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The distance matrix of a graph G is the matrix containing the 
pairwise distances between vertices. The distance eigenvalues 
of G are the eigenvalues of its distance matrix and they 
form the distance spectrum of G. We determine the distance 
spectra of double odd graphs and Doob graphs, completing 
the determination of distance spectra of distance regular 
graphs having exactly one positive distance eigenvalue. We 
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characterize strongly regular graphs having more positive than 
negative distance eigenvalues. We give examples of graphs 
with few distinct distance eigenvalues but lacking regularity 
properties. We also determine the determinant and inertia of 
the distance matrices of lollipop and barbell graphs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The distance matrix D(G) = [dij ] of a graph G is the matrix indexed by the vertices 
{v1, . . . , vn} of G where dij = d(vi, vj) is the distance between the vertices vi and vj , i.e., 
the length of a shortest path between vi and vj . Distance matrices were introduced in the 
study of a data communication problem in [17]. This problem involves finding appropriate 
addresses so that a message can move efficiently through a series of loops from its origin 
to its destination, choosing the best route at each switching point. Recently there has 
been renewed interest in the loop switching problem [14]. There has also been extensive 
work on distance spectra (eigenvalues of distance matrices); see [3] for a recent survey.

In [20], the authors classify the distance regular graphs having exactly one positive 
distance eigenvalue. Such graphs are directly related to a metric hierarchy for finite con-
nected graphs (and more generally, for finite distance spaces, see [4,12,13,19]), which 
makes these graphs particularly interesting. In Section 3 we find the distance spectra of 
Doob graphs and double odd graphs, completing the determination of distance spectra of 
distance regular graphs that have exactly one positive distance eigenvalue. In Section 2
we characterize strongly regular graphs having more positive than negative distance 
eigenvalues in terms of their parameters, generalizing results in [7], and apply this char-
acterization to show several additional infinite families of strongly regular graphs have 
this property.

Section 4 contains examples of graphs with specific properties and a small number 
of distinct distance eigenvalues. Answering a question in [5], we provide a construction 
for a family of connected graphs with arbitrarily large diameter that have no more than 
5 distinct distance eigenvalues but are not distance regular (Example 4.2). We exhibit 
a family of graphs with arbitrarily many distinct degrees but having exactly 5 distinct 
distance eigenvalues (Example 4.5). Finally, we give two lower bounds for the number 
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of distinct distance eigenvalues of a graph. The first bound is for a tree, in terms of its 
diameter, and the second is for any graph in terms of the zero forcing number of its 
complement.

In Persi Diaconis’ talk on distance spectra at the “Connections in Discrete Mathemat-
ics: A celebration of the work of Ron Graham” [14], he suggested it would be worthwhile 
to study the distance matrix of a clique with a path adjoined (sometimes called a lol-
lipop graph), and in Section 5 we determine determinants and inertias of these graphs, of 
barbell graphs, and of generalized barbell graphs (a family that includes both lollipops 
and barbells). The remainder of this introduction contains definitions and notation used 
throughout.

All graphs considered here are connected, simple, undirected, and finite of order at 
least two. Let G be a graph. The maximum distance between any two vertices in G is 
called the diameter of G and is denoted by diam(G). Two vertices are adjacent in the 
complement of G, denoted by G, if and only if they are nonadjacent in G. Let A(G)
denote the adjacency matrix of G, that is, A(G) = [aij ] is the matrix indexed by the 
vertices {v1, . . . , vn} of G where aij = 1 if {vi, vj} ∈ E(G) and is 0 otherwise. The n ×n

all ones matrix is denoted by J and the all ones vector by 1. A graph G is regular if 
every vertex has the same degree, say k; equivalently, A(G)1 = k1; observe that k is the 
spectral radius of A(G).

Since D(G) is a real symmetric matrix, its eigenvalues, called distance eigenvalues
of G, are all real. The spectrum of D(G) is denoted by specD(G) := {ρ, θ2, . . . , θn}
where ρ is the spectral radius, and is called the distance spectrum of the graph G.

The inertia of a real symmetric matrix is the triple of integers (n+, n0, n−), with 
the entries indicating the number of positive, zero, and negative eigenvalues, respec-
tively (counting multiplicities). Note that the order (n+, n0, n−), while customary in 
spectral graph theory, is nonstandard in linear algebra, where it is more common to use 
(n+, n−, n0). The spectrum of a matrix can be written as a multiset (with duplicates as 
needed), or as a list of distinct values with the exponents in parentheses indicating mul-
tiplicity (the exponent 1 is often omitted). In some formulas for spectra, the exponent 
of a number listed may be zero in a degenerate case, indicating that the number is not 
in fact an eigenvalue.

2. Strongly regular graphs

A k-regular graph G of order n is strongly regular with parameters (n, k, λ, μ) if every 
pair of adjacent vertices has λ common neighbors and every pair of distinct nonadjacent 
vertices has μ common neighbors. For n ≥ 2, the complete graph Kn is strongly reg-
ular with parameters (n, n − 1, n − 2, 0). For a strongly regular graph with parameters 
(n, k, λ, μ), μ = 0 is equivalent to G being n

k+1 copies of Kk+1, so we assume μ > 0 or 
G is complete, and thus G has diameter at most 2. There is a well known connection 
between the adjacency matrix of a graph of diameter at most 2 and its distance matrix 
that was exploited in [7].
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Remark 2.1. A real symmetric matrix commutes with J if and only if it has constant row 
sum. Suppose A commutes with J and ρ is the constant row sum of A, so J and A have 
a common eigenvector of 1. Since eigenvectors of real symmetric matrices corresponding 
to distinct eigenvalues are orthogonal, every eigenvector of A for an eigenvalue other 
than ρ is an eigenvector of J for eigenvalue 0.

Now suppose G is a graph that has diameter at most 2. Then D(G) = 2(J−I) −A(G). 
In addition suppose that G is regular, so A(G) commutes with J . Thus specD(G) =
{2n − 2 − ρ} ∪ {−λ − 2 : λ ∈ spec(A(G)) and λ �= ρ}.

