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Preface

This book is written for an undergraduate Mathematical Methods course, designed for
physics students. A knowledge of single and multivariable calculus is required for a complete
understanding of the material covered. Since the range of topics presented is wide, it is not
our goal to treat each with much rigor but instead to provide a more methodical view that
will serve as an introduction and expose the reader to the topics that will appear again in
higher level physics course:

1. Fourier Analysis,

2. Vector Calculus,

3. Linear Algebra, and

4. Partial Differential Equations.

Each section is kept relatively brief in order to allow the reader to more deeply connect
with the key concepts and ideas presented and finishes with a set of reading questions and/or
in-class exercises. It is recommended to complete the reading questions after reading the
section to test your understanding. The in-class exercises can be saved for designated class
time.

This book also includes a computational component using Python 3.7. Throughout, there
are exercises that use Python. However, we do not provide an introduction to the Python
language. See Chapter 5 for resources and information on installing and using the Anaconda
Python distribution.
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Chapter 1

Fourier Analysis

Fourier analysis is the study of the way that functions can be approximated as linear combina-
tions of trigonometric functions. Similar to a Taylor expansion, the approximation becomes
exact with an infinite number of trigonometric terms added.

Due to its prevalence in partial differential equa-
tions, number theory, combinatorics, signal processing,
digital image processing, probability theory, statistics,
forensics, option pricing, cryptography, numerical anal-
ysis, acoustics, oceanography, sonar, optics, diffrac-
tion, geometry, protein structure analysis, and many
more fields, Fourier analysis is crucial to the develop-
ing physicist’s education.

We will begin by discussing notation and convention
of complex numbers. Then, we will explore the algo-
rithm for expanding functions as a Fourier and complex
Fourier series, as well the Fourier and Laplace integral
transforms.

In this chapter you will become comfortable with operations and notation for complex
numbers, develop an introductory proficiency for operating in the frequency domain, and
gain computational competence while working with integral transforms and the Dirac Delta
function.

1.1 Complex Numbers
Real numbers include rational and irrational numbers. It is impossible to list all real
numbers or even begin such a list, but some examples are 3, π, −2274, 0, −3

20 , and 0.040201.
A complex number is of the form a + bi, where a and b are real numbers and i is the
complex unit satisfying i2 = −1.

Similar to the way that real numbers can be visualized on a line, an Argand diagram
(also called a Gauss Plane) can be used to visualize complex numbers since the complex
numbers are similar to ordered pairs of real numbers. We can plot an arbitrary complex
number z = x + iy on the Argand diagram below.
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12 CHAPTER 1. FOURIER ANALYSIS

x

y
z = x + iy

Figure 1.1: Argand Diagram

The horizontal axis is called the real axis and the vertical axis is called the imaginary
axis. For an arbitrary complex number z = x + iy, we define

• Re(z) = x, “the real part of z,” and

• Im(z) = y, “the imaginary part of z.” (Remember that Im(z) is a real number!)

The complex numbers have the following operations defined. For arbitrary z1 = x1 + iy1
and z2 = x2 + iy2, and scalar (real) c,

• addition and subtraction

z1 ± z2 = (x1 ± x2) + i(y1 ± y2), (1.1)

• scalar multiplication
cz1 = (cx1) + i(cy2), (1.2)

• multiplication
z1 · z2 = (x1x2 − y1y2) + i(x1y2 + y1x2), (1.3)

• division
z1

z2
= z1 · z∗

2
|z2|2

= x1x2 + y2y2

x2
2 + y2

2
+ i

x2y1 − x1y2

x2
2 + y2

2
. (1.4)

The complex conjugate of a complex number z = x + iy is the complex number
z∗ = x − iy, whose imaginary part differs in sign from z. The modulus of a complex
number z is written |z| and is defined as

|z| =
»

Re2(x) + Im2(x). (1.5)

For an arbitrary z = x + iy, it is always true that

z · z∗ = z∗ · z = |z|2 = x2 + y2. (1.6)
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We can also write complex numbers using a polar representation.

x

y
z = x + iy

θ

|z|

Figure 1.2: Polar Representation of Complex Numbers

Write θ for the angle between the complex ‘vector’, z, and the real axis and write r =√
x2 + y2 = |z|. Then we have that x = r cos θ and y = r sin θ. Recall Euler’s formula,

eix = cos x + i sin x. (1.7)

We can use these two facts to write

z = x + iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ. (1.8)

Reading Questions
Reading Question 1.1.1. Explain why all real numbers are complex numbers.

