{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Analisando a Estabilidade de Equilíbrios

\n", "

Nos modelos que analisamos neste curso, nem sempre lineares mas autônomos e de primeira ordem, desejamos poder determinar a estabilidade local de seus Equilíbrios.

\n", "\n", "

Dizer que um equilíbrio $f_e$ é localmente estável significa dizer que para uma qualquer solução f(t) com condições iniciais localizadas até uma distância $\\varepsilon>0$ do equilíbrio em questão, permanece a uma disância $\\|f(t)-f_e\\|\\leq\\varepsilon$ para todo $t\\geq t_0$.

\n", " \n", "

Para estudar a estabilidade, podemos lançar mão da análise de estabilidade linear. Mesmo que o sistema em que estamos interessados não seja linear, podemos fazer uma aproximação linear na vizinhança do equilíbrio, e a partir do sistema linear resultante. estudar a estabilidade na vizinhança do(s) equilíbrio(s) do sistema.

\n", "

Uma vez obtido um sistema linear, é preciso examinar a sua matriz de coeficientes, ou matriz Jacobiana, $J$. \n", " \n", " \\begin{align}\n", " \n", " \\end{align}\n", "\n", " \n", " \n", " Seja $p = Tr(J) = A+D$ o traço da matriz $J$ e $q=det(J)=AD-BC$, o determinante de $J$. A representação dos equilíbrio plano $(Det J, Tr J)$ nos ajuda a classificar os equilíbrios:

\n", "\n", "

\"\"

\n", "

A natureza dos autovalores (principalmente o autovalor dominante, $\\lambda_d$) da matriz jacobiana determinam o tipo do equilíbrio do sistema. 

\n", "

Autovalores reais:

\n", "\n", "

Autovalores Complexos:

\n", "

Soluções oscilatórias. 