Let G be a strongly regular graph with parameters (n, k, λ, μ). It is known that the (ad-
jacency) eigenvalues of G are ρ = k of multiplicity 1, θ := 1

2(λ −μ +
√

(λ− μ)2 + 4(k − μ))
of multiplicity mθ := 1

2 (n −1 − 2k+(n−1)(λ−μ)√
(λ−μ)2+4(k−μ) ), and τ := 1

2(λ −μ −
√

(λ− μ)2 + 4(k − μ))

of multiplicity mτ := 1
2 (n − 1 + 2k+(n−1)(λ−μ)√

(λ−μ)2+4(k−μ) ) [16, Chapter 10].1 Thus the distance 

eigenvalues of G are

ρD := 2(n− 1) − k of multiplicity 1

θD := −1
2

(
λ− μ +

√
(λ− μ)2 + 4(k − μ)

)
− 2

of multiplicity mθ = 1
2

(
n− 1 − 2k + (n− 1)(λ− μ)√

(λ− μ)2 + 4(k − μ)

)

τD := −1
2

(
λ− μ−

√
(λ− μ)2 + 4(k − μ)

)
− 2

of multiplicity mτ = 1
2

(
n− 1 + 2k + (n− 1)(λ− μ)√

(λ− μ)2 + 4(k − μ)

)
.

For a derivation of these values using quotient matrices, see [5, p. 262].

2.1. Optimistic strongly regular graphs

A graph is optimistic if it has more positive than negative distance eigenvalues. Gra-
ham and Lovász raised the question of whether optimistic graphs exist (although they 
did not use the term). This question was answered positively by Azarija in [7], where 
the term ‘optimistic’ was introduced. A strongly regular graph is a conference graph
if (n, k, λ, μ) = (n, n−1

2 , n−5
4 , n−1

4 ). In [7] it is shown that conference graphs of order 
at least 13 are optimistic and also that the strongly regular graphs with parameters 
(m2, 3(m −1), m, 6) are optimistic for m ≥ 5. Additional examples of optimistic strongly 
regular graphs, such as the Hall–Janko graph with parameters (100, 36, 14, 12), and 
examples of optimistic graphs that are not strongly regular are also presented there.

1 Although [16] requires G �= Kn, these formulas do work for Kn (producing mθ = 0).
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Theorem 2.2. Let G be a strongly regular graph with parameters (n, k, λ, μ). The graph G

is optimistic if and only if τD > 0 and mτ ≥ mθ. That is, G is optimistic if and only if

μ− 2k
n− 1 ≤ λ <

−4 + μ + k

2 .

Proof. Observe that θD < 0. Thus G is optimistic if and only if τD > 0 and mτ ≥ mθ. 
Simple algebra shows that 0 < τD is equivalent to λ < −4+μ+k

2 :

0 < −2 − 1
2

(
λ− μ−

√
(λ− μ)2 + 4(k − μ)

)
4 + λ− μ <

√
(λ− μ)2 + 4(k − μ).

There are two cases. First assume 4 + λ − μ ≥ 0, so

(λ− μ)2 + 8(λ− μ) + 16 < (λ− μ)2 + 4(k − μ)

λ <
−4 + μ + k

2 .

Now assume 4 + λ − μ < 0, or equivalently, λ − μ < −4. For any strongly regular graph, 
k ≥ λ + 1. Thus

(λ− μ) + (λ− k) < −4

λ <
−4 + μ + k

2 .

It is well known [16, p. 222] (and easy to see) that

mτ −mθ = 2k + (n− 1)(λ− μ)√
(λ− μ)2 + 4(k − μ)

. (1)

The denominator is always positive, and thus mτ ≥ mθ if and only if λ ≥ μ − 2k
n−1 . �

There are several additional families of strongly regular graphs for which the condi-
tions in Theorem 2.2 hold.

Corollary 2.3. A strongly regular graph with parameters (n, k, μ, μ) is optimistic if and 
only if k > μ + 4.

Proof. By Theorem 2.2, λ = μ implies mτ > mθ, and τD > 0 is equivalent to

0 <
−4 + μ + k

2 − λ = 1
2(k − μ− 4). �

The family of symplectic graphs is defined using subspaces of a vector space over a 
field with a finite number of elements. Let Fq be the field with q elements and consider 
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as vertices of Sp(2m, q) the one dimensional subspaces of F2m
q for m ≥ 2; let 〈x〉 denote 

the subspace generated by x. The alternate matrix of order m over Fq is the 2m × 2m

matrix Am =
[

0 1
−1 0

]
⊕ · · · ⊕

[
0 1
−1 0

]
with m copies of 

[
0 1
−1 0

]
. The vertices 〈x〉

and 〈y〉 are adjacent in Sp(2m, q) if xTAmy �= 0. See [16, Section 8.11] for Sp(2m, 2) and 
[24] for more general q. It is known that the symplectic graph Sp(2m, q) is a strongly 
regular graph with parameters

(n, k, λ, μ) =
(
q2m − 1
q − 1 , q2m−1, q2m−2(q − 1), q2m−2(q − 1)

)
(see [16, Section 10.12] for q = 2 or [24, Theorem 2.1] for more general q). The next 
result is immediate from Corollary 2.3.

Corollary 2.4. The symplectic graphs Sp(2m, q) are optimistic for every q and m except 
q = 2 and m = 2.

There are additional families of optimistic strongly regular graphs with parameters 
(n, k, μ, μ). One example is the family O2m+1(3) on one type of nonisotropic points, 
which has parameters(

3m (e + 3m)
2 ,

3m−1 (3m − e)
2 ,

3m−1 (3m−1 − e
)

2 ,
3m−1 (3m−1 − e

)
2

)

with m ≥ 2 and e = ±1 [9].
The more common definition of a conference graph is a strongly regular graph 

with mθ = mτ ; this is equivalent to the definition given earlier as (n, k, λ, μ) =
(n, n−1

2 , n−5
4 , n−1

4 ) [16, Lemma 10.3.2].

Theorem 2.5. Let G be a strongly regular graph with parameters (n, k, λ, μ). Both G and 
G are optimistic if and only if G is a conference graph and n ≥ 13.

Proof. The parameters of G are (n, k̄ := n −k−1, λ̄ := n −2 −2k+μ, μ̄ := n −2k+λ). 
By applying Theorem 2.2 to G and G,

λ ≥ μ− 2k
n− 1 (2)

and

λ̄ ≥ μ̄− 2k̄
n− 1

n− 2 − 2k + μ ≥ n− 2k + λ− 2(n− k − 1)

n− 1
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−2 + 2(n− k − 1)
n− 1 + μ ≥ λ

μ− 2k
n− 1 ≥ λ. (3)

By comparing (2) and (3), we see that λ = μ − 2k
n−1 , which by (1) implies mτ −mθ = 0. 

