Counterexamples to an edge spread question for zero forcing number

Gerard Jennhwa Chang ${ }^{\text {a,b,c,1}}$, Jephian Chin-Hung Lin ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
b Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
c National Center for Theoretical Sciences, Taipei Office, Taiwan

A R T I C L E I N F O

Article history:

Received 24 August 2013
Accepted 9 January 2014
Available online 23 January 2014
Submitted by R. Brualdi

MSC:
05C50
15A03
15B57
Keywords:
Minimum rank
Maximal nullity
Zero forcing number
Edge spread

A B S T R A C T

This note gives counterexamples to an edge spread problem on the zero forcing number.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For a simple graph G on n vertices, the minimum rank problem is to determine the minimum rank $\operatorname{mr}(G)$ of G, which is the smallest possible rank among all $n \times n$ symmetric

[^0]matrices whose off-diagonal $i j$-entry is nonzero whenever $i j$ is an edge in G and zero otherwise. Equivalently, we may consider the maximal nullity $M(G):=n-\operatorname{mr}(G)$. In 2008, a graph parameter called the zero forcing number was introduced by the AIM Minimum Rank-Special Graphs Work Group [1] to serve as an upper bound for the maximal nullity.

Let G be a graph with each vertex colored black or white. A zero forcing process on G is defined by the color-change rule: a black vertex x can force a white vertex y to black at the next step when y is the only white neighbor of x. A zero forcing set of G is a subset $B \subseteq V(G)$ which as the initial set of black vertices can force all vertices in $V(G)$ to black. The zero forcing number $Z(G)$ is the minimum size of a zero forcing set of G. It was proved in [1] that

$$
M(G) \leqslant Z(G) \quad \text { for any graph } G
$$

To describe a zero forcing process, we write $x \rightarrow y$ to denote that at some stage a black vertex x forces its only white neighbor y to black. The chronological list of a zero forcing process is a record ($x_{i} \rightarrow y_{i}: 1 \leqslant i \leqslant h$) in order. Thus when we mention a zero forcing process, we mean the corresponding zero forcing set together with its chronological list.

A maximal chain is a maximal sequence of vertices of the form

$$
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{k}
$$

It is worth noting that every maximal chain is an induced path in G, by the color-change rule. Also, the set of all maximal chains of a zero forcing process is a collection of induced paths that cover all vertices of the graph.

The edge spread $z_{e}(G)$ of a graph G on an edge e is

$$
z_{e}(G)=Z(G)-Z(G-e)
$$

Edholm et al. [2] proved that if $z_{e}(G)=-1$, then the edge e is an edge in some maximal chain of every optimal zero forcing process. Here an optimal zero forcing process means one whose corresponding zero forcing set is of size $Z(G)$. In the same paper, the authors asked in Question 2.22 if the converse of the previous statement is also true. The purpose of this note is to give a negative answer to the question by constructing infinitely many counterexamples.

2. The robot graphs

The counterexamples provided in this note are the robot graphs $R_{n}\left(h_{1}, h_{2}, \ldots, h_{2 n}\right)$ to be constructed as follows. Choose integers $n \geqslant 2, h_{0}=2$ and $h_{s} \geqslant 3$ for $1 \leqslant s \leqslant 2 n$. Let P_{s} be the path with the h_{s} vertices labeled $p_{s, 1}, p_{s, 2}, \ldots, p_{s, h_{s}}$ for $0 \leqslant s \leqslant 2 n$; and let $C_{2 n+1}$ be the cycle with the $2 n+1$ vertices labeled $v_{0}, v_{1}, v_{2}, \ldots, v_{2 n}$. Define H_{p} to be the graph obtained from $C_{2 n+1}, P_{0}, P_{1}, \ldots, P_{2 n}$ by identifying $p_{s, h_{s}}$ with v_{s} for $0 \leqslant s \leqslant 2 n$,

Fig. 1. Robot graph $R_{2}(3,3,3,3)$.
adopting the name $p_{s, h_{s}}$. Next, make a copy H_{q} of H_{p} and label the vertex corresponding to $p_{s, t}$ as $q_{s, t}$. The robot graph $R_{n}\left(h_{1}, h_{2}, \ldots, h_{2 n}\right)$ is defined as the graph obtained from the disjoint union of H_{p} and H_{q} by adding edges $p_{s, t} q_{s, t}$ for $0 \leqslant s \leqslant 2 n$ and $1 \leqslant t \leqslant h_{s}$; see Fig. 1 for an example. This graph is the Cartesian product of H_{p} with a path on 2 vertices.

Theorem 1. If $G=R_{n}\left(h_{1}, h_{2}, \ldots, h_{2 n}\right)$ is a robot graph in which $e=p_{0,1} q_{0,1}$, then $Z(G)=Z(G-e)=2 n+1$ and e is in some maximal chain of every optimal zero forcing process ψ of G.

