sage filler. some groups: $C_{n}, S_{n}, A_{n}, D_{n} ; G F(p), A u t(E / F)$, classic Lie type over $\mathbf{R}, \mathbf{C}, \mathbf{H}: G L, S O, S L, P S L, S p, S U$

$$
\operatorname{Dic}_{n}:=\left\langle a, x \mid a^{2 n}=1, x^{2}=a^{n}, x^{-1} a x=a^{-1}\right\rangle
$$

alt def by exact sequence $1 \rightarrow C_{2 n} \rightarrow \operatorname{Dic}_{n} \rightarrow C_{2} \rightarrow 1$
G-actions
$f: H \leq G \curvearrowright G ; \ell_{h}(x) \stackrel{\text { def }}{=} h x \in G$
other way may not work? $G \curvearrowright H ; a h \notin H$
however $N \triangleleft G, G \curvearrowright N ; c_{g}(x) \stackrel{\text { def }}{=} g x g^{-1}$
$G \curvearrowright G / H, f(g, a H):=(g a) H$

1. PERMUTATIONS \& CYCLES

$\sigma \in A u t \mathbf{N}$, e.g.,

- $n \mapsto n$
- $\sigma \in \mathbf{Z}_{p}: n \mapsto n^{2}$
- $n \mapsto n+1$

These are really permutations, an N-cycle satisfies
(1) $o(\sigma)=N$, possibly infinity

Remember, permutations form a symmetric group, with function composition as the binary operation. Thus for any permutations, σ, τ, you can compose and invert them $\tau \circ \sigma^{-1}$. Whem $\sigma \circ \sigma^{\prime}=\sigma^{\prime} \circ \sigma$, we say they are disjoint and write $\sigma \coprod \sigma^{\prime}$

Consider the strictly nondecreasing 2 -cycles $\sigma_{i} \geq \sigma_{j}$ equality iff equal etcetc.

MILNE

PROPOSITION 1.25. Let H be a subgroup of a group G .
(a) An element a of G lies in a left coset C of H if and only if $C=a H$
(b) Two left cosets are either disjoint or equal.
(c) $a H=b H$ if and only if $a^{-1} b \in H$
(d) Any two left cosets have the same number of elements (possibly infinite).

Proof. Recall $a \in H \Longrightarrow a H=H$. If this is the case, any left coset of H via elements of H will be $a H(=H)$.
Otherwise for $a \neq c \in G-H: a \in c H \Longrightarrow a H \subset c H$ (since $\exists h \in H: a=c h, h=$ $\left.c^{-1} a\right)$
Using this, $c H=c h H=c c^{-1} a H=a H$
\Longrightarrow (a).
and since, by (a), any intersection implies equality of cosets, only disjunct cosets remain
$\Longrightarrow(b)$
Going the other way, if $a H=c H$:

$$
c a^{-1} H=H, c a^{-1} \in H
$$

$\Longrightarrow \quad(\mathrm{c})$
Define as follows

$$
\phi: a H \rightarrow b H: x \mapsto\left(b a^{-1}\right) x, \phi^{-1}: x \mapsto a b^{-1} c, \phi \phi^{-1}=\phi^{-1} \phi=1
$$

This defines a inverse system between $a H, b H$, thus iso ie same cardinality \Longrightarrow (d)
[Note 1: Cosets partition G, since $a \in a H$ along with 1.25(b).]
[Note 2:In regards to right cosets, if we modify the function in 1.25 (c) slightly

$$
\begin{gathered}
\phi: a H \rightarrow H b: a h \mapsto(a h)^{-1} a b=h^{-1} b \in H b \\
\phi^{-1}: H b \rightarrow a H: h b \mapsto a b(h b)^{-1}=a h^{-1} \in a H
\end{gathered}
$$

we get a isomorphism between left and right cosets.]
Definition 1. The $\operatorname{index}(G: H)$ is the number of left (equivalently right) H-cosets in G

THEOREM 1.26 (LAGRANGE). If G is finite, then

$$
(G: 1)=(G: H)(H: 1)
$$

In particular, the order of every subgroup of a finite group divides the order of the group.

Proof. $(G, 1)=\sum_{a \in G}$ Cosets partition G so $\sum_{a H \subset G}|a H|=|G|=(G: 1)$ Cosets have equal cardinality relative to a given subgroup (which is itself the coset $e H$), and since the (left) multiplier determines the number of unique cosets

$$
(G: 1)=|G|=\sum_{a \in G}|a H|=(G: H)(H: 1)
$$

COROLLARY 1.27. The order of each element of a finite group divides the order of the group.

Proof. Set $H=\langle a\rangle$, then $|H|=o(a)$
One of the Sylow theorems is a partial converse of Lagrange for prime-powers p^{n} :

THEOREM 5.2 (SYLOW I). Let $G \in$ FinGp be a finite group, and let p be prime. If $p^{n} \mid(G: 1)$, then G has a subgroup of order p^{n}

Proof. TBA
Toshow: nexted subgroups $K<H<G:(G: K)=(G: H)(H: K)$

Normal subgroups, CONJugacy

Definition 2. $N \triangleleft G$ if $\forall g \in G, g N g^{-1}=N$
What about if $g^{-1} N g=N$?

$$
g^{-1} N g=N \Longleftrightarrow N g=g N \Longleftrightarrow g N g^{-1}=N
$$

So it doesn't matter how you conjugate.