Thus G is a conference graph. It is shown in [7] that conference graphs are optimistic if 
and only if the order is at least 13. �
2.2. Strongly regular graphs with exactly one positive distance eigenvalue

Distance regular graphs (see Section 3 for the definition) having exactly one positive 
distance eigenvalue were studied in [20]; strongly regular graphs are distance regular. 
Here we make some elementary observations about strongly regular graphs with exactly 
one positive distance eigenvalue that will be used in Section 3.

Proposition 2.6. Let G be a strongly regular graph with parameters (n, k, λ, μ), and (ad-
jacency) eigenvalues k, θ, and τ . Then G = C5, G = Kn, or τ ≤ −2. Thus G has exactly 
one positive distance eigenvalue if and only if G = C5, G = Kn, or τ = −2.

Proof. From the formulas for the eigenvalues of a strongly regular graph, θ > 0 and 
τ < 0. It is known that if a strongly regular graph G is not a conference graph, then 
τ and θ are integers [16, Lemma 10.3.3]. If τ = −1, then k = λ + 1 (this follows from 
τ2−(λ −μ)τ−(k−μ) = 0 [16, p. 219]), implying G = Kn. Thus G is a conference graph, 
G = Kn, or τ ≤ −2. Since τ = 1

2 (−√
n− 1) for a conference graph on n vertices, every 

conference graph on at least 9 vertices has τ ≤ −2; the conference graph on 5 vertices 
is C5.

Since θ > 0, τ < 0, θD = −2 − θ, and τD = −2 − τ , G has exactly one positive 
eigenvalue if and only if τD ≤ 0 if and only if τ ≥ −2. Thus, the fact that G has only 
one positive eigenvalue implies G = C5, G = Kn, or τ = −2. Since Kn and C5 each have 
exactly one positive distance eigenvalue, G has exactly one positive distance eigenvalue 
if and only if τ = −2, G = C5, or G = Kn. �
Observation 2.7. There are several well known families of strongly regular graphs having 
τ = −2, and thus having one exactly positive distance eigenvalue. Examples of such 
graphs and their distance spectra include:

1. The cocktail party graphs CP(m) are complete multipartite graphs K2,2,...,2 on m
partite sets of order 2; CP(m) is a strongly regular graph with parameters (2m,

2m− 2, 2m− 4, 2m− 2) and has distance spectrum {2m, 0(m−1), −2(m)}.
2. The line graph L(Km) with parameters (m(m−1)

2 , 2m − 4, m − 2, 4) has distance 

spectrum {(m − 1)(m − 2), 0(m(m−3)
2 ), (2 −m)(m−1)}.
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3. The line graph L(Km,m) with parameters (m2, 2m −2, m −2, 2) has distance spectrum 
{2m(m − 1), 0((m−1)2), (−m)(2(m−1))}.

3. Distance regular graphs having exactly one positive distance eigenvalue

Let i, j, k ≥ 0 be integers. The graph G = (V, E) is called distance regular if for any 
choice of u, v ∈ V with d(u, v) = k, the number of vertices w ∈ V such that d(u, w) = i

and d(v, w) = j is independent of the choice of u and v. Distance spectra of several 
families of distance regular graphs were determined in [5]. In this section we complete 
the determination of the distance spectra of all distance regular graphs having exactly 
one positive distance eigenvalue, as listed in [20, Theorem 1]. For individual graphs, it 
is simply a matter of computation, but for infinite families the determination is more 
challenging. The infinite families in [20, Theorem 1] are (with numbering from that 
paper):

(I) cocktail party graphs CP(m),
(X) cycles Cn (called polygons in [20]),

(VII) Hamming graphs H(d, n),
(IV) halved cubes 1

2Qd,
(VIII) Doob graphs D(d, n),

(V) Johnson graphs J(n, r), and
(XI) double odd graphs DO(r).

First we summarize the known distance spectra of these infinite families. For a strongly 
regular graph, it is easy to determine the distance spectrum and we have listed the 
distance spectra of cocktail party graphs in Observation 2.7. The distance spectra of 
cycles are determined in [15], and in [5] are presented in the following form: For odd 

n = 2p + 1, specD(Cn) =
{

n2−1
4 , (−1

4 sec2(πjn ))(2), j = 1, . . . , p
}

, and for even n = 2p

the distance eigenvalues are n
2

4 , 0(p−1), (− csc2(π(2j−1)
n ))(2), j = 1, . . . , 

⌊
p
2
⌋

and −1 if p is 
odd.

Hamming graphs, whose distance spectra are determined in [18], and halved cubes, 
whose distance spectra are determined in [6], are discussed in Section 3.1 together with 
Doob graphs; the distance spectra of Doob graphs are established there. Johnson graphs, 
whose distance spectra are determined in [5], are discussed in Section 3.2 together with 
double odd graphs, and the distance spectra of double odd graphs are established there. 
Thus now all the infinite families in [20, Theorem 1] have their distance spectra deter-
mined.

For completeness we list the distance spectra (some of which are known) for the indi-
vidual graphs having exactly one positive distance eigenvalue; these are easily computed 
and we provide computational files in Sage [22]. Definitions of these graphs can be found 
in [3].
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Proposition 3.1. The graphs listed in [20, Theorem 1] that have exactly one positive 
distance eigenvalue and are not in one of the infinite families, together with their distance 
spectra, are:

(II) the Gosset graph; {84, 0(48), (−12)(7)},
(III) the Schläfli graph; {36, 0(20), (−6)(6)},
(VI) the three Chang graphs (all the same spectra); {42, 0(20), (−6)(7)},
(IX) the icosahedral graph; 

{
18, 0(5), (−3 +

√
5)(3), (−3 −

√
5)(3)

}
,

(XII) the Petersen graph; {15, 0(4), (−3)(5)},
(XIII) the dodecahedral graph; 

{
50, 0(9), (−7 + 3

√
5)(3), (−2)(4), (−7 − 3

√
5)(3)

}
.

A graph G is transmission regular if D(G)1 = ρ1 (where ρ is the constant row sum 
of D(G)). Any distance regular graph is transmission regular. Here we present some 
tools for transmission regular graphs and matrices constructed from distance matrices 
of transmission regular graphs. We first define the cartesian product of two graphs: For 
graphs G = (V, E) and G′ = (V ′, E′) define the graph G � G′ to be the graph whose 
vertex set is the cartesian product V × V ′ and where two vertices (u, u′) and (v, v′) are 
adjacent if (u = v and {u′, v′} ∈ E′) or (u′ = v′ and {u, v} ∈ E). The next theorem 
is stated for distance regular graphs in [18], but as noted in [5] the proof applies to 
transmission regular graphs.

