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Abstract. This paper explores random graphs and the probabil-
ities of fully connected components using the Erdős-Rényi model.

1. Introduction

We will begin by explaining some basic graph theory. A graph G is
an ordered pair of two sets, V and E, where V is the set of vertices
(also referred to herein as nodes), and E is a set of edges or lines that
connect any two vi, vj ∈ V . We denote a graph as G = (V,E). For
the purposes of this paper, the graphs we are referring to will always
be simple graphs. Every edge in a simple graph connects only two
vertices vi and vj, and no two vertices are connected by more than
one edges, and so an edge is defined as the set {vi, vj}. A path is a
sequence of distinct edges and vertices that connect two vertices. We
can walk along this path to get from one vertex to another without
walking on the same edge or vertex twice.

Connected graphs are graphs such that there is a path between any
two vertices in V . Figure 2 shows three connected graphs. In Figure
3, three graphs are shown. These three graphs have multiple disjoint
parts, which we call components. There are edges that connect some
nodes of the graphs, but there are not paths from all nodes to all others.

Complete graphs have every edge between any two vertices in V .
An example of this is shown above on 5 vertices. A connected graph

of size n, denoted Kn has n(n−1)
2

edges. The degree of a node is the
number of edges that connect to it. In a complete graph, the degree
of every node is n − 1. For n vertices this sums to n(n − 1) edges.
However, this counts all edges twice and therefore the proper number

of edges is n(n−1)
2

.
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Figure 1. Above, we see a graph, G = (V,E), where
V = {a, b, c, d, e} and E = {{a, c}, {c, d}, {c, e}, {d, e}}.
There is an isolated vertex b and one cycle, {c, d, e, c}.

Figure 2. Some examples of simple connected graphs.

Figure 3. Some examples of disconnected graphs.
Clearly, there are either isolated vertices or disjoint com-
ponents, and thus are by definition disconnected.
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Figure 4. The complete, simple graph on 5 vertices.
Every possible edge exists.

2. Erdős-Rényi

The Erdős-Rényi models refer to a pair of models for generating ran-
dom graphs, Gn;m and Gn,p, where edges are produced independently.
The Gn;m model produces a graph with n nodes and m distinct ran-
domly selected edges. The Gn,p model produces a graph with n nodes
and gives all of the possible edges between the nodes a p chance of
existing.

These models allow us to create graphs procedurally, edge by edge.
For the Gn;m model, we have m randomly selected edges. We can think
of taking the ordered set of all possible edges, perfectly shuffling their
order, and then picking the first m in the shuffled set to exist, leaving
the rest. For the Gn,p model, we can form a list of all possible edges,
and with probability p, one at a time determine whether or not it will
exist.

Figure 5. On the left, we see a graph on 5 vertices. Ev-
ery possible edge is formed with a dotted line. The three
right-hand images are various expected graphs produced
by G5;2, each with 5 vertices and 2 edges.

Theorem 2.1. A random graph Gn,p on average will have
(
n
2

)
p edges.
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Proof. Suppose we have a graph on n vertices. If we observe the com-
plete graph on n vertices, we can find the total number of edges possible
by taking

(
n
2

)
. This is because

(
n
2

)
counts every subset of 2 elements.

Since each edge can be defined as a subset of 2 elements,
(
n
2

)
is clearly

equivalent to the number of possible edges. When we multiply this by
probability p, we get the number of edges that are probable in Gn,p. �

3. Thresholds

To introduce the concept of thresholds, we will take a sampling of
10000 random graphs, shown below, and look at the number of vertices
in the largest component of every graph. The p value for the graphs
is slightly different in the two Figures, and we can see how the p value
affects the graphs.

Figure 6. The x-axis is the number of vertices in the
largest component for G1000,0.006. The y-axis is the num-
ber of trials, out of a total of 10000.

We can observe in Figures 6 and 7 that the results for the largest
connected component on G1000,p. p in Figure 6 is .006, or .6 percent,
and p in Figure 7 is .0069, or .69 percent. Though these values of p
are very close, it is evidently much more likely that the graph will be
connected, creating a component on all 1000 vertices, for p = 0.0069.
This suggests that if there is a particular threshold for which it is much
more likely that the graph will be connected than for just below this
threshold.
We want to answer two questions:

Question 3.1. Given n vertices, what is the smallest p such that we
expect our random graph Gn,p to be connected?
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Figure 7. The x-axis is the number of vertices in the
largest component for G1000,.0069. The y-axis is the num-
ber of trials, out of a total of 10000.

Question 3.2. Given n vertices, what is the smallest value of m such
that we expect our random graph Gn;m to be connected?

