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Abstract. The minimum rank mr(G) (respectively, maximum nullity M(G)) of a graph G with
n vertices is the minimum rank (respectively, maximum nullity) of an n × n real symmetric matrix
A with its off-diagonal entry Aij ≠ 0 whenever ij is an edge of G. L. de Alba et. al. [2] studied the
minimum rank problem on the powers of paths and the strict powers of trees. This paper continues
the research and gives an explicit formula for the minimum rank of powers of cycles and powers of
trees.

Key words. Minimum Rank, Maximum Nullity, Zero forcing number, Path cover number,
Power, Cycle, Tree.

AMS subject classifications. 05C05, 05C38, 05C50, 15B35.

1. Introduction. Graphs and symmetric matrices are in intimate relation. For
an n × n real symmetric matrix A, it is natural to consider the corresponding graph
G = G(A) with

vertex set V (G) = {1,2, . . . , n} and edge set E(G) = {ij∶ i ≠ j,Aij ≠ 0},

where Aij is the ij-entry of A. Conversely, for a graph G with n vertices, there is a
class of n × n real symmetric matrices whose corresponding graph is G. Denote this
class as

S(G) = {A ∈Mn×n(R)∶A = A
⊺, G(A) = G},

where Mn×n(R) is the set of all n × n matrices over the field of real numbers. The
minimum rank of a graph G is

mr(G) =min{rank(A)∶A ∈ S(G)};

and the maximum nullity of G is

M(G) =max{null(A)∶A ∈ S(G)}.

It is easy to see that

mr(G) +M(G) = ∣V (G)∣ .
So a result in mr(G) can be presented as a result in M(G) and vice versa. In this
paper we very often write results in terms of M(G) rather than mr(G).

For a positive integer r, the r-th power of a graph G is the graph Gr whose vertex
set is V (G) and two distinct vertices i and j are adjacent in Gr if their distance in G

is at most r. The maximum nullity of the path Pn of n vertices is 1. de Alba et al.
[2] proved that M(P r

n) =min{r,n − 1}. It is also known that the maximum nullity of
cycle Cn of n vertices is 2 for n ≥ 3. Nazari and Radpoor [7] proved that M(Cr

n) = 2r
for r ≤ n

2
by using the delta Conjecture that δ(G) ≤ M(G) for any graph G, which

was posted in [4] but remains unsolved. In Section 3, we prove this result without
using the delta Conjecture. In Section 4, we determine the maximum nullity of the
square of a tree.
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2. Notation and terminology. For a positive integer n, the set {1,2, . . . , n} is
denoted by [n]. The support supp(v) of a vector v ∈ Rn is the index set of nonzero
entries of v.

A zero forcing set of a graph G is a subset F ⊆ V (G) which can force all vertices
black at the end of repeatedly applying the following color changing rule:

● initially, all vertices in F are black and all other vertices are white;
● if a black vertex x has exactly one white neighbor y, then y is changed to be
black.

The zero forcing number Z(G) is the minimum size of a zero forcing set of G. In
the above rule, we write x → y to refer that a black vertex x forces its only white
neighbor y to be black. A chronological list is a chronological record {xi → yi}si=1,
where xi → yi is the color changing at iteration i. A zero forcing process ζ refers to
a zero forcing set together with the corresponding chronological list. For more detail
on the parameter Z, see [3]. The following inequality from [1] is particularly useful in
this paper: for any graph G,

M(G) ≤ Z(G). (2.1)

A path cover of a graph G is a collection P of disjoint induced paths that cover
all vertices of G. The path cover number p(G) of G is the minimum size of a path
cover of G. It is known that M(G) = p(T ) for a tree T [6] and M(G) ≤ p(G) for an
outerplanar graph G [8]. For a positive integer r, the r-th weight of a path cover P is

wr(P) = ∑
π∈P

Z(πr);
and the r-th path cover number of G is

pr(G) =min{wr(P)∶ P is a path cover of G}.
Since Z(π) = 1 for any path π, it is the case that p1(G) = p(G).