Theorem 3.2. (See [18, Theorem 2.1].) Let G and G′ be transmission regular graphs with 
specD(G) = {ρ, θ2, . . . , θn} and specD(G′) = {ρ′, θ′2, . . . , θ′n′}. Then

specD(G�G′) = {n′ρ + nρ′} ∪ {n′θ2, . . . , n
′θn} ∪ {nθ′2, . . . , nθ′n′} ∪ {0((n−1)(n′−1))}.

Lemma 3.3. Let D be an n ×n irreducible nonnegative symmetric matrix that commutes 
with J . Suppose

M =
[
aeD + beJ + ceI aoD + boJ + coI

aoD + boJ + coI aeD + beJ + ceI

]
,

ae, ao, be, bo, ce, co ∈ R, and spec(D) = {ρ, θ2, . . . , θn} (where ρ is the row sum so 
D1 = ρ1). Then

spec(M) = {(ae + ao)ρ + (be + bo)n + (ce + co), (ae − ao)ρ + (be − bo)n + (ce − co)}

∪ {(ae + ao)θi + (ce + co) : i = 2, . . . , n}

∪ {(ae − ao)θi + (ce − co) : i = 2, . . . , n},

where the union is a multiset union.
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Proof. Since D commutes with J , 1 is an eigenvector of D for eigenvalue ρ. Thus 
[

1
1

]
is an eigenvector for (ae + ao)ρ + (be + bo)n + (ce + co) and 

[
1
−1

]
is an eigenvector for 

(ae−ao)ρ +(be−bo)n +(ce−co). Let xi be an eigenvector for θi (and assume {x2, . . . , xn} is 
linearly independent). Since eigenvectors for distinct eigenvalues are orthogonal, xi ⊥ 1, 

and thus Jxi = 0. Define yi =
[
xi

xi

]
and zi =

[
xi

−xi

]
. Then yi is an eigenvector 

of M for eigenvalue (ae + ao)θi + (ce + co) and zi is an eigenvector of M for eigenvalue 
(ae − ao)θi + (ce − co). �
3.1. Hamming graphs, halved cubes, and Doob graphs

For n ≥ 2 and d ≥ 1, the Hamming graph H(d, n) has vertex set consisting of all 
d-tuples of elements taken from {0, . . . , n − 1}, with two vertices adjacent if and only if 
they differ in exactly one coordinate; H(d, n) is equal to Kn � · · · � Kn with d copies 
of Kn. In [18] it is shown that the distance spectrum of the Hamming graph H(d, n) is

specD(H(d, n)) =
{
dnd−1(n− 1), 0(nd−d(n−1)−1), (−nd−1)(d(n−1))

}
. (4)

Observe that Kn = H(1, n) and the line graph L(Kn,n) is the Hamming graph H(2, n).
The Hamming graph H(d, 2) is also called the dth hypercube and denoted by Qd. 

The halved cube 1
2Qd = (V, E) is constructed from Qd as follows: The set of vertices V

of 1
2Qd is equal to the subset of vertices of Qd that have an even number of ones. Two 

vertices of 1
2Qd are adjacent if they are at distance two in Qd, or equivalently if they 

differ in exactly two coordinates. It is known that the halved cube is distance regular 
and has exactly one positive distance eigenvalue [20].

For any graph G = (V, E), the square is the graph G2 = (V, E2) with the same vertex 
set and edge set E2 = {{u, v} : d(u, v) ≤ 2 and u �= v}.

Theorem 3.4. (See [6, Theorem 2.3].) For d ≥ 2, the distance spectrum of the squared 
hypercube Q2

d is {
1
2

d∑
i=1

i

(
d

i

)
+ 2d−2, 0(2d−(d+2)), (−2d−2)(d+1)

}
.

Remark 3.5. Appropriate notation shows that the halved cube 1
2Qd is isomorphic to the 

square of a smaller hypercube, Q2
d−1: Let V = 2d−1 be the vertices of Q2

d−1. We can 
divide V into Ve and Vo, the set of all sequences with an even number of ones and the 
set of all sequences with an odd number of ones, respectively. For each x ∈ Ve we let 
x be the sequence of length d by adding a zero to the end of x. For y ∈ Vo, we let y
be the sequence obtained from y by adding a one to the end of y. Then both x and y
are sequences of length d with even number of ones. They form the vertex set of 1

2Qd. 
Moreover, x and y are adjacent in Q2

d−1 if and only if x and y are adjacent in 1Qd.
2
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Fig. 1. The Shrikhande graph S.

The next result follows from Theorem 3.4 and Remark 3.5 by simplifying the value of 
the spectral radius.

Corollary 3.6. For d ≥ 3, the distance spectrum of the halved cube 1
2Qd is{

d2d−3, 0(2d−1−(d+1)), (−2d−3)(d)
}
.

Remark 3.7. Our original proof of the distance spectrum of a halved cube is combinatorial 
and much longer than the linear algebraic proof in [6]. It does produce the distance 
eigenvectors in addition to the distance eigenvalues and can be found in [1].

A Doob graph D(m, d) is the cartesian product of m copies of the Shrikhande 
graph and the Hamming graph H(d, 4). The Shrikhande graph is the graph S =
(V, E) where V = {0, 1, 2, 3} × {0, 1, 2, 3} and E = {{(a, b), (c, d)} : (a, b) −
(c, d) ∈ {±(0, 1), ±(1, 0), ±(1, 1)}} (see Fig. 1). The distance spectrum is specD(S) ={
24, 0(9), (−4)(6)

}
[22].

Theorem 3.8. The distance spectrum of the Doob graph D(m, d) is{
3(2m + d)42m+d−1, 0(42m+d−6m−3d−1), (−42m+d−1)(6m+3d)

}
.

