
sage filler. some groups: Cn, Sn, An, Dn;GF (p), Aut(E/F ),
classic Lie type over R,C,H : GL,SO, SL, PSL, Sp, SU

Dicn := 〈a, x | a2n = 1, x2 = an, x−1ax = a−1〉
alt def by exact sequence 1→ C2n → Dicn → C2 → 1
G-actions

f : H ≤ Gy G; `h(x)
def
= hx ∈ G

other way may not work? Gy H; ah 6∈ H
however N / G,Gy N ; cg(x)

def
= gxg−1

Gy G/H, f(g, aH) := (ga)H

1. permutations & cycles

σ ∈ AutN, e.g.,

• n 7→ n
• σ ∈ Zp : n 7→ n2

• n 7→ n+ 1

These are really permutations, an N -cycle satisfies

(1) o(σ) = N , possibly infinity

Remember, permutations form a symmetric group, with function composition as
the binary operation. Thus for any permutations, σ, τ , you can compose and invert
them τ ◦ σ−1 . Whem σ ◦ σ′ = σ′ ◦ σ, we say they are disjoint and write σ

∐
σ′

Consider the strictly nondecreasing 2-cycles σi ≥ σj equality iff equal etcetc.

milne

PROPOSITION 1.25. Let H be a subgroup of a group G.
(a) An element a of G lies in a left coset C of H if and only if C = aH
(b) Two left cosets are either disjoint or equal.
(c) aH = bH if and only if a−1b ∈ H
(d) Any two left cosets have the same number of elements
(possibly infinite).

Proof. Recall a ∈ H =⇒ aH = H. If this is the case, any left coset of H via
elements of H will be aH(= H).
Otherwise for a 6= c ∈ G−H : a ∈ cH =⇒ aH ⊂ cH (since ∃h ∈ H : a = ch, h =
c−1a)
Using this, cH = chH = cc−1aH = aH
=⇒ (a).
and since, by (a), any intersection implies equality of cosets, only disjunct cosets
remain
=⇒ (b)
Going the other way, if aH = cH:

ca−1H = H, ca−1 ∈ H
=⇒ (c)
Define as follows

φ : aH → bH : x 7→ (ba−1)x, φ−1 : x 7→ ab−1c, φφ−1 = φ−1φ = 1
1
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This defines a inverse system between aH, bH, thus iso ie same cardinality
=⇒ (d) �

[Note 1: Cosets partition G, since a ∈ aH along with 1.25(b).]
[Note 2:In regards to right cosets, if we modify the function in 1.25(c) slightly

φ : aH → Hb : ah 7→ (ah)−1ab = h−1b ∈ Hb

φ−1 : Hb→ aH : hb 7→ ab(hb)−1 = ah−1 ∈ aH
we get a isomorphism between left and right cosets.]

Definition 1. The index (G : H) is the number of left (equivalently right) H-cosets
in G

THEOREM 1.26 (LAGRANGE). If G is finite, then

(G : 1) = (G : H)(H : 1)

In particular, the order of every subgroup of a finite group divides the order of the
group.

Proof. (G, 1) =
∑

a∈G Cosets partition G so
∑

aH⊂G |aH| = |G| = (G : 1)
Cosets have equal cardinality relative to a given subgroup (which is itself the coset
eH), and since the (left) multiplier determines the number of unique cosets

(G : 1) = |G| =
∑
a∈G
|aH| = (G : H)(H : 1)

�

COROLLARY 1.27. The order of each element of a finite group divides the order
of the group.

Proof. Set H = 〈a〉, then |H| = o(a) �

One of the Sylow theorems is a partial converse of Lagrange for prime-powers pn:

THEOREM 5.2 (SYLOW I). Let G ∈ FinGp be a finite group, and let p be
prime. If pn|(G : 1), then G has a subgroup of order pn

Proof. TBA �

Toshow: nexted subgroups K < H < G : (G : K) = (G : H)(H : K)

Normal subgroups, conjugacy

Definition 2. N / G if ∀g ∈ G, gNg−1 = N

What about if g−1Ng = N?

g−1Ng = N ⇐⇒ Ng = gN ⇐⇒ gNg−1 = N

So it doesn’t matter how you conjugate.
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REMARK 1.32. suffices to show gNg−1 ⊂ N(∀g ∈ G)

Proof.

gNg−1 ⊂ N =⇒ N ⊂ g−1Ng = gNg−1

∴ gNg−1 = N . �

important note: this is only the case if every g ∈ G fulfills this criterion, and in the
following example G = GL(2,Q), g = ( 5 0

0 1 ) and H = {( 1 n
0 1 )}n∈Z ∼= Z

C= matrix(SR, 2, [1,’n’,1,0])(
5 0
0 1

) (
1 n
1 0

) (
1
5 0
0 1

)
=

(
1 5n
1
5 0

)
∼= 5Z(

1
5 0
0 1

) (
1 n
1 0

) (
5 0
0 1

)
=

(
1 1

5 n
5 0

)
In the first case conjugation yields a proper subset, but conjugation by the inverse
isn’t even in H.