Reading Question 1.1.2. What is in for all n = 0, 1, 2, 3, 4, . . . ?

Reading Question 1.1.3. What is (z∗)∗ for any complex z? What is z∗ for any real z?

Reading Question 1.1.4. On an Argand diagram, how can taking the complex conjugate
of a complex number be visualized? How about multiplying a complex number by i.

Reading Question 1.1.5. For each of the operations defined for complex numbers that are
listed above, make sure that they follow intuitively. Perhaps, treat i as a ‘real variable’ and
‘derive’ each from the same operations defined on real numbers.

Reading Question 1.1.6. Prove Eq. 1.6.

Reading Question 1.1.7. Prove Euler’s formula (Eq. 1.7) using a Taylor expansion.

Reading Question 1.1.8. For an arbitrary z = x + iy, when is θ = tan−1 ( y
x

)
and when is

it not?
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In-Class Exercises
In-Class Exercise 1.1.9. Two complex numbers z and w are given by z = 3 + 4i and
w = 2 − i. On an Argand diagram, plot (a) z + w, (b) w − z, (c) wz, (d) z/w, (e) z∗w + w∗z,
and (f) w2. (Exercise 3.1 from [1].)

In-Class Exercise 1.1.10. Find the polar representation of the following complex numbers:

(a) −
√

3 + i

(b) 2 − 2i

(c) −i3/2

(d) (−1 −
√

3i)/2

(e) i

(f) −2

In-Class Exercise 1.1.11. Does z1z2 = r1r2e
i(θ1+θ2) hold for z1 = r1e

iθ1 and z2 = r2e
iθ2?

Check that with z1 =
√

3 + i and z2 = (3/2)(1 + i
√

3).

In-Class Exercise 1.1.12. By considering the real and imaginary parts of the product
eiθeiϕ prove the standard formulae for cos(θ + ϕ) and sin(θ + ϕ). (Exercise 3.2 from [1].)

1.2 Fourier Series
While more in-depth analysis of functions requires a more rigorous definition, we will be
sufficient to consider a function a rule f , that takes a variable input value x and outputs
a value f(x). Do not confuse functions with their output values! A common bad habit is
to refer to “the function f(x)” but remember: f(x) is not a function, rather, it is the value
of the function f evaluated at x. We say that a real-valued function is periodic if there is
some real L > 0 for which every real x satisfies f(x) = f(x + L).

Figure 1.3: An Arbitrary Periodic Function
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Consider a periodic function f of a real variable x. Let x0 be an arbitrary position on
the x (real, horizontal) axis and let L be the period of f . It turns out that any such periodic
function can be expanded in Fourier series as

f(x) = a0

2 +
∞∑

r=1

ï
ar cos

Å2π

L
rx

ã
+ br sin

Å2π

L
rx

ãò
, (1.9)

with Fourier coefficients

ar = 2
L

∫ x0+L

x0
f(x) cos

Å2π

L
rx

ã
dx, and (1.10)

br = 2
L

∫ x0+L

x0
f(x) sin

Å2π

L
rx

ã
dx. (1.11)

Note that for ar, r = 0, 1, 2, 3, . . . and for br, r = 1, 2, 3, . . . . Each term of the infinite sum
is called a Fourier component. When computing these values, x0 can be chosen to make
the integral easiest.

The Theorem of Discontinuity states that at discontinuous points, xd, the Fourier
series converges to

f(xd) = 1
2

Ç
lim

x→x+
d

f(x) + lim
x→x−

d

f(x)
å

. (1.12)

This means that given any periodic function, we can write this function as the infinite linear
combination of sin and cos waves of different frequencies.

Example 1.2.1. Find the Fourier series for the Saw-tooth Wave defined by f(x) = x
for −L

2 < x < L
2 with period L.

Choose x0 = −L/2 and evaluate

ar = 2
L

∫ L/2

−L/2
x cos

Å2π

L
rx

ã
dx = 0 and

br = 2
L

∫ L/2

−L/2
x sin

Å2π

L
rx

ã
dx = −L

πr
cos(πr) = L

πr
(−1)r+1.