Proof. Let Sm be the cartesian product of m copies of the Shrikhande graph. Then 
specD(D(m, d)) = specD(Sm � H(d, 4)). We first show that

specD(Sm) =
{

6m42m−1, 0(16m−6m−1), (−42m−1)(6m)
}

(5)

by induction on m. It is clear that the result holds for m = 1. Assume the result holds for 
m − 1. Then by induction hypothesis, specD(Sm−1) = {6(m − 1)42m−3, 0(16m−1−6m+5), 
(−42m−3)(6m−6)}. By Theorem 3.2, we have

specD(Sm) = specD(Sm−1 �S)

=
{
16 · 6(m− 1)42m−3 + 16m−1 · 24

}
∪
{

(16 · 0)(16
m−1−6m+5), (−16 · 42m−3)(6m−6)

}
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∪
{

(16m−1 · 0)(9), (−16m−1 · 4)(6)
}
∪
{

0((16m−1−1)(16−1))
}

=
{

6m42m−1, 0(16m−6m−1), (−42m−1)(6m)
}
.

From (4), specD(H(d, 4)) =
{

3d4d−1, 0(4d−3d−1), (−4d−1)(3d)
}

. Then by (5) and The-
orem 3.2, we have

specD(D(m, d)) = specD(Sm �H(d, 4))

=
{

4d6m42m−1 + 16m3d4d−1} ∪ {(4d · 0)(16
m−6m−1), (−4d42m−1)(6m)

}
∪
{

(16m · 0)(4
d−3d−1), (−16m4d−1)(3d)

}
∪
{

0((16m−1)(4d−1))
}

=
{

3(2m + d)42m+d−1, 0(42m+d−6m−3d−1), (−42m+d−1)(6m+3d)
}
. �

3.2. Johnson, Kneser, and double odd graphs

Before defining Johnson graphs, we consider a more general family that includes both 
Johnson and Kneser graphs. For fixed integers n and r, let [n] := {1, . . . , n} and 

([n]
r

)
denote the collection of all r-subsets of [n]. For fixed integers n, r, i, the graph J(n; r; i)
is the graph defined on vertex set 

([n]
r

)
such that two vertices S and T are adjacent if and 

only if |S ∩ T | = r − i.2 The Johnson graphs J(n, r) are the graphs J(n; r; 1), and they 
are distance regular. Observe that the line graph L(Kn) is the Johnson graph J(n, 2). 
The distance spectra of Johnson graphs J(n, r) are determined in [5, Theorem 3.6]:

specD(J(n, r)) =
{
s(n, r), 0

((n
r

)
−n

)
,

(
−s(n, r)

n− 1

)(n−1)
}

(6)

where s(n, r) =
∑r

j=0 j
(
r
j

)(
n−r
j

)
.

Although they do not necessarily have exactly one positive distance eigenvalue and are 
not all distance regular, Kneser graphs can be used to construct double odd graphs. The 
Kneser graph K(n, r) is the graph J(n; r; r). Of particular interest are the odd graphs
O(r) = K(2r + 1, r).

A double odd graph DO(r) is a graph whose vertices are r-element or (r+1)-element 
subsets of [2r + 1], where two vertices S and T are adjacent if and only if S ⊂ T or 
T ⊂ S, as subsets. Double odd graphs can also be constructed as tensor products of odd 
graphs. We first define the tensor product of two graphs: For graphs G = (V, E) and 
G′ = (V ′, E′) define the graph G ×G′ to be the graph whose vertex set is the cartesian 
product V × V ′ and where two vertices (u, u′) and (v, v′) are adjacent if {u, v} ∈ E and 
{u′, v′} ∈ E′. To see that DO(r) = O(r) × P2, observe that O(r) × P2 has vertices of 

2 Note that the definition of this family of graphs varies with the source. Here we follow [8], whereas 
in [16] the graph defined by n, r, and i is what is here denoted by J(n; r; r − i).
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two types, (Sk, 1) and (Sk, 2) where Sk is a vertex of O(r). Then there are no edges 
just between the vertices of the form (Sk, 1), no edges just between the (Sk, 2), and 
(Sk, 1) ∼ (Sj , 2) if and only if Sk ∩ Sj = ∅. Equivalently, (Sk, 1) ∼ (Sj , 2) if and only if 
Sk ⊂ Sj . We will work with the representation of DO(r) as O(r) × P2.

Remark 3.9. Let G be a graph that is not bipartite. Then G ×P2 is a connected bipartite 

graph and D(G ×P2) has the form 
[
De Do

Do De

]
, where De and Do are n ×n nonnegative 

symmetric matrices with the entries of De even and those of Do odd; all these statements 
are obvious except the symmetry of Do. Observe that De is the matrix whose i, j-entry 
is the shortest even distance between vertices vi and vj in G, and Do is the matrix whose 
i, j-entry is the shortest odd distance between vertices vi and vj in G.

It is known [25] that the distance between two vertices S and T in K(n, r) is given 
by the formula

dK(S, T ) = min
{

2
⌈
r − |S ∩ T |
n− 2r

⌉
, 2
⌈
|S ∩ T |
n− 2r

⌉
+ 1

}
,

which for the odd graph O(r) is

dO(S, T ) = min{2(r − |S ∩ T |), 2|S ∩ T | + 1}. (7)

The distance between two vertices S and T in the Johnson graph J(n, r) is given by the 
formula

dJ(n,r)(S, T ) = 1
2 |SΔT | = r − |S ∩ T |, (8)

where Δ is the symmetric difference. Let dJ (S, T ) = dJ(2r+1,r)(S, T ).

Proposition 3.10. In O(r), dO(S, T ) = 2 if and only if dJ (S, T ) = 1. Furthermore, for 

D(O(r) × P2) =
[
De Do

Do De

]
, De = 2D(J(2r + 1, r)).

Proof. The first statement follows from equations (7) and (8) (it also follows from the 
definition). To prove the second part, let S0, . . . , S2n be a path of minimum even length 
between S0 and S2n, then S0, S2, S4, . . . , S2n is a path of length n in the Johnson graph 
by the first statement. Conversely any path of length i in the Johnson graph between S0

and Si provides a path of length 2i between S0 and Si in the odd graph (note that the 
new vertices are pairwise distinct). This implies the second statement. �
Proposition 3.11. For D(O(r) × P2) =

[
De Do

]
, Do = (2r + 1)J − 2D(J(2r + 1, r)).
Do De
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Proof. Let S and T be two vertices of the odd graph O(r). Let T̃ be an r-subset of 
[2r + 1] \ T containing S \ T . Thus S ∩ T̃ has the maximum size among all r-subsets 
of [2r + 1] \ T . Now the minimum odd distance between S and T is one more than the 
minimum even distance between S and a neighbor of T in the Kneser graph O(r). By 
Proposition 3.10, this is 1 + 2dJ(S, W ) = 1 + 2(r − |S ∩ W |), where W is a neighbor 
of T in O(r) that maximizes |S ∩ W |. It suffices to set W = T̃ . This implies that the 
minimum odd distance between S and T is