REMARK 1.32. suffices to show $g N g^{-1} \subset N(\forall g \in G)$
Proof.

$$
g N g^{-1} \subset N \Longrightarrow N \subset g^{-1} N g=g N g^{-1}
$$

$\therefore g N g^{-1}=N$.
important note: this is only the case if every $g \in G$ fulfills this criterion, and in the following example $G=G L(2, \mathbf{Q}), g=\left(\begin{array}{cc}5 & 0 \\ 0 & 1\end{array}\right)$ and $H=\left\{\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)\right\}_{n \in \mathbf{Z}} \cong \mathbf{Z}$

$$
\begin{aligned}
\mathrm{C}= & \operatorname{matrix}(\mathrm{SR}, 2,[1, ' \mathrm{n}, 1,0]) \\
& \left(\begin{array}{cc}
5 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & n \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 5 n \\
\frac{1}{5} & 0
\end{array}\right) \cong 5 \mathbf{Z} \\
& \left(\begin{array}{rr}
\frac{1}{5} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & n \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{1}{5} n \\
5 & 0
\end{array}\right)
\end{aligned}
$$

In the first case conjugation yields a proper subset, but conjugation by the inverse isn't even in H.

EXAMPLE 1.36. (a) Every subgroup of index two is normal.
(b) Dihedral group, its cyclic and translational symmetries, $n=2, n>2$.
(c) Subgroups in $\mathbf{A b}$ are normal, but converse not true, e.g., Q

Proof. (a) The subgroup H of index 2 has two cosets: namely itself $a H=H$, and $g H: g \in G-H$. In other words, G is partitioned into $H \coprod g H$. Then by exclusion, $g H=H g$
(b) by commutivity, $C_{n} \triangleleft D_{n} \forall n$, but

Definition 3. When $1 \unlhd N$ is the only series of normal subgroups, N is simple
PROPOSITION 1.37. If H and N are subgroups of G and N is normal, then $H N$ is a subgroup of G. If H is also normal, then $H N$ is a normal subgroup of G.

Proof. (1) First the case of mutual normalcy: $H, N \triangleleft G$,

$$
g H N g^{-1}=g\left(g^{-1} H g\right)\left(g^{-1} N g\right) g^{-} 1=H N
$$

(2) Relaxing the normalcy condition on H :

$$
(H N)^{-1}=N H=H N
$$

Moreover, if we let $X=N \cap N^{\prime}$
Definition 4. $\langle X\rangle_{N \triangleleft G} \stackrel{\text { def }}{=} \bigcap_{X \subset N} N$, the normal subgroup generated by X, is the intersection of normal subgroups containing X. As we will see this is equivalent to the normal closure $g^{-1} X g$.
$L E M M A$ 1.38. If X is normal, then the subgroup $\langle X\rangle$ generated by it is also normal.
Proof. Say elements of $\langle X\rangle$ are of the form $a=a_{1} \ldots a_{n}$, then
$L E M M A$ 1.39. $\bigcup_{g \in G} g X g^{-1}$ is the smallest normal set containing X.
Proof. TBA

4
PROPOSITION 1.40. $\langle X\rangle=\left\langle\bigcup_{g \in G} g X g^{-1}\right\rangle \triangleleft G$
Proof. TBA

Ch1 exercises

```
var('q w r k')
P = PermutationGroup(['(1,2,3)','(2,3)'])
p = P.gen(0)
IsoZ = matrix(SR, 2, [[1,'n'],[0,1]])
a = matrix(SR, 3, 3, [[1, 'a', 'b'], [0, 1, 'c'], [0, 0, 1]])
K = matrix(SR, [[q,w+r],[0,q^2*r]])
A = matrix(2, [0,i, i,0])
B = matrix (2, [0,1, -1,0])
```

1-1. Using

$$
Q:=\left\langle A^{2}=B^{2}, A^{4}=1, A^{3}=B A B^{-1}\right\rangle=\left\langle\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

Show $\forall H \leq Q, H \triangleleft Q, \exists!a: o a=2, Q \notin \mathbf{A b}$

Proof.
$\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{rr}-i & 0 \\ 0 & i\end{array}\right) \neq\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{rr}0 & i \\ i & 0\end{array}\right)=\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)$
so Q nonabelian. $A X A^{-1}=\left(\begin{array}{cc}d & c \\ b & a\end{array}\right) \quad B X B^{-1}=\left(\begin{array}{rr}d & -c \\ -b & a\end{array}\right)$

1-2. Using matrices in $G L(2, \mathbf{Z}[i])$, show $\left\langle a, b \mid a^{4}=b^{3}=1\right\rangle \notin$ FinGp
Proof. $a b=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left\{(a b)^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)\right\} \cong \mathbf{Z}$
1-3. Show $G:|G| \in 2 \mathbf{Z}$ has an element $a: o a=2$.
Proof. oa $-2 n$,
1-4. Let $n=\sum_{1}^{r} n_{i}$, use lagrange to show $\prod_{1}^{r} n_{i}!\mid n$!
Proof. Consider

1-5. Let $N \triangleleft G:(G: N)=n$. Show $g^{n} \in N$, and that in nonnnormal subgroups this may not be true.

Proof. TBA

1-6. We say $m \in \mathbf{N}$ is the exponent of G if it's the smallest annihilator of G.
(a) Show $m=2 \Longrightarrow G \in \mathbf{A b}$
(b) Let G be the following group. Verify that $m=p$ and $G \notin \mathbf{A b}$

$$
G:=\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\right\} \subset G L\left(3, \mathbb{F}_{p}\right)
$$

Proof. (a) $a b a b=e, a^{-1} b^{-1}=a b=b a$
(b) Show $a, b, c \in p \mathbf{Z} /$

TBA
1-7. Two subgroups H and H^{\prime} of a group G are said to be commensurable if $H \cap H^{\prime}$ is of finite index in both H and H^{\prime}. Show that commensurability is an equivalence relation on subgroups of G.

1-8. Show that a nonempty finite set with an associative binary operation satisfying the cancellation laws is a group. cancellation law: $a n=a m \Longrightarrow n=m$

