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REBECCA BELLOVIN, BRIAN CONRAD, KIRAN S. KEDLAYA, AND JARED WEINSTEIN

4. Adic spaces

(1) (repeated from day 1 because we hadn’t defined bounded yet) Let A be a Huber ring.
(i) If Σ,Σ′ ⊂ A are bounded subsets, prove that the subset Σ · Σ′ of finite sums of

products ss′ for s ∈ Σ and s′ ∈ Σ′ is bounded.

(ii) Prove that any open subring of A (equipped with the subspace topology) is a
Huber ring.

(iii) Prove that if A0 is a ring of definition and a ∈ A is power-bounded then A0[a]
is bounded. Deduce that A0 is the union of all rings of definition for A.

(iv) Let B′ be an open subring of A and B ⊂ A a bounded subring that is contained
in B′. Construct a ring of definition A0 satisfying B ⊂ A0 ⊂ B′.

(2) We saw via the sup-norm and [BGR, 6.2.4/1] that if A is a reduced k-affinoid algebra
then A0 is bounded. Can you find an example of a reduced Huber ring A such that
A0 is not bounded inside A?

(3) Let A be a k-affinoid algebra.
(i) For any v ∈ X := Spa(A,A0) corresponding to a valuation on A with rank-1

value group Γ, prove that there is a unique continuous multiplicative semi-norm
| · |v : A→ R≥0 bounded on A0 that extends the given absolute value on k.

(ii) If you are familiar with Berkovich spaces, prove that v 7→ | · |v is a continuous
surjective map X → M(A). (This is non-trivial because {v ∈ X | v(f) < v(g)}
for f, g ∈ A generally is not open in X, even for A = k〈t〉. If you get totally
stuck, see the proof of 11.1.2 in the notes.)

(4) For any X = Spa(A,A+), we recorded that X(T/s) = Spa(A(T/s), A+[T/s]) for any
s ∈ A and T = {f1, . . . , fn} ⊂ A such that

∑
fiA is open. Likewise, if (C,C+) →

(A,A+) and (C,C+)→ (B,B+) are maps of Tate pairs then the image of A+⊗C+B+

in A ⊗C B is an open subring whose integral closure (A+ ⊗C+ B+)∼ defines a Tate
pair that gives a fiber product (when sheafiness holds).

In general, there is no reason to expect that A0[T/s] = A(T/s)0 nor that the
image of A0⊗C0 B0 → A⊗C B coincides with (A⊗C B)0, nor for the analogues with
completions. In this exericse, we explore why in the classical rigid case the choice
A+ = A0 does interact well with such operations (after completion)!
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(i) Using the non-trivial result from [BGR, §6.3] that a map R → S between k-
affinoids is integral (e.g., surjective or an isomorphism) if and only if R0 → S0

is integral, prove that the integral closure of the image of A0⊗̂C0B0 → A⊗̂CB is
(A⊗̂CB)0. Hint: reduce to the case C = k.

(ii) If T = {f1, . . . , fn} ⊂ A generates the unit ideal then prove A0〈T/g〉 → A〈T/g〉
has image with integral closure A〈T/g〉0. (Recall A0〈T/g〉 means the $-adic
completion of A[T/g] ⊂ A[1/g] for any pseudo-uniformizer $ of k.) It really can
happen that A0〈T/g〉 ↪→ A〈T/g〉0 is not an equality; see 12.2.8 in the notes.

(5) For c satisfying 0 < |c| < 1, consider the type-2 point v = vc,|c| ∈ Dk. Identify its
residue field with κ(τ) where τ is the reduction of (t − c)/c ∈ v−1(1). Using the
identifying of the non-generic points of RZ(κ(τ)/κ) = P1

κ with rank-2 specializations
of v in Dk (recall |c| < 1), let v∞ be the specialization associated to ∞ ∈ P1

κ.
Check that Y := {w ∈ Dk |w(t) ≤ w(c)} contains v but not the point v∞ in its

closure, so Y is not closed. In particular, its complement {w |w(c) < w(t)} is not
open. This is a striking contrast with how open neighborhoods of the type-2 point
v are defined in M(k〈t〉)! Why does this not imply that the map Dk → M(k〈t〉) is
discontinuous at v?

(6) This exercise works out the key input needed to define a fully faithful functor from
rigid-analytic spaces over k to adic spaces over Spa(k, k0) (structure sheaves will come
along for the ride; the real effort is in the topological issues below). For an affinoid
rigid-analytic space X = Sp(A), define rk(X) = Spa(A,A0). If U ⊂ X is a rational
domain then we recorded that rk(U)→ rk(X) is an open embedding compatible with
the notion of “rational domain” inside rk(U) and inside its open image in rk(X).
(i) Prove that if {U1, . . . , Un} are rational domains covering X then {rk(Ui)} covers

rk(X), and that rk(U)∩ rk(V ) = rk(U ∩ V ) for rational U, V ⊂ X. (Hint: refine
to a “rational covering” as in [BGR, 8.2.2/2] for the first assertion.)

