⊕W ′ and we can define T be the projection on
W along W ′.

(b) The two projection in Exercise 2.1.24 would be the example.

28. We have T (0) = 0 ∈ {0}, T (x) ∈ R(T ), T (x) = 0 ∈ N(T ) if x ∈ N(T ) and
hence they are T -invariant.

29. For x, y ∈W , we have x+ cy ∈W since it’s a subspace and T (x), T (y) ∈W
since it’s T -invariant and finally T (x + cy) = T (x) + cT (y).

30. Since T (x) ∈W for all x, we have W is T -invariant. And that TW = IW is
due to Exercise 2.1.26(a).

31. (a) If x ∈W , we have T (x) ∈ R(T ) and T (x) ∈W since W is T -invariant.
But by the definition of direct sum, we have T (x) ∈ R(T ) ∩W = {0}
and hence T (x) = 0.

(b) By Dimension Theorem we have dim(N(T )) =dim(V )−dim(R(T )).
And since V = R(T )⊕W , we have dimW =dim(V )−dim(R(T )). In
addition with W ⊂ N(T ) we can say that W = N(T ).

(c) Take T be the mapping in Exercise 2.1.21 and W = {0}. Thus W ≠
N(T ) = {(a1,0,0, . . .)}.

32. We have N(TW ) ⊂ W since TW is a mapping from W to W . For x ∈ W
and x ∈ N(TW ), we have TW (x) = T (x) = 0 and hence x ∈ N(T ). For the
converse, if x ∈ N(T ) ∩W , we have x ∈ W and hence TW (x) = T (x) = 0.
So we’ve proven the first statement. For the second statement, we have

R(TW ) = {y ∈W ∶ TW (x) = y, x ∈W} = {TW (x) ∶ x ∈W} = {T (x) ∶ x ∈W}.

33. It’s natural that R(T ) ⊃span({T (v) ∶ v ∈ β}) since all T (v) is in R(T ).
And for any y ∈ R(T ) we have y = T (x) for some x. But every x is linear
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combination of finite many vectors in basis. That is, x = ∑ki=1 aivi for some
vi ∈ β. So we have

y = T (
k

∑
i=1

aivi) =
k

∑
i=1

aiT (vi)

is an element in span({T (v) ∶ v ∈ β}).

34. Let T be one linear transformation satisfying all conditions. We have that
for any x ∈ V we can write x = ∑ki=1 aivi for some vi ∈ β. So by the
definition of linear transformation we have T (x) must be

T (
k

∑
i=1

aivi) =
k

∑
i=1

aiT (vi) =
k

∑
i=1

aif(vi)

,a fixed vector in W . So it would be the unique linear transformation.

35. (a) With the hypothesis V = R(T ) + N(T ), it’s sufficient to say that
R(T ) ∩N(T ) = {0}. But this is easy since

dim(R(T )∩N(T )) = dim(R(T ))+ dim(N(T ))− dim(R(T )+N(T ))

= dim(R(T )) + dim(N(T )) − dim(V ) = 0

by Dimension Theorem.

(b) Similarly we have

dim(R(T )+N(T )) = dim(R(T ))+ dim(N(T ))− dim(R(T )∩N(T ))

= dim(R(T )) + dim(N(T )) − dim({0}) = dim(V )
by Dimension Theorem. So we have V = R(T ) +N(T ).

36. (a) In this case we have R(T ) = V and N(T ) = {(a1,0,0, . . .)}. So
naturally we have V = R(T ) +N(T ). But V is a direct sum of them
since R(T ) ∩N(T ) = N(T ) ≠ {0}.

(b) Take T1 = U in the Exercise 2.1.21. Thus we haveR(T1) = {(0, a1, a2, . . .)}
and N(T1) = {(0,0, . . .)}. So we have R(T1) ∩ N(T1) = {0} but
R(T1) +N(T1) = R(T1) ≠ V .

37. Let c = a
b
∈ Q. We have that

T (x) = T (1

b
x + 1

b
x +⋯ + 1

b
x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
)

b times

= bT (1

b
x)

and hence T ( 1
b
x) = 1

b
T (x). So finally we have

T (cx) = T (a
b
x) = T (1

b
x + 1

b
x +⋯ + 1

b
x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
)

a times

= aT (1

b
x) = a

b
T (x) = cT (x).
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38. It’s additive since

T ((x1 + iy1)+(x2 + iy2)) = (x1 +x2)− i(y1 +y2) = T (x1 + iy1)+T (x2 + iy2).

But it’s not linear since T (i) = −i ≠ iT (1) = 0.

39. It has been proven in the Hint.

40. (a) It’s linear since

η(u + v) = (u + v) +W = (u +W ) + (v +W ) = η(u) + η(v)

and
η(cv) = cv +W = c(v +W ) = cη(v)

by the definition in Exercise 1.3.31. And for all element v +W in
V /W we have η(v) = v +W and hence it’s onto. Finally if η(v) =
v +W = 0 +W we have v − 0 = v ∈W . Hence N(η) =W .

(b) Since it’s onto we have R(T ) = V /W . And we also have N(η) =W .
So by Dimension Theorem we have dim(V ) =dim(V /W )+dim(W ).

(c) They are almost the same but the proof in Exercise 1.6.35 is a special
case of proof in Dimension Theorem.

2.2 The Matrix Representation of a Linear Trans-
formation

1. (a) Yes. This is result of Theorem 2.7.

(b) Yes. This is result of Theorem 2.6.

(c) No. It’s a n ×m matrix.

(d) Yes. This is Theorem 2.8.

(e) Yes. This is Theorem 2.7.

(f) No. A transformaion of L(V,W ) can not map element in W in
general.

2. (a) We have T (1,0) = (2,3,1) = 2(1,0,0) + 3(0,1,0) + 1(0,0,1) and
T (0,1) = (−1,4,0) = −1(1,0,0) + 4(0,1,0) + 0(0,0,1). Hence we get

[T ]γβ =
⎛
⎜
⎝

2 −1
3 4
1 0

⎞
⎟
⎠
.

(b)

[T ]γβ = ( 2 3 −1
1 0 1

) .
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(c)
[T ]γβ = ( 2 1 −3 ) .

(d)

[T ]γβ =
⎛
⎜
⎝

0 2 1
−1 4 5
1 0 1

⎞
⎟
⎠
.

(e)

[T ]γβ =
⎛
⎜⎜⎜
⎝

1 0 ⋯ 0
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 0 ⋯ 0

⎞
⎟⎟⎟
⎠
.

(f)

[T ]γβ =
⎛
⎜
⎝

0 1
⋰

1 0

⎞
⎟
⎠
.

(g)
[T ]γβ = ( 1 0 ⋯ 0 1 ) .

3. Since

T (1,0) = (1,1,2) = −1

3
(1,1,0) + 0(0,1,1) + 2

3
(2,2,3)

T (0,1) = (−1,0,1) = −1(1,1,0) + 1(0,1,1) + 0(2,2,3)

T (1,2) = (−1,1,4) = −7

3
(1,1,0) + 2(0,1,1) + 2

3
(2,2,3)

T (2,3) = (−1,2,7) = −11

3
(1,1,0) + 3(0,1,1) + 4

3
(2,2,3)

we have

[T ]γβ =
⎛
⎜
⎝

− 1
3

−1
0 1
2
3

0

⎞
⎟
⎠

and

[T ]γα =
⎛
⎜
⎝

− 7
3

− 11
3

2 3
2
3

4
3

⎞
⎟
⎠
.
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4. Since

T ( 1 0
0 0

) = 1 + 0x + 0x2

T ( 0 1
0 0

) = 1 + 0x + 1x2

T ( 1 0
0 0

) = 0 + 0x + 0x2

T ( 1 0
0 0

) = 0 + 2x + 0x2

we have

[T ]γβ =
⎛
⎜
⎝

1 1 0 0
0 0 0 2
0 1 0 0

⎞
⎟
⎠
.

5. (a)

[T ]α =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

(b)

[T ]αβ =
⎛
⎜⎜⎜
⎝

0 1 0
2 2 2
0 0 0
0 0 2

⎞
⎟⎟⎟
⎠
.

(c)
[T ]γβ = ( 1 0 0 1 ) .

(d)

[A]α =
⎛
⎜⎜⎜
⎝

1
−2
0
4

⎞
⎟⎟⎟
⎠
.

(e)

[f(x)]β =
⎛
⎜
⎝

3
−6
1

⎞
⎟
⎠
.

(f)
[a]γ = ( a ) .

6. It would be a vector space since all the condition would be true since they
are true in V and W . So just check it.
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7. If we have ([T ]γβ)ij = Aij , this means

T (vj) =
m

∑
i=1

Aijwi.

And hence we have

aT (vj) =
m

∑
i=1

aAijwi.

and thus (a[T ]γβ)ij = aAij .

8. If β = {v1, v2, . . . , vn} and x = ∑ni=1 aivi and y = ∑ni=1 bivi, then

T (x+cy) = T (
n

∑
i=1

aivi+c
n

∑
i=1

bivi) = (a1+cb1, a2+cb2, . . . , an+cbn) = T (x)+cT (y).

9. It would be linear since for c ∈ R we have

T ((x1+iy1)+c(x2+iy2)) = (x1+cx2)+i(x2+cy2) = T (x1+iy1)+cT (x2+iy2).

And the matrix would be

( 1 0
0 −1

) .

10. It would be

⎛
⎜⎜⎜⎜⎜
⎝

1 1 0 ⋯ 0
0 1 1 ⋮
0 0 ⋱ ⋱ 0
⋮ ⋱ ⋱ 1
0 ⋯ ⋯ 0 1

⎞
⎟⎟⎟⎟⎟
⎠

.

11. Take {v1, v2, . . . , vk} be a basis ofW and extend it to be β = {v1, v2, . . . , vn},
the basis of V . Since W is T -invariant, we have T (vj) = ∑ki=1 aijvi if j =
1,2, . . . , k. This means ([T ]β)ij = 0 if j = 1,2, . . . , k and i = k+1, k+2, . . . , n.

12. Let {v1, v2, . . . , vk} and {vk+1, vk+2, . . . , vn} be the basis of W and W ′

respectly. By Exercise 1.6.33(b), we have β = {v1, v2, . . . , vn} is a basis of
V . And thus we have

[T ]β = ( Ik O
O O

)

is a diagonal matrix.

13. Suppose, by contradiction, that cT = U for some c. Since T is not zero
mapping, there is some x ∈ V and some nonzero vector y ∈ W such that
T (x) = y ≠ 0. But thus we have y = 1

c
cy = 1

c
U(x) = U( 1

c
x) ∈ R(U). This

means y ∈ R(T ) ∩R(U), a contradiction.
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14. It can be checked that differentiation is a linear operator. That is, Ti is
an element of L(V ) for all i. Now fix some n, and assume ∑ni=1 aiTi =
0. We have Ti(xn) = n!

(n−i)!
xn−i and thus {Ti(xn)}i=1,2,...,n would be an

independent set. Since ∑ni=1 aiTi(xn) = 0, we have ai = 0 for all i.

15. (a) We have zero map is an element in S0. And for T,U ∈ S0, we have
(T + cU)(x) = T (x) + cU(x) = 0 if x ∈ S.

(b) Let T be an element of S0
2 . We have T (x) = 0 if x ∈ S1 ⊂ S2 and

hence T is an element of S0
1 .

(c) Since V1 + V2 contains both V1 and V2, we have (V1 + V2)0 ⊂ V 0
1 ∩ V 0

2

by the previous exercise. To prove the converse direction, we may
assume that T ∈ V 0

1 ∩ V 0
2 . Thus we have T (x) = 0 if x ∈ V1 or

x ∈ V2. For z = u + v ∈ V1 + V2 with u ∈ V1 and v ∈ V2, we have
T (z) = T (u) + T (v) = 0 + 0 = 0. So T is an element of (V1 + V2)0 and
hence we have (V1 + V2)0 ⊃ V 0

1 ∩ V 0
2 .

16. As the process in the proof of Dimension Theorem, we may pick the same
basis β = {v1, v2, . . . vn} for V . Write uk+1 = T (vk+1. It has been proven
that {uk+1, uk+2, . . . , un} is a basis for R(T ). Since dim(V ) =dim(W ), we
can extend to a basis γ = {u1, u2, . . . , un} for W . Thus we have

[T ]γβ = ( O O
O In−k

)

is a diagonal matrix.

2.3 Composition of Linear Transformations and
Matrix Multiplication

1. (a) It should be [UT ]γα = [T ]βα[U]γβ .

(b) Yes. That’s Theorem 2.14.

(c) No. In general β is not a basis for V .

(d) Yes. That’s Theorem 2.12.

(e) No. It will be true when β = α.

(f) No. We have ( 0 1
1 0

)
2

= I.

(g) No. T is a transformation from V to W but LA can only be a
transformation from Fm to Fn.

(h) No. We have ( 0 1
0 0

)
2

= I.

(i) Yes. That’s Theorem 2.15.

(j) Yes. Since δij = 1 only when i = j, we have Aij = δij.
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2. (a)

A(2B + 3C) = ( 20 −9 18
5 10 8

) .

(AB)D = A(BD) = ( 29
−26

) .

(b)

At = ( 2 −3 4
5 1 2

) .

AtB = ( 23 19 0
26 −1 10

) .

BCt =
⎛
⎜
⎝

12
16
29

⎞
⎟
⎠
.

CB = ( 27 7 9 ) .

CA = ( 20 26 ) .

3. (a) We can calculate that [U]γβ =
⎛
⎜
⎝

1 1 0
0 0 1
1 −1 0

⎞
⎟
⎠

and [T ]β =
⎛
⎜
⎝

2 3 0
0 3 6
0 0 4

⎞
⎟
⎠

and finally

[UT ]γβ =
⎛
⎜
⎝

2 6 6
0 0 4
2 0 −6

⎞
⎟
⎠
.

(b) We can calculate [h(x)]β =
⎛
⎜
⎝

3
−2
1

⎞
⎟
⎠

and

[U(h(x))]β = [U]γβ[h(x)]β
⎛
⎜
⎝

1
1
5

⎞
⎟
⎠
.

4. (a) [T (A)]α =
⎛
⎜⎜⎜
⎝

1
−1
4
6

⎞
⎟⎟⎟
⎠
.

(b) [T (f(x))]α =
⎛
⎜⎜⎜
⎝

−6
2
0
6

⎞
⎟⎟⎟
⎠
.

(c) [T (A)]γ = ( 5 ) .
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(d) [T (f(x))]γ = ( 12 ) .

5. (b) We have

(a(AB))ij = a
n

∑
k=1

AikBkj

n

∑
k=1

aAikBkj = ((aA)B)ij

n

∑
k=1

AikaBkj = (A(aB))ij

(d) We have [I(vi)]α = ei where vi is the i-th vector of β.

Corollary. We have by Theorem 2.12

A(
k

∑
i=1

aiBi) =
k

∑
i=1

A(aiBi) =
k

∑
i=1

aiABi

and

(
k

∑
i=1

aiCi)A =
k

∑
i=1

(aiCi)A =
k

∑
i=1

aiCiA.

6. We have (Bej)i = ∑nk=1Bik(ej)i = Bij , since (ej)i = 1 only when i = j and
it’s 0 otherwise.

7. (c) Just check that for all vector v ∈ Fn we have LA+B(v) = (A +B)v =
Av +Bv = LA(v) +LB(v) and LaA(v) = aA(v) = aLA(v).

(f) For all vector v ∈ Fn we have LIn(v) = In(v) = v.

8. In general we may set T1, T2 ∈ L(X,Y ) and U1, U2 ∈ L(W,X), and S ∈
(V,W ), and thus we have the following statements.

(a) T1(U1 +U2) = TU1 + TU2 and (U1 +U2)T = U1T +U2T .

(b) T1(U1S) = (T1U1)S.

(c) TIX = IY T = T .

(d) a(T1U1) = (aT1)U1 = T1(aU1) for all scalars a.

To prove this, just map arbitrary vector in domain by linear transforma-
tions and check whether the vectors producted by different transforma-
tions meet.

9. Take A = ( 0 1
0 1

) and B = ( 1 1
0 0

) and U = LA and T = LB .

10. If A is a diagonal matrix then Aij ≠ 0 only when i = j. Hence we have
Aij = δijAij . Conversely, if A is not diagonal, we can find Aij ≠ 0 for some
i, j and i ≠ j. Thus we have δijAij = 0 ≠ Aij .
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11. If T 2 = T we may pick y ∈ R(T ) and thus we have y = T (x) for some
x and T (y) = T (T (x)) = T 2(x) = 0. Hence we conclude that y ∈ N(T ).
Conversely if we have R(T ) ⊂ N(T ), we have T 2(x) = T (T (x)) = 0 since
T (x) is an element in R(T ) and hence in N(T ).

12. (a) If UT is injective, we have that UT (x) = 0 implies x = 0. Thus
we have that if T (x) = 0 we also have UT (x) = 0 and hence x = 0.
So T is injective. But U may not be injective. For example, pick
U(x, y, z) = (x, y), a mapping from R3 to R2, and T (x, y) = (x, y,0),
a mapping from R2 to R3.

(b) If UT is surjective, we have that for all z ∈ Z there is a vector x ∈ V
such that UT (x) = z. Thus we have that if for all z ∈ Z we have
z = U(T (x)) and hence U is surjective. But T may not surjective.
The example in the previous question could also be the example here.

(c) For all z ∈ Z, we can find z = U(y) for some y ∈W since U is surjective
and then find y = T (x) for some x ∈ V since T is surjective. Thus
we have z = UT (x) for some x and hence UT is surjective. On the
other hand, if UT (x) = 0, this means T (x) = 0 since U is injective
and x = 0 since T is injective.

13. It’s natural that we have tr(A) =tr(At) since Aii = Atii for all i. On the
other hand we have

tr(AB) =
n

∑
i=1

(AB)ii =
n

∑
i=1

n

∑
k=1

AikBki

=
n

∑
k=1

n

∑
ik=1

BkiAik =
n

∑
k=1

(BA)kk

= tr(BA).

14. (a) We can write

Bz =
⎛
⎜⎜⎜
⎝

∑pj=1 ajB1j

∑pj=2 ajB2j

⋮
∑pj=1 ajBnj

⎞
⎟⎟⎟
⎠

=
p

∑
j=1

aj

⎛
⎜⎜⎜
⎝

B1j

B2j

⋮
Bnj

⎞
⎟⎟⎟
⎠
=

p

∑
j=1

ajvj .

(b) This is the result of Theorem 2.13(b) and the previous exercise.

(c) This is instant result of the fact that wA = Atwt.
(d) This is also because AB = BtAt.

15. Let vt be the t-th column vector of A and we have vj = ∑t≠j atvt. Thus we
have Mvj = ∑t≠j atMvt. And hence we get the desired result since Mvt
is the column vector of MA.
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16. (a) Since we know R(T ) is a T -invariant space, we can view T as a
mapping from R(T ) to R(T ) and call this restricted mapping T ∣R(T ).
So now we have that

dimR(T ) = rank(T ) = rank(T 2) = dim(T (T (V ))

= dim(T (R(T )) = rank(T ∣R(T )).

And so the mapping T ∣R(T ) is surjective and hence injective with
the help of the fact R(T ) is finite dimensional. This also means
N(T ∣R(T ) = R(T ) ∩N(T ) = 0. This complete the proof of the first
statement. For the other, it’s sufficient to say that R(T )+N(T ) = V .
But this is instant conclusion of the fact that R(T ) +N(T ) ⊂ V and
that

dim(R(T )+N(T )) = dim(R(T ))+ dim(N(T ))− dim(R(T )∩N(T ))

= dim(R(T )) + dim(N(T )) = dim(V ).

(b) In general we have rank(T s+1) ≤rank(T s) since the fact T s+1(V ) =
T s(R(T )) ⊂ T s(V ). But the integer rank(T s) can only range from 0
to dim(V ). So there must be some integer k such that

rank(T k) = rank(T k+1).

And this means T k+1(V ) = T k(V ) and hence T s(V ) = T k(V ) for all
s ≥ k. Since 2k ≥ k, we can conclude that rank(T k) =rank(T 2k) and
hence we have V = R(T k)⊕N(T k) by the previous exercise.

17. If T = T 2, then we have V = {y ∶ T (y) = y} +N(T ) since x = T (x) + (x −
T (x)) and we have T (T (x)) = T (x) and T (x − T (x)) = T (x) − T (x) = 0.
On the other hand, we have if x ∈ {y ∶ T (y) = y}∩N(T ) then we also have
x = T (x) = 0. So by arguments above we have V = {y ∶ T (y) = y}⊕N(T ).
Finally we have that T must be the projection on W1 along W2 for some
W1 and W2 such that W1 ⊕W2 = V .

18. Let A, B, and C be m × n, n × p, and p × q matrices respectly. Next we
want to claim that (AB)C = A(BC) since

((AB)C)ij =
p

∑
k=1

(AB)ikCkj =
p

∑
k=1

(
n

∑
l=1

AilBlk)Ckj

=
p

∑
k=1

n

∑
l=1

AilBlkCkj =
n

∑
l=1

p

∑
k=1

AilBlkCkj

=
n

∑
l=1

Ail(
p

∑
k=1

BlkCkj) =
n

∑
l=1

Ail(BC)lj = (A(BC))ij .

For the following questions, I would like to prove them in the languague
of Graph Theory. So there are some definitions and details in Appendices.
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19. Let G = G(B) be the graph associated to the symmetric matric B. And
(B3)ii is the number of walk of length 3 from i to i. If i is in some clique,
then there must be a walk of length 3 from i back to i since a clique must
have number of vertex greater than 3. Conversely, if (B3)ii is greater than
zero, this means there is at least one walke of length 3 from i to i, say
i → j → k → i. Note that i, j, and k should be different vertices since
length is 3 and there is no loop. So i, j, and k must be a triangle, this
means three vertices adjacent to each others. So i is contained in {i, j, k}
and so contained in some clique.

20. We can draw the associated digraph and find the cliques as follow:

1 2

34

1 2

34
(a) (b)

(a) There is no clique.

(b) The only clique would be the set {1,3,4}.

21. A vertex v in a tournament is called a king if v can reach all other vertices
within two steps. That is, for all vertex u other than v, we have either
v → u or v → w → u for some w. So (A +A2)ij > 0 is equivalent to that
i can reach j within two steps. And the statement of this question also
means that every tournament exists a king.

To prove this statement, we can begin by arbitrary vertex v1. If v1 is a
king, then we’ve done. If v1 is not a king, this means v1 can not reach
some vertex, say v2, within two steps. Now we have that d+(v2) > d+(v1)
since we have v2 → v1 and that if v1 → w for some w then we have v2 → w
otherwise we’ll have that v1 → w → v2. Continuing this process and we
can find d+(v1) < d+(v2) < ⋯ and terminate at some vertex vk since there
are only finite vertces. And so vk would be a king.

22. We have G = G(A) is a tournament drawn below. And every vertex in
this tournament could be a king.

1

23

23. The number of nonzero entries would be the number of the edges in a
tournament. So it would be n(n − 1)/2.
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2.4 Invertibility and Isomorphisms

1. (a) No. It should be ([T ]βα)−1 = [T −1]αβ .

(b) Yes. See Appendix B.

(c) No. LA can only map Fn to Fm.

(d) No. It isomorphic to F5.

(e) Yes. This is because Pn(F) ≅ Fn.

(f) No. We have that ( 1 0 0
0 1 0

)
⎛
⎜
⎝

1 0
0 1
0 0

⎞
⎟
⎠
= I but A and B are not

invertible since they are not square.

(g) Yes. Since we have both A and (A−1)−1 are the inverse of A−1, by
the uniqueness of inverse we can conclude that they are the same.

(h) Yes. We have that LA−1 would be the inverse of LA.

(i) Yes. This is the definition.

2. (a) No. They have different dimension 2 and 3.

(b) No. They have different dimension 2 and 3.

(c) Yes. T −1(a1, a2, a3) = (− 4
3
a2 + 1

3
a3, a2,− 1

2
a1 − 2a2 + 1

2
a3).

(d) No. They have different dimension 4 and 3.

(e) No. They have different dimension 4 and 3.

(f) Yes. T −1 ( a b
c d

) = ( b a − b
c d − c ).

3. (a) No. They have different dimension 3 and 4.

(b) Yes. They have the same dimension 4.

(c) Yes. They have the same dimension 4.

(d) No. They have different dimension 3 and 4.

4. This is because that (B−1A−1)(AB) = (AB)(B−1A−1) = I.

5. This is because that (A−1)tAt = (AA−1)t = I and At(A−1)t = (A−1A)t = I.

6. If A is invertible, then A−1 exists. So we have B = A−1AB = A−1O = O/

7. (a) With the result of the previous exercise, if A is invertible we have
that A = O. But O is not invertible. So this is a contradiction.

(b) No. If A is invertible then B = O by the previous exercise.

8. For Corollary 1 we may just pick W = V and α = β. For Corollary 2 we
may just pick V = Fn and use Corollary 1.
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9. If AB is invertible then LAB is invertible. So LALB = LAB is surjective
and injective. And thus LA is surjective and LB injective by Exercise
2.3.12. But since their domain and codomain has the same dimension,
actually they are both invertible, so are A and B.

10. (a) Since AB = In is invertible, we have A and B is invertible by the
previous exercise.

(b) We have that AB = In and A is invertible. So we can conclude that

A−1 = A−1In = A−1AB = B.

item Let T is a mapping from V to W and U is a mapping from W
to V with dimW =dimV . If TU be the identity mapping, then both
T and U are invertible. Furthermore T −1 = U .

To prove this we may pick bases α of V and β of W and set A = [T ]βα
and B = [U]αβ . Now apply the above arguments we have that A and
B is invertible, so are T and U by Theorem 2.18.

11. If T (f) = 0 then we have that f(1) = f(2) = f(3) = f(4) = 0, then we have
that f is zero function since it has degree at most 3 and it’s impossible to
have four zeroes if f is nonzero.

12. We can check φβ is linear first. For x = ∑ni=1 aivi and y = ∑ni=1 bivi, where

β = {v1, v2, . . . , vn}

we have that

φβ(x + cy) =
⎛
⎜⎜⎜
⎝

a1 + cb1
a2 + cb2

⋮
an + cbn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

a1
a2
⋮
an

⎞
⎟⎟⎟
⎠
+ c

⎛
⎜⎜⎜
⎝

b1
b2
⋮
bn

⎞
⎟⎟⎟
⎠
= φβ(x) + cφβ(y).

And we can check whether it is injective and surjective. If φβ(x) =
⎛
⎜⎜⎜
⎝

0
0
⋮
0

⎞
⎟⎟⎟
⎠

then this means x = ∑ni=1 0vi = 0. And for every

⎛
⎜⎜⎜
⎝

a1
a2
⋮
an

⎞
⎟⎟⎟
⎠
+ c in Fn, we have

that x = ∑ni=1 aivi will be associated to it.

13. First we have that V is isomorphic to V by identity mapping. If V is
isomorphic to W by mapping T , then T −1 exist by the definition of iso-
morphic and W is isomorphic to V by T −1. If V is isomorphic to W by
mapping T and W is isomorphic to X by mapping U , then V is isomorphic
to X by mapping UT .
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14. Let

β = {( 1 1
0 0

) ,( 0 1
0 0

) ,( 0 0
0 1

)}

be the basis of V . Then we have that φβ in Theorem 2.21 would be the
isomorphism.

15. We have that T is isomorphism if and only if that T is injective and
surjective. And we also have that the later statement is equivalent to
T (β) is a baiss for W by Exercise 2.1.14(c).

16. We can check that Φ is linear since

Φ(A + cD) = B−1(A + cD)B = B−1(AB + cDB)

= B−1AB + cB−1DB = Φ(A) + cΦ(D).

And it’s injective since if Φ(A) = B−1AB = O then we have A = BOB−1 =
O. It’s also be surjective since for each D we have that Φ(BDB−1) =D.

17. (a) If y1, y2 ∈ T (V0) and y1 = T (x1), y2 = T (x2), we have that y1 + y2 =
T (x1 + x2) ∈ T (V0) and cy1 = T (cx1) = T (V0). Finally since V0 is a
subspace and so 0 = T (0) ∈ T (V0), T (V0) is a subspace of W .

(b) We can consider a mapping T ′ from V0 to T (V0) by T ′(x) = T (x) for
all x ∈ V0. It’s natural that T ′ is surjective. And it’s also injective
since T is injective. So by Dimension Theorem we have that

dim(V0) = dim(N(T ′)) + dim(R(T ′)) = dim(T (V0)).

18. With the same notation we have that

LAφβ(p(x)) =
⎛
⎜
⎝

0 1 0 0
0 0 2 0
0 0 0 3

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

1
1
2
1

⎞
⎟⎟⎟
⎠
=
⎛
⎜
⎝

1
4
3

⎞
⎟
⎠

and

φγT (p(x)) = φγ(1 + 4x + 3x2) =
⎛
⎜
⎝

1
4
3

⎞
⎟
⎠
.

So they are the same.

19. (a) It would be

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.
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(b) We may check that

LAφβ ( 1 2
3 4

) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1
2
3
4

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1
3
2
4

⎞
⎟⎟⎟
⎠

and

φβT ( 1 2
3 4

) = φβ ( 1 3
2 4

) =
⎛
⎜⎜⎜
⎝

1
3
2
4

⎞
⎟⎟⎟
⎠
.

So they are the same.

20. With the notation in Figure 2.2 we can prove first that φγ(R(T )) =
LA(Fn). Since φβ is surjective we have that

LA(Fn) = LAφβ(V ) = φγT (V ) = φγ(R(T )).

Since R(T ) is a subspace of W and φγ is an isomorphism, we have that
rank(T ) =rank(LA) by Exercise 2.4.17.

On the other hand, we may prove that φβ(N(T )) = N(LA). If y ∈
φβ(N(T )), then we have that y = φβ(x) for some x ∈ N(T ) and hence

LA(y) = LA(φβ(x)) = φγT (x) = φγ(0) = 0.

Conversely, if y ∈ N(LA), then we have that LA(y) = 0. Since φβ is
surjective, we have y = φβ(x) for some x ∈ V . But we also have that

φγ(T (x)) = LA(φβ(x)) = LA(y) = 0

and T (x) = 0 since φγ is injective. So similarly by Exercise 2.4.17 we can
conclude that nullity(T ) =nullity(LA).

21. First we prove the independence of {Tij}. Suppose that ∑i,j aijTij = 0.
We have that

(∑
i,j

aijTij)(vk) =∑
i

aijTik(vk) =∑
i

aikwi = 0.

This means aik = 0 for all proper i since {wi} is a basis. And since k is
arbitrary we have that aik = 0 for all i and k.

Second we prove that [Tij]γβ =M
ij . But this is the instant result of

Tij(vj) = wj

and
Tij(vk) = 0

for k ≠ j. Finally we can observe that Φ(β) = γ is a basis for Mm×n(F)
and so Φ is a isomorphism by Exercise 2.4.15.
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22. It’s linear since

T (f + cg) = ((f + cg)(c0), (f + cg)(c1), . . . (f + cg)(cn))

= (f(c0) + cg(c0), f(c1) + cg(c1), . . . f(cn) + cg(cn)) = T (f) + cT (g).

Since T (f) = 0 means f has n+1 zeroes, we know that f must be zero func-
tion( This fact can be proven by Lagrange polynomial basis for Pn(F).).
So T is injective and it will also be surjective since domain and codomain
have same finite dimension.

23. The transformation is linear since

T (σ + cτ) =
m

∑
i=0

(σ + cτ)(i)xi

=
m

∑
i=0

σ(i)xi + cτ(i)xi = T (σ) + cT (τ),

where m is a integer large enough such that σ(k) = τ(k) = 0 for all k >m.
It would be injective by following argument. Since T (σ) = ∑ni=0 σ(i)xi = 0
means σ(i) = 0 for all integer i ≤ n, with the help of the choice of n we can
conclude that σ = 0. On the other hand, it would also be surjective since
for all polynomial ∑ni=0 aixi we may let σ(i) = ai and thus T will map σ
to the polynomial.

24. (a) If v +N(T ) = v′ +N(T ), we have that v − v′ ∈ N(T ) and thus T (v)−
T (v′) = T (v − v′) = 0.

(b) We have that

T̄ ((v +N(T )) + c(u +N(T ))) = T̄ ((v + cu) +N(T ))

= T (v + cu) = T (v) + cT (u).

(c) Since T is surjective, for all y ∈ Z we have y = T (x) for some x and
hence y = T̄ (x+N(T )). This means T̄ is also surjective. On the other
hand, if T̄ (x +N(T )) = T (x) = 0 then we have that x ∈ N(T ) and
hence x +N(T ) = 0 +N(T ). So T̄ is injective. With these argument
T̄ is an isomorphism.

(d) For arbitrary x ∈ V , we have

T̄η(x) = T̄ (x +N(T )) = T (x).

25. The transformation Ψ would be linear since

Ψ(f + cg) = ∑
(f+cg)(s)≠0

(f + cg)(s)s = ∑
(f+cg)(s)≠0

f(s)s + cg(s)s

= ∑
(f or cg)(s)≠0

f(s)s + cg(s)s = ∑
(f or cg)(s)≠0

f(s) + c ∑
(f or cg)(s)≠0

g(s)s
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= Ψ(f) + cΨ(g).

It will be injective by following arguments. If Ψ(f) = ∑f(s)≠0 f(s)s = 0
then we have that f(s) = 0 on those s such that f(s) ≠ 0 since {s ∶ f(s) ≠ 0}
is finite subset of basis. But this can only be possible when f = 0. On
the other hand, we have for all element x ∈ V we can write x = ∑i aisi for
some finite subset {si} of S. Thus we may pick a function f sucht that
f(si) = ai for all i and vanish outside. Thus Ψ will map f to x. So Ψ is
surjective. And thus it’s an isomorphism.

2.5 The Change of Coordinate Matrix

1. (a) No. It should be [x′j]β .

(b) Yes. This is Theorem 2.22.

(c) Yes. This is Theorem 2.23.

(d) No. It should be B = Q−1AQ.

(e) Yes. This is the instant result of the definition of similar and Theorem
2.23.

2. For these problem, just calculate [I]ββ′ .

(a) ( a1 b1
a2 b2

) .

(b) ( 4 1
2 3

) .

(c) ( 3 −1
5 −2

) .

(d) ( 2 −1
5 −4

) .

3. (a)
⎛
⎜
⎝

a2 b2 c2
a1 b1 c1
a0 b0 c0

⎞
⎟
⎠
.

(b)
⎛
⎜
⎝

a0 b0 c0
a1 b1 c1
a2 b2 c2

⎞
⎟
⎠
.

(c)
⎛
⎜
⎝

0 −1 0
1 0 0
−3 2 1

⎞
⎟
⎠
.

(d)
⎛
⎜
⎝

2 1 1
3 −2 1
−1 3 1

⎞
⎟
⎠
.
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(e)
⎛
⎜
⎝

5 −6 3
0 4 −1
3 −1 2

⎞
⎟
⎠
.

(f)
⎛
⎜
⎝

−2 1 2
3 4 1
−1 5 2

⎞
⎟
⎠
.

4. We have that

[T ]β = ( 2 1
1 −3

)

and
[T ]β′ = [I]β

′

β [[T ]β[I]ββ′

= ( 2 −1
−1 1

)( 2 1
1 −3

)( 1 1
1 2

)

= ( 8 13
−5 9

) .

5. We have that

[T ]β = ( 0 0
0 1

)

and
[T ]β′ = [I]β

′

β [[T ]β[I]ββ′

= (
1
2

1
2

1
2

− 1
2

)( 0 0
0 1

)( 1 1
1 −1

)

= (
1
2

− 1
2

1
2

− 1
2

) .

6. Let α be the standard basis (of F2 or F3). We have that A = [LA]α
and hence [LA]β = [I]βα[LA]α[I]αβ . So now we can calculate [LA]β and

Q = [I]αβ and Q−1 = [I]βα.

(a) [LA]β = ( 6 11
−2 −4

) and Q = ( 1 1
1 2

).

(b) [LA]β = ( 3 0
0 −1

) and Q = ( 1 1
1 −1

).

(c) [LA]β =
⎛
⎜
⎝

2 2 2
−2 −3 −4
1 1 2

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 1 1
1 0 1
1 1 2

⎞
⎟
⎠

.

(d) [LA]β =
⎛
⎜
⎝

6 0 0
0 12 0
0 0 18

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 1 1
1 −1 1
−2 0 1

⎞
⎟
⎠

.
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7. We may let β be the standard basis and α = {(1,m), (−m,1)} be another
basis for R2.

(a) We have that [T ]α = ( 1 0
0 −1

) and Q−1 = [I]βα = ( 1 m
−m 1

). We

also can calculate that Q = [I]αβ = (
1

m2+1
m

m2+1
− m
m2+1

1
m2+1

). So finally we

get

[T ]β = Q−1[T ]αQ = (
1−m2

m2+1
2m
m2+1

2m
m2+1

m2
−1

m2+1

) .

That is, T (x, y) = (x+2ym−xm2

m2+1
, −y+2xm+ym2

m2+1
).

(b) Similarly we have that [T ]α = ( 1 0
0 0

). And with the same Q and

Q−1 we get

[T ]β = Q−1[T ]αQ = (
1

m2+1
m

m2+1
m

m2+1
m2

m2+1

) .

That is, T (x, y) = (x+ym
m2+1

, xm+ym2

m2+1
).

8. This is similar to the proof of Theorem 2.23 since

[T ]γ
′

β′ = [IW ]γ
′

γ [T ]γβ[IV ]ββ′ = P
−1[T ]γβQ.

9. We may denote that A is similar to B by A ∼ B. First we have A =
I−1AI and hence A ∼ A. Second, if A ∼ B we have A = Q−1BQ and
B = (Q−1)−1AQ−1 and hence B ∼ A. Finally, if A ∼ B and B ∼ C then we
have A = P −1BP and B = Q−1CQ. And this means A = (QP )−1C(QP )
and hence A ∼ C. So it’s a equivalence relation.

10. If A and B are similar, we have A = Q−1BQ for some invertible matrix Q.
So we have

tr(A) = tr(Q−1BQ) = tr(QQ−1B) = tr(B)

by Exercise 2.3.13.

11. (a) This is because
RQ = [I]γβ[I]

β
α = [I]γα.

(b) This is because

Q−1 = ([I]βα)−1 = [I−1]αβ = [I]αβ .

12. This is the instant result that A = [LA]β and Q defined in the Corollary
is actually [I]βγ .
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13. Since Q is invertible, we have that LQ is invertible. We try to check β′ is
an independent set and hence a basis since V has dimension n. Suppose
that ∑nj=1 ajx′j = 0. And it means that

n

∑
j=1

aj
n

∑
i=1

Qijxi =
n

∑
i=1

(
n

∑
j=1

ajQij)xi = 0.

Since β is a basis, we have that ∑nj=1 ajQij = 0 for all i. Actually this is a
system of linear equations and can be written as

( a1 a2 . . . an )
⎛
⎜⎜⎜
⎝

Q11 Q12 ⋯ Q1n

Q21 Q22 ⋯ Q2n

⋮ ⋮ ⋱ ⋮
Qn1 Qn2 ⋯ Qnn

⎞
⎟⎟⎟
⎠
= vQ = 0,

where v = ( a1 a2 . . . an ). But since Q is invertible and so Q−1

exist, we can deduce that v = vQQ−1 = 0Q−1 = 0. So we know that β is
a basis. And it’s easy to see that Q = [I]ββ is the change of coordinate

matrix changing β′-coordinates into β-coordinates.

14. Let V = Fn, W = Fm, T = LA, β, and γ be the notation defined in the
Hint. Let β′ and γ′ be the set of column vectors of Q and P respectly. By
Exercise 2.5.13 we have that β′ and γ′ are bases and Q = [I]ββ′ , P = [I]γγ′ .
Since we have that [T ]γ

′

β′ = [I]γ
′

γ [T ]γβ[I]
β
β′ , we have that B = P −1AQ.

2.6 Dual Spaces

1. (a) No. Every linear functional is a linear transformation.

(b) Yes. It’s domain and codomain has dimension 1.

(c) Yes. They have the same dimension.

(d) Yes. It’s isomorphic to the dual space of its dual space. But if the
“is” here in this question means “equal”, then it may not be true
since dual space must has that its codomain should be F.

(e) No. For an easy example we may let T be the linear transformation
such that T (xi) = 2fi, where β{x1, x2, . . . , xn} is the basis for V and
β∗{f1, f2, . . . , fn} is the corresponding dual basis for V ∗.

(f) Yes.

(g) Yes. They have the same dimension.

(h) No. Codomain of a linear functional should be the field.

2. In these question we should check whether it’s linear and whether its
domain and codomain are V and F respectly.
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(a) Yes. We may check that

f(p(x) + cq(x)) = 2p′(0) + 2cp′(0) + p′′(1) + cq′′(1)

2p′(0) + p′′(1) + c(2p′(0) + q′′(1)) = f(p(x)) + cf(q(x)).

(b) No. It’s codomain should be the field.

(c) Yes. We may check that

tr(A + cB) =
n

∑
i=1

(A + cB)ii

=
n

∑
i=1

Aii + cBii = tr(A) + ctr(B).

(d) No. It’s not linear.

(e) Yes. We may check that

f(p(x) + cq(x)) = ∫
1

0
(p(t) + cq(t))dt

= ∫
1

0
p(t)dt + c∫

1

0
q(t)dt = f(p(x)) + cf(q(x)).

(f) Yes. We may check that

f(A + cB) = (A + cB)11 = A11 + cB11 = f(A) + cf(B).

3. (a) We may find out that for all vector (x, y, z) ∈ R3 we can express it as

(x, y, z) = (x − y
2
)(1,0,1) + y

2
(1,2,1) + (z − x)(0,0,1).

So we can write ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1(x, y, z) = x − y
2
;

f2(x, y, z) = y
2
;

f3(x, y, z) = z − x.

(b) This is much easier and we have that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1(a0 + a1x + a2x2) = a0;
f2(a0 + a1x + a2x2) = a1;
f3(a0 + a1x + a2x2) = a2.

4. We may returen the representation such that

(x, y, z) = (x−2y)(2

5
,− 3

10
,− 1

10
)+(x+y+z)(3

5
,

3

10
,

1

10
)+(y−3z)(1

5
,

1

10
,− 3

10
).

We may check that the set {( 2
5
,− 3

10
,− 1

10
), ( 3

5
, 3
10
, 1
10

), ( 1
5
, 1
10
,− 3

10
)} is a

basis and hence the desired set. By Theorem 2.24 {f1, f2, f3} is a basis
for V ∗.
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5. Assume that p(t) = a+bx. We have ∫
1
0 (a + bt)dt = a+ b

2
and ∫

2
0 (a + bt)dt =

2a + 2b. So we may returen the representation such that

a + bx = (a + b
2
)(2 − 2x) + (2a + 2b)(−1

2
+ x).

We may check that the set {2−2x,− 1
2
+x} is a basis and hence the desired

set. By Theorem 2.24 {f1, f2, f3} is a basis for V ∗.

6. (a) Calculate directly that

T t(f)(x, y) = fT (x, y) = f(3x + 2y, x) = 7x + 4y.

(b) Since β = {(1,0), (0,1)} and (x, y) = x(1,0) + y(0,1), we have that
f1(x, y) = x and f2(x, y) = y. So we can find out that

T t(f1)(x, y) = f1T (x, y) = f1(3x+2y, x) = 3x+2y = 3f1(x, y)+2f2(x, y);

T t(f2)(x, y) = f2T (x, y) = f2(3x + 2y, x) = x = 1f1(x, y) + 0f2(x, y).

And we have the matrix [T t]β∗ = ( 3 1
2 0

) .

(c) Since T (x, y) = (3x + 2y, x), we can calculate that

[T ]β = ( 3 2
1 0

)

and

([T ]β)t = ( 3 1
2 0

) .

So we have that [T t]β∗ = ([T ]β)t.

7. (a) Calculate directly that

T t(f)(a + bx) = fT (a + bx) = f(−a − 2b, a + b) = −3a − 4b.

(b) Since β = {1, x} and a+ bx = a× 1+ b× x, we have that f1(a+ bx) = a
and f2(a+ bx) = b. And since γ = {(1,0), (0,1)} and (a, b) = a(1,0)+
b(0,1), we have that g1(a, b) = a and g2(a, b) = b. So we can find out
that

T t(g1)(a + bx) = g1T (a + bx) = g1(−a − 2b, a + b) = −a − 2b

= −1 × g1(a, b) + (−2) × g2(a, b);

T t(g2)(a + bx) = g2T (a + bx) = g2(−a − 2b, a + b) = a + b

= 1 × g1(a, b) + 1 × g2(a, b).

And we have the matrix [T t]β
∗

γ∗ = ( −1 1
−2 1

) .
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(c) Since T (a + bx) = (−a − 2b, a + b), we can calculate that

[T ]γβ = ( −1 −2
1 1

)

and

([T ]γβ)
t = ( −1 1

−2 1
) .

So we have that [T t]β
∗

γ∗ = ([T ]γβ)
t.

8. Every plane could be written in the form P = {(x, y, z) ∶ ax+by+cz = 0} for
some scalar a, b and c. Consider a transformation T (x, y, z) = ax+ by+ cz.
It can be shown that T is an element in (R3)∗ and P = N(T ). For the
case in R2, actually every line has the form L = {(x, y) ∶ ax + by = 0} and
hence is the null space of a vector in (R2)∗.

9. If T is linear, we can set fi be giT as the Hint. Since it’s conposition of
two linear function, it’s linear. So we have

T (x) = (g1(T (x)), g2(T (x)), . . . , gm(T (x)))

= (f1(x), f2(x), . . . , fm(x)).

For the converse, let {ei}i=1,2,...,m be the standard basis of Fm. So if we
have that T (x) = ∑mi=1 fi(x)ei with fi linear, we can define Ti(x) = fi(x)ei
and it would be a linear transformation in L (Fn,Fm). Thus we know T
is linear since T is summation of all Ti.

10. (a) Since we can check that fi(p(x)+ cq(x)) = p(ci)+ cq(ci) = fi(p(x))+
cfi(q(x)), fi is linear and hence in V ∗. And we know that dim(V ∗) =
dim(V ) = dim(Pn(F)) = n + 1. So now it’s enough to show that
{f0, f1, . . . , fn} is independent. So assume that ∑ni=1 aifi = 0 for some
ai. We may define polynomials pi(x) = ∏j≠i (x − cj) such that we
know pi(ci) ≠ 0 but pi(cj) = 0 for all j ≠ i. So now we have that

n

∑
i=1

aifi(p1) = a1f1(p1) = 0

implies a1 = 0. Similarly we have ai = 0 for all proper i.

(b) By the Corollary after Theorem 2.26 we have an ordered basis

β = {p0, p1, . . . , pn}

for V such that {f1, f2, . . . , fn} defined in the previous exercise is its
dual basis. So we know that pi(cj) = δij . Since β is a basis, every
polynomial in V is linear combination of β. If a polynomial q has the
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property that q(cj) = δ0j , we can assume that q = ∑ni=0 aipi. Then we
have

1 = q(c0) =
n

∑
i=0

aipi(c0) = a1

and

0 = q(cj) =
n

∑
i=0

aipi(cj) = aj

for all j other than 1. So actually we know q = p0. This means
p0 is unique. And similarly we know all pi is unique. Since the
Lagrange polynomials,say {ri}i=1,2,...n, defined in Section 1.6 satisfy
the property ri(cj) = δij , by uniqueness we have ri = pi for all i.

(c) Let β = {p0, p1, . . . , pn} be those polynomials defined above. We may
check that

q(x) =
n

∑
i=0

aipi(x)

has the property q(ci) = ai for all i, since we know that pi(cj) = δij .
Next if r(x) ∈ V also has the property, we may assume that

r(x) =
n

∑
i=0

bipi(x)

since β is a basis for V . Similarly we have that

ai = r(ci) =
n

∑
i=0

bipi(ci) = bi.

So we know r = q and q is unique.

(d) This is the instant result of 2.6.10(a) and 2.6.10(b) by setting ai =
p(ci).

(e) Since there are only finite term in that summation, we have that the
order of integration and summation can be changed. So we know

∫
b

a
p(t)dt = ∫

b

a
(
n

∑
i=0

p(ci)pi(t))dt

=
n

∑
i=0
∫

b

a
p(ci)pi(t)dt.

11. It will be more clearer that we confirm that the domain and codomain of
both ψ2T and T ttψ2 are V and W ∗∗ respectly first. So for all x ∈ V we
have

ψ2T (x) = ψ(T (x)) = ˆT (x) ∈W ∗∗

and
T ttψ1(x) = T tt(x̂)
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= (T t)t(x̂) = x̂T t ∈W ∗∗.

But to determine whether two elements f and g in W ∗∗ are the same is
to check whether the value of f(h) and g(h) are the same for all h ∈W ∗.
So let h be an element in W∗. Let’s check that

ˆT (x)(h) = h(T (x))

and
x̂T t(h) = x̂(hT ) = h(T (x)).

So we know they are the same.

12. Let β = {x1, x2, . . . , xn} be a basis for V . Then we know the functional
x̂i ∈ V ∗∗ means x̂i(f) = f(xi) for all funtional f in V ∗. On the other hand,
we have the dual basis β∗ = {f1, f2, . . . , fn} is defined by fi(xj) = δij for
all i = 1,2, . . . , n and j = 1,2, . . . , n such that fi is lineaer. And we can
further ferret what elements are in β∗∗. By definition of β∗∗ we know
β∗∗ = {F1, F2, . . . , Fn} and Fi(fj) = δij and Fi is linear. So we may check
that whether Fi = x̂i by

x̂i(fj) = fj(xi) = δij = Fi(fj).

Since they are all linear functional and the value of them meets at basis
β, they are actually equal by the Corollary after Theorem 2.6.

13. (a) We can check that f + g and cf are elements in S0 if f and g are
elements in S0 since (f + g)(x) = f(x) + g(x) = 0 and (cf)(x) =
cf(x) = 0. And the zero function is an element in S0.

(b) Let {v1, v2, . . . , vk} be the basis of W . Since x ∉ W we know that
{v1, v2, . . . , vk+1 = x} is an independent set and hence we can extend
it to a basis {v1, v2, . . . , vn} for V . So we can define a linear trans-
formation T such that f(vi) = δi(k+1). And thus f is the desired
functional.

(c) Let W be the subspace span(S). We first prove that W 0 = S0. Since
every function who is zero at W must be a function who is zero at
S. we know W 0 ⊂ S0. On the other hand, if a linear function has
the property that f(x) = 0 for all x ∈ S, we can deduce that f(y) = 0
for all y ∈W =span(S). Hence we know that W 0 ⊃ S0 and W 0 = S0.
Since (W 0)0 = (S0)0 and span(ψ(S)) = ψ(W ) by the fact ψ is an
isomorphism, we can just prove that (W 0)0 = ψ(W ).
Next, by Theorem 2.26 we may assume every element in (W 0)0 ⊂ V ∗∗

has the form x̂ for some x. Let x̂ is an element in (W 0)0. We have
that x̂(f) = f(x) = 0 if f ∈ W 0. Now if x is not an element in W ,
by the previous exercise there exist some functional f ∈ W 0 such
that f(x) ≠ 0. But this is a contradiction. So we know that x̂ is an
element in ψ(W ) and (W 0)0 ⊂ ψ(W ).
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For the converse, we may assume that x̂ is an element in ψ(W ). Thus
for all f ∈W 0 we have that x̂(f) = f(x) = 0 since x is an element in
W . So we know that (W 0)0 ⊃ ψ(W ) and get the desired conclusion.

(d) It’s natural that if W1 =W2 then we have W 0
1 =W 0

2 . For the converse,
if W 0

1 =W 0
2 then we have

ψ(W1) = (W 0
1 )0 = (W 0

2 )0 = ψ(W2)

and hence
W1 = ψ−1ψ(W1) = ψ−1ψ(W2) =W2

by the fact that ψ is an isomorphism.

(e) If f is an element in (W1 +W2)0, we have that f(w1 + w2) = 0 for
all w1 ∈ W1 and w2 ∈ W2. So we know that f(w1 + 0) = 0 and
f(0+w2) = 0 for all proper w1 and w2. This means f is an element in
W 0

1 ∩W 0
2 . For the converse, if f is an element in W 0

1 ∩W 0
2 , we have

that f(w1 + w2) = f(w1) + f(w2) = 0 for all w1 ∈ W1 and w2 ∈ W2.
Hence we have that f is an element in (W1 +W2)0.

14. We use the notation in the Hint. To prove that α = {fk+1, fk+2, . . . , fn}
is a basis for W 0, we should only need to prove that span(α) =W 0 since
by α ⊂ β∗ we already know that α is an independent set. Since W 0 ⊂ V ∗,
every element f ∈W 0 we could write f = ∑ni=1 aifi. Next since for 1 ≤ i ≤ k
xi is an element in W , we know that

0 = f(xi) =
n

∑
i=1

aifi(xi) = ai.

So actually we have f = ∑ni=k+1 aifi is an element in span(α). And finally
we get the conclusion by

dim(W ) + dim(W0) = k + (n − k) = n = dim(V ).

15. If T t(f) = fT = 0, this means f(y) = 0 for all y ∈ R(T ) and hence f ∈
(R(T ))0. If f ∈ (R(T ))0, this means f(y) = 0 for all y ∈ R(T ) and hence
T t(f)(x) = f(T (x)) = 0 for all x. This means f is an element in N(T t).

16. We have that

rank(LA) = dim(R(LA)) =m − dim(R(LA)0) =m − dim(N((LA)t))

= dim((Fm)∗) − dim(N((LA)t)) = dim(R((LA)t)).

Next, let α, β be the standard basis for Fn and Fm. Let α∗, β∗ be their
dual basis. So we have that [LA)t]α

∗

β∗ = ([LA]βα)t = At by Theorem 2.25.
Let φβ∗ be the isomorphism defined in Theorem 2.21. We get

dim(R((LA)t)) = dim(φβ∗(R((LA)t))) = dim(R(LAt)) = rank(LAt).
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17. If W is T -invariant, we have that T (W ) ⊂ W . Let f be a functional in
W 0. We can check T t(f) = fT is an element in W 0 since T (w) ∈ W by
the fact that T -invariant and thus f(T (w)) = 0.

For the converse, if W 0 is T t-invariant, we know T t(W 0) ⊂W 0. Fix one
w in W , if T (w) is not an element in W , by Exercise 2.6.13(b) there exist
a functional f ∈ W 0 such that f(T (w)) ≠ 0. But this means T t(f)(w) =
fT (w) ≠ 0 and hence T t(f) ∉ W 0. This is a contradiction. So we know
that T (w) is an element in W for all w in W .