Then,
f(x) =

∞∑
r=1

ï
L

πr
(−1)r+1 sin

Å2π

L
rx

ãò
.

The Fourier series is discontinuous at xd = L/2+nL for all integers n. By the theorem
of discontinuity,

f(xd) = 1
2

Ç
lim

x→x+
d

f(x) + lim
x→x−

d

f(x)
å

= 1
2

Å−L

2 + L

2

ã
= 0.
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In-Class Exercises

In-Class Exercise 1.2.2. Find the Fourier series of the square wave shown below in Figure
1.4.

Figure 1.4: Square Wave [1]

In-Class Exercise 1.2.3. A triangular wave of period L is described by a periodic function
f(x) = |x| for −L/2 ≤ x ≤ L/2 .

(a) Sketch the wave for −2L ≤ x ≤ 2L

(b) Is there any discontinuity?

(c) Let L = 2π, and find the Fourier series of f(x).

(d) Discuss why the series does not contain sine components.

In-Class Exercise 1.2.4. Find the Fourier series of the function f(x) = x in the range
−π < x ≤ π. Hence, show that

1 − 1
3 + 1

5 − 1
7 + · · · = π

4 .

(Exercise 12.5 from [1].)

1.3 Complex Fourier Series

We can use Euler’s formula to write

cos x = eix + e−ix

2 , and sin x = eix − e−ix

2i
. (1.13)
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We can use these formulas to write the definitions of the hyperbolic sine and hyperbolic
cosine:

sinh(x) = −i sin(ix) = ex − e−x

2 (1.14)

cosh(x) = cos(ix) = ex + e−x

2 (1.15)

Keeping this in mind, we can simplify the Fourier series to write the complex Fourier
series:

f(x) =
∞∑

r=−∞
cre

i 2π
L

rx, (1.16)

with
cr = 1

L

∫ x0+L

x0
f(x)e−i 2π

L
rxdx. (1.17)

Example 1.3.1. Find the complex Fourier series for the wave defined by f(x) =
cos

(
x
2
)

for −π < x < π.

Evaluate
cr = 1

2π

∫ π

−π
cos

(x

2

)
e−irxdx = 1

2π

(−1)r

1
4 − r2 .

Then,
f(x) =

∞∑
r=−∞

1
2π

(−1)r

1
4 − r2 e−irx.

Reading Questions

Reading Question 1.3.2. Use Euler’s formula to derive the expressions for the four trigono-
metric functions discussed above.

Reading Question 1.3.3. Use the Fourier series (Eq. 1.9) to derive for the complex Fourier
series (Eq. 1.16).

1.4 The Fourier Transform
Suppose you receive a wave (or function) f that oscillates in time t. We now know that this
wave can be expressed as an infinite-term linear combination of sinusoidal waves of different
frequencies, and you are determined to find a distribution that displays the frequencies of
the sinusoidal functions that summed to the wave you see now. In other words, we wish to
take the wave from the domain of time, and transform it into the frequency domain so to
see intensity versus frequency ω instead of intensity versus time. We also want to use this
transformation on non-periodic functions. We will proceed with these motivation in mind.

Recall that
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∫ ∞

−∞
g(ω) dω = lim

∆k→0

∞∑
r=−∞

g(r∆ω)∆ω, (1.18)

(with ω = r∆ω). By substituting Eq. 1.17 into Eq. 1.16 (using t′ as a variable of integration
and T as the period of the function), we have that

f(t) =
∞∑

r=−∞

ï 1
L

∫ t0+T

t0
f(t′)e−i 2π

T
rt′

dt′
ò

ei 2π
L

rt. (1.19)

Let t0 = −T/2 and define ∆ω = 2π/T so,

f(t) =
∞∑

r=−∞

1
T

∫ T/2

−T/2
f(t′)e−i∆ωr(t′−t) dt′. (1.20)

Take T → ∞ to account for non-periodic functions, so

f(t) = lim
T →∞

∞∑
r=−∞

1
T

∫ T/2

−T/2
f(t′)e−i∆ωr(t′−t) dt′ (1.21)

= lim
∆ω→0

∞∑
r=−∞

∆ω

2π

∫ ∞

−∞
f(t′)e−i(r∆ω)(t′−t) dt′ (1.22)