1 + 2dJ(S, T̃ ) = 1 + 2(r − |S ∩ T̃ |) = 2r + 1 − 2|S ∩ T̃ | = 2r + 1 − 2(|S\T |)

= 2r + 1 − 2(|S| − |S ∩ T |) = 2r + 1 − 2(r − |S ∩ T |) = 2r + 1 − 2dJ(S, T ). �
Theorem 3.12. Let D be the distance matrix of the Johnson graph J(2r + 1, r), let J be 
the all ones matrix of order 

(2r+1
r

)
, and let r ≥ 2. The distance matrix of the double odd 

graph DO(r) is [
De Do

Do De

]
=
[

2D (2r + 1)J − 2D
(2r + 1)J − 2D 2D

]
and its distance spectrum is

specD(DO(r)) =
{

(2r + 1)
(

2r + 1
r

)
, 0

(
2
(2r+1

r

)
−2r−2

)
,

(
−2s(2r + 1, r)

r

)(2r)

,

−(2r + 1)
(

2r + 1
r

)
+ 4s(2r + 1, r)

}
.

Proof. The first statement follows from Remark 3.9 and Propositions 3.10 and 3.11. 

From Equation (6), spec(D) =
{
s(2r + 1, r), 0

((2r+1
r

)
−(2r+1)

)
,
(
− s(2r+1,r)

2r

)(2r)
}

where 

s(n, r) =
∑r

j=0 j
(
r
j

)(
n−r
j

)
. Since J(2r+1, r) is distance regular, it is transmission regular, 

that is, D commutes with J . Then Lemma 3.3 establishes the result. �
We now return to arbitrary Kneser graphs K(n, r) and determine their distance spec-

tra. Let D be the distance matrix of K(n, r). Let A0 be the identity matrix of order 
(
n
r

)
and Ai the adjacency matrix of J(n; r; i) for 1 ≤ i ≤ r. It follows that

D =
r∑

i=0
f(i)Ai, where f(i) = min

{
2
⌈

i

n− 2r

⌉
, 2
⌈

r − i

n− 2r

⌉
+ 1

}
.

It is known that {Ai}ri=0 forms an association scheme called the Johnson scheme and 
the following properties come from the Corollary to Theorem 2.9 and from Theorem 2.10 
in [8]. For more information about association schemes, see, e.g., Section 2.3 in [8].
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Theorem 3.13. (See [8].) The matrices {Ai}ri=0 form a commuting family and are simul-
taneously diagonalizable. There are subspaces {Vj}rj=0 such that

• the whole space R
(
n
r

)
is the direct sum of {Vj}rj=0;

• for each Ai,

pi(j) =
j∑

t=0
(−1)t

(
j

t

)(
r − j

i− t

)(
n− r − j

i− t

)

is an eigenvalue with multiplicity mj = n−2j+1
n−j+1

(
n
j

)
whose eigenspace is Vj.

The value pi(j) =
∑j

t=0(−1)t
(
j
t

)(
r−j
i−t

)(
n−r−j
i−t

)
is known as the Eberlein polynomial. 

Now with Theorem 3.13 the distance spectrum of K(n, r) can also be computed.

Theorem 3.14. The distance spectrum of K(n, r) consists of

θj =
r∑

i=0
f(i)pi(j)

with multiplicity mj for j = 0, 1, . . . , r.

Proof. Since distance matrix of K(n, r) can be written as 
∑r

i=0 f(i)Ai and {Ai}ri=0 forms 
a commuting family, the distance eigenvalues of K(n, r) are also linear combinations of 
the eigenvalues of Ai’s. Theorem 3.13 gives the common eigenspaces and the eigenval-
ues with multiplicity, so summing up the corresponding eigenvalues gives the distance 
eigenvalues of K(n, r). �

Note that Theorem 3.14 gives us the distance spectrum of the odd graph O(r) =
K(2r + 1, r).

Remark 3.15. The statement in Theorem 3.14 includes all the eigenvalues and multiplic-
ities. However, it does not guarantee θj �= θj′ for different j and j′. If this happens, the 
multiplicity becomes mj + mj′ .

4. Number of distinct distance eigenvalues

In this section we construct examples of graphs having few distinct distance eigenval-
ues and various other properties and establish a lower bound on the number of distinct 
distance eigenvalues of a tree. Let qD(G) denote the number of distinct distance eigen-
values of G.

4.1. Fewer distinct distance eigenvalues than diameter

We have answered the following open question:
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Fig. 2. Q�
4 = Q4 with a leaf appended.

Question 4.1. (See [5, Problem 4.3].) Are there connected graphs that are not distance 
regular with diameter d and having less than d + 1 distinct distance eigenvalues?

Example 4.2. Consider the graph Q�
d consisting of Qd with a leaf appended. Fig. 2

shows Q�
4. Since Qd has diameter d, Q�

d has diameter d + 1. Since D(Qd) has 3 
distinct eigenvalues [18, Theorem 2.2] and the eigenvalues of D(Q�

d) interlace those 
of D(Qd), D(Q�

d) has at most 5 distinct eigenvalues. For example, D(Q�
4) has the 5 

eigenvalues 0 with multiplicity 11, −8 with multiplicity 3, and the 3 roots of q(z) =
z3 − 24z2 − 416z − 640, which are approximately −10.3149, −1.72176, and 36.0366. 
However diam(Q�

4) + 1 = 6.

4.2. Few distinct distance eigenvalues and many distinct degrees

The next result follows immediately from Theorem 3.2.

Proposition 4.3. If G is a transmission regular graph of order n with specD(G) =
{ρ, θ2, . . . , θn}, then

specD(G�G) = {2nρ} ∪ {(nθ2)(2), . . . , (nθn)(2)} ∪ {0((n−1)2)}.

Remark 4.4. Let G and H be graphs, and let deg(G) denote the set of distinct degrees 
of G. For x ∈ V (G) and y ∈ V (H), degG � H(x, y) = degG x +degH y. Thus deg(G�H) =
deg(G) + deg(H) := {a + b: a ∈ deg(G), b ∈ deg(H)}.

There is a graph G with arbitrarily many distinct degrees and D(G) having exactly 5 
distinct eigenvalues.