The clique cover number cc(G) of a graph G is the minimum number of (not
necessarily disjoint) cliques to cover E(G). It is known that cc(G) ≥mr(G) for all G,
even we replace the field R by any other infinite field, see [5]. The star-clique cover C
of a graph G is a set of stars and cliques that cover all edges of G. The weight of C is
w(C) = 2p+ q when C consists of p stars and q cliques. The star-clique number of G is

scc(G) =min{w(C)∶C is a star-clique cover of G}.
By the facts that rank(A+B) ≤ rank(A)+rank(B) and that mr(Ka,b) = 2 for a+b ≥ 3,
it follows that scc(G) ≥ mr(G) for any graph G. The dual star-clique cover number

is defined as scc(G) = ∣V (G)∣ − scc(G). Then, for any graph G,

scc(G) ≤M(G) ≤ Z(G). (2.2)

Section 4 shows that scc(T 2) =M(T 2) = Z(T 2) = p2(T ) for any tree T .

3. Powers of cycles. Recall that Nazari and Radpoor [7] proved that M(Cr
n) =

2r for r ≤ n
2
by using the delta Conjecture that δ(G) ≤M(G) for any graph G, which

was posted in [4] but remains unsolved. The purpose of this section is to give a proof
of this result without using the delta Conjecture. The following lemma in [4] is useful.

Lemma 3.1. For positive integers k ≤ n, there is a k × n real matrix C whose

k × k submatrices are nonsingular. Also, S is the support of a non-zero vector v with

Cv = 0 if and only if ∣S∣ ≥ k + 1.
Theorem 3.2. If n ≥ 3, then M(Cr

n) = Z(Cr
n) =min{2r,n − 1}.
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Proof. If 2r ≥ n − 1, then Cr
n =Kn and so M(Cr

n) = Z(Cr
n) = n − 1.

We now consider the case of 2r ≤ n − 2. Since each set of 2r consecutive vertices
of the cycle form a zero forcing set, M(Cr

n) ≤ Z(Cr
n) ≤ 2r. Next, we shall prove that

M(Cr
n) ≥ 2r by constructing a symmetric matrix A with G(A) = Cr

n and rank(A) ≤
n − 2r.

For k ∈ [n − r], let Ik be the subset {k, k + 1, . . . , k + r} of [n − r], where the
addition is taken module n − r, that is, k + i is k + i − (n − r) if k + i > n − r. By
Lemma 3.1, we may choose an r × (n − r) real matrix C whose r × r submatrices are
nonsingular; also a vector vk ∈ R

n−r such that Cvk = 0 with supp(vk) = Ik for each

k ∈ [n − r]. Next, choose appropriate coefficients ak such that A = ∑n−2r
i=1 aiviv

⊺

i has
the property that G(A) = P r

n−r. This is possible because we only have to worry about
that some nonzero entries vanish under the process of summation. However, there
are only finitely many these conditions and we have infinitely many choices for the
coefficients. Furthermore, we can choose an−2r as small as we want.

Let B be the (n − r) × r matrix whose i-th column is vn−2r+i. Since all vi are in
the null space of C, the space spanned by {v1, v2, . . . , vn−r} has dimension at most
n − 2r. Also, rank(A) ≥ n − 2r, since mr(P r

n−r) = n − 2r. Hence, there is a matrix
X such that AX = B. As we may choose an−2r as small as we want, X⊺AX can be
chosen to contain no zero entries. Then

D = [ A B

B⊺ X⊺AX
] = [ A B

X⊺A X⊺B
]

has rank n − 2r and G(D) = Cr
n. These prove that M(Cr

n) ≥ 2r and so M(Cr
n) =

Z(Cr
n) = 2r as desired.

4. Squares of trees. The purpose of this section is to determine the maximum
nullity of the square of a tree. Besides a formula in terms of the zero forcing number,
a procedure to compute it is also given.