Proof. We first prove that $Z(G)=2 n+1$. Notice that $\left\{p_{0,1}, p_{1,1}, q_{1,1}\right\} \cup\left\{p_{2 s, 1}, q_{2 s, 1}: 1 \leqslant\right.$ $s \leqslant n-1\}$ is a zero forcing set of size $2 n+1$, which gives that $Z(G) \leqslant 2 n+1$. On the other hand, to see $Z(G) \geqslant 2 n+1$ we only need to prove that ψ has at least $2 n+1$ maximal chains. We claim that for $0 \leqslant s \leqslant 2 n$, either $p_{s, 1}$ or $q_{s, 1}$ is an end vertex of some maximal chain of ψ. For otherwise, $p_{s, 1}$ and $q_{s, 1}$ being middle vertices of some maximal chain would imply that $p_{s, 2}, p_{s, 1}, q_{s, 1}, q_{s, 2}$ are in the same maximal chain, violating that the chain is an induced path.

For $0 \leqslant s \leqslant 2 n$, define $L_{s}:=\left\{p_{s, t}, q_{s, t}: 1 \leqslant t \leqslant h_{s}\right\}$. Then we claim that for $1 \leqslant s \leqslant 2 n, L_{s}$ contains two end vertices of different maximal chains of ψ. If $p_{s, 1}$ and $q_{s, 1}$ are in distinct maximal chains, the claim holds, so assume they are in the same maximal chain. There are two possibilities: either $p_{s, 1}$ and $q_{s, 1}$ are end vertices of the same maximal chain of ψ or one of $p_{s, 1}$ and $q_{s, 1}$, say $q_{s, 1}$, is a middle point of some maximal chain of ψ. For the former case, $p_{s, 1}$ and $q_{s, 1}$ form a maximal chain of ψ of length 2. Then, either $p_{s, 2}$ or $q_{s, 2}$ is an end vertex of another maximal chain of ψ. For the latter case, $p_{s, 1}, q_{s, 1}, q_{s, 2}$ are in the same maximal chain and so $p_{s, 2}$ is in another maximal chain μ. As $p_{s, 2}$ is of degree 3 in G, it is adjacent to just one vertex in μ and so is an end vertex of μ. Hence the claim holds.

Therefore, there are a total of at least $4 n+1$ end vertices. Since each maximal chain contains only two end vertices, at least $2 n+1=\left\lceil\frac{4 n+1}{2}\right\rceil$ maximal chains are required. This ensures that $Z(G)=2 n+1$.

Next, we show that $e=p_{0,1} q_{0,1}$ is in some maximal chain of ψ. Suppose to the contrary that e is not in any maximal chain of ψ. Since e is not used in any maximal chain, both $p_{0,1}$ and $q_{0,1}$ are end vertices of different maximal chains of ψ. This together with the optimality of ψ and the arguments in the previous paragraph gives exactly $4 n+2$ end vertices of maximal chains of ψ. Also, every maximal chain μ of ψ has one end vertex in L_{s} and the other end vertex in L_{t} for $0 \leqslant s<t \leqslant 2 n$. Then μ contains at least two vertices in the set $W=\left\{p_{s, h_{s}}, q_{s, h_{s}}: 0 \leqslant s \leqslant 2 n\right\}$. Since $2 n+1$ maximal chains are needed and $|W|=4 n+2$, each maximal chain contains exactly two vertices in W. Furthermore, the two vertices of each chain should be adjacent, and so the pair must be of the form of $\left\{p_{s, h_{s}}, p_{t, h_{t}}\right\}$ or $\left\{q_{s, h_{s}}, q_{t, h_{t}}\right\}$. But there are at most n disjoint sets of the form $\left\{p_{s, h_{s}}, p_{t, h_{t}}\right\}$ and at most n disjoint sets of the form $\left\{q_{s, h_{s}}, q_{t, h_{t}}\right\}$, violating that there are $2 n+1$ maximal chains of ψ. Therefore e is in some maximal chain of every optimal ψ.

The remaining task is to prove that $Z(G-e)=2 n+1$. Since $\left\{p_{0,1}\right\} \cup\left\{p_{2 s+1,1}, q_{2 s+1,1}\right.$: $0 \leqslant s \leqslant n-1\}$ is a zero forcing set of $G-e$, we have $Z(G-e) \leqslant 2 n+1$. On the other hand, precisely the same argument as for G gives that there are at least $4 n+2$ end vertices of maximal chains of every optimal zero forcing process of $G-e$. Again, $Z(G-e) \geqslant \frac{4 n+2}{2}=2 n+1$ and so $Z(G-e)=2 n+1$.

Example 2. The graph in Fig. 1 is a robot graph with $n=2$ and $h_{1}=h_{2}=h_{3}=h_{4}=3$. It has the zero forcing number 5 , and every optimal zero forcing process uses the edge $p_{0,1} q_{0,1}$ to perform a force. Also, the zero forcing number remains 5 when the edge $p_{0,1} q_{0,1}$ is deleted.

It is notable that the condition $n \geqslant 2$ is necessary, since the zero forcing number of $R_{1}(3,3)-p_{0,1} q_{0,1}$ is $4>3=2 n+1$.

References

[1] AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648.
[2] C.J. Edholm, L. Hogben, M. Huynh, J. LaGrange, D.D. Row, Vertex and edge spread of zero forcing number, maximum nullity, and maximum rank of a graph, Linear Algebra Appl. 436 (2012) 4352-4372.

[^0]: * Corresponding author.

 E-mail addresses: gjchang@math.ntu.edu.tw (G.J. Chang), jlch3554@hotmail.com (J.C.-H. Lin).
 ${ }^{1}$ This research is partially supported by the National Science Council of the Republic of China under grant NSC101-2115-M-002-005-MY3.