Example 4.5. Let G be the graph in Fig. 3. Observe that G is transmission regular with 

distance eigenvalues 
{

14,
(

−5+
√

33
2

)(2)
, (−1)(4),

(
−5−

√
33

2

)(2)
}

. Furthermore, deg(G) =

{3, 4}. Let Gi be G � · · · � G with i copies of G. By Proposition 4.3, qD(G � G) = 5 and 
one of the distance eigenvalues is zero, and by induction qD(G2k) = 5. By inductively 
applying Remark 4.4, G2k has at least 2k + 1 distinct degrees.
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Fig. 3. Transmission regular graph G with 4 eigenvalues that is not regular.

4.3. Minimum number of distinct distance eigenvalues of a tree

In studies of matrices or families of matrices associated with a graph G, it is sometimes 
the case that diam(G) + 1 is a lower bound for the number of distinct eigenvalues for 
some or all graphs G. In many situations a real symmetric n × n matrix A is studied 
by means of its graph G(A), which has vertices {1, . . . , n} and edges ij exactly where 
aij �= 0. It is well known that a nonnegative matrix A has at least diam(G(A)) + 1
distinct eigenvalues [11, Theorem 2.2.1], and any real symmetric matrix A has at least 
diam(G(A)) +1 distinct eigenvalues if G(A) is a tree [21, Theorem 2].3 Note that G(D(T ))
is not a tree even when T is a tree.

Question 4.6. For a tree T , is the number of distinct distance eigenvalues qD(T ) at least 
diam(T ) + 1?

The answer is yes for all trees of order at most 20, as determined through computations 
in Sage [22]. We can prove the following weaker bound.

Proposition 4.7. Let T be a tree. Then T has at least �diam(T )
2 � distinct distance eigen-

values.

Proof. Let L(T ) be the line graph of T and D be the distance matrix of T . Then 
diam(L(T )) = diam(T ) − 1. By [11, Theorem 2.2.1], the adjacency matrix A(L(T ))
of L(T ) has at least diam(L(T )) + 1 = diam(T ) distinct eigenvalues. Let K = 2I +
A(L(T )). By [23], the eigenvalues of −2K−1 interlace the eigenvalues of D (with D
having one more). Since −2K−1 also has at least diam(T ) distinct eigenvalues, D has at 
least �diam(T )

2 � distinct eigenvalues. �
4.4. Zero forcing bound for the number of distinct distance eigenvalues

Let G be a graph. Then S(G) denotes the family of real symmetric matrices A such 
that G(A) = G. The maximum nullity of G is defined to be the largest possible nul-
lity among matrices in S(G), and is denoted by M(G). The zero forcing number of a 
graph G, Z(G), is the minimum cardinality of a set S of blue vertices (the rest of the 

3 In [21], d(G) = diam(G) + 1.
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vertices are white) such that all the vertices are turned blue after iteratively applying 
the “color-change rule”: a white vertex is turned blue if it is the only white neighbor of 
a blue vertex. Zero forcing was introduced in [2]. The zero forcing number Z(G) is used 
to bound the maximum nullity:

Theorem 4.8. (See [2].) For any graph G, M(G) ≤ Z(G).

Theorem 4.9. For any graph G of order n, the number of distinct eigenvalues of D(G)
is at least

n− 1
Z(G) + 1

+ 1.

Proof. Let θ be an eigenvalue of D(G). Then the multiplicity mθ is null(D(G) −θI). Now 
observe that D(G) −J − θI is a matrix in S(G), so null(D(G) −J − θI) ≤ M(G) ≤ Z(G)
by Theorem 4.8. Since J is a rank-1 matrix,

mθ = null(D(G) − θI) ≤ null(D(G) − J − θI) + 1 ≤ Z(G) + 1.

Each eigenvalue has multiplicity at most Z(G) + 1. Also, since D(G) is a irreducible 
matrix, by the Perron–Frobenius Theorem, the largest eigenvalue has multiplicity one. 
As a consequence, the number of distinct eigenvalues is at least n−1

Z(G)+1 + 1. �
The bound given in Theorem 4.9 can be tight, as seen in the next example.

Example 4.10. All Hamming graphs H(d, n) on d ≥ 3 dimensions (including Qd :=
H(d, 2)) have 3 distance eigenvalues [18]. Assume d ≥ 3 and in Qd let a := 1000 · · · 0, 
b := 0100 · · · 0, c := 0010 · · · 0, e := 1100 · · · 0, p := 0000 · · · 0, and q := 0110 · · · 0. Observe 
that V (Qd) \ {a, b, c, e} is a zero forcing set for Qd using the following forces: p → e, 
e → c, q → a, and c → b. Therefore, Z(Qd) ≤ |Qd| − 4 and 

⌈
|Qd|−1

Z(Qd)+1 + 1
⌉

= 3. Thus the 
bound given in Theorem 4.9 is tight for hypercubes Qd with d ≥ 3; more generally, the 
bound is tight for H(d, n) for d ≥ 3.

5. Determinants and inertias of distance matrices of barbells and lollipops

A lollipop graph, denoted by L(k, �) for k ≥ 2 and � ≥ 0, is constructed by attaching 
a k-clique by an edge to one pendant vertex of a path on � vertices.4 A barbell graph, 
denoted by B(k, �) for k ≥ 2 and � ≥ 0, is a graph constructed by attaching a k-clique 
by an edge to each of the two pendant vertices of a path on � vertices. Define the family 
of generalized barbell graphs, denoted by B(k; m; �) for k, m ≥ 2 and � ≥ 0, to be the 

4 In the literature the name ‘lollipop’ is often used to denote a graph obtained by appending a cycle rather 
than a clique to the pendant vertex of the path.
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graph constructed by attaching a k-clique by an edge to one end vertex of a path on �
vertices, and attaching an m-clique by an edge to the other end vertex of the path. Thus 
B(k, �) = B(k; k; �) for k ≥ 2 and � ≥ 0, and L(k, �) = B(k; 2; � − 2) for � ≥ 2. In this 
section we establish the determinant and inertia of the distance matrices of B(k; m; �), 
and hence for barbells and lollipops.