Theorem 4.1. If T is a tree, then scc(T 2) =M(T 2) = Z(T 2) = p2(T ).
The theorem follows from (2.2) that scc(T 2) ≤M(T 2) ≤ Z(T 2) and the following

two lemmas. The first lemma proves that p2(T ) is an upper bound of Z(T 2) and the
second lemma proves that p2(T ) is a lower bound of scc(T 2).

Lemma 4.2. If T is a tree, then Z(T 2) ≤ p2(T ).
Proof. Choose a path cover P of T with w2(P) = p2(T ). A vertex is special if it

is of degree 2 and is adjacent to a leaf. We conclude the lemma by proving Claim 1
using an induction on the number n of vertices of T .
Claim 1. ∣F ∣ ≤ w2(P) for some zero forcing set F of T 2 with a zero forcing process

ζ for which each forcing x → y has the property that dT (x, y) = 2 whenever y is not

special in T .

The claim is clear for n = 1. Now assume that n ≥ 2. For the case when T is a star,
T 2 is Kn. Choose F as a set of all vertices except a leaf of T . The claim follows from
that P consists of paths with minimum total weight n−1. For the case when T is the
n-path v1, v2, . . . , vn with n ≥ 3, choose F = {v1, v2} which is a zero forcing set of T 2

using the chronological list {vi → vi+2}n−2i=1 . Then Z(T 2) ≤ 2. As Z(T 2) ≥ δ(T 2) = 2.
In fact Z(T 2) = 2. The claim then follows.

Now we consider the case when T is neither a star nor a path. In this case, there
is always a path π∶v1, v2, . . . , vr, . . . , vs in P such that v1 is a leaf in T and vr is the
only vertex of π adjacent to an unique vertex v ∉ π in T . Then, T1 ∶= T − π is a tree
of at least 3 vertices and P1 ∶= P − {π} is a path cover of T1. We claim that v is not a
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special vertex in T1 when s = 2. Suppose to the contrary that s = 2 but v is of degree
2 and is adjacent to a leaf u in T1. Suppose u is a vertex of a path π1 ∈ P .

Case 1. π1 = u. Suppose v is in path π2 ∈ P . In this case, we may replace P by
the path cover (P − {π2, π})∪ {π2 +π} of weight no more than P and replace π by u.

Case 2. π1 = uv. In this case, we may replace P by the path cover (P −{π1, π})∪{π1 + π} of weight no more than P and replace π by π1 + π.

Case 3. π1 has at leas 3 vertices. In this case, we may replace P by the path
cover (P − {π1, π}) ∪ {u, (π1 − u) + π} of weight no more than P and replace π by u.

So, we may assume that either s ≠ 2 or v is not special. By the induction hypothesis,∣F + 1∣ ≤ w2(P1) for some zero forcing set F1 of T 2
1 with a zero forcing process ζ1 for

which each forcing x→ y has the property that dT1
(x, y) = 2 whenever y is not special

in T1, in particular when y is v for the case of s = 2.

Let F = F1 ∪ {v1} when s ≤ 2 and let F = F1 ∪ {v1, v2} when s ≥ 3. We shall check
that F is a zero forcing set of T 2 by constructing a zero forcing process corresponding
to F as follows. First, if s ≥ 3, then do forcing vi → vi+2 for 1 ≤ i ≤ r − 2. By now,
vr is black unless s = 2. Next, do all forcing x → y of ζ1 until v∗ → v. Notice that
either vr is black or else s = 2 and so dT1

(v∗, v) = 2. In either case, all the forcing of
ζ1 mentioned above do not infect the vertices in π. Then do the forcing v1 → v2 when
s = 2 or the forcing vr−1 → vr+1 when s ≥ 3. Finally, do the remaining forcing of ζ1,
follow by the remaining forcing vi → vi+2 alone π for r ≤ i ≤ s − 2. These give a zero
forcing processing corresponding to F with the property that dT (x, y) = 2 whenever
y is not special in T . This completes the proof of Claim 1.