18. First check that Φ is a linear transformation by

Φ(f + cg)(s) = (f + cg)S(s) = fS(s) + cgS(s) = (Φ(f) + cΦ(g))(s).

Second we know Φ is injective and surjective by Exercise 2.1.34.

19. Let S′ is a basis for W and we can extend it to be a basis S for V . Since
W is a proper subspace of V , we have at least one element t ∈ S sucht that
t ∉W . And we can define a function g in F(S,F) by g(t) = 1 and g(s) = 0
for all s ∈ S. By the previous exercise we know there is one unique linear
functional f ∈ V ∗ such that fS = g. Finally since f(s) = 0 for all s ∈ S′ we
have f(s) = 0 for all s ∈W but f(t) = 1. So f is the desired functional.

20. (a) Assume that T is surjective. We may check whether N(T t) = {0} or
not. If T t(f) = fT = 0, we have that f(y) = f(T (x)) = 0 for all y ∈W
since there exist some x ∈ V such that T (x) = y. For the converse,
assume that T t is injective. Suppose, by contradiction, R(T ) ≠ W .
By the previous exercise we can construct a nonzero linear functional
f(y) ∈ W ∗ such that f(y) = 0 for all y ∈ R(T ). Let f0 be the zero
functional in W ∗. But now we have that T t(f)(x) = f(T (x)) = 0 =
T t(g)(x), a contradiction. So T must be surjective.

(b) Assume that T t is surjective. Suppose, by contradiction, T (x) = 0 for
some nonzero x ∈ V . We can construct a nonzero linear functional
g ∈ V ∗ such that g(x) ≠ 0. Since T t is surjective, we get some
functional f ∈W ∗ such that T t(f) = g. But this means

0 = f(T (x)) = T t(f)(x) = g(x) ≠ 0,

a contradiction.

For the converse, assume that T is injective and let S is a basis for V .
Since T is injective, we have T (S) is an independent set in W . So we
can extend it to be a basis S′ for W . Thus for every linear functional
g ∈ V ∗ we can construct a functional f ∈W ∗ such that T t(f) = g by
the argument below. First we can construct a function h ∈ F(S,F)
by h(T (s)) = g(s) for s ∈ S and h(t) = 0 for all t ∈ S′/T (S). By
Exercise 2.6.18 there is a lineaer functional f ∈W ∗ such that fS′ = h.
So now we have for all s ∈ S

g(s) = h(T (s)) = f(T (s)) = T t(f)(s).

By Exercise 2.1.34 we have g = T t(f) and get the desired conclusion.
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2.7 Homogeneous Linear Differential Equations
with Constant Coeficients

1. (a) Yes. It comes from Theorem 2.32.

(b) Yes. It comes from Theorem 2.28.

(c) No. The equation y = 0 has the auxiliary polynomial p(t) = 1. But
y = 1 is not a solution.

(d) No. The function y = et + e−t is a solution to the linear differential
equation y′′ − y = 0.

(e) Yes. The differential operator is linear.

(f) No. The differential equation y′′ − 2y′ + y = 0 has a solution space of
dimension two. So {et} could not be a basis.

(g) Yes. Just pick the differential equation p(D)(y) = 0.

2. (a) No. Let W be a finite-dimensional subspace generated by the func-
tion y = t. Thus y is a solution to the trivial equation 0y = 0. But
the solution space is C∞ but not W . Since y(k) = 0 for k ≥ 2 and it
is impossible that

ay′ + by = a + bt = 0

for nonzero a, W cannot be the solution space of a homogeneous
linear differential equation with constant coefficients.

(b) No. By the previous argument, the solution subspace containing y = t
must be C∞.

(c) Yes. If x is a solution to the homogeneous linear differential equation
with constant coefficients whose is auxiliary polynomial p(t), then
we can compute that p(D)(x′) =D(p(D)(x)) = 0.

(d) Yes. Compute that

p(D)q(D)(x + y) = q(D)p(D)(x) + p(D)q(D)(x) = 0.

(e) No. For example, et is a solution for y′ − y = 0 and e−t is a solution
for y′ + y = 0, but 1 = ete−t is not a solution for y′′ − y = 0.

3. Use Theorem 2.34.

(a) The basis is {e−t, te−t}.

(b) The basis is {1, et, e−t}.

(c) The basis is {et, tet, e−t, te−t}.

(d) The basis is {e−t, te−t}.

(e) The basis is {e−t, eαt, eαt}, where α is the complex value 1 + 2i.

4. Use Theorem 2.34.
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(a) The basis is {eαt, eβt}, where α = 1+
√
5

2
and β = 1−

√
5

2
.

(b) The basis is {et, tet, t2et}.

(c) The basis is {1, e−2t, e−4t}.

5. If f and g are elements in C∞, then we know that the k-th derivative of
f + g exists for all integer k since

(f + g)(k) = f (k) + g(k).

So f + g is also an element in C∞. Similarly, for any scalar c, the k-th
derivative of cf exists for all integer k since (cf)(k) = cf (k). Finally, the
function f = 0 is an element in C∞ naturally.

6. (a) Use the fact
D(f + cg) =D(f) + cD(g)

for functions f, g ∈ C∞ and scalar c. This fact is a easy property
given in the Calculus course.

(b) If p(t) is a polynomial, then the differential operator p(D) is linear
by Theorem E.3.

7. Let W and V be the two subspaces generated by the two sets {x, y} and
{ 1
2
(x + y), 1

2i
(x − y)} separately. We know that W ⊃ V since 1

2
(x + y) and

1
2i
(x − y) are elements in W . And it is also true that W ⊂ V since

x = 1

2
(x + y) + i

2i
(x − y)

and

y = 1

2
(x + y) − i

2i
(x − y)

are elements in V .

8. Compute that e(a±ib)t = eateibt = (cos bt + i sin bt)eat. By Theorem 2.34
and the previous exercise we get the result.

9. Since those Ui are pairwise commutative, we may just assume that i = n.
Hence if Un(x) = 0 for some x ∈ V , then

U1U2⋯Un(x) = U1U2⋯Un−1(0) = 0.

10. Use induction on the number n of distinct scalar ci’s. When n = 1, the set
{ec1t} is independent since ec1t is not identically zero. Suppose now the
set {ec1t, ec2t, . . . , ecnt} is independent for all n < k and for distinct ci’s.
Assume that

k

∑
i=1

bie
cit = 0.
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Since any differential operator is linear, we have

0 = (D − ckI)(
k

∑
i=1

bie
ckt) =

k−1

∑
i=1

(ci − ck)biecit.

This means that (ci − ck)bi = 0 and so bi = 0 for all i < k by the fact that
ci’s are all distinct. Finally bk is also zero since

bke
ckt = 0.

11. Denote the given set in Theorem 2.34 to be S. All the element in the set
S is a solution by the proof of the Lemma before Theorem 2.34. Next,
we prove that S is linearly independent by induction on the number k
of distinct zeroes. For the case k = 1, it has been proven by the Lemma
before Theorem 2.34. Suppose now the set S is linearly independent for
the case k <m. Assume that

m

∑
i=1

ni−1

∑
j=0

bi,jt
jecit = 0

for some coefficient bi,j . Observe that

(D − cmI)(tjecit) = jtj−1ecit + (ci − cm)tjecit.

Since any differential operator is linear, we have

(D − cmI)nm(
m

∑
i=1

ni−1

∑
j=0

bi,jt
jecit) = 0.

Since all terms fo i =m are vanished by the differential operator, we may
apply the induction hypothesis and know the coefficients for all terms in
the left and side is zero. Observer that the coefficient of the term tni−1ecit

is (ci − cm)nmbi,ni−1. This means (ci − cm)nmbi,ni−1 = 0 and so bi,ni−1 = 0
for all i < m. Thus we know that the coefficient of the term tni−2ecit is
(ci − cm)nmbi,ni−2. Hence bi,ni−2 = 0 for all i < m. Doing this inductively,
we get bi,j = 0 for all i <m. Finally, the equality

nm−1

∑
j=0

bm,jt
jecmt = 0

implies bm,j = 0 for all j by the Lemma before Theorem 2.34. Thus we
complete the proof.

12. The second equality is the definition of range. To prove the first equality,
we observe that R(g(DV )) ⊂ N(h(D)) since

h(D)(g(D)(V )) = p(D)(V ) = {0}.
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Next observe that
N(g(DV )) = N(g(D))

since N(g(D)) is a subspace in V . By Theorem 2.32, the dimension of
N(g(DV )) = N(g(D)) is the degree of g. So the dimension of R(g(DV ))
is the degree of h(t) minus the degree of g(t), that is the degree of h(t).
So N(h(D)) and R(g(DV )) have the same dimension. Hence they are
the same.

13. (a) The equation could be rewriten as p(D)(y) = x, where p(t) is the
auxiliary polynomial of the equation. Since D is surjective by the
Lemma 1 after Theorem 2.32, the differential operator p(D) is also
surjective. Hence we may find some solution y0 such that p(D)(y0) =
x.

(b) Use the same notation in the previous question. We already know
that p(D)(z) = x. If w is also a solution such that p(D)(w) = x, then
we have

p(D)(w − z) = p(D)(w) − p(D)(z) = x − x = 0.

So all the solution must be of the form z+y for some y in the solution
space V for the homogeneous linear equation.

14. We use induction on the order n of the equation. Let p(t) be the auxiliary
polynomial of the equation. If now p(t) = t − c for some coeficient c, then
the solution is Cect for some constant C by Theorem 2.34. So if Cect0 = 0
for some t0 ∈ R, then we know that C = 0 and the solution is the zero
function. Suppose the statement is true for n < k. Now assume the degree
of p(t) is k. Let x be a solution and t0 is a real number. For an arbitrary
scalar c, we factor p(t) = q(t)(t − c) for a polynomial q(t) of degree k − 1
and set z = q(D)(x). We have (D − cI)(z) = 0 since x is a solution and
z(t0) = 0 since x(i)(t0) = 0 for all 0 ≤ i ≤ n−1. Again, z must be of the form
Cect. And so Cect0 = 0 implies C = 0. Thus z is the zero function. Now
we have q(D)(x) = z = 0. By induction hypothesis, we get the conclusion
that x is identically zero. This complete the proof.

15. (a) The mapping Φ is linear since the differential operator D is linear. If
Φ(x) = 0, then x is the zero function by the previouse exercise. Hence
Φ is injective. And the solution space is an n-dimensional space by
Theorem 2.32. So The mapping is an isomorphism.

(b) This comes from the fact the transformation Φ defined in the previous
question is an isomorphism.

16. (a) Use Theorem 2.34. The auxiliary polynomial is t2 + g
l
. Hence the

basis of the solution space is

{eit
√
g
l , e−it

√
g
l }
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or

{cos t

√
g

l
, sin t

√
g

l
}

by Exercise 2.7.8. So the solution should be of the form

θ(t) = C1 cos t

√
g

l
+C2 sin t

√
g

l

for some constants C1 and C2.

(b) Assume that

θ(t) = C1 cos t

√
g

l
+C2 sin t

√
g

l

for some constants C1 and C2 by the previous argument. Consider
the two initial conditions

θ(0) = C1

√
g

l
= θ0

and

θ′(0) = C2

√
g

j
= 0.

Thus we get

C1 = θ0
√

l

g

and
C2 = 0.

So we get the unique solution

θ(t) = θ0
√

l

g
cos t

√
g

l
.

(c) The period of cos t
√
g
l

is 2π
√

l
g
. Since the solution is unique by the

previous argument, the pendulum also has the same period.

17. The auxiliary polynomial is t2 + k
m

. So the general solution is

y(t) = C1 cos t

√
k

m
+C2 sin t

√
k

m

for some constants C1 and C2 by Exercise 2.7.8.

18. (a) The auxiliary polynomial is mt2 + rt + k. The polynomial has two
zeroes

α = −r +
√
r2 − 4mk

2m
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and

β = −r −
√
r2 − 4mk

2m
.

So the general solution to the equation is

y(t) = C1e
αt +C2e

βt.

(b) By the previous argument assume the solution is

y(t) = C1e
αt +C2e

βt.

Consider the two initial conditions

y(0) = C1 +C2 = 0

and
y′(0) = αC1 + βC2 = v0.

Solve that
C1 = (α − β)−1v0

and
C2 = (β − α)−1v0.

(c) The limit tends to zero since the real parts of α and β is both − r
2m

,
a negative value, by assuming the r2 −4mk ≤ 0. Even if r2 −4mk > 0,
we still know that α and β are negative real number.

19. Since F(R,R) is a subset of F(C,C), so if the solution which is useful in
describing physical motion, then it will still be a real-valued function.

20. (a) Assume the differential equation has monic auxiliary polynomial p(t)
of degree n. Thus we know that p(D)(x) = 0 if x is a solution. This
means that x(k) exists for all integer k ≤ n. We may write p(t) as
tn + q(t), where q(t) = p(t)− tn is a polynomial of degree less than n.
Thus we have

x(n) = −q(D)(x)

is differentiable since x(n) is a linear combination of lower order terms
x(k) with k ≤ n − 1. Doing this inductively, we know actualy x is an
element in C∞.

(b) For complex number c and d, we may write c = c1+ic2 and d = d1+id2
for some real numbers c1, c2, d1, and d2. Thus we have

ec+d = e(c1+d1)+i(c2+d2) = ec1ed1(cos(c2 + d2) + i sin(c2 + d2))

and
eced = ec1ed1(cos c2 + i sin c2)(cosd2 + i sind2)

= ec1ed1[(cos c2 cosd2 − sin c2 sind2) + i(sin c2 cosd2 + cos c2 sind2)]
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= ec1ed1(cos(c2 + d2) + i sin(c2 + d2)).

This means ec+d = eced even if c and d are complex number.1 For the
second equality, we have

1 = e0 = ec−c = ece−c.

So we get

e−c = 1

ec
.

(c) Let V be the set of all solution to the homogeneous linear differential
equation with constant coefficient with auxiliary polynomial p(t).
Since each solution is an element in C∞, we know that V ⊃ N(p(D)),
where N(p(D)) is the null space of p(D), since p(D)(x) = 0 means
that x is a solution. Conversely, if x is a solution, then we have
p(D)(x) = 0 and so x ∈ N(p(D)).

(d) Let c = c1 + ic2 for some real numbers c1 and c2. Directly compute
that

(ect)′ = (ec1t+ic2t)′ = (ec1t(cos c2t + i sin c2t))′

c1e
c1t(cos c2t + i sin c2t)) + ic2ec1t(cos c2t + i sin c2t)

(c1 + ic2)ec1t(cos c2t + i sin c2t) = cect.

(e) Assume that x = x1 + ix2 and y = y1 + iy2 for some x1, x2, y1, and y2
in F(R,R). Compute that

(xy)′ = (x1y1 − x2y2)′ + i(x1y2 + x2y1)′

= (x′1y1 + x1y′1 − x′2y2 − x2y′2) + i(x′1y2 + x1y′2 + x′2y1 + x2y′1)

= (x′1 + ix′2)(y1 + iy2) + (x1 + ix2)(y′1 + iy′2) = x′y + xy′.

(f) Assume that x = x1 + ix2 for some x1 and x2 in F(R,R). If

x′ = x′1 + ix′2 = 0,

then x′1 = 0 and x′2 = 0 since x′1 and x′2 are real-valued functions.
Hence x1 and x2 are constant in R. Hence x is a constant in C.

1The textbook has a typo that ec+d = cced.
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Chapter 3

Elementary Matrix
Operations and Systems of
Linear Equations

3.1 Elementary Matrix Operations and Elemen-
tary Matrices

1. (a) Yes. Since every elementary matrix comes from In, a square matrix.

(b) No. For example, 2I1 is an elementary matrix of type 2.

(c) Yes. It’s an elementary matrix of type 2 with scalar 1.

(d) No. For example, the product of two elementary matrices

( 2 0
0 1

)( 0 1
1 0

) = ( 0 2
1 0

)

is not an elementary matrix.

(e) Yes. This is Theorem 3.2.

(f) No. For example, the sum of two elementary matrices

( 2 0
0 1

)( 0 1
1 0

) = ( 2 1
1 1

)

is not an elementary matrix.

(g) Yes. See Exercise 3.1.5.

(h) No. For example, let A = ( 1 0
0 0

) and B = ( 1 0
1 0

). Then we can

obtain B by add one time the first row of A to the second row of
B. But all column operation on A can not change the fact that the
second row of A is two zeros.
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(i) Yes. If B = EA, we have E−1B = A and E−1 is an elementary matrix
of row operation.

2. By adding −2 times the first column of A to the second column, we obtain
B. By adding −1 time the first row of B to the second row, we obtain C.

Finally let E1 =
⎛
⎜
⎝

1 0 0
0 − 1

2
0

0 0 1

⎞
⎟
⎠

, E2 =
⎛
⎜
⎝

1 0 0
0 1 0
−1 0 1

⎞
⎟
⎠

, E3 =
⎛
⎜
⎝

1 0 0
0 1 0
0 3 1

⎞
⎟
⎠

,

E4 =
⎛
⎜
⎝

1 0 −3
0 1 0
0 0 1

⎞
⎟
⎠

, E5 =
⎛
⎜
⎝

1 0 0
0 1 −1
0 0 1

⎞
⎟
⎠

. We have that

E5E4E3E2E1C = I3.

The following is the process.

C =
⎛
⎜
⎝

1 0 3
0 −2 −2
1 −3 1

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 0 3
0 1 1
1 −3 1

⎞
⎟
⎠

↝
⎛
⎜
⎝

1 0 3
0 1 1
0 −3 −2

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 0 3
0 1 1
0 0 1

⎞
⎟
⎠

↝
⎛
⎜
⎝

1 0 0
0 1 1
0 0 1

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

3. (a) This matrix interchanges the first and the third row. So the inverse
matrix do the inverse step. So the inverse matrix do the same thing
and it is

⎛
⎜
⎝

0 0 1
0 1 0
1 0 0

⎞
⎟
⎠
.

(b) This matrix multiplies the second row by 3. To the inverse matrix
multiplies the second row by 1

3
and it is

⎛
⎜
⎝

1 0 0
0 1

3
0

0 0 1

⎞
⎟
⎠
.

(c) This matrix adds −2 times the first row to the third row. So the
invers matrix adds 2 times the first row to the third row and it is

⎛
⎜
⎝

1 0 0
0 1 0
2 0 1

⎞
⎟
⎠
.
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4. A matrix who interchanges the i-th and the j-th rows is also a matrix who
interchanges the i-th and the j-th columns. A matrix who multiplies the
i-th row by scalar c is also a matrix who multiplies the i-th column by
scalar c. A matrix who adds c times the i-th row to the j-th row is also a
matrix who adds c times the j-th column to the i-th column.

5. We can check that matrices of type 1 or type 2 are symmetric. And the
transpose of a matrix of type 3, who adds c times the i-th row(column)
to the j-th row(column), is a matrix of type 3, who adds c times the j-th
row(column) to the i-th row(column).

6. If B can be obtained from A by an elementary row operation, we could
write B = EA. So we have Bt = AtEt and this means B can be obtained by
A by elementary column operation with corresponding elementary matrix
Et. If B can be obtained from A by an elementary column operation,
we could write B = AE. So we have Bt = EtAt and this means B can be
obtained by A by elementary row operation with corresponding elementary
matrix Et.

7. It’s enough to check the following matrix multiplication is right. Let
{u1, u2, . . . , un} and {v1, v2, . . . , vn} be the row and column vectors of A
respectly.

For row operations:

i−th

j−th

⎛
⎜⎜⎜⎜⎜
⎝

⋱
1

⋱
1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

A =

⎛
⎜⎜⎜⎜⎜
⎝

⋱
− uj −

⋱
− ui −

⋱

⎞
⎟⎟⎟⎟⎟
⎠

i−th

⎛
⎜⎜⎜⎜⎜
⎝

⋱
1

c
1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

A =

⎛
⎜⎜⎜⎜⎜
⎝

⋱
⋱
− cui −

⋱
⋱

⎞
⎟⎟⎟⎟⎟
⎠

i−th

j−th

⎛
⎜⎜⎜⎜⎜
⎝

⋱
1

⋱
c 1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

A =

⎛
⎜⎜⎜⎜⎜
⎝

⋱
⋱

⋱
− cui + uj −

⋱

⎞
⎟⎟⎟⎟⎟
⎠
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For column operations:

A

i j
−th −th

⎛
⎜⎜⎜⎜⎜
⎝

⋱
1

⋱
1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

⋱
∣ ∣
vj ⋱ vi
∣ ∣

⋱

⎞
⎟⎟⎟⎟⎟
⎠

A

i
−th

⎛
⎜⎜⎜⎜⎜
⎝

⋱
1

c
1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

⋱
∣
cvi
∣ ⋱

⋱

⎞
⎟⎟⎟⎟⎟
⎠

A

i j
−th −th

⎛
⎜⎜⎜⎜⎜
⎝

⋱
1 c

⋱
1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

⋱ ∣
⋱ cvi

⋱ +
vj
∣ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

8. By Theorem 3.2 E−1 is an elementary matrix of the same type if E is. So
if Q can be obtained from P , we can write Q = EP and hence E−1Q = P .
This means P can be obtained from Q.

9. The operation of interchanging the i-th and the j-th row can be obtained
by the following steps:

� multiplying the i-th row by −1;

� adding −1 time the i-th row to the j-th row;

� adding 1 time the j-th row to the i-th row;

� adding −1 time the i-th row to the j-th row.

10. The operation of multiplying one row by a scalar c means dividing the
same row by a scalar 1

c
.

11. The operation of adding c times of the i-th row to the j-th row means
substracting c times of the i-th row to the j-th row.

12. Assuming k = min{m,n}. Set j be a integer variable and do repeatly the
following process:
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� If Aij = 0 for all j, take i = i + 1 and omit following steps and repeat
process directly.

� If Aij ≠ 0 for some j, interchange the i-th and the j-th row.

� Adding −Aij
Aii

times the i-th row to the j-th row for all j > i.
� Set i = i + 1 and repeat the process.

3.2 The Rank of a Matrix and Matrix Inverses

1. (a) No. For example the rank of a 2×2 matrix with all entries 1 has only
rank 1.

(b) No. We have the example that the product of two nonzero matrices
could be a zero matrix.

(c) Yes.

(d) Yes. This is Theorem 3.4.

(e) No. They do.

(f) Yes. This is the Corollary 2 after the Theorem 3.6.

(g) Yes. This is the argument after the definition of augmented matrix.

(h) Yes. Rank of an m × n matrix must be less than m and n.

(i) Yes. This means LA is a surjective transformation from Fn to Fn
and hence a injective transformation, where A is the matrix.

2. In the following questions we may do the Gaussian elimination and the
number of nonzero row vectors is equal to the rank of that matrix.

(a) The rank is 2.

⎛
⎜
⎝

1 1 0
0 1 1
1 1 0

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 1 0
0 1 1
0 0 0

⎞
⎟
⎠

(b) The rank is 3.

⎛
⎜
⎝

1 1 0
2 1 1
1 1 1

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 1 0
0 −1 1
0 0 1

⎞
⎟
⎠

(c) The rank is 2.

( 1 0 2
1 1 4

)↝ ( 1 0 2
0 1 2

)

(d) The rank is 1.

( 1 2 1
2 4 2

)↝ ( 1 2 1
0 0 0

)
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(e) The rank is 3.

⎛
⎜⎜⎜
⎝

1 2 3 1 1
1 4 0 1 2
0 2 −3 0 1
1 0 0 0 0

⎞
⎟⎟⎟
⎠
↝

⎛
⎜⎜⎜
⎝

1 2 3 1 1
0 2 −3 0 1
0 2 −3 0 1
0 −2 −3 −1 −1

⎞
⎟⎟⎟
⎠

↝
⎛
⎜⎜⎜
⎝

1 2 3 1 1
0 2 −3 0 1
0 0 0 0 0
0 0 −6 −1 0

⎞
⎟⎟⎟
⎠

(f) The rank is 3.

⎛
⎜⎜⎜
⎝

1 2 0 1 1
2 4 1 3 0
3 6 2 5 1
−4 −8 1 −3 1

⎞
⎟⎟⎟
⎠
↝

⎛
⎜⎜⎜
⎝

1 2 0 1 1
0 0 1 1 −2
0 0 2 2 −2
0 0 1 1 5

⎞
⎟⎟⎟
⎠

↝
⎛
⎜⎜⎜
⎝

1 2 0 1 1
0 0 1 1 −2
0 0 0 0 2
0 0 0 0 7

⎞
⎟⎟⎟
⎠
↝

⎛
⎜⎜⎜
⎝

1 2 0 1 1
0 0 1 1 −2
0 0 0 0 2
0 0 0 0 0

⎞
⎟⎟⎟
⎠

(g) The rank is 1.

⎛
⎜⎜⎜
⎝

1 1 0 1
2 2 0 2
1 1 0 1
1 1 0 1

⎞
⎟⎟⎟
⎠
↝

⎛
⎜⎜⎜
⎝

1 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

3. It’s natural that rank(A) = 0 if A = 0. For the converse, we know that
if A is not a zero matrix, we have Aij ≠ 0 and thus the i-th row is an
independent set. So rank(A) can not be zero.

4. Just do row and column operations.

(a) The rank is 2.

⎛
⎜
⎝

1 1 1 2
2 0 −1 2
1 1 1 2

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 1 1 2
0 −2 −3 −2
0 0 0 0

⎞
⎟
⎠

↝
⎛
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟
⎠
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(b) The rank is 2.

⎛
⎜
⎝

2 1
−1 2
2 1

⎞
⎟
⎠
↝

⎛
⎜
⎝

2 1
0 5

2
0 0

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 0
0 1
0 0

⎞
⎟
⎠

5. For these problems, we can do the Gaussian elimination on the augment
matrix. If the matrix is full rank1 then we get the inverse matrix in the
augmenting part.

(a) The rank is 2 and its inverse is ( −1 2
1 −1

).

( 1 2 1 0
1 1 0 1

)↝ ( 1 2 1 0
0 −1 −1 1

)

↝ ( 1 0 −1 2
0 −1 −1 1

)↝ ( 1 0 −1 2
0 1 1 −1

)

(b) The rank is 1. So there’s no inverse matrix.

(c) The rank is 2. So there’s no inverse matrix.

(d) The rank is 3 and its inverse is
⎛
⎜
⎝

− 1
2

3 −1
3
2

−4 2
1 −2 1

⎞
⎟
⎠

.

(e) The rank is 3 and its inverse is
⎛
⎜
⎝

1
6

− 1
3

1
2

1
2

0 − 1
2

− 1
6

1
3

1
2

⎞
⎟
⎠

.

(f) The rank is 2. So there’s no inverse matrix.

(g) The rank is 4 and its inverse is

⎛
⎜⎜⎜
⎝

−51 15 7 12
31 −9 −4 −7
−10 3 1 2
−3 1 1 1

⎞
⎟⎟⎟
⎠

.

(h) The rank is 3. So there’s no inverse matrix.

6. For these problems we can write down the matrix representation of the
transformation [T ]βα, where α = {u1, u2, . . . , un} and β = {v1, v2, . . . , vn}
are the (standard) basis for the domain and the codomain of T . And the
inverse of this matrix would be B = [T −1]αβ . So T −1 would be the linear
transformation such that

T −1(vj) =
n

∑
i=1

Bijui.

1This means rank(A) = n, where A is an n × n matrix.
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(a) We get [T ]βα =
⎛
⎜
⎝

−1 2 2
0 −1 4
0 0 −1

⎞
⎟
⎠

and [T −1]αβ =
⎛
⎜
⎝

−1 −2 −10
0 −1 −4
0 0 −1

⎞
⎟
⎠

. So we

know that

T (a + bx + cx2) = (−a − 2b − 10c) + (−b − 4c)x + (−c)x2.

(b) We get [T ]βα =
⎛
⎜
⎝

0 1 0
0 1 2
1 0 1

⎞
⎟
⎠

, a matrix not invertible. So T is not

invertible.

(c) We get [T ]βα =
⎛
⎜
⎝

1 2 1
−1 1 2
1 0 1

⎞
⎟
⎠

and [T −1]αβ =
⎛
⎜
⎝

1
6

− 1
3

1
2

1
2

0 − 1
2

− 1
6

1
3

1
2

⎞
⎟
⎠

. So we

know that

T (a, b, c) = (1

6
a − 1

3
b + 1

2
c,

1

2
a − 1

2
c,−1

6
a + 1

3
b + 1

2
c).

(d) We get [T ]βα =
⎛
⎜
⎝

1 1 1
1 −1 1
1 0 0

⎞
⎟
⎠

and [T −1]αβ =
⎛
⎜
⎝

0 0 1
1
2

− 1
2

0
1
2

1
2

−1

⎞
⎟
⎠

. So we know

that

T (a, b, c) = (c, 1

2
a − 1

2
b,

1

2
a + 1

2
b − c).

(e) We get [T ]βα =
⎛
⎜
⎝

1 −1 1
1 0 0
1 1 1

⎞
⎟
⎠

and [T −1]αβ =
⎛
⎜
⎝

0 1 0
− 1

2
0 1

2
1
2

−1 1
2

⎞
⎟
⎠

. So we know

that

T (a + bx + cx2) = (b,−1

2
a + 1

2
c,

1

2
a − b + 1

2
c).

(f) We get [T ]βα =
⎛
⎜⎜⎜
⎝

1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0

⎞
⎟⎟⎟
⎠

, a matrix not invertible. So T is not

invertible.

7. We can do the Gaussian elimination and record what operation we’ve
done.

⎛
⎜
⎝

1 2 1
1 0 1
1 1 2

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 2 1
0 −2 0
1 1 2

⎞
⎟
⎠

↝
⎛
⎜
⎝

1 2 1
0 −2 0
0 −1 1

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 2 1
0 1 0
0 −1 1

⎞
⎟
⎠
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↝
⎛
⎜
⎝

1 0 1
0 1 0
0 −1 1

⎞
⎟
⎠
↝

⎛
⎜
⎝

1 0 1
0 1 0
0 0 1

⎞
⎟
⎠

↝
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Let E1 =
⎛
⎜
⎝

1 0 0
−1 1 0
0 0 1

⎞
⎟
⎠

, E2 =
⎛
⎜
⎝

1 0 0
0 1 0
−1 0 1

⎞
⎟
⎠

, E3 =
⎛
⎜
⎝

1 0 0
0 − 1

2
0

0 0 1

⎞
⎟
⎠

, E4 =
⎛
⎜
⎝

1 −2 0
0 1 0
0 0 1

⎞
⎟
⎠

,

E5 =
⎛
⎜
⎝

1 0 0
0 1 0
0 1 1

⎞
⎟
⎠

, E6 =
⎛
⎜
⎝

1 0 −1
0 1 0
0 0 1

⎞
⎟
⎠

.

Thus we have the matrix equals to E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 .

8. It’s enough to show that R(LA) = R(LcA. But this is easy since

R(LA) = LA(Fm) = cLA(Fm) = LcA(Fm) = R(LcA).

9. If B is obtained from a matrix A by an elementary column operation, then
there exists an elementary matrix such that B = AE. By Theorem 3.2, E
is invertible, and hence rank(B) =rank(A) by Theorem 3.4.

10. Let A be an m× 1 matrix. Let i be the smallest integer such that Ai1 ≠ 0.
Now we can interchange, if it’s necessary, the first and the i-th row. Next
we can multiply the first row by scalar 1

A11
and we get A11 = 1 now. Finally

add −Ak1 times the first row to the k-th row. This finished the process.

11. We may write B′
0 =

⎛
⎜⎜⎜
⎝

0 ⋯ 0

B′

⎞
⎟⎟⎟
⎠

. And thus we have that

B

⎛
⎜⎜⎜
⎝

x1
x2
⋮

xn+1

⎞
⎟⎟⎟
⎠
= x1

⎛
⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟
⎠
+B′

0

⎛
⎜
⎝

x2
⋮

xn+1

⎞
⎟
⎠
.

Let L =span{
⎛
⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟
⎠
} be a subspace in Fm+1. So we have that R(LB) =

L + R(B′
0). And it’s easy to observe that all element in L has its first

entry nonzero except 0. But all element in R(B′
0) has it first entry zero.

So we know that L ∩ R(B′
0) = {0} and hence R(LB) = L ⊕ R(B′

0). By
Exercise 1.6.29(b) we know that dim(R(LB)) =dim(L)+dim(R(B′

0)) =
1+dim(R(B′

0)).
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Next we want to prove that dim(R(B′
0)) =dim(B′) by showing N(LB′

0
) =

N(LB′). We may let

B′
0x =

⎛
⎜⎜⎜
⎝

0
y1
⋮
ym

⎞
⎟⎟⎟
⎠

and scrutinize the fact

B′x =
⎛
⎜⎜⎜
⎝

0
y1
⋮
ym

⎞
⎟⎟⎟
⎠

is true. So N(LB′
0
) = N(LB′) is an easy result of above equalitiies. Finally

since LB′
0

and L′B has the same domain, by Dimension Theorem we get
the desired conclusion

rank(B) = dim(R(LB)) = 1 + dim(R(B′
0))

= 1 + dim(LB′) = 1 + rank(B′).

12. If B′ can be transformed into D′ by an elementary row operation, we could
write D′ = EB′ by some elementary matrix E. Let

E′ =
⎛
⎜⎜⎜
⎝

1 0 ⋯ 0
0
⋮ B′

0

⎞
⎟⎟⎟
⎠

be an larger matrix. Then we have D = E′B and hence D can be obtained
from B by an elementary row operation. For the version of column, we
have D′ = B′E. And then get the matrix E′ by the same way. Finally we
have D = BE′.

13. (b) By Theorem 3.5 and the Corollary 2 after Theorem 3.6 we have that
the maximum number of linearly independent rows of A is the maxi-
mum number of linearly independent columns of At and hence equals
to rank(At) =rank(A).

(c) This is an instant result of (b) and Theorem 3.5.

14. (a) For all y ∈ R(T + U) we can express it as y = T (x) + U(x) ∈ R(T ) +
R(U) for some x ∈ V .

(b) By Theorem 1.6.29(a) we have

rank(T +U) ≤ dim(R(T ) +R(U))

= dim(R(T )) + dim(R(U)) − dim(R(T ) ∩R(U))

≤ rank(T ) + rank.
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(c) We have that

rank(A +B) = rank(LA+B) = rank(LA +LB)

≤ rank(A) + rank(B).

15. Let P =M(A∣B) and Q = (MA∣MB). We want to show that Pij = Qij for
all i and for all j. Assume that A and B has a and b columns respectly.
For j = 1,2, . . . , a, we have that

Pij =
n

∑
k=1

MikAkj = (MA)ij = Qij .

For j = a + 1, a + 2, . . . , a + b, we have that

Pij =
n

∑
k=1

MikBkj = (MB)ij = Qij .

16. Since P is invertible, we know that LP is an isomorphism. So by Exercise
2.4.17 we have that

rank(PA) = dim(P (A(Fn)))

= dim(A(Fn)) = A(Fn)(A).

17. Let B =
⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠

and C = (c1 c2 c3). Thus we know that

BC =
⎛
⎜
⎝

b1c1 b1c2 b1c3
b2c1 b2c2 b2c3
b3c1 b3c2 b3c3

⎞
⎟
⎠

has only at most one independent rows. So the rank of BC is at most one.

Conversely, if the rank of A is zero, we know that A = O and we can pick B
and C such that they are all zero matrices. So assume that the rank of A
is 1 and we have that the i-th row of A forms an maximal independent set
itself. This means that we can obtained the other row of A by multiplying
some scalar (including 0), say bj for the j-the row. Then we can pick

B =
⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠

and C =
⎛
⎜
⎝

Ai1
Ai2
Ai3

⎞
⎟
⎠

. Thus we get the desired matrices.

18. Let Ai be the matrix consists of the i-th column of A. Let Bi be the
matrix consists of the i-th row of B. It can be check that actually

AB =
n

∑
i=1

AiBi

and AiBi has rank at most 1.
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19. It would be m. Since the range of A is a subspace with dimension m in
Fm, we know that LA(Fn) = Fm. Similarly we also have that LB(Fp) = Fn.
So we know that

LAB(Fp) = LA(LB(Fp)) = Fm

and hence the rank of AB is m.

20. (a) Just like the skill we learned in the Exercise 1.4.2 we can solve the
system of linear equation Ax = 0 and get the solution space

{(x3 + 3x5,−2x3 + x5, x3,−2x5, x5) ∶ xi ∈ F}.

And we know that {(1,−2,1,0,0), (3,1,0,−2,1)} is a basis for the
solution space. Now we can construct the desired matrix

M =

⎛
⎜⎜⎜⎜⎜
⎝

1 3 0 0 0
−2 1 0 0 0
1 0 0 0 0
0 −2 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

.

(b) If AB = O, this means that every column vector of B is a solution
of Ax = 0. If rank of B is greater than 2, we can find at least three
independent vectors from columns of B. But this is is impossible
since by Dimension Theorem we know that

dim(F5) = dim(R(LA)) + dim(N(LA))

and so dim(N(LA)) = 5 − 3 = 2.

21. Let β = {e1, e2, . . . , em} be the standard basis for Fm. Since the rank of A
is m, we know that LA is surjective. So we can find some vector vi ∈ Fn
such that LA(vi) = ei. So let B be the matrix with column vector vi.
Thus B is an n ×m matrix and AB = I since Avi = ei.

22. We know that Bt is an m×n matrix with rank n. By the previous exercise
we have some n ×m matrix C such that BtC = Im. We may pick A = Ct.
Now we have the fact that AB = CtB = (BtC)t = (Im)t − Im.

3.3 Systems of Linear Equation—Theoretical As-
pects

1. (a) No. The system that 0x = 1 has no solution.

(b) No. The system that 0x = 0 has lots of solutions.

(c) Yes. It has the zero solution.

(d) No. The system that 0x = 0 has no solution.
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(e) No. The system that 0x = 0 has lots of solutions.

(f) No. The system 0x = 1 has no solution but the homogeneous system
corresponding to it has lots of solution.

(g) Yes. If Ax = 0 then we know x = A−10 = 0.

(h) No. The system x = 1 has solution set {1}.

2. See Example 2 in this section.

(a) The set {(−3,1)} is a basis and the dimension is 1.

(b) The set {( 1
3
, 2
3
,1)} is a basis and the dimension is 1.

(c) The set {(−1,1,1)} is a basis and the dimension is 1.

(d) The set {(0,1,1)} is a basis and the dimension is 1.

(e) The set {(−2,1,0,0), (3,0,1,0), (−1,0,0,1)} is a basis and the dimen-
sion is 3.

(f) The set {(0,0)} is a basis and the dimension is 0.

(g) The set {(−3,1,1,0), (1,−1,0,1)} is a basis and the dimension is 1.

3. See Example 3 in this section.

(a) The solution set is (5,0) + span({(−3,1)}).
(b) The solution set is ( 2

3
, 1
3
,0) + span({( 1

3
, 2
3
,1)}).

(c) The solution set is (3,0,0) + span({(−1,1,1)}).
(d) The solution set is (2,1,0) + span({(0,1,1)}).
(e) The solution set is (1,0,0,0)+span({(−2,1,0,0), (3,0,1,0), (−1,0,0,1)}).
(f) The solution set is (1,2) + span({(0,0)}).
(g) The solution set is (−1,1,0,0) + span({(−3,1,1,0), (1,−1,0,1)}).

4. With the technique used before we can calculate A−1 first and then the
solution of Ax = b would be A−1b if A is invertible.

(a) Calculate A−1 = (−5 3
2 −1

) and solution is x1 = −11, x2 = 5.

(b) Calculate A−1 =
⎛
⎜
⎝

1
3

0 1
3

1
9

1
3

− 2
9

− 4
9

2
3

− 1
9

⎞
⎟
⎠

and solution is x1 = 3, x2 = 0, x3 = −2.

5. Let A be the n × n zero matrix. The system Ax = 0 has infinitely many
solutions.

6. If T (a, b, c) = (a + b,2a − c) = (1,11), then we get a + b = 1 and 2a − c = 11.
This means the preimage set would be

T −1(1,11) = {(a,1 − a,2a − 11) ∶ a ∈ R}.
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7. See Theorem 3.11 and Example 5 of this section.

(a) It has no solution.

(b) It has a solution.

(c) It has a solution.

(d) It has a solution.

(e) It has no solution.

8. (a) Just solve that a + b = 1, b − 2c = 3, a + 2c = −2 and get a = 0, b = 1,
c = −1 is a solutoin. So we know v ∈ R(T ).

(b) Just solve that a + b = 2, b − 2c = 1, a + 2c = 1 and get a = 1, b = 1,
c = 0 is a solution. So we know v ∈ R(T ).

9. This is the definition of LA and R(LA).

10. The answer is Yes. Say the matrix is A. Since the matrix has rank m, we
have that dimension of R(LA) is m. But this means R(LA) = Fm since the
codomain of LA is Fm and it has dimension m. So it must has a solution
by the previous exercise.

11. Solve the system Ax = x and we can get x = ( 4
11
, 3
11
, 4
11

). And the amount
of each entry is the ratio of farmer, trailor, and carpenter respectly.

12. Set

A = (0.6 0.3
0.4 0.7

)

be the input-output matrix of this system. We want to solve that Ax = x,
which means (A − I)x = 0. By calculation we get x = t(3,4) for arbitrary
t ∈ R. So the proportion is used in the production of goods would be 3

7
.

13. In this model we should solve the equation (I − A)x = d. And we can
compute that I −A is invertible and

(I −A)−1 = (
12
5

3
5

1 3
2

) .

So we know

x = (I −A)−1d = (
39
5
19
2

) .

14. The input-output matrix A should be (0.50 0.20
0.30 0.60

). And the demand

vector d should be (90
20

). So we can solve the equation (I −A)x = d and

get the answer x = ( 2000
7
, 1850

7
). Thus x is the support vector.
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3.4 Systems of Linear Equations—Computational
Aspects

1. (a) No. This form could only fit for row operation. For example, x = 1
and x = 0 has different solution set.

(b) Yes. This is Theorem 3.13.

(c) Yes. This is the result of Theorem 3.16.

(d) Yes. This is Theorem 3.14.

(e) No. For example, the system with corresponding augmented matrix
( 0 1 ) has no solution.

(f) Yes. This is Theorem 3.15.

(g) Yes. This is Theorem 3.16.

2. (a) The solution is (4,−3, ,−1).
(b) The solution set is {(9,4,0) + t(−5,−3,1)}.

(c) The solution is (2,3,−2,1).
(d) The solution is (−21,−16,14,−10).
(e) The solution set is {(4,0,1,0) + s(4,1,0,0) + t(1,0,2,1)}.

(f) The solution set is {(−3,3,1,0) + t(1,−2,0,1)}.

(g) The solution set is {(−23,0,7,9,0)+ s(0,2,1,0,0)+ t(−23,0,6,9,1)}.

(h) The solution set is {(−3,−8,0,0,3) + t(1,−2,1,0,0)}.

(i) The solution set is {(2,0,0,−1,0) + s(0,2,1,0,0) + t(1,−1,1,2)}.

(j) The solution set is {(1,0,1,0) + s(−1,1,0,0) + t(1,0,1,2)}.

3. (a) We can check that A′ is also reduced echelon form. So the number of
nonzero rows in A′ is the rank of A. And the number of nonzero rows
in (A′∣b′) is the rank of (A∣b). So if they have different rank there
must contain some nonzero rows (actually only one row) in (A′∣b′)
but not in A′. This means the nonzero row must has nonzero entry in
the last column. Conversely, if some row has its only nonzero entry
in the last column, this row did not attribute the rank of A′. Since
every nonzero row in A′ has its corresponding row in (A′∣b′) also a
nonzero row, we know that two matrix have different rank.

(b) By the previous exercise we know that (A′∣b′) contains a row with
only nonzero entry in the last column is equivalent to that A′ and
(A′∣b′) have different rank. With the help of Theorem 3.11 we get
the desired conclusion.

4. (a) The solution set is {( 4
3
, 1
3
,0,0)+t(1,−1,1,2)}. The basis is {(1,−1,1,2)}.

(b) The solution set is {(1,0,1,0)+s(−1,1,0,0)+ t(1,0,1,2)}. The basis
is {(−1,1,0,0), (1,0,1,2)}.
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(c) It has no solution.

5. Let R be the matrix in reduced echelon form. We know that there is an
invertible matrix C such that CA = R. This means

C
⎛
⎜
⎝

1 0 1
−1 −1 −2
3 1 0

⎞
⎟
⎠
= I.

So we get

C−1 =
⎛
⎜
⎝

1 0 1
−1 −1 −2
3 1 0

⎞
⎟
⎠
.

And hence

A = C−1R =
⎛
⎜
⎝

1 0 2 1 4
−1 −1 3 −2 −7
3 1 1 0 −9

⎞
⎟
⎠
.

6. Let R be the matrix in reduced echelon form. We know that there is an
invertible matrix C such that CA = R. But now we cannot determine
what C is by the given conditions. However we know that the second
column of R is −3 times the first column of R. This means

0 = R

⎛
⎜⎜⎜⎜⎜
⎝

3
1
0
0
0

⎞
⎟⎟⎟⎟⎟
⎠

= CA

⎛
⎜⎜⎜⎜⎜
⎝

3
1
0
0
0

⎞
⎟⎟⎟⎟⎟
⎠

.

Since C is invertible, we know that

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0.

And this means the second column of A is also −3 times the first column
of A. And so the second column of A is (−3,6,3,−9). Similarly we have
that

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−4
0
−3
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0 = A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−5
−2
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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and get the answer that matrix A is

⎛
⎜⎜⎜
⎝

1 −3 −1 1 0 3
−2 6 1 −5 1 −9
−1 3 2 2 −3 2
3 −9 −4 0 2 5

⎞
⎟⎟⎟
⎠
.

7. See Exercise 1.6.8. Note that if we put those vector as row vectors of M
just like what we’ve done in the Exercise 1.6.8, we cannot interchange any
two rows. However we can also construct a matrix the i-th column ui.
And we can do the row operation including interchanging any two rows.
The set of columns containing one pivot2 forms an independent set.

⎛
⎜
⎝

2 1 −8 1 −3
−3 4 12 37 −5
1 −2 −4 −17 8

⎞
⎟
⎠

↝
⎛
⎜
⎝

1 1
2

−4 1
2

− 3
2

0 1 0 7 − 19
11

0 0 0 0 1

⎞
⎟
⎠

So the set {u1, u2, u5} is a basis for R3.

8. Do the same just like what we’ve done in the previous exercise.

⎛
⎜⎜⎜⎜⎜
⎝

2 −6 3 2 −1 0 1 2
−3 9 −2 −8 1 −3 0 −1
4 −12 7 2 2 −18 −2 1
−5 15 −9 −2 1 9 3 −9
2 −6 1 6 −3 12 −2 7

⎞
⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜
⎝

1 −3 3
2

1 − 1
2

0 1
2

1
0 0 1 −2 − 1

5
− 6

5
3
5

4
5

0 0 0 0 1 −4 − 23
21

− 19
21

0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

We know that {u1, u3, u5, u7} is a basis for W .

9. Use the representation of those matrix with some basis (usually take the
standard basis) and do the same thing like previous questions on them.

⎛
⎜⎜⎜
⎝

0 1 2 1 −1
−1 2 1 −2 2
−1 2 1 −2 2
1 3 9 4 −1

⎞
⎟⎟⎟
⎠

2The position who is the first nonzero entry in one nonzero row is called a pivot. For
example, the position 11, 22, 35 are pivots.
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↝
⎛
⎜⎜⎜
⎝

1 −2 −1 2 −2
0 1 2 1 −1
0 0 0 1 −2
0 0 0 0 0

⎞
⎟⎟⎟
⎠

So we know that the subset containing the first, the second, and the fourth
matrix forms a basis for W .

10. (a) It’s easy to check that

0 − 2 + 3 − 1 − 0 + 0 = 0.

So the vector (0,1,1,1,0) is an element in V . Since the set contains
only one nonzero vector, it’s linearly independent.

(b) As usual we can find a basis

β = {(2,1,0,0,0), (−3,0,1,0,0), (1,0,0,1,0), (−2,0,0,0,1)}.

So we know that {(0,1,1,1,0)}∪β can generate the space V . Do the
same thing to this new set and remember to put (0,1,1,1,0) on the
first column in order to keep it as an element when we do Gaussian
elimination.

⎛
⎜⎜⎜⎜⎜
⎝

0 2 −3 1 −2
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜
⎝

1 1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

Now we know that

β′ = {(0,1,1,1,0), (2,1,0,0,0), (−3,0,1,0,0), (−2,0,0,0,1)}

forms a basis for V .

11. (a) Similarly check
1 − 4 + 3 + 0 − 0 = 0.

So the set containing only the vector (1,2,1,0,0) is linearly indepen-
dent by the same reason.

(b) Do the same thing to the set {(1,2,1,0,0)} ∪ β.

⎛
⎜⎜⎜⎜⎜
⎝

1 2 −3 1 −2
2 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠
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↝

⎛
⎜⎜⎜⎜⎜
⎝

1 1
2

0 0 0
0 1 −2 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

Now we know that the set

{(1,2,1,0,0), (2,1,0,0,0), (1,0,0,1,0), (−2,0,0,0,1)}

forms a basis for V .

12. (a) Set v1 = (0,−1,0,1,1,0) and v2 = (1,0,1,1,1,0). Check the two
vectors satisfy the system of linear equation and so they are vectors
in V . To show they are linearly independent, assume that

a(0,−1,0,1,1,0) + b(1,0,1,1,1,0)

= (b,−a, b, a + b, a + b,0) = 0.

This means that a = b = 0 and the set is independent.

(b) Similarly we find a basis

β = {(1,1,1,0,0,0), (−1,1,0,1,0,0)

, (1,−2,0,0,1,0), (−3,−2,0,0,0,1)}

for V as what we do in the Exercise 3.4.4. Still remember that we
should put v1 and v2 on the first and the second column.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 −1 1 −3
−1 0 1 1 −2 −2
0 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 0 0
0 1 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

So the set

{(0,−1,0,1,1,0), (1,0,1,1,1,0), (−1,1,0,1,0,0), (−3,−2,0,0,0,1)}

forms a basis for V .
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13. (a) Set v1 = (1,0,1,1,1,0) and v2 = (0,2,1,1,0,0). Check the two vectors
satisfy the system of linear equation and so they are vectors in V .
To show they are linearly independent, assume that

a(1,0,1,1,1,0) + b(0,2,1,1,0,0)

= (a,2b, a + b, a + b, a,0) = 0.

This means that a = b = 0 and the set is independent.

(b) Take the same basis β as that in the previous exercise and do Gaus-
sian elimination.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 −1 1 −3
0 2 1 1 −2 −2
1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 0
0 1 1 0 −1 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

So the set

{(1,0,1,1,1,0), (0,2,1,1,0,0), (1,1,1,0,0,0), (−3,−2,0,0,0,1)}

forms a basis for V .

14. It’s enough to check that A satisfies the definition of reduced echelon form
on the page 185. For the first condition, a nonzero row in A is a nonzero
row in (A∣b). So it will precede all the zero rows in (A∣b). But there may
be some zero rows in A who are nonzero rows in (A∣b). This kind of rows
will be behind those nonzero row by the third condition for (A∣b). The
second condition for (A∣b) implies the second condition for A. The third
condition for (A∣b) implies the third condition for A.

15. We call a column whose corresponding column in one fixed reduced echelon
form contains a pivot(see Exercise 3.4.7) a pivotal column. Now we induct
on the number of columns of a matrix. For matrix contains only one
column u1, the reduced echelon form of it would be the column e1 if u1
is nonzero (and hence {u1} is independent) and that of it would be the
zero column if u1 is zero (and hence {u1} is dependent). Suppose that
the reduced echelon form of a matrix with k columns is unique. Now
consider a matrix A with k+1 columns, say u1, u2, . . . , uk+1. Let A′ be the
matrix by deleting the final column of A. So we can write A = (A′∣uk+1).
Say (R′∣b) is a reduced echelon form of A. By the previous exercise we
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know that R′ is a reduced echelon form of A′. And R′ is unique by our
induction hypothesis. So the set of pivotal columns P ′ in A′ is also unique.
By Theorem 3.16(c) and Theorem 3.16(d) we know that the set P ′ in A′ is
a maximal independent set of {u1, u2, . . . , uk}. Now if P ′∪{uk} is linearly
independent, this means

rank(A) = rank(A′) + 1,

say the value is r. By Theorem 3.16(a) and Theorem 3.16(b), b is the only
column who can be er and so we know that b = er. On the other hand, if
P ′ ∪ {uk} linearly dependent. The vector uk cannot be a pivotal column
of A since P ′ ∪ {uk} is the set of pivotal column of A and it must be
linearly independent. Futhermore, uk has an unique representation with
respect to the set P ′. By Theorem 3.16(d), the column vector d must be
the representation of uk. By all cases we know that (R′∣b) is also unique.
And by induction we get the desired conclusion.
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Chapter 4

Determinants

4.1 Determinants of Order 2

1. (a) No. We have det(2I2) = 4 but not 2 det(T2).
(b) Yes. Check that

det(a1 + ka2 b1 + kb2
c d

) = (a1d − b1c) + k(a2d − b2c)

= det(a1 b1
c d

) + k det(a2 b2
c d

)

and

det( a b
c1 + kc2 d1 + kd2

) = (ad1 − bc1) + k(ad2 − bc2)

= det( a b
c1 d1

) + k det( a b
c2 d2

)

for every scalar k.

(c) No. A is invertible if and only if det(A) ≠ 0.

(d) No. The value of the area cannot be negative but the value det(u
v
)

could be.

(e) Yes. See Exercise 4.1.12.

2. Use the formula in Definition in page 200.

(a) The determinant is 6 × 4 − (−3) × 2 = 30.

(b) The determinant is −17.

(c) The determinant is −8.

3. (a) The determinant is −10 + 15i.
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(b) The determinant is −8 + 29i.

(c) The determinant is −24.

4. Compute ∣det(u
v
) ∣.

(a) The area is ∣3 × 5 − (−2) × 2∣ = 19.

(b) The area is 10.

(c) The area is 14.

(d) The area is 26.

5. It’s directly from the fact

det(c d
a b

) = cb − da = −(ad − bc) = −det(a b
c d

) .

6. It’s directly from the fact

det(a b
a b

) = ab − ba = 0.

7. It’s directly from the fact

det(a c
b d

) = ad − cb = ad − bc = det(a b
c d

) .

8. It’s directly from the fact

det(a b
0 d

) = ad − b0 = ad.

9. Directly check that

det((a b
c d

)(e f
g h

)) = det(ae + bg af + bh
ce + dg cf + dh)

= (ae+bg)(cf+dh)−(af+bh)(ce+dg) = ad(eh−fg)−bc(eh−fg) = (ad−bc)(eh−fg)

= det(a b
c d

) × det(e f
g h

) .

