EXERCISES ON PERFECTOID SPACES – DAY 2 OBERWOLFACH SEMINAR, OCTOBER 2016

REBECCA BELLOVIN, BRIAN CONRAD, KIRAN S. KEDLAYA, AND JARED WEINSTEIN

4. Adic spaces

- (1) (repeated from day 1 because we hadn't defined bounded yet) Let A be a Huber ring.
 - (i) If $\Sigma, \Sigma' \subset A$ are bounded subsets, prove that the subset $\Sigma \cdot \Sigma'$ of finite sums of products ss' for $s \in \Sigma$ and $s' \in \Sigma'$ is bounded.
 - (ii) Prove that any open subring of A (equipped with the subspace topology) is a Huber ring.
 - (iii) Prove that if A_0 is a ring of definition and $a \in A$ is power-bounded then $A_0[a]$ is bounded. Deduce that A^0 is the union of all rings of definition for A.
 - (iv) Let B' be an open subring of A and $B \subset A$ a bounded subring that is contained in B'. Construct a ring of definition A_0 satisfying $B \subset A_0 \subset B'$.
- (2) We saw via the sup-norm and [BGR, 6.2.4/1] that if A is a reduced k-affinoid algebra then A^0 is bounded. Can you find an example of a reduced Huber ring A such that A^0 is not bounded inside A?
- (3) Let A be a k-affinoid algebra.
 - (i) For any $v \in X := \operatorname{Spa}(A, A^0)$ corresponding to a valuation on A with rank-1 value group Γ , prove that there is a *unique* continuous multiplicative semi-norm $|\cdot|_v : A \to \mathbf{R}_{>0}$ bounded on A^0 that extends the given absolute value on k.
 - (ii) If you are familiar with Berkovich spaces, prove that $v \mapsto |\cdot|_v$ is a continuous surjective map $X \to M(A)$. (This is non-trivial because $\{v \in X \mid v(f) < v(g)\}$ for $f, g \in A$ generally is *not* open in X, even for $A = k\langle t \rangle$. If you get totally stuck, see the proof of 11.1.2 in the notes.)
- (4) For any $X = \operatorname{Spa}(A, A^+)$, we recorded that $X(T/s) = \operatorname{Spa}(A(T/s), A^+[T/s])$ for any $s \in A$ and $T = \{f_1, \ldots, f_n\} \subset A$ such that $\sum f_i A$ is open. Likewise, if $(C, C^+) \to (A, A^+)$ and $(C, C^+) \to (B, B^+)$ are maps of Tate pairs then the image of $A^+ \otimes_{C^+} B^+$ in $A \otimes_C B$ is an open subring whose integral closure $(A^+ \otimes_{C^+} B^+)^{\sim}$ defines a Tate pair that gives a fiber product (when sheafiness holds).

In general, there is no reason to expect that $A^0[T/s] = A(T/s)^0$ nor that the image of $A^0 \otimes_{C^0} B^0 \to A \otimes_C B$ coincides with $(A \otimes_C B)^0$, nor for the analogues with completions. In this exericse, we explore why in the classical rigid case the choice $A^+ = A^0$ does interact well with such operations (after completion)!

- (i) Using the non-trivial result from [BGR, §6.3] that a map $R \to S$ between k-affinoids is integral (e.g., surjective or an isomorphism) if and only if $R^0 \to S^0$ is integral, prove that the integral closure of the image of $A^0 \widehat{\otimes}_{C^0} B^0 \to A \widehat{\otimes}_C B$ is $(A \widehat{\otimes}_C B)^0$. Hint: reduce to the case C = k.
- (ii) If $T = \{f_1, \ldots, f_n\} \subset A$ generates the unit ideal then prove $A^0\langle T/g \rangle \to A\langle T/g \rangle$ has image with integral closure $A\langle T/g \rangle^0$. (Recall $A^0\langle T/g \rangle$ means the ϖ -adic completion of $A[T/g] \subset A[1/g]$ for any pseudo-uniformizer ϖ of k.) It really can happen that $A^0\langle T/g \rangle \hookrightarrow A\langle T/g \rangle^0$ is not an equality; see 12.2.8 in the notes.
- (5) For c satisfying 0 < |c| < 1, consider the type-2 point $v = v_{c,|c|} \in \mathbf{D}_k$. Identify its residue field with $\kappa(\tau)$ where τ is the reduction of $(t-c)/c \in v^{-1}(1)$. Using the identifying of the non-generic points of $\mathrm{RZ}(\kappa(\tau)/\kappa) = \mathbf{P}_{\kappa}^1$ with rank-2 specializations of v in \mathbf{D}_k (recall |c| < 1), let v_{∞} be the specialization associated to $\infty \in \mathbf{P}_{\kappa}^1$. Check that $Y := \{w \in \mathbf{D}_k \mid w(t) \leq w(c)\}$ contains v but not the point v_{∞} in its closure, so Y is not closed. In particular, its complement $\{w \mid w(c) < w(t)\}$ is not open. This is a striking contrast with how open neighborhoods of the type-2 point v are defined in $M(k\langle t \rangle)$! Why does this not imply that the map $\mathbf{D}_k \to M(k\langle t \rangle)$ is