= lim
∆ω→0

∞∑
r=−∞

ï 1
2π

∫ ∞

−∞
f(t′)e−iω(t′−t) dt′

ò
∆ω. (1.23)

Using Eq. 1.18,

f(t) =
∫ ∞

−∞

1
2π

∫ ∞

−∞
f(t′)e−iω(t′−t)dt′ dω (1.24)

= 1√
2π

∫ ∞

−∞

ï 1√
2π

∫ ∞

−∞
f(t′)e−iωt′

dt′
ò

eiωt dω. (1.25)

We define the Fourier transform of f as
∼
f(ω) = 1√

2π

∫ ∞

−∞
f(t)e−iωt dt, (1.26)

and the inverse Fourier transform of
∼
f as

f(t) = 1√
2π

∫ ∞

−∞

∼
f(ω)eiωt dω. (1.27)

It turns out that this does exactly what we set out to do! The Fourier transform takes a
function in the time domain and brings it to the frequency domain. Figure 1.5 shows four
sample functions along with the real part of their Fourier transform. This table should give
an intuitive overview of how the Fourier transform works.
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Figure 1.5: Sample Fourier Transforms

Example 1.4.1. A visual of the Fourier transform

The function in the time domain (on the left) is given by f(t) = cos(2t) + 2 cos(3t) +
cos(7t), so has component frequencies of 2, 3, and 7. We can see in how through
the Fourier transform, the component frequencies are “separated” in the frequency
domain on the right.

Consider a function f in the time (x) domain and let ∆t denote the spread of f (e.g. the
Full Width at Half Max or FWHM spread, which is the largest length W for which there
is some l such that f(l) = f(l + W ) = max(f)/2). Similarly, let ∆ω denote the spread of
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∼
f(ω). It is a general principle of the Fourier transform, that

∆t∆ω ∼ 1. (1.28)

This happens to relate to the uncertainty principle in Quantum mechanics:

∆x∆p ∼ h

π
, (1.29)

which is intuitive since deBroglie related a photon’s frequency ν to its momentum p:

p = ν

c
h, (1.30)

with the speed of light c and Planck’s constant h.

Reading Questions

Reading Question 1.4.2. Explain Figure 1.5 qualitatively.

Reading Question 1.4.3. Find the Fourier transform of f(x) = e−a|x| for a > 0. Then
sketch f(x) and

∼
f(k). Discuss the two graphs qualitatively using Equation 1.28.

1.5 The Dirac Delta Function

The Dirac Delta function (or just Delta function) is sometimes referred to as the ‘unit
impulse symbol’ and is very useful in modeling point charge, point mass, etc. The δ function
is an infinite spike that encloses an area of 1 and is defined as

δ(x − c) = 1
2π

∫ ∞

−∞
eik(x−c) dk. (1.31)

The value of the function at x ̸= c is 0, and is ‘infinity’ at x = c so graphically the delta
function is represented by a horizontal line and an arrow at x = c. Generally, the height of
the arrow is representative of any multiplicative constant. See Figure 1.6 for an example of
this.
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Figure 1.6: The Dirac Delta, qδ(x − c)

The following are some useful properties of the Delta function.

δ(−x) = δ(x) (1.32)

δ(ax) = 1
|a|

δ(x) (1.33)

xδ(x) = 0 (1.34)

The Dirac Delta can be used to ‘select’ the value of the function at x = c since the value
of δ(x) is zero everywhere except x = c. This is done with integration:

∫ b

a
f(x)δ(x − c) dx =

®
f(c) if a < c < b;
0 otherwise.

(1.35)

The same is true when a approaches infinity or b approaches negative infinity. This may be
intuitive with a picture (see reading questions), but the case where a → ∞ and b → −∞ it
can be shown directly using the Fourier transform:∫ ∞

−∞
f(x)δ(x − c) dx =

∫ ∞

−∞
f(x)δ(c − x) dx (1.36)

=
∫ ∞

−∞
f(x) 1

2π

∫ ∞

−∞
eik(c−x) dk dx (1.37)

= 1
2π

∫ ∞

−∞
f(x)

∫ ∞

−∞
e−ikxeikc dk dx (1.38)

= 1√
2π

∫ ∞

−∞

1√
2π

∫ ∞

−∞
f(x)e−ikx dx eikc dk (1.39)

= 1√
2π

∫ ∞

−∞

∼
f(k)eikc dk (1.40)

= f(c). (1.41)
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It is interesting also to note that the Fourier transform of δ(t) yields

∼
δ(ω) = 1√

2π

∫ ∞

−∞
δ(t)e−iωt dt = e0

√
2π

= 1√
2π

, (1.42)

so in the frequency domain,
∼
δ(t) is a horizontal line at height 1√

2π
. This is what we expect

since by Eq. 1.28, ∆t → 0 in the time domain implies that ∆ω → ∞ in the frequency domain.

Reading Questions

Reading Question 1.5.1. Prove that δ(−x) = δ(x).

Reading Question 1.5.2. Draw a picture illustrating Eq. 1.35.

In-Class Exercises

In-Class Exercise 1.5.3. Prove the following properties of Dirac delta:

• δ(ax) = 1
|a|δ(x)

• xδ(x) = 0

In-Class Exercise 1.5.4. Evaluate the following integrals:

(a)
∫ 6

2 (3x2 − 2x − 1) δ(x − 3) dx

(b)
∫ 5

0 δ(x − π) cos x dx

(c)
∫ 3

0 x3δ(x + 1) dx

(d)
∫ ∞

−∞ δ(x + 2) ln(x + 3) dx

(e)
∫ 1

−∞ 9x2δ(3x + 1) dx

(f)
∫ 1

−1 9x2δ(3x + 1) dx

(g)
∫ ∞

−∞ δ(x − b) dx

1.6 The Laplace Transform
A complex function is a function whose output can be complex. While the Fourier trans-
form of a function is a complex function of a real variable (frequency, ω), the Laplace
transform of a function is a complex function of a complex variable (complex frequency,
s). We denote the Laplace transform of a function f by either L[f(t)] or f̄(s), and in fact,
the Laplace transform can be defined with the Fourier transform:

f̄(s) = L [f(t)] =
∫ ∞

0
f(t)e−st dt =

√
2π

∼
f(−is). (1.43)
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It turns out that while similar to the Fourier transform, the Laplace transform has some
different but interesting uses but is restricted to only t ≥ 0, so we will only consider ‘causal’
functions:

f(x) =
®

nonzero in general t ≥ 0
0 t < 0.

(1.44)

Example 1.6.1. Find the Laplace transform of f given by f(t) = eat for t ≥ 0.

L[f(t)] =
∫ ∞

0
eats−st dt =

∫ ∞

0
e(a−s)t dt = lim

i→∞

ñ
−e−(s−a)t

s − a

ôt=i

t=0
= 1

s − a
, (1.45)

for s > a.

The Laplace transform is linear, since given any function f given by f(t) = c1f1(t) +
c2f2(t), with scalars c1 and c2, and functions f1 and f2,

L [f(t)] = c1L [f1(t)] + c2L [f2(t)] . (1.46)

Example 1.6.2. Find the Laplace transform of f given by f(t) = tn for t ≥ 0 and
n = 1, 2, 3, . . . .

Recall that by a Taylor series expansion,

L[eat] = L
ñ

∞∑
n=0

an

n! tn

ô
=

∞∑
n=0

L
ï

an

n! tn

ò
=

∞∑
n=0

an

n! L [tn] , (1.47)

and by our previous example and the geometric series (∑∞
n=0 xn = 1

1−x
for x < 1),

L[eat] = 1
s − a

= 1/s

1 − a
s

= 1
s

∞∑
n=0

(a

s

)n

=
∞∑

n=0

an

sn+1 . (1.48)

This implies that
∞∑

n=0

an

n! L [tn] =
∞∑

n=0

an

sn+1 , (1.49)

so ∞∑
n=0

an

ÅL [tn]
n! − 1

sn+1

ã
= 0. (1.50)

Thus, for all a ̸= 0,
L [tn] = n!

sn+1 , (1.51)

for n = 1, 2, 3, . . . .

