
Topics in Elementary Number Theory

Introduction
Number theory is the study of the set of natural numbers Some typical
examples of number theoretic questions are:

Can the sum of two squares be a square?

Is the equation solvable for ?
Are there infinitely many primes?
Is a given integer prime or composite?
How to efficiently factorize a composite number?

The first two questions are about existence of positive integer solutions of the equations

. You certainly know that for the equation is solvable. Solutions
to this equation are called . A PT with and (that is,

 do not have common divisors other than 1) is called . You
will see two versions of a characterization of PPTs and use one of them in Lab 1 to construct and
visualize a large number of PPTs. states that there is no three positive

integers and satisfying the equation with Fermat did not
provide the proof, and the statement remained just a conjecture for more than three centuries. In

after 358 years

of effort by mathematicians! The equation is a particular example of so-called
Diophantine equations. Diophantine equation in two variables has the form
where is a polynomial with integer coefficients; solutions are sought in the set of
integers. A universal algorithm for deciding if a particular Diophantine equation is solvable was
posed by D. Hilbert as the of his celebrated mathematical problems for 20th century. In
1970, a novel result in mathematical logic, known as Matiyasevich's theorem, settled the problem
negatively: such a general algorithm does not exist. In this module you will work only with linear
Diophantine equations (LDEs) in two variables. These equations are always solvable under a
simple assumption. A method for solving LDE in two unknowns is described in this lecture. This
simple method proved to be useful in an applied industrial problem, and in this lecture you will
solve this problem in Lab 2 with CAS assistance.
The third question was answered positively by Euclid. Euclid's proof of the theorem on infinitude
of primes is simple and beautiful. Take a look at https://en.wikipedia.
org/wiki/Euclid%27s_theorem and enjoy.
The last two questions are about prime characterization and prime factorization. The questions
have been stated by mathematicians, in particular C. F. Gauss, as the central problems in the
number theory. At the present, they are not just academic questions. Primality and prime
factorization became very important in applications, mostly in cryptography. An efficient
algorithm for testing primality called AKS (using the first letters of the three co-authors) was
found in 2002. In this lecture, we will introduce only two classic "toy" factorization algorithms to
give you a flavor of the factoring problem. For more, see http://www.cs.columbia.
edu/~rjaiswal/factoring-survey.pdf. The first three pages in this article are on the history of the
factoring problem. See also https://en.wikipedia.org/wiki/RSA_Factoring_Challenge about
challenge put forward by RSA Laboratories to encourage research into computational number

theory. The RSA Laboratories offered cash prizes for successful factorization of certain composite
numbers. Many algorithms have been devised to make factorization an ever faster problem. It is a
major open problem in the number theory to decide how fast integer factorization algorithms can
be.

There are other open problems in the number theory stated as conjectures and verified for a huge
number of cases using modern computers but not proven rigorously. Here is a classic example of
such conjecture.
Goldbach's Conjecture. Every even number is the sum of two primes.
For example, The conjecture has been tested
up to the number (2017) but remains unproven.
Exercise 1. Make a CAS function that takes an even number and
prints representation(s) of the number as the sum of two primes.

 The ternary Goldbach conjecture, or the three-primes problem, asserts that every odd

integer greater than five is the sum of three primes. In 1937, Russian mathematician I.M.
Vinogradov proved that the conjecture is true for all above a large constant The bound was

improved several times, and in 2013 the conjecture was proven for by a

Peruvian mathematician H.A. Helfgott, see https://arxiv.org/abs/1312.7748. For it
was verified by "brute force" computer calculations that the statement is true. Problem solved.

 Number theory was considered to be one of the "purest" branches of mathematics, but

when it comes to computer security, it has turned out to become one of the most useful. For
example, algorithms based on number theory help to protect your credit card number when you
shop online or, generally, protect sensitive information transmitted through communication
channels. Moreover, according to Donald Knuth, who has been called the "father of the analysis
of algorithms", in computer science, "...virtually every theorem in elementary number theory
arises in a natural, motivated way in connection with the problem of making computers do high-
speed numerical calculations". For more about number theory see https://en.wikipedia.
org/wiki/Number_theory.

All coefficients and variables in this lecture are assumed to be integers or rational numbers unless
stated otherwise.

Some algorithms of the elementary number theory

Primes, primality tests, and prime factorization
A is a positive integer with no positive integer divisors other than one and
itself. A set of natural numbers is coprime if the only common divider of the members of the
set is 1. The , also called the unique factorization theorem,
states that every integer greater than one either is a prime number itself or can be represented
as the product of prime numbers. This representation is unique up to the order of factors. The
theorem is a typical existence statement; it does not provide a way to constructively factor
composite numbers or determine if a number is prime or composite.
The algorithm finds all primes less than some number . This ancient
algorithm can be used as a primality test for integers that are not too large. Here are the steps

of the algorithm.
Step 1. Make the list of all natural numbers from 2 to n
Step 2. Set
Step 3. Cross out all numbers divisible by p except for p itself.
Step 4. Find the first number on the list (not crossed) that is greater than . If there is no
such number, stop. Otherwise, set , which is the next prime, and repeat from Step 3.