discontinuous at v?

- (6) This exercise works out the key input needed to define a fully faithful functor from rigid-analytic spaces over k to adic spaces over $\operatorname{Spa}(k,k^0)$ (structure sheaves will come along for the ride; the real effort is in the topological issues below). For an affinoid rigid-analytic space $X = \operatorname{Sp}(A)$, define $r_k(X) = \operatorname{Spa}(A,A^0)$. If $U \subset X$ is a rational domain then we recorded that $r_k(U) \to r_k(X)$ is an open embedding compatible with the notion of "rational domain" inside $r_k(U)$ and inside its open image in $r_k(X)$.
 - (i) Prove that if $\{U_1, \ldots, U_n\}$ are rational domains covering X then $\{r_k(U_i)\}$ covers $r_k(X)$, and that $r_k(U) \cap r_k(V) = r_k(U \cap V)$ for rational $U, V \subset X$. (Hint: refine to a "rational covering" as in [BGR, 8.2.2/2] for the first assertion.)
 - (ii) Let $U \subset X$ be any affinoid subdomain. Using (i), prove that $r_k(U) \to r_k(X)$ is an open embedding, and that $r_k(U) \cap r_k(V) = r_k(U \cap V)$ for any second affinoid subdomain $V \subset X$. (Hint: use Gerritzen–Grauert)
 - (iii) Use (ii) and gluing to define r_k from separated rigid-analytic spaces over k to sober topological spaces, and check that (ii) holds with "affinoid subdomain" relaxed to "admissible open subspace". Prove that if $\{U_i\}$ is a collection of admissible open subspaces of X then $\{r_k(U_i)\}$ covers $r_k(X)$ if and only if $\{U_i\}$ is an admissible cover of X! (The implication " \Rightarrow " is the interesting direction, making Tate's discovery of admissibility all the more amazing.)
- (7) Let $X = \operatorname{Spa}(A, A)$ where $A = \mathbf{Z}_p[\![T]\!]$ is given its max-adic (i.e., (p, T)-adic) topology. The continuous map $X \to \operatorname{Spec}(A)$ has exactly one point s over the closed point, corresponding to the trivial valuation on the residue field $A/\mathfrak{m}_A = \mathbf{F}_p$. Note that $X \{s\}$ has exactly one characteristic-p point, corresponding to $\operatorname{Spa}(\mathbf{F}_p(\!(T)\!), \mathbf{F}_p[\![T]\!]$.

Cousins of the mixed-characteristic (adic) space $X - \{s\}$ play an important role in Scholze's approach to integral p-adic Hodge theory.

- (i) For a discrete valuation ring R equipped with its natural topology, show that $\operatorname{Spa}(R,R) \to \operatorname{Spec}(R)$ is a homeomorphism. We visualize the two subsets $\operatorname{Spa}(\mathbf{F}_p[\![T]\!], \mathbf{F}_p[\![T]\!]) = \{p=0\} \subset X$ and $\operatorname{Spa}(\mathbf{Z}_p, \mathbf{Z}_p) = \{T=0\} \subset X$ as vertical and horizontal "axes" with X occupying the first quadrant; show these subsets meet $X \{s\}$ in $\operatorname{Sp}(\mathbf{F}_p(\!(T)\!))$ and $\operatorname{Sp}(\mathbf{Q}_p)$ respectively.
- (ii) Prove that $\{p \neq 0\}$ is covered by the rational domains (visualized as "sectors" in the quadratic X) $Y_n^+ := \{v \in X \mid v(T^n) \leq v(p) \neq 0\}$, and likewise $\{T \neq 0\}$ is covered by the rational domains $Y_n^- := \{v \in X \mid v(p^n) \leq v(T) \neq 0\}$. (Hint: use that p and T are topologically nilpotent in A.) Deduce that $\{p \neq 0\}$, $\{T \neq 0\}$, and $X \{s\}$ are not quasi-compact.
- (iii) Although A is not Tate, show that $(\mathcal{O}_A(Y_n^+), \mathcal{O}_A^+(Y_n^+)) = (B_n[1/p], B_n)$ where B_n is the p-adic completion of $A[T^n/p]$ equipped with its p-adic topology (so $B_n[1/p]$ is Tate!). How about for Y_n^- ?