10. For brevity, we write A = (a b
c d

) for some 2× 2 matrix and C = ( d −c
−b a

)

for the corresponding classical adjoint.
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(a) Directly check that

CA = (ad − bc 0
0 ad − bc)

and

AC = (ad − bc 0
0 ad − bc) .

(b) Calculate that

det(C) = da − (−c)(−b) = ad − bc = det(A).

(c) Since the transpose matrix At is (a c
b d

), the corresponding classical

adjoint would be

( d −b
−c a

) = Ct.

(d) If A is invertible, we have that det(A) ≠ 0 by Theorem 4.2. So we
can write

[det(A)]−1CA = A[det(A)]−1C = I

and get the desired result.

11. By property (ii) we have the fact

δ (1 0
1 0

) = 0 = δ (0 1
0 1

) .

Since by property (i) and (ii) we know

0 = δ (1 1
1 1

) = δ (1 0
1 1

) + δ (0 1
1 1

)

= δ (1 0
1 0

) + δ (1 0
0 1

) + δ (0 1
1 0

) + δ (0 1
0 1

)

δ (1 0
0 1

) + δ (0 1
1 0

) ,

we get that

δ (0 1
1 0

) = −δ (1 0
0 1

) = −1

by property (iii). Finally, by property (i) and (iii) we can deduce the
general formula for δ below.

δ (a b
c d

) = aδ (1 0
c d

) + bδ (0 1
c d

)

88



= acδ (1 0
1 0

) + adδ (0 1
0 1

) + bcδ (0 1
c d

) + bdδ (0 1
c d

)

= ad − bc = det δ (a b
c d

) .

12. A coordinate system {u = (a, b), v = (c, d)} is right-handed means u′ ⋅ v > 0
where the vector u′ = (−b, a) is obtained by rotating the vector u in a
counterclockwise direction through an angle π

2
. With the fact u′ ⋅ v =

ad − bc = det(u
v
) we get the conclusion.

4.2 Determinants of Order n

1. (a) No. See Exercise 4.1.1(a).

(b) Yes. This is Theorem 4.4.

(c) Yes. This is the Corollary after Theorem 4.4.

(d) Yes. This is Theorem 4.5.

(e) No. For example, the determinant of (2 0
0 1

) is 2 but not det(I) = 1.

(f) No. We have that (1 0
2 1

) = 1 ≠ 2 det(I) = 2.

(g) No. For example, the determinant of identity matrix is 1.

(h) Yes. See Exercise 4.2.23.

2. Determinant is linear when we fixed all but one row. So we have that

det
⎛
⎜
⎝

3a1 3a2 3a3
3b1 3b2 3b3
3c1 3c2 3c3

⎞
⎟
⎠
= 3 det

⎛
⎜
⎝

a1 a2 a3
3b1 3b2 3b3
3c1 3c2 3c3

⎞
⎟
⎠

= 9 det
⎛
⎜
⎝

a1 a2 a3
b1 b2 b3
3c1 3c2 3c3

⎞
⎟
⎠
= 27 det

⎛
⎜
⎝

a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞
⎟
⎠
.

Hene we know that k = 27.

3. We can add − 5
7

times of the third row the the second row without changing
the value of determinant and do the same as the previous exercise and get
the conclusion that k = 2 × 3 × 7 = 42.

4. See the following process.

det
⎛
⎜
⎝

b1 + c1 b2 + c2 b3 + c3
a1 + c1 a2 + c2 a3 + c3
a1 + b1 a2 + b2 a3 + b3

⎞
⎟
⎠
= −det

⎛
⎜
⎝

−(b1 + c1) −(b2 + c2) −(b3 + c3)
a1 + c1 a2 + c2 a3 + c3
a1 + b1 a2 + b2 a3 + b3

⎞
⎟
⎠
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= −2 det
⎛
⎜
⎝

a1 a2 a3
a1 + c1 a2 + c2 a3 + c3
a1 + b1 a2 + b2 a3 + b3

⎞
⎟
⎠
= −2 det

⎛
⎜
⎝

a1 a2 a3
c1 c2 c3
b1 b2 b3

⎞
⎟
⎠

= 2 det
⎛
⎜
⎝

a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞
⎟
⎠

The first equality comes from adding one time the second row and one
time the third row to the first column and the second equality comes from
adding −1 time the first row to the second and the third row. Finally we
interchange the second and the third row and multiply the determinant
by −1. Hence k would be 2.

5. The determinant should be −12 by following processes.

det
⎛
⎜
⎝

0 1 2
−1 0 −3
2 3 0

⎞
⎟
⎠

= 0 det(0 −3
3 0

) − 1 det(−1 −3
2 0

) + 2 det(−1 0
2 3

)

= 0 × 9 − 1 × 6 + 2 × (−3) = −12

6. The determinant should be −13.

7. The determinant should be −12.

8. The determinant should be −13.

9. The determinant should be 22.

10. The determinant should be 4 + 2i.

11. The determinant should be −3.

12. The determinant should be 154.

13. The determinant should be −8.

14. The determinant should be −168.

15. The determinant should be 0.

16. The determinant should be 36.

17. The determinant should be −49.

18. The determinant should be 10.

19. The determinant should be −28 − i.
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20. The determinant should be 17 − 3i.

21. The determinant should be 95.

22. The determinant should be −100.

23. Use induction on n, the size of the matrix. For n = 1, every 1×1 matrix is
upper triangular and we have the fact det (a) = a. Assuming the statement
of this exercise holds for n = k, consider any (n+1)×(n+1) upper triangular
matrix A. We can expand A along the first row with the formula

det(A) =
n+1

∑
j=1

(−1)1+jA1j det(Ã1j).

And the matrix Ã1j , j ≠ 1, contains one zero collumn and hence has rank
less than n + 1. By the Corollary after Theorem 4.6 those matrix has
determinant 0. However, we have the matrix Ã11 is upper triangular and
by induction hypothesis we have

det(Ã11) =
n+1

∏
i=2

Aii.

So we know the original formula would be

det(A) = A11 det(Ã11) =
n+1

∏
i=1

Aii.

24. Let z be the zero row vector. Thus we have that

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
a2
⋮

ar−1
z

ar+1
⋮
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
a2
⋮

ar−1
0z
ar+1
⋮
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
a2
⋮

ar−1
z

ar+1
⋮
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

25. Applies Theorem 4.3 to each row. Thus we have hat

det

⎛
⎜⎜⎜
⎝

ka1
ka2
⋮

kan

⎞
⎟⎟⎟
⎠
= k det

⎛
⎜⎜⎜
⎝

a1
ka2
⋮

kan

⎞
⎟⎟⎟
⎠
= ⋯ = kn det

⎛
⎜⎜⎜
⎝

a1
a2
⋮
an

⎞
⎟⎟⎟
⎠
.

26. By the previous exercise the equality holds only when n is even or F has
characteristic 2.
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27. If A has two identical columns, then the matrix A is not full-rank. By
Corollary after Theorem 4.6 we know the determinant of A should be 0.

28. The matrix E1 can be obtained from I by interchanging two rows. So
by Theorem 4.5 the determinant should be −1. The matrix E2 is upper
triangular. By Exercise 4.2.23 the determinant should be c, the scalar by
whom some row was multiplied. The matrix E3 has determinant 1 by
Theorem 4.6.

29. The elementary matrix of type 1 and type 2 is symmetric. So the statement
holds naturally. Let E be the elementary matrix of type 3 of adding k times
of the i-th row to the j-th row. We know that Et is also an elementary
matrix of type 3. By the previous exercise we know that this kind of
matrix must have determinant 1.

30. We can interchange the i-th row and the (n + 1 − i)-th row for all i =
1,2, . . . ⌊n

2
⌋1. Each process contribute −1 one time. So we have that

det(B) = (−1)⌊
n
2 ⌋ det(A).

4.3 Properties of Determinants

1. (a) No. The elementary of type 2 has determinant other than 1.

(b) Yes. This is Theorem 4.7.

(c) No. A matrix is invertible if and only if its determinant is not zero.

(d) Yes. The fact that n × n matrix A has rank n is equivalent to the
fact that A is invertible and the fact that det(A) ≠ 0.

(e) No. We have that det(At) = det(A) by Theorem 4.8.

(f) Yes. This is the instant result of Theorem 4.4 and Theorem 4.8.

(g) No. It still require the condition that the determinant cannot be
zero.

(h) No. The matrix Mk is the matrix obtained from A by replacing
column k of A by b.

2. Since we have the condition det(a11 a12
a21 a22

) = a11a22 − a12a21 ≠ 0, we can

1The symbol ⌊x⌋ means the greatest integer m such that m ≤ x.
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use Cramer’s rule and get the answer.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 =
det

⎛
⎜
⎝

b1 a12
b2 a22

⎞
⎟
⎠

det
⎛
⎜
⎝

a11 a12
a21 a22

⎞
⎟
⎠

= b1a22−a12b2
a11a22−a12a21

,

x2 =
det

⎛
⎜
⎝

a11 b1
a21 b2

⎞
⎟
⎠

det
⎛
⎜
⎝

a11 a12
a21 a22

⎞
⎟
⎠

= a11b1−b2a21
a11a22−a12a21

.

3. The answer is (x1, x2, x3) = (4,−3,0).

4. The answer is (x1, x2, x3) = (−1,− 6
5
,− 7

5
).

5. The answer is (x1, x2, x3) = (−20,−48,−8).

6. The answer is (x1, x2, x3) = (−43,−109,−17).

7. The answer is (x1, x2, x3) = (42,110,18).

8. By Theorem 4.8 we know that det(At) = det(A). So we can write Theorem
4.3 into column version by “The determinant of an n×n matrix is a lineaer
function of each column when the remaining columns are held fixed.”.

9. By Exercise 4.2.23, the determinant of an upper triangular matrix is the
product of its diagonal entries. So it’s invertible if and only if all its
diagonal entries are nonzero.

10. If M is nilpotent, we say Mk = O for some positive integer k. So we have

0 = det(O) = det(Mk) = (det(M))k.

This means that det(M) must be zero.

11. By Exercise 4.2.25 we have det(−M) = (−1)n det(M). By Theorem 4.8
we have det(M t) = det(M). So the conclusion is that

(−1)n det(M) = det(M).

If n is odd, we can conclude that det(M) = 0 and hence M is not in-
vertible2. If n is even, we cannot say anything. For example, the matrix

(0 1
1 0

) is invertible while the matrix 2×2 zero matrix O2 is not invertible.

12. This is an instant result by

1 = det(I) = det(QQt) = det(Q)det(Qt) = det(Q)2.
2It should be remarked that “−a = a implies a = 0” holds only when the field has charater-

istic other thant 2. In this question the field C has characteristic zero
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13. (a) For the case n = 1 we have

det(M̄) = M̄11 = ¯det(M)

. By induction, suppose that det(M̄) = ¯det(M) for M is a k × k
matrix. For a (n + 1) × (n + 1) matrix M , we have

det(M̄) =∑ j = 1n(−1)i+jM̄1j det( ˜̄Mij)

=∑ j = 1n(−1)i+jM̄1j det( ¯̃Mij) = ¯det(M).

(b) This is an instant result by

1 = ∣det(I)∣ = ∣det(QQ∗)∣ = ∣det(Q)∣∣det(Q∗)∣ = ∣det(Q)∣2.

14. The set β is a basis if and only if β is an independent set of n elements.
So this is equivalent to the set of columns of B is independent and hence
B has rank n. And all of them are equivalent to that B is invertible and
hence det(B) ≠ 0.

15. Two matrix A and B are similar means A = C−1BC. So we get the
conclusion

det(A) = det(C−1BC) = det(C−1)det(B)det(C) = det(B).

16. Since the fact
1 = det(I) = det(A)det(B)

implies det(A) and det(B) cannot be zero, we know A is invertible.

17. By Exercise 4.2.25 we have

det(AB) = (−1)n det(A)det(B).

This means det(A) and det(B) cannot be invertible simultaneously. So A
or B is not invertible.

18. For the first case, let A be a matrix of type 2 meaning multiplying the
i-th row by a scalar c. We have det(A) = c by Exercise 4.2.28. And since
determinant is linear function of the i-th row when other rows are held
fixed, we have

det(AB) = cdet(B) = det(A)det(B).

For the second case, let A be a matrix of type 3 meaning adding c times
the i-row to the j-th row. We have det(A) = 1 by Exercise 4.2.28. And
since determinant will not change when we adding some times the i-row
to the j-th row, we have

det(AB) = det(B) = det(A)det(B).
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19. Since the transpose of a lower triangular matrix is an upper triangular
matrix, we have that the determinant of a lower triangular matrix is the
product of all its diagonal entries.

20. We can expand the matrix by the n-th row and then by (n − 1)-th row
inductively. So we have that det(M) = det(A). Similarly, if we expand
the matrix below by the first row and the second row inductively, we get
the identity

det( I B
O D

) = det(D).

21. First, if C is not invertible, the set of row vectors of C is not independent.
This means the set of row vectors (O C) is also not independent. So it’s
impossible that M has n independent rows and hence it’s impossible that
M is invertible. The conclusion is that if C is not invertible, we have

det(A)det(C) = det(A)0 = 0 = det(M).

Second, if C is invertible, we have the identity

( I O
O C−1)(A B

O C
) = (A B

O I
) .

So we get the identity

det(C−1)det(M) = det(A)

and hence
det(M) = det(A)det(C).

22. (a) We have that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T (1) = 1e1 + 1e2 +⋯ + 1en+1
T (x) = c0e1 + c1e2 +⋯ + cnen+1
⋮ = ⋮

T (xn) = cn0 e1 + cn1 e2 +⋯ + cnnen+1,

where {e1, e2, . . . , en+1} is the standard basis for Fn+1. So we get the
desired conclusion.

(b) By Exercise 2.4.22 T is isomorphism and hence invertible. So the
matrix M is also invertible and hence det(M) ≠ 0.

(c) We induction on n. For n = 1, we have det(1 c0
1 c1

) = (c1 − c0).

Suppose the statement of this question holds for n = k − 1, consider
the case for n = k. To continue the proof, we remark a fomula first
below.

xk − yk = (x − y)(xk−1 + xk−2y +⋯ + yk−1)
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For brevity we write

p(x, y, k) = xk−1 + xk−2y +⋯ + yk−1.

Now to use the induction hypothesis we can add −1 time the first
row to all other rows without changing the determinant.

det

⎛
⎜⎜⎜
⎝

1 c0 c20 ⋯ cn0
1 c1 c21 ⋯ cn1
⋮ ⋮ ⋮ ⋮
1 cn c2n ⋯ cnn

⎞
⎟⎟⎟
⎠

= det

⎛
⎜⎜⎜
⎝

1 c0 c20 ⋯ cn0
0 c1 − c0 (c1 − c0)p(c1, c0,2) ⋯ (c1 − c0)p(c1, c0, n)
⋮ ⋮ ⋮ ⋮
0 cn − c0 (cn − c0)p(cn, c0,2) ⋯ (cn − c0)p(cn, c0, n)

⎞
⎟⎟⎟
⎠

=
n

∏
j=1

(cj − c0)det
⎛
⎜
⎝

1 p(c1, c0,2) ⋯ p(c1, c0, n)
⋮ ⋮ ⋮
1 p(cn, c0,2) ⋯ p(cn, c0, n)

⎞
⎟
⎠

Now we write ei = (ci1, ci2, . . . , cin)t for i = 0,1, . . . n − 1. So the de-
terminant of the last matrix in the equality above can be written
as

det (e0 e1 + c0e0 e2 + c0e1 + c20e1 ⋯ en−1 + c0en−2 +⋯ + cn−10 e0)

= det (e0 e1 e2 + c0e1 ⋯ en−1 + c0en−2 +⋯)

= det (e0 e1 e2 ⋯ en−1 + c0en−2 +⋯)

= ⋯ = det (e0 e1 e2 ⋯ en−1) .

And by induction hypothesis, the value of it would be

∏
1≤i≤j≤n

(cj − ci).

Combine two equalities above we get the desired conclusion.

23. (a) We prove that rank(A) ≥ k first. If rank(A) = n, then the matrix A
has nonzero determinant and hence the interger k should be n. Now
if rank(A) = r < n, we prove by contradiction. If k >rank(A), we can
find a k × k submatrix B such that the determinant of it is not zero.
This means the set

S = {v1, v2, . . . vk}

of columns of B is independent. Now consider the k × n submatrix
C of A obtained by deleting those rows who were deleted when we
construct B. So S is a subset of the set of columns of C. This means

k ≥ rank(C) ≤ min{n, k} = k
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and hence rank(C) = k. So this also means that the set of the k rows
of C independent. And thus the matrix A contains k independent
rows and hence rank(A) ≥ k, a contradiction.

Conversely, we construct a r×r submatrix of A, where r is rank(A), to
deduce that rank(A) ≤ k. Since rank of A is r, we have r independent
rows, say u1, u2, . . . , ur. Let D be the r × n submatrix such that the
i-th row of D is ui. Since the set of rows of D is independent, we
have that

r ≤ D ≤ min{r, n} = r
and hence rank(D) = r. Similarly we have w1,w2, . . . ,wr to be the
r independent columns of D. And si-similarly we can construct a
r × r matrix E such that the i-th column of E is wi. Since E is a
r × r matrix with r independent rows, we have rank(E) = r. This
complete the proof.

(b) See the second part of the previous exercise.

24. We use induction to claim that

det(A + tI) = tn +
0

∑
i=n−1

ait
i.

For n = 1, it’s easy to see that det(A + tI) = t + a0. Suppose that the
statement holds for n = k − 1, consider the case for n = k. We can expand
the matrix and get

det

⎛
⎜⎜⎜⎜⎜
⎝

t 0 0 ⋯ 0 a0
−1 t 0 ⋯ 0 a1
0 −1 t ⋯ 0 a2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ −1 ak−1 + t

⎞
⎟⎟⎟⎟⎟
⎠

= tdet

⎛
⎜⎜⎜
⎝

t 0 ⋯ 0 a1
−1 t ⋯ 0 a2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ −1 ak−1

⎞
⎟⎟⎟
⎠
+ (−1)1+ka0 det

⎛
⎜⎜⎜
⎝

−1 t ⋯ 0
0 t ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ t

⎞
⎟⎟⎟
⎠

= t(tk−1 +
0

∑
i=k−2

ai+1t
i) + (−1)1+ka0(−1)k−1

= tn +
0

∑
i=n−1

ait
i.

25. (a) Just expand along the k-th column.

(b) It’s better not to use a great theorem, such as Cramer’s rule, to kill a
small problem. We check each entry one by one. First, we have that

n

∑
k=1

Ajkcjk = det(A)
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and so the j-th entry of the left term is det(A). Second, for i ≠ j, we
construct a matrix Bi by replacing the j-th row of A by the i-th row
of A. Since Bi has two identity rows, we have that det(Bi) = 0 for
all i ≠ j. Now we can calculate that

n

∑
k=1

Aikcjk =
n

∑
k=1

Bjkcjk = det(B) = 0,

for all i ≠ j. So we get the desired conclusion.

(c) Actually this matrix C is the classical adjoint of matrix A defined
after this exercise. And this question is an instant result since

AC = A
⎛
⎜⎜⎜
⎝

c11 c21 ⋯ cn1
c12 c22 ⋯ cn2
⋮ ⋮ ⋮
c1n c2n ⋯ cnn

⎞
⎟⎟⎟
⎠

= A
⎛
⎜⎜⎜
⎝

det(A) 0 ⋯ 0
0 det(A) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ det(A)

⎞
⎟⎟⎟
⎠

by the previous exercise.

(d) If det(A) ≠ 0, then we know A is invertible. So we have

A−1 = A−1A[det(A)]−1C = [det(A)]−1C.

26. (a) We have that

c11 = (−1)2 det((̃A)11) = A22,

c12 = (−1)3 det((̃A)12) = −A21,

c21 = (−1)3 det((̃A)21) = −A12,

c22 = (−1)4 det((̃A)22) = A11.

So the adjoint of matrix A is

( A22 −A12

−A21 A11
) .

(b) The adjoint of that matrix is

⎛
⎜
⎝

16 0 0
0 16 0
0 0 16

⎞
⎟
⎠
.
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(c) The adjoint of that matrix is

⎛
⎜
⎝

10 0 0
0 −20 0
0 0 −8

⎞
⎟
⎠
.

(d) The adjoint of that matrix is

⎛
⎜
⎝

20 −30 20
0 15 −24
0 0 12

⎞
⎟
⎠
.

(e) The adjoint of that matrix is

⎛
⎜
⎝

−3i 0 0
4 −1 + i 0

10 + 16i −5 − 3i 3 + 3i

⎞
⎟
⎠
.

(f) The adjoint of that matrix is

⎛
⎜
⎝

6 22 12
12 −2 24
21 −38 −27

⎞
⎟
⎠
.

(g) The adjoint of that matrix is

⎛
⎜
⎝

18 28 −6
−20 −21 37
48 14 −16

⎞
⎟
⎠
.

(h) The adjoint of that matrix is

⎛
⎜
⎝

−i −8 + i −1 + 2i
1 − 5i 9 − 6i −3i
−1 + i −3 3 − i

⎞
⎟
⎠
.

27. (a) If A is not invertible, we have AC = [det(C)]I = O. It’s impossible
that C is invertible otherwise A = C−1O = O. But the adjoint of the
zero matrix O is also the zero matrix O, which is not invertible. So
we know that in this case C is not invertible and hence det(C) = 0 =
[det(A)]n−1. Next, if A is invertible, we have, by Exercise 4.3.25(c)
that

det(A)det(C) = det([det(A)]I) = [det(A)]n

So we know that
det(C) = [det(A)]n−1

since det(A) ≠ 0.
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(b) This is because

det(Ãtij) = det(Ãtji) = det(Ã).

(c) If A is an invertible upper triangular matrix, we claim that cij = 0
for all i, j with i > j. For every i, j with i > j, we know that

cij = (−1)i+j det(Ãij).

But Ãij is an upper triangular matrix with at least one zero diagonal
entry if i > j. Since determinant of an upper triangular matrix is the
product of all its diagonal entries. We know that for i > j we have
det(Ãij) = 0 and hence cij = 0. With this we know that the adjoint
of A is also a upper triangular matrix.

28. (a) For brevity, we write

v(y(t)) = (y(t), y′(t),⋯, y(n)(t))t

and
vi(t) = (y(t), y′(t),⋯, y(n)(t))t.

Since the defferential operator is linear, we have

v((x + cy)(t)) = v(x(t)) + cv(y(t)).

Now we have that

[T (x + cy)](t) = det (v((x + cy)(t)) v1(t) v2(t) ⋯ vn(t))

= det (v(x(t)) + cv(y(t)) v1(t) v2(t) ⋯ vn(t))

= [T (x)](t) + c[T (y)](t)

since determinant is a linear function of the first column when all
other columns are held fixed.

(b) Since N(T ) is a space, it enough to say that yi ∈ N(T ) for all i. But
this is easy since

[T (y)](t) = det(vi(t), v1(t), . . . , vn(t)) = 0.

The determinant is zero since the matrix has two identity columns.

4.4 Summary—Important Facts about Determi-
nants

1. With the help of Theorem 4.8 the statement in row version or column
version is equivalent. So we won’t mention it again and again.
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(a) Yes. It’s Exercise 4.3.8.

(b) Ur...No! It’s wise to check whether there are any two identity rows
or two identity columns first. How do we know what is wise?

(c) Yes. See the Corollary after Theorem 4.4.

(d) No. The determinant should be multiplied by −1.

(e) No. The scalar cannot be zero.

(f) Yes. Watch Theorem 4.6.

(g) Yes. This is Exercise 4.2.23.

(h) No. Read Theorem 4.8.

(i) Yes. Peruse Theorem 4.7.

(j) Yes. Glance the Corollary after Theorem 4.7.

(k) Yes. Gaze the Corollary after Theorem 4.7.

2. (a) The determinant is 22.

(b) The determinant is −29.

(c) The determinant is 2 − 4i.

(d) The determinant is 30i.

3. (a) The determinant should be −12.

(b) The determinant should be −13.

(c) The determinant should be −12.

(d) The determinant should be −13.

(e) The determinant should be 22.

(f) The determinant should be 4 + 2i.

(g) The determinant should be −3.

(h) The determinant should be 154.

4. (a) The determinant should be 0.

(b) The determinant should be 36.

(c) The determinant should be −49.

(d) The determinant should be 10.

(e) The determinant should be −28 − i.
(f) The determinant should be 17 − 3i.

(g) The determinant should be 95.

(h) The determinant should be −100.

5. See Exercise 4.3.20. Remember to write it down clearly one more time.
The given proof there is simplistic.

6. Ur...look Exercise 4.3.21.
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4.5 A Characterization of the Determinant

1. (a) No. For example, we have det(2I) ≠ 2 det(I) when I is the 2 × 2
identity matrix.

(b) Yes. This is Theorem 4.3.

(c) Yes. This is Theorem 4.10.

(d) No. Usually it should be δ(B) = −δ(A).
(e) No. Both the determinant and the zero function, δ(A) = 0, are n-

linear function.

(f) Yes. Let v1, u1, u2, . . . , un are row vectors and c are scalar. We have

δ

⎛
⎜⎜⎜
⎝

u1 + cv1
u2
⋮
un

⎞
⎟⎟⎟
⎠
= 0 = 0 + c ⋅ 0 = δ

⎛
⎜⎜⎜
⎝

u1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ cδ

⎛
⎜⎜⎜
⎝

v1
u2
⋮
un

⎞
⎟⎟⎟
⎠
.

The cases for other rows are similar.

2. A 1-linear function is actually a linear function. We can deduce that

δ (x) = xδ (1) = ax,

where a is defined by (1). So all the functions must be in the form δ (x) =
ax.

3. It’s not a 3-linear function. We have that

δ
⎛
⎜
⎝

2 0 0
0 1 0
0 0 1

⎞
⎟
⎠
= k ≠= 2δ(I3) = 2k.

4. It’s not a 3-linear function. We have that

δ
⎛
⎜
⎝

2 0 0
0 1 0
0 0 1

⎞
⎟
⎠
= 1 ≠= 2δ(I3) = 2.

5. It’s a 3-linear function. We have that when the second and the third rows
are held fixed, the function would be

δ
⎛
⎜
⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟
⎠
= (A11,A12,A13) ⋅ (A23A32,0,0),

a inner product function. So δ is linear for the first row. Similarly we can
write

δ
⎛
⎜
⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟
⎠
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= (A21,A22,A23) ⋅ (0,0,A11A32) = (A31,A32,A33) ⋅ (0,A11A23,0).
So δ is a 3 linear function.

6. It’s not a 3-linear function. We have that

δ
⎛
⎜
⎝

2 0 0
0 1 0
0 0 1

⎞
⎟
⎠
= 4 ≠= 2δ(I3) = 6.

7. It’s a 3 linear function. We could write

δ
⎛
⎜
⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟
⎠
= (A11,A12,A13) ⋅ (A21A32,0,0)

= (A21,A22,A23) ⋅ (A11A32,0,0) = (A31,A32,A33) ⋅ (0,A11A21,0)
and get the result.

8. It’s not a 3-linear function. We have that

δ
⎛
⎜
⎝

1 0 0
0 2 0
1 1 0

⎞
⎟
⎠
= 1 ≠= 2δ

⎛
⎜
⎝

1 0 0
0 1 0
1 1 0

⎞
⎟
⎠
= 2.

9. It’s not a 3-linear function. We have that

δ
⎛
⎜
⎝

2 0 0
0 1 0
0 0 1

⎞
⎟
⎠
= 4 ≠= 2δ(I3) = 2.

10. It’s a 3 linear function. We could write

δ
⎛
⎜
⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟
⎠
= (A11,A12,A13) ⋅ (A22A33 −A + 21A32,0,0)

= (A21,A22,A23)⋅(−A11A32,A11A33,0) = (A31,A32,A33)⋅(0,A11A21,A11A22)
and get the result.

11. Corollary 2. Since δ is n-linear, we must have δ(A) = 0 if A contains one
zero row. Now if M has rank less than n, we know that the n row
vectors of M are dependent, say u1, u2, . . . , un. So we can find some
vector ui who is a linear combination of other vectors. We write

ui =∑ j ≠ iajuj .

By Corollary 1 after Theorem 4.10 we can add −aj times the j-th
row to the i-th row without changing the value of δ. Let M ′ be the
matrix obtained from M by doing this processes. We know M ′ has
one zero row, the i-th row, and hence δ(Mδ(M ′) = 0.
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Corollary 3 We can obtain E1 from I by interchanging two rows. By
Theorem 4.10(a) we know that δ(E1) = −δ(I). Similarly we can
obtain E2 from I by multiplying one row by a scalar k. Since δ is
n-linear we know that δ(E2) = kδ(I). Finally, we can obtain E3 by
adding k times the i-th row to the j-th row. By Corollary 1 after
Theorem 4.10 we know that δ(E3) = δ(I).

12. If A is not full-rank, we have that AB will be not full-rank. By Corollary
3 after Theorem 4.10 we have

δ(AB) = 0 = δ(A)δ(B).

If A is full-rank and so invertible, we can write A = Es⋯E2E1 as product
of elementary matrices. Assuming the fact, which we will prove later, that

δ(EM) = δ(E)δ(M)

for all elementary matrix E and all matrix M holds, we would have done
since

δ(AB) = δ(Es⋯E2E1B) = δ(Es)δ(Ek−1⋯E2E1B)

= ⋯ = δ(Es)⋯δ(E2)δ(E1)δ(B)

= δ(Es⋯E2E1)δ(B) = δ(A)δ(B).

So now we prove the fact. First, if E is the elementary matrix of type
1 meaning interchangine the i-th and the j-th rows, we have EM is the
matrix obtained from M by interchanging the i-th and the j-th rows. By
Theorem 4.10(a) we know that

δ(EM) = −δ(M) = −δ(I)δ(M) = δ(E)δ(M).

Second, if E is the elementary matrix of type 2 meaning multiplying the
i-th row by a scalar k, we have EM is the matrix obtained from M by
multiplying the i-th row by scalar k. Since the function δ is n-linear, we
have

δ(EM) = kδ(M) = kδ(I)δ(M) = δ(E)δ(M).

Finally, if E is the elementary matrix of type 3 meaning adding k times
the i-th row to the j-th row, we have EM is the matrix obtained from
M by adding k times the i-th row to the j-th row. By Corollary 1 after
Theorem 4.10, we have

δ(EM) = δ(M) = δ(I)δ(M) = δ(E)δ(M).

This complete the proof.

13. Since the fact det(At) = det(A) and det is a 2-linear function, the result
is natural.
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14. We could write

δ (A11 A12

A21 A22
) = (A11,A12) ⋅ (A22a +A21b,A22c +A21d)

= (A21,A22) ⋅ (A11b +A12d,A11a +A12c)

and get the desired result since inner product function is linear.

For the converse, fixed one n-linear function δ and let

a = δ (1 0
0 1

) , b = δ (1 0
1 0

) ,

c = δ (0 1
0 1

) , d = δ (0 1
1 0

) .

Now we must have

δ (A11 A12

A21 A22
) = A11δ (

1 0
A21 A22

) +A12δ (
0 1
A21 A22

)

= A11(A21δ (
1 0
1 0

) +A22δ (
1 0
0 1

)) +A12(A21δ (
0 1
1 0

) +A22δ (
0 1
0 1

))

= A11A22a +A11A21b +A12A22c +A12A21d.

15. Wait

16. Fixed an alternating n-linear function δ. Let k be the value of δ(I). We
want to chaim that

δ(M) = k det(M).

First we know that if M has rank less than n, then δ(M) = 0 = det(M)
by Corollary 2 after Theorem 4.10. So the identity holds. Second if M is
full-rank, we can write M = Es⋯E2E1I as product of elementary matrices
and identity matrix I. And it’s lucky now I can copy and paste the text
in Exercise 4.5.12.

This time we will claim that

δ(EA) = det(E)δ(A)

for all elementary matrix E and all matrix A. First, if E is the elementary
matrix of type 1 meaning interchangine the i-th and the j-th rows, we have
EM is the matrix obtained from A by interchanging the i-th and the j-th
rows. By Theorem 4.10(a) we know that

δ(EM) = −δ(A) = det(E)δ(A).

Second, if E is the elementary matrix of type 2 meaning multiplying the
i-th row by a scalar k, we have EM is the matrix obtained from M by
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multiplying the i-th row by scalar k. Since the function δ is n-linear, we
have

δ(EM) = kδ(A) = det(E)δ(A).
Finally, if E is the elementary matrix of type 3 meaning adding k times
the i-th row to the j-th row, we have EM is the matrix obtained from
M by adding k times the i-th row to the j-th row. By Corollary 1 after
Theorem 4.10, we have

δ(EM) = δ(A) = det(E)δ(A).

This complete the proof since

δ(M) = δ(Es⋯E2E1I) = det(Es)⋯det(E2)det(E1)δ(I)

= k det(Es)⋯det(E2)det(E1) = k det(M).

17. Recall the definition

(δ1 + δ2)(A) = δ1(A) + δ2(A)

and
(kδ)(A) = kδ(A)

. For brevity, we write δ′ for δ1 + δ2 and δ′′ for kδ. Now prove that both
δ′ and δ′′ is n-linear. Check that

δ′
⎛
⎜⎜⎜
⎝

u1 + cv1
u2
⋮
un

⎞
⎟⎟⎟
⎠
= δ1

⎛
⎜⎜⎜
⎝

u1 + cv1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ δ2

⎛
⎜⎜⎜
⎝

u1 + cv1
u2
⋮
un

⎞
⎟⎟⎟
⎠

= δ1
⎛
⎜⎜⎜
⎝

u1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ cδ1

⎛
⎜⎜⎜
⎝

v1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ δ2

⎛
⎜⎜⎜
⎝

u1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ δ2

⎛
⎜⎜⎜
⎝

v1
u2
⋮
un

⎞
⎟⎟⎟
⎠

= δ′
⎛
⎜⎜⎜
⎝

u1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ cδ′

⎛
⎜⎜⎜
⎝

v1
u2
⋮
un

⎞
⎟⎟⎟
⎠
.

Also check that

δ′′
⎛
⎜⎜⎜
⎝

u1 + cv1
u2
⋮
un

⎞
⎟⎟⎟
⎠
= kδ

⎛
⎜⎜⎜
⎝

u1 + cv1
u2
⋮
un

⎞
⎟⎟⎟
⎠

= kδ
⎛
⎜⎜⎜
⎝

u1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ ckδ

⎛
⎜⎜⎜
⎝

v1
u2
⋮
un

⎞
⎟⎟⎟
⎠
= δ′′

⎛
⎜⎜⎜
⎝

u1
u2
⋮
un

⎞
⎟⎟⎟
⎠
+ cδ′′

⎛
⎜⎜⎜
⎝

v1
u2
⋮
un

⎞
⎟⎟⎟
⎠
.
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So both δ′ and δ′′ is linear function for the first row when other rows are
held fixed. For the cases on other rows are similar.

18. Let the zero element be the zero n-linear function, δ(A) = 0. Thus it can
be checked that all the properties of vector space hold by the properties
of field.

19. If M has two identical rows, then the matrix M ′ obtained from M by
interchanging the two rows would be the same. So we have

δ(M) = δ(M ′) = −δ(M).

When F does not have characteristic two, the equality above means δ(M) =
0.

20. Let δ be the 2-linear function in Exercise 4.5.15 with a = b = c = d = 1.
Thus we have that

δ (a b
c d

) = ac + ad + bc + bd = δ (c d
a b

) = −δ (c d
a b

) .

The final equality holds since F has characteristic two. But now we have

δ (1 0
1 0

) = 1 ≠ 0.
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Chapter 5

Diagonalization

5.1 Eigenvalues and Eigenvectors

1. (a) No. For example, the identity mapping I2 has two eigenvalues 1, 1.

(b) Yes. If we have (A − λI)v = 0, we also have

(A − λI)(cv) = c(A − λI)v = 0

for all c ∈ R. Note that this skill will make the statement false when
the field is finite.

(c) Yes. For example, the matrix (0 −1
1 0

) means the rotation through

the angle π
2

. And the matrix has no real eigenvalue and hence no
real eigenvector.

(d) No. See definition.

(e) No. For the matrix I2, the vectors (1,0) and (2,0) are all eigenvectors
but they are parallel.

(f) No. The matrix ( 1 0
−1 0

) has only two eigenvalues 1 and −1. But the

sum 0 is not an eigenvalue of the same matrix.

(g) No. Let P be the space of all polynomial and T be the identity
mapping from P to P . Thus we know 1 is an eigenvalue of T .

(h) Yes. That a matrix A is similar to a diagonal matrix D means there is
some invertible matrix P such that P −1AP =D. Since P is invertible,
P = [I]βα for some basis α ,where β is the standard basis for Fn. So
the first statement is equivalent to that A is diagonalizable. And the
desired result comes from Theorem 5.1.

(i) Yes. If A and B are similar, there is some invertible matrix P such
that P −1AP = B. If Av = λv, we have

B(P −1v) = λP −1v.
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And if Bv = λv, we have A(Pv) = Pv.

(j) No. It usually false. For example, the matrices (1 1
0 2

) and (2 0
1 1

)

are similar since

(0 1
1 0

)(1 1
0 2

)(0 1
1 0

) = (2 0
1 1

) .

But the eigenvector (1,0) of the first matrix is not a eigenvector of
the second matrix.

(k) No. The vectors (1,0) and (0,1) are eigenvectors of the matrix

( 1 0
−1 0

). But the sum of them (1,1) is not an eigenvector of the

same matrix.

2. Compute [T ]β as what we did in previous chapters. If that matrix is
diagonal, then β is a basis consisting of eigenvectors.

(a) No. [T ]β = ( 0 2
−1 0

).

(b) Yes. [T ]β = (−2 0
0 −3

).

(c) Yes. [T ]β =
⎛
⎜
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠

.

(d) No.
⎛
⎜
⎝

0 0 3
0 −2 0
−4 0 0

⎞
⎟
⎠

.

(e) No. [T ]β =
⎛
⎜⎜⎜
⎝

−1 1 0 0
0 −1 1 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

.

(f) Yes.

⎛
⎜⎜⎜
⎝

−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.

3. Calculate the characteristic polynomial of A and find the zeroes of it to
solve (i). Find the nonzero vector v such that (A − λI)v = 0 to solve (ii).
For (iii) and (iv) just follow the direction given by the textbook.

(a) The characteristic polynomial is t2 − 3t − 4 and the zeroes of it are 4
and −1. For eigenvalue 4, we may solve (A-4I)x=0. There are infinite
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solutions. Just pick one from them, say (2,3). Similarly we can find
the eigenvector corresponding to −1 is (1,−1). Pick

β = {(2,3), (1,−1)}

and

Q = [I]αβ = (2 1
3 −1

) ,

where α is the standard basis for R2. Then we know that

D = Q−1AQ = (4 0
0 −1

) .

(b) The characteristic polynomial is − (t − 3) (t − 2) (t − 1) with 3 zeroes
1, 2, and 3. The corresponding eigenvectors are (1,1,−1), (1,−1,0),
and (1,0,−1). The set of these three vectors are the desired basis.
And we also have

Q =
⎛
⎜
⎝

1 1 1
1 −1 0
−1 0 −1

⎞
⎟
⎠

and

D = Q−1AQ =
⎛
⎜
⎝

1 0 0
0 2 0
0 0 3

⎞
⎟
⎠
.

(c) The characteristic polynomial is (t − 1) (t + 1) with two zeroes −1 and
1. The corresponding eigenvectors are (1,−i−1) and (1,−i+1). The
set of these two vectors are the desired basis. And we also have

Q = ( 1 1
−i − 1 −i + 1

)

and

D = Q−1AQ = (−1 0
0 1

) .

(d) The characteristic polynomial is −(t − 1)2 t with zeroes 0, 1, and 1.
The corresponding eigenvectors are (1,4,2), (1,0,1), and (0,1,0).
The set of these three vectors are the desired basis. And we also
have

Q =
⎛
⎜
⎝

1 1 0
4 0 1
2 1 0

⎞
⎟
⎠

and

D = Q−1AQ =
⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.
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4. Follow the process of the previous exercise.

(a) β = {(3,5), (1,2)} and [T ]β = (3 0
0 4

).

(b) β = {(2,0,−1), (1,2,0), (1,−1,−1)} and [T ]β =
⎛
⎜
⎝

2 0 0
0 −1 0
0 0 1

⎞
⎟
⎠

.

(c) β = {(1,−2,−2), (2,0,−1), (0,2,1)} and [T ]β =
⎛
⎜
⎝

2 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠

.

(d) β = {2x + 3, x + 2} and [T ]β = (−3 0
0 −2

).

(e) β = {x − 3,4x2 − 13x − 3, x + 1} and [T ]β =
⎛
⎜
⎝

0 0 0
0 2 0
0 0 4

⎞
⎟
⎠

.

(f) β = {x3 − 8, x2 − 4, x − 2, x} and [T ]β =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

⎞
⎟⎟⎟
⎠

.

(g) β = {(1, x − 1,3x2 − 2,2x3 + 6x − 7} and [T ]β =
⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

⎞
⎟⎟⎟
⎠

.

(h) β = {(1 0
0 −1

) ,(1 0
0 1

) ,(0 1
0 0

) ,(0 0
1 0

)} and [T ]β =
⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.

(i) β = {( 1 0
−1 0

) ,(0 1
0 −1

) ,(1 0
1 0

) ,(0 1
0 1

)} and [T ]β =
⎛
⎜⎜⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.

(j) β = {(1 0
0 1

) ,( 0 1
−1 0

) ,(1 0
0 −1

) ,(0 1
1 0

)} and [T ]β =
⎛
⎜⎜⎜
⎝

5 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.

5. By definition, that v is an eigenvector of T corresponding to λ means
Tv = λv and v ≠ 0. Hence we get

Tv − λv = (T − λI)v = 0

and v ∈ N(T − λI). Conversely, if v ≠ 0 and v ∈ N(T − λI), we have
Tv = λv. It’s the definition of eigenvector.
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6. We know that
Tv = λv

is equivalent to
[T ]β[v]β = λ[v]β .

7. (a) We have that
[T ]β = [I]βγ [T ]γ[I]γβ

and
([I]βγ)−1 = [I]γβ .

So we know that

det([T ]β) = det([I]βγ)det([T ]γ)det([I]γβ) = det([T ]γ).

(b) It’s the instant result from Theorem 2.18 and the Corollary after
Theorem 4.7.

(c) Pick any ordered basis β and we have

det(T −1) = det([T −1]β) = det(([T ]β)−1) = det([T ]β)−1 = det(T )−1.

The second and the third equality come from Theorem 2.18 and the
Corollary after Theorem 4.7.

(d) By definition,

det(TU) = det([TU]β) = det([T ]β[U]β)

= det([T ]β)det([U]β) = det(T )det(U).

(e) We have

det(T − λIV ) = det([T − λI]β) = det([T ]β − λ[I]β) = det([T ]β − λI).

8. (a) By previous exercises, we have that T is invertible if and only if
det(T ) ≠ 0. And the fact det(T ) ≠ 0 is equivalent to the fact N(T −
0I) = {0}, which is equivalent to that zero is not an eigenvalue of T
by Theorem 5.4.

(b) Since T = (T −1)−1, it’s enough to prove only one side of the statement.
If λ an eigenvalue with eigenvector v, we have Tv = λv and so T −1v =
λ−1v. This means λ−1 is an eigenvalue of T −1.

(c) (a) A matrix M is invertible if and only if 0 is not an eigenvalue of
M .

(b) Let M be an invertible matrix. We have λ is an eigenvalue of
M if and only if λ−1 is an eigenvalue of M−1.

First, if M is invertible, then there’s no vector v such that Mv = 0v =
0. So 0 is not an eigenvalue of M . If 0 is not an eigenvalue of M ,
then v = 0 is the only vector sucht that Mv = 0. This means that M
is injective and so invertible since M is square. Second, it’s enough
to prove one side of that statement since M = (M−1)−1. And if we
have Mv = λv, then we have M−1v = λ−1v.
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9. This is directly because the determinant of an upper triangular matrix is
the product of it’s diagonal entries.

10. (a) What did the author want to ask? Just calculate it!

(b) Just calculate it and get the answer (λ−t)n, where n is the dimension
of V .

(c) We already have that for any ordered basis β, [λIV ]β = λI, a diagonal
matrix. So it’s diagonalizable. By the previous exercise we also have
that the only eigenvalue is the zero of the characteristic polynomial,
λ.

11. (a) It’s just because
A = B−1λIB = λI

for some invertible matrix B.

(b) Let M be the matrix mentioned in this question and λ be that only
eigenvalue of M . We have that the basis to make M diagonalizable
if consisting of vectors vi such that (M − λI)vi = 0. This means
(M − λI)v = 0 for every v since {vi} forms a basis. So M must be
λI.

(c) It’s easy to see that 1 is the only eigenvalue of the matrix. But since
nullity of

(1 1
0 1

) − (1 0
0 1

) = (0 1
0 0

)

is one, we can’t find a set of two vector consisting of eigenvectors
such that the set is independent. By Theorem 5.1, the matrix is not
diagonalizable.

12. (a) Use the fact if A = P −1BP , then

det(A − λI) = det(P −1(A − λI)P )

= det(P −1AP − λP −1IP ) = det(B − λI).

(b) Use the result of the previous exercise and the fact that each matrix
representation of one linear operator is pairwisely similar to each
other.

13. (a) Since the diagram is commutative, we know that

T (v) = φ−1β (T (φβ(v))) = φ−1β (λφβ(v)) = λv.

(b) One part of this statement has been proven in the previous exercise.
If φ−1β (y) is an eigenvector of T corresponding to λ, we have

Ay = φβ(T (φ−1β (y))) = φβ(λφβ(y)) = λy.
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14. Use the fact

det(A − λI) = det((A − λI)t) = det(At − λI).

15. (a) If we have T (v) = λv for some v, then we also have that

Tm(v) = Tm−1(λv) = λTm−1(v) = ⋯ = λmv.

(b) You can just replace the character T by the character A.

16. (a) Just as the Hint, we have

tr(P −1AP ) = tr(PP −1A) = tr(A).

(b) We may define the trace of a linear operator on a finite-dimensional
vector space to be the trace of its matrix representation. It’s well-
defined due to the previous exercise.

17. (a) If T (A) = At = λA for some λ and some nonzero matrix A, say
Aij ≠ 0, we have

Aij = λAji
and

Aji = λAij
and so

Aij = λ2Aij .

This means that λ can only be 1 or −1. And these two values are
eigenvalues due to the existence of symmetric matrices and skew-
symmetric matrices.

(b) The set of nonzero symmetric matrices are the eigenvectors corre-
sponding to eigenvalue 1, while the set of nonzero skew-symmetric
matrices are the eigenvectors corresponding to eigenvalue −1.

(c) It could be {(1 0
0 1

) ,(0 1
0 0

) ,(0 0
1 0

) ,(1 0
0 −1

)}.

(d) Let Eij be the matrix with its ij-entry 1 and all other entries 0. Then
the basis could be

{Eii}i=1,2,...,n ∪ {Eij +Eji}i>j ∪ {Eij −Eji}i>j .

18. (a) If B is invertible, we have B−1 exists and det(B) ≠ 0. Now we know
that

det(A + cB) = det(B)det(B−1A + cI),

a nonzero polynomial of c. It has only finite zeroes, so we can always
find some c sucht that the determinant is nonzero.
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(b) Since we know that

det(1 1
c 1 + c) = 1,

take A = (1 1
0 1

) and B = (0 0
1 1

).

19. Say A = P −1BP . Pick V = Fn, T = LA, and β be the standard basis. We
can also pick γ such that P = [I]βγ . That is, γ is the set of the column
vectors of P .

20. From the equation given in the question, it’s easy that f(0) = a0. And by
definition, we also know that f(t) = det(A − tI) and so f(0) = det(A). So
A is invertible if and only if a0 = det(A) ≠ 0.

21. (a) We should use one fact that if B is a matrix with number of nonzero
entries less than or equal to k, then we have det(A − tB) is a poly-
nomial of t with degree less than or equal to k. To prove this, we
induct on both k and the size of matrix n. If k = 0, we know that B
is a zero matrix and det(A − tB) is constant. For n = 1, it’s easy to
see that degree of det(A − tB) is equal to 1, which will be less than
or equal to k if k ≥ 1. Suppose the hypothesis holds for n = k−1. For
the case n = k, we may expand the determinant along the first row.
That is,

det(A − tB) =
n

∑
j=1

(−1)1+j(A − tB)1j det( ˜A − tB1j).

If the first row of B is all zero, then det( ˜A − tB1j) is a polynomial
with degree less than or equal to k and (A − tB)1j contains no t

for all j. If the first row of B is not all zero, then det( ˜A − tB1j)
is a polynomial with degree less than or equal to k − 1 and each
(A − tB)1j contains t with degree at most 1. In both case, we get
that det(A− tB) is a polynomial with degree less than or equal to k.

Now we may induct on n to prove the original statement. For n = 1,
we have f(t) = A11 − t. For n = 2, we have f(t) = (A11 − t)(A22 − t)−
A12A21. Suppose the hypothesis is true for n = k − 1. For the case
n = k, we expand the determinant along the first row. That is,

det(A − tI) = (A11 − t)det((̃A − tI)11) +
k

∑
j=2

(−1)i+j det((̃A − tI)1j .

By the induction hypothesis, we know that

det((̃A − tI)11) = (A22 − t)(A33 − t)⋯(Akk − t) + p(t),

where p(t) is a polynomial with degree less than or equal to k − 3,
and

(−1)i+j det((̃A − tI)1j
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is a polynomial with degree less than or equal to k−2. So it becomes

(A11−t)(A22−t)⋯(Ann−t)+(A11−t)p(t)+
n

∑
j=2

(−1)i+j det((̃A − tI)1j ,

in which the summation of the second term and the third term is a
polynomial with degree less than or equal to n − 1.

(b) By the previous exercise, we know that the coefficient of tn−1 comes
from only the first term

(A11 − t)(A22 − t)⋯(Ann − t)

and it would be
(−1)n−1∑Aii = tr(A).

22. (a) Use the notation x and λ that in this question. In Exercise 5.1.15(a)
we already have

Tm(x) = λmx.

And it’s also easy to see that if Ax = λ1x and Bx = λ2x, we’ll have

(A +B)x = λ1 + λ2.

So we get the desired result.

(b) Shit! It’s not funny! Just change T into A.

(c) Just calculate that

g(A) = (14 10
15 19

)

and

g(A)(2
3
) = 29(2

3
) .

Also check that λ = 4 and g(4) = 29.

23. If T is diagonalizable, there is a basis β consisting of eigenvectors. By the
previouse exercise, we know that if T (x) = λx,

f(T )(v) = f(λ)v = 0v = 0.

This means that for each v ∈ β, we have f(T )(v) = 0. Since β is a basis,
f(T ) = T0.

24. (a) The coefficient of tn comes from the first term of that equality in
Exercise 5.1.21(a). So it’s (−1)n.

(b) A polynomial of degree n has at most n zeroes.

25. Where is the Corollaries?

116



26. By Exercise 5.1.20 and Exercise 5.1.21(b) and Theorem 5.3(b), we know
the characteristic polynomial must be

t2 − tr(A)t + det(A).

And the coefficient could be 0 or 1. So there are 4 possible characteristic
polynomials. By checking that all of them are achievable, we get the
answer are 4.

5.2 Diagonalizability

1. (a) No. The matrix

⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠

has only two distinct eigenvalues but it’s diagonalizable.

(b) No. The vectors (1
0
) and (2

0
) are both the eigenvectors of the matrix

(1 0
0 0

) corresponding the same eigenvalue 1.

(c) No. The zero vector is not.

(d) Yes. If x ∈ Eλ1 ∩ Eλ2 , we have λ1x = Ax = λ2x. It’s possible only
when x = 0.

(e) Yes. By the hypothesis, we know A is diagonalizable. Say A =
P −1DP for some invertible matrix P and some diagonal matrix D.
Thus we know that

Q−1AQ = (PQ)−1D(PQ).

(f) No. It need one more condition that the characteristic polynomial

spilts. For example, the matrix (2 1
3 2

) has no real eigenvalue.

(g) Yes. Since it’s a diagonalizable operator on nonzero vector space, it’s
characteristic polynomial spilts with degree greater than or equal to
1. So it has at least one zero.

(h) Yes. Because we have

Wi ∪∑
i≠k

Wk = {0}

and

∑
i≠k

Wk = {0} ⊃Wj

for all j ≠ i, we get the desired answer.
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(i) No. For example, take W1 = span{(1,0)}, W2 = span{(0,1)}, and
W3 = span{(1,1)}.

2. For these question, see the direction of the subsection “Test for Diagonal-
ization”.

(a) It’s not diagonalizable since dim(E1) is 1 but not 2.

(b) It’s diagonalizable with D = (−2 0
0 4

) and Q = ( 1 1
−1 1

).

(c) It’s diagonalizable with D = (−2 0
0 5

) and Q = ( 4 1
−3 1

).

(d) It’s diagonalizable with D =
⎛
⎜
⎝

3 0 0
0 3 0
0 0 −1

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 0 2
1 0 4
0 1 3

⎞
⎟
⎠

.

(e) It’s not diagonalizable since its characteristic polynomial does not
split.

(f) It’s not diagonalizable since dim(E1) is 1 but not 2.

(g) It’s diagonalizable with D =
⎛
⎜
⎝

4 0 0
0 2 0
0 0 2

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 1 0
2 0 1
−1 −1 −1

⎞
⎟
⎠

.

3. For these question, we may choose arbitrary matrix representation, usually
use the standard basis, and do the same as what we did in the previous
exercises. So here we’ll have [T ]β =D and the set of column vectors of Q
is the ordered basis β.

(a) It’s not diagonalizable since dim(E0) is 1 but not 4.

(b) It’s diagonalizable with D =
⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 1 0
0 0 1
−1 1 0

⎞
⎟
⎠

.

(c) It’s not diagonalizable since its characteristic polynomial does not
split.

(d) It’s diagonalizable with D =
⎛
⎜
⎝

1 0 0
0 2 0
0 0 0

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 1 1
1 1 −1
−1 0 0

⎞
⎟
⎠

.

(e) It’s diagonalizable with D = (1 − i 0
0 i + 1

) and Q = ( 1 1
−1 1

).

(f) It’s diagonalizable withD =
⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

andQ =
⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 1 0
−1 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.

4. It’s not funny again. Replace the character T by the character A in that
prove.
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5. It’s not funny again and again. Replace the character T by the character
A in that prove.

6. (a) An operator T is diagonalizable ensure that its characteristic poly-
nomial splits by Theorem 5.6. And in this situation Theorem 5.9(a)
ensure that the multiplicity of each eigenvalue meets the dimension
of the corresponding eigenspace. Conversly, if the characteristic poly-
nomial splits and the multiplicity meets the dimension, then the op-
erator will be diagonalizable by Theorem 5.9(a).

(b) Replace T by A again.

7. Diagonalize the matrix A by Q−1AQ = D with D = (5 0
0 −1

) and Q =

(1 2
1 −1

). So we know that

An = QDnQ−1 = Q(5n 0
0 (−1)n)Q

−1.

8. We know that dim(Eλ2) ≥ 1. So pick a nonzero vector v ∈ Eλ2 . Also pick a
basis β for Eλ2 . Then α = β ∪{v} forms a basis consisting of eigenvectors.
It’s a basis because the cardinality is n and the help of Theorem 5.8.

9. (a) Because the characteristic polynomial of T is independent of the
choice of β, we know that the characteristic polynomial

f(t) = det([T ]β − tI) =
n

∏
i=1

(([T ]β)ii − t)

splits, where the second equality holds since it’s a upper triangular
matrix.

(b) The characteristic polynomial of a matrix is also the same for all
matrices which is similar to the original matrix.

10. This is because the equality in Exercise 5.2.9(a). That is, if [T ]β is an
upper triangular matrix, it’s diagonal entries are the set of zeroes of the
characteristic polynomial.

11. (a) Since eigenvalues are the zeroes of the characteristic polynomial, we
may write the characteristic polynomial f(t) as

(λ1 − t)m1(λ2 − t)m2⋯(λk − t)mk .

Calculate the coefficient of tn−1 and use the fact in Exercise 5.1.21(b).
Thus we could get the desired conclusion.

(b) Use the equality in the previous exercise and calculate the coefficient
of the constant term. Compare it to the Exercise 5.1.20.
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12. (a) Let Eλ be the eigenspace of T corresponding to λ and Eλ−1 be the
eigenspace of T −1 corresponding to λ−1. We want to prove the two
spaces are the same. If v ∈ Eλ, we have T (v) = λv and so v = λT −1(v).
This means T −1(v) = λ−1v and v ∈ Eλ−1 . Conversely, if v ∈ Eλ−1 , we
have T −1(v) = λ−1v and so v = λ−1T (v). This means T (v) = λv and
v ∈ Eλ.

(b) By the result of the previous exercise, if T is diagonalizable and
invertible, the basis consisting of eigenvectors of T will also be the
basis consisting of eigenvectors of T −1.

13. (a) For matrix A = (1 0
1 0

), corresponding to the same eigenvalue 0 we

have E0 = span{(0,1)} is the eigenspace forA while E0 = span{(1,−1)}
is the eigenspace for At.

(b) Observe that

dim(Eλ) = null(A − λI) = null((A − λI)t)

= null(At − λI) = dim(E′
λ).

(c) If A is diagonalizable, then its characteristic polynomial splits and
the multiplicity meets the dimension of the corresponding eigenspace.
Since A and At has the same characteristic polynomial, the charac-
teristic polynomial of At also splits. And by the precious exercise we
know that the multiplicity meets the dimension of the corresponding
eigenspace in the case of At.

14. (a) Let v = (x, y) and v′ = (x′, y′) and A = (1 1
3 −1

). We may write the

system of equation as Av = v′. We may also diagonalize the matrix

A by Q−1AQ = D with D = (−2 0
0 2

) and Q = ( 1 1
−3 1

). This means

D(Q−1v) = (Q−1v)′. So we know that

Q−1v = (c1e
−2t

c2e
2t )

and

v = Q(c1e
−2t

c2e
2t ) ,

where ci is some scalar for all i.

(b) Calculate D = (3 0
0 −2

) and Q = ( 2 1
−1 −1

). So we have

v = Q( c1e
3t

c2e
−2t) ,

where ci is some scalar for all i.
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(c) Calculate D =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 2

⎞
⎟
⎠

and Q =
⎛
⎜
⎝

1 0 1
0 1 1
0 0 1

⎞
⎟
⎠

. So we have

v = Q
⎛
⎜
⎝

c1e
t

c2e
t

c3e
2t

⎞
⎟
⎠
,

where ci is some scalar for all i.

15. Following the step of the previous exercise, we may pick a matrix Q whose
column vectors consist of eigenvectors and Q is invertible. Let D be the
diagonal matrix Q−1AQ. And we also know that finally we’ll have the
solution x = Qu for some vector u whose i-th entry is cie

λ if the i-th
column of Q is an eigenvector corresponding to λ. By denoting D̄ to be
the diagonal matrix with D̄ii = eDii , we may write x = QD̄y. where the
i-th entry of y is ci. So the solution must be of the form described in the
exercise.

For the second statement, we should know first that the set

{eλ1t, eλ2t, . . . eλkt}

are linearly independent in the space of real functions. Since Q invertible,
we know that the solution set

{QD̄y ∶ y ∈ Rn}

is an n-dimensional real vector space.

16. Directly calculate that

(CY )′ij = (
n

∑
k=1

CikYkj)′

=
n

∑
k=1

CikY
′
kj = CY ′.

17. (a) We may pick one basis α such that both [T ]α and [U]α are diagonal.
Let Q = [I]βα. And we will find out that

[T ]α = Q−1[T ]βQ

and
[U]α = Q−1[U]βQ.

(b) Let Q be the invertible matrix who makes A and B simultaneously
diagonalizable. Say β be the basis consisting of the column vectors
of Q. And let α be the standard basis. Now we know that

[T ]β = [I]βα[T ]α[I]αβ = Q−1AQ

and
[U]β = [I]βα[U]α[I]αβ = Q−1BQ.
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18. (a) Let β be the basis makes T and U simultaneously diagonalizable. We
know that each pair of diagonal matrices commute. So we have

[T ]β[U]β = [U]β[T ]β .

And this means T and U commute.

(b) Let Q be the invertible matrix who makes A and B simultaneously
diagonalizable. Thus we have

(Q−1AQ)(Q−1BQ) = (Q−1BQ)(Q−1AQ).

And this means that A and B commute since Q is invertible.

19. They have the same eigenvectors by Exercise 5.1.15.

20. Since we can check that

W1 ⊕W2 ⊕W3 = (W1 ⊕W2)⊕W3,

if V is direct sum of W1,W2, . . .Wk, the dimension of V would be the sum
of the dimension of each Wi by using Exercise 1.6.29(a) inductively.

Conversely, we first prove that if we have

k

∑
i=1

Wi = V,

then we must have

dim(V ) ≤
k

∑
i=1

dim(Wi).

We induct on k. For k = 2, we may use the formula in Exercise 1.6.29(a).
Suppose it holds for k =m. We know that

(
m−1

∑
i=1

Wi) +Wm =
m

∑
i=1

Wi

and

dim(
m

∑
i=1

Wi) ≤ dim(
m−1

∑
i=1

Wi) + dim(Wm) ≤
m

∑
i=1

dim(Wi)

by induction hypothesis and the case for k = 2.

To prove the original statement, suppoe, by contradiction, that

W1 ∩∑ i = 2kWi

has nonzero element. By the formula in Exercise 1.6.29(a) we know that

dim(∑ i = 2kWi) > dim(V ) − dim(W1) =
k

∑
i=2

dim(Wi).

This is impossible, so we get the desired result.

122



21. Because β is a basis, we have

k

∑
i=1

span(βi) = V.

Second, since the dimension of span(βi) is the number of element of βi,
we know that the equality in the previous exercise about dimension holds.
So V is the direct sum of them.

22. By the definition of the left hand side, it is the sum of each eigenspaces.
Let W = ∑ki=2Eλi . If there is some nonzero vector v1 in Eλ1 ∩W . We may
write

v1 + c2v2 + c3v3 +⋯ + ckvk = 0

for some scalar ci and some eigenvectors vi ∈ Eλi . Now we know that

0 = T (0) = λ1v1 + c2λ2v2 + c3λ3v3 +⋯ + ckλkvk = 0.

After substracting this equality by λ1 times the previous equality, we get

c2(λ2 − λ1)v2 +⋯ + ck(λk − λ1)vk = 0.

This is impossible since λi−λ1 is nonzero for all i and ci cannot be all zero.
Similarly we know that Eλi has no common element other than zero with
the summation of other eigenspaces. So the left hand side is the direct
sum of each eigenspaces.

23. It’s enough to check whether K1 has common nonzero element with the
summation of others or not. Thus we can do similarly for the other cases.
Let V1 be the summation of K2,K3, . . . ,Kp. Now, if there is some nonzero
vector x ∈ K1(V1 ∩W2), we may assume that x = u + v with u ∈ V1 and
v ∈ W2. Since W1 is the direct sum of all Ki’s, we know K1 ∩ V1 = {0}.
So x − u = v ≠ 0 is an element in both W1 and W2, a contradiction. Thus
we’ve completed the proof.

5.3 Matrix Limits and Markov Chains

1. (a) Yes. This is the result of Theorem 5.12.

(b) Yes. This is the result of Theorem 5.13.

(c) No. It still need the condition that each entry is nonnegative.

(d) No. It’s the sum of each column. The matrix (1 1
0 0

) is a counterex-

ample.

(e) Yes. See the Corollary after Theorem 5.15, although there’s no proof.

(f) Yes. See the Corollary 1 after Theorem 5.16.

(g) Yes. Look Theorem 5.17.
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(h) No. The matrix (0 1
1 0

) has eigenvector (1,−1) corresponding the

eigenvalue −1.

(i) No. The matrix A = (0 1
1 0

) has the property that A2 = I. So the

sequence would be A, I,A, I, . . ., which does not converge.

(j) Yes. This is Theorem 5.20.

2. Diagonalize those matrices and use the fact of the Corollary after Theorem
5.12. Actually the eigenvalue will not tend to zero if and only if the
eigenvalue is 1.

(a) The limit is the zero matrix.

(b) The limit is (−0.5 0.5
−1.5 1.5

).

(c) The limit is (
7
13

7
13

6
13

6
13

).

(d) The limit is the zero matrix.

(e) The limit does not exist.

(f) The limit is (3 −1
6 −2

).

(g) The limit is
⎛
⎜
⎝

−1 0 −1
−4 1 −2
2 0 2

⎞
⎟
⎠

.

(h) The limit is
⎛
⎜
⎝

−2 −3 −1
0 0 0
6 9 3

⎞
⎟
⎠

.

(i) The limit does not exist.

(j) The limit does not exist.

3. We know that

lim
m→∞

(Am)tij = lim
m→∞

(Am)ji = Lji = Ltij .

4. If A is diagonalizable, we may say that Q−1AQ = D for some invertible
matrix Q and for some diagonal matrix D whose diagonal entries are eigen-
values. So limm→∞Dm exist only when all its eigenvalues are numbers in
S, which was defined in the paragraphs before Theorem 5.13. If all the
eigenvalues are 1, then the limit L would be In. If some eigenvalue λ ≠ 1,
then its absolute value must be less than 1 and the limit of λm would
shrink to zero. This means that L has rank less than n.
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5. First we see three special matrices,

P = (1 1
0 0

) ,Q = (1 0
1 0

) ,R = (1 0
0 0

) .

The limit of power of these three matrices is themselves respectly, because
they has the property that their square are themselves. However, we know
that

1√
2
P ⋅ 1√

2
P = R.

So we pick A = 1
√
2
P , B = 1

√
2
Q, and C = R. Thus we have the limit of

power of A and B are the zero matrix. And the limit of power of C is C
itself.

6. Let x, y, z, and w denote the percentage of the healthy, ambulatory,
bedridden, and dead patients. And we know that

⎛
⎜⎜⎜
⎝

x
y
z
w

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
0.3
0.7
0

⎞
⎟⎟⎟
⎠

and the percentage of each type would be described by the vector

⎛
⎜⎜⎜
⎝

1 0.6 0.1 0
0 0.2 0.2 0
0 0.2 0.5 0
0 0 0.2 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0
0.3
0.7
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0.25
0.2
0.41
0.14

⎞
⎟⎟⎟
⎠

in the same order. So this answer the first question. For the second
question we should calculate the limit of power of that transition matrix,
say A. It would be

L = lim
m→∞

Am =
⎛
⎜⎜⎜
⎝

1 8
9

5
9

0
0 0 0 0
0 0 0 0
0 1

9
4
9

1

⎞
⎟⎟⎟
⎠
.

So the limit of percentage of each type would be described by the vector

L

⎛
⎜⎜⎜
⎝

0
0.3
0.7
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

59
90
0
0
31
90

⎞
⎟⎟⎟
⎠
.

7. Using the language of the stochastic matrix, we direct write the stochastic
matrix to be

A =
⎛
⎜⎜⎜
⎝

1 1
3

0 0
0 0 1

3
0

0 2
3

0 0
0 0 2

3
1

⎞
⎟⎟⎟
⎠
.

125



I don’t think there is too much difference between the process of diag-
onalizing and finding the eigenvectors. It’s much easier to observe the
sequence

e2,Ae2,A
2e2, . . . ,

which is
⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1
3
0
2
3
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1
3
2
9
0
4
9

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

11
27
0
4
27
4
9

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

11
27
4
81
0
44
81

⎞
⎟⎟⎟
⎠
, . . .

And find the limit of the first entry to be

1

3
+ 2

3
⋅ 1

9
+ 2

3
⋅ 2

9
⋅ 1

9
+ 2

3
⋅ (2

9
)2 ⋅ 1

9
+⋯

1

3
+

2
3
⋅ 1
9

1 − 2
9

= 3

7
.

So the answer is 3
7
.

8. There’s no better method to check whether the matrix is regular or not.
So just try it or find the evidence that the power of it will not be a positive
matrix. When the matrix is nonnegative, we may just consider the matrix
obtained by replacing each nonzero entry by 1.

(a) Yes. The square of it is positive.

(b) Yes. It’s positive when the power is 4.

(c) No. The second and the third column always interchange each time.

(d) No. The second column does not change each time.

(e) No. The second and the third columns do not change.

(f) No. The first column does not change.

(g) No. The third and the fourth columns do not change.

(h) No. The third and the fourth columns do not change.

9. Use the same method as that in Exercise 5.3.2. Or we may use the result
of 5.20 for the case of regular matrix.

(a) The limit is
⎛
⎜
⎝

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎞
⎟
⎠

.

(b) The limit is
⎛
⎜
⎝

1
2

1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

⎞
⎟
⎠

.

(c) The limit does not exist since the second and the third columns
interchange each time.
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(d) The limit is
⎛
⎜
⎝

0 0 0
1 1 1
0 0 0

⎞
⎟
⎠

.

(e) The limit is
⎛
⎜
⎝

0 0 0
1
2

1 0
1
2

0 1

⎞
⎟
⎠

.

(f) The limit is
⎛
⎜
⎝

1 0 0
0 2

5
2
5

0 3
5

3
5

⎞
⎟
⎠

.

(g) The limit is

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
1
2

1
2

1 0
1
2

1
2

0 1

⎞
⎟⎟⎟
⎠

.

(h) The limit is

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
1
2

1
2

1 0
1
2

1
2

0 1

⎞
⎟⎟⎟
⎠

.

10. To calculate the vector after two stage, we could only multiply the matrix
twice and multiply the vectors. To calculate the limit matrix we could
just find the eigenvector corresponding to eigenvalue 1 and use Theorem
5.20.

(a) The two-stage vectors and the fixed vectors are

⎛
⎜
⎝

0.225
0.441
0.334

⎞
⎟
⎠
,
⎛
⎜
⎝

0.2
0.6
0.2

⎞
⎟
⎠

respectly.

(b) The two-stage vectors and the fixed vectors are

⎛
⎜
⎝

0.375
0.375
0.25

⎞
⎟
⎠
,
⎛
⎜
⎝

0.4
0.4
0.2

⎞
⎟
⎠

respectly.

(c) The two-stage vectors and the fixed vectors are

⎛
⎜
⎝

0.372
0.225
0.403

⎞
⎟
⎠
,
⎛
⎜
⎝

0.5
0.2
0.3

⎞
⎟
⎠

respectly.
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(d) The two-stage vectors and the fixed vectors are

⎛
⎜
⎝

0.252
0.334
0.414

⎞
⎟
⎠
,
⎛
⎜
⎝

0.25
0.35
0.4

⎞
⎟
⎠

respectly.

(e) The two-stage vectors and the fixed vectors are

⎛
⎜
⎝

0.329
0.334
0.337

⎞
⎟
⎠
,
⎛
⎜
⎝

1
3
1
3
1
3

⎞
⎟
⎠

respectly.

(f) The two-stage vectors and the fixed vectors are

⎛
⎜
⎝

0.316
0.428
0.256

⎞
⎟
⎠
,
⎛
⎜
⎝

0.25
0.5
0.25

⎞
⎟
⎠

respectly.

11. The matrix would be

A =
⎛
⎜
⎝

0.7 0.2 0
0.1 0.6 0.2
0.2 0.2 0.8

⎞
⎟
⎠
.

So the vector in 1950 would be

A
⎛
⎜
⎝

0.1
0.5
0.4

⎞
⎟
⎠
=
⎛
⎜
⎝

0.197
0.339
0.464

⎞
⎟
⎠
.

Since it’s regular, we may just find the fixed vector

⎛
⎜
⎝

0.2
0.3
0.5

⎞
⎟
⎠
.

12. Considering the three states, new, once used, and twice used, the matrix
is

A =
⎛
⎜
⎝

1
3

1
3

1
2
3

0 0
0 2

3
0

⎞
⎟
⎠
.

It is regular. So we can just find the fixed vector

⎛
⎜
⎝

9
19
6
19
4
19

⎞
⎟
⎠
.
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13. Considering the three states, large, intermediate-sized, and small car own-
ers, the matrix is

⎛
⎜
⎝

0.7 0.1 0
0.3 0.7 0.1
0 0.2 0.9

⎞
⎟
⎠

and the initial vector is

P =
⎛
⎜
⎝

0.4
0.2
0.4

⎞
⎟
⎠
.

So the vector in 1995 would be

A2P =
⎛
⎜
⎝

0.24
0.34
0.42

⎞
⎟
⎠
.

And the matrix A is regular. So we may just find the fixed vector

⎛
⎜
⎝

0.1
0.3
0.6

⎞
⎟
⎠
.

14. We prove it by induction on m. When m = 1, the formula meet the matrix
A. Suppose the formula holds for the case m = k − 1. Then the case m = k
would be

Ak = Ak−1A =
⎛
⎜
⎝

rk−1 rk rk
rk rk−1 rk
rk rk rk−1

⎞
⎟
⎠
A

=
⎛
⎜
⎝

rk
rk−1+rk

2
rk−1+rk

2
rk−1+rk

2
rk

rk−1+rk
2

rk−1+rk
2

rk−1+rk
2

rk

⎞
⎟
⎠
.

After check that

rk−1 + rk
2

= 1

3
⋅
1 + (−1)k

2k−2
+ 1 + (−1)k

2k−1

2
= 1

3
[1 + (−1)k

2k
] = rk+1

we get the desired result. To deduce the second equality, just replace Am

by the right hand side in the formula.

15. Let v be that nonnegative vector and say d is the sum of all its entries.
Thus we have x = 1

d
v is a probability vector. Furthermore, if y is a

probability vector in W . They must be parallel, say y = kx. The sum of
entries of y is k by the fact that x is a probability vector. And the sum of
entries of y is 1 since itself is a probability vector. This means k = 1. So
the vector is unique.
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16. If A is a (not necessarily square) matrix with row vectors A1,A2, . . . ,Ar,
we have the fact

Atu = At1 +At2 +⋯ +Atr.

This vector equal to u if and only if the sum of entries is 1 for every column
of A. Use this fact we’ve done the proof of Theorem 5.15.

For the Corollary after it, if M is a transition matrix, we have

(Mk)tu = (M t)ku = (M t)k−1u = ⋯ = u.

And if v is probability vector,

(Mv)tu = vtM tu = vtu = (1) .

By Theorem 5.15 we get the conclusion.

17. For the first Corollary, we may apply Theorem 5.18 to the matrix At since
we have the fact that A and At have the same characteristic polynomial.
Thus we know that λ = ν(A). Also, the dimension of eigenspace of At

corresponding to λ is 1. But Exercise 5.2.13 tell us that At and A has the
same dimension of the corresponding eigenspaces.

For the second Corollary, we know that ν(A) = 1. So if λ ≠ 1 then we
have ∣λ∣ < 1 by Theorem 5.18 and its first Corollary. And the eigenspace
corresponding 1 has dimension one by the first Corollary.

18. By Theorem 5.19, all eigenvalues lies in S, which was defined in the para-
graphs before Theorem 5.13. Thus the limit exist by Theorem 5.14.

19. (a) First we check that

(cM + (1 − c)N)tu = cM tu + (1 − c)N tu = cu + (1 − c)u = u.

Thus the new matrix is a transition matrix by the Corollary after
Theorem 5.15. So it’s enough to show that the new matrix is regular.
Now suppose that Mk is positive. Then we know that (cM + (1 −
c)N)k is the sum of ckMk and some lower order terms, which are
nonnegative. So we know that it’s a positive matrix and so the new
matrix is regular.

(b) Pick a scalar d such that each entry of dM ′ is larger than that of M .
Then we may pick c = 1

d
and

N = 1

1 − c
(M ′ − cM)

and know that N is nonnegative. Finally we may check that

N tu = 1

1 − c
(M ′tu − cM tu) = 1

1 − c
⋅ (1 − c)u = u.

So N is also a transition matrix by the Corollary after Theorem 5.15.
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(c) By symmetry, it’s enough to prove only the one side of that state-
ment. Also, by (b) we could write

M ′ = cM + (1 − c)N

for some scalar c and some transition matrix N . Now, if M is regular,
then M ′ is also regular by (a).

20. Use the notation of the Definition, when A = O we can observe that Bm
is equal to I for all m. So eO would be I. For the case A = I, we have
Am = I for all m. So the matrix eI = eI. That is, a matrix with all its
entries e.

21. We set

Bm = I +A + A
2

2!
+⋯ + A

m

m!

and

Em = I +D + D
2

2!
+⋯ + A

m

m!
.

We may observe that Bm = PEmP −1 for all m. So by the definition of
exponential of matrix and Theorem 5.12, we have

eA = lim
m→∞

Bm = lim
m→∞

(PEmP −1) = P ( lim
m→∞

Em)P −1 = PeDP −1.

22. With the help of previous exercise, it’s enough to show that eD exist if
P −1AP =D. Since we know that

(Dm)ii = (Dii)m,

we have that ,with the notation the same as the previous exercise,

(Em)ii = 1 +Dii +
(Dii)2

2!
+⋯ + (Dii)m

m!
,

which tends to eDii as m tends to infinity. So we know that eD exists.

23. The equality is usually not true, although it’s true when A and B are

diagonal matrices. For example, we may pick A = (1 1
0 0

) and B = (1 0
0 0

).

By some calculation we have

eA = (e e − 1
0 1

)

and

eB = (e 0
0 1

)
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and

eAeB = (e
2 e − 1
0 1

) .

However, we may also calculate that

eA+B = (e
2 e2

2
− 1

2
0 1

) .

24. Use the notation in the solution to Exercise 5.2.15. And in the proof we
know that the solution x(t) = QD̄y for some y ∈ Rn. Now we know that
actually D̄ = eD by definition. With the fact that Q is invertible, we may
write the set of solution to be

{QeDQ−1v ∶ v ∈ Rn} = {eAv ∶ v ∈ Rn}

by Exercise 5.3.21.

5.4 Invariant Subspace and the Cayley-Hamilton
Theorem

1. (a) No. The subspace {0} must be a T -invariant subspace.

(b) Yes. This is Theorem 5.21.

(c) No. For example, let T be the identity map from R to R and v = (1)
and w = (2). Then we have W =W ′ = R.

(d) No. For example, let T be the mapping from R2 to R2 defined by
T (x, y) = y. Pick v = (1,1). Thus the T -cyclic subspace generated
by v and T (v) are R2 and the x-axis.

(e) Yes. The characteristic polynomial is the described polynomial.

(f) Yes. We may prove it by induction or just use Exercise 5.1.21.

(g) Yes. This is Theorem 5.25.

2. (a) Yes. For every ax2 + bx + c ∈W , we have

T (ax2 + bx + c) = 2ax + b ∈W.

(b) Yes. For every ax2 + bx + c ∈W , we have

T (ax2 + bx + c) = 2ax2 + bx ∈W.

(c) Yes. For every (t, t, t) ∈W , we have

T (t, t, t) = (3t,3t,3t) ∈W.
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(d) Yes. For every at + b ∈W , we have

T (at + b) = (a
2
+ b)t ∈W.

(e) No. For (1 0
0 2

) ∈W , we have

T (A) = (0 2
1 0

) ∉W.

3. (a) We have T (0) = 0 and T (v) ∈ V any v ∈ V and for arbitrary linear
operator T on V .

(b) If v ∈ N(T ), we have T (v) = 0 ∈ N(T ). If v ∈ R(T ), we have
T (v) ∈ R(T ) by the definition of R(T ).

(c) If v ∈ Eλ, we have T (v) = λv. Since T (λv) = λT (v) = λ2v, we know
that T (v) ∈ Eλ.

4. We have
T k(W ) ⊂ T k−1(T (W )) ⊂ T k−1(W ) ⊂ ⋯ ⊂W.

For any v ∈W , we know that g(T )(v) is the sum of some elements in W .
Since W is a subspace, we know that g(T )(v) is always an element is W .

5. Let {Wi}i∈I be the collection of T -invatirant subspaces and W be the
intersection of them. For every v ∈W , we have T (v) ∈Wi for every i ∈ I,
since v is an element is each Wi. This means T (v) is also an element in
W .

6. Follow the prove of Theorem 5.22. And we know that the dimension is
the maximum number k such that

{z, T (z), T 2(z), . . . , T k−1(z)}

is independent and the set is a basis of the subspace.

(a) Calculate that

z = (1,0,0,0), T (z) = (1,0,1,1),

T 2(z) = (1,−1,2,2), T 3(z) = (0,−3,3,3).

So we know the dimension is 3 and the set

{z, T (z), T 2(z)}

is a basis.
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(b) Calculate that
z = x3, T (z) = 6x,T 2(z) = 0.

So we know that the dimension is 2 and the set

{z, T (z)}

is a basis.

(c) Calculate that T (z) = z. So we know that the dimension is 1 and {z}
is a basis.

(d) Calculate that

z = (0 1
1 0

) , T (z) = (1 1
2 2

) ,

T 2(z) = (3 3
6 6

) .

So we know that the dimension is 2 and the set

{z, T (z)}

is a basis.

7. Let W be a T -invariant subspace and TW be the restricted operator on
W . We have that

R(TW ) = TW (W ) = T (W ) ⊂W.

So at least it’s a well-defined mapping. And we also have

TW (x) + TW (y) = T (x) + T (y) = T (x + y) = TW (x + y)

and
TW (cx) = T (cx) = cT (x) = cTW (x).

So the restriction of T on W is also a lineaer operator.

8. If v is an eigenvector of TW corresponding eigenvalue λ, this means that
T (v) = TW (v) = λv. So the same is true for T .

9. See Example 5.4.6.

(a) For the first method, we may calculate T 3(z) = (3,−3,3,3) and rep-
resent it as a linear combination of the basis

T 3(z) = 0z − 3T (z) + 3T 2(z).

So the characteristic polynomial is −t3 + 3t2 − 3t. For the second
method, denote β to be the ordered basis

{z, T (z), T 2(z), T 3(z)}.
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And we may calculate the matrix representation

[TW ]β =
⎛
⎜
⎝

0 0 0
1 0 −3
0 1 3

⎞
⎟
⎠

and directly find the characteristic polynomial of it to get the same
result.

(b) For the first method, we may calculate T 3(z) = 0 and represent it as
a linear combination of the basis

T 2(z) = 0z + 0T (z).

So the characteristic polynomial is t2. For the second method, denote
β to be the ordered basis

{z, T (z)}.

And we may calculate the matrix representation

[TW ]β = (0 0
1 0

)

and directly find the characteristic polynomial of it to get the same
result.

(c) For the first method, we may calculate T (z) = z. So the characteristic
polynomial is −t + 1. For the second method, denote β to be the
ordered basis {z}. And we may calculate the matrix representation

[TW ]β = (1)

and directly find the characteristic polynomial of it to get the same
result.

(d) For the first method, we may calculate T 2(z) = 3T (z). So the char-
acteristic polynomial is t2 − 3t. For the second method, denote β to
be the ordered basis

{z, T (z)}.

And we may calculate the matrix representation

[TW ]β = (0 0
1 3

)

and directly find the characteristic polynomial of it to get the same
result.

10. Calculate the characteristic polynomial is the problem of the first sec-
tion and determine whether on polynomial is divided by the other is the
problem in senior high.
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(a) The characteristic polynomial is

t4 − 4t3 + 6t2 − 3t.

(b) The characteristic polynomial is t4.

(c) The characteristic polynomial is

t4 − 2t3 + 2t − 1.

(d) The characteristic polynomial is

t4 − 6t3 + 9t2.

11. (a) Let w be an element in W . We may express w to be

w =
k

∑
i=0

aiT
i(v).

And thus we have

T (w) =
k

∑
i=0

aiT
i+1(v) ∈W.

(b) Let U be a T -invariant subspace of V containing v. Since it’s T -
invariant, we know that T (v) is an element in U . Inductively, we
know that T k(v) ∈ U for all nonnegative integer k. By Theorem 1.5
we know that U must contain W .

12. Because W is a T -invariant subspace, we know that T (vi) ∈W for vi ∈ γ.
This means the representation of T (vi) corresponding the basis β only use
the vectors in γ for each vi ∈ γ. So one corner of the matrix representation
would be zero.

13. If w is an element in W , it’s a linear combination of

{v, T (v), T 2(v), . . . .

So w = g(T )(v) for some polynomial g. Conversely, if w = g(T )(v) for
some polynomial g, this means w is a linear combination of the same set.
Hence w is an element in W .

14. It’s because that the set

v, T (v), T 2(v), . . . , T k−1(v)

is a basis of W by Theorem 5.22, where k is the dimension of W .
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15. The question in the Warning is because the definition of f(A) is not
det(A −AI). To prove the version for matrix, we may apply the theorem
to the linear transformation LA. So we know that the characteristic poly-
nomial of LA is the same as that of A, say f(t). And we get the result
f(LA) = T0 by the theorem. This means

f(A)v = f(LA)(v) = 0

for all v. So we know f(A) = O.

16. (a) By Theorem 5.21 we know that the characteristic polynomial of the
restriction of T to any T -invariant subspace is a factor of a polynomial
who splits. So it splits, too.

(b) Any nontrivial T -invariant subspace has dimension not equal to 0.
So the characteristic polynomial of its restriction has degree greater
than or equal to 1. So it must contains at least one zero. This means
the subspace at least contains one eigenvector.

17. If we have the characteristic polynomial to be

f(t) = (−1)ntn + an−1tn−1 +⋯ + a0,

then we have

f(A) = (−1)nAn + an−1An−1 +⋯ + a0I = O

by Cayley-Hamilton Theorem. This means that An is a linear combination
of I,A,A2, . . . ,An−1. By multiplying both sides by A, we know that An+1

is a linear combination of A,A2, . . . ,An. Since An can be represented as
a linear combination of previous terms, we know that An+1 could also be
a linear combination of I,A,A2, . . . ,An−1. Inductively, we know that

span{I,A,A2, . . .} = span{I,A,A2, . . . ,An−1}

and so the dimension could not be greater than n.

18. (a) See Exercise 5.1.20.

(b) For simplicity, denote the right hand side to be B. Directly calculate
that

AB = − 1

a0
[(−1)nAn + an−1An−1 +⋯ + a1A]

− 1

a0
(−a0I) = I.

(c) Calculate that the characteristic polynomial of A is

−t3 + 2t2 + t − 2.

137



So by the previous result, we know that

A−1 = 1

2
[−A2 + 2A + I

=
⎛
⎜
⎝

1 −1 −2
0 1

2
3
2

0 0 −1

⎞
⎟
⎠
.

19. As Hint, we induct on k. For k = 1, the matrix is (−a0) and the char-
acteristic polynomial is −(a0 + t). If the hypothesis holds for the case
k = m − 1, we may the expand the matrix by the first row and calculate
the characteristic polynomial to be

det(A − tI) = det

⎛
⎜⎜⎜
⎝

−t 0 ⋯ −a0
1 −t ⋯ −a1
⋮ ⋮ ⋱ ⋮
0 0 ⋯ −am−1

⎞
⎟⎟⎟
⎠

= −tdet

⎛
⎜⎜⎜
⎝

−t 0 ⋯ −a0
1 −t ⋯ −a1
⋮ ⋮ ⋱ ⋮
0 0 ⋯ −am−2

⎞
⎟⎟⎟
⎠
+ (−1)m+1(−a0)det

⎛
⎜⎜⎜
⎝

1 −t ⋯ 0
0 1 ⋯ −a1
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞
⎟⎟⎟
⎠

= −t[(−1)m−1(a1 + a2t +⋯ + am−1t
m−2 + tm−1)] + (−1)ma0

= (−1)m(a0 + a1t +⋯ + am−1t
m−1 + tm).

20. If U = g(T ), we know that UT = TU since

T (T k) = (T k)T = T k+1

and T is linear. For the converse, we may suppose that V is generated by
v. Then the set

β = {v, T (v), T 2(v), . . . , T k(v)}

is a basis. So the vector U(v) could be written as a linear combination of
β. This means U(v) = g(T )(v) for some polynomial g. Now if UT = TU ,
we want to show U = g(T ) by showing U(w) = g(T )(w) for all w ∈ β.
Observe that

U(Tm(v)) = Tm(U(v)) = Tmg(T )(v) = g(T )(Tm(v))

for all nonnegative integer m. So we get the desired result.

21. If we have some vector v ∈ V such that v and T (v) are not parallel, we
know the T -cyclic subspace generated by v has dimension 2. This means
V is a T -cyclic subspace of itself generated by v. Otherwise for every
v ∈ V , we may find some scalar λv such that T (v) = λvv. Now, if λv is a
same value c for every nonzero vector v, then we have T = cI. If not, we
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may find λv ≠ λu for some nonzero vector v and u. This means v and u
lies in different eigenspace and so the set {u, v} is independent. Thus they
forms a basis. Now let w = v + u. We have both

T (w) = λww = λwv + λwu

and
T (w) = λvv + λuu.

By the uniqueness of representation of linear combination, we must have

λv = λw = λu,

a contradiction. So in this case we must have T = cI.

22. If T ≠ cI, then V must be a T -cyclic subspace of itself by Exercise 5.4.21.
So by Exercise 5.4.20, we get the desired result.

23. As Hint, we prove it by induction on k. For k = 1, it’s a natural statement
that if v1 is in W then v1 is in W . If the statement is true for k = m − 1,
consider the case for k = m. If we have u = v1 + v2 + ⋯ + vm is in W , a
T -invariant subspace, then we have

T (u) = λ1v1 + λ2v2 +⋯ + λmvm ∈W,

where λi is the distinct eigenvalues. But we also have λmu is in W . So
the vector

T (u) − λmu = (λ1 − λm)v1 + (λ2 − λm)v2 +⋯ + (λm−1 − λm)vm−1

is al so in W . Since those eigenvalues are distinct, we have λi − λm is not
zero for all i ≠m. So we may apply the hypothesis to

(λ1 − λm)v1, (λ2 − λm)v2 +⋯ + (λm−1 − λm)vm−1

and get the result that (λi −λm)vi is in W and so vi is in W for all i ≠m.
Finally, we still have

vm = u − v1 − v2 −⋯ − vm−1 ∈W.

24. Let T be a operator on V andW be a nontrivial T -invariant subspace. Also
let Eλ be the eigenspace of V corresponding to the eigenvalue λ. We set
Wλ = Eλ ∩W to be the eigenspace of TW corresponding to the eigenvalue
λ. We may find a basis βλ for Wλ and try to show that β = ∪λβλ is a
basis for W . The set β is linearly independent by Theorem 5.8. Since T
is diagonalizable, every vector could be written as a linear combination of
eigenvectors corresponding to distinct eigenvalues, so are those vectors in
W . But by the previous exercise we know that those eigenvectors used to
give a linear combination to elements in W must also in W . This means
every elements in W is a linear combination of β. So β is a basis for W
consisting of eigenvectors.
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25. (a) Let Eλ be a eigenspace of T corresponding to the eigenvalue λ. For
every v ∈ Eλ we have

TU(v) = UT (v) = λU(v).

This means that Eλ is an U -invariant subspace. Applying the pre-
vious exercise to each Eλ, we may find a basis βλ for Eλ such that
[UEλ]βλ is diagonal. Take β to be the union of each βλ and then
both [T ]β and [U]β are diagonal simultaneously.

(b) Let A and B are two n × n matrices. If AB = BA, then A and B
are simultaneously diagonalizable. To prove this we may apply the
version of linear transformation to LA and LB .

26. Let {v1, v2, . . . , vn be those eigenvectors corresponding to n distinct eigen-
values. Pick

v = v1 + v2 +⋯ + vn
and say W to be the T -cyclic subspace generated by v. By Exercise 5.4.23
we know that W must contains all vi’s. But this means the dimension of
W is n and the set

{v, T (v), . . . , Tn−1(v)}

is a basis by Theorem 5.22.

27. (a) If v+W = v′+W , we know that v−v′ is an element in W by Exercise
1.3.31. Since W is T -invariant, we have

T (v) − T (v′) = T (v − v′)

is in W . So we have

T (v) +W = T (v′) +W

and this means
T (v +W ) = T (v′ +W ).

(b) Just check that

T ((v + v′) +W ) = T (v + v′) +W

= (T (v) +W ) + (T (v′) +W ) = T (v +W ) + T (v′ +W )

and

T (cv +W ) = T (cv) +W = c(T (v) +W ) = cT (v +W ).

(c) For each v ∈ V we might see

ηT (v) = T (v) +W = T (v +W ) = Tη(v).
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28. We use the notation given in Hint. Since W is T -invariant, we know the
matrix representation of T is

[T ]β = (B1 B2

O B3
) .

As the proof of Theorem 5.21, we know that f(t) = det([T ]β − tI) and
g(t) = det(B1 − tI). It’s enough to show h(t) = det(B3 − tI) by showing
B3 is a matrix representation of T . Let

α = {vk +W,vk+1 +W, . . . , vn +W}

be a basis for V /W by Exercise 1.6.35. Then for each j = k, k + 1, . . . , n,
we have

T (vj) = T (vj) +W

= [
k

∑
l=1

(B2)ljvl +
n

∑
i=k+1

(B3)ijvi] +W

=
n

∑
i=k+1

(B3)ijvi +W =
n

∑
i=k+1

(B3)ij(vi +W ).

So we have B3 = [T ]α and

f(t) = det([T ]β − tI) = det(B1 − tI)det(B3 − tI) = g(t)h(t).

29. We use the notation given in Hint of the previous exercise again. By
Exercise 5.4.24 we may find a basis γ for W such that [TW ]γ is diagonal.
For each eigenvalue λ, we may pick the corresponding eigenvectors in γ
and extend it to be a basis for the corresponding eigenspace. By collecting
all these basis, we may form a basis β for V who is union of these basis.
So we know that [T ]β is diagonal. Hence the matrix B3 is also diagonal.
Since we’ve proven that B3 = [T ]α, we know that T is diagonalizable.

30. We also use the notation given in Hint of the previous exercise. By Exercise
5.4.24 we may find a basis

γ = {v1, v2, . . . , vk}

for W such that [TW ]γ is diagonal and find a basis

α = {vk+1 +W,vk+2 +W, . . . , vn +W}

for V /W such that [T ]α is diagonal. For each v +W ∈ V /W , we know
that v +W is an eigenvector in V /W . So we may assume that

T (v) +W = T (v +W ) = λv +W

for some scalar λ. So this means that T (v)−λv is an element in W . Write

T (v) = λv + a1v1 + a2v2 +⋯ + akvk,
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where vi’s are those elements in γ corresponding to eigenvalues λi’s. Pick
ci to be ai

λ−λi
and set

v′ = v + c1v1 + c2v2 +⋯ + ckvk.

Those ci’s are well-defined because TW and T has no common eigenvalue.
Thus we have

T (v′) = T (v) + c1T (v1) + c2T (v2) +⋯ + ckT (vk)

= λv + (a1 + c1λ1)v1 + (a2 + c2λ2)v2 +⋯ + (ak + ckλk)vk)

= λv′

and v +W = v′ +W . By doing this process, we may assume that vj is an
eigenvector in V for each vj +W ∈ α. Finally we pick

β = {v1, v2, . . . , vn}

and show that it’s a basis for V . We have that γ is independent and

δ = {vk+1, vk+2, . . . , vn}

is also independent since η(δ) = α is independent, where η is the quotient
mapping defined in Exercise 5.4.27. Finally we know that if

ak+1vk+1 + ak+2vk+2 +⋯anvn ∈W,

then
(ak+1vk+1 + ak+2vk+2 +⋯anvn) +W = 0 +W

and so
ak+1 = ak+2 = ⋯ = an = 0.

This means that span(δ) ∩W = {0}. So V is a directed sum of W and
span(δ) and β is a basis by Exercise 1.6.33. And thus we find a basis
consisting of eigenvectors.

31. (a) Compute

T (e1) =
⎛
⎜
⎝

1
2
1

⎞
⎟
⎠
, T 2(e1) =

⎛
⎜
⎝

0
12
6

⎞
⎟
⎠

and
T 2(e1) = −6e1 + 6T (e1).

This means that the characteristic polynomial of TW is t2 − 6t + 6.
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(b) We know that
dim(R3/W ) = 3 − dim(W ) = 1

by Exercise 1.6.35. So every nonzero element in R3/W is a basis.
Since e2 is not in W , we have e2 +W is a basis for R3/W . Now let
β = {e2 +W}. We may compute

T (e2 +W ) =
⎛
⎜
⎝

1
3
2

⎞
⎟
⎠
+W = −e2 +W

and [T ]β = (1). So the characteristic polynomial of T is −t − 1.

(c) Use the result in Exercise 5.4.28, we know the characteristic polyno-
mial of T is

−(t + 1)(t2 − 6t + t).

32. As Hint, we induct on the dimension n of the space. For n = 1, every matrix
representation is an uppertriangular matrix. Suppose the hypothesis is
true for n = k−1. Now we consider the case n = k. Since the characteristic
polynomial splits, T must has an eigenvector v corresponding to eigenvalue
λ. Let W = span({v}). By Exercise 1.6.35 we know that the dimension of
V /W is equal to k − 1. So we apply the induction hypothesis to T defined
in Exercise 5.4.27. This means we may find a basis

α = {u2 +W,u3 +W, . . . , uk +W}

for V /W such that [T ]α is an upper triangular matrix. Following the
argument in Exercise 5.4.30, we know that

β = {v, u2, u3, . . . , uk}

is a basis for V . And we also know the matrix representation is

[T ]β = (λ ∗
O [T ]α

) ,

which is an upper triangular matrix since [T ]α is upper triangular.

33. Let
w = w1 +w2 +⋯ +wk

for some wi ∈ Wi. Thus we have T (wi) ∈ Wi since Wi is T -invariant. So
we also have

T (w) = T (w1) + T (w2) +⋯ + T (wk) ∈W1 +W2 +⋯Wk.

34. In the next exercise we prove this exercise and the next exercise together.
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35. Let v is an element in β1. We know that T (v) is a linear combination of
β. Since T (v) is in W1, we know that the combination only use elements
in β1. The same argument could be applied to each element in βi for each
i. So we know the matrix representation of T corresponding to the chosen
basis β is

B1 ⊕B2 ⊕⋯⊕Bk.

36. First observe that a one-dimensional T -invariant subspace is equivalent
to a subspace spanned by an eigenvector. Second, V is the direct sum of
some one-dimensional subspaces if and only if the set obtained by choosing
one nonzero vector from each subspace forms a basis. Combining these
two observation we get the result.

37. Use Theorem 5.25 and its notation. We have

det(T ) = det(B) = det(B1)det(B2)⋯det(Bk)

= det(TW1)det(TW2)⋯det(TWk
).

38. By Exercise 5.4.24, we already get the necessity. For the sufficiency, we
may pick bases βi for Wi such that [TWi] is diagonal. Combining these
bases to be a basis β = ∪ki=1βi for V . By using Theorem 5.25, we know
that T is diagonalizable.

39. By Exercise 5.2.18, we already get the necessity. For the sufficiency, we
use induction on the dimension n of the spaces. If n = 1, every operator on
it is diagonalizable by the standard basis. By supposing the statement is
true for n ≤ k−1, consider the case n = k. First, if all the operator in C has
only one eigenvalue, then we may pick any basis β and know that [T ]β is
diagonal for all T ∈ C. Otherwise, there must be one operator T possessing
two or more eigenvalues, λ1, λ2, . . . , λt. Let Wi be the eigenspace of T
corresponding to the eigenvalue λi. We know that V is the direct sum
of all Wi’s. By the same reason in the proof of Exercise 5.4.25, we know
that Wi is a U -invariant subspace for all U ∈ C. Thus we may apply the
induction hypothesis on Wi and

Ci ∶= {UWi ∶ U ∈ C}.

Thus we get a basis βi for Wi such that [UWi]βi is diagonal. Let β be the
union of each βi. By applying Theorem 5.25, we get the desired result.

40. Observe that

A − tI = (B1 − tI)⊕ (B2 − tI)⊕⋯⊕ (Bk − tI).

So we have

det(A − tI) =
k

∏
i=1

det(Bi − tI).

144



41. Let vi be the i-th row vector of A. We have {v1, v2} is linearly independent
and vi = (i − 1)(v2 − v1) + v1. So the rank of A is 2. This means that tn−2

is a factor of the characteristic polynomial of A. Finally, set

β = {(1,1, . . . ,1), (1,2, . . . , n)}

and check that W = span(β) is a LA-invariant subspace by computing

A

⎛
⎜⎜⎜
⎝

1
1
⋮
1

⎞
⎟⎟⎟
⎠
= (n(n + 1)

2
− n2)

⎛
⎜⎜⎜
⎝

1
1
⋮
1

⎞
⎟⎟⎟
⎠
+ n2

⎛
⎜⎜⎜
⎝

1
2
⋮
n

⎞
⎟⎟⎟
⎠

and

A

⎛
⎜⎜⎜
⎝

1
2
⋮
n

⎞
⎟⎟⎟
⎠
= (n(n + 1)(2n + 1)

6
− n

2(n + 1)
2

)
⎛
⎜⎜⎜
⎝

1
1
⋮
1

⎞
⎟⎟⎟
⎠
+ n

2(n + 1)
2

⎛
⎜⎜⎜
⎝

1
2
⋮
n

⎞
⎟⎟⎟
⎠
.

So we know the characteristic polynomial is

(−1)ntn−2 det
⎛
⎝

n(n+1)
2

− n2 − t n(n+1)(2n+1)
6

− n2
(n+1)
2

n2 n2
(n+1)
2

− t
⎞
⎠

= (−1)ntn−2 12t2 + (−6n3 − 6n)t − n5 + n3

12
.

But this is the formula for n ≥ 2. It’s natural that when n = 1 the char-
acteristic polynomial is 1 − t. Ur...I admit that I computed this strange
answer by wxMaxima.

42. Observe that the nullity of A is n − 1 and det(A − nI) = 0 because the
sum of all column vectors of A−nI is zero. So we know the characteristic
polynomial of it is

(−1)ntn−1(t − n).
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Chapter 6

Inner Product Spaces

6.1 Inner Products and Norms

1. (a) Yes. It’s the definition.

(b) Yes. See the paragraph at the beginning of this chapter.

(c) No. It’s conjugate linear in the second component. For example, in
C with standard inner product function we have ⟨i, i⟩ = 1 but not
i⟨i,1⟩ = −1.

(d) No. We may define the inner product function f on R to be f(u, v) =
2uv.

(e) No. Theorem 6.2 does not assume that the dimension should be
finite.

(f) No. We may define the conjugate-transpose of any matrix A to be
the conjugate of At.

(g) No. Let x = (1,0), y = (0,1), and z = (0,−1). Then we have ⟨x, y⟩ =
⟨x, z⟩ = 0.

(h) Yes. This means ∥y∥ = ⟨y, y⟩ = 0.

2. Compute

⟨x, y⟩ = 2 ⋅ (2 + i) + (1 + i) ⋅ 2 + i ⋅ (1 − 2i) = 8 + 5i,

∥x∥ = ⟨x,x⟩
1
2 = (4 + 2 + 1)

1
2 =

√
7,

∥y∥ = ⟨y, y⟩
1
2 = (5 + 4 + 5)

1
2 =

√
14,

and
∥x + y∥ = ∥(4 − i,3 + i,1 + 3i)∥ = (17 + 10 + 10)

1
2 =

√
37.

We have the Cauchy-Schwarz inequality and the triangle inequality hold
since

∣8 + 5i∣ =
√

89 ≤
√

7
√

14 =
√

119
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and √
7 +

√
14 ≥

√
37.

3. As definition, compute

⟨f, g⟩ = ∫
1

0
f(t)g(t)dt = ∫ tdet = tet∣10 − ∫ etdt = e − (e − 1) = 1,

∥f∥ = ∫
1

0
f2 = 1

3
,

∥g∥ = ∫
1

0
g2 = 1

2
(e2 − 1),

and
∥f + g∥ = ∥t + et∥ = (∥f∥2 + 2⟨f, g⟩ + ∥g∥2)

1
2

= 1

9
+ 2 + 1

4
(e4 − 2e2 + 1) = 9e4 − 18e2 + 85

36
.

And the two inequalities hold since

1 ≤ 1

3
⋅ 1

2
(e2 − 1)

and
9e4 − 18e2 + 85

36
≥ 1

3
+ 1

2
(e2 − 1).

4. (a) We prove the formula

⟨A,B⟩ = tr(B∗A) =
n

∑
j=1

(B∗A)jj =
n

∑
j=1

n

∑
i=1

B∗
jiAij

=
n

∑
j=1

n

∑
i=1

AijBij =
n

∑
i=1

n

∑
j=1

AijBij =∑
i,j

AijBij .

So we may view the space Mn×n(F) to be Fn
2

and the Frobenius

inner product is corresponding to the standard inner product in Fn
2

.

(b) Also use the formule to compute

∥A∥ = (1 + 5 + 9 + 1)
1
2 = 4,

∥B∥ = (2 + 0 + 1 + 1)
1
2 = 2,

and
⟨A,B⟩ = (1 − i) + 0 − 3i − 1 = −4i.

5. We prove the condition for an inner product space one by one.

�
⟨x + z, y⟩ = (x + z)Ay∗ = xAY ∗ + zAy∗ = ⟨x, y⟩ + ⟨z, y⟩.
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�
⟨cx, y⟩ = (cx)Ay∗ = c(xAy∗) = c⟨x, y⟩.

�
⟨x, y⟩ = (xAy∗)∗ = yA∗x∗ = yAx∗ = ⟨y, x⟩.

One of the equality use the fact A = A∗.

�
⟨x,x⟩ = (x1, x2)A(x1, x2)∗ = ∥x1∥2 + ix1x2 − ix2x1 + 2∥x2∥2

= ∥x1∥2 + 2Re(ix1x2) + 2∥x2∥2⟩0

if x1 or x2 is not 0. Here the function Re(z) means the real part of
a complex number z.

So it’s an inner product function. Also compute that

⟨x, y⟩ = 1(1− i)(2− i)+ i(1− i)(3+2i)+ (−i)(2+3i)(2− i)+2(2+3i)(3+2i)

= (1 − i)(2i) + (2 + 3i)(5 + 2i) = 6 + 21i.

6. (a)

⟨x, y + z⟩ = ⟨y + z, x⟩ = ⟨y, x⟩ + ⟨z, x⟩ = ⟨x, y⟩ + ⟨x, z⟩.

(b)

⟨x, cy⟩ = ⟨cy, x⟩ = c⟨y, x⟩ = c⟨x, y⟩.

(c)
⟨x,0⟩ = 0⟨x,0⟩ = 0

and
⟨0, x⟩ = ⟨x,0⟩ = 0.

(d) If x = 0, then ⟨0,0⟩ = 0 by previous rule. If x ≠ 0, then ⟨x,x⟩ > 0.

(e) If ⟨x, y⟩ = ⟨x, z⟩ for all x ∈ V , we have ⟨x, y − z⟩ = 0 for all x ∈ V . So
we have ⟨y − z, y − z⟩ = 0 and hence y − z = 0.

7. (a)

∥cx∥ = ⟨cx, cx⟩
1
2 = (cc⟨x,x⟩)

1
2 = ∣c∣∥x∥.

(b) This is the result of ∥x∥ = ⟨x,x⟩ 1
2 and Theorem 6.1(d).

8. (a) The inner product of a nonzero vector (1,1) and itself is 1 − 1 = 0.

(b) Let A = B = I2. We have

⟨2A,B⟩ = 3 ≠ 2⟨A,B⟩ = 4.

(c) The inner product of a nonzero function f(x) = 1 and itself is

∫
1

0
0 ⋅ 1dx = 0.
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9. (a) Represent x to be a linear combination of β as

x =
k

∑
i=1

aizi,

where zi’s are elements in β. Then we have

⟨x,x⟩ = ⟨x,
k

∑
i=1

aizi⟩

=
k

∑
i=1

ai⟨x, zi⟩ = 0

and so x = 0.

(b) This means that ⟨x − y, z⟩ = 0 for all z ∈ β. So we have x − y = 0 and
x = y.

10. Two vectors are orthogonal means that the inner product of them is 0. So
we have

∥x + y∥2 = ⟨x + y, x + y⟩

= ∥x∥2 + ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2 = ∥x∥2 + +∥y∥2.

To deduce the Pythagorean Theorem in R2, we may begin by a right
triangle ABC with the right angle B. Assume that x = AB and y = BC.
Thus we know the length of two leg is ∥x∥ and ∥y∥. Finally we know
AC = x + y and so the length of the hypotenuse is ∥x + y∥. Apply the
proven equality and get the desired result.

11. Compute that
∥x + y∥2 + ∥x − y∥2

= (∥x∥2 + ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2) + (∥x∥2 − ⟨x, y⟩ − ⟨y, x⟩ + ∥y∥2)

= 2∥x∥2 + 2∥y∥2.

This means that the sum of square of the four edges of a prallelogram is
the sum of square of the two diagonals.

12. Compute that

∥
k

∑
i=1

aivi∥2 = ⟨
k

∑
i=1

aivi⟩

=
k

∑
i=1

∥aivi∥2 +∑
i,j

⟨aivi, ajvj⟩

=
k

∑
i=1

∣ai∣2∥vi∥.

13. Check those condition.
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�
⟨x + z, y⟩ = ⟨x + z, y⟩1 + ⟨x + z, y⟩2
= ⟨x, y⟩1 + ⟨z, y⟩1 + ⟨x, y⟩2 + ⟨z, y⟩2

= ⟨x, y⟩ + ⟨z, y⟩.