The inverse Laplace transform of a function f̄ is written L−1[f̄(s)] and also happens
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to be linear, so for any function f̄ given by f̄(t) = c1f̄1(t) + c2f̄2(t), with scalars c1 and c2,
and functions f̄1 and f̄2,

L−1 [f̄(t)
]

= c1L−1 [f̄1(t)
]

+ c2L−1 [f̄2(t)
]

. (1.52)

We will not compute the inverse Laplace transform directly, so for ease, Table 1.1 sum-
marizes many useful Laplace transform relations. The transformations are valid for s > s0.

f(t) f̄(s) s0

c c/s 0
ctn cn!/Sn+1 0
sin bt b/ (s2 + b2) 0
cos bt S/ (s2 + b2) 0
eat 1/(s − a) a
tneat n!/(s − a)n+1 a
sinh at a/ (s2 − a2) |a|
cosh at s/ (s2 − a2) |a|
eat sin bt b/ [(s − a)2 + b2] a
eat cos bt (s − a)/ [(s − a)2 + b2] a
t1/2 1

2(π/s)1/2 0
t−1/2 (π/s)1/2 0
δ (t − t0) e−st0 0

H (t − t0) =
®

1 for t ≥ t0

0 for t < t0
e−st0/s 0

Table 1.1: Standard Laplace transforms, valid for s > s0 [1]

It is also useful to consider the Laplace transform of the derivative of a function f . In
other words, we want to find L[f ′(t)]. We can use the product rule as follows:

L[f ′(t)] =
∫ ∞

0
f ′(t)e−st dt (1.53)

=
∫ ∞

0
(f(t)e−st)′ − f(t)(e−st)′ dt (1.54)

=
∫ ∞

0
(f(t)e−st)′ −

∫ ∞

0
f(t)(e−st)′ dt (1.55)

= [f(t)e−st]∞0 +
∫ ∞

0
sf(t)e−st dt (1.56)

= lim
t→∞

[f(t)e−s(t)] − f(0)e0 + s
∫ ∞

0
f(t)e−st dt (1.57)

= 0 − f(0) + sf̄(s), (1.58)
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for s > 0. The Laplace transforms of some higher derivatives are

L[f ′(t)] = sf̄(s) − f(0), (1.59)
L[f ′′(t)] = s2f̄(s) − (sf(0) + f ′(0)), (1.60)
L[f ′′′(t)] = s3f̄(s) − (s2f(0) + sf ′(0) + f ′′(0)), (1.61)
L[f ′′′′(t)] = s4f̄(s) − (s3f(0) + s2f ′(0) + sf ′′(0) + f ′′′(0)). (1.62)

The pattern is fairly obvious and it can be proved inductively that in general,

L
î
f (n)(t)

ó
= snf̄(s) −

n−1∑
i=0

sn−1−if (i)(0). (1.63)

The Laplace transform and inverse transform can be used with the forms for Laplace
transforms of derivatives quite simply to solve rather complicated differential equations.
First, however, it is important to discuss a routine procedure that becomes quite useful.

Partial fraction decomposition is the way in which a rational expression with a
polynomial denominator can be written as a sum of rational expressions with denominators
of a lower degree. The general procedure can be summarized in 4 steps:

1. Factor the denominator of the original rational expression as far as possible.

2. Set the original expression equal to the sum of appropriate terms (see Table 1.2).

3. Write the sum as a single rational expression by finding a common denominator.

4. Use the two numerators to solve a system of equations for the unknown values, A, B,
C, etc.

Factor in Term in partial
denominator fraction decomposition

ax + b A
ax+b

(ax + b)k A1
ax+b

+ A2
(ax+b)2 + · · · + Ak

(ax+b)k

ax2 + bx + c Ax+B
ax2+bx+c

(ax2 + bx + c)k A1x+B1
ax2+bx+c

+ A2x+B2
(ax2+bx+c)2 + · · · + Akx+Bk

(ax2+bx+c)k

Table 1.2: Some Terms for Partial Fraction Decomposition

While Table 1.2 is not exhaustive, it covers the range of complexity that will be required
in this book.
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To solve differential equations using the Laplace and inverse Laplace transforms, first
take the Laplace transform of the differential equation. Then, use the necessary pre-existing
conditions to solve for the function.

Example 1.6.3. Solve the differential equation f ′′ −2f ′ +f = t with initial conditions
f(0) = 0 and f ′(0) = 0, using the Laplace and the inverse Laplace transform.

First, take the Laplace transform of the equation and solve for f̄(s):

L[f ′′ − 2f ′ + f ] = L[t] (1.64)
=⇒ L[f ′′] − L[2f ′] + L[f ] = L[t] (1.65)

=⇒ s2f̄(s) − (sf(0) + f ′(0)) − 2(sf̄(s) − f(0)) + f̄(s) = 1
s2 (1.66)

=⇒ f̄(s)(s2 − 2s − 1) = 1
s2 (1.67)

=⇒ f̄(s) = 1
s2(s − 1)2 . (1.68)

In order to make taking the inverse Laplace transform simple, we can rewrite f̄(s)
using partial fraction decomposition. Since the denominator is already factored, write

f̄(s) = 1
s2(s − 1)2 = A

s
+ B

s2 + C

s − 1 + D

(s − 1)2 (1.69)

= As(s − 1)2 + B(s − 1)2 + Cs2(s − 1) + Ds2

s2(s − 1)2 (1.70)

= (A + C)s3 + (−2A + B − C + D)s2 + (A − 2B)s + B

s2(s − 1)2 . (1.71)

This implies that we must solve the following system of equations:
0 = A + C

0 = −2A + B − C + D

0 = A − 2B

1 = B

(1.72)

We find that A = 2, B = 1, C = −2, and D = 1 so we can use Table 1.2 can write

f(t) = L−1 [f̄(s)
]

= L−1
ï2

s
+ 1

s2 − 2
s − 1 + 1

(s − 1)2

ò
(1.73)

= L−1
ï2

s

ò
+ L−1

ï 1
s2

ò
− L−1

ï 2
s − 1

ò
+ L−1

ï 1
(s − 1)2

ò
(1.74)

= t + 2 − 2et + tet (1.75)
= t + 2 + (t − 2)et. (1.76)



1.7. EXERCISES 27

Reading Questions

Reading Question 1.6.4. Use Eq. 1.43 to prove that L is linear (Eq. 1.46).

In-Class Questions

In-Class Exercise 1.6.5. Verify the Laplace transforms given in Table 1.1 for sin bt, cos bt,
sinh at, cosh at, eat sin bt, and eat cos bt.

In-Class Exercise 1.6.6. Find f(t) for the following Laplace transforms:

(a) f(s) = 4
s2−3s

(b) f(s) = s+3
s(s+1)

(c) f(s) = 2s+1
s2+3s−10

(d) f(s) = 2s+3
s2+4

In-Class Exercise 1.6.7. Use Eq. 1.59 to prove the formula for L[f ′′(t)].

In-Class Exercise 1.6.8. Solve f ′′(t) + 2f ′(t) − 3f(t) = et for f(0) = 0 and f ′(0) = 1.

1.7 Exercises
Exercise 1.7.1. Find the Fourier series and their values at discontinuities, if any, for the
following periodic functions:

(a) f(x) =
®

0 for − 1 ≤ x < 0
1 − x for 0 ≤ x < 1.

(b) f(x) = | sin(x)| for − π/2 < x < π/2.

(c) f(x) =
®

x2 for − 1 ≤ x < 0
0 for 0 ≤ x < 1.

Exercise 1.7.2. Find complex Fourier series for the following functions:

(a) f(x) = x for − π ≤ x ≤ π

(b) f(x) = |x| for − π ≤ x ≤ π

(c) f(x) = cos x
2 for − π ≤ x < π

Exercise 1.7.3. Edit FourierSeries.py (Listing 5.1) and then print out the graph. (See
the Listings for instructions on installing and using Python).

Exercise 1.7.4. Express the following in partial fraction form (Exercise 1.16 from [1]):

(a) 2x3−5x+1
x2−2x−8 ,
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(b) x2+x−1
x2+x−2 .

Exercise 1.7.5. Resolve the following into partial fractions in such a way that x does not
appear in any numerator (Exercise 1.17 from [1]):

(a) x3+3x2+x+19
x4+10x2+9 ,

(b) x−6
x3−x2+4x−4 .

Exercise 1.7.6. Resolve the following into partial fractions in such a way that x does not
appear in any numerator (Exercise 1.18 from [1]):

(a) 2x2+x+1
(x−1)2(x+3) ,

(b) x2−2
x3+8x2+16x

,

(c) x3−x−1
(x+3)3(x+1) .

Exercise 1.7.7. Find the functions y(t) whose Laplace transforms are the following (Exercise
13.22 from [1]):

(a) 1/ (s2 − s − 2);

(b) 2s/ [(s + 1) (s2 + 4)];

(c) e−(y+s)t0/ [(s + γ)2 + b2].

Exercise 1.7.8. Use the method of Laplace transforms to solve (Exercise 15.10 from [1]):

(a) d2f
dt2 + 5df

dt
+ 6f = 0, f(0) = 1, f ′(0) = −4,

(b) d2f
dt2 + 2df

dt
+ 5f = 0, f(0) = 1, f ′(0) = 0.



Chapter 2

Vector Calculus

2.1 Vector Algebra

2.2 Differentiation and Integration of Vectors

2.3 Operators

2.4 Non-Cartesian Coordinates

2.5 Integration of Vector Fields

2.6 Integral Theorems

2.7 Exercises

29



30 CHAPTER 2. VECTOR CALCULUS



Chapter 3

Linear Algebra
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Chapter 4

Partial Differential Equations
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Chapter 5

Listings

This chapter holds the various Python scripts referred to throughout the book. A good
resource to become familiar with coding in Python is

https://www.w3schools.com/python/python_intro.asp.

To install Anaconda Python distribution on your computer, follow the instruction at
https://docs.anaconda.com/anaconda/install/ and make sure to install the Python 3.7
version. When editing and creating scripts, use the Jupyter Notebook included in the
distribution.

35
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5.1 FourierSeries.py
1 # -*- coding: utf-8 -*-
2 from numpy import *
3 from matplotlib.pyplot import *
4
5 #----- Set period and x0 ------
6 L =
7 x0 =
8
9 #----- Set maximum value for r (r = 1, 2, ..., N)

10 N =
11
12 #---- Define function and its fourier components --------
13 def f(x):
14 return
15
16 a0 =
17
18 def a(r):
19 return
20
21 def b(r):
22 return
23
24 #-------------------------------------------------------
25 # Change up to here only!
26 #-------------------------------------------------------
27 def FourierSeries(x, N):
28 value = a0 / 2
29 for r in range(1, N + 1):
30 value += a(r) * cos(2 * pi * r * x / L)
31 value += b(r) * sin(2 * pi * r * x / L)
32 return value
33 x = linspace(x0, x0 + L, 1000)
34 y1 = f(x)
35 y2 = FourierSeries(x, N)
36
37 #------ Graphics --------------------------------------
38 figure(figsize=(10, 8))
39 xlim(x0, x0+L)
40 plot(x, y1, ’b’, label=r’$f(x)$’)
41 plot(x, y2, ’r’, label=’Fourier Sereis’)
42 text(x0+L/2, y1.max()*4/5, ’N=’+str(N), fontsize=20)
43 grid(True)
44 legend(loc=’best’, fontsize=12)
45 show()



Selected Hints and Solutions

Fourier Analysis
1.1.2: Hint: What can you say if 4 divides n? What about if n/4 leaves a remainder of 1,
2, or 3?
1.1.9: (a) 5 + 3i; (b) −1 − 5i; (c) 10 + 5i; (d) 2/5 + 11i/5; (e) 4; (f) 3 − 4i; (g) ln 5 +
i [tan−1(4/3) + 2nπ]; (h) ±(2.521 + 0.595i)
1.1.10: (a) 2ei5π/6; (b) 2

√
2e−iπ/4; (c) (3/2)e−iπ/2; (d) e−i2π/3; (e) eiπ/2; (f) 2eiπ

1.2.2: f(t) = 4
π

(
sin ωt + sin 3ωt

3 + sin 5ωt
5 + · · ·

)
, with ω = 2π/T , the angular frequency.

1.4.3: Hint: what is the behavior of each as a changes?
1.5.4 (a) 20; (b) -1; (c) 0; (d) 0; (e) 1; (f) 1/3; (g) 1
1.6.6: (a) −4/3 (1 − e3t); (b) 3 − 2e−t; (c) (5/7)e2t + (9/7)e−5t; (d) (3/2) sin 2t + 2 cos 2t
1.6.8: Hint: Use s

(s+a)(s+b)2 = A
s+a

+ B
s+b

+ C
(s+b)2 . Answer: (1/4)tet + (3/16)et − (3/16)e−3t

37
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