5. Perfectoid fields and rings

- (1) Define a sequence of field extensions $\mathbb{Q}_p = K_0 \to K_1 \to \cdots$ by taking $K_{n+1} = K_n(\alpha_n^{1/p})$ where α_n is a uniformizer of K_n . Prove that the completion of $\bigcup_{n=1}^{\infty} K_n$ is a perfectoid field whose tilt is isomorphic to the completed perfect closure of $\mathbf{F}_p((T))$; this gives uncountably many untilts of the latter.
- (2) Read the original 4-page paper of Fontaine-Wintenberger on the field of norms (Le "corps des normes" de certaines extensions algébriques de corps locaux, Comptes Rendus, 1979; not to be confused with their other article in the same volume!), taking note especially of Lemma 3.1. Then show that if K is a local field of characteristic 0 and L is an algebraic extension of K which is strictly APF, then \widehat{L} is perfectoid. We do not know if this continues to be true if L is only assumed to be APF. (By Sen's theorem, any p-adic Lie extension which is not totally unramified is strictly APF.)
- (3) Let K be a perfectoid field. Prove that if K^{\flat} is algebraically closed, then so is K. (Hint: it suffices to check that any monic polynomial P(T) over K° has a root. To do this, use Hensel's lemma to factor P(T) so as to separate out the roots of smallest absolute value, find $\overline{x} \in K^{\flat}$ such that $P(T \overline{x}^{\sharp})$ has a root of even smaller absolute value, and so on. To see that this converges, you will need to control how much improvement you get at each step.)
- (4) Recall that for every perfect \mathbf{F}_p -algebra R, there exists a \mathbb{Z}_p -flat, p-adically complete and separated ring W(R) such that $W(R)/(p) \cong R$. Show that the reduction map $W(R) \to R$ admits a unique multiplicative section $\overline{x} \mapsto [\overline{x}]$, which can be computed using the congruence

$$[\overline{x}^{p^n}] \equiv x^{p^n} \pmod{p^{n+1}}$$

where $x \in W(R)$ is any lift of \overline{x} . The element $[\overline{x}]$ is called the *Teichmüller lift* of \overline{x} .

(5) This exercise gives a crucial extension of Witt vector functoriality used to construct the map θ_A defined in lecture. Let R be a perfect \mathbf{F}_p -algebra. Let S be a p-adically separated and complete ring. Let $\pi: S \to S/(p)$ be the canonical projection. Let $t: R \to S$ be a multiplicative map such that $\pi \circ t: R \to S/(p)$ is a ring homomorphism. Prove that the formula

$$T\left(\sum_{n=0}^{\infty} p^n[\overline{x}_n]\right) = \sum_{n=0}^{\infty} p^n t(\overline{x}_n)$$

defines a ring homomorphism $T:W(R)\to S$, which is surjective if $\pi\circ t$ is. (Hint: check additivity modulo p^n by induction on n.)

