6.1 Inverse functions

One-to-one functions

A function f is called a <u>one-to-one function</u> if it never takes on the same value twice; that is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

How to determine whether a function is one-to-one?

- By definition. **Example**:
- Horizontal line test: A function is one-to-one if and only if no horizontal line intersects its graph more than once. **Example**:
- Strictly increasing and strictly decreasing functions are one-to-one. **Example**:

Problem 1 Is f(x) = x + 1 a one-to-one function?

Multiple Choice:

- (a) Incorrect
- (b) Not sure
- (c) Click here? \checkmark
- (d) Not me!

Graph of
$$a = 1, ax^2$$

 $3 \times 2 = 6$
Question 2 $\frac{\partial}{\partial x} x^3 \sin(y) = 3x^2 \sin(y)$

Question 3 *Hint:* 3×2 is the number of objects in 3 groups of 2 objects

Something unimportant something important something unimportant something really important.

Question 4 What is the abscissa of the critical point of the function $f(x) = x^2 + 2x + 1$?

Hint: What is the derivative of f?

$$f(x) = \boxed{2x+2}$$

 $x = \lfloor -1 \rfloor$

Inverse function

Let f be a one-to-one function with domain A and range B. Then its <u>inverse function</u> f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y \tag{1}$$

for any y in B.

Caution: Do not mistake the -1 in f^{-1} for an exponent. $f^{-1}(x)$ doen not mean $\frac{1}{f(x)}$!!

Properties:

• domain of f^{-1} = range of f; range of f^{-1} = domain of f.

.

- $f^{-1}(x) = y \Leftrightarrow f(y) = x$
- $f^{-1}(f(x)) = x$ for every x in A; $f(f^{-1}(y)) = y$ for every y in B
- The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

Example:

How to find the inverse function of a one-to-one function?

- (a) Write y = f(x).
- (b) Solve this equation for x in terms of y (if possible).
- (c) To express f^{-1} as a function of x, interchange x and y.

Math 1700: Lecture 1 (July 25)

The resulting equation is $y = f^{-1}(x)$. Example:

The Calculus of Inverse Functions

Recall that a function f is continuous if its graph has no break (consists of just one piece).

Theotem: If f is a one-to-one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.

Theorem: If f is a one-to-one differentiable function with inverse function f^{-1} and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

Example:

6.2* The Natural Logarithmic Function

The *natural logarithmic function* is the function defined by

$$\ln x = \int_1^x \frac{1}{t} dt \qquad x > 0$$

Remark: e is the number such that $\ln e = 1$ ($e \approx 2.718$).

Properties:

- $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- (Laws of Logarithms) If x and y are positive numbers and r is a rational number, then
 - (a) $\ln(xy) = \ln x + \ln y$
 - (b) $\ln(\frac{x}{y}) = \ln x \ln y$
 - (c) $\ln(x^r) = r \ln x$

Example:

• (Limits) $\lim_{x\to\infty} \ln x = \infty$; $\lim_{x\to 0^+} \ln x = -\infty$ Graph of $y = \ln x$

Example:

Math 1700: Lecture 1 (July 25)

•
$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$$
; or $\frac{d}{dx}[\ln g(x)] = \frac{g'(x)}{g(x)}$
Example:

• (Some important formulas)

(a)
$$\frac{d}{dx}(\ln |x|) = \frac{1}{x}$$

(b) $\int \frac{1}{x} dx = \ln |x| + C$
(c) $\int \tan x \, dx = \ln |\sec x| + C$
Example:

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms.

Steps in Logarithmic Differentiation

- (a) Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify.
- (b) Differentiate implicitly with respect to x.
- (c) Solve the resulting equation for y'.

Example: