
Topics in Elementary Number Theory

Introduction
Number theory is the study of the set of natural numbers Some typical 
examples of number theoretic questions are:

Can the sum of two squares be a square?  

Is the equation solvable for ?
Are there infinitely many primes? 
Is a given integer prime or composite?
How to efficiently factorize a composite number?

The first two questions are about existence of positive integer solutions of the equations 

. You certainly know that for  the equation is solvable. Solutions
to this equation are called . A PT with   and  (that is, 

 do not have common divisors other than 1) is called . You 
will see two versions of a characterization of PPTs and use one of them in Lab 1 to construct and 
visualize a large number of PPTs.  states that there is no three positive 

integers and  satisfying the equation  with  Fermat did not 
provide the proof, and the statement remained just a conjecture for more than three centuries. In 

after 358 years 

of effort by mathematicians! The equation  is a particular example of so-called
Diophantine equations. Diophantine equation in two variables has the form  
where is a polynomial with integer coefficients; solutions are sought in the set  of 
integers. A universal algorithm for deciding if a particular Diophantine equation is solvable was 
posed by D. Hilbert as the  of his celebrated  mathematical problems for 20th century. In 
1970, a novel result in mathematical logic, known as Matiyasevich's theorem, settled the problem 
negatively: such a general algorithm does not exist. In this module you will work only with linear 
Diophantine equations (LDEs) in two variables. These equations are always solvable under a 
simple assumption. A method for solving LDE in two unknowns is described in this lecture. This 
simple method proved to be useful in an applied industrial problem, and in this lecture you will 
solve this problem in Lab 2 with CAS assistance.
The third question was answered positively by Euclid. Euclid's proof of the theorem on infinitude 
of primes is simple and beautiful. Take a look at https://en.wikipedia.
org/wiki/Euclid%27s_theorem and enjoy. 
The last two questions are about prime characterization and prime factorization. The questions 
have been stated by mathematicians, in particular  C. F. Gauss, as the central problems in the 
number theory. At the present, they are not just academic questions. Primality and prime 
factorization became very important in applications, mostly in cryptography. An efficient 
algorithm for testing primality called AKS (using the first letters of the three co-authors) was 
found in 2002. In this lecture, we will introduce only two classic "toy" factorization algorithms to 
give you a flavor of the factoring problem. For more, see http://www.cs.columbia.
edu/~rjaiswal/factoring-survey.pdf. The first three pages in this article are on the history of the 
factoring problem. See also  https://en.wikipedia.org/wiki/RSA_Factoring_Challenge about 
challenge put forward by RSA Laboratories to encourage research into computational number 



theory. The RSA Laboratories offered cash prizes for successful factorization of certain composite
numbers. Many algorithms have been devised to make factorization an ever faster problem. It is a 
major open problem in the number theory to decide how fast integer factorization algorithms can 
be.

There are other open problems in the number theory stated as conjectures  and verified for a huge 
number of cases using modern computers but not proven rigorously. Here is a classic example of 
such conjecture. 
Goldbach's Conjecture. Every even number is the sum of two primes. 
For example,  The conjecture has been tested 
up to the number  (2017) but remains unproven.
Exercise 1. Make a CAS function  that takes an even number  and 
prints representation(s) of the number as the sum of two primes.

 The ternary Goldbach conjecture, or the three-primes problem, asserts that every odd 

integer  greater than five is the sum of three primes. In 1937, Russian mathematician I.M. 
Vinogradov proved that the conjecture is true for all  above a large constant  The bound was 

improved several times, and in 2013 the conjecture was proven for by a 

Peruvian mathematician H.A. Helfgott, see https://arxiv.org/abs/1312.7748. For it 
was verified by "brute force" computer calculations that the statement is true.  Problem solved.

 Number theory was considered to be one of the "purest" branches of mathematics, but 

when it comes to computer security, it has turned out to become one of the most useful. For 
example, algorithms based on number theory help to protect your credit card number when you 
shop online or, generally, protect sensitive information transmitted through communication 
channels. Moreover, according to Donald Knuth, who has been called the "father of the analysis 
of algorithms", in computer science, "...virtually every theorem in elementary number theory 
arises in a natural, motivated way in connection with the problem of making computers do high-
speed numerical calculations". For more about number theory see https://en.wikipedia.
org/wiki/Number_theory.

All coefficients and variables in this lecture are assumed to be integers or rational numbers unless 
stated otherwise. 

Some algorithms of the elementary number theory

Primes, primality tests, and prime factorization
A  is a positive integer with no positive integer divisors other than one and 
itself. A set of  natural numbers is coprime if the only common divider of the members of the 
set is 1. The , also called the unique factorization theorem,
states that every integer greater than one either is a prime number itself or can be represented 
as the product of prime numbers. This representation is unique up to the order of factors. The 
theorem is a typical existence statement; it does not provide a way to constructively factor 
composite numbers or determine if a number is prime or composite.
The   algorithm finds all primes less than some number . This ancient 
algorithm can be used as a primality test for integers that are not too large. Here are the steps 



of the algorithm. 
Step 1.  Make the list of all natural numbers from 2 to n
Step 2. Set 
Step 3. Cross out all numbers divisible by p except for p itself.
Step 4. Find the first number on the list (not crossed) that is greater than . If there is no 
such number, stop. Otherwise, set , which is the next prime, and repeat from Step 3.

Once you crossed off all multiples of all primes less or equal , than anything 
not crossed out must be prime.

Clearly, if is composite, its smallest divider is less than or equal to . (Why?) Therefore,
if on a step of crossing multiples of some number the input number  gets crossed, then  
is not a prime and  is its smallest divisor. The algorithm is slow and not efficient for large 

. 
Example 1. Make a list of all primes less than 50 and implement the Eratosthenes algorithm 
using CAS interactively.
Solution
The algorithm was implemented step by step using CAS assistance. We consecutively 

eliminated multiples of primes up to and including the number . Specific
commands for these steps are different for different CASs. In writing a code for a particular 
CAS, we have chosen to cross all numbers multiple to primes, including the primes 
themselves, and collected the excluded primes on a separate list. At the end, we merged the list
of excluded primes and the primes left on the original list.
Here are the outputs after excluding multiples of 2, 3, 5, and 7:

The last list merged with primes  gives the answer: 
.

Exercise 2. 
(a) Make a CAS function  that takes a natural number  and returns the 
list of all primes less than or equal to  Test your function on the problem in Example 1.
(b) Make a CAS function  that makes a list of  prime numbers 
greater than a positive integer .  Make a list of 30 prime numbers greater than 100. You may 
use appropriate CAS command for finding a prime next to a specific integer.
Two simple primality tests
The simplest primality test is the trial division also called the brute force method. In this 

method, given an input number all integers less than or equal to  are tested using the 
trial division to see if they actually divide the given number.  The algorithm is slow and not 
practical for large . 
Another simple primality test, Fermat's factorization method, is based on the following fact:
Any odd integer can be represented as the difference of squares of integers. 



Proof
Let  be an odd number. (If  is prime, either  or  equals one.) You can write

. 

Set     Since both and  are odd (why?),  and 

 are even. Therefore  and  are integers.        
The proof implies that  The basic Fermat's algorithm 

consecutively tries integers  until the difference  becomes the 

perfect square. Then is set to  and the factors  are defined as 

To speed up the basic method, various improvements of the Fermat algorithm have been 
developed, see https://en.wikipedia.org/wiki/Fermat%27s_factorization_method.
Example 2. Factor  using the Fermat factorization algorithm.
Solution

Step 1.  ;   

Step 2. 
Answer: Factors of  are:  Check: 

Exercise 3. Make a CAS function  that takes an odd number , 
implements the Fermat's of factorization algorithm, and returns two factors of  Run your 
code on example of your choice and check the result with CAS factoring command.

Number of primes and the Riemann Hypothesis.
The , counting number of primes less than or equal to a given 

positive number can be estimated  asymptotically by the function  that is, the 

limit of the ratio of these two functions is one,   

This is the statement of the Prime Number Theorem. It is known that the famous 

 is equivalent to the conjecture that the function  

is also an asymptotic estimate of  that is,   

Exercise 4.  Most CASs include commands for evaluation of the prime counting function and 



the function  (For the latter, you can also use appropriate CAS integration command.) 
Make a function  The function should return a figure with plots 

of and  in the range  Choose a large integer  and use 

your function to make a figure similar to  Fig. 2.1.

 
The prime counting function and its two asymptotic approximations.

Euclid's algorithm revisited
The algorithm returns the greatest common divisor of the integers  and . 
Without loss of generality, assume that  and 
Example 2. Find 
Manual solution
Using the division algorithm, you obtain the equation

Clearly, any common divisor of 203 and 91 is also a common divisor of i.e., 

Applying the division algorithm to this new pair of numbers, you obtain 

Finally,

Answer: .
Symbolic description of the Euclid's algorithm
Step 1: 

Step 2:  



Remark for coding. Notice that on each step you need to implement a computation according
to (*) to replace the current pair of numbers with the new one, 

where is the remainder of the integer division of by  

Exercise 5. 
Find gcd(5989,4187) using the Euclid algorithm and CAS assistance interactively. 

Representation of numbers in different bases
The decimal notation of natural numbers that we are usually using in everyday life is a special 
case of notation in the base or base-  notation. The long version of the representation in 
the base-10 of a number with  digits has the form 

A brief version of this form is 

Representation in the base  has the form (**) with 10 replaced by .
Converting integers from decimal to binary and vice versa
To convert a binary number to decimal use the formula (**) with the base two. Since the only 
binary digits are 0 and 1 (called bits), you just add powers of two that correspond to 1's in the 
binary representation.
Example 3. Convert  to the base 10.

Solution

 = 179
Answer: 

To convert an integer in the decimal representation to binary, start with the integer in question 
and implement the integer division by two keeping notice of the quotients and the remainders. 
Continue the division operations until you get a quotient of zero. Then just write out the 
remainders in the reverse order.
Example 4. Convert 14 to the base 2.
Solution

Answer: 

Exercise 6. (a) Convert  to the base 2; (b) Convert   to the base 

10. Check your manual solutions with appropriate CAS commands.
(b) (optional) Write a CAS function  The function converts a positive 
decimal integer  into its binary representation.  Test your function on an example of your 
choice and check the result using appropriate CAS command.

Pythagorean triples



Let a triple  of positive integers be a PPT, that is,  and 
.   

Examples of PPTs are  For 
any PPT one of the "legs"  is odd and the other even.
Theorem: PPT Characterization, version 1. Every PPT with odd and  even satisfies the 

system of equations  where  

are chosen to be any odd mutually prime integers. 
For example, choosing we obtain The PPT defined by 

 is  
Exercise. Find all PPTs with .
Exercise. Prove that for any PPT the even number is actually divisible by 4.
Exercise 7. Make a CAS function  that takes two odd mutually prime 
integers  with  and returns corresponding PPT. Include a verification of 
mutual primality. Verification of the inequality condition is not required in your 
code.

Slightly different form of the characterization of PPTs can be obtained using a 
 of the unit circle centered at the origin. 

To derive a rational parametrization of the unit circle, notice that a triple  of 

positive integers is Pythagorean iff that is, the point with 

rational coordinates  lies on the unit circle. You know that the unit circle 

can be defined parametrically as  Using the 
trigonometric identities

and 

, you can derive the formulas

Exercise. Derive the last two formulas.

Introduce notation  and you arrive to a rational parametrization of the circle 



                                        (***)

The parametrization does not include the point .  (Why?)
There is another way to derive this rational parametrization of the unit circle based on 
geometric considerations instead of trigonometry. Consider the unit circle crossed by a non-
vertical line passing through the point . 

Exercise. (a) Show that the red line  crosses the unit circle at the point 
 with coordinates defined by equations (***). 