�
⟨cx, y⟩ = ⟨cx, y⟩1 + ⟨cx, y⟩2
= c⟨x, y⟩1 + c⟨x, y⟩2 = c⟨x, y⟩.

�
⟨x, y⟩ = ⟨x, y⟩1 + ⟨x, y⟩2
= ⟨y, x⟩1 + ⟨y, x⟩2 = ⟨y, x⟩.

�
⟨x,x⟩ = ⟨x,x⟩1 + ⟨x,x⟩2 > 0

if x ≠ 0.

14. Check that

(A + cB)∗ij = (A + cB)ji = Aji + cBji = (A∗ + cB∗)ij .

15. (a) If one of x or y is zero, then the equality holds naturally and we have
y = 0x or x = 0y. So we may assume that y is not zero. Now if x = cy,
we have

∣⟨x, y⟩∣ = ∣⟨cy, y⟩∣ = ∣c∣∥y∥2

and
∥x∥ ⋅ ∥y∥ = ∥cy∥ ⋅ ∥y∥ = ∣c∣∥y∥2.

For the necessity, we just observe the proof of Theorem 6.2(c). If the
equality holds, then we have

∥x − cy∥ = 0,

where

c = ⟨x, y⟩
⟨y, y⟩

.

And so x = cy.

(b) Also observe the proof of Theorem 6.2(d). The equality holds only
when

Re⟨x, y⟩ = ∣⟨x, y⟩∣ = ∥x∥ ⋅ ∥y∥.

The case y = 0 is easy. Assuming y ≠ 0, we have x = cy for some
scalar c ∈ F . And thus we have

Re(c)∥y∥2 = Re⟨cy, y⟩ = ∣⟨cy, y⟩∣ = ∣c∣ ⋅ ∥y∥2
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and so
Re(c) = ∣c∣.

This means c is a nonnegative real number. Conversely, if x = cy for
some nonnegative real number, we may check

∥x + y∥ = ∣c + 1∣∥y∥ = (c + 1)∥y∥

and
∥x∥ + ∥y∥ = ∣c∣∥y∥ + ∥y∥ = (c + 1)∥y∥.

Finally, we may generalize it to the case of n vectors. That is,

∥x1 + x2 +⋯ + xn∥ = ∥x1∥ + ∥x2∥ +⋯ + ∥xn∥

if and only if we may pick one vector from them and all other vectors
are some multiple of that vector using nonnegative real number.

16. (a) Check the condition one by one.

�

⟨f + h, g⟩ = 1

2π
∫

2π

0
(f(t) + h(t))g(t)dt

= 1

2π
∫

2π

0
fgdt + 1

2π
∫

2π

0
(hgdt = ⟨f, g⟩ + ⟨h, g⟩.

�

⟨cf, g⟩ = 1

2π
∫

2π

0
cfgdt

= c( 1

2π
∫

2π

0
fgdt) = c⟨f, g⟩.

�

⟨f, g⟩ = 1

2π
∫

2π

0
fgdt = 1

2π
∫

2π

0
fgdt

= 1

2π
∫

2π

0
gfdt = ⟨g, f⟩.

�

⟨f, f⟩ = 1

2π
∫

2π

0
∥f∥2dt > 0

if f is not zero. Ur... I think this is an exercise for the Adavanced
Calculus course.

(b) No. Let

f(t) = { 0 if x ≤ 1
2
;

x − 1
2

if x > 1
2
.
.

Then we have that ⟨f, f⟩ = 0 but f ≠ 0.

17. If T (x) = 0 Then we have
∥x∥ = ∥0∥ = 0.

This means x = 0 and so T is injective.
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18. If ⟨⋅, ⋅⟩′ is an inner product on V , then we have that T (x) = 0 implies

⟨x,x⟩′ = ⟨T (x), T (x)⟩ = 0

and x = 0. So T is injective. Conversely, if T is injective, we may check
those condition for inner product one by one.

�
⟨x + z, y⟩′ = ⟨T (x + z), T (y)⟩ = ⟨T (x) + T (z), T (y)⟩

= ⟨T (x), T (y)⟩ + ⟨T (z), T (y)⟩ = ⟨x, y⟩′ + ⟨z, y⟩′.

�
⟨cx, y⟩′ = ⟨T (cx), T (y)⟩ = ⟨cT (x), T (y)⟩

= c⟨T (x), T (y)⟩ = ⟨x, y⟩′.

�
⟨x, y⟩′ = ⟨T (x), T (y)⟩

= ⟨T (y), T (x)⟩ = ⟨y, x⟩′.

�
⟨x,x⟩′ = ⟨T (x), T (x)⟩ > 0

if T (x) ≠ 0. And the condition T (x) ≠ 0 is true when x ≠ 0 since T is
injective.

19. (a) Just compute

∥x + y∥2 = ∥x∥2 + ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2

= ∥x∥2 + ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2 = ∥x∥2 +Re(⟨x, y⟩) + ∥y∥2

and
∥x − y∥2 = ∥x∥2 − ⟨x, y⟩ − ⟨y, x⟩ + ∥y∥2

= ∥x∥2 − ⟨x, y⟩ − ⟨y, x⟩ + ∥y∥2 = ∥x∥2 −Re(⟨x, y⟩) + ∥y∥2.

(b) We have
∥x − y∥ + ∥y∥ ≥ ∥x∥

and
∥x − y∥ + ∥x∥ = ∥y − x∥ + ∥x∥ ≥ ∥y∥.

Combining these two we get the desired inequality.

20. (a) By Exercise 6.1.19(a), we have the right hand side would be

1

4
(4Re⟨x, y⟩) = ⟨x, y⟩.

The last equality is due to the fact F = R.
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(b) Also use the Exercise 6.1.19(a). First observe that

∥x + iky∥2 = ∥x∥2 + 2Re⟨x, iky⟩ + ∥iky∥2

= ∥x∥2 + 2Re[ik⟨x, y⟩] + ∥y∥2.
Assuming ⟨x, y⟩ to be a + bi, we have the right hand side would be

1

4
[(

4

∑
k=1

ik)∥x∥2 + 2
4

∑
k=1

ikRe[ik⟨x, y⟩] + (
4

∑
k=1

ik)∥y∥2]

= 1

2
[bi + (−a)(−1) + (−b)(−i) + a] = a + bi = ⟨x, y⟩.

21. (a) Observe that

A∗
1 = (1

2
(A +A∗))∗ = 1

2
(A∗ +A) = A∗

1,

A∗
2 = ( 1

2i
(A −A∗))∗ = (− 1

2i
(A∗ −A) = A∗

2.

and

A1 + iA2 =
1

2
(A +A∗) + 1

2
(A −A∗) = 1

2
(A +A) = A.

I don’t think it’s reasonable because A1 does not consists of the real
part of all entries of A and A2 does not consists of the imaginary
part of all entries of A. But what’s the answer do you want? Would
it be reasonable to ask such a strange question?

(b) If we have A = B1 + iB2 with B∗
1 = B1 and B∗

2 = B2, then we have
A∗ = B∗

1 − iB∗
2 . Thus we have

B1 =
1

2
(A +A∗)

and

B2 =
1

2i
(A −A∗).

22. (a) As definition, we may find v1, v2, . . . , vn ∈ β for x, y, z ∈ V such that

x =
n

∑
i=1

aivi, y =
n

∑
i=1

bivi, z =
n

∑
i=1

divi.

And check those condition one by one.

�

⟨x + z, y⟩ = ⟨
n

∑
i=1

(ai + di)vi,
n

∑
i=1

bivi⟩

=
n

∑
i=1

(ai + di)bi =
n

∑
i=1

aibi +
n

∑
i=1

dibi

= ⟨x, y⟩ + ⟨z, y⟩.
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�

⟨cx, y⟩ = ⟨
n

∑
i=1

(cai)vi,
n

∑
i=1

bivi⟩

=
n

∑
i=1

(cai)bi = c
n

∑
i=1

aibi = c⟨x, y⟩.

�

⟨x, y⟩ =
n

∑
i=1

aibi

=
n

∑
i=1

aibi =
n

∑
i=1

biai = ⟨y, x⟩.

�

⟨x,x⟩ =
n

∑
i=1

∣ai∣2 > 0

if all ai’s is not zero. That is, x is not zero.

(b) If the described condition holds, for each vector

x =
n

∑
i=1

aivi

we have actually ai is the i-th entry of x. So the function is actually
the atandard inner product. Note that this exercise give us an idea
that different basis will give a different inner product.

23. (a) We have the fact that with the standard inner product ⟨⋅, ⋅⟩ we have
⟨x, y⟩ = y∗x. So we have

⟨x,Ay⟩ = (Ay)∗x = y∗A∗x = ⟨A∗x, y⟩.

(b) First we have that

⟨A∗x, y⟩ = ⟨x,Ay⟩ = ⟨Bx, y⟩

for all x, y ∈ V . By Theorem 6.1(e) we have A∗x = Bx for all x. But
this means that these two matrix is the same.

(c) Let β = {v1, v2, . . . , vn}. So the column vectors of Q are those vi’s.
Finally observe that (Q∗Q)ij is

v∗i vj = ⟨vi, vj⟩ = { 1 if i = j;
0 if i ≠ j.

So we have Q∗Q = I and Q∗ = Q−1.

(d) Let α be the standard basis for Fn. Thus we have [T ]α = A and
[U]α = A∗. Also we have that actually [I]βα is the matrix Q defined
in the previous exercise. So we know that

[U]β = [I]βα[U]α[I]αβ = QAQ−1 = QAQ∗

= (QA∗Q∗)∗ = [I]βα[T ]α[I]αβ = [T ]β .
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24. Check the three conditions one by one.

(a) �
∥A∥ = max

i,j
∣Aij ∣ ≥ 0,

and the value equals to zero if and only if all entries of A are
zero.

�
∥aA∥ = max

i,j
∣(aA)ij ∣ = max

i,j
∣a∣∣Aij ∣

= ∣a∣max
i,j

∣Aij ∣ = ∣a∣∥A∥.

�
∥A +B∥ = max

i,j
∣(A +B)ij ∣ = max

i,j
∣Aij +Bij ∣

≤ max
i,j

∣Aij ∣ +max
i,j

∣Bij ∣ = ∥A∥ + ∥B∥.

(b) �
∥f∥ = max

t∈[0,1]
∣f(t)∣ ≥ 0,

and the value equals to zero if and only if all value of f in [0,1]
is zero.

�
∥af∥ = max

t∈[0,1]
∣(af)(t)∣ = max

t∈[0,1]
∣a∣∣f(t)∣

= ∣a∣ max
t∈[0,1]

∣f(t)∣ = ∣a∣∥f∥.

�
∥f + g∥ = max

t∈[0,1]
∣(f + g)(t)∣ = max

t∈[0,1]
∣f(t) + g(t)∣

≤ max
t∈[0,1]

∣f(t)∣ + max
t∈[0,1]

∣g(t)∣ = ∥f∥ + ∥g∥.

(c) �

∥f∥ = ∫
1

0
∣f(t)∣dt ≥ 0,

and the value equals to zero if and only if f = 0. This fact depend
on the continuity and it would be an exercise in the Advanced
Calculus coures.

�

∥af∥ = ∫
1

0
∣af(t)∣dt = ∫

1

0
∣a∣∣f(t)∣dt

= ∣a∣∫
1

0
∣f(t)∣ = ∣a∣∥f∥.
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�

∥f + g∥ = ∫
1

0
∣f(t) + g(t)∣dt ≤ ∫

1

0
∣f(t)∣ + ∣g(t)∣dt

= ∫
1

0
∣f(t)∣dt + ∫

1

0
∣g(t)∣dt = ∥f∥ + ∥g∥.

(d) �
∥(a, b)∥ = max{∣a∣, ∣b∣} ≥ 0,

and the value equals to zero if and only if both a and b are zero.

�
∥c(a, b)∥ = max{∣ca∣, ∣cb∣} = max{∣c∣∣a∣, ∣c∣∣b∣}

= ∣c∣max{∣a∣, ∣b∣} = ∣c∣∥(a, b)∥.

�

∥(a, b) + (c, d)∥ = max{∣a + c∣, ∣b + d∣} ≤ max{∣a∣ + ∣c∣, ∣b∣ + ∣d∣}

≤ max{∣a∣, ∣b∣} +max{∣c∣, ∣d∣} = ∥(a, b)∥ + ∥(c, d)∥.

25. By Exercise 6.1.20 we know that if there is an inner product such that
∥x∥2 = ⟨x,x⟩ for all x ∈ R2, then we have

⟨x, y⟩ = 1

4
∥x + y∥2 − 1

4
∥x − y∥.

Let x = (2,0) and y = (1,3). Thus we have

⟨x, y⟩ = 1

4
∥(3,3)∥2 − 1

4
∥(1,−3)∥2 = 0

and

⟨2x, y⟩ = 1

4
∥(5,3)∥2 − 1

4
∥(3,−3)∥2 = 1

4
(25 − 9) = 4.

This means this function is not linear in the first component.

26. (a)
d(x, y) = ∥x − y∥ ≥ 0.

(b)
d(x, y) = ∥x − y∥ = ∥y − x∥ = d(y, x).

(c)

d(x, y) = ∥x−y∥ = ∥(x−z)+(z−y)∥ ≤ ∥x−z∥+∥z−y∥ = d(x, y)+d(z, y).

(d)
d(x,x) = ∥x − x∥ = ∥0∥ = 0.
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(e)
d(x, y) = ∥x − y∥ > 0

if x − y is not zero. That is, the distance is not zero if x ≠ y.

27. The third and the fourth condition of inner product naturally hold since

⟨x, y⟩ = 1

4
[∥x + y∥2 − ∥x − y∥2] = ⟨y, x⟩

and

⟨x,x⟩ = 1

4
[∥2x∥2 − ∥0∥2] = ∥x∥2 > 0

if x ≠ 0. Now we prove the first two condition as Hints.

(a) Consider that

∥x + 2y∥2 + ∥x∥2 = 2∥x + y∥2 + 2∥y∥2

and
∥x − 2y∥2 + ∥x∥2 = 2∥x − y∥2 + 2∥y∥2

by the parallelogram law. By Substracting these two equalities we
have

∥x + 2y∥2 − ∥x − 2y∥2 = 2∥x + y∥2 − 2∥x − y∥2.
And so we have

⟨x,2y⟩ = 1

4
[∥x + 2y∥2 − ∥x − 2y∥2]

= 1

4
[2∥x + y∥2 − 2∥x − y∥2] = 2⟨x, y⟩.

(b) By the previous argument, we direct prove that

⟨x + u,2y⟩ = 2⟨x, y⟩ + 2⟨u, y⟩.

Similarly begin by

∥x + u + 2y∥2 + ∥x − u∥2 = 2∥x + y∥2 + 2∥u + y∥2

and
∥x + u − 2y∥2 + ∥x − u∥2 = 2∥x − y∥2 + 2∥u − y∥2

by the parallelograom law. By substracting these two equalities we
have

∥x+u+2y∥2−∥x+u−2y∥2 = 2∥x+y∥2−2∥x−y∥2+2∥u+y∥2−2∥u−y∥2.

And so we have

⟨x + u,2y⟩ = 1

4
[∥x + u + 2y∥2 − ∥x + u − 2y∥2]

= 1

4
[2∥x + y∥2 − 2∥x − y∥2 + 2∥u + y∥2 − 2∥u − y∥2]

= 2⟨x, y⟩ + 2⟨u, y⟩.
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(c) Since n is a positive integer, we have

⟨nx, y⟩ = ⟨(n − 1)x, y⟩ + ⟨x, y⟩

= ⟨(n − 2)x, y⟩ + 2⟨x, y⟩ = ⋯ = n⟨x, y⟩

by the previous argument inductively.

(d) Since m is a positive integer, we have

⟨x, y⟩ = ⟨m( 1

m
x), y⟩ =m⟨ 1

m
x,y⟩

by the previous argument.

(e) Let r = p
q

for some positive integers p and q if r is positive. In this
case we have

⟨rx, y⟩ = ⟨p(1

q
x), y⟩ = p⟨1

q
x, y⟩

= p
q
⟨x, y⟩ = r⟨x, y⟩.

If r is zero, then it’s natural that

⟨0, y⟩ = 1

4
[∥y∥2 − ∥y∥2] = 0 = 0⟨x, y⟩.

Now if r is negative, then we also have

⟨rx, y⟩ = ⟨(−r)(−x), y⟩ = −r⟨−x, y⟩.

But we also have
⟨−x, y⟩ = −⟨x, y⟩

since
⟨−x, y⟩ + ⟨x, y⟩

= 1

4
[∥ − x + y∥2 − ∥ − x − y∥2 + ∥x + y∥2 − ∥x − y∥2] = 0.

So we know that even when r is negative we have

⟨rx, y⟩ = −r⟨−x, y⟩ = r⟨x, y⟩.

(f) Now we have the distribution law. Also, the position of the two com-
ponent can be interchanged without change the value of the defined
function. Finally we observe that

⟨x,x⟩ = 1

4
[∥x + x∥2 − ∥0∥2] = ∥x∥2

for all x ∈ V . So now we have

∥x∥2 + 2⟨x, y⟩ + ∥y∥2 = ∥x + y∥2
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≤ (∥x∥+∥y∥)2 = ∥x∥2 + 2∥x∥ ⋅ ∥y∥ + ∥y∥2

by the triangle inequality. Similarly we also have

∥x∥2 − 2⟨x, y⟩ + ∥y∥2 = ∥x − y∥2

≤ (∥x∥+∥ − y∥)2 = ∥x∥2 + 2∥x∥ ⋅ ∥y∥ + ∥y∥2.

Thus we get the desired result

∣⟨x, y⟩∣ ≤ ∥x∥ ⋅ ∥y∥.

(g) Since
(c − r)⟨x, y⟩ = c⟨x, y⟩ − r⟨x, y⟩

and
⟨(c − r)x, y⟩ = ⟨cx − rx, y⟩ = ⟨cx, y⟩ − r⟨x, y⟩,

the first equality holds. And by the previous argument we have

−∣c − r∣∥x∥∥y∥ ≤ (c − r)⟨x, y⟩, ⟨(c − r)x, y⟩ ≤ ∣c − r∣∥x∥∥y∥

and so we get the final inequality.

(h) For every real number c, we could find a rational number such that
∣c − r∣ is small enough1. So by the previous argument, we have

⟨cx, y⟩ = c⟨x, y⟩

for all real number c.

28. Check the conditions one by one.

�
[x + z, y] = Re⟨x + z, y⟩ = Re(⟨x, y⟩ + ⟨z, y⟩)

= Re⟨x, y⟩ +Re⟨z, y⟩ = [x, y] + [z, y].

�
[cx, y] = Re⟨cx, y⟩

= cRe⟨x, y⟩ = c[x, y],

where c is a real number.

�
[x, y] = Re⟨x, y⟩ = Re⟨x, y⟩

= Re⟨y, x⟩ = [y, x].

�
[x,x] = Re⟨x,x⟩ = ⟨x,x⟩ > 0

if x ≠ 0.

1This is also an exercise for the Adavanced Calculus course.
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Finally, we have [x, ix] = 0 since

⟨x, ix⟩ = −i⟨x,x⟩

is a pure imaginary number.

29. Observe that

0 = [x + iy, i(x + iy)] = [x + iy, ix − y] = [ix, iy] − [x, y].

So we have an instant property

[x, y] = [ix, iy].

Now check the conditions one by one.

�
⟨x + z, y⟩ = [x + z, y] + i[x + z, iy]

= [x, y] + [z, y] + i[x, iy] + i[z, iy] = ⟨x, y⟩ + ⟨z, y⟩.

�
⟨(a + bi)x, y⟩ = [(a + bi)x, y] + i[(a + bi)x, iy]

= [ax, y] + [bix, y] + i[ax, iy] + i[bix, iy]

= a([x, y] + i[x, iy]) + bi([ix, iy] − i[ix, y])

= a⟨x, y⟩ + bi([x, y] + i[x, iy]) = (a + bi)⟨x, y⟩.

Here we use the proven property.

�
⟨x, y⟩ = [x, y] − i[x, iy]

= [y, x] + i[y, ix] = ⟨x, y⟩.

Here we use the proven property again.

�
⟨x,x⟩ = [x,x] + i[x, ix] = [x,x] > 0

if x is not zero.

30. First we may observe that the condition for norm on real vector space is
loosen than that on complex vector space. So naturally the function ∥ ⋅ ∥
is still a norm when we regard V as a vector space over R. By Exercise
6.1.27, we’ve already defined a real inner product [⋅, ⋅] on it since the
parallelogram law also holds on it. And we also have

[x, ix] = 1

4
[∥x + ix∥2 − ∥x − ix∥2] =

= 1

4
[∥x + ix∥2 − ∥(−i)(x + ix)∥2] = 1

4
[∥x + ix∥2 − ∣ − i∣∥(x + ix)∥2] = 0.

So by Exercise 6.1.29 we get the desired conclusion.
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6.2 The Gram-Schmidt Orthogonalization Pro-
cess and Orthogonal Complements

1. (a) No. It should be at least an independent set.

(b) Yes. See Theorem 6.5.

(c) Yes. Let W be a subspace. If x and y are elements in W ⊥ and c is a
scalar, we have

⟨x + y,w⟩ = ⟨x,w⟩ + ⟨y,w⟩ = 0

and
⟨cx,w⟩ = c⟨x,w⟩ = 0

for all w in W . Furthermore, we also have ⟨0,w⟩ = 0 for all w ∈W .

(d) No. The basis should be orthonormal.

(e) Yes. See the definition of it.

(f) No. The set {0} is orthogonal but not independent.

(g) Yes. See the Corollary 2 after Theorem 6.3.

2. The answers here might be different due to the different order of vectors
chosen to be orthogonalized.

(a) Let
S = {w1 = (1,0,1),w2 = (0,1,1),w3 = (1,3,3)}.

Pick v1 = w1. Then construct

v2 = w2 −
⟨w2, v1⟩
∥v1∥2

v1

= w2 −
1

2
v1 = (−1

2
,1,

1

2
).

And then construct

v3 = w3 −
⟨w3, v1⟩
∥v1∥2

v1 −
⟨w3, v2⟩
∥v2∥2

v2

= w3 −
4

2
v1 −

4
3
2

v2 = (1

3
,
1

3
,−1

3
).

As the demand in the exercise, we normalize v1, v2, and v3 to be

u1 = ( 1√
2
,0,

1√
2
),

u2 = (− 1√
6
,

4√
6
,

1√
6
),

u3 = ( 1√
3
,

1√
3
,− 1√

3
).
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Let β = {u1, u2, u3}. Now we have two ways to compute the Fourier
coefficients of x relative to β. One is to solve the system of equations

a1u1 + a2u2 + a3u3 = x

and get

x = 3√
2
u1 +

3√
6
u2 + 0u3.

The other is to calculate the i-th Fourier coefficient

ai = ⟨x,ui⟩

directly by Theorem 6.5. And the two consequences meet.

(b) Ur...don’t follow the original order. Pick w1 = (0,0,1), w2 = (0,1,1),
and w3 = (1,1,1) and get the answer

β = {(0,0,1), (0,1,0), (1,0,0)}

instantly. And easily we also know that the Fourier coefficients of x
relative to β are 1,0,1.

(c) The basis is

β = {1,
√

3(2x − 1),
√

5(6x2 − 6x + 1)}.

And the Fourier coefficients are 3
2
,
√
3
6
,0.

(d) The basis is

β = { 1√
2
(1, i,0), 1

2
√

17
(1 + i,1 − i,4i)}.

And the Fourier coefficients are 7+i
√
2
,
√

17i.

(e) The basis is

β = {(2

5
,−1

5
,−2

5
,
4

5
), (− 4√

30
,

2√
30
,− 3√

30
,

1√
30

),

(− 3√
155

,
4√
155

,
9√
155

,
7√
155

)}.

And the Fourier coefficients are 10,3
√

30,
√

150.

(f) The basis is

β = {( 1√
15
,− 2√

15
,− 1√

15
,

3√
15

), ( 2√
10
,

2√
10
,

1√
10
,

1√
10

),

(− 4√
30
,

2√
30
,

1√
30
,

3√
30

)}.

And the Fourier coefficients are − 3
√
15
, 4
√
10
, 12
√
30

.
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(g) The basis is

β = {(
1
2

5
6

− 1
6

1
6

) ,
⎛
⎝
−

√
2
3

√
2
3

1
√
2

− 1

3
√
2

⎞
⎠
,
⎛
⎝

1
√
2

− 1

3
√
2√

2
3

−
√
2
3

⎞
⎠
}.

And the Fourier coefficients are 24,6
√

2,−9
√

2.

(h) The basis is

β = {
⎛
⎝

2
√
13

2
√
13

2
√
13

1
√
13

⎞
⎠
,(

5
7

− 2
7

− 4
7

2
7

) ,
⎛
⎝

8
√
373

− 8
√
373

7
√
373

− 14
√
373

⎞
⎠
}.

And the Fourier coefficients are 5
√

13,−14,
√

373.

(i) The basis is

β = {
√

2 sin(t)√
π

,

√
2 cos(t)√

π
,
π − 4 sin(t)√
π3 − 8π

,
8 cos(t) + 2πt − π2

√
π5

3
− 32π

}.

And the Fourier coefficients are
√
2(2π+2)
√
π

,− 4
√
2

√
π
, π

3
+π2

−8π−8
√
π3−8π

,
π4−48

3 −16
√
π5

3 −32π
.

(j) The basis is

{( 1

2
3
2

,
i

2
3
2

,
2 − i
2

3
2

,− 1

2
3
2

), (3i + 1

2
√

5
,
i√
5
,− 1

2
√

5
,
2i + 1

2
√

5
),

( i − 7

2
√

35
,
i + 3√

35
,

5

2
√

35
,

5

2
√

35
)}.

And the Fourier coefficients are 6
√

2,4
√

5,2
√

35.

(k) The basis is

{(− 4√
47
,
3 − 2i√

47
,

i√
47
,
1 − 4i√

47
), ( 3 − i

2
√

15
,− 5i

2
√

15
,
2i − 1√

15
,
i + 2

2
√

15
),

(−i − 17

2
√

290
,

8 i − 9

2
√

290
,

8i − 9√
290

,
8i − 9

2
√

290
)}.

And the Fourier coefficients are −
√

47i−
√

47,4
√

15i−2
√

15,2
√

290i+
2
√

290.

(l) The basis is

{
⎛
⎝

1−i

2
√
10

−3i−2

2
√
10

2i+2

2
√
10

i+4

2
√
10

⎞
⎠
,
⎛
⎝

3
√
2i

5
−i−1

5
√
2

1−3i

5
√
2

i+1

5
√
2

⎞
⎠
,
⎛
⎝

−43i−2

5
√
323

1−21i

5
√
323

− 68i

5
√
323

34i

5
√
323

⎞
⎠
}.

And the Fourier coefficients are 2
√

10 − 6
√

10i,10
√

2,0.
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(m) The basis is

{
⎛
⎝

i−1

3
√
2

− i

3
√
2

2−i

3
√
2

3i+1

3
√
2

⎞
⎠
,
⎛
⎝
− 4i

√
246

−9i−11
√
246

5i+1
√
246

1−i
√
246

⎞
⎠
,
⎛
⎝

−118i−5
√
39063

−26i−7
√
39063

− 145i
√
39063

− 58
√
39063

⎞
⎠
}.

And the Fourier coefficients are 3
√

2i + 6
√

2,−
√

246i −
√

246,0.

3. Check that β is an orthonormal basis. So we have the coefficients of (3,4)
are

(3,4) ⋅ ( 1√
2
,

1√
2
) = 7√

2

and

(3,4) ⋅ ( 1√
2
,− 1√

2
) = − 1√

2
.

4. We may find the null space for the following system of equations

(a, b, c) ⋅ (1,0, i) = a − ci = 0,

(a, b, c) ⋅ (1,2,1) = a + 2b + c = 0.

So the solution set is S⊥ = span{(i,− 1
2
(1 + i),1)}.

5. We may thought x0 as a direction, and thus S⊥0 is the plane orthogonal to
it. Also, we may though the span of x1, x2 is a plane, and thus S⊥0 is the
line orthogonal to the plane.

6. Take X to be the space generated by W and {x}. Thus X is also a finite-
dimensional subspace. Apply Theorem 6.6 to x in X. We know that x
could be uniquely written as u + v with u ∈ W and v ∈ V ⊥. Since x ∉ W ,
we have v ≠ 0. Pick y = v. And we have

⟨x, y⟩ = ⟨v, v⟩ + ⟨u, v⟩ = ∥v∥2 > 0.

7. The necessity comes from the definition of orthogonal complement, since
every element in β is an element in W . For the sufficiency, assume that
⟨z, v⟩ = 0 for all v ∈ β. Since β is a basis, every element in W could be
written as

k

∑
i=1

aivi,

where ai is some scalar and vi is element in β. So we have

⟨z,
k

∑
i=1

aivi⟩ =
k

∑
i=1

ai⟨z, vi⟩ = 0.

Hence z is an element in W ⊥.
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8. We apply induction on n. When n = 1, the Gram-Schmidt process always
preserve the first vector. Suppose the statement holds for n ≤ k. Consider
the a orthogonal set of nonzero vectors

{w1,w2, . . . ,wk}.

By induction hypothesis, we know that the vectors vi = wi for i = 1,2, . . . , k−
1, where vi is the vector derived from the process. Now we apply the pro-
cess the find

vn = wn −
k−1

∑
i=1

⟨wn, vi⟩
∥vi∥2

vi

= wn − 0 = wn.

So we get the desired result.

9. The orthonormal basis for W is the set consisting of the normalized vector
(i,0,1), { 1

√
2
(i,0,1)}. To find a basis for W ⊥ is to find a basis for the null

space of the following system of equations

(a, b, c) ⋅ (i,0,1) = −ai + c = 0.

The basis would be {(1,0, i), (0,1,0)}. It’s lucky that it’s orthogonal. If
it’s not, we should apply the Gram-Schmidt process to it. Now we get the
orthonormal basis

{ 1√
2
(1,0, i), (0,1,0)}

by normalizing those elements in it.

10. By Theorem 6.6, we know that V = W ⊕W ⊥ since W ∩W ⊥ = {0} by
definition. So there’s a nature projection T on W along W ⊥. That is, we
know tht every element x in V could be writen as u + v such that u ∈W
and v ∈ W ⊥ and we define T (x) = u. Naturally, the null space N(T ) is
W ⊥. And since u and v is always orthogonal, we have

∥x∥2 = ∥u∥2 + ∥v∥2 ≥ ∥u∥2 = ∥T (x)∥2

by Exercise 6.1.10. And so we have

∥T (x)∥ ≤ ∥x∥.

11. Use the fact
(AA∗)ij = ⟨vi, vj⟩

for all i and j, where vi is the i-th row vector of A.

12. If x ∈ (R(LA∗))⊥, this means that x is orthogonal to A ∗ y for all y ∈ Fm.
So we have

0 = ⟨x,A∗y⟩ = ⟨Ax, y⟩
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for all y and hence Ax = 0 and x ∈ N(LA). Conversely, if x ∈ N(LA), we
have Ax = 0. And

⟨x,A ∗ y⟩ = ⟨Ax, y⟩ = 0

for all y. So x is a element in (R(LA∗))⊥.

13. (a) If x ∈ S⊥ then we have that x is orthogonal to all elements of S, so
are all elements of S0. Hence we have x ∈ S⊥0 .

(b) If x ∈ S, we have that x is orthogonal to all elements of S⊥. This
means x is also an element in (S⊥)⊥. And

span(S) ⊂ (S⊥)⊥

is because span(S) is the smallest subspace containing S and every
orthogonal complement is a subspace.

(c) By the previous argument, we already have that W ⊂ (W ⊥)⊥. For the
converse, if x ∉ W , we may find y ∈ W ⊥ and ⟨x, y⟩ ≠ 0. This means
that W ⊃ (W ⊥)⊥.

(d) By Theorem 6.6, we know that W = W +W ⊥. And if x ∈ W ∩W ⊥,
we have

⟨x,x⟩ = ∥x∥2 = 0.

Combine these two and get the desired conclusion.

14. We prove the first equality first. If x ∈ (W1+W2)⊥, we have x is orthogonal
to u + v for all u ∈ W1 and v ∈ W2. This means that x is orthogonal to
u = u + 0 for all u and so x is an element in W ⊥

1 . Similarly, x is also an
element in W ⊥

2 . So we have

(W1 +W2)⊥ ⊂W ⊥
1 .

Conversely, if x ∈W ⊥
1 ∩W ⊥

2 , then we have

⟨x,u⟩ = ⟨x, v⟩ = 0

for all u ∈W1 and v ∈W2. This means

⟨x,u + v⟩ = ⟨x,u⟩ + ⟨x, v⟩ = 0

for all element u + v ∈W1 +W2. And so

(W1 +W2)⊥ ⊃W ⊥
1 .

For the second equality, we have ,by Exercise 6.2.13(c),

(W1 ∩W2)⊥ = ((W ⊥
1 )⊥ ∩ (W ⊥

2 )⊥)⊥

= ((W ⊥
1 +W ⊥

2 )⊥)⊥ =W ⊥
1 +W ⊥

2 .
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15. (a) By Theorem 6.5, we have

x =
n

∑
i=1

⟨x, vi⟩vi, y =
n

∑
j=1

⟨y, vj⟩vj .

Thus we have
⟨x, y⟩ =∑

i,j

⟨⟨x, vi⟩vi, ⟨y, vj⟩vj⟩

=
n

∑
i=1

⟨⟨x, vi⟩vi, ⟨y, vi⟩vi⟩

=∑ i = 1n⟨x, vi⟩⟨y, vi⟩.

(b) The right hand side of the previous equality is the definition of the
standard inner product of Fn.

16. (a) Let W = span(S). If u is an element in W , who is finite-dimensional,
then by Exercise 6.2.15(a) we know that

∥u∥2 =
n

∑
i=1

∣⟨u, vi⟩∣2.

Now for a fixed x, we know that W ′ = span(W ∪ {x}) is finite-
dimensional. Applying Exercise 6.2.10, we have T (x) ∈ W and
∥T (x)∥ ≤ ∥x∥. This means

∥x∥2 ≥ ∥T (x)∥2 =
n

∑
i=1

∣⟨T (x), vi⟩∣2

by our discussion above. Ultimately, by the definition of T , we have
x = T (x) + y for some y who is orthogonal to all the elements in W .
Thus we have

⟨x, vi⟩ = ⟨T (x), vi⟩ + ⟨y, vi⟩ = ⟨T (x), vi⟩.

So the inequality holds.

(b) We’ve explained it.

17. First, since ⟨T (x), y⟩ = 0 for all y, we have T (x) = 0. Applying this
argument to all x we get T (x) = 0 for all x. For the second version, by
Exercise 6.1.9 we know that T (x) = 0 for all x in some basis for V . And
this means T = T0 by Theorem 2.6.

18. Let f be an odd function. Then for every even funcion g we have fg is an
odd function since

fg(t) = f(−t)g(−t) = −f(t)g(t).

So the inner product of f and g is zero. This means W ⊥
e ⊃Wo.
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Conversely, for every function h, we could write h = f + g, where

f(t) = 1

2
(h(t) + h(−t))

and

g(t) = 1

2
(h(t) − h(−t)).

If now h is an element in W ⊥
e , we have

0 = ⟨h, f⟩ = ⟨f, f⟩ + ⟨g, f⟩ = ∥f∥2

since f is a even function. This means that f = 0 and h = g, an element
in Wo.

19. Find an orthonormal basis for W and use the formula in Theorem 6.6.

(a) Pick { 1
√
17

(1,4)} as a basis for W . Thus the orthogonal projection

of u is

⟨u, 1√
17

(1,4)⟩ 1√
17

(1,4) = 26

17
(1,4).

(b) Pick { 1
√
10

(−3,1,0), 1
√
5
(2,1,0)} as a basis for W . Thus the orthogo-

nal projection of u is

⟨u, 1√
10

(−3,1,0)⟩ 1√
10

(−3,1,0) + ⟨, 1√
35

(1,3,5)⟩ 1√
35

(1,3,5)

= −1

2
(−3,1,0) + 4

7
(1,3,5) = 1

14
(29,17,40).

(c) Pick {1, 1
√
3
(2x−1)} as a basis for W . Thus the orthogonal projection

of h is

⟨h,1⟩1 + ⟨h, 1√
3
(2x − 1)⟩ 1√

3
(2x − 1)

= 29

6
+ 1

18
(2x − 1) = 1

9
(x + 1).

20. If v is the orthogonal projection of u, then the distance of u is the length
of u − v.

(a) The distance is

∥(2,6) − 26

17
(1,4)∥ = 2√

17
.

(b) The distance is

∥(2,1,3) − 1

14
(29,17,40)∥ = 1√

14
.
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(c) The distance is

∥(−2x2 + 3x + 4) − 1

9
(x + 1)∥ =

√
30527

1215
.

21. Do this with the same method as that in Exercise 6.2.19. Let {u1, u2, u3}
be the orthonormal basis given by Example 5 of this section. Then the
closest second-degree polynomial approximation is the orthogonal projec-
tion

⟨et, u1⟩u1 + ⟨et, u2⟩u2 + ⟨et, u3⟩u3

= 1

4
[(15e − 105e−1)t2 + 12t − 3e2 + 33].

22. (a) Use the Gram-Schmidt process to find a orthogonal basis {t,− 6t−5
√
t

5
}

and normalize it to be

{
√

3t,−
√

2(6t − 5
√
t)}.

(b) Do it as that we’ve done in Exercise 6.2.19. The approximation is

−20
√
t − 45t

28
.

23. (a) Let x(n), y(n), z(n) be sequences in the condition of inner product
space. Since all of them has entry not zero in only finite number of
terms, we may find an integer N such that

x(n) = y(n) = z(n)

for all n ≥ N . But this means that all of them are vectors in FN . So
it’s an inner product.

(b) It’s orthogonal since

⟨ei, ej⟩ =
∞

∑
n=1

ei(n)ej(n)

= ei(i)ej(i) + ei(j)ej(j) = 0.

And it’s orthonormal since

⟨ei, ei⟩ =
∞

∑
n=1

ei(n)ei(n) = ei(i)ei(i) = 1.

(c) i. If e1 is an element in W , we may write

e1 = a1σ1 + a2σ2 +⋯ + akσk,

where ai is some scalar. But we may observe that ai must be zero
otherwise the i-th entry of e1 is nonzero, which is impossible. So
this means that e1 = 0. It’s also impossible. Hence e1 cannot be
an element in W .
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ii. If a is a sequence in W ⊥, we have a(1) = −a(n) for all i since

⟨a, σn⟩ = a(1) + a(n) = 0

for all i. This means that if a contains one nonzero entry, then
all entries of a are nonzero. This is impossible by our definition
of the space V . Hence the only element in W ⊥ is zero.
On the other hand, we have W ⊥ = {0}⊥ = V . But by the previous
argument, we know that W ≠ V = (W ⊥)⊥.

6.3 The Adjoint of a Linear Operator

1. (a) Yes. See Theorem 6.9.

(b) No. It just for the linear mapping V → F. For example, the value of
the identity mapping from R2 to R2 is not an element in F.

(c) No. The equality holds only for the case β is an orthonormal basis.

For example, let A = (1 1
0 1

) and T = LA. Thus we have T ∗ = LA∗ .

But for the basis
β = {(1,1), (0,1)},

we have

[T ]β = ( 2 1
−1 0

) ≠ [T ∗]β = (1 0
1 1

) .

(d) Yes.See Theorem 6.9.

(e) No. Choose a = i, b = 0 and T = IC = U . We have (aT )∗ = aT ∗ ≠ aT ∗.

(f) Yes. See Theorem 6.10 and its Corollary.

(g) Yes. See Theorem 6.11.

2. Follow the prove of Theorem 6.8. The vector would be

y =
n

∑
i=1

g(vi)vi.

(a) The vector is (1,−2,4).
(b) The vector is (1,2).
(c) The vector is 210x2 − 204x + 33.

3. Use the definition and that skill used in the previous exercises.

(a) By definition we have

⟨(a, b), T ∗(x)⟩ = ⟨(2a + b, a − 3b), (3,5)⟩ = 11a − 12b.

We may observe that T ∗(x) = (11,−12).
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(b) By definition we have

⟨(z1, z2), T ∗(x)⟩ = ⟨(2z1 + iz2, (1 − i)z1), (3 − i,1 + 2i)⟩

= (5 − i)z1 + (−1 + 3i)z2.

We may observe that T ∗(x) = (5 + i,−1 − 3i).
(c) By definition we have

⟨at + b, T ∗(x)⟩ = ⟨3at + (a + 3b),4 − 2t⟩

= ∫
1

−1
−6at2 + (−2a + 6b)t + (4a + 12b)dt

We may observe that T ∗(x) = 6t + 12.

4. (b) Compute
⟨x, (cT )∗(y)⟩ = ⟨cT (x), y⟩ =

⟨T (x), cy⟩ = ⟨x,T ∗(cy)⟩ = ⟨x, cT ∗(y)⟩

for all x and y.

(c) Compute
⟨x, (TU)∗(y)⟩ = ⟨TU(x), y⟩

= ⟨U(x), T ∗(y)⟩ = ⟨x,U∗T ∗(y)⟩

for all x and y.

(e) Compute
⟨x, I∗(y)⟩ = ⟨I(x), y⟩

= ⟨x, y⟩ = ⟨x, I(y)⟩

for all x and y.

5. (a) Just write it down just as that in the proof of (c).

(a) Compute
L(A+B)∗ = (L∗A+B = (LA +LB)∗

= (LA)∗ + (LB)∗ = LA∗ +LB∗ = LA∗+B∗ .

(b) Compute
L(cA)∗ = (LcA)∗ = (cLA)∗

= c(LA)∗ = cLA∗ = LcA∗ .

(d) Compute
LA∗∗ = (LA)∗∗ = LA.

(e) Compute
LI∗ = (LI)∗ = LI .
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(b) The statement for nonsquare matrices has no difference with the
Corollary but the statement (e) cannot holds since there’s no non-
square identity matrix. To this result come from that A∗ is the
conjugate of At.

6. Compute
U∗
1 = (T + T ∗)∗ = T ∗ + T ∗∗ = T ∗ + T = U1

and
U∗
2 = (TT ∗)∗ = T ∗∗T ∗ = TT ∗ = U2.

7. Let A = (1 1
0 0

). Then N(A) ≠ N(A∗) since (0,1) is an element only in

the later one.

8. If T is invertible, then we have the inverse mapping T −1. Then we have

T ∗(T −1)∗ = (T −1T )∗ = I∗ = I.

9. For each vector v ∈ V we may write v = v1 + v2 such that v1 ∈ W and
v2 ∈W ⊥. Now check

⟨x1 + x2, T ∗(y1 + y2)⟩ = ⟨T (x1 + x2), y1 + y2⟩

= ⟨x1, y1 + y2⟩ = ⟨x1, y1⟩

and
⟨x1 + x2, T (y1 + y2)⟩ = ⟨x1 + x2, y1⟩

= ⟨x1, y1⟩ = ⟨x1 + x2, T ∗(y1 + y2)⟩

for all x = x1 + x2 and y = y1 + y2.

10. The sufficiency is easy since we may just pick y = x. For the necessity,
suppose now ∥T (x)∥ = ∥x∥. By Exercise 6.1.20 we have

⟨x, y⟩ = 1

4

4

∑
k=1

ik∥x + iky∥2

= 1

4

4

∑
k=1

ik∥T (x + iky)∥2 = 1

4

4

∑
k=1

ik∥T (x) + ikT (y)∥2

⟨T (x), T (y)⟩

if F = C. However, for the case F = R the above argument could also work
if we just pick k to be 2 and 4.
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11. We have
0 = ⟨T ∗T (x), x⟩ = ⟨T (x), T (x)⟩ = ∥T (x)∥2

for all x and hence T (x) = 0 for all x. And the second statement is also
true since we may write

TT ∗ = T ∗∗T ∗ = T0

and get T ∗ = T0. Since T = T ∗∗ = T ∗0 = T0.

12. (a) If x ∈ R(T ∗)⊥ we have

0 = ⟨x,T ∗(y)⟩ = ⟨T (x), y⟩

for all y. This means that T (x) = 0 and so x ∈ N(T ). Conversely, if
x ∈ N(T ), we have

⟨x,T ∗(y)⟩ = ⟨T (x), y⟩ = 0

for all y. This means that x is an element in R(T ∗)⊥.
(b) By Exercise 6.2.13(c) we have

N(T )⊥ = (R(T ∗)⊥)⊥ = R(T ∗)⊥.

13. (a) If x ∈ N(T ∗T ) we have T ∗T (x) = 0 and

0 = ⟨T ∗T (x), x⟩ = ⟨T (x), T (x)⟩.

This means that T (x) = 0 and x ∈ N(T ). Conversely, if x ∈ N(T ),
we have T ∗T (x) = T ∗(0) = 0 and so x ∈ N(T ∗T ).
On the other hand, since the dimension is finite, we have

R(T ∗T ) = N(T ∗T )⊥ = N(T )⊥ = R(T ∗)

by the previous exercise. Hence we have

rank(T ∗T ) = rank(T ∗) = rank(T )

by the next argument.

(b) For arbitrary matrix A, denote A to be the matrix consisting of
the conjugate of entris of A. Thus we have A∗ = At. We want to
claim that rank(A) = rank(A∗) first. Since we already have that
rank(A) = rank(At), it’s sufficient to show that rank(A) = rank(A).
By Theorem 3.6 and its Corollaries, we may just prove that {vi}i∈I
is independent if and only if {vi}i∈I is independent, where vi means
the vector obtained from vi by taking conjugate to each coordinate.
And it comes from the fact

∑
i∈I

aivi = 0
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if and only if

∑
i∈I

aivi =∑
i∈I

aivi = 0.

Finally, by Theorem 6.10 we already know that [T ]∗β = [T ∗]β for
some basis β. This means that rank(T ) = rank(T ∗). And so

rank(TT ∗) = rank(T ∗∗T ∗) = rank(T ∗) = rank(T ).

(c) It comes from the fact LA∗ = (LA)∗.

14. It’s linear since
T (cx1 + x2) = ⟨cx1 + x2, y⟩z

= c⟨x1, y⟩z + ⟨x2, y⟩z = cT (x1) + T (x2).

On the other hand, we have

⟨u,T ∗(v)⟩ = ⟨⟨u, y⟩z, v⟩

= ⟨u, y⟩⟨z, v⟩ = ⟨u, ⟨v, z⟩y⟩

for all u and v. So we have

T ∗(x) = ⟨x, z⟩y.

15. (a) Let y ∈W be given. We may define

gy(x) = ⟨T (x), y⟩2,

which is linear since T is linear and the first component of inner
product function is also linear. By Theorem 6.8 we may find an
unique vector, called T ∗(y), such that

⟨x,T ∗(y)⟩1 = ⟨T (x), y⟩2

for all x. This means T ∗(y) is always well-defined. It’s unique since

⟨x,T ∗(y)⟩1 = ⟨x,U(y)⟩1

for all x and y implies that T ∗ = U .

Finally, it’s also linear since

⟨x,T ∗(y + cz)⟩1 = ⟨T (x), y + cz⟩2

= ⟨T (x), y⟩2 + c⟨T (x), z⟩2
= ⟨x,T ∗(y)⟩1 + c⟨x,T ∗(z)⟩1

= ⟨x,T ∗(y)⟩1 + ⟨x, cT ∗(z)⟩1 = ⟨x,T ∗(y) + cT ∗(z)⟨1
for all x, y, and z.
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(b) Let
β = {v1, v2, . . . , vm}

and
γ = {u1, u2, . . . , un}.

Further, assume that

T (vj) =
n

∑
i=1

aijui.

This means that [T ]γβ = {aij}.

On the other hand, assume that

T ∗(uj) =
n

∑
i=1

cijvi.

And this means

cij = ⟨vi, T ∗(uj)⟩1 = ⟨T (vi), uj⟩2 = aji

and [T ∗]βγ = ([T ]γβ)
∗.

(c) It comes from the same reason as Exercise 6.3.13(b).

(d) See

⟨T ∗(x), y⟩ = ⟨y, T ∗(x)⟩

= ⟨T (y), x⟩ = ⟨x,T ∗(y)⟩.

(e) If T (x) = 0 we have T ∗T (x) = T ∗(0) = 0. If T ∗T (x) = 0 we have

0 = ⟨x,T ∗T (x)⟩ = ⟨T (x), T (x)⟩

and henve T (x) = 0.

16. (a) Compute
⟨x, (T +U)∗(y)⟩1 = ⟨(T +U)(x), y⟩2

= ⟨T (x) +U(x), y⟩2 = ⟨T (x), y⟩2 + ⟨U(x), y⟩2
= ⟨x,T ∗(y)⟩1 + ⟨x,U∗(y)⟩1 = ⟨x, (T ∗ +U∗)(y)⟩1

for all x and y.

(b) Compute
⟨x, (cT )∗(y)⟩1 = ⟨cT (x), y⟩2 =

⟨T (x), cy⟩2 = ⟨x,T ∗(cy)⟩1 = ⟨x, cT ∗(y)⟩1
for all x and y.
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(c) Let T is a mapping on W and U is a mapping from V to W . Compute

⟨x, (TU)∗(y)⟩1 = ⟨TU(x), y⟩2

= ⟨U(x), T ∗(y)⟩2 = ⟨x,U∗T ∗(y)⟩1
for all x and y.

Let T is a mapping from V to W and U is a mapping on V . Compute

⟨x, (TU)∗(y)⟩1 = ⟨TU(x), y⟩2

= ⟨U(x), T ∗(y)⟩1 = ⟨x,U∗T ∗(y)⟩1
for all x and y.

(d) Compute
⟨x,T ∗∗(y)⟩2 = ⟨T ∗(x), y⟩1

= ⟨x,T (y)⟩

for all x and y.

17. If x ∈ R(T ∗)⊥ we have

0 = ⟨x,T ∗(y)⟩1 = ⟨T (x), y⟩2

for all y. This means that T (x) = 0 and so x ∈ N(T ). Conversely, if
x ∈ N(T ), we have

⟨x,T ∗(y)⟩1 = ⟨T (x), y⟩2 = 0

for all y. This means that x is an element in R(T ∗)⊥.

18. For arbitrary matrix M we already have det(M) = det(M t). So it’s suf-

ficient to show that det(M) = det(M). We prove this by induction on n,
the size of a matrix. For n = 1, we have

det (a) = det (a) .

For n = 2, we have

det(a b
c d

) = ad − bc

= ad − bc = det(a b

c d
) .

Suppose the hypothesis is true for n = k − 1. Consider a k × k matrix M .
We have

det(M) =
k

∑
j=1

(−1)i+jMij ⋅ det(M̃ij)

=
k

∑
j=1

(−1)i+jMij ⋅ det(M̃ij)
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=
k

∑
j=1

(−1)i+jMij ⋅ det(M̃ ij) = det(M).

This means that
det(A) = det(At) = det(A∗).

19. Let vi be the i-th column of A. Then we have v∗i is the i-th row of A∗.
And the desired result comes from the fact

(A∗A)ij = v∗i vj = ⟨vj , vi⟩,

which is zero when i ≠ j.

20. Follow the method after Theorem 6.12.

(a) The linear function is −2t+ 5
2

with error E = 1. The quadratic function

is 1
3
t2 − 4

3
t + 2 with the error E = 0.

(b) The linear function is 5
4
t + 11

20
with error E = 3

10
. The quadratic

function is 1
56
t2 + 15

14
+ 239

280
with the error E = 8

35
.

(c) The linear function is − 9
5
t + 4

5
with error E = 2

5
. The quadratic

function is − 1
7
t2 − 9

5
t + 38

35
with the error E = 4

35
.

21. Follow the same method. We have the linear function is 2.1x − 127
20

. So
the spring constant is 2.1.

22. As the statement in Theorem 6.13, we may first find a vector u such that
AA∗u = b. Finally the minimal solution would be A∗u.

(a) The minimal solution is (2,4,−2).
(b) The minimal solution is 1

7
(2,3,1).

(c) The minimal solution is (1, ,− 1
2
, 1
2
).

(d) The minimal solution is 1
12

(7,1,3,−1).

23. (a) Direct calculate that

A∗A = (∑
m
i=1 t

2
i ∑mi=1 ti

∑mi=1 ti m
)

and get the result by

A∗A(c
d
) = A∗y.

For the second method, we may calculate that

E =
m

∑
i=1

(yi − cti − d)2

and ∂E
∂c

= 0 and ∂E
∂d

= 0 give the normal equations.
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(b) We want to claim that y = ct+d, whrer t, y are defined in the question
and c, d are a solution of the normal equations. But this is an instant
result by dividing the second equation by m.

24. (a) Check

T (cσ + τ)(k) =
∞

∑
i=k

(cσ + τ)(k)

= c
∞

∑
i=k

(σ)(k) +
∞

∑
i=k

(τ)(k)

= cT (σ)(k) + T (τ)(k).

(b) For k ≤ n we have

T (en)(k) =
∞

∑
i=k

en(i) = 1 =
n

∑
i=1

ei(k).

And for k > n we have

T (en)(k) =
∞

∑
i=k

en(i) = 0 =
n

∑
i=1

ei(k).

(c) Suppoe that T ∗ exist. We try to compute T ∗(e1) by

1 ⋅ T ∗(e1)(i) = ⟨ei, T ∗(e1)⟩ = ⟨
n

∑
i=1

ei, e1⟩ = 1.

This means that T ∗(e1)(i) = 1 for all i. This is impossible since
T ∗(e1) is not an element in V .

6.4 Normal and Self-Adjoint Operators

1. (a) Yes. Check TT ∗ = T 2 = T ∗T .

(b) No. The two matrices (1 1
0 1

) and (1 0
1 1

) have (1
0
) and (0

1
) to be

their unique normalized eigenvectors respectly.

(c) No. Consider T (a, b) = (2a, b) to be a mapping from R2 to R2 and
β to be the basis {(1,1), (1,0)}. We have T is normal with T ∗ = T .

But [T ]β = (1 0
1 2

) is not normal. Furthermore, the converse is also

not true. We may let T (a, b),= (b, b) be a mapping from R2 to R2

and β be the basis {(1,−1), (0,1)}. In this time T is not normal with

T ∗(a, b) = (0, a + b). However, [T ]β = (0 0
0 1

) is a normal matrix.

(d) Yes. This comes from Theorem 6.10.
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(e) Yes. See the Lemma before Theorem 6.17.

(f) Yes. We have I∗ = I and O∗ = O, where I and O are the identity and
zero operators.

(g) No. The mapping T (a, b) = (−b, a) is normal since T ∗(a, b) = (a,−b).
But it’s not diagonalizable since the characteristic polynomial of T
does not split.

(h) Yes. If it’s an operator on a real inner product space, use Theo-
rem 6.17. If it’s an operator on a complex inner product space, use
Theorem 6.16.

2. Use one orthonormal basis β to check [T ]β is normal, self-adjoint, or
neither. Ususally we’ll take β to be the standard basis. To find an or-
thonormal basis of eigenvectors of T for V , just find an orthonormal basis
for each eigenspace and take the union of them as the desired basis.

(a) Pick β to be the standard basis and get that

[T ]β = ( 2 −2
−2 5

) .

So it’s self-adjoint. And the basis is

{ 1√
5
(1,−2), 1√

5
(2,1)}.

(b) Pick β to be the standard basis and get that

[T ]β =
⎛
⎜
⎝

−1 1 0
0 5 0
4 −2 5

⎞
⎟
⎠
.

So it’s neither normal nor self-adjoint.

(c) Pick β to be the standard basis and get that

[T ]β = (2 i
1 2

) .

So it’s normal but not self-adjoint. And the basis is

{( 1√
2
,−1

2
+ 1

2
i), ( 1√

2
,
1

2
− 1

2
i)}.

(d) Pick an orthonormal basis β = {1,
√

3(2t − 1),
√

6(6t2 − 6t + 1)} by
Exercise 6.2.2(c) and get that

[T ]β =
⎛
⎜
⎝

0 2
√

3 0

0 0 6
√

2
0 0 0

⎞
⎟
⎠
.

So it’s neither normal nor self-adjoint.
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(e) Pick β to be the standard basis and get that

[T ]β =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

So it’s self-adjoint. And the basis is

{(1,0,0,0), 1√
2
(0,1,1,0), (0,0,0,1), 1√

2
(0,1,−1,0)}

(f) Pick β to be the standard basis and get that

[T ]β =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
.

So it’s self-adjoint. And the basis is

{ 1√
2
(1,0,−1,0), 1√

2
(0,1,0,−1), 1√

2
(1,0,1,0), 1√

2
(0,1,0,1)}

3. Just see Exercise 1(c).

4. Use the fact
(TU)∗ = U∗T ∗ = UT.

5. Observe that (T − cI)∗ = T ∗ − cI and check

(T − cI)(T − cI)∗ = (T − cI)(T ∗ − cI) = TT ∗ − cT − cT ∗ + ∣c∣2I

and

(T − cI)∗(T − cI) = (T ∗ − cI)(T − cI) = T ∗T − cT − cT ∗ + ∣c∣2I.

They are the same because TT ∗ = T ∗T .

6. (a) Observe the fact

T ∗1 = (1

2
(T + T ∗))∗ = 1

2
(T ∗ + T ) = T1

and

T ∗2 = ( 1

2i
(T − T ∗))∗ = − 1

2i
(T ∗ − T ) = T2.

(b) Observe that T ∗ = U∗
1 − iU∗

2 = U1 − iU2. This means that

U1 =
1

2
(T + T ∗) = T1

and

U2 −
1

2
(T − T ∗) = T2.
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(c) Calculate that

T1T2−T2T1 =
1

4i
(T 2−TT ∗+T ∗T −(T ∗)2)− 1

4i
(T 2+TT ∗−T ∗T −(T ∗)2)

= 1

2i
(T ∗T − TT ∗).

It equals to T0 if and only if T is normal.

7. (a) We check
⟨x, (TW )∗(y)⟩ = ⟨TW (x), y⟩ = ⟨T (x), y⟩

= ⟨T ∗(x), y⟩ = ⟨x,T (y)⟩ = ⟨x,TW (y)⟩

for all x and y in W .

(b) Let y be an element in W ⊥. We check

⟨x,T ∗(y)⟩ = ⟨T (x), y⟩ = 0

for all x ∈W , since T (x) is also an element in W by the fact that W
is T -invariant.

(c) We check
⟨x, (TW )∗(y)⟩ = ⟨TW (x), y⟩ = ⟨T (x), y⟩

⟨x,T ∗(y)⟩ = ⟨x, (T ∗)W (y)⟩.

(d) Since T is normal, we have TT ∗ = T ∗T . Also, since W is both T -
and T ∗-invariant, we have

(TW )∗ = (T ∗)W

by the previous argument. This means that

TW (TW )∗ = TW (T ∗)W = (T ∗)WTW = (TW )∗TW .

8. By Theorem 6.16 we know that T is diagonalizable. Also, by Exercise
5.4.24 we know that TW is also diagonalizable. This means that there’s a
basis for W consisting of eigenvectors of T . If x is a eigenvectors of T , then
x is also a eigenvector of T ∗ since T is normal. This means that there’s a
basis for W consisting of eigenvectors of T ∗. So W is also T -invariant.

9. By Theorem 6.15(a) we know that T (x) = 0 if and only if T ∗(x) = 0. So
we get that N(T ) = N(T ∗). Also, by Exercise 6.3.12 we know that

R(T ) = N(T ∗)⊥ = N(T )⊥ = R(T ∗).
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10. Directly calculate that

∥T (x) ± ix∥2 = ⟨T (x) ± ix, T (x) ± ix⟩ =

= ∥T (x)∥2 ± ⟨T (x), ix⟩ ± ⟨ix, T (x)⟩ + ∥x∥2

= ∥T (x)∥2 ∓ i⟨T (x), x⟩ ± ⟨T ∗(x), x⟩ + ∥x∥2 = ∥T (x)∥2 + ∥x∥2.

Also, T ± iI is injective since ∥T (x) ± x∥ = 0 if and only if T (x) = 0 and
x = 0. Now T − iI is invertible by the fact that V is finite-dimensional.
Finally we may calculate that

⟨x, [(T − iI)−1]∗(T + iI)(y)⟩ = ⟨(T − iI)−1(x), (T + iI)(y)⟩

= ⟨(T − iI)−1(x), (T ∗ + iI)(y)⟩ = ⟨(T − iI)−1(x), (T − iI)∗(y)⟩

= ⟨(T − iI)(T − iI)−1(x), y⟩ = ⟨x, y⟩

for all x and y. So we get the desired equality.

11. (a) We prove it by showing the value is equal to its own conjugate. That
is,

⟨T (x), x⟩ = ⟨x,T (x)⟩

⟨x,T ∗(x)⟩ = ⟨T (x), x⟩.

(b) As Hint, we compute

0 = ⟨T (x + y), x + y⟩

= ⟨T (x), x⟩ + ⟨T (x), y⟩ + ⟨T (y), x⟩ + ⟨T (y), y⟩

= ⟨T (x), y⟩ + ⟨T (y), x⟩.

That is, we have
⟨T (x), y⟩ = −⟨T (y), x⟩.

Also, replace y by iy and get

⟨T (x), iy⟩ = −⟨T (iy), x⟩

and hence
−i⟨T (x), y⟩ = −i⟨T (y), x⟩.

This can only happen when

⟨T (x), y⟩ = 0

for all x and y. So T is the zero mapping.
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(c) If ⟨T (x), x⟩ is real, we have

⟨T (x), x⟩ = ⟨x,T (x)⟩ = ⟨T ∗(x), x⟩.

This means that
⟨(T − T ∗)(x), x⟩ = 0

for all x. By the previous argument we get the desired conclusion
T = T ∗.

12. Since the characteristic polynomial splits, we may apply Schur’s Theorem
and get an orthonormal basis β such that [T ]β is upper triangular. Denote
the basis by

β = {v1, v2, . . . , vn}.

We already know that v1 is an eigenvector. Pick t to be the maximum
integer such that v1, v2, . . . , vt are all eigenvectors with respect to eigen-
values λi. If t = n then we’ve done. If not, we will find some contradiction.
We say that [T ]β = {Ai,j}. Thus we know that

T (vt+1) =
t+1

∑
i=1

Ai,t+1vi.

Since the basis is orthonormal, we know that

Ai,t+1 = ⟨T (vt+1), vi⟩ = ⟨vt+1, T ∗(vi)⟩

= ⟨vt+1, λivi⟩ = 0

by Theorem 6.15(c). This means that vt+1 is also an eigenvector. This is
a contradiction. So β is an orthonormal basis. By Theorem 6.17 we know
that T is self-adjoint.

13. If A is Gramian, we have A is symmetric since At = (BtB)t = BtB = A.
Also, let λ be an eigenvalue with unit eigenvector x. Then we have Ax = λx
and

λ = ⟨Ax,x⟩ = ⟨BtBx,x⟩ = ⟨Bx,Bx⟩ ≥ 0.

Conversely, if A is symmetric, we know that LA is a self-adjoint operator.
So we may find an orthonormal basis β such that [LA]β is diagonal with
the ii-entry to be λi. Denote D to be a diagonal matrix with its ii-entry
to be

√
λi. So we have D2 = [LA]β and

A = [I]αβ[LA]β[I]βα = ([I]αβD)(D[I]βα),

where α is the standard basis. Since the basis β is orthonormal, we have
[I]αβ = ([I]βα)t. So we find a matrix

B =D[I]βα

such that A = BtB.
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14. We use induction on the dimension n of V . If n = 1, U and T will be
diagonalized simultaneously by any orthonormal basis. Suppose the state-
ment is true for n ≤ k−1. Consider the case n = k. Now pick one arbitrary
eigenspace W = Eλ of T for some eigenvalue λ. Note that W is T -invariant
naturally and U -invariant since

TU(w) = UT (w) = λU(w)

for all w ∈W . If W = V , then we may apply Theorem 6.17 to the operator
U and get an orthonormal basis β consisting of eigenvectors of U . Those
vectors will also be eigenvectors of T . If W is a proper subspace of V , we
may apply the induction hypothesis to TW and UW , which are self-adjoint
by Exercise 6.4.7, and get an orthonormal basis β1 for W consisting of
eigenvectors of TW and UW . So those vectors are also eigenvectors of T
and U . On the other hand, we know that W ⊥ is also T - and U -invariant
by Exercise 6.4.7. Again, by applying the induction hypothesis we get an
orthonormal basis β2 for W ⊥ consisting of eigenvectors of T and U . Since
V is finite dimentional, we know that β = β1 ∪ β2 is an orthonormal basis
for V consisting of eigenvectors of T and U .

15. Let T = LA and U = LB . Applying the previous exercise, we find some
orthonormal basis β such that [T ]β and [U]β are diagonal. Denote α to
be the standard basis. Now we have that

[T ]β = [I]βαA[I]αβ

and
[U]β = [I]βαB[I]αβ

are diagonal. Pick P = [I]αβ and get the desired result.

16. By Schur’s Theorem A = P −1BP for some upper triangular matrix B and
invertible matrix P . Now we want to say that f(B) = O first. Since the
characteristic polynomial of A and B are the same, we have the charac-
teristic polynomial of A would be

f(t) =
n

∏
i=1

(Bii − t)

since B is upper triangular. Let C = f(B) and {ei} the be the standard
basis. We have Ce1 = 0 since (B11I−B)e1 = 0. Also, we have Cei = 0 since
(BiiI − B)ei is a linear combination of e1, e2, . . . , ei−1 and so this vector
will vanish after multiplying the matrix

i−1

∏
j=1

(BiiI −B).

So we get that f(B) = C = O. Finally, we have

f(A) = f(P −1BP ) = P −1f(B)P = O.
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17. (a) By Theorem 6.16 and Theorem 6.17 we get an orthonormal basis

α = {v1, v2, . . . , vn},

where vi is the eigenvector with respect to the eigenvalue λi, since T
is self-adjoint. For each vector x, we may write it as

x =
n

∑
i=1

aivi.

Compute

⟨T (x), x⟩ = ⟨
n

∑
i=1

aiλivi,
n

∑
i=1

aivi⟩

=
n

∑
i=1

∣ai∣2λi.

The value is greater than [no less than] zero for arbitrary set of ai’s
if and only if λi is greater than [no less than] zero for all i.

(b) Denote β to be
{e1, e2, . . . , en}.

For each x ∈ V , we may write it as

x =
n

∑
i=1

aiei.

Also compute

⟨T (x), x⟩ = ⟨
n

∑
i=1

(
n

∑
j=1

Aijaj)ei,
n

∑
i=1

aiei⟩

=
n

∑
i=1

(
n

∑
j=1

Aijaj)ai =∑
i,j

Aijajai.

(c) Since T is self-adjoint, by Theorem 6.16 and 6.17 we have A = P ∗DP
for some matrix P and some diagonal matrix D. Now if T is positive
semidefinite, we have all eigenvalue of T are nonnegative. So the ii-
entry of D is nonnegative by the previous argument. We may define a
new diagonal matrix E whose ii-entry is

√
Dii. Thus we have E2 =D

and A = (P ∗E)(EP ). Pick B to be EP and get the partial result.

Conversely, we may use the result of the previous exercise. If y =
(a1, a2, . . . , an) is a vector in Fn, then we have

y∗Ay =∑
i,j

Aijajai

and
y∗Ay = y∗B∗By = (By)∗By = ∥By∥2 ≥ 0.
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(d) Since T is self-adjoint, there’s a basis β consisting of eigenvectors of
T . For all x ∈ β, we have

U2(x) = T 2(x) = λ2x.

If λ = 0, then we have U2(x) = 0 and so U(x) = 0 = T (x) since

⟨U(x), U(x)⟩ = ⟨U∗U(x), x⟩ = ⟨U2(x), x⟩ = 0.

By the previous arguments we may assume that λ > 0. And this
means that

0 = (U2 − λ2I)(x) = (U + λI)(U − λI)(x).

But det(U +λI) cannot be zero otherwise the negative value −λ is an
eigenvalue of U . So we have U +λI is invertible and (U −λI)(x) = 0.
Hence we get U(x) = λx = T (x). Finally since U and T meet on the
basis β, we have U = T .

(e) We have T and U are diagonalizable since they are self-adjoint. Also,
by the fact TU = UT and Exercise 5.4.25, we may find a basis β
consisting of eigenvectors of U and T . Say x ∈ β is an eigenvector of
T and U with respect to λ and µ, who are nonnegative since T and
U are postive definite. Finally we get that all eigenvalue of TU is
nonnegative since TU(x) = λµx. So TU = UT is also positive definite
since they are self-adjoint by Exercise 6.4.4.

(f) Follow the notation of Exercise 6.4.17(b) and denote y = (a1, a2, . . . , an).
We have

⟨T (
n

∑
i=1

aiei),
n

∑
i=1

aiei⟩ = ⟨
n

∑
i=1

(
n

∑
j=1

Aijaj)ei,
n

∑
i=1

aiei⟩

∑
i,j

Aijajai = y∗Ay = ⟨LA(y), y⟩.

So the statement is true.

18. (a) We have T ∗T and TT ∗ are self-adjoint. If λ is an eigenvalue with
the eigenvector x, then we have T ∗T (x) = λx. Hence

λ = ⟨T ∗T (x), x⟩ = ⟨T (x), T (x)⟩ ≥ 0.

We get that T ∗T is positive semidefinite by Exercise 6.4.17(a). By
similar way we get the same result for TT ∗.

(b) We prove that N(T ∗T ) = N(T ). If x ∈ N(T ∗T ), we have

⟨T ∗T (x), x⟩ = ⟨T (x), T (x)⟩ = 0

and so T (x) = 0. If x ∈ N(T ), we have T ∗T (x) = T ∗(0) = 0.
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Now we get that null(T ∗T ) = null(T ) and null(TT ∗) = null(T ∗) since
T ∗∗ = T ∗. Also, we have rank(T ) = rank(T ∗) by the fact

rank([T ]β) = rank([T ]∗β) = rank([T ∗]β)

for some orthonormal basis β. Finally by Dimension Theorem we get
the result

rank(T ∗T ) = rank(T ) = rank(T ∗) = rank(TT ∗).

19. (a) It comes from that

⟨(T +U)(x), x⟩ = ⟨T (x), x⟩ + ⟨U(x), x⟩ > 0

and (T +U)∗ = T ∗ +U∗ = T +U .

(b) It comes from that

⟨(cT )(x), x⟩ = c⟨T (x), x⟩ > 0

and (cT )∗ = cT ∗ = cT .

(c) It comes from that

⟨T −1(x), x⟩ = ⟨y, T (y)⟩ > 0,

where y = T −1(x). Note that

(T −1)∗T ∗ = (TT −1)∗ = I.

So we have (T −1)∗ = (T ∗)−1 = T −1.

20. Check the condition one by one.

�
⟨x + z, y⟩′ = ⟨T (x + z), y⟩

= ⟨T (x), y⟩ + ⟨T (z), y⟩ = ⟨x, y⟩′ + ⟨z, y⟩′.

�
⟨cx, y⟩ = ⟨T (cx), y⟩

= c⟨T (x), y⟩ = ⟨x, y⟩′.

�
⟨x, y⟩′ = ⟨T (x), y⟩

= ⟨y, T (x)⟩ = ⟨T (y), x⟩ = ⟨y, x⟩′.

�
⟨x,x⟩′ = ⟨T (x), x⟩ > 0

if x is not zero.
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21. As Hint, we check whether UT is self-adjoint with respect to the inner
product ⟨x, y⟩′ or not. Denote F to be the operator UT with respect to
the new inner product. Compute that

⟨x,F ∗(y)⟩′ = ⟨UT (x), y⟩′ = ⟨TUT (x), y⟩

= ⟨T (x), UT (y)⟩ = ⟨x,F (y)⟩′

for all x and y. This means that UT is self-adjoint with respect to the
new inner product. And so there’s some orthonormal basis consisting of
eigenvectors of UT and all the eigenvalue is real by the Lemma before
Theorem 6.17. And these two properties is independent of the choice of
the inner product. On the other hand, T −1 is positive definite by Exercie
6.4.19(c). So the function ⟨x, y⟩′′ ∶= ⟨T −1(x), y⟩ is also a inner product by
the previous exercise. Denote F ′ to be the operator TU with respect to
this new inner product. Similarly, we have

⟨x,F ′∗(y)⟩′′ = ⟨TU(x), y⟩′′ = ⟨U(x), y⟩

= ⟨T −1(x), TU(y)⟩ = ⟨x,F ′(y)⟩′′

for all x and y. By the same argument we get the conclusion.

22. (a) For brevity, denote V1 and V2 to be the spaces with inner products
⟨⋅, ⋅⟩ and ⟨⋅, ⋅⟩′ respectly. Define fy(x) = ⟨x, y⟩′ be a function from V1
to F. We have that fy(x) is linear for x on V1. By Theorem 6.8
we have fy(x) = ⟨T (x), y⟩ for some unique vector T (x). To see T is
linear, we may check that

⟨T (x + z), y⟩ = ⟨x + z, y⟩ = ⟨x, y⟩ + ⟨z, y⟩

= ⟨T (x), y⟩ + ⟨T (z), y⟩ = ⟨T (x) + T (z), y⟩
and

⟨T (cx), y⟩ = ⟨cx, y⟩ = c⟨x, y⟩
c⟨T (x), y⟩ = ⟨cT (x), y⟩

for all x, y, and z.

(b) First, the operator T is self-adjoint since

⟨x,T ∗(y)⟩ = ⟨T (x), y⟩ = ⟨x, y⟩′

= ⟨y, x⟩ = ⟨T (y), x⟩ = ⟨x,T (y)⟩
for all x and y. Then T is positive definite on V1 since

⟨T (x), x⟩ = ⟨x,x⟩′ > 0

if x is not zero. Now we know that 0 cannot be an eigenvalue of T .
So T is invertible. Thus T −1 is the unique operator such that

⟨x, y⟩ = ⟨T −1(x), y⟩′.

By the same argument, we get that T −1 is positive definite on V2. So
T is also positive definite by Exercise 6.4.19(c).
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23. As Hint, we denote V1 and V2 are the spaces with inner products ⟨⋅, ⋅⟩
and ⟨⋅, ⋅⟩′. By the definition of ⟨⋅, ⋅⟩′, the basis β is orthonormal in V2.
So U is self-adjoint on V2 since it has an orthonormal basis consisting of
eigenvectors. Also, we get a special positive definite, and so self-adjoint,
operator T1 by Exercise 6.4.22 such that

⟨x, y⟩′ = ⟨T (x), y⟩.

We check that U = T −11 U∗T1 by

⟨x,T −11 U∗T1(y)⟩ = ⟨T1UT −11 (x), y⟩

= ⟨UT −11 (x), y⟩′ = ⟨T −11 (x), U(y)⟩′ = ⟨x,U(y)⟩
for all x and y. So we have U = T −11 U∗T1 and so T1U = U∗T1. Pick
T2 = T −11 U∗ and observe that it’s self-adjoint. Pick T ′1 = T −11 to be a
positive definite operator by Exercise 6.4.19(c). Pick T ′2 = U∗T1 to be a
self-adjoint operator. Now we have U = T2T1 = T ′1T ′2.

24. (a) Let
β = {v1, v2, . . . , vn}

and
γ = {w1,w2, . . . ,wn}

be the two described basis. Denote A to be [T ]β . We have

T (w1) = T ( v1
∥v1∥

) = A11

∥v1∥
T (v1) = A11T (v1).

Let t be the maximum integer such that T (wt) is an element in

span{w1,w2, . . . ,wt}.

If t = dim(V ), then we’ve done. If not, we have that

wt+1 =
1

L
(vt −

t

∑
j=1

⟨vt+1,wj⟩wj),

where

L = ∥vt −
t

∑
j=1

⟨vt+1,wj⟩wj∥.

By the definition of wi’s we may define

Wi = span{v1, v2, . . . , vn} = span{w1,w2, . . . ,w2}.

Now we have T (wt) ∈Wt since

T (wt) =
1

L
(T (vt) −

t−1

∑
j=1

⟨vt,wj⟩T (wj))

and T (vt) ∈Wt and T (wj) ∈Wj ⊂Wt for all j < t. This is a contra-
diction to our choice of i. So [T ]γ is an upper triangular matrix.
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(b) If the characteristic polynomial of T splits, we have an ordered basis β
such that [T ]β is upper triangular. Applying the previous argument,
we get an orthonormal basis γ such that [T ]γ is upper triangular.

6.5 Unitary and Orthogonal Operators and Their
Matrices

1. (a) Yes. See Theorem 6.18.

(b) No. Each rotation operator with nonzero angle is a counterexample.

(c) No. A matrix is invertible if it’s unitary. But an invertible matrix,

(2 0
0 1

) for example, may not be unitary.

(d) Yes. It comes from the definition of unitarily equivalence.

(e) No. For example, the idenetity matrix I is an unitary matrix but the
sum I + I is not unitary.

(f) Yes. It’s because that T is unitary if and only if TT ∗ = T ∗T = I.

(g) No. The basis β should be an orthonormal basis. For example, we
have T (a, b) = (b, a) is an orthogonal operator. But when we pick β
to be

{(1,1), (1,0)}

we get that [T ]β = (1 1
0 −1

) is not orthogonal.

(h) No. Consider the matrix (1 1
0 1

). Its eigenvalues are 1. But it’s not

orthogonal.

(i) No. See Theorem 6.18.

2. Just follow the process of diagonalization. But remember that if the di-
mension of some eigenspace is more than 1, we should choose an orthonor-
mal basis on it.

(a)

P = 1√
2
(1 1

1 −1
) ,D = (3 0

0 −1
) .

(b)

P = 1√
2
(1 1
i −i) ,D = (−i 0

0 i
) .

(c)

P = 1√
3
(

1
√

2
i + 1 − i+1√

2

) ,D = (8 0
0 −1

) .
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(d)

P =
⎛
⎜⎜
⎝

1
√
3

1
√
2

1
√
6

1
√
3

0 −
√
2

√
3

1
√
3

− 1
√
2

1
√
6

⎞
⎟⎟
⎠
,D =

⎛
⎜
⎝

4 0 0
0 −2 0
0 0 −2

⎞
⎟
⎠
.

(e)

P =
⎛
⎜⎜
⎝

1
√
3

1
√
2

1
√
6

1
√
3

0 −
√
2

√
3

1
√
3

− 1
√
2

1
√
6

⎞
⎟⎟
⎠
,D =

⎛
⎜
⎝

4 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.

3. If T and U are unitary [orthogonal] operators, then we have

∥TU(x)∥ = ∥U(x)∥ = ∥x∥.

4. Pick the standard basis β and compute the matrix representation [Tx]β =
(z). This means that T ∗z = Tz. So it always would be normal. However,
it would be self-adjoint only when z is real. And it would be unitary only
when ∣z∣ = 1.

5. For these problem, try to diagonalize the matrix which is not diagonalized
yes. And check whether it can be diagonalized by an orthonormal basis.

(a) No. They have different eigenvalues.

(b) No. Their determinant is different.

(c) No. They have different eigenvalues.

(d) Yes. We have

⎛
⎜⎜
⎝

0 1
√
2

1
√
2

0 1
√
2

− 1
√
2

1 0 0

⎞
⎟⎟
⎠

∗

⎛
⎜
⎝

0 1 0
−1 0 0
0 0 1

⎞
⎟
⎠

⎛
⎜⎜
⎝

0 1
√
2

1
√
2

0 1
√
2

− 1
√
2

1 0 0

⎞
⎟⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 i 0
0 0 −i

⎞
⎟
⎠
.

(e) No. One is symmetric but the other is not.

6. If T is unitary, we must have

0 = ∥T (f)∥2 − ∥f∥2 = ∫
1

0
∣h∣2∣f ∣2dt − ∫

1

0
∣f ∣2dt

= ∫
1

0
(1 − ∣h∣2)∣f ∣2dt

for all f ∈ V . Pick f = (1 − ∣h∣2) 1
2 and get 1 − ∣h∣2 = 0 and so ∣h∣ = 1.

Conversely, if ∣h∣ = 1, we have

∥T (f)∥2 − ∥f∥2 = ∫
1

0
∣h∣2∣f ∣2dt − ∫

1

0
∣f ∣2dt

= ∫
1

0
(1 − ∣h∣2)∣f ∣2dt = 0

and so T is unitary.
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7. By the Corollary 2 after Theorem 6.18, we may find an orthonormal basis
β such that

[T ]β =
⎛
⎜⎜⎜
⎝

λ1 0 ⋯ 0
0 λ2 ⋮
⋮ ⋱ 0
0 ⋯ 0 λn

⎞
⎟⎟⎟
⎠
.

Also, since the eigenvalue λi has its absolute value 1, we may find some
number µi such that µ2

i = λi and ∣µi∣ = 1. Denote

D =
⎛
⎜⎜⎜
⎝

µ1 0 ⋯ 0
0 µ2 ⋮
⋮ ⋱ 0
0 ⋯ 0 µn

⎞
⎟⎟⎟
⎠

to be an unitary operator. Now pick U to be the matrix whose matrix
representation with respect to β is D. Thus U is unitary and U2 = T .

8. Exercise 6.4.10 says that ((T − iI)−1)∗ = T + iI. So check that

[(T + iI)(T − iI)−1]∗(T + iI)(T − iI)−1

= ((T − iI)−1)∗(T + iI)∗(T + iI)(T − iI)−1

= (T + iI)−1(T − iI)(T + iI)(T − iI)−1

= (T + iI)−1(T + iI)(T − iI)(T − iI)−1 = I.

Use Exercise 2.4.10 we get that the operator is unitary.

9. The operator U may not be unitary. For example, let U(a, b) = (a + b,0)
be an operator on C2. Pick the basis {(1,0), (0,1)} and we may observe
that

∥U(1,0)∥ = ∥U(0,1)∥ = 1 = ∥(1,0)∥ = ∥(0,1)∥.

But it is not unitary since

∥U(1,1)∥ = 1 ≠ ∥(1,1)∥ =
√

2.

10. Exercise 2.5.10 says that tr(A) = tr(B) is A is similar to B. And we know
that A may be diagonalized as P ∗AP =D by Theorem 6.19 and Theorem
6.20. Here D is a diagonal matrix whose diagonal entries consist of all
eigenvalues. This means

tr(A) = tr(D) =
n

∑
i=1

λi

and
tr(A∗A) = tr((PDP ∗)∗(PDP ∗))

= tr(PD∗DP ∗) = tr(D∗D) =
n

∑
i=1

∣λi∣2.
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11. Extend {( 1
3
, 2
3
, 2
3
)} to be a basis and do the Gram-Schmidt process to get

an orthonormal basis. The extended basis could be

{(1

3
,
2

3
,
2

3
), (0,1,0), (0,0,1)}

and the othonormal basis would be

{(1

3
,
2

3
,
2

3
), (− 2

3
√

5
,

5

3
√

5
,− 22

3
√

5
), (− 2√

5
,0,

1√
5
)}.

So the matrix could be

⎛
⎜⎜
⎝

1
3

2
3

2
3

− 2

3
√
5

5

3
√
5

− 22

3
√
5

− 2
√
5

0 1
√
5

⎞
⎟⎟
⎠
.

12. By Theorem 6.19 and Theorem 6.20 we know that A may be diagonalized
as P ∗AP =D. Here D is a diagonal matrix whose diagonal entries consist
of all eigenvalues. Now we have

det(A) = det(PDP ∗) = det(D) =
n

∏
i=1

λi.

13. The necessity is false. For example, the two matrices (1 −1
0 0

) and

(1 0
0 0

) = (1 1
0 1

)
−1

(1 −1
0 0

)(1 1
0 1

)

are similar. But they are not unitary since one is symmetric but the other
is not.

14. We may write A = P ∗BP . Compute

⟨LA(x), x⟩ = ⟨LP ∗BP (x), x⟩

= ⟨L∗PLBLP (x), x⟩ = ⟨LB(LP (x)), LP (x)⟩.

If A is positive definite, for each vector y we may find some x such that
LP (x) = y since P is invertible. Also, we have

⟨LB(y), y⟩ = ⟨LB(LP (x)), LP (x)⟩ = ⟨LA(x), x⟩ > 0.

If B is positive definite, we may check that

⟨LA(x), x⟩⟨LB(LP (x)), LP (x)⟩ > 0.
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15. (a) We have
∥UW (x)∥ = ∥U(x)∥ = ∥x∥

and so UW is an unitary operator on W . Also, the equality above
implies that UW is injection. Since W is finite-dimensional, we get
that UW is surjective and U(W ) =W .

(b) For each elment w ∈ W we have U(y) = w for some y ∈ W by the
previous argument. Now let x be an element in W ⊥. We have U(x) =
w1 +w2 for some w1 ∈W and w2 ∈W ⊥ by Exercise 6.2.6. Since U is
unitary, we have some equalities

∥y∥2 = ∥w∥2,

∥x∥2 = ∥w1 +w2∥2 = ∥w1∥2 + ∥w2∥2

by Exercise 6.1.10. However, we also have that U(x + y) = 2w1 +w2.
So we have that

0 = ∥x + y∥2 − ∥2w1 +w2∥2

= ∥x∥2 + ∥y∥2 − 4∥w1∥2 − ∥w2∥2 = −2∥w1∥2.

This means that w1 = 0 and so U(x) = w2 ∈W ⊥.

16. This example show the finiteness in the previous exercise is important.
Let V be the space of sequence defined in Exercise 6.2.23. Also use the
notation ei in the same exercise. Now we define a unitary operator U by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U(e2i+1) = e2i−1 if i > ;
U(e1) = e2 ;
U(e2i) = U(e2i+2) if i > 0 .

It can be check that ∥U(x)∥ = ∥x∥ and U is surjective. So U is an unitary
operator. We denote W to be the subspace

span{e2, e4, e6, . . .}

and so we have
W ⊥ = {e1, e3, e5, . . .}.

Now, W is a U -invariant subspace by definition. However, we have e2 ∉
U(W ) and W ⊥ is not U -invariant since U(e1) = e2 ∉W ⊥.

17. Let A be an unitary and upper triangular matrix. For arbitrary indices i
and j such that i > j. We have Aij = 0 since A is upper triangular. But
we also have that Aji = Aij = 0. So A is a diagonal matrix.

18. Write A ∼ B to say that A is unitarily equivalent to B. Check the three
conditions in the Appendix A.

reflexivity Since A = I∗AI, we get A ∼ A.
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symmetry If A ∼ B, we have B = P ∗AP and so A = PBP ∗ = (P ∗)∗BP ∗.
This means that B ∼ A.

transitivity If A ∼ B and B ∼ C, we have B = P ∗AP and C = Q∗BQ.
This means that

C = Q∗BQ = Q∗P ∗APQ = (PQ)∗A(PQ)

and so A ∼ C.

19. By Exercise 6.1.10 we have

∥U(v1 + v2)∥2 = ∥v1 − v2∥2

= ∥v1∥2 + ∥v2∥2 = ∥v1 + v2∥2.

20. (a) If it’s a complex inner product space, we have

⟨U(x), U(y)⟩ =
4

∑
k=1

ik∥U(x) + iU(y)∥2

4

∑
k=1

ik∥U(x + iy)∥2 =
4

∑
k=1

ik∥x + iy∥2 = ⟨x, y⟩.

If it’s a real inner product space, we may also use the above equality
but take the summation only over k = 2,4.

(b) Since U(x + y) = U(x) if x ∈ W an y ∈ W ⊥, we know that R(U) =
U(W ). We get the desired result by applying the previous argument.

(c) Just extend the set
{v1, v2, . . . , vk}

to be an orthonormal basis

γ = {v1, v2, . . . , vn}

for V , where n = dim(V ). First we know that U(vj) = 0 if j > k.
So the j-th column of [U]γ is zero. On the other hand, if we write
A = [U]γ we have

U(vj) =
n

∑
i=1

Uijvi.

So the first k columns is orthonormal since

0 = ⟨U(vs), U(vt)⟩ = ⟨
n

∑
i=1

Uisvi,
n

∑
i=1

Uitvi⟩

=
n

∑
i=1

UisUit = (Aet)∗Aes
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and

1 = ⟨U(vs), U(vs)⟩ = ⟨
n

∑
i=1

Uisvi,
n

∑
i=1

Uisvi⟩

=
n

∑
i=1

UisUis = (Aes)∗Aes.

(d) Since V is finite-dimensional inner product space, we have R(U)⊥ ⊕
R(U) = V . And so by Exercise 6.5.20(b) we get the desired result.

(e) First, T is well-defined since the set β defined in the previous question
is a basis. To show that T = U∗, it’s sufficient to check that

⟨U(x), y⟩ = ⟨x,T (y)⟩

for all x and y in β by Exercise 6.1.9. We partition β into two parts
X and Y , who consist of all U(vi)’s and wi’s.

� If x = U(vi), y = U(vj) ∈X, we have

⟨U(vi), T (U(vj))⟩ = ⟨U(vi), vj⟩ = ⟨U2(vi), U(vj)⟩

by Exercise 6.5.20(a).

� If x = U(vi) ∈X and y = wj ∈ Y , we have

⟨U(vi), T (wj)⟩ = ⟨U(vi),0⟩

= 0 = ⟨U2(vi),wj⟩.

� If x = wi ∈X and y = U(vj) ∈ Y , we have

⟨wi, T (U(vj))⟩ = ⟨wi, vj⟩ = U(wi), U(vj)⟩.

� If x = wi, y = wj ∈ Y , we have

⟨wi, T (wj)⟩ = ⟨wi,0⟩ = 0 = ⟨U(wi),wj⟩.

(f) Take the subspace W ′ to be R(U). Thus we have T ((W ′)⊥) = {0}
by the definition of T . Also, we may write an element x in R(U) to
be

x =
k

∑
i=1

aiU(vi).

Since the set of U(vi)’s is orthonormal, we have

∥x∥2 =
k

∑
i=1

∣ai∣2 = ∥
k

∑
i=1

aivi∥2 = ∥T (x)∥2.

21. Since A is unitarily equivalent to B, we write B = P ∗AP for some unitary
matrix P .
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(a) Compute

tr(B∗B) = tr((P ∗AP )∗(P ∗AP )) = tr(P ∗A∗AP ) = tr(A∗A).

(b) We compute the trace of A∗A and get

tr(A∗A) =
n

∑
i=1

(A∗A)ii

=
n

∑
i=1

n

∑
k=1

(A∗)ikAki =∑
i,j

∣Aij ∣2.

Use the result in the previous argument we get the conclusion.

(c) By the previous argument, they are not unitarily equivalent since

∣1∣2 + ∣2∣2 + ∣2∣2 + ∣i∣2 = 10

is not equal to
∣i∣2 + ∣4∣2 + ∣1∣2 + ∣1∣2 = 19.

22. (a) Let f(x) = x + t be a translation. We may check it’s a rigid motion
by

∥f(x) − f(y)∥ = ∥(x + t) − (y + t)∥ = ∥x − y∥.

(b) Let f, g be two rigid motion, we have

∥fg(x) − fg(y)∥ = ∥g(x) − g(y)∥ = ∥x − y∥.

So the composition of f and g is again a rigid motion.

23. We define T to be T (x) = f(x) − f(0). By the proof of Theorem 6.22, we
know that T is an unitary operator. Also, by Theorem 6.22 we know f
is surjective since it’s composition of two invertible functions. Hence we
may find some element t such that f(t) = 2f(0). Now let g(x) = x + t.
Since T is linear, we have

T ○ g(x) = T (x + t) = T (x) + T (t)

= f(x) − f(0) + f(t) − f(0) = f(x).

Finally, if f(x) = T (x + t) = U(x + v0) for some unitary operator U and
some element v0. We’ll have

T (−v0 + t) = U(−v0 + v0) = 0.

Since T is unitary and hence injective, we know that t = v0. And thus U
must equal to T . So this composition is unique.
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24. (a) First, the composition of two unitary operators is again an unitary
operator. So UT is an unitary operator. Since det(U) = det(T ) = −1,
we have

det(UT ) = det(U)det(T ) = 1.

This means that UT must be a rotation by Theorem 6.23.

(b) It’s similar to the previous argumemnt. And now we have

det(UT ) = det(TU) = det(T )det(U) = 1 ⋅ (−1) = −1.

So they are reflections.

25. By the proof of Theorem 6.23 we know that the matrix representations of
T and U with repect to the standard basis α are

[T ]α = (cos 2φ sin 2φ
sin 2φ − cos 2φ

)

and

[U]α = (cos 2ψ sin 2ψ
sin 2ψ − cos 2ψ

) .

So we have

[UT ]α = [U]α[T ]α = (cos 2(ψ − φ) − sin 2(ψ − φ)
sin 2(ψ − φ) cos 2(ψ − φ) ) .

Hence UT is a rotation by the angle 2(ψ − φ).

26. Here we have

[T ]α = (cosφ − sinφ
sinφ cosφ

)

and

[U]α = (cos 2ψ sin 2ψ
sin 2ψ − cos 2ψ

) .

(a) Compute

[UT ]α = [U]α[T ]α = (cos 2(ψ − φ
2
) sin 2(ψ − φ

2
)

sin 2(ψ − φ
2
) − cos 2(ψ − φ

2
)
) .

So the angle is ψ − φ
2

.

(b) Compute

[TU]α = [T ]α[U]α = (cos 2(ψ + φ
2
) sin 2(ψ + φ

2
)

sin 2(ψ + φ
2
) − cos 2(ψ + φ

2
)
) .

So the angle is ψ + φ
2

.
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27. (a) We may write

(x y)(1 2
2 1

)(x
y
) .

Diagonalize the matrix and get

(x y)P ∗ (3 0
0 −1

)P (x
y
) ,

where

P = 1√
2
(1 1

1 −1
) .

So we have

(x
′

y′
) = P (x

y
) .

(b) Diagonalize (2 1
1 2

) and get

(x
′

y′
) = 1√

2
(1 1

1 −1
)(x
y
) .

(c) Diagonalize ( 1 −6
−6 −4

) and get

(x
′

y′
) = 1√

13
(2 3

3 −2
)(x
y
) .

(d) Diagonalize (3 1
1 3

) and get

(x
′

y′
) = 1√

2
(1 1

1 −1
)(x
y
) .

(e) Diagonalize ( 1 −1
−1 1

) and get

(x
′

y′
) = 1√

2
(1 1

1 −1
)(x
y
) .

28. Denote (X ′)t = (x′y′, z′). Then we have

X ′ = PX,

where P is the matrix in the solution of Exercise 6.5.2(e).
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29. (a) We have the formula

∥vk∥uk = vk = wk −
k

∑
j=1

⟨wk, vj⟩
∥vj∥2

vj

= wk −
k

∑
j=1

⟨wk, vj⟩
∥vj∥

uj = wk −
k

∑
j=1

⟨wk, uj⟩uj .

(b) It directly comes from the formula above and some computation.

(c) We have
w1 = (1,1,0),w2 = (2,0,1),w3 = (2,2,1)

and

v1 = (1,1,0), v2 = (1,−1,1), v3 = (−1

3
,
1

3
,
2

3
)

by doing the Gram-Schmidt process. This means that we have

⎛
⎜
⎝

1 2 2
1 0 2
0 1 1

⎞
⎟
⎠
=
⎛
⎜
⎝

1 1 − 1
3

1 −1 1
3

0 1 2
3

⎞
⎟
⎠

⎛
⎜
⎝

1 1 2
0 1 1

3
0 0 1

⎞
⎟
⎠
.

Then we may also compute

∥v1∥ =
√

2, ∥v2∥ =
√

3, ∥v3∥ =
√

2√
3
.

Now we have

⎛
⎜
⎝

1 2 2
1 0 2
0 1 1

⎞
⎟
⎠
=
⎛
⎜
⎝

1 1 − 1
3

1 −1 1
3

0 1 2
3

⎞
⎟
⎠

⎛
⎜
⎝

1 1 2
0 1 1

3
0 0 1

⎞
⎟
⎠

=
⎛
⎜
⎝

1 1 − 1
3

1 −1 1
3

0 1 2
3

⎞
⎟
⎠

⎛
⎜⎜
⎝

√
2 0 0

0
√

3 0

0 0
√
2

√
3

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

√
2 0 0

0
√

3 0

0 0
√
2

√
3

⎞
⎟⎟
⎠

⎛
⎜
⎝

1 1 2
0 1 1

3
0 0 1

⎞
⎟
⎠

=
⎛
⎜⎜
⎝

1
√
2

1
√
3

− 1
√
6

1
√
2

− 1
√
3

1
√
6

0 1
√
3

√
2

√
3

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

√
2

√
2 2

3
2

0
√

3 1
√
3

0 0
√
2

√
3

⎞
⎟⎟
⎠
.

Here the we have

Q =
⎛
⎜⎜
⎝

1
√
2

1
√
3

− 1
√
6

1
√
2

− 1
√
3

1
√
6

0 1
√
3

√
2

√
3

⎞
⎟⎟
⎠

and

R =
⎛
⎜⎜
⎝

√
2

√
2 2

3
2

0
√

3 1
√
3

0 0
√
2

√
3

⎞
⎟⎟
⎠
.
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(d) First that Q1, Q2 and R1, R2 are invertible otherwise A cannot be
invertible. Also, since Q1, Q2 is unitary, we have Q∗

1 = Q−1
1 and

Q∗
2 = Q−1

2 . Now we may observe that Q1Q
∗
2 = R2R

−1
1 is an unitary

matrix. But R2R
−1
1 is upper triangular since R2 and the inverse of an

upper triangular matrix R1 are triangular matrices. So D = R2R
−1
1

is both upper triangular and unitary. It could only be a unitary
diagonal matrix.

(e) Denote b by
⎛
⎜
⎝

1
11
−1

⎞
⎟
⎠

. Now we have A = QR = b. Since Q is unitary, we

have R = Q∗b. Now we have

⎛
⎜⎜
⎝

√
2

√
2 2

3
2

0
√

3 1
√
3

0 0
√
2

√
3

⎞
⎟⎟
⎠
= R = Q∗b =

⎛
⎜⎜⎜
⎝

3 ⋅ 2 3
2

− 11
√
3

2
5
2

√
3

⎞
⎟⎟⎟
⎠
.

Then we may solve it to get the answer x = 3, y = −5, and z = 4.

30. We may write
β = {v1, v2, . . . , vn}

and
γ = {u1, u2, . . . , un}.

We have that Q = [I]βγ . Now if β is orthonormal, we may compute

= uj =
n

∑
i=1

Qijvi.

Thus we know that the inner product of us and ut would be

⟨us, ut⟩ = ⟨
n

∑
i=1

Qisvi,
n

∑
i=1

Qitvi⟩

=
n

∑
i=1

QisQit,

the value of inner product of the s-th and the t-th columns of Q. So it
would be 1 if s = t and it would be 0 if s ≠ t. Finally the converse is also
true since Q∗ = [I]γβ is also an unitary matrix.

31. (a) Check that
Hu(x + cy) = x + cy − 2⟨x + cy, u⟩u

= (x − 2⟨x,u⟩u) + c(y − 2⟨y, u⟩u)

=Hu(x) + cHu(y).
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(b) Compute
Hu(x) − x = −2⟨x,u⟩u.

The value would be zero if and only if x is orthogonal to u since u is
not zero.

(c) Compute
Hu(u) = u − 2⟨u,u⟩u = u − 2u = −u.

(d) We check H∗
u =Hu by computing

⟨x,H∗
u(y)⟩ = ⟨Hu(x), y⟩ = ⟨x − 2⟨x,u⟩u⟩

= ⟨x, y⟩ − 2⟨x,u⟩ ⋅ ⟨y, u⟩

and
⟨x,Hu(y)⟩ = ⟨x, y − 2⟨y, u⟩u⟩

= ⟨x, y⟩ − 2⟨x,u⟩ ⋅ ⟨y, u⟩.

Also, compute
H2
u(x) =Hu(x − 2⟨x,u⟩u)

Hu(x) − 2⟨x,u⟩Hu(u)

(x − 2⟨x,u⟩u) + 2⟨x,u⟩u = x.

Combining Hu = H∗
u and H2

u = I, we have HuH
∗
u = H∗

uHu = I and so
Hu is unitary.

32. (a) We pick θ to be the value ⟨x, y⟩. Thus we have

⟨x, θy⟩ = ⟨x, ⟨x, y⟩y⟩

= ⟨y, x⟩⟨x, y⟩ = ⟨x, y⟩⟨y, x⟩

= ⟨x, ⟨x, y⟩y⟩ = ⟨x, θy⟩

and so the value is real. Now pick u to be the normalized vector
x−θy

∥x−θy∥
. And compute

Hu(x) = x − 2⟨x,u⟩u = x − 2⟨x, x − θy
∥x − θy∥

⟩ x − θy
∥x − θy∥

= x − 2

∥x − θy∥2
⟨x,x − θy⟩(x − θy)

= x − 2∥x∥2 − 2⟨x, θy⟩
∥x − θy∥2

(x − θy)

= x − ∥x∥2 − 2⟨x, y⟩ + ∥θy∥2

∥x − θy∥2
(x − θy)

= x − x + θy = θy.
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(b) Pick u to be the normalized vector x−y
∥x−y∥

. Compute

Hu(x) = x − 2⟨x,u⟩u = x − 2⟨x, x − y
∥x − y∥

⟩ x − y
∥x − y∥

= x − 2

∥x − y∥2
⟨x,x − y⟩(x − y)

= x − 2∥x∥2 − 2⟨x, y⟩
∥x − y∥2

(x − y)

= x − ∥x∥2 − 2⟨x, y⟩ + ∥y∥2

∥x − y∥2
(x − y)

= x − x + y = y.

6.6 Orthogonal Projections and the Spectral The-
orem

1. (a) No. Orthogonal projection is self-adjoint by Theorem 6.24. But
for general projection the statement is not true. For example, the
transformation T (a, b) = (a + b,0) is a projection which is not self-
adjoint.

(b) Yes. See the paragraph after Definition of “orthogonal projection”.

(c) Yes. This is the result of the Spectral Theorem.

(d) No. It’s true for orthogonal projection but false for general pro-
jection. For example, the the transformation T (a, b) = (a + b,0) is a
projection on W . But we have T (0,1) = (1,0) is not the point closest
to (0,1) since (0,0) is much closer.

(e) No. An unitary operator is usually invertible. But an projection is
generally not invertible. For example, the mapping T (a, b) = (a,0).

2. We could calculate the projection of (1,0) and (0,1) are

⟨(1,0), (1,2)⟩
∥(1,2)∥2

(1,2) = 1

5
(1,2)

and
⟨(0,1), (1,2)⟩

∥(1,2)∥2
(1,2) = 2

5
(1,2)

by Theorem 6.6. So we have

[T ]β =
1

5
(1 2

2 4
) .
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On the other hand, we may do the same on (1,0,0), (0,1,0), and (1,0,0)
with respect to the new subspace W = span({(1,0,1)}). First compute

⟨(1,0,0), (1,0,1)⟩
∥(1,0,1)∥2

(1,0,1) = 1

2
(1,0,1),

⟨(0,1,0), (1,0,1)⟩
∥(1,0,1)∥2

(1,0,1) = 0(1,0,1),

and
⟨(0,0,1), (1,0,1)⟩

∥(1,0,1)∥2
(1,0,1) = 1

2
(1,0,1).

Hence the matrix would be

[T ]β =
1

2

⎛
⎜
⎝

1 0 1
0 0 0
1 0 1

⎞
⎟
⎠
.

3. The first and the third step comes from the Spectral theorem and the
fact that these matrices are self-adjoint or at least normal. So we only do
the first two steps. Also, we denote the matrix Eij to be a matrix, with
suitable size, whose ij-entry is 1 and all other entries are zero. Finally,
it’s remarkble that that the matrices P and D are different from the each
questions. They are defined in Exercise 6.5.2.

(a) Let A3 = P ∗E11P and A−1 = P ∗E22P . Then we have T3 = LA3 ,
T−1 = LA−1 and

LA = 3T3 − 1T−1.

(b) Let Ai = P ∗E11P and Ai = P ∗E22P . Then we have T−i = LA−i ,
Ti = LAi and

LA = −iT−i + iTi.

(c) Let A8 = P ∗E11P and A−1 = P ∗E22P . Then we have T8 = LA8 ,
T−1 = LA−1 and

LA = 8T8 − 1T−1.

(d) Let A4 = P ∗E11P and A−2 = P ∗(E22 + E33)P . Then we have T4 =
LA4 , T−2 = LA−2 and

LA = 4T4 − 2T−2.

(e) Let A4 = P ∗E11P and A1 = P ∗(E22+E33)P . Then we have T4 = LA4 ,
T1 = LA1 and

LA = 4T4 + 1T1.

4. Since T is an orthogonal projection, we have N(T ) = R(T )⊥ and R(T ) =
N(T )⊥. Now we want to say that N(I − T ) = R(T ) = W and R(I −
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T ) = N(T ) = W ⊥ and so I − T is the orthogonal projection on W ⊥. If
x ∈ N(I − T ), we have x = T (x) ∈ R(T ). If T (x) ∈ R(T ), we have

(I − T )T (x) = T (x) − T 2(x) = T (x) − T (x) = 0.

So we have the first equality. Next, if (I − T )(x) ∈ R(I − T ) we have

T (I − T )(x) = T (x) − T 2(x) = T (x) − T (x) = 0.

If x ∈ N(T ) we have T (x) = 0 and so x = (I − T )(x) ∈ R(I − T ). So the
second equality also holds.

5. (a) Since T is an orthogonal projection, we may write V = R(T )⊕R(T )⊥.
So for each x ∈ V we could write x = u + v such that u ∈ R(T ) and
v ∈ R(T )⊥. So we have

∥T (u + v)∥ = ∥u∥ ≤ ∥u + v∥ = ∥x∥.

The example for which the in which the inequality does not hold is
T (a, b) = (a + b,0), since we have

∥T (1,1)∥ = ∥(2,0)∥ = 2 > ∥(1,1)∥ =
√

2.

Finally, if the equality holds for all x ∈ V , then we have ∥u∥ = ∥u+v∥.
Since u and v are orthogonal, we have

∥u + v∥2 = ∥u∥2 + ∥v∥2.

So the equality holds only when v = 0. This means that x is always an
element in R(T ) and so R(T ) = V . More precisely, T is the idenetity
mapping on V .

(b) If T is a projection on W along W ′, we have V =W ⊕W ′. So every
vector x ∈ V could be written as x = u+v such that u ∈W and v ∈W ′.
If W ′ ≠W ⊥, we may find some u ∈W and v ∈W ′ such that they are

not orthogonal. So ⟨u, v⟩ is not zero. We may pick t = 2∥v∥2

2Re⟨u,v⟩
and

calculate that
∥T (tu + v)∥2 = ∥tu∥2.

But now we have

∥tu + v∥2 = ∥tu∥2 + 2Re⟨tu, v⟩ + ∥v∥2

= ∥tu∥2 − ∥v∥2 < ∥T (tu + v)∥2.

So T must be an orthogonal projection.

6. It’s enough to show that R(T )⊥ = N(T ). If x ∈ R(T )⊥, we have

⟨T (x), T (x)⟩ = ⟨x,T ∗T (x)⟩ = ⟨x,T (T ∗(x))⟩ = 0
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and so T (x) = 0. If x ∈ N(T ), we have

⟨x,T (y)⟩ = ⟨T ∗(x), y⟩ = 0

since T ∗(x) = 0 by Theorem 6.15(c). Hence now we know that R(T )⊥ =
N(T ) and T is an orthogonal projection.

7. (a) It comes from Theorem 6.25(c).

(b) If

T0 = Tn =
k

∑
i=1

λni Ti.

Now pick arbitrary eigenvector vi for the eigenvalue λi. Then we
have

0 = T (vi) = (
k

∑
i=1

λni Ti)(vi) = λni vi.

This means that λni = 0 and so λi = 0 for all i. Hence we know that

T =
k

∑
i=1

λiTi = T0.

(c) By the Corollary 4 after the Spectral Theorem, we know that Ti =
gi(T ) for some polynomial gi. This means that U commutes with
each Ti if U commutes with T . Conversely, if U commutes with each
Ti, we have

TU = (
k

∑
i=1

λiTi)U =
k

∑
i=1

λiTiU

=
k

∑
i=1

λiUTi = U(
k

∑
i=1

λiTi) = UT.

(d) Pick

U =
k

∑
i=1

λ
1
2

i Ti,

where λ
1
2

i is an arbitrary square root of λi.

(e) Since T is a mapping from V to V , T is invertible if and only if
N(T ) = {0}. And N(T ) = {0} is equivalent to that 0 is not an
eigenvalue of T .

(f) If every eigen value of T is 1 or 0. Then we have T = 0T0 + 1T1 = T1,
which is a projectoin. Conversely, if T is a projection on W along
W ′, we may write any element in V as u + v such that u ∈ W and
v ∈W ′. And if λ is an eigenvalue, we have

u = T (u + v) = λ(u + v)

and so
(1 − λ)u = λv.

Then we know that the eigenvalue could only be 1 or 0.
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(g) It comes from the fact that

T ∗ =
k

∑
i=1

λiTi.

8. It directly comes from that T ∗ = g(T ) for some polynomial g.

9. (a) Since U is an operator on a finite-dimensional space, it’s sufficient
to we prove that R(U∗U)⊥ = N(U∗U) and U∗U is a projection. If
x ∈ R(U∗U)⊥, we have

⟨x,U∗U(x)⟩ = ⟨U(x), U(x)⟩ = 0

and so U∗U(x) = U∗(0) = 0. If x ∈ N(U∗U), we have

⟨x,U∗U(y)⟩ = U∗U(x), y⟩ = 0

for all y. This means that x ∈ R(U∗U)⊥. Now we know that V =
R(U∗U)⊕N(U∗U) and we can write element in V as p+q such that
p ∈ R(U∗U) and N(U∗U). Check that

U∗U(p + q) = U∗U(p) = p

by the definition of U∗ in Exercise 6.5.30(e). Hence it’s an orthogonal
projection.

(b) Use the notation in Exercise 6.5.20. Let

α = {v1, v2, . . . , vk}

be an orthonormal basis for W . Extend it to be an orthonormal basis

γ = {v1, v2, . . . , vn}

for V . Now check that

UU∗U(vi) = 0 = U(vi)

if i > k and
UU∗U(vi) = UU∗(U(vi)) = U(vi)

if i ≤ k by the definition of U∗ in Exercise 6.5.20(e). They meet on a
basis and so they are the same.

10. We use induction on the dimension n of V . If n = 1, U and T will be
diagonalized simultaneously by any orthonormal basis. Suppose the state-
ment is true for n ≤ k−1. Consider the case n = k. Now pick one arbitrary
eigenspace W = Eλ of T for some eigenvalue λ. Note that W is T -invariant
naturally and U -invariant since

TU(w) = UT (w) = λU(w)
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for all w ∈W . If W = V , then we may apply Theorem 6.16 to the operator
U and get an orthonormal basis β consisting of eigenvectors of U . Those
vectors will also be eigenvectors of T . If W is a proper subspace of V ,
we may apply the induction hypothesis to TW and UW , which are normal
by Exercise 6.4.7 and Exercise 6.4.8, and get an orthonormal basis β1 for
W consisting of eigenvectors of TW and UW . So those vectors are also
eigenvectors of T and U . On the other hand, we know that W ⊥ is also
T - and U -invariant by Exercise 6.4.7. They are also normal operators by
Exercise 6.4.7(d). Again, by applying the induction hypothesis we get an
orthonormal basis β2 for W ⊥ consisting of eigenvectors of T and U . Since
V is finite dimentional, we know that β = β1 ∪ β2 is an orthonormal basis
for V consisting of eigenvectors of T and U .

11. By Theorem 6.25(a), we may uniquely write element in the space as

v = x1 + x2 + . . . + xk

such that xi ∈Wi. If i ≠ j, we have

TiTj(v) = 0 = δijTi(v)

by the definition of Ti’s and Theorem 6.25(b). Similarly, if i = j, we have

TiTi(v) = xi = δiiTi(v).

So they are the same.

6.7 The Singular Value Decomposition and the
Pseudoinverse

1. (a) No. The mapping from R2 to R has no eigenvalues.

(b) No. It’s the the positive square root of the eigenvalues of A∗A.
For example, the singular value of 2I2 is 2,2 but not eigenvalues
of (2I)∗(2I), which is 4,4.

(c) Yes. The eigenvalue of A∗A is σ2. And the singular value of cA is the
positive square root of the eigenvalue of (cA)∗(cA) = ∣c∣2A∗A, which
is ∣c∣2σ2. So the singular value of cA is ∣c∣σ.

(d) Yes. This is the definition.

(e) No. For example, the singular value of 2I2 is 2,2 but not eigenvalues
of (2I)∗(2I), which is 4,4.

(f) No. If Ax = b is inconsistent, then A�b could never be the solution.

(g) Yes. The definition is well-defined.
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2. For these problems, choose an orthonormal basis α, usually the standard
basis, for the inner product space. Write down A = [T ]α. Pick an or-
thonormal basis β such that [T ∗T ]β is diagonal. Here the order of β
should follow the order of the value of its eigenvalue. The positive square
roots of eigenvalues of A∗A is the singular values of A and T . Extend
T (β) to be an orthonormal basis γ for W . Then we have

β = {v1, v2, . . . , vn}

and
γ = {u1, u2, . . . , um}.

(a) Pick α to be the standard basis. We have

β = {(1,0), (0,1)},

γ = { 1√
3
(1,1,1), 1√

2
(0,1,−1),

√
8√
3
(−1

2
,
1

4
,
1

4
)},

and the singular values are
√

3,
√

2.

(b) Pick

α = {f1 =
1√
2
, f2 =

√
3

2
x, f3 =

√
5

8
(3x2 − 1)}.

We have
β = {f3, f1, f2},

γ = {f1, f2},

and the singular values are
√

45.

(c) Pick

α = {f1 =
1√
2π
, f2 =

1√
π

sinx, f3 =
1√
π

cosx}.

We have
β = {f2, f3, f1},

γ = { 1√
5
(2f2 + f3),

1√
5
(2f3 − f2), f1},

and the singular values are
√

5,
√

5,
√

4.

(d) Pick α to be he standard basis. We have

β = { 1√
3
(1, i + 1),

√
2

3
(1,− i + 1

2
)},

γ = { 1√
3
(1, i + 1),

√
2

3
(1,− i + 1

2
)},

and the singular values are 2,1.
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3. Do the same to LA as that in Exercise 6.7.2. But the α here must be the
standard basis. And the matrix consisting of column vectors β and γ is
V and U respectly.

(a) We have A∗A = (3 3
3 3

). So its eigenvalue is 6,0 with eigenvectors

β = { 1√
2
(1,1), 1√

2
(1,−1)}.

Extend LA(β) to be an orthonormal basis

γ = { 1√
3
(1,1,−1), 1√

2
(1,−1,0), 1√

6
(1,1,2)}.

So we know that

U =
⎛
⎜⎜
⎝

1
√
3

1
√
2

1
√
6

1
√
3

− 1
√
2

1
√
6

− 1
√
3

0 2
√
6

⎞
⎟⎟
⎠
,Σ =

⎛
⎜
⎝

√
6 0

0 0
0 0

⎞
⎟
⎠
, V = 1√

2
(1 1

1 −1
) .

(b) We have

U = 1√
2
(1 1

1 −1
) ,Σ = (

√
2 0 0

0
√

2 0
) , V =

⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠
.

(c) We have

U = 1√
2

⎛
⎜⎜⎜⎜⎜
⎝

2
√
10

0 0 − 3
√
15

1
√
10

− 1
√
2

1
√
3

1
√
15

1
√
10

1
√
2

1
√
3

1
√
15

2
√
10

0 − 1
√
3

2
√
15

⎞
⎟⎟⎟⎟⎟
⎠

,Σ =
⎛
⎜⎜⎜
⎝

√
5 0

0 1
0 0
0 0

⎞
⎟⎟⎟
⎠
, V = 1√

2
(1 1

1 −1
) .

(d) We have

U =
⎛
⎜⎜
⎝

1
√
3

√
2

√
3

0
1

√
3

− 1
√
6

− 1
√
2

1
√
3

− 1
√
6

1
√
2

⎞
⎟⎟
⎠
,Σ =

⎛
⎜
⎝

√
3 0 0

0
√

3 0
0 0 1

⎞
⎟
⎠
, V =

⎛
⎜⎜
⎝

1 0 0
0 1

√
2

1
√
2

0 1
√
2

− 1
√
2

⎞
⎟⎟
⎠
.

(e) We have

U = 1

2
(1 + i −1 + i

1 − i 1 + i ) ,Σ = (
√

6 0
0 0

) , V =
⎛
⎝

√
2

√
3

1
√
3

i+1
√
6

−i−1
√
3

⎞
⎠
.
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(f) We have

U =
⎛
⎜⎜
⎝

1
√
3

1
√
6

1
√
2

1
√
3

− 2
√
6

0
1

√
3

1
√
6

− 1
√
2

⎞
⎟⎟
⎠
,Σ =

⎛
⎜
⎝

√
6 0 0 0

0
√

6 0 0

0 0
√

2 0

⎞
⎟
⎠
, V =

⎛
⎜⎜⎜⎜
⎝

1
√
2

0 0 1
√
2

0 0 1 0
0 1 0 0
1

√
2

0 0 − 1
√
2

⎞
⎟⎟⎟⎟
⎠

.

4. Find the singular value decomposition A = UΣV ∗. Then we have W =
UV ∗ and P = V ΣV ∗.

(a) We have

W =
⎛
⎝

1
√
2

1
√
2

1
√
2

− 1
√
2

⎞
⎠
, P =

⎛
⎝

√
2 + 1

√
2

1
√
2
−
√

2
1

√
2
−
√

2
√

2 + 1
√
2

⎞
⎠
.

(b) We have

W =
⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠
, P =

⎛
⎜
⎝

20 4 0
4 20 0
0 0 1

⎞
⎟
⎠
.

5. Use the notation in Exercise 6.7.2. Then we have

T �(y) =
r

∑
i=1

1

σi
⟨y, ui⟩vi.

(a)

T �(x1, x2, x3) = (x1 + x2 + x3
3

,
x2 − x3

2
).

(b)

T �(a + bx + cx2) = a
√

2

45
f3.

(c)

T �(a + b sinx + c cosx) = a
2
+ (2b + c) sinx + (−b + 2c) cosx

5
.

(d)

T �(z1, z2) =
1

2
(−z1 + (1 − i)z2, (1 + i)z2).

6. Use Theorem 6.29. So we compute A� = V Σ�U∗.

(a)

A� = 1

6
(1 1 −1

1 1 −1
) .

(b)

A� =
⎛
⎜
⎝

1
2

1
2

0 0
1
2

− 1
2

⎞
⎟
⎠
.
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(c)

A� = 1

5
(1 −2 3 1

1 3 −2 1
) .

(d)

A� = A−1 =
⎛
⎜
⎝

1
3

1
3

1
3

1
3

− 2
3

1
3

1
3

1
3

− 2
3

⎞
⎟
⎠
.

(e)

A� = 1

6
(1 − i 1 + i

1 i
) .

(f)

A� =
⎛
⎜⎜⎜
⎝

1
6

1
6

1
6

1
2

0 − 1
2

1
6

− 1
3

1
6

1
6

1
6

1
6

⎞
⎟⎟⎟
⎠
.

7. Use the Lemma before Theorem 6.30. We have Z1 = N(T )⊥ and Z2 =
R(T ).

(a) We have Z1 = span{v1, v2} = V and Z2 = span{u1, u2}.

(b) We have Z1 = span{v1} and Z2 = span{u1}.

(c) We have Z1 = Z2 = V =W .

(d) We have Z1 = Z2 = C2.

8. If the equation is Ax = b, then the answer is A�b.

(a) The solution is

(x1, x2) = (1

2
,
1

2
).

(b) The solution is

(x1, x2, x3, x4) = (1

2
,0,1,

1

2
).

9. (a) Use the fact that

⟨T ∗(ui), vj⟩ = { ⟨ui, σjuj⟩ if j ≤ r;
⟨ui,0⟩ if j > r,

= δijσj
for i ≤ r. We know that T ∗(ui) = σivi. And so

TT ∗(ui) = T (σivi) = σ2vi

for j ≤ r. Similarly, we know that, for i > r,

⟨T ∗(ui), vj⟩ = 0.

Hence TT ∗(ui) = 0 when i > r.
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(b) Let T = LA and use the previous argument.

(c) Use Theorem 6.26 and Exercise 6.7.9(a).

(d) Replace T by A.

10. Let β′ and γ′ be the standard bases for Fm and Fn respectly. Thus we

have [LA]γ
′

β′ = A. Also, let

β = {v1, v2, . . . , vm}

and
γ = {u1, u2, . . . , un}.

By Theorem 6.26 we know that [LA]γβ = Σ. Apply Exercise 2.5.8 we have

A = [LA]γ
′

β′ = [I]γ
′

γ [LA]γβ[I]
β
β′ = UΣV ∗.

11. (a) Since T is normal, we have that T ∗(x) = λx if T (x) = λx. Hence we
know that the eigenvalues of T ∗T are

∣λ1∣2, ∣λ2∣2, . . . , ∣λn∣2.

So we know the singular values are

∣λ1∣, ∣λ2∣, . . . , ∣λn∣.

(b) Replace T by A.

12. Let θi = λi
∣λi∣

. Now we know that

Avi = λivi = θi∣λi∣vi.

This means that AV = UΣ and so A = UΣV ∗.

13. If A is a positive semidefinite matrix with eigenvalues λi’s, we know that
A∗ = A and so λi is real and nonnegative. Furthermoer, we have

A∗A(x) = A2(x) = λ2ix.

Since λi ≥ 0, we have
√
λ2i = λi. Hence the eigenvalues of A are the singular

values of A.

14. Consider

A2 = A∗A = V ΣU∗UΣV ∗ = V Σ2V ∗ = (V ΣV ∗)2.

Both of A and V ΣV ∗ are positive definite, we know that A = V ΣV ∗ by
Exercise 6.4.17(d). So we know

V ΣV ∗ = UΣV ∗.

Since A is positive definite, we know Σ is invertible. Also, V is invertible.
Hence we get U = V finally.
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15. (a) Use the fact that
A∗A = P ∗W ∗WP = P 2

and
AA∗ =WPP ∗W ∗ =WP 2W ∗.

So A∗A = AA∗ if and only if P 2 = WP 2W ∗, which is equivalent to
WP 2 = P 2W .

(b) By the previous argument we have A is normal if and only if

P 2 =WP 2W ∗ = (WPW ∗)2.

Since P and WPW ∗ are both positive semidifinite, again by Exercise
6.4.17(d), we have the condition is equivalent to P = WPW ∗ or
PW =WP .

16. Use the singular value decomposition A = UΣV ∗. Let P = UΣU∗ and
W = UV ∗. Then we have A = PW and P is positive semidefinite and W
is unitary.

17. (a) We calculate (UT )� and U �, T � separately. First we have

UT (x1, x2) = U(x1,0) = (x1,0) = T �.

So we compute T � directly. We have N(T ) is the y-axis. So N(T )⊥
is the x-axis. Since we have

T (1,0) = (1,0),

we know that
T �(1,0) = (1,0)

and
T �(0,1) = (0,0).

Hence we have

(UT )�(x1, x2) = T �(x1, x2) = x1T �(1,0)+x2T �(0,1) = x1T �(1,0) = (x1,0).

On the other hand, we also have N(U) is the line span{(1,−1)}. So
N(U)⊥ is the line span{(1,1)}. Since we have

U(1,1) = (2,0),

we know that

U �(1,0) = 1

2
(1,1)

and
U �(0,1) = (0,0).
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Hence we have

U �(x1, x2) = x1U �(1,0) + x2U �(0,1) = (x1
2
,
x1
2

).

Finally we have

T �U �(x1, x2) = T �(x1
2
,
x1
2

) = (x1
2
,0) ≠ (UT )�(x1, x2).

(b) Let A = (1 1
0 0

) and B = (1 0
0 0

). By the previous argument, we

have A� = (
1
2

0
1
2

0
) and B� = B. Also, we have AB = B and so

(AB)� = B� = B.

18. (a) Observe that if A = UΣV ∗ is a singular value decomposition of A,
then GA = (GU)ΣV ∗ is a single value decomposition of GA. So we
have

(GA)� = V Σ�(GU)∗ = A�G∗.

(b) Observe that if A = UΣV ∗ is a singular value decomposition of A,
then AH = UΣV ∗H∗∗ = UΣ(H∗V )∗ is a single value decomposition
of AH. So we have

(AH)� =H∗V Σ�U∗ =H∗A�.

19. (a) The nonzero singular values of A are the positive square roots of the
nonzero eigenvalues of A∗A. But the eigenvalues of A∗A and that
of AA∗ are the same by Exercise 6.7.9(c). Hence we know that the
singular value decomposition of A and that of A∗ are the same.

Also, we have

(At)∗At = AA∗ = AA∗.

Since AA∗ is self-adjoint, its eigenvalues are always real. We get that
if AA∗(x) = λx, then we have

(At)∗At(x) = AA∗(x) = λx = λx,

here A means the matrix consisting of the conjugate of the entries of
A. Hence the singular value of At and that of A∗ are all the same.

(b) Let A = UΣV ∗ be a singular value decomposition of A. Then we
have A∗ = V Σ∗U∗. So

(A∗)� = U(Σ∗)�V ∗ = U(Σ�)∗V ∗ = (A�)∗.

(c) Let A = UΣV ∗ be a singular value decomposition of A. Then we
have At = (V ∗)tΣtU t. So

(At)� = (U t)∗(Σt)�V t = (U∗)t(Σ�)tV t = (A�)t.
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20. Let A = UΣV ∗ be a singular value decomposition of A. Then we have

O = A2 = UΣV ∗UΣV,

which means
ΣV ∗UΣ = O

since U and V are invertible. Now let {σi}ri=1 is the set of those singular
values of A. Denote D to be the diagonal matrix with Dii = 1

σ2 if i ≤ r
while Dii = 1 if i > r. Then we have ΣD =DΣ = Σ�. This means that

Σ�V ∗UΣ� =DΣV ∗UΣD =DOD = O.

Now we have
(A�)2 = (V Σ�U∗)2 = V Σ�U∗V Σ�U∗

= V (Σ�V ∗UΣ�)∗U∗ = V OU∗ = O.

21. Here we use the notation in 6.26.

(a) Compute
TT �T (vi) = TT �(σiui) = T (vi)

if i ≤ r, while
TT �T (vi) = TT �(0) = 0 = T (vi)

if i > r.
(b) Compute

T �TT �(ui) = T �T ( 1

σi
vi) = T �(ui)

if i ≤ r, while

T �TT �(ui) = T �T (0) = 0 = T �(ui)

if i > r.
(c) Pick an orthonormal basis α. Let A be the matrix [T ]α and A =

UΣV ∗ be a singular value decomposition of A. Then we have

(A�A)∗ = (V Σ�U∗UΣV ∗)∗ = (V Σ�ΣV ∗)∗ = A�A

and
(AA�)∗ = (UΣV ∗V Σ�U∗)∗ = (UΣΣ�U∗)∗ = AA�.

22. Observe that UT is the orthogonal projection on R(UT ) by Theorem
6.24 since it’s self-adjoint and UTUT = UT . We have that R(UT ) =
R(T ∗U∗) ⊂ R(T ∗). Also, since

UTT ∗(x) = T ∗U∗T ∗(x) = T ∗(x),
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we have R(T ∗) ⊂ R(UT ) and hence R(T ∗) = R(UT ). This means UT
and T �T are both orthogonal projections on R(T ∗) = R(UT ). By the
uniqueness of orthogonal projections, we have UT = T �T .

Next, observe that TU is the orthogonal projection on R(TU) by Theorem
6.24 since it’s self-adjoint and TUTU = TU . We have that R(TU) ⊂ R(T ).
Also, since

TUT (x) = T (x),
we have R(T ) ⊂ R(TU). By the same reason, we have TU = TT � and
they are the orthogonal projection on R(T ) = R(TU).
Finally, since we have TU − TT � = T0, we may write is as

T (U − T �) = T0.

We want to claim that R(U −T �)∩N(T ) = {0} to deduce that U −T � = T0.
Observe that R(T �) = N(T )⊥ = R(T ∗). Also, we have R(U) ⊂ R(T ∗)
otherwise we may pick x ∈W such that U(x) ∈ R(U)/R(T ∗) and get the
contradiction that

0 ≠ U(x) = UTU(x) = 0

since UT is the orthogonal projection on R(T ∗). Now we already have
R(U − T �) ⊂ R(T ∗) = N(T ). Hence the claim

R(U − T �) ∩N(T ) = {0}

holds. This means that T (U − T �)(x) = 0 only if (U − T �)(x) = 0. Since
we have T (U −T �) = T0, now we know that actually U −T � = T0 and hence
U = T �.

23. Replace T by A.

24. Replace T by A.

25. (a) By Exercise 6.3.13 T ∗T is invertible. Let U = (T ∗T )−1T ∗. Check
that

TUT = T (T ∗T )−1T ∗T = T
and

UTU = (T ∗T )−1T ∗T (T ∗T )−1T ∗ = U.
Also, both TU = T (T ∗T )−1T ∗ and UT = (T ∗T )−1T ∗T = I are self-
adjoint. Apply Exercise 6.7.21 and get the result.

(b) By Exercise 6.3.13 TT ∗ is invertible. Let U = T ∗(TT ∗)−1. Check
that

TUT = TT ∗(TT ∗)−1T = T
and

UTU = T ∗(TT ∗)−1TT ∗(TT ∗)−1 = U.
Also, both TU = TT ∗(TT ∗)−1 = I and UT = T ∗(TT ∗)−1T are self-
adjoint. Apply Exercise 6.7.21 and get the result.
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26. By Theorem 6.26, we know [T ]γ
′

β′ = Σ for some orthonormal bases β′ and

γ′, where Σ is the matrix in Theorem 6.27. In this case we know that

([T ]γ
′

β′)
� = Σ� = [T �]β

′

γ′ .

Now for other orthonormal bases β and γ. We know that

[T ]γβ = [I]γγ′Σ[I]β
′

β

is a singular value decomposition of [T ]γβ since both [I]γγ′ and [I]β
′

β are
unitary by the fact that all of them are orthonormal. Hence we have

([T ]γβ)
� = [I]ββ′Σ

�[I]γ
′

γ = [I]ββ′[T
�]β

′

γ′ [I]
γ′

γ = [T �]βγ .

27. Use the notation in Theorem 6.26. By the definition of T �, we have

TT �(x) = LL−1(x) = x.

Also, if x ∈ R(T )�, again by the definition of T �, we have TT �(x) = 0.
Hence it’s the orthogonal projection of V on R(T ).

6.8 Bilinear and Quadratic Forms

1. (a) No. A quadratic form is a function of one variable. But a bilinear
form is a function of two variables.

(b) No. We have 4I = (2I)tI(2I). But 4I and 2I has different eigenval-
ues.

(c) Yes. This is Theorem 6.34.

(d) No. See Example 5 of this section. The matrix (0 1
1 0

) is a coun-

terexample when F = Z2.

(e) Yes. Let H1 and H2 be two symmetric bilinear forms. We have

(H1 +H2)(x, y) =H1(x, y) +H2(x, y)

=H1(y, x) +H2(y, x) = (H1 +H2)(y, x).

(f) No. The bilinear forms

H1(x, y) = xt (
1 0
0 1

) y,H2(x, y) = xt (
1 1
0 1

) y

have matrix representations (1 0
0 1

) and (1 1
0 1

) respectly with the

standard basis. But both of their characteristic polynomials are (1−
t)2.
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(g) No. We must have H(0,0) = 0 since H(x,0) is a linear function of x.

(h) No. It’s n2 ≠ 2n for n ≠ 2 by the Corollary 1 after Theorem 6.32.

(i) Yes. Pick a nonzero element u ∈ V arbitrarily. If H(x,u) = 0, then
we have y = u. Otherwise pick another nonzero element v ∈ V such
that {u, v} is independent. Thus we have

y =H(x, v)u −H(x,u)v ≠ 0.

But we have

H(x, y) =H(x, v)H(x,u) −H(x,u)H(x, v) = 0.

(j) No. It needs one more condition that H is symmetric. For example,

the matrix (0 1
0 0

) has its congruent matrix

Qt (0 1
0 0

)Q = (a c
b d

)(0 1
0 0

)(a b
c d

) = (ac bc
ad bd

) .

If that congruent matrix is diagonal, we should have bc = ad = 0. If
a = b = 0 or a = c = 0, then Q is not invertible. Similarly, it cannot be
d = c = 0 or d = b = 0. So this bilinaer form is not even diagonalizable.

2. The property 1 comes from the definition of a bilinear form. The property
2 comes from that Lx(0) = Rx(0) = 0. The property 3 comes from the
computation

H(x + y, z +w) =H(x, z +w) +H(y, z +w)

=H(x, z) +H(x,w) +H(y, z) +H(y,w).

Finally, since the conditions in the definition of a bilinear form is sym-
metric for the first and the second component. So we get the property
4.

3. (a) Check that

(H1 +H2)(ax1 + x2, y) =H1(ax1 + x2, y) +H2(ax1 + x2, y)

= aH1(x1, y) +H1(x2, y) + aH2(x1, y) +H2(x2, y)

= a(H1 +H2)(x1, y) + (H1 +H2)(x2, y)

and

(H1 +H2)(x, ay1 + y2) =H1(x, ay1 + y2) +H2(x, ay1 + y2)

= aH1(x, y1) +H1(x, y2) + aH2(x, y1) +H2(x, y2)

= a(H1 +H2)(x, y1) + (H1 +H2)(x, y2).
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(b) Check that

cH(ax1 + x2, y) = caH(x1, y) + cH(x2, y)

= acH(x1, y) + cH(x2, y)
and

cH(x, ay1 + y2) = caH(x, y1) + cH(x, y2)
= acH(x, y1) + cH(x, y2).

(c) Pick H0(x, y) = 0 as the zero element and check the condition for a
vector space.

4. (a) Yes. The form f × g is bilinear and the integral operator is linear.

(b) No. If J(x, y) ≠ 0 for some x and y, then we have

H(cx, y) = [J(cx, y)]2 = c2[J(x, y)]2 ≠ cH(x, y).

(c) No. We have
H(2,1) = 4 ≠ 2H(1,1) = 6.

(d) Yes. The determinant function is an n-linear function and now n is
2.

(e) Yes. When the field if R, the inner product function is a bilinear
form.

(f) No. It fails when F = C. If we pick V = C and choose the standard
inner product. Thus we have

H(1, i) = ⟨1, i⟩ = −1 ≠ iH(1,1) = i.

5. See the definition of the matrix representation.

(a) It’s a bilinear form since

H
⎛
⎜
⎝

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
,
⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠

⎞
⎟
⎠
=
⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠

t
⎛
⎜
⎝

1 −2 0
1 0 0
0 0 −1

⎞
⎟
⎠

⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠
.

The matrix representation is

⎛
⎜
⎝

0 2 −2
2 0 −2
1 1 0

⎞
⎟
⎠
.

(b) It’s a bilinear form since

H ((a1 a2
a3 a4

) ,(b1 b2
b3 b4

)) =
⎛
⎜⎜⎜
⎝

a1
a2
a3
a4

⎞
⎟⎟⎟
⎠

t

⎛
⎜⎜⎜
⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

b1
b2
b3
b4

⎞
⎟⎟⎟
⎠
.

The matrix above is the matrix representation with respect to the
standard basis.
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(c) Let
f = a1 cos t + a2 sin t + a3 cos 2t + a4 sin 2t

and
g = b1 cos t + b2 sin t + b3 cos 2t + b4 sin 2t.

We compute that

H(f, g) = (a2 + 2a4)(−b1 − 4b3)

=
⎛
⎜⎜⎜
⎝

a1
a2
a3
a4

⎞
⎟⎟⎟
⎠

t

⎛
⎜⎜⎜
⎝

0 0 0 0
−1 0 −4 0
0 0 0 0
−1 0 −4 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

b1
b2
b3
b4

⎞
⎟⎟⎟
⎠
.

Hence it’s a bilinear form. And the matrix is the matrix representa-
tion.

6. We have

H ((a1
a2

) ,(b1
b2

)) = (a1
a2

)
t

(0 1
1 0

)(b1
b2

) .

Hence we find the matrix A. And the form xtAy is a bilinear form.

7. (a) Check that

T̂ (H)(ax1, x2, y) =H(T (ax1 + x2), T (y))

=H(aT (x1) + T (x2), T (y)) = aH(T (x1), T (y)) +H(T (x2), T (y))

= aT̂ (H)(x1, y) + T̂ (H)(x2, y)

and
T̂ (H)(x, ay1 + y2) =H(T (x,T (ay1 + y2))

=H(T (x), aT (y1) + T (y2)) = aH(T (x), T (y1)) +H(T (x), T (y2))

= aT̂ (H)(x, y1) + T̂ (H)(x, y2).

(b) Check that

T̂ (cH1 +H2)(x, y) = (cH1 +H2)(T (x), T (y))

= cH1(T (x), T (y)) +H2(T (x), T (y))

= [cT̂ (H1) + T̂ (H)](x, y).

(c) Suppose T is injective and surjective. If H is an nonzero bilinear form
with H(x1, y1) ≠ 0 for some x1, y1 ∈W and T̂ (H) is the zero bilinear
form, we may find x0, y0 ∈ V such that T (x0) = x1 and T (y0) = y1
since T is surjective. Thus we’ll have

0 = T̂ (H)(x0, x1) =H(x, y) ≠ 0,
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a contradiction. This means that T̂ is injective. On the other hand,
since T is an isomorphism, the inverse of T exists. Then for each
H ∈ B(V ), we can define

H0(x, y) ∶=H0(T −1(x), T −1(y))

such that
T̂ (H0) =H.

8. (a) Let β = {vi}. We know that (ψβ(H))ij =H(vi, vj). So we have

(ψβ(cH1 +H2))ij = (cH1 +H2)(vi, vj)

= cH1(vi, vj) +H2(vi, vj) = c(ψβ(H1))ij + (ψβ(H2))ij .

(b) The form H ′(u, v) ∶= utAv is a bilinear form when u, v ∈ Fn. We
know that φβ is an isomorphism from V to Fn. This means that

H = φ̂−1β (H ′)

is a bilinear form by Exercise 6.8.7.

(c) Let β = {vi}. And let

x =
n

∑
i=1

aivi, y =
n

∑
i=1

bivi.

Thus we have

H(x, y) =H(
n

∑
i=1

aivi,
n

∑
i=1

bivi)

∑
i,j

aibiH(vi, vj) = [φβ(x)]tA[φβ(y)].

9. (a) It comes from the fact that dim(Mn×n(F)) = n2.

(b) Let Eij be the matrix whose ij-entry is 1 and other entries are zero.
Then we know that {Eij}ij is a basis in Mn×n(F). Since ψβ is an
isomorphism, the set ψ−1β ({Eij}ij) is a basis for B(V ).

10. The necessity comes from Exercise 6.8.8(c). For the sufficiency, we know
that

(ψβ(H))ij =H(vi, vj) = etiAej = Aij ,

where vi, vj are elements in β and ei, ej are the elements in the standard
basis in Fn.

11. Pick β to be the standard basis and apply the Corollary 3 after Theorem
6.32. Thus we have [φβ(x)] = x.

12. Prove the three conditions.
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reflexivity We have A is congruent to A since A = ItAI.

symmetry If A is congruent to B, we have B = QtAQ for some in-
vertible matrix Q. Hence we know that B is congruent to A since
A = (Q−1)tAQ−1.

transitivity If A is congruent to B and B is congruent to C, we have
B = QtAQ and C = P tBP . Thus we know that A is congruent to C
since C = (QP )tA(QP ).

13. (a) If x is an element in V , then φγ(x) and φβ(x) are the γ-coordinates
and the β-coordinates respectly. By the definition of Q, we have

φβ(x) = LQφγ(x)

for all x ∈ V .

(b) By the Corollary 2 after Theorem 6.32, we know that

H(x, y) = [φγ(x)]tψγ(H)[φγ(y)] = [φβ(x)]tψβ(H)[φβ(y)].

By the previous argument we know that

[φγ(x)]tQtψβ(H)Q[φγ(y)] = [φγ(x)]tψγ(H)[φγ(y)],

where Q is the change of coordinate matrix changing γ-coordinates
to β-coordinates. Again, by the Corrolary 2 after Theorem 6.32 we
know the matrix Qtψβ(H)Q must be the matrix ψγ(H). Hence they
are congruent.

14. Since they are congruent, we have

Qtψβ(H)Q = ψγ(H)

for some invertible matrix Q. But invertible matrix will preserve the rank,
so we know their rank are the same.

15. (a) If A is a square diagonal matrix, then we have Aij = Aji = 0.

(b) If A is a matrix congruent to a diagonal matrix B, then we have
B = QtAQ and A = (Q−1)tBQ−1. This means A is symmetric since

At = (Q−1)tBtQ−1 = (Q−1)tBQ−1 = A.

(c) Say α to be the standard basis and β to be the basis in Theorem 6.35.
Let H = ψ−1α (A) be the bilinear form whose matrix representation is
A. Thus we know that ψα(H) = A and ψβ(H) are congruent. Also,
by Theorem 6.35 we know that ψβ(H) is diagonal.

16. If K(x) =H(x,x), then we have

K(x + y) =H(x + y, x + y) =H(x,x) + 2H(x, y) +H(y, y)
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=K(x) + 2H(x, y) +K(y).

If F is not of characteristic two, we get the formula

H(x, y) = 1

2
[K(x + y) −K(x) −K(y)].

17. Use the formula given in the previous exercise to find H. To diagonalize
it, we may use the method in the paragraph after Theorem 6.35. Here the
notation α is the standard basis in the corresponding vector spaces.

(a) We have

H ((a1
a2

) ,(b1
b2

)) = 1

2
[K (a1 + b1

a2 + b2
) −K (a1

a2
) −K (b1

b2
)]

= −2a1b1 + 2a1b2 + 2a2b1 + a2b2.

Also, we have φα = (−2 2
2 1

). Hence we know that

(1 0
1 1

)(−2 2
2 1

)(1 1
0 1

) = (−2 0
0 3

) .

So the basis β could be

{(1,0), (1,1)}.

(b) We have

H ((a1
a2

) ,(b1
b2

)) = 7a1b1 − 4a1b2 − 4a2b1 + a2b2

and

β = {(1,0), (4

7
,1)}.

(c) We have

H
⎛
⎜
⎝

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
,
⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠

⎞
⎟
⎠
= 3a1b1 + 3a2b2 + 3a3b3 − a1b3 − a3b1.

and

β = {(1,0,0), (0,1,0), (1

3
,0,1)}.

18. As what we did in the previous exercise, we set

K
⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠
= 3t21 + 3t22 + 3t23 − 2t1t3
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and find

H
⎛
⎜
⎝

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
,
⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠

⎞
⎟
⎠
= 3a1b1 + 3a2b2 + 3a3b3 − a1b3 − a3b1

such that H(x,x) =K(x) and H is a bilinear form. This means that

K
⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠
= (t1 t2 t3)

⎛
⎜
⎝

3 0 −1
0 3 0
−1 0 3

⎞
⎟
⎠

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

= (t1 t2 t3)
⎛
⎜⎜
⎝

1
√
2

1
√
2

0

0 0 1
− 1

√
2

1
√
2

0

⎞
⎟⎟
⎠

⎛
⎜
⎝

4 0 0
0 2 0
0 0 3

⎞
⎟
⎠

⎛
⎜⎜
⎝

1
√
2

0 − 1
√
2

1
√
2

0 1
√
2

0 1 0

⎞
⎟⎟
⎠

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠
.

Note that here we may diagonalize it in sence of eigenvectors. Thus we
pick

β = {( 1√
2
,0,− 1√

2
), ( 1√

2
,0,

1√
2
), (0,1,0).}

And take

⎛
⎜
⎝

t′1
t′2
t′3

⎞
⎟
⎠
=
⎛
⎜⎜
⎝

1
√
2

0 − 1
√
2

1
√
2

0 1
√
2

0 1 0

⎞
⎟⎟
⎠

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠
.

Thus we have

3t21 + 3t22 + 3t23 − 2t1t= (t′1 t′2 t′3)
⎛
⎜
⎝

4 0 0
0 2 0
0 0 3

⎞
⎟
⎠

⎛
⎜
⎝

t′1
t′2
t′3

⎞
⎟
⎠

= 4(t′1)2 + 2(t′2)2 + 3(t′3)2.
Hence the original equality is that

4(t′1)2 + 2(t′2)2 + 3(t′3)2 + l.o.t = 0,

where l.o.t means some lower order terms. Hence S is a ellipsoid.

19. Here we use the noation in the proof of Theorem 6.37. Also, the equation

n

∑
i=1

(1

2
λi − ε)s2i < f(x) <

n

∑
i=1

(1

2
λi + ε)s2i

is helpful.

(a) Since 0 < rank(A) < n and A has no negative eigenvalues, we could
find a positive eigenvalue λi of A. Then take x = sivi. Then we’ll
have that

f(x) > (1

2
λi − ε)s2i > 0 = f(0).

We may pick si arbitrarily small such that ∥x−p∥ could be arbitrarily
small. Hence f has no local maximum at p.
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(b) Since 0 < rank(A) < n and A has no positive eigenvalues, we could
find a negative eigenvalue λi of A. Then take x = sivi. Then we’ll
have that

f(x) < (1

2
λi + ε)s2i < 0 = f(0).

We may pick si arbitrarily small such that ∥x−p∥ could be arbitrarily
small. Hence f has no local minimum at p.

20. Observe that D is the determinant of the Hessian matrix A. Here we
denote λ1, λ2 to be the two eigenvalues of A, which exist since A is real
symmetric.

(a) If D > 0, we know that λ1 and λ2 could not be zero. Since ∂2f(p)
∂t21

> 0,

we have ∂2f(p)
∂t22

> 0 otherwise we’ll have D ≤ 0. Hence the trace of A

is positive. Thus we have

λ1 + λ2 = −tr(A) < 0

and
λ1λ2 =D > 0.

This means that both of them are negative. Hence p is a local mini-
mum by the Second Derivative Test.

(b) If D < 0, we know that λ1 and λ2 could not be zero. Since ∂2f(p)
∂t21

< 0,

we have ∂2f(p)
∂t22

< 0 otherwise we’ll have D ≥ 0. Hence the trace of A

is negative. Thus we have

λ1 + λ2 = −tr(A) > 0

and
λ1λ2 =D < 0.

This means that both of them are positive. Hence p is a local maxi-
mum by the Second Derivative Test.

(c) If D < 0, we know that λ1 and λ2 could not be zero. Also, we have

λ1λ2 =D < 0.

This means that they cannot be both positive or both negative.
Again, by the Second Derivative Test, it’s a saddle point.

(d) If D = 0, then one of λ1 and λ2 should be zero. Apply the Second
Derivative Test.

21. As Hint, we know that
EtA = (AtE)t.

That is, do the same column operation on At. This means that do the
same row operation on A.
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22. See the paragraph after Theorem 6.35.

(a) Take

( 1 0
−3 1

)A(1 −3
0 1

) = (1 0
0 −7

) .

(b) Take

( 1 1
− 1

2
1
2

)A(1 − 1
2

1 1
2

) = (2 0
0 − 1

2

) .

(c) Take

⎛
⎜
⎝

1 − 1
4

2
0 1 0
0 0 1

⎞
⎟
⎠
A

⎛
⎜
⎝

1 0 0
− 1

4
1 0

2 0 1

⎞
⎟
⎠
=
⎛
⎜
⎝

19
4

0 0
0 4 0
0 0 −1

⎞
⎟
⎠
.

23. Since each permutation could be decomposed into several 2-cycle, inter-
changing two elements, we may just prove the statement when the per-
mutation is 2-cycle. Let A be a diagonal matrix and B be the diagonal
matrix obtained from A by interchanging the ii-entry and the jj-entry.
Take E be the elementary matrix interchaning the i-th and the j-th row.
Then we have E is symmetric and EAE = B.

24. (a) Compute that

H(ax1 + x2, y) = ⟨ax1 + x2, T (y)⟩

= a⟨x1, T (y)⟩ + ⟨x2, T (y)⟩
= aH(x1, y) +H(x2, y)

and

H(x, ay1 + y2) = ⟨x,T (ay1 + y2)⟩ = ⟨x, aT (x1) + T (x2)⟩

= a⟨x,T (y1)⟩ + ⟨x,T (y2)⟩
= aH(x, y1) +H(x, y2).

(b) Compute that
H(y, x) = ⟨y, T (x)⟩

= ⟨T (x), y⟩ = ⟨x,T ∗(y)⟩.
The value equal to H(x, y) = ⟨x,T (y)⟩ for all x and y if and only if
T = T ∗.

(c) By Exercise 6.4.22 the operator T must be a positive semidifinite
operator.

(d) It fail since
H(x, iy) = ⟨x,T (iy)⟩ = ⟨x, iT (y)⟩

= −i⟨x,T (y)⟩ ≠ iH(x, y)
in genereal.
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25. Let A = ψβ(H) for some orthonormal basis β. And let T be the operator
such that [T ]β = A. By Exercise 6.8.5 we have

H(x, y) = [φβ(x)]tA[φβ(y)] = [φβ(x)]t[T ]β[φβ(y)] = [φβ(x)]t[φβ(T (y))].

Also, by Parseval’s Identity in Exercise 6.2.15 we know that

⟨x,T (y)⟩ =
n

∑
i=1

⟨x, vi⟩⟨T (y), vi⟩ = [φβ(x)]t[φβ(T (y))]

since β is orthonormal.

26. Use the Corollary 2 after Theorem 6.38. Let p, q be the number of positive
and negative eigenvalues respectly. Then we have

p + q ≤ n.

Hence we have

(3 + n − 1

n
) = (n + 2

2
) = (n + 2)(n + 1)

2

possibilities.

6.9 Einstein’s Special Theory of Relativity

1. (b) It comes from that Tv(ei) = ei for i = 2,3.

(c) By the axiom (R4), we know that

Tv

⎛
⎜⎜⎜
⎝

a
0
0
d

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

a′

0
0
d′

⎞
⎟⎟⎟
⎠
.

(d) We compute that, for i = 2,3 and j = 1,4,

⟨T ∗v (ei), ej⟩ = ⟨ei, Tv(ej)⟩ = 0

by the fact that Tv(ej) ∈ span({e1, e4}). Hence we know that span({e2, e3})
is T ∗v -invariant.

On the other hand, we compute that, for i = 2,3 and j = 1,4,

⟨T ∗v (ej), ei⟩ = ⟨ej , Tv(ei)⟩ = ⟨ej , ei⟩ = 0.

So span({e1, e4}) is T ∗v -invariant.

2. We already have that
⟨T ∗v LATv(w),w⟩ = 0

if ⟨LA(w),w⟩ = 0 for w ∈ R4 whose fourth entry is nonnegative. Now if we
have ⟨LA(w),w⟩ = 0 for some w is a vector in R4 whose fourth entry is
negative, then we have

0 = ⟨T ∗v LATv(−w),−w⟩ = (−1)2⟨T ∗v LATv(w),w⟩ = ⟨T ∗v LATv(w),w⟩.
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3. (a) The set {w1,w2} is linearly independent by definition. Also, we have
w1 = e1 + e4 and w2 = e1 − e4 are both elements in span({e1, e4}).
Hence it’s a basis for span({e1, e4}). Naturally, it’s orthogonal since
⟨w1,w2⟩ = 0.

(b) For brevity, we write W = span({e1, e4}). We have Tv(W ) ⊂W and
T ∗v (W ) ⊂W by Theorem 6.39. Also, W is LA-invariant if we directly
check it. Hence W is T ∗v LATv-invariant.

4. We know that B∗
vABv = [T ∗v LATv]β and [LA]β . So (a) and (b) in the

Corollary is equivalent. We only prove (a) by the steps given by Hints.
For brevity, we write U = T ∗v LATv and C = B∗

vABv.

(a) We have U(ei) = ei for i = 2,3 by Theorem 6.39. By Theorem 6.41
we have

{ U(e1) +U(e4) = U(e1 + e4) = U(w1) = aw2 = ae1 − ae4,
U(e1) −U(e4) = U(e1 − e4) = U(w2) = bw1 = be1 + be2.

Solving this system of equations we get that

{ U(e1) = pe1 − qe4,
U(e4) = qe1 − pe2,

where p = a+b
2

and q = a−b
2

. Write down the matrix representation of
U and get the result.

(b) Since C is self-adjoint, we know that q = −q and so q = 0.

(c) Let w = e2+e4. Then we know that ⟨LA(w),w⟩ = 0. Now we calculate
that

U(w) = U(e2 + e4) = e2 − pe4.

By Theorem 6.40 we know that

⟨U(w),w⟩ = ⟨e2 − pe4, e2 + e4⟩ = 1 − p = 0.

Hence we must have p = 0.

5. We only know that

Tv

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

−vt′′
0
0
t′′

⎞
⎟⎟⎟
⎠

for some t′′ > 0. Compute that

⟨T ∗v LATv
⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
= ⟨LA

⎛
⎜⎜⎜
⎝

−vt′′
0
0
t′′

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

−vt′′
0
0
t′′

⎞
⎟⎟⎟
⎠
= (t′′)2(v2 − 1)
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and

⟨T ∗v LATv
⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
= ⟨LA

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
⟩ = −1

by Theorem 6.41. Hence we have (t′′)2(v2 − 1) = −1 and so t′′ = 1
√
1−v2

.

6. Note that if S2 is moving past S1 at a velocity v > 0 as measured on S,
the Tv is the transformation from space-time coordinates of S1 to that of
S2. So now we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Tv1 ∶ S → S′,
Tv2 ∶ S′ → S′′,
Tv3 ∶ S → S′′.

The given condition says that Tv3 = Tv2Tv3 . This means that

Bv2Bv1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
√

1−v22
0 0 −v2√

1−v22

0 1 0 0
0 0 1 0
−v2√
1−v22

0 0 1
√

1−v22

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
√

1−v21
0 0 −v1√

1−v21

0 1 0 0
0 0 1 0
−v1√
1−v21

0 0 1
√

1−v21

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1+v2v1√
(1−v22)(1−v

2
1)

0 0 −v2−v1√
(1−v22)(1−v

2
1)

0 1 0 0
0 0 1 0

v2−v1√
(1−v22)(1−v

2
1)

0 0 1+v2v1√
(1−v22)(1−v

2
1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= Bv3 .

Hence we know that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1+v2v1√
(1−v22)(1−v

2
1)

= 1
√

1−v23
,

−v2−v1√
(1−v22)(1−v

2
1)

= −v3√
1−v23

.

By dividing the second equality by the first equality, we get the result

v3 =
v1 + v2
1 + v1v2

.

7. Directly compute that (Bv)−1 = B(−v). If S′ moves at a negative velocity v
relative to S. Then we have S moves at a positive velocity v relative to S′.
Let Tv be the transformation from S to S′. Then we have [T −1v ]β] = B(−v)

and so [Tv]β = Bv.

8. In point of view of Earth, the astronaut should travel 2 × 99/0.99 = 200
years. So it will come back in the year 2200. However, let Tv and T−v be
the transformation from the space on Earth to the space of the astronaut
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in the tour forward and the tour backward respectly. We may calculate
that

Tv

⎛
⎜⎜⎜
⎝

99
0
0

100

⎞
⎟⎟⎟
⎠
= 1√

1 − 0.992

⎛
⎜⎜⎜
⎝

0
0
0

100 − 99 × 0.99

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

0
0
0

14.1

⎞
⎟⎟⎟
⎠
.

Hence the astronaut spent 14.1 years to travel to that star measured by
himself. Similarly, we may compute that

T−v

⎛
⎜⎜⎜
⎝

99
0
0

−100

⎞
⎟⎟⎟
⎠
= 1√

1 − 0.992

⎛
⎜⎜⎜
⎝

0
0
0

−100 + 99 × 0.99

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

0
0
0

−14.1

⎞
⎟⎟⎟
⎠
.

Hence he spent 14.1 years to travel back in his mind. Combining these
two, he spent 28.2 years. Hence he would be return to Earth at age 48.2.

9. (a) The distance from earth to the star is b as measured on C.

(b) At time t, the space-time coordinates of the star relative to S′ and
C ′ are

Bv

⎛
⎜⎜⎜
⎝

b
0
0
t

⎞
⎟⎟⎟
⎠
= 1√

1 − v2

⎛
⎜⎜⎜
⎝

b − vt
0
0

t − bv

⎞
⎟⎟⎟
⎠
.

(c) Compute x′ + t′v to eliminate the parameter t by

x′ − t′v = 1√
1 − v2

b(1 − v2) = b
√

1 − v2.

Hence we get the result.

(d) i. The speed that the star comes to the astronaut should be

dx′

dt′
= −v.

Hence the astronaut feel that he travels with the speed v.

ii. In the astronaut’s mind, he leave earth at t′ = 0. Hence in S the
earth is at b

√
1 − v2.

6.10 Conditioning and the Rayleigh Quotient

1. (a) No. The system (k
2 0

0 1
) is well-conditioned but its condition number

is k, which can be arbitrarily large.

(b) No. This is the contrapositive statement of the previous question.
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(c) Yes. This is the result of Theorem 6.44.

(d) No. The norm of A is a value but the Rayleigh quotient is a function.

(e) No. See the Corollary 1 after Theorem 6.43. For example, the norm

of (0 1
0 0

) is 1 but the largest eigenvalue of it is 0.

2. Let A be the given matrix. Use the Corollary 1 to find the norm.

(a) The norm is
√

18.

(b) The norm is 6.

(c) The norm is
√√

177+15
√
6

.

3. If B is real symmetric, then we have B∗B = B2. If λ is the largest
eigenvalue of B, then we have λ2 is also the largest eigenvalue of B2.
Apply the Corollary 1 after Theorem 6.43 and get that ∥B∥ = λ. If B is
not real, the eigenvalue of B may not be a real number. So they are not
comparable. Hence we need the condition that B is a real matrix here.

4. (a) Use the previous exercise. We know that ∥A∥ = 84.74 and ∥A−1∥ =
1

0.0588
≅ 17.01. And the condition number is the ratio

cond(A) = 84.74

0.0588
≅ 1443.

(b) We have that

∥x̃ −A−1b∥ = ∥A−1(b −Ax̃)∥ ≤ ∥A−1∥∥b −Ax̃∥ = 17.01 × 0.001 = 0.017

and
∥x̃ −A−1b∥
∥A−1b∥

≤ cond(A)∥δb∥
∥b∥

≅ 14.43

∥b∥
by Theorem 6.44.

5. Use Theorem 6.44. Thus we get

∥δx∥
∥x∥

≤ cond(A)∥δb∥
∥b∥

= 100 × 0.1

1
= 10

and
∥δx∥
∥x∥

≥ 1

cond(A)
∥δb∥
∥b∥

= 1

100
× 0.1

1
= 0.001.

6. Let x = (1,−2,3). First compute that

R(x) = ⟨Bx,x⟩
∥x∥2

= ⟨(3,0,5), (1,−2,3)⟩
14

= 9

7
.
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Second, compute the eigenvalues of B to be 4,1,1. Hence we have ∥B∥ = 4
and ∥B−1∥ = 1−1 = 1. Finally calculate the condition number to be

cond(B) = 4 × 1 = 4.

7. Follow the proof of Theorem 6.43. We have

R(x) = ∑
n
i=1 λi∣ai∣2

∥x∥2
≥ λn∑

n
i=1 ∣ai∣2

∥x∥2
= λn∥x∥

2

∥x∥2
= λn.

And the value is attainable since R(vn) = λn.

8. Let λ be an eigenvalue of AA∗. If λ = 0, then we have AA∗ is not invertible.
Hence A and A∗ are not invertible, so is A∗A. So λ is an eigenvalue of
A∗A.

Suppose now that λ ≠ 0. We may find some eigenvector x such that
AA∗x = λx. This means that

A∗A(A∗x) = λA∗x.

Since A∗x is not zero, λ is an eigenvalue of A∗A.

9. Since we have Aδx = δb and x = A−1b, we have the inequalities

∥δx∥ ≥ ∥δb∥
∥A∥

and
∥x∥ ≤ ∥A−1∥∥b∥.

Hence we get the inequality

∥δx∥
∥x∥

≥ ∥δb∥
∥A∥

1

∥A−1∥∥b∥
= 1

∥A∥ ⋅ ∥A−1∥
∥δb∥
∥b∥

.

10. This is what we proved in the previous exercise.

11. If A = kB, then we have A∗A = k2I. So all the eigenvalues of A∗A are k2.
Thus we have ∥A∥ = k and ∥A−1∥ = k−1. Hence the condition number of A
is k ⋅ k−1 = 1.

Conversely, if cond(A) = 1, we have λ1 = λn by Theorem 6.44. This means
that all the eigenvalues of A∗A are the same. Denote the value of these
eigenvalue by k. Since A∗A is self-adjoint, we could find an orthonormal
basis β = {vi} consisting of eigenvectors. But this means that

A∗A(vi) = kvi

for all i. Since β is a basis, we get that actually A∗A = kI. This means
that B = 1

√
k
A is unitary of orthogonal since B∗B = I. Thus A is a scalar

multiple of B.
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12. (a) If A and B are unitarily equivalent. We may write B = Q∗AQ for
some unitary matrix Q. Since Q is unitary, we have ∥Q(x)∥ = ∥x∥.
So we have

∥Bx∥
∥x∥

= ∥Q∗AQx∥
∥x∥

= ∥AQx∥
∥Qx∥

.

Since any unitary matrix is invertible, we get the equality ∥A∥ = ∥B∥.
(b) Write

β = {v1, v2, . . . , vn}

and

x =
n

∑
i=1

aivi.

We observe that

∥x∥2 = ⟨x,x⟩ =
n

∑
i=1

a2i = ∥φβ(x)∥2,

where φβ(x) means the coordinates of x with respect to β. So we
have

∥x∥ = ∥φβ(x)∥

This means that

∥T ∥ = max
x≠0

∥T (x)∥
∥x∥

= max
x≠0

∥φβ(T (x))∥
∥φβ(x)∥

== max
φβ(x)≠0

∥[T ]βφβ(x)∥
∥φβ(x)∥

= ∥[T ]β∥.

(c) We have ∥T ∥ ≥ k for all integer k since we have

∥T (vk)∥
∥vk∥

= ∥kvk∥
∥vk∥

= k.

13. (a) If λ1 is the largest eigenvalue of A∗A, then we know that σi =
√
λi =

∥A∥.
(b) This comes from that the nonzero singular values of A� are

σ−1r ≥ σ−1r−1 ≥ ⋯ ≥ σ−11 .

(c) If A is invertible with the largest and the smallest eigenvalues of A∗A
to be λ1 and λn > 0, we know that σ1 =

√
λ1 and σn =

√
λn. Hence

we have
cond(A) = σ1

σn
.
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6.11 The Geometry of Orthogonal Operators

1. (a) No. It may be the compose of two or more rotations. For example,
T (x, y) = (Rθ(x),Rθ(y)) is orthogonal but not a rotation or a reflec-
tion, where x, y ∈ R2 and Rθ is the rotation transformation about the
angle θ.

(b) Yes. See the Corollary after Theorem 6.45.

(c) Yes. See Exercise 6.11.6.

(d) No. For example, U(x, y) = (Rθ(x), y) and T (x, y) = (x,Rθ(y)) are
two rotations, where x, y ∈ R2 and Rθ is the rotation transformation
about the angle θ. But UT is not a rotation.

(e) Yes. It comes from the definition of a rotation.

(f) No. In two-dimensional real space, the composite of two reflections
is a rotation.

(g) No. It may contains one reflection. For example, the mapping T (x) =
−x could not be the composite of rotations since the only rotation in
R is the identity.

(h) No. It may be the composite of some rotations and a reflection.
For example, T (x, y) = (−x,Rθ(y)) has det(T ) = −1 but it’s not a
reflection, where x ∈ R, y ∈ R2, and Rθ is the rotation about the angle
θ.

