EXERCISES ON PERFECTOID SPACES – DAY 4 OBERWOLFACH SEMINAR, OCTOBER 2016

REBECCA BELLOVIN, BRIAN CONRAD, KIRAN S. KEDLAYA, AND JARED WEINSTEIN

11. The tilting correspondence

(1) Consider the ring $A = \mathbb{Z}_p[X^{1/p^{\infty}}, Y^{1/p^{\infty}}]$ with its *p*-adic topology. Show that there exist polynomials $P_n(X,Y) \in \mathbb{Z}[X]$ for $n = 0, 1, \ldots$ for which the following identity holds in A:

$$\lim_{n \to \infty} (X^{1/p^n} + Y^{1/p^n})^{p^n} = \sum_{n=0}^{\infty} P_n(X^{1/p^n}, Y^{1/p^n}) p^n.$$

(2) In lecture we showed that if R/\mathbf{F}_p is a perfect ring, the cotangent complex $\mathbf{L}_{R/\mathbf{F}_p}$ equals 0 in the derived category, so that flat deformations of R through square-zero thickenings of \mathbf{F}_p always exist and are unique up to unique isomorphism. Thus for instance there exists a unique lift of R to a flat $(\mathbb{Z}/p^2\mathbb{Z})$ -algebra $W_2(R)$.

The cotangent complex has the property that whenever A is a flat $\mathbb{Z}/p^n\mathbb{Z}$ -algebra, the exact sequence of $\mathbb{Z}/p^{n+1}\mathbb{Z}$ -modules

$$0 \to \mathbb{Z}/p\mathbb{Z} \xrightarrow{p^n} \mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z} \to 0$$

induces an exact triangle

$$\mathbf{L}_{(A/pA)/(\mathbb{Z}/p\mathbb{Z})} \to \mathbf{L}_{A/(\mathbb{Z}/p^{n+1}\mathbb{Z})} \to \mathbf{L}_{(A/p^nA)/(\mathbb{Z}/p^n\mathbb{Z})} \to .$$

Use this to show inductively that R lifts to a unique flat $(\mathbb{Z}/p^n\mathbb{Z})$ -algebra $W_n(R)$, and that $W(R) := \underline{\lim} W_n(R)$ is the unique lift of R to a flat \mathbb{Z}_p -algebra.

- (3) Show that there exists a unique homomorphism of multiplicative monoids $R \to W(R)$ making $R \to W(R) \to R$ the identity. We write this as $x \mapsto [x]$ and call it the Teichmüller representative.
- (4) Show that for $x, y \in R$ we have $[x+y] = \sum_{n=0}^{\infty} [P_n(x^{1/p^n}, y^{1/p^n})] p^n$ for the polynomials P_n in (1).
- (5) Let $K = \mathbb{Q}_2(2^{1/2^{\infty}})^{\wedge}$. Identify K^{\flat} with $\mathbf{F}_2((t^{1/2^{\infty}}))$, where t corresponds to the sequence $(2, 2^{1/2}, \dots)$. Let $L = K(\sqrt{-1})$, so that L/K has degree 2. Thus L is perfectoid. Identify L^{\flat} as a separable extension of $\mathbf{F}_2((t^{1/p^{\infty}}))$.

12. Adic spaces

(1) Let $A' = \mathbf{Q}_p[Z, T, 1/T]$, and let A_0 be the free \mathbf{Z}_p -submodule on the basis of elements $(pT)^a(pZ)^b$ for $b \geq 0$ and $a \geq -b^2$. Give A_0 the p-adic topology and define $A = A_0[1/p]$ as a Huber ring with ring of definition A_0 .

- (i) Prove A_0 is a subring of A, and that $1/T \notin A$.
- (ii) Give A and A_0 the compatible gradings by $\mathbf{Z} \oplus \mathbf{Z}$ via bi-degrees of monomials in T and Z. Show that A^0 inherits the grading, and deduce that $A^0 = A_0$ by showing that if $\lambda(pT)^a(pT)^b$ is power-bounded with $\lambda \in \mathbf{Q}_p$ then $\lambda \in \mathbf{Z}_p$.
- (iii) Show $(Z/p^n)^{n+1} = (pT)^{-(n+1)^2} (pZ)^{n+1} T^{(n+1)^2} \in A_0[T] \subset \mathcal{O}_A(U)^+ \subset \mathcal{O}_A(U)$ for $U := \{v \in \operatorname{Spa}(A, A^0) \mid v(T) \leq 1\}$. Conclude that Z/p^n is power-bounded.
- (iv) Using (ii) and (iii), deduce that $X = \operatorname{Spa}(A, A^0)$ is uniform (recall $\mathcal{O}_X(X) = \widehat{A}$) and that U is not uniform (so X is not stably uniform). Hint: for any Tate ring B, show that boundedness of \widehat{B}^0 in \widehat{B} is equivalent to that of B^0 in B.
- (2) Giving $\mathbf{Z}[t]$ the discrete topology, let $Y = \operatorname{Spa}(\mathbf{Z}[t], \mathbf{Z}[t])$ and $Y' = \operatorname{Spa}(\mathbf{Z}[t], \mathbf{Z})$. Prove that on the category of adic spaces, Y represents the functor $X \leadsto \mathcal{O}_X^+(X)$ and Y' represents the functor $X \leadsto \mathcal{O}_X(X)$ (so Y' is regarded as the "adic affine line" over the final object $\operatorname{Spa}(\mathbf{Z}, \mathbf{Z})$ in the category of adic spaces).
- (3) Let k be a non-archimedean field.
 - (i) Show that $\operatorname{Cont}(k)$ is in bijective correspondence with the set of open valuation subrings $k^+ \subset k$ (note that $\operatorname{Frac}(k^+) = k$), by assigning to each $v \in \operatorname{Cont}(k)$ its valuation ring $R_v \subset k$.
 - (ii) For any open valuation subring $k^+ \subset k$, prove that (k, k^+) is a Huber pair when k is given its original rank-1 valuation topology.