EXAMPLE 1.36. (a) Every subgroup of index two is normal.
(b) Dihedral group, its cyclic and translational symmetries, n = 2, n > 2.
(c) Subgroups in Ab are normal, but converse not true, e.g., Q

Proof. (a) The subgroup H of index 2 has two cosets: namely itself aH = H, and
gH : g ∈ G−H. In other words, G is partitioned into H

∐
gH. Then by exclusion,

gH = Hg
(b) by commutivity, Cn / Dn∀n, but �

Definition 3. When 1 E N is the only series of normal subgroups, N is simple

PROPOSITION 1.37. If H and N are subgroups of G and N is normal, then HN
is a subgroup of G. If H is also normal, then HN is a normal subgroup of G.

Proof. (1) First the case of mutual normalcy: H,N / G,

gHNg−1 = g(g−1Hg)(g−1Ng)g−1 = HN

(2) Relaxing the normalcy condition on H:

(HN)−1 = NH = HN

�

Moreover, if we let X = N ∩N ′

Definition 4. 〈X〉N/G

def
=
⋂

X⊂N N , the normal subgroup generated by X, is
the intersection of normal subgroups containing X. As we will see this is equivalent
to the normal closure g−1Xg.

LEMMA 1.38. If X is normal, then the subgroup 〈X〉 generated by it is also normal.

Proof. Say elements of 〈X〉 are of the form a = a1 . . . an, then �

LEMMA 1.39.
⋃

g∈G gXg
−1 is the smallest normal set containing X.

Proof. TBA �
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PROPOSITION 1.40. 〈X〉 =
〈⋃

g∈G gXg
−1
〉
/ G

Proof. TBA �

Ch1 exercises

var(’q w r k’)

P = PermutationGroup([’(1,2,3)’,’(2,3)’])

p = P.gen(0)

IsoZ = matrix(SR, 2, [[1,’n’],[0,1]])

a = matrix(SR, 3, 3, [[1, ’a’, ’b’], [0, 1, ’c’], [0, 0, 1]])

K = matrix(SR, [[q,w+r],[0,q^2*r]])

A = matrix(2, [0,i, i,0])

B = matrix(2, [0,1, -1,0])

1-1. Using

Q := 〈A2 = B2, A4 = 1, A3 = BAB−1〉 =

〈(
0 i
i 0

)
,

(
0 1
−1 0

)〉
Show ∀H ≤ Q,H / Q, ∃!a : oa = 2, Q /∈ Ab

Proof.(
0 i
i 0

) (
0 1
−1 0

)
=

(
−i 0

0 i

)
6=
(

0 1
−1 0

) (
0 i
i 0

)
=

(
i 0
0 −i

)

so Q nonabelian. AXA−1 =

(
d c
b a

)
BXB−1 =

(
d −c
−b a

)
�

1-2. Using matrices in GL(2,Z[i]), show
〈
a, b|a4 = b3 = 1

〉
/∈ FinGp

Proof. ab =

(
1 1
0 1

)
,

{
(ab)n =

(
1 n
0 1

)}
∼= Z �

1-3. Show G : |G| ∈ 2Z has an element a : oa = 2.

Proof. oa — 2n, �

1-4. Let n =
∑r

1 ni, use lagrange to show
∏r

1 ni!|n!

Proof. Consider �

1-5. Let N / G : (G : N) = n. Show gn ∈ N , and that in nonnnormal subgroups
this may not be true.

Proof. TBA �
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1-6. We say m ∈ N is the exponent of G if it’s the smallest annihilator of G.
(a) Show m = 2 =⇒ G ∈ Ab
(b) Let G be the following group. Verify that m = p and G /∈ Ab

G :=


 1 a b

0 1 c
0 0 1

 ⊂ GL(3,Fp)

Proof. (a) abab = e, a−1b−1 = ab = ba �
(b) Show a, b, c ∈ pZ/

TBA �

1-7. Two subgroups H and H ′ of a group G are said to be commensurable if
H ∩ H ′ is of finite index in both H and H ′. Show that commensurability is an
equivalence relation on subgroups of G.

1-8. Show that a nonempty finite set with an associative binary operation satisfying
the cancellation laws is a group. cancellation law: an = am =⇒ n = m