(i) Yes. Let T be the reflection about W . We have that W ⊕W ⊥ = V . So
one of W and W ⊥ could not be zero. But every nonzero vector in W
is an eigenvector with eigenvalue 1 while that in W ⊥ is an eigenvector
with eigenvalue −1. So T must have eigenvalues.

(j) No. The rotation on two-dimentional space has no eigenvector unless
it’s the identity mapping.

2. By Exercise 6.5.3 we know that the composite of two orthogonal operators
should be an orthogonal operator.

3. (a) Check that A∗A = AA∗ = I. So A is orthogonal. Hence it’s a reflec-
tion by Theorem 6.45 since its determinant is −1.

(b) Find the subspace {x ∶ Ax = x}. That is, find the null space of A− I.
Hence the axis is

span{(
√

3,1)}.

(c) Compute det(B) = −1. Hence we have det(AB) = det(BA) = 1. By
Theorem 6.45, both of them are rotations.

4. (a) Compute that
det(A) = − cos2 φ − sin2 φ = −1.

By Theorem 6.45, it’s a reflection.
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(b) Find the subspace {x ∶ Ax = x}. That is, find the null space of A− I.
Hence the axis is

span{(sinφ,1 − cosφ) =}.

5. Let α = {e1, e2} be the standard basis in R2.

(a) We may check that the rotation Tφ is a linear transformation. Hence
it’s enough to know

{ T (e1) = (cosφ, sinφ),
T (e2) = (− sinφ, cosφ)

by directly rotate these two vectors. Hence we have [Tφ]α = A.

(b) Denote that

Aφ = (cosφ − sinφ
sinφ cosφ

) .

Directly compute that AφAψ = Aφ+ψ. So we have

[TφTψ]α = [Tφ]α[Tψ]α = AφAψ = Aφ+ψ = [Tφ+ψ]α.

(c) By the previous argument we kow that

TφTψ = Tφ+ψ = Tψ+φ = TψTφ.

6. If U and T are two rotations, we have det(UT ) = det(U)det(T ) = 1. Hence
by Theorem 6.47 UT contains no reflection. If V could be decomposed by
three one-dimensional subspaces, they all of them are identities, thus UT
is an identity mapping. Otherwise V must be decomposed into one one-
dimensional and one two-dimensional subspaces. Thus UT is a rotation on
the two-dimensional subspace and is an idenetiy on the one-dimensional
space. Hence UT must be a rotation.

7. (a) We prove that if T is an orthogonal operator with det(T ) = 1 on
a three-dimensional space V , then T is a rotation. First, we know
that the decomposition of T contains no reflections by Theorem 6.47.
According to T , V could be decomposed into some subspaces. If V
is decomposed into three one-dimensional subspace, then T is the
identity mapping on V since its an identity mapping on each sub-
space. Otherwise V should be decomposed into one one-dimensional
and one two-dimensional subspaces. Thus T is a rotation on the
two-dimensional subspace and is an idenetiy mapping on the one-
dimensional space. Hence T must be a rotation.

Finally, we found that det(A) = det(B) = 1. Hence they are rotations.

(b) It comes from the fact that det(AB) = det(A)det(B) = 1.

(c) It should be the null space of AB − I,

span{((1 + cosφ)(1 − cosψ), (1 + cosφ) sinψ, sinφ sinψ)}.
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8. If T is an orthogonal operator, we know that the determinant of T should
be ±1. Now pick an orthonormal basis β. If det(T ) = 1, we have det([T ]β) =
1 and hence [T ]β is a rotation matrix by Theorem 6.23. By Exercise 6.2.15
we know that the mapping φbeta, who maps x ∈ V into its coordinates with
respect to β, preserve the inner product. Hence T is a rotation when [T ]β
is a rotation. On the other hand, if det(T ) = det([T ]) = −1, we know that
[T ]β is a reflection matrix by Theorem 6.23. Again, T is a reflection since
[T ]β is a reflection matrix.

9. If T is a rotation, its decomposition contains no reflection. Hence we
have det(T ) = 1 by Theorem 6.47. If T is a reflection, then we have
its decomposition could contain exactly one reflection. Hence we have
det(T ) = −1 by Theorem 6.47. So T cannot be both a rotation and a
reflection.

10. If V is a two-dimensional real inner product space, we get the result by the
Corollary after Theorem 6.45. If V is a three-dimensional real inner prod-
uct space and U,T are two rotations, we have det(UT ) = det(U)det(T ) =
1. By the discussion in Exercise 6.11.7(a), we know that UT should be a
rotation.

11. Let T (x, y) = (Rθ(x),Rθ(y)) be an orthogonal operator, where x, y ∈ R2

and Rθ is the rotation transformation about the angle θ. It is neither a
rotation nor a reflection.

12. Let β be an orthonormal basis. Then we have [T ]β = −In, where n is the
dimsion of V . Since det(−In) = (−1)n, we know that T could decomposed
into rotations if and only if n is even by the Corollary after Theorem 6.47.

13. Use the notation in that Lemma. We know that

W = φ−1β (Z) = span{φ−1β (x1), φ−1β (x2)}.

And compute that

T (φ−1β (xi)) = φ−1β (Axi) ∈ φ−1β (Z)

for i = 1,2. Hence W is T -invariant.

14. (a) It comes from that

∥TW (x)∥ = ∥T (x)∥ = ∥x∥.

(b) Suppose y is an element in W ⊥. Since TW is invertible by the previous
argument, for each x ∈ W we have x = T (z) for some z ∈ W . This
means that

⟨T (y), x⟩ = ⟨y, T ∗T (z)⟩ = ⟨y, z⟩ = 0.

(c) It comes from that

∥TW ⊥(x)∥ = ∥T (x)∥ = ∥x∥.
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15. Let t = 0 in the equality in Theorem 5.24.

16. (c) As the definition of Ti given in the Corollary, we know that

TiTj(x) = ⋯+ T (xi) +⋯ + T (xj) +⋯TjTi(x),

where
x = x1 + x2 +⋯ + xm.

(d) Again, we have

T (x) = T (x1) + T (x2) +⋯ + T (xm) = T1T2⋯Tm(x),

where
x = x1 + x2 +⋯ + xm.

(e) We know that det(TWi) = det(Ti) since V =Wi ⊕W ⊥
i and

det(TW ⊥
i
) = det(IW ⊥

i
) = 1.

So Ti is a rotation if and only if TWi is a rotation. By Theorem 6.47
we get the result.

17. I think here we won’t say an identity is a rotation. Otherwise the identity
mapping could be decomposed into n identity mapping. Also, we need
some fact. That is, if Wi is a subspace with dimension one in the decom-
position, then TWi could not be a rotation since TWi(x) sould be either x
or −x. Hence every ration has the dimension of it subspace two.

(a) By the Corollary after Theorem 6.47 we know that there is at most
one reflection in the decomposition. To decompose a space with
dimension n by rotations, there could be only 1

2
(n − 1) rotations.

(b) Similarly, there is at most one reflection. If there’s no reflection, then
there’re at most 1

2
n rotations. If there’s one reflection, there at most

⌊n − 1

2
⌋ = 1

2
(n − 2)

rotations.

18. Let β = {x,x′} be an orthonormal basis of V . Since ∥y∥ = 1, we may write
φβ(y) = (cosφ, sinφ) for some angle φ. Let

Aφ = (cosφ − sinφ
sinφ cosφ

)

and T be the transformation with [T ]β = A. We have that T (x) = y and
T is a rotation.

On the other hand, by the definition of a rotation, we must have

T (x) = (cos θ)x + (sin θ)x′
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and
T (x′) = (− sin θ)x + (cos θ)x′.

Thus we must have cosφ = cos θ and sinφ = sin θ. If 0 ≤ φ, θ < 2π, we must
have φ = θ. So the rotation is unique.
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Chapter 7

Canonical Forms

7.1 The Jordan Canonical Form I

1. (a) Yes. It comes directly from the definition.

(b) No. If x is a generalized eigenvector, we can find the smallest positive
integer p such that (T − λI)p(x) = 0. Thus y = (T − λI)p−1 ≠ 0 is
an eigenvector with respect to the eigenvalue λ. Hence λ must be an
eigenvalue.

(c) No. To apply the theorems in this section, the characteristic polyno-

mial should split. For example, the matrix (0 −1
1 0

) over R has no

eigenvalues.

(d) Yes. This is a result of Theorem 7.6.

(e) No. The identity mapping I2 from C2 to C2 has two cycles for the
eigenvalue 1.

(f) No. The basis βi may not consisting of a union of cycles. For example,
the transformation T (a, b) = (a+ b, b) has only one eigenvalue 1. The
generalized eigenspace K1 = F2. If

β = {(1,1), (1,−1)},

then the matrix representation would be

[T ]β =
1

2
(3 −1

1 1
) ,

which is not a Jordan form.

(g) Yes. Let α be the standard basis. Then [LJ]α = J is a Jordan form.

(h) Yes. This is Theorem 7.2.
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2. Compute the characteristic polynomial to find eigenvalues as what we did
before. For each λ, find a basis for Kλ consisting of a union of disjoint
cycles by computing bases for the null space of (A−λI)p for each p. Write
down the matrix S whose columns consist of these cycles of generalized
eigenvectors. Then we will get the Jordan canonical form J = S−1AS.
When the matrix is diagonalizable, the Jordan canonical form should be
the diagonal matrix sismilar to A. For more detail, please see the examples
in the textbook. On the other hand, these results were computed by
Wolfram Alpha. For example, the final question need the command below.

JordanDecomposition[{{2,1,0,0},{0,2,1,0},{0,0,3,0},{0,1,-1,3}}]

(a)

S = (1 −1
1 0

) , J = (2 1
0 2

) .

(b)

S = (−1 2
1 3

) , J = (−1 0
0 4

) .

(c)

S =
⎛
⎜
⎝

1 1 1
3 1 2
0 1 0

⎞
⎟
⎠
, J =

⎛
⎜
⎝

−1 0 0
0 2 1
0 0 2

⎞
⎟
⎠
.

(d)

S =
⎛
⎜⎜⎜
⎝

1 0 0 1
0 1 0 1
0 0 0 1
0 −1 1 0

⎞
⎟⎟⎟
⎠
, J =

⎛
⎜⎜⎜
⎝

2 1 0 0
0 2 0 0
0 0 3 0
0 0 0 3

⎞
⎟⎟⎟
⎠
.

3. Pick one basis β and write down the matrix representation [T ]β . Then
do the same thing in the previous exercises. Again, we denote the Jordan
canonical form by J and the matrix consisting of Jordan canonical basis
by S. The Jordan canonical basis is the set of vector in V corresponding
those column vectors of S in Fn.

(a) Pick β to be the standard basis

{1, x, x2}

and get

[T ]β =
⎛
⎜
⎝

−2 −1 0
0 2 −2
0 0 2

⎞
⎟
⎠

and

S =
⎛
⎜
⎝

1 −1 1
4

0 4 0
0 0 −2

⎞
⎟
⎠
, J =

⎛
⎜
⎝

−2 0 0
0 2 1
0 0 2

⎞
⎟
⎠
.
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(b) Pick β to be the basis
{1, t, t2, et, tet}

and get

[T ]β =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

and

S =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1

2
0 0

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

, J =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

.

(c) Pick β to be the standard basis

{(1 0
0 0

) ,(0 1
0 0

) ,(0 0
1 0

) ,(0 0
0 1

)}

and get

[T ]β =
⎛
⎜⎜⎜
⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

and

S =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
, J =

⎛
⎜⎜⎜
⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎟
⎠
.

(d) Pick β to be the standard basis

{(1 0
0 0

) ,(0 1
0 0

) ,(0 0
1 0

) ,(0 0
0 1

)}

and get

[T ]β =
⎛
⎜⎜⎜
⎝

3 0 0 0
0 2 1 0
0 1 2 0
0 0 0 3

⎞
⎟⎟⎟
⎠

and

S =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 1 0
0 −1 1 0

⎞
⎟⎟⎟
⎠
, J =

⎛
⎜⎜⎜
⎝

3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.
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4. We may observe that W = span(γ) is (T − λI)-invariant by the definition
of a cycle. Thus for all w ∈W , we have

T (w) = (T − λI)(w) + λI(w) = (T − λI)(w) + λw ∈W.

5. If x is an element of in two cycles, which is said to be γ1 and γ2 without
lose of generality, we may find the smallest ingeter q such that

(T − λI)q(x) = 0.

This means that the initial eigenvectors of γ1 and γ2 are both (T −
λI)q−1(x). This is a contradiction. Hence all cycles are disjoint.

6. (a) Use the fact that T (x) = 0 if only if (−T )(x) = −0 = 0.

(b) Use the fact that (−T )k = (−1)kT .

(c) It comes from the fact

(λIV − T )k = [−(T − λIV )]k

and the previous argument.

7. (a) If Uk(x) = 0, then Uk+1(x) = Uk(U(x)) = 0.

(b) We know Um+1(V ) = Um(U(V )) ⊂ Um(V ). With the assumption
rank(Um) = rank(Um+1), we know that

Um+1(V ) = Um(V ).

This means
U(Um(V )) = Um(V )

and so Uk(V ) = Um(V ) for all integer k ≥m.

(c) The assumption rank(Um) = rank(Um+1) implies

null(Um) = null(Um+1)

by Dimension Theorem. This means N(Um) = N(Um+1) by the
previous argument. If Um+2(x) = 0, then U(x) is an element in
N(Um+1) = N(Um). Hence we have Um(U(x)) = 0 and thus x is an
element in N(Um+1). This means that N(Um+2) ⊂ N(Um+1) and
so they are actually the same. Doing this inductively, we know that
N(Um) = N(Uk) for all integer k ≥m.

(d) By the definition of Kλ, we know

Kλ = ∪p≥1N((T − λI)p).

But by the previous argument we know that

N((T − λI)m) = N((T − λI)k)

for all integer k ≥ m and the set is increasing as k increases. So
actually Kλ is N((T − λI)m).
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(e) Since the characteristic polynomial splits, the transformation T is
diagonalizable if and only if Kλ = Eλ. By the previous argument, we
know that

Kλ = N(T − λI) = Eλ.

(f) If λ is an eigenvalue of TW , then λ is also an eigenvalue of T by
Theorem 5.21. Since T is diagonalizable, we have the condition

rank(T − λI) = rank((T − λI)2)

and so
N(T − λI) = N((T − λI)2)

by the previous arguments. This implies

N(TW − λIW ) = N((TW − λIW )2).

By Dimension Theorem, we get that

rank(TW − λIW ) = rank((TW − λIW )2).

So TW is diagonalizable.

8. Theorem 7.4 implies that
V = ⊕λKλ.

So the representation is uniques.

9. (a) The subspace W is T -invariant by Exercise 7.1.4. Let {vi}i be the
cycle with initial vector v1. Then [TW ]γ is a Jordan block by the
fact

TW (v1) = λv1
and

TW (vi) = vi−1 + λvi
for all i > 1. And β is a Jordan canonical basis since each cycle forms
a block.

(b) If the ii-entry of [T ]β is λ, then vi is an nonzero element in Kλ. Since
Kλ ∩Kµ = {0} for distinct eigenvalues λ and µ, we know that β′ is
exactly those vi’s such that the ii-entry of [T ]β is λ. Let m be the
number of the eigenvalue λ in the diagonal of [T ]β . Since a Jordan
form is upper triangular. We know that m is the multiplicity of λ.
By Theorem 7.4(c) we have

dim(Kλ) =m = ∣β′∣.

So β′ is a basis for Kλ.

10. (a) Those initial vectors of q disjoint cycles forms a independent set con-
sisting of eigenvectors in Eλ.
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(b) Each block will correspond to one cycle. Use the previous argument
and get the result.

11. By Theorem 7.7 and the assumptiong that the characteristic polynomial of
LA splits, the transformation LA has a Jordan form J and a corresponding
Jordan canonical basis β. Let α be the standarad basis for Fn. Then we
have

J = [LA]β = [I]βαA[I]αβ
and so A is similar to J .

12. By Theorem 7.4(b), the space V is the direct sum of each span(βi) =Kλi ,
where βi is a basis for Kλi .

13. Denote Kλi by Wi. Let βi be a Jordan canonical basis for TWi . Apply
Theorem 5.25 and get the result.

7.2 The Jordan Canonical Form II

1. (a) Yes. A diagonal matrix is a Jordan canonical form of itself. And the
Corollary after Theorem 7.10 tolds us the Jordan canonical form is
unique.

(b) Yes. This is a result of Theorem 7.11.

(c) No. The two matrices (1 1
0 1

) and (1 0
0 1

) have different Jordan

canonical form. By Theorem 7.11, they cannot be similar.

(d) Yes. This is a result of Theorem 7.11.

(e) Yes. They are just two matrix representations of one transformation
with different bases.

(f) No. The two matrices (1 1
0 1

) and (1 0
0 1

) have different Jordan

canonical form.

(g) No. The identity mapping I from C2 to C2 has two different bases

{(1,0), (0,1)}

and
{(1,1), (1,−1)}.

(h) Yes. This is the Corollary after Theorem 7.10.

2. A coloumn in a dot diagram means a cycle. Each cycle has the corre-
sponding eigenvalue as the diagonal entries and 1 as the upper subdiagonal
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entries. So we have

J1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

J2 =
⎛
⎜⎜⎜
⎝

4 1 0 0
0 4 1 0
0 0 4 0
0 0 0 4

⎞
⎟⎟⎟
⎠
,

and

J3 = (−3 0
0 −3

) .

And the Jordan canonical form J of T is

J =
⎛
⎜
⎝

J1 O O
O J2 O
O O J3

⎞
⎟
⎠
,

where O is the zero matrix with appropriate size.

3. (a) It’s upper triangular. So the characteristic polynomial is (2− t)5(3−
t)2.

(b) Do the inverse of what we did in Ecercise 7.2.2. For λ = 2, the dot
diagram is

● ●
● ●
●

.

For λ = 3, the dot diagram is

● ● .

(c) The eigenvalue λ with it corresponding blocks are diagonal is has the
property Eλ =Kλ.

(d) The integer pi is the length of the longest cycle in Kλi . So p2 = 3 and
p3 = 1.

(e) By Exercise 7.1.9(b), the matrix representations of U2 and U3 are

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠
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and

(0 0
0 0

) .

So we have rank(U2) = 3, rank(U2
2 ) = 1 and rank(U3) = rank(U2

3 ) = 0.
By Dimension Theorem, we have null(U2) = 2, null(U2

2 ) = 4 and
null(U3) = null(U2

3 ) = 2.

4. Do the same thing in Exercise 7.1.2.

(a)

Q =
⎛
⎜
⎝

1 −1 −1
2 −1 −2
1 1 0

⎞
⎟
⎠
, J =

⎛
⎜
⎝

1 0 0
0 2 1
0 0 2

⎞
⎟
⎠
.

(b)

Q =
⎛
⎜
⎝

1 −1 1
2 0 2
1 2 0

⎞
⎟
⎠
, J =

⎛
⎜
⎝

1 0 0
0 2 0
0 0 2

⎞
⎟
⎠
.

(c)

Q =
⎛
⎜
⎝

0 −1 2
3

−1 −1 − 1
3

1 3 0

⎞
⎟
⎠
, J =

⎛
⎜
⎝

1 0 0
0 2 1
0 0 2

⎞
⎟
⎠
.

(d)

Q =
⎛
⎜⎜⎜
⎝

1 0 1 −1
1 −1 0 1
1 −2 0 1
1 0 1 0

⎞
⎟⎟⎟
⎠
J =

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎟
⎠
.

5. For the following questions, pick some appropriate basis β and get the
marix representation A = [T ]β . If A is a Jordan canonical form, then we’ve
done. Otherwise do the same thing in the previous exercises. Similarly,
we set J = Q−1AQ for some invertible matrix Q, where J is the Jordan
canonical form. And the Jordan canonical basis is the set of vector in V
corresponding those column vectors of Q in Fn.

(a) Pick the basis β to be

{et, tet, 1

2
t2et, e2t}

and get the matrix representation

A =
⎛
⎜⎜⎜
⎝

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎟
⎠
.

247



(b) Pick the basis β to be

{1, x,
x2

2
,
x3

12
}

and get the matrix representation

A =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟
⎠
.

(c) Pick the basis β to be

{1,
x2

2
, x,

x3

6
}

and get the matrix representation

A =
⎛
⎜⎜⎜
⎝

2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2

⎞
⎟⎟⎟
⎠
.

(d) Pick the basis β to be

{(1 0
0 0

) ,(0 1
0 0

) ,(0 0
1 0

) ,(0 0
0 1

)}

and get the matrix representation

A =
⎛
⎜⎜⎜
⎝

2 0 1 0
0 3 −1 1
0 −1 3 0
0 0 0 2

⎞
⎟⎟⎟
⎠
.

Thus we have

Q =
⎛
⎜⎜⎜
⎝

1 0 0 1
0 1 −1 −2
0 1 0 2
0 0 2 0

⎞
⎟⎟⎟
⎠

and

J =
⎛
⎜⎜⎜
⎝

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4

⎞
⎟⎟⎟
⎠
.

(e) Pick the basis β to be

{(1 0
0 0

) ,(0 1
0 0

) ,(0 0
1 0

) ,(0 0
0 1

)}
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and get the matrix representation

A =
⎛
⎜⎜⎜
⎝

0 −1 1 0
0 3 −3 0
0 −3 3 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

Thus we have

Q =
⎛
⎜⎜⎜
⎝

0 0 1 1
0 1 0 −3
0 1 0 3
1 0 0 0

⎞
⎟⎟⎟
⎠

and

J =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6

⎞
⎟⎟⎟
⎠
.

(f) Pick the basis β to be

{1, x, y, x2, y2, xy}

and get the matrix representation

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0 0 0
0 0 0 2 0 1
0 0 0 0 2 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Thus we have

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 −1 0 0
0 0 0 1 0 0
0 0 1

2
0 − 1

2
−1

0 0 0 0 1
2

−1
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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6. The fact rank(M) = rank(M t) for arbitrary square matrix M and the fact

(At − λI)r = [(A − λI)t]r = [(A − λI)r]t

tell us
rank((A − λI)r) = rank((At − λI)r).

By Theorem 7.9 we know that A and At have the same dot diagram and
the same Jordan canonical form. So A and At are similar.

7. (a) Let γ′ be the set {vi}i = 1m. The desired result comes from the fact

T (vi) = λvi + vi+1

for 1 ≤ i ≤m − 1 and
T (vm) = λvm.

(b) Let β be the standard basis for Fn and β′ be the basis obtained from
β by reversing the order of the vectors in each cycle in β. Then we
have [LJ]β = J and [LJ]β′ = J t. So J and J t are similar.

(c) Since J is the Jordan canonical form of A, the two matrices J and A
are similar. By the previous argument, J and J t are similar. Finally,
that A and J are similar implies that At and J t are similar. Hence
A and At are similar.

8. (a) Let β be the set {vi}mi=1. Then we have the similar fact

T (cv1) = λcv1

and
T (cvi) = λcvi + cvi−1.

So the matrix representation does not change and the new ordered
basis is again a Jordan canonical basis for T .

(b) Since (T − λI)(y) = 0, the vector T (x + y) = T (x) does not change.
Hence γ′ is a cycle. And the new basis obtained from β by replacing
γ by γ′ is again a union of disjoint cycles. So it i sa Jordan canonical
basis for T .

(c) Let x = (−1,−1,−1,−1) and y = (0,1,2,0). Apply the previous argu-
ment and get a new Jordan canonical basis

{
⎛
⎜⎜⎜
⎝

−1
0
1
−1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1
2
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1
0
0
1

⎞
⎟⎟⎟
⎠
}.

9. (a) This is because we drawn the dot diagram in the order such that the
length of cycles are decreasing.
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(b) We know that pj and ri are decreasing as i and j become greater.
So pj is number of rows who contains more than or equal to j dots.
Hence

pj = max{i ∶ ri ≥ j}.

Similarly, ri is the number of columns who contains more than or
equal to i dots. Hence

ri = max{j ∶ p + j ≥ i}.

(c) It comes from the fact that pj decreases.

(d) There is only one way to draw a diagram such that its i-th row
contains exactly ri dots. Once the diagram has been determined,
those pj ’s are determined.

10. (a) By Theorem 7.4(c), the dimension of Kλ is the multiplicity of λ.
And the multiplicity of λ is the sum of the lengths of all the blocks
corresponding to λ since a Jordan canonical form is always upper
triangular.

(b) Since Eλ ⊂ Kλ, these two subspaces are the same if and only if
the have the same dimension. The previous argument provide the
desired result since the dimension of Eλ is the number of blocks
corresponding to λ. The dimensions of them are the same if and
only if all the related blocks have size 1 × 1.

11. It comes from the fact that

[T p]β = ([T ]β)p.

12. Denote Dk to be the diagonal consisting of those ij-entries such that
i − j = k. So D0 is the original diagonal. If A is upper triangular matrix
whose entries in D0 are all zero, we have the fact that the entries of Ap in
Dk, 0 ≤ k < p, are all zero. So A must be nilpotent.

13. (a) If T i(x) = 0, then T i+1(x) = T i(T (x)) = 0.

(b) Pick β1 to be one arbitrary basis for N(T 1). Extend βi to be a basis
for N(T i+1). Doing this inductively, we get the described sequence.

(c) By Exercise 7.1.7(c), we know N(T i) ≠ N(T i+1) for i ≤ p − 1. And
the desired result comes from the fact that

T (βi) ⊂ N(T i−1) = span(βi−1) ≠ span(βi).

(d) The form of the characteristic polynomial directly comes from the
previous argument. And the other observation is natural if the char-
acteristic polynomial has been fixed.
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14. Since the characteristic polynomial of T splits and contains the unique
zero to be 0, T has the Jordan canonical form J whose diagonal entries
are all zero. By Exercise 7.2.12, the matrix J is nilpotent. By Exercise
7.2.11, the linear operator T is also nilpotent.

15. The matrix

A =
⎛
⎜
⎝

0 0 0
0 0 1
0 −1 0

⎞
⎟
⎠

has the characteristic polynomial to be −t(t2 + 1). Zero is the only eigen-
value of T = LA. But T and A is not nilpotent since A3 = −A. By Exercise
7.2.13 and Exercise 7.2.14, a linear operator T is not nilpotent if and only
if the characteristic polynomial of T is not of the form (−1)ntn.

16. Since the eigenvalue is zero now, observe that if x is an element in β
corresponding to one dot called p, then T (x) would be the element cor-
responding to the dot just above the dot p. So the set described in the
exercise is an independent set in R(T i). By counting the dimension of
R(T i) by Theorem 7.9, we know the set is a basis for R(T i).

17. (a) Assume that
x = v1 + v2 +⋯ + vk

and
y = u1 + u2 +⋯ + uk.

Then S is a linear operator since

S(x + cy) = λ1(v1 + cu1) +⋯ + λk(vk + cuk)

= S(x) + cS(y).

Observe that if v is an element in Kλ, then S(v) = λv. This means
that if we pick a Jordan canonical basis β of T for V , then [S]β is
diagonal.

(b) Let β be a Jordan canonical basis for T . By the previous argument
we have [T ]β = J and [S]β = D, where J is the Jordan canonical
form of T and D is the diagonal matrix given by S. Also, by the
definition of S, we know that [U]β = J −D is an upper triangular
matrix with each diagonal entry equal to zero. By Exercise 7.2.11
and Exercise 7.2.12 the operator U is nilpotent. And the fact U and
S commutes is due to the fact J −D and D commutes. The later fact
comes from some direct computation.

18. Actually, this exercise could be a lemma for Exercise 7.2.17.

(a) It is nilpotent by Exercise 7.2.12 since M is a upper triangular matrix
with each diagonal entry equal to zero.

(b) It comes from some direct computation.
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(c) Since MD =DM , we have

Jr = (M +D)r =
r

∑
k=0

(r
k
)MkDr−k.

The second equality is due to the fact that Mk = O for all k ≥ p.

19. (a) It comes from some direct computation. Multiplying N at right
means moving all the columns to their right columns.

(b) Use Exercise 7.2.18(c). Now the matrixM is the matrixN in Exercise
7.2.19(a).

(c) If ∣λ∣ < 1, then the limit tends to a zero matrix. If λ = 1 amd m = 1,
then the limit tends to the identity matrix of dimension 1. Con-
versely, if ∣λ∣ ≥ 1 but λ ≠ 1, then the diagonal entries will not converge.
If λ = 1 but m > 1, the 12-entry will diverge.

(d) Observe the fact that if J is a Jordan form consisting of several
Jordan blocks Ji, then Jr = ⊕iJri . So the limm→∞ Jm exsist if and
only if limm→∞ Jmi exists for all i. On the other hand, if A is a
square matrix with complex entries, then it has the Jordan canonical
form J = Q−1AQ for some Q. This means that limm→∞Am exists if
and only if limm→∞ Jm exists. So Theorem 5.13 now comes from the
result in Exercise 7.2.19(c).

20. (a) The norm ∥A∥ ≥ 0 since ∣Aij ∣ ≥ 0 for all i and j. The norm ∥A∥ = 0 if
and only if ∣Aij ∣ = 0 for all i and j. So ∥A∥ = 0 if and only if A = O.

(b) Compute

∥cA∥ = max{∣cAij ∣} = ∣c∣max{∣Aij ∣} = ∣c∣∥A∥.

(c) It comes from the fact

∣Aij +Bij ∣ ≤ ∣Aij ∣ + ∣Bij ∣

for all i and j.

(d) Compute

∥AB∥ = max{∣(AB)ij ∣} = max{∣
n

∑
k=1

AikBkj ∣}

≤ max{∣
n

∑
k=1

∥A∥∥B∥∣} = n∥A∥∥B∥.

21. (a) The Corollary after 5.15 implies that Am is again a transition matrix.
So all its entris are no greater than 1.
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(b) Use the inequaliy in Exercise 7.2.20(d) and the previous argument.
We compute

∥Jm∥ = ∥P −1AmP ∥ ≤ n2∥P −1∥∥Am∥∥P ∥ ≤ n2∥P −1∥∥P ∥.

Pick the fixed value c = n2∥P −1∥∥P ∥ and get the result.

(c) By the previous argument, we know the norm ∥Jm∥ is bounded. If
J1 is a block corresponding to the eigenvalue 1 and the size of J1
is greater than 1, then the 12-entry of Jm1 is unbounded. This is a
contradiction.

(d) By the Corollary 3 after Theorem 5.16, the absolute value of eigen-
values of A is no greater than 1. So by Theorem 5.13, the limit
limm→∞Am exists if and only if 1 is the only eigenvalue of A.

(e) Theorem 5.19 confirm that dim(E1) = 1. And Exercise 7.2.21(c)
implies that K1 = E1. So the multiplicity of the eigenvalue 1 is equal
to dim(K1) = dim(E1) = 1 by Theorem Theorem 7.4(c).

22. Since A is a matrix over complex numbers, A has the Jordan canonical
form J = Q−1AQ for some invertible matrix Q. So eA exists if eJ exist.
Observe that

∥Jm∥ ≤ nm−1∥J∥

by Exercise 7.20(d). This means the sequence in the definition of eJ

converge absolutely. Hence eJ exists.

23. (a) For brevity, we just write λ instead of λi. Also denote uk to be
(A − λI)ku. So we have (A − λI)uk = uk+1. Let

x = eλt[
p−1

∑
k=0

f (k)(t)up−1−k]

be the function vector given in this question. Observe that

(A − λI)x = eλt[
p−1

∑
k=0

f (k)(t)up−k].

Then compute that

x′ = λx + eλt[
p−1

∑
k=0

f (k+1)(t)up−1−k]

= λx + eλt[
p−1

∑
k=1

f (k)(t)up−k]

= λx + (A − λI)x = Ax.
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(b) Since A is a matrix over C, it has the Jordan canonical form J =
Q−1AQ for some invertible matrix Q. Now the system become

x′ = QJQ−1x

and so
Q−1x′ = JQ−1x.

Let y = Q−1x and so x = Qy. Rewrite the system to be

y′ = Jy.

Since the solution of y is the linear combination of the solutions of
each Jordan block, we may just assume that J consists only one block.
Thus we may solve the system one by one from the last coordinate
of y to the first coordinate and get

y = eλt
⎛
⎜⎜⎜
⎝

f(t)
f (1)(t)

⋮
f (p−1)(t)

⎞
⎟⎟⎟
⎠
.

On the other hand, the last column of Q is the end vector u of the
cycle. Use the notation in the previous question, we know Q has the
form

Q =
⎛
⎜
⎝

∣ ∣ ⋯ ∣
up−1 up−2 ⋯ u0
∣ ∣ ⋯ ∣

⎞
⎟
⎠
.

Thus the solution must be x = Qy. And the solution coincide the
solution given in the previous question. So the general solution is the
sum of the solutions given by each end vector u in different cycles.

24. As the previous exercise, we write Q−1AQ = J , where J is the Jordan
canonical form of A. Then solve Y ′ = JY . Finally the answer should be
X = QY .

(a) The coefficient matrix is

A =
⎛
⎜
⎝

2 1 0
0 2 −1
0 0 3

⎞
⎟
⎠
.

Compute

J =
⎛
⎜
⎝

2 1 0
0 2 0
0 0 3

⎞
⎟
⎠

and

Q =
⎛
⎜
⎝

1 0 0
0 1 0
−1 −1 1

⎞
⎟
⎠
.
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Thus we know that

Y = e2t
⎛
⎜
⎝

at + b
a
0

⎞
⎟
⎠
+ e3t

⎛
⎜
⎝

0
0
c

⎞
⎟
⎠
.

and so the solution is
X = QY.

(b) The coefficient matrix is

A =
⎛
⎜
⎝

2 1 0
0 2 1
0 0 2

⎞
⎟
⎠
.

So J = A and Q = I. Thus we know that

Y = e2t
⎛
⎜
⎝

at2 + bt + c
2at + b

2a

⎞
⎟
⎠

and so the solution is
X = QY.

7.3 The Minimal Polynomial

1. (a) No. If p(t) is the polynomial of largest degree such that p(T ) = T0,
then q(t) = t(p(t) is a polynomial of larger degree with the same
property q(T ) = T0.

(b) Yes. This is Theorem 7.12.

(c) No. The minimal polynomial divides the characteristic polynomial
by Theorem 7.12. For example, the identity transformation I from
R2 to R2 has its characteristicpolynomial (1 − t)2 and its minimal
polynomial t − 1.

(d) No. The identity transformation I from R2 to R2 has its characteristicpolynomial
(1 − t)2 but its minimal polynomial t − 1.

(e) Yes. Since f splits, it consists of those factors (t − λ)r for some
r ≤ n and for some eigenvalues λ. By Theorem 7.13, the minimal
polynomial p also contains these factors. So f divides pn.

(f) No. For example, the identity transformation I from R2 to R2 has its
characteristicpolynomial (1 − t)2 and its minimal polynomial t − 1.

(g) No. For the matrix (1 1
0 1

), its minimal polynomial is (t− 1)2 but it

is not diagonalizable.

(h) Yes. This is Theorem 7.15.
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(i) Yes. By Theorem 7.14, the minimal polynomial contains at least
n zeroes. Hence the degree of the minimal polynomial of T must
be greater than or equal to n. Also, by Cayley-Hamilton Theorem,
the degree is no greater than n. Hence the degree of the minimal
polynomial of T must be n.

2. Let A be the given matrix. Find the eigenvalues λi of A. Then the
minimal polynomial should be of the form ∏i(t − λi)ri . Try all possible
ri’s. Another way is to compute the Jordan canonical form.

(a) The eigenvalues are 1 and 3. So the minimal polynomial must be
(t − 1)(t − 3).

(b) The eigenvalues are 1 and 1. So the minimal polynomial could be
(t − 1) or (t − 1)2. Since A − I ≠ O, the minimal polynomial must be
(t − 1)2.

(c) The Jordan canonical form is

⎛
⎜
⎝

2 0 0
0 1 1
0 0 1

⎞
⎟
⎠
.

So the minimal polynomial is (t − 2)(t − 1)2.

(d) The Jordan canonical form is

⎛
⎜
⎝

2 1 0
0 2 0
0 0 2

⎞
⎟
⎠
.

So the minimal polynomial is (t − 2)2.

3. Write down the matrix and do the same as that in the previous exercise.

(a) The minimal polynomial is (t −
√

2)(t +
√

2).
(b) The minimal polynomial is (t − 2)3.

(c) The minimal polynomial is (t − 2)2.

(d) The minimal polynomial is (t + 1)(t − 1).

4. Use Theorem 7.16. So those matrices in Exercises 7.3.2(a), 7.3.3(a), and
7.3.3(d) are diagonalizable.

5. Let f(t) = t3 − 2t + t = t(t − 1)2. Thus we have f(T ) = T0. So the
minimal polynomial p(t) must divide the polynomial f(t). Since T is
diagonalizable, p(t) could only be t, (t − 1), or t(t − 1). If p(t) = t, then

T = T0. If p(t) = (t − 1), then T = I. If p(t) = t(t − 1), then [T ]β = (0 0
0 1

)

for some basis β.
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6. Those results comes from the fact [f(T )]β = O if and only if f(T ) = T0.

7. By Theorem 7.12, p(t) must of that form for some mi ≤ ni. Also, by
Theorem 7.14, we must have mi ≥ 1.

8. (a) Let f(t) be the characteristic polynomial of T . Recall that det(T ) =
f(0) by Theorem 4.4.7. So By Theorem 7.12 and Theorem 7.14 0 is
a zero for p(t) if and only if 0 is a zero for f(t). Thus T is invertible
if and only if p(0) ≠ 0.

(b) Directly compute that

− 1

a0
(Tn−1 + an−1Tn−2 +⋯ + a2T + a1I)T

= − 1

a0
(p(T ) − a0) = I.

9. Use Theorem 7.13. We know that V is a T -cyclic subspace if and only
if the minimal polynomial p(t) = (−1)nf(t), where n is the dimension of
V and f is the characteristic polynomial of T . Assume the characteristic
polynomial f(t) is

(t − λ1)n1(t − λ2)n2⋯(t − λk)nk ,

where ni is the dimension of the eigenspace of λi since T is diagonalizable.
Then the minimal polynomial must be

(t − λ1)(t − λ2)⋯(t − λk).

So V is a T -cyclic subspace if and only if ni = 1 for all i.

10. Let p(t) be the minimal polynomial of T . Thus we have

p(TW )(w) = p(T )(w) = 0

for all w ∈ W . This means that p(TW ) is a zero mapping. Hence the
minimal polynomial of TW divides p(t).

11. (a) If y ∈ V is a solution to the equation g(D)(y) = 0, then g(D)(y′) =
(g(D)(y))′ = 0 ∈ V .

(b) We already know that
g(D)(y) = 0

for all y ∈ V . So the minimal polynomial p(t) must divide g(t). If
the degree of p(t) is less than but not equal to the degree of g(t),
then the solution space of the equation p(D)(y) = 0 must contain V .
This will make the dimension of the solution space of p(D)(y) = 0
greater than the degree of p(t). This is a contradiction to Theorem
2.32. Hence we must have p(t) = g(t).
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(c) By Theorem 2.32 the dimension of V is n, the degree of g(t). So by
Theorem 7.12, the characteristic polynomial must be (−1)ng(t).

12. Suppose, by contradiction, there is a polynomial g(t) of degree n such
g(D) = T0. Then we know that g(D)(xn) is a constant but not zero. This
is a contradiction to the fact g(D)(xn) = T0(xn) = 0. So D has no minimal
polynomial.

13. Let p(t) be the polynomial given in the question. And let β be a Jordan
basis for T . We have (T − λi)pi(v) = 0 if v is a generalized eigenvector
with respect to the eigenvalue λi. So p(T )(β) = {0}. Hence the minimal
polynomial q(t) of T must divide p(t) and must be of the form

(t − λ1)r1(t − λ2)r2⋯(t − λk)rk ,

where 1 ≤ ri ≤ pi. If ri < pi for some i, pick the end vector u of the cycle
of length pi in β corresponding to the eigenvalue λi. This u exist by the
definition of pi. Thus (T −λi)ri(u) = w ≠ 0. Since Kλi is (T −λj)-invariant
and T − λj is injective on Kλi for all j ≠ i by Theorem 7.1, we know that
q(T )(u) ≠ 0. Hence ri must be pi. And so p(t) must be the minimal
polynomial of T .

14. The answer is no. Let T be the identity mapping on R2. And let W1 be
the x-axis and W2 be the y-axis. The minimal polynomial of TW1 and TW2

are both t−1. But the minimal polynomial of T is (t−1) but not (t−1)2.

15. (a) Let W be the T -cyclic subspace generated by x. And let p(t) be the
minimal polynomial of TW . We know that p(TW ) = T0. If q(t) is
a polynomial such that q(T )(x) = 0, we know that q(T )(T k(x)) =
T k(q(T )(x)) = 0 for all k. So p(t) must divide q(t) by Theorem 7.12.
Hence p(t) is the unique T -annihilator of x.

(b) The T -annihilator of x is the minimal polynomial of TW by the pre-
vious argument. Hence it divides the characteristic polynomial of T ,
who divides any polynomial for which g(T ) = T0, by Theorem 7.12.

(c) This comes from the proof in Exercise 7.3.15(c).

(d) By the result in the previous question, the dimension of the T -cyclic
subspace generated by x is equal to the degree of the T -annihilator
of x. If the dimension of the T -cyclic subspace generated by x has
dimension 1, then T (x) must be a multiple of x. Hence x is an
eigenvector. Conversely, if x is an eigenvector, then T (x) = λx for
some λ. This means the dimension of the T -cyclic subspace generated
by x is 1.

16. (a) Let f(t) be the characteristic polynomial of T . Then we have f(T )(x) =
T0(x) = 0 ∈W1. So there must be some monic polynomial p(t) of least
positive degree for which p(T )(x) ∈ W1. If h(t) is a polynomial for
which h(T )(x) ∈W1, we have

h(t) = p(t)q(t) + r(t)
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for some polynomial q(t) anr r(t) such that the degree of r(t) is less
than the degree of p(t) by Division Algorithm. This means that

r(T )(x) = h(T )(x) − p(T )p(T )(x) ∈W1

since W1 is T -invariant. Hence the degree of r(t) must be 0. So p(t)
divides h(t). Thus g1(t) = p(t) is the unique monice polynomial of
least positive degree such that g1(T )(x) ∈W1.

(b) This has been proven in the previous argument.

(c) Let p(t) and f(t) be the minimal and characteristic polynomials of
T . Then we have p(T )(x) = f(T )(x) = 0 ∈ W1. By the previous
question, we get the desired conclusion.

(d) Observe that g2(T )(x) ∈ W2 ⊂ W1. So g1(t) divides g2(t) by the
previous arguments.

7.4 The Rational Canonical Form

1. (a) Yes. See Theorem 7.17.

(b) No. Let T (a, b) = (a,2b) be a transformation. Then the basis β =
{(1,1), (1,2)} is a T -cyclic basis generated by (1,1). But it is not a
rational canonical basis.

(c) No. See Theorem 7.22.

(d) Yes. If A is a square matrix with its rational canonical form C with
rational canonical basis β, then we have C = [LA]β .

(e) Yes. See Theorem 7.23(a).

(f) No. They are in general diffrent. For example, the dot diagram of

the matrix (1 1
0 1

) has only one dot. It could not forms a basis.

(g) Yes. The matrix is similar to its Jordan canonical form and its ra-
tional canonical form. Hence the two forms should be similar.

2. Find the factorization of the characteristic polynomial. Find the basis of
Kφ for each some monic irreducibla polyomial factor consisting of T -cyclic
bases through the proof of Theorem 7.22. Write down the basis with some
appropriate order as the columns of Q. Then compute C = Q−1AQ or find
C by the dot diagram. And I want to emphasize that I compute these
answers in Exercises 7.4.2 and 7.4.3 by HAND!

(a) It is a Jordan canonical form. So

Q =
⎛
⎜
⎝

0 0 1
0 1 6
1 3 9

⎞
⎟
⎠
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and

C =
⎛
⎜
⎝

0 0 27
1 0 −27
0 1 9

⎞
⎟
⎠
.

(b) It has been already the rational canonical form since the character-
istic polynomial t2 + t + 1 is irreducible in R. So C = A and Q = I.

(c) It is diagonalizable in C. So

Q = (
1 1

√
3 i+1
2

1−
√
3 i

2

)

and

C =
⎛
⎝
−

√
3 i+1
2

0

0
√
3 i−1
2

⎞
⎠
.

(d) Try the generating vector (1,0,0,0). So

Q =
⎛
⎜⎜⎜
⎝

1 0 −7 −4
0 1 −4 −3
0 0 −4 −4
0 0 −4 −8

⎞
⎟⎟⎟
⎠

and

C =
⎛
⎜⎜⎜
⎝

0 0 0 −1
1 0 0 0
0 1 0 −2
0 0 1 0

⎞
⎟⎟⎟
⎠
.

(e) Use (0,−1,0,1) and (3,1,1,0) as generating vectors. So

Q =
⎛
⎜⎜⎜
⎝

0 −3 3 8
−1 −2 1 5
0 −3 1 5
1 −4 0 7

⎞
⎟⎟⎟
⎠

and

C =
⎛
⎜⎜⎜
⎝

0 −2 0 0
1 0 0 0
0 0 0 −3
0 0 1 0

⎞
⎟⎟⎟
⎠
.

3. Write down the matrix representation A by some basis β and find the
rational C = Q−1AQ for some inveritble Q. Then the rational canonical
basis is the basis corresponding the columns of Q.

(a) Let
β = {1, x, x2, x3}.
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Then

Q =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 3 0
0 0 0 3
0 0 −1 −2

⎞
⎟⎟⎟
⎠

and

C =
⎛
⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

(b) Let β = S. Then

Q =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 3 0
0 0 0 3
0 0 −1 −2

⎞
⎟⎟⎟
⎠

and

C =
⎛
⎜⎜⎜
⎝

0 0 0 −1
1 0 0 0
0 1 0 −2
0 0 1 0

⎞
⎟⎟⎟
⎠
.

(c) Let

β = {(1 0
0 0

) ,(0 1
0 0

) ,(0 0
1 0

) ,(0 0
0 1

)}.

Then

Q =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

and

C =
⎛
⎜⎜⎜
⎝

0 −1 0 0
1 1 0 0
0 0 0 −1
0 0 1 1

⎞
⎟⎟⎟
⎠
.

(d) Let

β = {(1 0
0 0

) ,(0 1
0 0

) ,(0 0
1 0

) ,(0 0
0 1

)}.

Then

Q =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
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and

C =
⎛
⎜⎜⎜
⎝

0 −1 0 0
1 1 0 0
0 0 0 −1
0 0 1 1

⎞
⎟⎟⎟
⎠
.

(e) Let β = S. Then

Q =
⎛
⎜⎜⎜
⎝

0 −2 1 0
1 0 0 1
1 0 0 −1
0 2 1 0

⎞
⎟⎟⎟
⎠

and

C =
⎛
⎜⎜⎜
⎝

0 −4 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

4. (a) We may write an element in R(φ(T )) as φ(T )(x) for some x. Since
(φ(T ))m(v) = 0 for all v, we have (φ(T ))m−1(φ(T )(x)) = (φ(T ))m(x) =
0.

(b) The matrix

⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠

has minimal polynomial (t−1)2. ComputeR(LA−I) = span{(1,0,0)}.
But (0,0,1) is an element in N(LA − I) but not in R(LA − I).

(c) We know that the minimal polynomial p(t) of the restriction of T
divides (φ(t))m by Exercise 7.3.10. Pick an element x such that
(φ(T ))m−1(x) ≠ 0. Then we know that y = φ(T )(x) is an element in
R(φ(T )) and (φ(T ))m−2(y) ≠ 0. Hence p(t) must be (φ(t))m−1.

5. If the rational canonical form of T is a diagonal matrix, then T is diagonal-
izable naturally. Conversely, if T is diagonalizable, then the characteristic
polynomial of T splits and Eλ =Kφλ , where φλ = t−λ, for each eigenvalue
λ. This means each cyclic basis in Kφλ is of size 1. That is, a rational
canonical basis consisting of eigenvectors. So the rational canonical form
of T is a diagonal matrix.

6. Here we denote the degree of φ1 and φ2 by a and b respectly.

(a) By Theorem 7.23(b) we know the dimension ofKφ1 andKφ2 are a and
b respectly. Pick a nonzero element v1 in Kφ1 . The T -annihilator of
v1 divides φ1. Hence the T -annihilator of v1 is φ1. Find the nonzero
vector v2 in Kφ2 similarly such that the T -annihilator of v2 is φ2.
Thus βv1 ∪ βv2 is a basis of V by Theorem 7.19 and the fact that
∣βv1 ∪ βv2 ∣ = a + b = n.
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(b) Pick v3 = v1 + v2, where v1 and v2 are the two vectors given in the
previous question. Since φ1(T )(v2) ≠ 0 and φ2(T )(v1) ≠ 0 by Theo-
rem 7.18. The T -annihilator of v3 cannot be φ1 and φ2. So the final
possibility of the T -annihilator is φ1φ2.

(c) The first one has two blocks but the second one has only one block.

7. By the definition of mi, we know the

N(φi(T )mi−1 ≠ N(φi(T )mi = N(φi(T )mi+1 =Kφi .

Apply Theorem 7.24 and get the result.

8. If φ(T ) is not injective, we can find a nonzero element x such that φ(T )(x) =
0. Hence the T -annihilator p(t) divides φ(t) by Exercise 7.3.15(b). This
means p(t) = φ(t). If f(t) is the characteristic polynomial of T , then
we have f(T )(x) = 0 by Cayley-Hamilton Theorem. Again by Exercise
7.3.15(b) we have φ(t) divides f(t).

9. Since the disjoint union of βi’s is a basis, each βi is independent and forms
a basis of span(βi). Now denote

Wi = span(γi) = span(βi).

Thus V = ⊕iWi by Theorem 5.10. And the set γ = ∪iγi is a basis by
Exercise 1.6.33.

10. Since x ∈ Cy, we may assume x = Tm(y) for some integer m. If φ(t) is
the T -annihilator of x and p(t) is the T -annihilator of y, then we know
p(T )(x) = p(T )(Tm(y)) = Tm(p(T )(y)) = 0. Hence p(t) is a factor of
φ(t). If x = 0, then we have p(t) = 1 and y = 0. The statement is true for
this case. So we assume that x ≠ 0. Thus we know that y ≠ 0 otherwise
x is zero. Hence we know p(t) = φ(t). By Exercise 7.3.15, the dimension
of Cx is equal to the dimension of Cy. Since x = Tm(y) we know that
Cx ⊂ Cy. Finally we know that they are the same since they have the
same dimension.

11. (a) Since the rational canonical basis exists, we get the result by Theorem
5.10.

(b) This comes from Theorem 5.25.

12. Let β = ∪iCvi . The statement holds by Theorem 5.10.

264



GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the
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license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
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page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a sec-
tion when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.
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If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.
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G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
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Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS
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A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section 1)
will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.
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Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A public wiki that anybody can
edit is an example of such a server. A “Massive Multiauthor Collaboration”
(or “MMC”) contained in the site means any set of copyrightable works thus
published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 li-
cense published by Creative Commons Corporation, a not-for-profit corporation
with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.
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ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.
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Appendices

Some Definition in Graph Theory

Definition. A graph is a ordered pair of sets (V,E) and E is the set of pair
of elements of V . A directed graph, or a digraph is a ordered pair of sets
(V,E) and E is the set of ordered pair of elements of V . And we call V be the
set of vertices and E be the set of edges. A tournament is a digraph such that
for each pair of vertices we have exactly one edge connecting them.

Example. Let G(V1,E1) be a graph with vertex set V1 = {1,2,3,4} and edge
set

E1 = {(1,2), (2,2), (2,3), (3,1)}.

And let D(V2,E2) be a digraph with vertex set V2 = {1,2,3,4} and edge set

E2 = {(1,2), (2,1), (2,2), (2,3), (3,2), (1,3), (3,1), (1,4), (4,3)}.

Finally let T (V3,E3) be a digraph with vertex set V2 = {1,2,3,4} and edge set

E3 = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.

Thus T is a tournament. And we can draw G, D, T as follow.

1 2

34

1 2

34

1 2

34

G D T

Definition. A path of length k in a graph or digraph is a sequence of distinct
vertices {v1, v2, . . . , vk+1} such that (vi, vi+1) ∈ E. A walk of length k in a graph
or digraph is a sequence of vertices {v1, v2, . . . , vk+1} such that (vi, vi+1) ∈ E. A
loop is an edge of the form (v, v).
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Example. Let G and D be the graph and digraph defined above. Then we
have 1,2,3 is a path and 1,2,1,3 is a walk and (2,2) is a loop in the graph G.
And we have 1,2,3 is a path and 1,4,3,1 is a walk and (2,2) is a loop in the
digraph D.

Definition. In a graph, degree of a vertex v, denoted by d(v), is the number
of edge adjacent to v. That is, number of elements in edge set of the form (⋅, v).
For convenience, we say that a loop contribute a vertex degree 1. In a digraph,
out degree of a vertex v, denoted by d+(v), is the number of edges of the form
(v, ⋅); while in degree of a vertex v, denoted by d−(v), is the number of edges
of the form (⋅, v). For convenience, we say that a loop contribute a vertex out
degree 1 and in degree 1.

Example. In the graph G above, we have d(1) = d(3) = 2, d(2) = 4,and d(4) = 0.
In the digraph D above, we have d+(1) = d+(2) = 3, d+(3) = 2, d+(4) = 1 and
d−(1) = 2, d−(2) = d−(3) = 3, d−(4) = 1

Definition. For an n×n symmetric matrix A, we can associated a graph G(A)
with it. The graph has vertex set {1,2, . . . , n} and edge set {(i, j) ∶ aij ≠ 0}. For
an n × n matrix B, we can associated a digraph G(A) with it. The digraph has
vertex set {1,2, . . . , n} and edge set {(i, j) ∶ aij ≠ 0}. And the incidence matrix
of a graph is the matrix setting aij = aji = 1 if (i, j) is an edge and aij = 0 for
otherwise. And the incidence matrix of a digraph is the matrix setting aij = 1 if
(i, j) is an edge and aij = 0 for otherwise. So we have an incidence matrix with
dominance relation is actually the incidence matrix of a tournament.

Definition. A clique1 is the maximal set such that each vertex connects to
each others. For digraph, v connect to u means (v, u), (u, v) are elements in the
edge set.

Note. By induction and some arguement, we can prove that if A is inci-
dence of a graph(digraph) then (Ak)ij is the number of walk from i to j of
a graph(digraph).

1This definition is different from the “clique” in general Graph Theory. In general, a clique
means a subset of vertex of some graph such that each vertices are adjacent to each others.
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