(ii) Let U ⊂ X be any affinoid subdomain. Using (i), prove that rk(U) → rk(X) is
an open embedding, and that rk(U)∩ rk(V ) = rk(U ∩V ) for any second affinoid
subdomain V ⊂ X. (Hint: use Gerritzen–Grauert)

(iii) Use (ii) and gluing to define rk from separated rigid-analytic spaces over k to
sober topological spaces, and check that (ii) holds with “affinoid subdomain”
relaxed to “admissible open subspace”. Prove that if {Ui} is a collection of
admissible open subspaces of X then {rk(Ui)} covers rk(X) if and only if {Ui}
is an admissible cover of X! (The implication “⇒” is the interesting direction,
making Tate’s discovery of admissibility all the more amazing.)

(7) Let X = Spa(A,A) where A = Zp[[T ]] is given its max-adic (i.e., (p, T )-adic) topology.
The continuous map X → Spec(A) has exactly one point s over the closed point,
corresponding to the trivial valuation on the residue field A/mA = Fp. Note that
X −{s} has exactly one characteristic-p point, corresponding to Spa(Fp((T )),Fp[[T ]).

2



Cousins of the mixed-characteristic (adic) space X − {s} play an important role in
Scholze’s approach to integral p-adic Hodge theory.
(i) For a discrete valuation ring R equipped with its natural topology, show that

Spa(R,R) → Spec(R) is a homeomorphism. We visualize the two subsets
Spa(Fp[[T ]],Fp[[T ]]) = {p = 0} ⊂ X and Spa(Zp,Zp) = {T = 0} ⊂ X as vertical
and horizontal “axes” with X occupying the first quadrant; show these subsets
meet X − {s} in Sp(Fp((T ))) and Sp(Qp) respectively.

(ii) Prove that {p 6= 0} is covered by the rational domains (visualized as “sectors”
in the quadratic X) Y +

n := {v ∈ X | v(T n) ≤ v(p) 6= 0}, and likewise {T 6= 0} is
covered by the rational domains Y −n := {v ∈ X | v(pn) ≤ v(T ) 6= 0}. (Hint: use
that p and T are topologically nilpotent in A.) Deduce that {p 6= 0}, {T 6= 0},
and X − {s} are not quasi-compact.

(iii) Although A is not Tate, show that (OA(Y +
n ),O+

A(Y +
n )) = (Bn[1/p], Bn) where

Bn is the p-adic completion of A[T n/p] equipped with its p-adic topology (so
Bn[1/p] is Tate!). How about for Y −n ?

5. Perfectoid fields and rings

(1) Define a sequence of field extensions Qp = K0 → K1 → · · · by taking Kn+1 =

Kn(α
1/p
n ) where αn is a uniformizer of Kn. Prove that the completion of

⋃∞
n=1Kn is a

perfectoid field whose tilt is isomorphic to the completed perfect closure of Fp((T ));
this gives uncountably many untilts of the latter.

(2) Read the original 4-page paper of Fontaine-Wintenberger on the field of norms (Le
“corps des normes” de certaines extensions algébriques de corps locaux, Comptes
Rendus, 1979; not to be confused with their other article in the same volume!), taking
note especially of Lemma 3.1. Then show that if K is a local field of characteristic 0

and L is an algebraic extension of K which is strictly APF, then L̂ is perfectoid. We
do not know if this continues to be true if L is only assumed to be APF. (By Sen’s
theorem, any p-adic Lie extension which is not totally unramified is strictly APF.)

(3) Let K be a perfectoid field. Prove that if K[ is algebraically closed, then so is K.
(Hint: it suffices to check that any monic polynomial P (T ) over K◦ has a root. To
do this, use Hensel’s lemma to factor P (T ) so as to separate out the roots of smallest
absolute value, find x ∈ K[ such that P (T − x]) has a root of even smaller absolute
value, and so on. To see that this converges, you will need to control how much
improvement you get at each step.)