(b) Use CAS assistance to interactively execute three operations:

substitute a rational slope  into equations (***) and simplify the result 

set  to the numerator of ,  to the numerator of ,  to the denominator of 
either of the simplified equations
check that  is a PT using appropriate logic command of CAS 

The exercise suggests a slightly different form of the characterization theorem for PPT in 
terms of integers  one of which is odd and the other even. This form is convenient for 
systematic procedure of constructing large number of PPTs in Lab 1.
Theorem: PPT Characterization, version 2. Every PPT  satisfies the system of 

equations where are mutually prime
natural numbers, one of which is odd and the other even, and . 
Remark. If  and  are odd, then  defined by the theorem are even numbers, and we
obtain a PT but not PPT. For instance, for  and we have 

Exercise. 
(a) Find all PPTs with  
(b) Does a PPT with  exist? If yes, find the PPT. If no, explain why.
Exercise 8. Make a CAS function  that takes a rational number /  and
returns the corresponding PPT or prints "Both m and n is odd."



Linear Diophantine equation in two variables
Solution to a linear Diophantine equation 
            (LDE)
is any pair of integers  that satisfy the equation.
Theorem: The Existence Criterion. The equation (LDE)  has a solution iff is 
divisible by the 
In symbolic notation this condition is written as 
To prove that existence of solution implies divisibility of  by the  is trivial. 
Proof of the existence of solution to the equation (LDE) provided is divisible by 

 is more challenging. (Try it!)
General solution to (LDE)
Let  be a particular solution to (LDE), that is, . Clearly, the 

modified equation  is true for all . Thus 

 is the  to the (LDE). 

Finding nonnegative solutions
In applications, the unknowns typically stand for real life quantities only nonnegative 
solutions are sought. Nonnegative solutions exist if the system of inequalities 

 is solvable for 

Remark. When (LDE) is solvable, the following facts simplify the solution process.
1. If are not mutually prime, you can divide the (LDE) by  to obtain the 
equivalent reduced equation. So, you can always assume that  are mutually prime.
2. If  solves the equation , then  is a solution to the 

(LDE). That is why a CAS command that solves an LDE with two unknowns typically takes 
only  and  and returns a solution to the LDE with rhs  
There is a simple algorithm for solving LDE with two unknowns when the equation is 
solvable. The example below shows the steps of the algorithm.
Example 5. Find all solutions to the LDE                              
Solution 
1) Since , we can rewrite the given LDE as a "smaller" one in two new 
variables: or 

 with

Repeat this step until the coefficient of the second new variable equals one:
2) Since we can rewrite the LDE  as 

or   with

3) Rewrite the LDE  as  

A particular solution to the last LDE is 

Now move backward to find the original unknowns: 



Solving the system of two linear equations, you find a 
particular solution to the original LDE:

Check:  It checks!

Exercise 9. 
(a) Solve the LDE in Example 5 in two steps. First, following the example, solve the LDE 

then construct the general solution to the original LDE 

(b) Show that the LDE in Example 5 has no nonnegative solutions.

Exercise 10. You have two containers of volume 17 and 55 oz of salt. How would you 
measure 1 oz of salt?  Assume that you also have sufficient salt supply and a large container 
for this task to pour salt into this container and out of it using your two containers. Hint: Set 
up the LDE for the problem, solve it, and then use the solution and common sense to describe 
the procedure of measuring 1oz of salt. 

Lab 1: Plotting legs (a,b) of Primitive Pythagorean Triples
Problem formulation
Write a CAS function that executes the following.
1. Constructs a list  of pairs  from fractions on  subdiagonals of the table of rational 
numbers shown below. Here  is the numerator and  the denominator of a fraction.
2. Makes a list  of legs  of PPTs obtained using the second version of the theorem on 
characterization of PPT. 
3. Plots the points   from the list S.
Table of fractions from the interval 
Consider the following two-way infinite table of rational numbers:

You will use the table as the source of "building material" for constructing  legs  of PPT. 

Clearly, some fractions in the table are repeated, like and but this can be easily fixed later

(see Part 2 in the plan below). 
Exercise. What is the length of a list of fractions from  subdiagonals?