Once you crossed off all multiples of all primes less or equal , than anything
not crossed out must be prime.

Clearly, if is composite, its smallest divider is less than or equal to . (Why?) Therefore,
if on a step of crossing multiples of some number the input number gets crossed, then
is not a prime and is its smallest divisor. The algorithm is slow and not efficient for large

.
Example 1. Make a list of all primes less than 50 and implement the Eratosthenes algorithm
using CAS interactively.
Solution
The algorithm was implemented step by step using CAS assistance. We consecutively

eliminated multiples of primes up to and including the number . Specific
commands for these steps are different for different CASs. In writing a code for a particular
CAS, we have chosen to cross all numbers multiple to primes, including the primes
themselves, and collected the excluded primes on a separate list. At the end, we merged the list
of excluded primes and the primes left on the original list.
Here are the outputs after excluding multiples of 2, 3, 5, and 7:

The last list merged with primes gives the answer:
.

Exercise 2.
(a) Make a CAS function that takes a natural number and returns the
list of all primes less than or equal to Test your function on the problem in Example 1.
(b) Make a CAS function that makes a list of prime numbers
greater than a positive integer . Make a list of 30 prime numbers greater than 100. You may
use appropriate CAS command for finding a prime next to a specific integer.
Two simple primality tests
The simplest primality test is the trial division also called the brute force method. In this

method, given an input number all integers less than or equal to are tested using the
trial division to see if they actually divide the given number. The algorithm is slow and not
practical for large .
Another simple primality test, Fermat's factorization method, is based on the following fact:
Any odd integer can be represented as the difference of squares of integers.

Proof
Let be an odd number. (If is prime, either or equals one.) You can write

.

Set Since both and are odd (why?), and

 are even. Therefore and are integers.
The proof implies that The basic Fermat's algorithm

consecutively tries integers until the difference becomes the

perfect square. Then is set to and the factors are defined as

To speed up the basic method, various improvements of the Fermat algorithm have been
developed, see https://en.wikipedia.org/wiki/Fermat%27s_factorization_method.
Example 2. Factor using the Fermat factorization algorithm.
Solution

Step 1. ;

Step 2.
Answer: Factors of are: Check:

Exercise 3. Make a CAS function that takes an odd number ,
implements the Fermat's of factorization algorithm, and returns two factors of Run your
code on example of your choice and check the result with CAS factoring command.

Number of primes and the Riemann Hypothesis.
The , counting number of primes less than or equal to a given

positive number can be estimated asymptotically by the function that is, the

limit of the ratio of these two functions is one,

This is the statement of the Prime Number Theorem. It is known that the famous

 is equivalent to the conjecture that the function

is also an asymptotic estimate of that is,

Exercise 4. Most CASs include commands for evaluation of the prime counting function and

the function (For the latter, you can also use appropriate CAS integration command.)
Make a function The function should return a figure with plots

of and in the range Choose a large integer and use

your function to make a figure similar to Fig. 2.1.

The prime counting function and its two asymptotic approximations.

Euclid's algorithm revisited
The algorithm returns the greatest common divisor of the integers and .
Without loss of generality, assume that and
Example 2. Find
Manual solution
Using the division algorithm, you obtain the equation

Clearly, any common divisor of 203 and 91 is also a common divisor of i.e.,

Applying the division algorithm to this new pair of numbers, you obtain

Finally,

Answer: .
Symbolic description of the Euclid's algorithm
Step 1:

Step 2:

Remark for coding. Notice that on each step you need to implement a computation according
to (*) to replace the current pair of numbers with the new one,

where is the remainder of the integer division of by

Exercise 5.
Find gcd(5989,4187) using the Euclid algorithm and CAS assistance interactively.

Representation of numbers in different bases
The decimal notation of natural numbers that we are usually using in everyday life is a special
case of notation in the base or base- notation. The long version of the representation in
the base-10 of a number with digits has the form

A brief version of this form is

Representation in the base has the form (**) with 10 replaced by .
Converting integers from decimal to binary and vice versa
To convert a binary number to decimal use the formula (**) with the base two. Since the only
binary digits are 0 and 1 (called bits), you just add powers of two that correspond to 1's in the
binary representation.
Example 3. Convert to the base 10.