For a vertex v in T , we use N(v) and N2(v) to denote the set of neighbors of v
in T and T 2 respectively. We use κv to denote the clique induced by N(v) ∪ {v} in
T 2, and use σv to denote the star in T 2 whose center is v and whose set of leaves is
N2(v).

In a tree T , a pendent path is a maximal induced path that contains a leaf but
no vertex of degree more than 2. A pendent branch consists of vertex v with degree
k + 1 ≥ 3 and k pendent paths each has an end vertex adjacent to v. For the case
when T is not a path, a pendent branch can be obtained from a breadth first search.
Equivalently, consider T rooted at a chosen vertex r and choose a vertex v of degree
k + 1 ≥ 3 farest from r. Then v has k children and all proper descendants of v form k

pendent paths of the pendent branch.

Lemma 4.3. If T is a tree, then p2(T ) ≤ scc(T 2).
Proof. We shall prove the lemma by induction on the number n of vertices of T .

For the case when T is a path π∶v1, v2, . . . , vn, the lemma follows from considering
the path cover {π} and the star-clique cover {κvi ∶2 ≤ i ≤max{2, n− 1}}. Now assume
that T is not a path and so n ≥ 4. Choose a pendent branch at a vertex v of degree
k + 1 ≥ 3 with pendent paths αi∶v

i
1, v

i
2, . . . , v

i
si

for 1 ≤ i ≤ k. We consider three cases.

Case 1. One of the following conditions holds: (i) there is some si ≥ 4, (ii) there
is some si = 2, (iii) k = 2 and there is some si = 3 with the other sj = 1. Let T1

be the tree obtained from T by deleting the leaf visi . By the induction hypothesis,
p2(T1) ≤ scc(T 2

1 ). Choose a path cover P1 of T1 with w2(P1) = p2(T1) and a star-
clique cover C1 of T 2

1 with w(C1) = scc(T 2
1 ). Let π be the path in P1 which contains the

leaf visi−1 in T1. If ∣V (π)∣ = 2, then we change P1 and π according to three subcases:

(i) The other end vertex visi−2 of π is adjacent to visi−3 which is an end vertex
of a path π1 in P1. Since Z((π1 + π)2) ≤ 2 ≤ Z(π2

1) + Z(π2), we may replace P1 by(P1 − {π1, π}) ∪ {π1 + π} and replace π by π1 + π.

(ii) The other end vertex v of π is adjacent to a neighbor of v which is an end
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vertex of a path π1 in P1. Replace P1 by (P1 − {π1, π}) ∪ {π1 + π} and replace π by
π1 + π.

(iii) The other end vertex vi1 of π is adjacent to v. Let v is in a path π1 in P1. If
v is an end vertex of π1, then replace P1 by (P1−{π1, π})∪{π1 +π} and replace π by
π1 +π. If v is not an end vertex of π1, then the leaf vj

1
is an end vertex of π1. In this

case, replace P1 by (P1 − {π1, π}) ∪ {vj1, (π1 − v
j
1
)+ π} and replace π by (π1 − v

j
1
)+ π.

By now we may assume that ∣V (π)∣ ≠ 2. Then P ∶= (P1−{π})∪{π+visi} is a path
cover of T with w2(P) = w2(P1), since Z((π + visi)2) = Z(π2) = 1 if ∣V (π)∣ = 1 and
Z((π + visi)2) = Z(π2) = 2 if ∣V (π)∣ ≥ 3. Also C ∶= C1 ∪ {κvi

si−1

} is a star-clique cover of

C with w(C1) + 1 = w(C). Consequently,
p2(T ) ≤ w2(P) = w2(P1) ≤ scc(T 2

1 ) = ∣V (T1)∣ −w(C1) = ∣V (T )∣ −w(C) ≤ scc(T 2).
Case 2. k = 2 and s1 = s2 = 3. Let T1 be the tree obtained from T by deleting