The technique we use is the method of quotient matrices, which has been applied 
to distance matrices previously (see, for example, [5]). Let A be a block matrix whose 
rows and columns are partitioned according to some partition X = {X1, . . . , Xm} with 
characteristic matrix S, i.e., i, j-entry of S is 1 if i ∈ Xj and 0 otherwise. The quotient 
matrix B = [bij ] of A for this partition is the m ×m matrix whose entries are the average 
row sums of the blocks of A, i.e. bij is the average row sum of the block Aij of A for 
each i, j. The partition X is called equitable if the row sum of each block Aij is constant, 
that is AS = SB. It is well known that if the partition is equitable, then the spectrum 
of A consists of the spectrum of the quotient matrix B together with the eigenvalues 
belonging to eigenvectors orthogonal to the columns of S (see, e.g., [10, Lemma 2.3.1]).

Theorem 5.1. The distance determinants of generalized barbell graphs are given by

detD(B(k;m; �)) = (−1)k+m+�−12�(km(� + 5) − 2(k + m)).

Proof. We label the vertices of B(k; m; �) as follows: v1, . . . , vk and vk+1, . . . , vk+m are 
the cliques on k and m vertices, respectively; vk+m+1, . . . , vk+m+� are the vertices on the 
path with vi adjacent to vi+1; finally vk is adjacent to vk+m+1 and vk+m is adjacent to 
vk+m+�.

Let Q(B(k; m; �)) be the quotient matrix of the distance matrix of B(k; m; �), parti-
tioning the rows and columns of D(B(k; m; �)) according to X = {X1, X2, . . . , X�+4}
where X1 = {v1, . . . , vk−1}, X2 = {vk+1, . . . , vk+m−1}, X3 = {vk}, and Xi =
{vk+m+i−4} for i = 4, . . . , � +4. Clearly, D(B(k; m; �)) has (k−2) +(m −2) eigenvectors 
for eigenvalue −1 that are orthogonal to the columns of the characteristic matrix S, 
so detD(B(k; m; �)) = (−1)(k−2)+(m−2) detQ(B(k; m; �)) = (−1)k+m detQ(B(k; m; �)). 
Thus it suffices to compute the determinant of the (� +4) × (� + 4) quotient matrix. For 
� = 0, simply compute the determinant of the 4 ×4 quotient matrix (the upper left block 
of the block matrix in (9) below). Now assume � ≥ 1.

detQ(B(k;m; �)) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k − 2 (� + 3)(m− 1) 1 � + 2 2 3 · · · � + 1
(� + 3)(k − 1) m− 2 � + 2 1 � + 1 � · · · 2

k − 1 (� + 2)(m− 1) 0 � + 1 1 2 · · · �
(� + 2)(k − 1) m− 1 � + 1 0 � �− 1 · · · 1

2(k − 1) (� + 1)(m− 1) 1 � 0 1 · · · �− 1
3(k − 1) �(m− 1) 2 �− 1 1 0 · · · �− 2

...
...

...
...

...
...

. . .
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)
(� + 1)(k − 1) 2(m− 1) � 1 �− 1 �− 2 · · · 0
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= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k − 2 (� + 3)(m− 1) 1 � + 2 2 3 · · · � � + 1
(� + 3)(k − 1) m− 2 � + 2 1 � + 1 � · · · 3 2

1 −(m− 1) −1 −1 −1 −1 · · · −1 −1
−(k − 1) 1 −1 −1 −1 −1 · · · −1 −1
k − 1 −(m− 1) 1 −1 −1 −1 · · · −1 −1
k − 1 −(m− 1) 1 −1 1 −1 · · · −1 −1
k − 1 −(m− 1) 1 −1 1 1 · · · −1 −1

...
...

...
...

...
...

. . .
...

...
k − 1 −(m− 1) 1 −1 1 1 · · · 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k − 2 (� + 3)(m− 1) 1 � + 2
(� + 3)(k − 1) m− 2 � + 2 1

1 −(m− 1) −1 −1
−k m 0 0

2(k − 1) −m 2 0

2 3 · · · � + 1
� + 1 � · · · 2
−1 −1 · · · −1
0 0 · · · 0
0 0 · · · 0

0(�−1)×4 2I�−1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

= (−2)�−1 det

⎡⎢⎢⎢⎢⎢⎣
k − 2 (� + 3)(m− 1) 1 � + 2 � + 1

(� + 3)(k − 1) m− 2 � + 2 1 2
1 −(m− 1) −1 −1 −1
−k m 0 0 0

2(k − 1) −m 2 0 0

⎤⎥⎥⎥⎥⎥⎦
= (−1)�−12�−12(km(� + 5) − 2(k + m)).

The matrix (10) is obtained from (9) by iteratively subtracting the ith row from (i +1)th 
row starting from i = � + 3 to i = 5 and subtracting ith row from (i + 2)th row for 
i = 3, 2, 1. The matrix (11) is obtained from (10) by iteratively subtracting the jth row 
from (j + 1)th starting from j = � + 3 to j = 3. �
Theorem 5.2. The inertia of D(B(k; m; �)) is (n+, n0, n−) = (1, 0, k + m + �− 1).

Proof. We use induction on k + m. The base case is k = m = 2, which is a path. 
Since the inertia of any tree on n vertices is (1, 0, n − 1) [17], the inertia of D(B(2; 2; �))
is (1, 0, � + 3). Thus the assertion follows for k + m = 4. Let θ1 ≥ · · · ≥ θk+m+�+1
be the eigenvalues of D(B(k + 1; m; �)) and μ1 ≥ · · · ≥ μk+m+� be the eigenvalues of 
D(B(k; m; �)). By interlacing we have μi ≥ θi+1, for i = 1, . . . , k + m + �. The induc-
tion hypothesis implies that θ3 ≥ · · · ≥ θk+m+� are negative numbers and θ1 > 0. By 
Theorem 5.1, the determinant will change sign, so we obtain θ2 < 0, completing the 
proof. �
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Corollary 5.3. The distance determinants of barbell graphs are given by

detD(B(k, �)) = (−1)�−12�(k2(� + 5) − 4k).

Corollary 5.4. The distance determinants of lollipop graphs are given by

detD(L(k, �)) = (−1)k+�−12�−1 (k(� + 2) − 2) .

Proof. The case � ≥ 2 follows from Theorem 5.1 because L(k, �) = B(k; 2; � − 2). The 
proof for � = 1 is a simplified version of the proof of that theorem. The eigenvalues of 
the k-clique L(k, 0) are {k − 1, (−1)(k−1)}, so detD(L(k, 0)) = (−1)k−1(k − 1), which 
agrees with (−1)k+�−12�−1 (k(� + 2) − 2) for � = 0. �
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