(4) Recall that for every perfect Fp-algebra R, there exists a Zp-flat, p-adically complete
and separated ring W (R) such that W (R)/(p) ∼= R. Show that the reduction map
W (R)→ R admits a unique multiplicative section x 7→ [x], which can be computed
using the congruence

[xp
n

] ≡ xp
n

(mod pn+1)

where x ∈ W (R) is any lift of x. The element [x] is called the Teichmüller lift of x.
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(5) This exercise gives a crucial extension of Witt vector functoriality used to construct
the map θA defined in lecture. Let R be a perfect Fp-algebra. Let S be a p-adically
separated and complete ring. Let π : S → S/(p) be the canonical projection. Let t :
R→ S be a multiplicative map such that π ◦ t : R→ S/(p) is a ring homomorphism.
Prove that the formula

T

(
∞∑
n=0

pn[xn]

)
=
∞∑
n=0

pnt(xn)

defines a ring homomorphism T : W (R) → S, which is surjective if π ◦ t is. (Hint:
check additivity modulo pn by induction on n.)

(6) Let A be a perfectoid ring.
(i) Show that there is a unique surjective ring homomorphism θA : W (A[◦) → A◦

lifting the homomorphism A[◦ → A◦/(p).

(ii) Prove that for x ∈ A[◦, θA([x]) = x].

(7) For A a perfectoid ring of characteristic p, an element ξ =
∑∞

n=0 p
n[ξn] of W (A◦) is

primitive of degree 1 if ξ0 is topologically nilpotent (but not necessarily a unit in A)
and ξ1 ∈ A◦×. Throughout this exercise, assume that this is the case.
(i) Show that ξ1 := (ξ − [ξ0])/p is a unit in W (A◦).

(ii) Show that there exists a unit u ∈ W (A◦) such that uξ = p + [$]α for some
pseudo-uniformizer $ of A and some α ∈ W (A◦). That is, ξ is primitive of degree
1 if and only if it generates an ideal which is primitive of degree 1 according to
the definition given in the lecture.

(8) Let K be a perfectoid field of characteristic 0.
(i) Prove that ker(θ) contains an element ξ which is primitive of degree 1. (Hint:

choose ξ0 ∈ K[◦ such that ξ
]

0/p ∈ K◦×, then take ξ = [ξ0] + pξ1 where θ(ξ1) =

−ξ]0/p.)

(ii) Prove that any ξ as in (i) is a generator of the ideal ker(θ).

(9) Let F be a perfectoid field of characteristic p and suppose that ξ ∈ W (F ◦) is primitive
of degree 1.
(i) Prove that every nonzero element of W (F ◦)/(ξ) lifts to some element of W (F ◦)

of the form pmx for some nonnegative integer m and some x =
∑∞

n=0 p
n[xn] such

that ξ0 does not divide x0 in F ◦.

(ii) For x as in (i), put ξ1 := (ξ− [ξ0])/p and x1 := (x− [x0])/p. Show that x−ξ−11 ξx1
equals [x0] times a unit in W (F ◦).

(iii) Deduce that ξ generates a prime ideal ofW (F ◦) and a maximal ideal ofW (F ◦)[p−1].

(iv) Put K := W (F ◦)[p−1]/(ξ). Show that K is a perfectoid field with K[ ∼= F .
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(10) Let K be a perfectoid field. Let F be a finite extension of K[ and define the ring

L := W (F ◦)⊗W (K[◦),θ K.

(i) Suppose that F is Galois over K[ with group G. Show that the invariant subring
LG equals K. (Hint: there is only an issue in the characteristic 0 case, where we
may average over orbits of G.)

(ii) Show that L is a finite extension of K of degree [F : K[]. (Hint: a lemma of
Artin asserts that any field equipped with an action of a finite group is Galois
over the fixed subfield.)

(11) Let K be a perfectoid field.
(ii) Show that every finite extension of K is perfectoid.

(iii) Deduce the tilting equivalence: the functor L 7→ L[ defines an equivalence of
categories between finite étale K-algebras and finite étale K[-algebras, and hence
an isomorphism of absolute Galois groups GK

∼= GK[ .

6. Almost Ring Theory

(1) Review the equivalences between the following definitions for a ring map R → S to
be formally unramified:
(a) Given a commutative square

S // B/I

R

OO

// B

OO

where B is a ring and I ⊂ B is an ideal with I2 = 0, there exists at most one
map S → B making the diagram commute.

(b) ΩS/R = 0.

(c) There exists an element e ∈ S⊗R S such that e2 = 1, µ(e) = 1 and e ker(µ) = 0.
Here µ : S ⊗R S → S is the multiplication map.

(2) Assume that p is odd. Let K = Qp(p
1/p∞) and L = K(p1/2). Show “by hand” that

L◦a/K◦a is finite étale.

(3) Let K = Cp, and let m = mK . Is the natural map K◦/p → HomK◦(m, K
◦/p) an

isomorphism? Is it an almost isomorphism?
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