α1, v and α2. By the induction hypothesis, p2(T1) ≤ scc(T 2
1 ). Choose a path coverP1 of T1 with w2(P1) = p2(T1) and a star-clique cover C1 of T 2
1 with w(C1) = scc(T 2

1 ).
Then P ∶= P1 ∪ {α1 + v +α2} is a path cover of T with w2(P) = w2(P1) + 2. Also C ∶=C1∪{σv, κv, κv1

2

, κv2

2

} is a star-clique cover of T 2 with w(C1)+5 = w(C). Consequently,
p2(T ) ≤ w2(P) = w2(P1)+2 ≤ scc(T 2

1 )+2 = ∣V (T1)∣−w(C1)+2 = ∣V (T )∣−w(C) ≤ scc(T 2).
Case 3. One of the following conditions holds: (i) k = 2 with s1 = s2 = 1, (ii) k ≥ 3

with some si say s1 = 1, (iii) k ≥ 3 with all si = 3. Let T1 be the tree obtained from T

by deleting α1. By the induction hypothesis, p2(T1) ≤ scc(T 2
1 ). Choose a path coverP1 of T1 with w2(P1) = p2(T1) and a star-clique cover C1 of T 2
1 with w(C1) = scc(T 2

1 ).
We have the following facts.

(a) We may assume that if σx ∈ C1, then x has degree at leat 3 in T1. For
otherwise we may replace σx by κy for all y ∈ NT1

(x) to get a star-clique
cover of weight no more than C1.

(b) We may assume that if x has at least two neighbors y1 and y2 of degree 1 or
2 in T1, then κx ∈ C1. As the edge y1y2 can be covered only by κx, σy1

or σy2
,

this follows from (a).
(c) Under condition (i), we may assume that κv ∈ C1. This follows from the facts

that the edge vv21 can only be covered by κv or κv2

1

and that κv covers more
edges than κv2

1

.

(d) Under condition (iii), we may assume that σv ∈ C1. For otherwise κvi

1

and κvi

2

are in C1 for 2 ≤ i ≤ k and so we may replace κvi

1

for 2 ≤ i ≤ k by σv to get a
star-clique cover of weight no more than C1.

Now P ∶= P1∪{α1} is a path cover of T with w2(P) = w2(P1)+Z(α2
1). According

to (a), (b), and (c), κv ∈ C1 in any case. According to (d), σv ∈ C1 under condition
(iii). Under condition (i) or (ii), C ∶= (C1 − {κv in T1}) ∪ {κv in T }) is a clique cover
of T with w(C1) = w(C). Under condition (iii), C ∶= (C1 − {κv and σv in T1}) ∪ {κv

and σv in T,κv1

2

}) is a clique cover of T with w(C1) + 1 = w(C). In any case, w(C1) +∣V (α1)∣ −Z(α2
1) = w(C). Hence,

p2(T ) ≤ w2(P) = w2(P1) +Z(α2

1) = p2(T1) +Z(α2

1) ≤ scc(T 2

1 ) +Z(α2

1)
= ∣V (T1)∣ −w(C1) +Z(α2

1) = ∣V (T )∣ −w(C) = scc(T 2).
This completes the proof.
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The proof of the theorem in fact provides an algorithm for computing M(T 2).
We summary it as follows.

Corollary 4.4. If T is a path, then M(T 2) = 1 when ∣V (T )∣ ≤ 2 and M(T ) = 2
when ∣V (T )∣ ≥ 3. If T is a tree containing a pendent branch B which has p pendent

paths with at most 2 vertices and q paths of at least 3 vertices, T1 is obtained from T

by deleting B and T2 is obtained from T by replacing B with a path of two vertices,

then M(T ) =M(T1) + p + 2q − 2 if q ≥ 2 and M(T ) =M(T2) + p + q − 1 if q ≤ 1.
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