Solution

 = 179
Answer:

To convert an integer in the decimal representation to binary, start with the integer in question
and implement the integer division by two keeping notice of the quotients and the remainders.
Continue the division operations until you get a quotient of zero. Then just write out the
remainders in the reverse order.
Example 4. Convert 14 to the base 2.
Solution

Answer:

Exercise 6. (a) Convert to the base 2; (b) Convert to the base

10. Check your manual solutions with appropriate CAS commands.
(b) (optional) Write a CAS function The function converts a positive
decimal integer into its binary representation. Test your function on an example of your
choice and check the result using appropriate CAS command.

Pythagorean triples

Let a triple of positive integers be a PPT, that is, and
.

Examples of PPTs are For
any PPT one of the "legs" is odd and the other even.
Theorem: PPT Characterization, version 1. Every PPT with odd and even satisfies the

system of equations where

are chosen to be any odd mutually prime integers.
For example, choosing we obtain The PPT defined by

 is
Exercise. Find all PPTs with .
Exercise. Prove that for any PPT the even number is actually divisible by 4.
Exercise 7. Make a CAS function that takes two odd mutually prime
integers with and returns corresponding PPT. Include a verification of
mutual primality. Verification of the inequality condition is not required in your
code.

Slightly different form of the characterization of PPTs can be obtained using a
 of the unit circle centered at the origin.

To derive a rational parametrization of the unit circle, notice that a triple of

positive integers is Pythagorean iff that is, the point with

rational coordinates lies on the unit circle. You know that the unit circle

can be defined parametrically as Using the
trigonometric identities

and

, you can derive the formulas

Exercise. Derive the last two formulas.

Introduce notation and you arrive to a rational parametrization of the circle

 (***)

The parametrization does not include the point . (Why?)
There is another way to derive this rational parametrization of the unit circle based on
geometric considerations instead of trigonometry. Consider the unit circle crossed by a non-
vertical line passing through the point .

Exercise. (a) Show that the red line crosses the unit circle at the point
 with coordinates defined by equations (***).

(b) Use CAS assistance to interactively execute three operations:

substitute a rational slope into equations (***) and simplify the result

set to the numerator of , to the numerator of , to the denominator of
either of the simplified equations
check that is a PT using appropriate logic command of CAS

The exercise suggests a slightly different form of the characterization theorem for PPT in
terms of integers one of which is odd and the other even. This form is convenient for
systematic procedure of constructing large number of PPTs in Lab 1.
Theorem: PPT Characterization, version 2. Every PPT satisfies the system of

equations where are mutually prime
natural numbers, one of which is odd and the other even, and .
Remark. If and are odd, then defined by the theorem are even numbers, and we
obtain a PT but not PPT. For instance, for and we have

Exercise.
(a) Find all PPTs with
(b) Does a PPT with exist? If yes, find the PPT. If no, explain why.
Exercise 8. Make a CAS function that takes a rational number / and
returns the corresponding PPT or prints "Both m and n is odd."

Linear Diophantine equation in two variables
Solution to a linear Diophantine equation
 (LDE)
is any pair of integers that satisfy the equation.
Theorem: The Existence Criterion. The equation (LDE) has a solution iff is
divisible by the
In symbolic notation this condition is written as
To prove that existence of solution implies divisibility of by the is trivial.
Proof of the existence of solution to the equation (LDE) provided is divisible by

 is more challenging. (Try it!)
General solution to (LDE)
Let be a particular solution to (LDE), that is, . Clearly, the

modified equation is true for all . Thus

 is the to the (LDE).

Finding nonnegative solutions
In applications, the unknowns typically stand for real life quantities only nonnegative
solutions are sought. Nonnegative solutions exist if the system of inequalities

 is solvable for

Remark. When (LDE) is solvable, the following facts simplify the solution process.
1. If are not mutually prime, you can divide the (LDE) by to obtain the
equivalent reduced equation. So, you can always assume that are mutually prime.
2. If solves the equation , then is a solution to the

(LDE). That is why a CAS command that solves an LDE with two unknowns typically takes
only and and returns a solution to the LDE with rhs
There is a simple algorithm for solving LDE with two unknowns when the equation is
solvable. The example below shows the steps of the algorithm.
Example 5. Find all solutions to the LDE
Solution
1) Since , we can rewrite the given LDE as a "smaller" one in two new
variables: or

 with

Repeat this step until the coefficient of the second new variable equals one:
2) Since we can rewrite the LDE as

or with

3) Rewrite the LDE as

A particular solution to the last LDE is

Now move backward to find the original unknowns:

Solving the system of two linear equations, you find a
particular solution to the original LDE:

Check: It checks!

Exercise 9.
(a) Solve the LDE in Example 5 in two steps. First, following the example, solve the LDE

then construct the general solution to the original LDE

(b) Show that the LDE in Example 5 has no nonnegative solutions.

Exercise 10. You have two containers of volume 17 and 55 oz of salt. How would you
measure 1 oz of salt? Assume that you also have sufficient salt supply and a large container
for this task to pour salt into this container and out of it using your two containers. Hint: Set
up the LDE for the problem, solve it, and then use the solution and common sense to describe
the procedure of measuring 1oz of salt.

Lab 1: Plotting legs (a,b) of Primitive Pythagorean Triples
Problem formulation
Write a CAS function that executes the following.
1. Constructs a list of pairs from fractions on subdiagonals of the table of rational
numbers shown below. Here is the numerator and the denominator of a fraction.
2. Makes a list of legs of PPTs obtained using the second version of the theorem on
characterization of PPT.
3. Plots the points from the list S.
Table of fractions from the interval
Consider the following two-way infinite table of rational numbers:

You will use the table as the source of "building material" for constructing legs of PPT.

Clearly, some fractions in the table are repeated, like and but this can be easily fixed later

(see Part 2 in the plan below).
Exercise. What is the length of a list of fractions from subdiagonals?

Suggested plan
Your code will be more readable if you split the problem into subproblems.
Part 1. Make a CAS function that takes a natural number and returns the
list of pairs for fractions taken from the first consecutive subdiagonals going from
southwest to northeast in the table described above.

.
Part 2. Make a CAS function that takes a list of pairs of natural numbers

constructs the list of corresponding PTs, and returns
the list of PPTs without duplicates
the length of the list of PTs and the length of the list S of PPTs.

Part 3 (main). Make a CAS function that uses the functions you made in Part 1
and Part 2 and returns the plot of points on the list Run this function with Your
figure will look similar to Fig. 2.2. (Six points are made blue just for the next part of the project.)

Legs of PPT's with "odd" legs on the horizontal axis and "even" legs on the vertical axis.
Part 4. You will see some patterns in your figure. It looks like the blue points are located along
some arc and there is a missing point in the sequence of six blue points in Fig. 2.2. The points
have coordinates

Determine the patterns in the sequences of x- and y-coordinate of these points and find the
coordinates of the missing point. Explain why the point is missing.
Part 5. Write a brief summary. Include the numbers of elements on the lists L, M, and . If you
see some patterns in your plot, briefly describe them. If you did some experimentation, tell us
about it.
Remark. An alternative way of visualizing Pythagorean triples is described in the article by
Robert Saunders and Trevor Randall "The Family Tree of the Pythagorean Triplets Revisited",
The Mathematical Gazette, Vol. 78, No. 482 (Jul., 1994), pp. 190-193.

Lab 2 (optional): Industrial application of a linear Diophantine
equation in three variables

This is an educational version of a real industrial problem solved by WCSU undergraduate
student Josh Torres in 2015 for Connecticut manufacturing company SWI, Ltd.
Problem formulation
An assembly is made of segments of three types: type 1 of length , type 2 of length , and type

3 of length , where are positive integers. The total length of the assembly is significantly

larger than any of , j=1, 2, 3. Due to different electronic "stuffing" of the segments, the prices of

the segments are not proportional to their lengths. The price for one segment is for type 1,

for type 2, and for type 3. Make a function that takes integer lengths , j=1, 2, 3, and

prices , j=1, 2, 3, and returns the number of segments of each type needed to construct the

assembly of total length for the minimal cost. (The cost of labor is not included.)
Mathematical model
Let be the number of segments of type , used in assembly. The problem can
be stated as the integer linear programming problem:

Minimize subject to

the constraint

In words: In a set of all nonnegative integer solutions of the LDE
 find solution(s) that minimizes the objective function

Assumptions
 are pairwise coprime

without loss of generality, assume that denotes the largest length

Suggested plan
Part 1. Transform the LDE constraint with three variables into a family of LDEs with two
variables, and

.

The family is parametrized by the admissible values of the values for which the

right hand side of the equation is nonnegative. Find the largest

admissible value

Part 2. Find all nonnegative solutions of the family .
Part 3. Calculate the costs for all solutions found on Step 2 and choose solution(s) with minimal
cost.

Directions
Write the following CAS functions
1) that returns a particular solution to LDE You may use
appropriate CAS command.

2) that returns two lists of the same length:

 list of all particular solutions with being solution to 2D LDE

in the set corresponding to the value .

 list of ranges for parameter such that and for

each element in
3) that returns a list of all nonnegative solutions to the LDE constraint.
4) that takes a list of nonnegative solutions, makes a list of

corresponding costs and chooses solution(s) with minimal cost.
Test your code for the problem with parameters

Answer to the test problem: The optimal solution is with cost

$33.69.
5) Solve the problem with the same parameters as in the test problem but with total length

Write your answer in the context of the industrial problem.

Glossary
prime number
mutually prime (coprime) pair of integers
coprime set of integers; pairwise coprime set of integers
Pythagorean triple; primitive Pythagorean triple
Diophantine equations
binary representation of integers