Suggested plan
Your code will be more readable if you split the problem into subproblems.
Part 1. Make a CAS function that takes a natural number  and returns the 
list  of pairs  for fractions taken from the first  consecutive subdiagonals going from
southwest to northeast in the table described above. 

. 
Part 2. Make a CAS function that takes a list  of pairs of natural numbers 

constructs the list of corresponding PTs, and returns 
the list   of PPTs without duplicates 
the length of the list of PTs and the length of the list S of PPTs.

Part 3 (main). Make a CAS function  that uses the functions you made in Part 1 
and Part 2 and returns the plot of points on the list  Run this function with  Your 
figure will look similar to Fig. 2.2. (Six points are made blue just for the next part of the project.)

Legs of PPT's with "odd" legs on the horizontal axis and "even" legs on the vertical axis. 
Part 4. You will see some patterns in your figure. It looks like the blue points are located along 
some arc and there is a missing point in the sequence of six blue points in Fig. 2.2. The points 
have coordinates 

Determine the patterns in the sequences of x- and y-coordinate of these points and find the 
coordinates of the missing point. Explain why the point is missing.
Part 5. Write a brief summary. Include the numbers of elements on the lists L, M, and  . If you 
see some patterns in your plot, briefly describe them. If you did some experimentation, tell us 
about it. 
Remark. An alternative way of visualizing Pythagorean triples is described in the article by 
Robert Saunders and Trevor Randall "The Family Tree of the Pythagorean Triplets  Revisited", 
The Mathematical Gazette, Vol. 78, No. 482 (Jul., 1994), pp. 190-193. 

Lab 2 (optional): Industrial application of a linear Diophantine 
equation in three variables



This is an educational version of a real industrial problem solved by WCSU undergraduate 
student Josh Torres in 2015 for Connecticut manufacturing company SWI, Ltd.
Problem formulation
An assembly is made of segments of three types: type 1 of length , type 2 of length , and type

3 of length , where are positive integers. The total length of the assembly  is significantly 

larger than any of , j=1, 2, 3. Due to different electronic "stuffing" of the segments, the prices of 

the segments are not proportional to their lengths. The price for one segment is for type 1,  

for type 2, and for type 3. Make a function that takes integer lengths , j=1, 2, 3, and 

prices , j=1, 2, 3, and returns the number of segments of each type needed to construct the 

assembly of total length  for the minimal cost. (The cost of labor is not included.) 
Mathematical model
Let be the number of segments of type , used in assembly. The problem can 
be stated as the integer linear programming problem:

Minimize subject to 

the constraint 

In words: In a set of all nonnegative integer solutions of the LDE 
 find solution(s) that minimizes the objective function 

Assumptions
 are pairwise coprime 

without loss of generality, assume that denotes the largest length 

Suggested plan
Part 1. Transform the LDE constraint with three variables into a family of LDEs with two 
variables, and 

.

The family is parametrized by the admissible values of the values for which the 

right hand side of the equation  is nonnegative. Find the largest 

admissible value  

Part 2. Find all nonnegative solutions of the family .
Part 3. Calculate the costs for all solutions found on Step 2 and choose solution(s) with minimal 
cost.

Directions
Write the following CAS functions
1) that returns a particular solution to LDE  You may use 
appropriate CAS command.



2) that returns two lists of the same length:

    list of all particular solutions  with  being solution to 2D LDE 

in the set corresponding to the value . 

    list of ranges for parameter  such that   and for 

each element in  
3) that returns a list of all nonnegative solutions to the LDE constraint.
4) that takes a list of nonnegative solutions, makes a list of 

corresponding costs and chooses solution(s) with minimal cost.
Test your code for the problem with parameters  

Answer to the test problem: The optimal solution is    with cost

$33.69.
5) Solve the problem with the same parameters as in the test problem but with total length 

Write your answer in the context of the industrial problem.

Glossary
prime number
mutually prime (coprime) pair of integers
coprime set of integers; pairwise coprime set of integers
Pythagorean triple; primitive Pythagorean triple
Diophantine equations
binary representation of integers