The proof for Question 3.1 is fairly easy to find, but complex to
understand, and so we can investigate it with computation. As ran-
domness by definition ensures no absolute threshold, we can set condi-
tions that makes us almost certain that the graph will be connected.
The procedure of the algorithm used to compute the thresholds goes
as follows:

Create variable n for n to represent number of edges, and set it to 100.
$ n = 100

Begin a loop to test all n from 100 through 10,000.
$ while n ¡ 10000:

Create a boolean variable called trip, to function like a tripwire when
we have reached the threshold for n and need to move on the the next
one.
$ trip = False

For this particular n, we create a variable p for p and set it to .001.
$ p = .001

Set a condition for while tripwire is false, we continue to test n.
$ while trip == False:

Make a loop to perform up to 500 trials.
$ for a in range(500):

Make a graph G using n and p.
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$ G = graphs.RandomGNP(n, p)

If G is not connected, exit the loop, restart the 500 trials, and incre-
ment p by .0001.
$ if G.is connected() == False:
$ break

If G is connected, check to see if we have made 500 graphs (we check
the counter at 499 because computers begin at 0 instead of 1), then
print p.As the program runs, this will compile a list of our thresholds.
$ if a == 499:
$ print p

Trip the tripwire by setting trip to true so that the program moves
onto the next n, and stop running trails. $ trip = True
$ break
$ if trip == True:
$ break

When a graph is produced that is not connected increment p by .0001
$ p = p + .0001

When the threshold is found, increment n by 100 and begin trials.
$ n = n + 100

In summary, we run a loop that produces Gn,p graphs with n = 100
and p = .001. After the creation of each graph, we check if it is
connected. If we create a graph that is not connected before reaching
a count of 500, p is incremented by .0001 and the count is reset to
0. If we do reach 500 connected graphs, we consider that p to be the
threshold for the given n. The algorithm then moves onto the next
sized graph by incrementing n by 100. The results of the experiment
are displayed in the figure below.

We decided that 500 was a reasonable choice for a trial stop limit
given compiling constraints. The nature of randomness does not allow
for any absolute threshold, so we will call our calculated thresholds,
the experimental threshold. We can think of the threshold in giving
us at least 99.8 certainty that a graph of size n with our experimental
threshold will be connected.

It has been proven that connectivity has a sharp threshold, called

the Friedgut threshold, with a critical probability of log(n)
n

[3]. At this
threshold we would more likely expect the graph to be connected than
not. As n approaches infinity, values of p above the Friedgut threshold
increase in their certainty of producing a connected graph, while the



THE ERDŐS-RÉNYI MODEL, RANDOM GRAPHS, AND THRESHOLDS 7

Figure 8. A graph of our calculated experimental
thresholds for the Erdős-Rényi Gn,p model.

certainty of p’s below it continually decrease. When we compare the
experimental and Friedgut thresholds, it stands out that our experi-

mental threshold resembles the function log(n)
n

at scale.

Figure 9. Above are the overlaid charts of the experi-
mental and effective thresholds. The Friedgut threshold
appears in red, and the experimental threshold in blue.

Our experimental threshold is on average 3.987 times larger than the
effective threshold. This allows us to approximate our experimental
threshold with the equation:

For Gn,p, the experimental threshold is approximately 3.987·log(n)
n
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Unfortunately due to computing constraints, we were unable to do
calculate a similar experimental threshold for the Gn;m model.

4. Applications of Thresholds to Real Networks

The Erdős-Rényi model is a poor representation of real-world net-
works, as networks are generally constructed to model an environment
impacted by resource constraints. Random graphs can be applied com-
paratively to models of real networks to highlight certain constraints or
patterns that would otherwise not stand out. Erdős-Rényi graphs often
highlight clustering or transitivity (when there is a high frequency of
two neighbor vertices of a vertex to also be neighbors of each other).
Thresholds for connectedness can be used in this same way to compare
actual results to projections.

Take, for example, a social network mapping of a university where we
represent individuals as nodes and connections or friendships as edges.
If the university’s administration had the goal of half of all students
being directly connected, they could compare their actual results to a
Gn,p random graph with n equal to the number of students and p set
to .5, so that all every friendship has a 50% chance of existing. If their
goal was to have all students are at least indirectly connected, they
could make a similar Gn,p but make p our experimental threshold.

Knowing that people do not pick their friends at random, we would
expect the administration’s results to vary from the Erdős-Rényi model.
Analysis of the differences in clustering could highlight relationship
influences like affinity groups, athletic teams, course schedule, places
of origin, or residential hall proximity. If certain goals were not met, the
administration could utilize the analysis to better inform their following
decisions about things like events on campus and student activities.

A more intricate, larger scale mapping can be done with larger net-
works like cities. Dave Troy is a mathematician who involved in this
type of work. Troy retrieves data from social networks and analyzes
activity on things like hashtags and commonly shared links. He then
applies a forced-direct graph layout algorithm to the simple graph.
This causes people with many relationships between them to be posi-
tioned into tight clusters in the graph, people with few relationships
positioned on opposite sides of the graph, and people with many rela-
tionships on both sides positioned in the middle of the graph. With
this, he can map out a social schematic of geographic regions. This
can give us an idea of social dynamics among different groups and how
they change based on current events.
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Figure 10. A map of people living in Saudi Arabia
where each dot represents a node and each line repre-
sents a relationship. The graph is made without respect
to geography, but nodes are organized by clusters. [2]

We can look at scale-free models to give a more accurate represen-
tation of real networks. Instead of having a static set of n nodes, we
begin with a smaller number of nodes which will grow as the network
continues to expand. Additionally, we will have power-law degree
distribution where the probability of the degree of each node is de-
pendent on the growth of the number of nodes.

5. Conclusion

In this paper we have learned about the Erdős-Rényi of random
graphs and their thresholds for connectedness. The findings of our
experimentation, though limited by computational constraints, have
given us an idea of what a realistic threshold for connectedness would
look like to ensure a high level of certainty. For further exploration, we
might want to delve deeper into the implementation of other random
graph models for the modeling of real-world networks. It would be of
particular interest to us to understand how to simulate social networks,
such as the ones mentioned in §4.
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