- (6) Let A be a perfectoid ring.
 - (i) Show that there is a unique surjective ring homomorphism $\theta_A: W(A^{\flat \circ}) \to A^{\circ}$ lifting the homomorphism $A^{\flat \circ} \to A^{\circ}/(p)$.
 - (ii) Prove that for $\overline{x} \in A^{\flat \circ}$, $\theta_A([\overline{x}]) = \overline{x}^{\sharp}$.
- (7) For A a perfectoid ring of characteristic p, an element $\xi = \sum_{n=0}^{\infty} p^n [\overline{\xi}_n]$ of $W(A^{\circ})$ is primitive of degree 1 if $\overline{\xi}_0$ is topologically nilpotent (but not necessarily a unit in A) and $\overline{\xi}_1 \in A^{\circ \times}$. Throughout this exercise, assume that this is the case.
 - (i) Show that $\xi_1 := (\xi [\overline{\xi}_0])/p$ is a unit in $W(A^\circ)$.
 - (ii) Show that there exists a unit $u \in W(A^{\circ})$ such that $u\xi = p + [\varpi]\alpha$ for some pseudo-uniformizer ϖ of A and some $\alpha \in W(A^{\circ})$. That is, ξ is primitive of degree 1 if and only if it generates an ideal which is primitive of degree 1 according to the definition given in the lecture.
- (8) Let K be a perfectoid field of characteristic 0.
 - (i) Prove that $\ker(\theta)$ contains an element ξ which is primitive of degree 1. (Hint: choose $\overline{\xi}_0 \in K^{\flat \circ}$ such that $\overline{\xi}_0^{\sharp}/p \in K^{\circ \times}$, then take $\xi = [\overline{\xi}_0] + p\xi_1$ where $\theta(\xi_1) = -\overline{\xi}_0^{\sharp}/p$.)
 - (ii) Prove that any ξ as in (i) is a generator of the ideal $\ker(\theta)$.
- (9) Let F be a perfectoid field of characteristic p and suppose that $\xi \in W(F^{\circ})$ is primitive of degree 1.
 - (i) Prove that every nonzero element of $W(F^{\circ})/(\xi)$ lifts to some element of $W(F^{\circ})$ of the form $p^m x$ for some nonnegative integer m and some $x = \sum_{n=0}^{\infty} p^n [\overline{x}_n]$ such that $\overline{\xi}_0$ does not divide \overline{x}_0 in F° .
 - (ii) For x as in (i), put $\xi_1 := (\xi [\overline{\xi}_0])/p$ and $x_1 := (x [\overline{x}_0])/p$. Show that $x \xi_1^{-1} \xi x_1$ equals $[\overline{x}_0]$ times a unit in $W(F^{\circ})$.
 - (iii) Deduce that ξ generates a prime ideal of $W(F^{\circ})$ and a maximal ideal of $W(F^{\circ})[p^{-1}]$.
 - (iv) Put $K := W(F^{\circ})[p^{-1}]/(\xi)$. Show that K is a perfectoid field with $K^{\flat} \cong F$.

(10) Let K be a perfectoid field. Let F be a finite extension of K^{\flat} and define the ring

$$L:=W(F^{\circ})\otimes_{W(K^{\flat\circ}),\theta}K.$$

- (i) Suppose that F is Galois over K^{\flat} with group G. Show that the invariant subring L^G equals K. (Hint: there is only an issue in the characteristic 0 case, where we may average over orbits of G.)
- (ii) Show that L is a finite extension of K of degree $[F:K^{\flat}]$. (Hint: a lemma of Artin asserts that any field equipped with an action of a finite group is Galois over the fixed subfield.)
- (11) Let K be a perfectoid field.
 - (ii) Show that every finite extension of K is perfectoid.
 - (iii) Deduce the *tilting equivalence*: the functor $L \mapsto L^{\flat}$ defines an equivalence of categories between finite étale K-algebras and finite étale K^{\flat} -algebras, and hence an isomorphism of absolute Galois groups $G_K \cong G_{K^{\flat}}$.

6. Almost Ring Theory

- (1) Review the equivalences between the following definitions for a ring map $R \to S$ to be formally unramified:
 - (a) Given a commutative square

$$S \longrightarrow B/I$$

$$\uparrow \qquad \uparrow$$

$$R \longrightarrow B$$

where B is a ring and $I \subset B$ is an ideal with $I^2 = 0$, there exists at most one map $S \to B$ making the diagram commute.

- (b) $\Omega_{S/R} = 0$.
- (c) There exists an element $e \in S \otimes_R S$ such that $e^2 = 1$, $\mu(e) = 1$ and $e \ker(\mu) = 0$. Here $\mu \colon S \otimes_R S \to S$ is the multiplication map.
- (2) Assume that p is odd. Let $K = \mathbb{Q}_p(p^{1/p^{\infty}})$ and $L = K(p^{1/2})$. Show "by hand" that $L^{\circ a}/K^{\circ a}$ is finite étale.
- (3) Let $K = \mathbb{C}_p$, and let $\mathfrak{m} = \mathfrak{m}_K$. Is the natural map $K^{\circ}/p \to \operatorname{Hom}_{K^{\circ}}(\mathfrak{m}, K^{\circ}/p)$ an isomorphism? Is it an almost isomorphism?