\n", "" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\n", "A & B \\\\\n", "C & B\n", "\\end{array}\\right)$$" ], "text/plain": [ "[A B]\n", "[C B]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('A B C D x y')\n", "J = jacobian([A*x+B*y, C*x+B*y],[x,y])\n", "J" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}A + B$$" ], "text/plain": [ "A + B" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "J.trace()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}A B - B C$$" ], "text/plain": [ "A*B - B*C" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "J.det()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}x^{2} + \\left(-A - B\\right) x + A B - B C$$" ], "text/plain": [ "x^2 + (-A - B)*x + A*B - B*C" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "J.characteristic_polynomial()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## EDO Cúbica Unidimensional\n", "Em sistema unidimensionais é ainda mais simples entender a natureza dos equilíbrios. Um instrumento gráfico útil olhar para a o gráfico da EDO. Por exemplo seja a seguinte EDO cúbica:\n", "\n", "$$\\frac{dx}{dt}=r x - x^3$$\n", "\n", "Lembrando que por definição, equilíbrios são estados em que $dx/dt=0$, vemos que os equilíbrios deste sistema dinâmico são as raízes desta funcão polinomial de 3⁰ grau. Neste caso são 3:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|Raízes=| \\left[x = -\\sqrt{r}, x = \\sqrt{r}, x = 0\\right]$$" ], "text/plain": [ "'Raízes=' [x == -sqrt(r), x == sqrt(r), x == 0]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGECAYAAADJKQ/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/BklEQVR4nO3dd3xUVfrH8e8QIKHOgnQIhiJgRJASARXpiLoYwIKCSBEUBBV1VSwr+FsFFOxEbIiugq5UKaLg0lSKtEgTUIoBASGKCTUIub8/zhJBSJgkM3PuzHzer9d9YYaZuQ/Xm+SZc57zHI/jOAIAAMDZCtgOAAAAwK1IlAAAALJBogQAAJANEiUAAIBskCgBAABkg0QJAAAgGyRKAAAA2SBRAuBKHqOkx+Px2I4FQOQq6If3oGMlAL9LS0uT1+tVWlqa7VAAhCefPoQxogQAAJANEiUAAIBskCgBAABkg0QJQMCNGDFCHo9HgwcPth0KAOQKiRKAgFqxYoXeeust1atXz3YoAJBrQUuUXnpJmjkzWGcD4AaHDh1S9+7d9fbbb6tUqVI5PjcjI0Pp6elnHABgW9ASpU8/ld54I1hnA+AGAwcO1PXXX6+2bdue97kjRoyQ1+vNOmJjY4MQIQDkLGiJUqdO0pdfSgcPBuuMAGz6+OOPtXr1ao0YMcKn5z/22GNKS0vLOnbu3BngCAHg/IKWKCUmSsePS59/HqwzArBl586duv/++/Xhhx8qJibGp9dER0erZMmSZxwAYJvHcfLdWNvnN7jsMumSS6QJE/J7SgBuNn36dHXu3FlRUVFZj508eVIej0cFChRQRkbGGX93Lunp6VmduUmaAASAT525/bGFic8SE6VXXpH++EMqVCiYZwYQTG3atNG6devOeKx3796qU6eOHn300fMmSQDgFkFNlDp1kv7v/6RFiyQfajsBhKgSJUqobt26ZzxWrFgxXXDBBWc9DgBuFtQ+SpddJlWtKk2fHsyzAgAA5E1Qa5Qk6f77pSlTpJ07JY9Ps4MAIhE1SgACzKcsJOiduTt1kn7+WVq1KthnBgAAyJ2gJ0rNm0ulSjH9BuDckpKSFB8fr4SEBNuhAEDwp94kqWdPM6K0fn1+Tw0gXDH1BiDA3Dn1Jpk2ARs2SD/+aOPsAAAAvrGSKF1zjRQTY/Z/AwAAcCsriVKxYlK7dtQpAQAAd7OSKElm9ds330j79tmKAAAAIGfWEqWOHU0fpZkzbUUAAACQM2uJUtmy0pVXMv0GAADcy1qiJEldukhz50rp6TajAAAAODfridLx49KsWTajAOAmNJwE4CZWGk6erkkTqXJlaerU/IYBIJzQcBJAgLm34eTpbrpJmjNHOnTIdiQAAABnsp4o3XijdOyYSZYAAADcxHqiVL261KCBNHmy7UgAAADOZD1Rksz02+zZ0tGjtiMBAAD4k2sSpcOHpS++sB0JAADAn1yRKNWqJV16KdNvAADAXVyRKEmmqHvmTCkjw3YkAAAAhmsSpZtuMh26v/zSdiQAbKLhJAA3sd5wMutNHCk+XmraVBo/3h/vCCCU0XASQICFRsPJUzweM/02fbrZ1gQAAMA21yRKkpl++/13acEC25EAAAC4LFGqX1+qUUOaMsV2JAAAAC5LlDweM6o0bZp04oTtaAAAQKRzVaIkSTffLKWmMv0GAADsc12i1LChVLOm9PHHtiMBAACRznWJkscjde0qTZ3K6jcgEtFHCYCbuKaP0unWrzdbmsycKf397/5+dwChgD5KAAIstPoona5uXemSS5h+AwAAdrkyUZKkW2+VPv1UOnrUdiQAACBSuTZR6tpVOnRI+uwz25EAAIBI5dpE6aKLzAo4pt8AAIAtrk2UJDP9NmuWdPCg7UgA5MbYsWNVr149lSxZUiVLllSzZs00Z84c22EBQK65OlG65Rbp2DFpxgzbkQDIjSpVqmjkyJFauXKlVq5cqdatWysxMVEbNmywHRoA5Ior2wOc7sorpdKlTasAAKGrdOnSGjVqlO68885z/n1GRoYyMjKyvk5PT1dsbCztAQAESui2BzjdrbdKX3whHThgOxIAeXHy5El9/PHHOnz4sJo1a5bt80aMGCGv15t1xMbGBjFKADg3148o7dkjVa4svfOO1KdPIM8EwJ/WrVunZs2a6dixYypevLgmTpyo6667LtvnM6IEIMh8GlFyfaIkSa1bSwUKSF9+GegzAfCX48ePKyUlRb///rumTJmid955R4sWLVJ8fLxPr6czN4AAC59E6d13pb59pV27pEqVAn02AIHQtm1b1ahRQ2+++aZPzydRAhBg4VGjJEk33igVLixNnGg7EgB55TjOGVNrABAKQiJR8nqlG26QPvzQdiQAfPH444/rq6++0o4dO7Ru3To98cQTWrhwobp37247NADIlYK2A/DV7bdLiYnSunXSpZfajgZATn755Rf16NFDe/bskdfrVb169fT555+rXbt2tkMDgFwJiRolSTp+XKpYUerXTxo5MhhnBGATNUoAAix8apQkU6PUtas0YYKUmWk7GgAAEAlCJlGSpB49zMq3xYttRwIgUJKSkhQfH6+EhATboQBA6Ey9SZLjSDVrSq1amQaUAMIXU28AAiy8pt4kyeMxRd2TJpnNcgEAAAIppBIlSereXUpPl2bNsh0JAAAIdyGXKNWqJV1+ufTBB7YjAQAA4S7kEiXJTL999pmUmmo7EgAAEM5CMlHq2tUUdk+aZDsSAAAQzkIyUSpXTurQgS1NAABAYIVkoiSZ6bclS6Qff7QdCQAACFchmyglJprNct97z3YkAPyJhpMA3CSkGk7+Vf/+0uzZ0o4dUlSUrSgABAINJwEEWPg1nPyr3r3Nlibz59uOBAAAhKOQTpQuv1yqU0caP952JAAAIByFdKLk8ZhRpWnTpN9/tx0NAAAINyGdKElSjx7S8ePSf/5jOxIAABBuQj5RqljR9FRi+g0AAPhbyCdKkpl+W75c+v5725EAAIBwEhaJUseOUunS9FQCAAD+FRaJUnS01K2b9O9/SydO2I4GQH7QcBKAm4R0w8nTrV4tNWokzZwp/f3vtqMBkF80nAQQYOHfcPJ0DRpIl10mvf227UgAAEC4CJtEyeOR+vUzW5rs3m07GgAAEA7CJlGSpO7dpcKFaRUAAAD8I6wSJa9XuuUWadw4KTPTdjQAACDUhVWiJEl33SVt3y7997+2IwEAAKEu7BKlZs2k+HiKugEAQP6FXaJ0qqh7+nRp/37b0QAAgFAWdomSZDbK9Xik99+3HQmA3KLhJAA3CZuGk3/VrZtpQvn99yZpAhBaaDgJIMAiq+HkX/XrJ23eLH31le1IAABAqArbRKllS6lmTYq6AQBA3oVtouTxmFYBkyZJqam2owEAAKEobBMlSerd2/xJp24guEaMGKGEhASVKFFC5cqVU6dOnbR582bbYQFAroV1olSmjNS1qzR2LJ26gWBatGiRBg4cqGXLlmnevHk6ceKE2rdvr8OHD9sODQByJWxXvZ2yfLnUtKn02WfStdfajgaITPv371e5cuW0aNEiXX311ed8TkZGhjIyMrK+Tk9PV2xsLKveAARKZK96O+Xyy6WGDaXXX7cdCRC50tLSJEmlS5fO9jkjRoyQ1+vNOmJjY4MVHgBkK+xHlCSzSW6/ftK2bVJcnO1ogMjiOI4SExN14MABfZVDvw5GlAAEGSNKp9x2m1SypPTGG7YjASLPoEGDtHbtWn300Uc5Pi86OlolS5Y84wAA2yIiUSpa1KyAGzdOOnbMdjRA5Lj33ns1Y8YMLViwQFWqVLEdDgDkWkQkSpLUv7/ppzR5su1IgPDnOI4GDRqkqVOnav78+apWrZrtkAAgTyKiRumUdu2kw4elJUtsRwKEt3vuuUcTJ07Up59+qtq1a2c97vV6VaRIEZ/eg73eAASYTzVKEZUoTZsmdeliNstt0MB2NED48mSzE/X48ePVq1cvn96DRAlAgJEo/dWJE1L16lLbttK779qOBkBOSJQABBir3v6qYEFp0CBp4kRp3z7b0QAAALeLqERJkvr2lQoUkN5803YkAM4lKSlJ8fHxSkhIsB0KAETW1NspAwZI06dLO3ZI0dG2owFwLky9AQgwpt6yc9990t690ief2I4EAAC4WUQmShdfLHXoIL38spT/ATUAABCuIjJRkqT77zdtAr75xnYkAADArSI2UWrfXqpTx4wqAQAAnEvEJkoFCphRpWnTTFE3AADAX0VsoiRJPXpIXq80ZoztSAAAgBtFdKJUrJh0113SO+9Ihw7ZjgYAALhNRCdKkjRwoEmSxo+3HQkAiYaTANwlIhtO/lX37tKSJdIPP5htTgDYR8NJAAFGw0lfPfywKeiePNl2JAAAwE0YUfqfa64xG+WuXi15fMoxAQQSI0oAAowRpdx45BEpOVn68kvbkQAAALdgROl/HEdq3FgqXVqaN892NAAYUQIQYIwo5YbHIz36qBlRWr3adjQAAMANSJRO06WLVL26NGqU7UgAAIAbkCidpmBB6aGHpE8+kbZvtx0NAACwjUTpL3r1MnVKL75oOxIgMtFwEoCbUMx9Dv/3f9LIkdJPP0lly9qOBohMFHMDCDCKufNq4ECpQAHplVdsRwIAAGwiUTqHCy6QBgyQXntN+v1329EAAABbSJSy8dBD0vHj0quv2o4EAADYQqKUjQoVpLvukl5+WUpPtx0NAACwgUQpB488Ih0+LL3+uu1IAACADSRKOahcWerTR3rhBZMwAQCAyEKidB5DhpiC7jfftB0JAAAINhKl87jwQumOO8y2JkeP2o4GCH80nATgJjSc9MGPP0q1a5u+SoMG2Y4GiAw0nAQQYDSc9JeaNaXu3aXnnpMyMmxHAwAAgoVEyUdPPCHt3i29847tSAAAQLAw9ZYLvXpJX3whbd0qFS1qOxogvDH15g5padL27dKOHWb/y19+kfbvl/btM38ePCgdO/bnkZEhRUWZo2BBqXhx6W9/k7xe82fZslJsrFS1qvkzLs78dwE+tiP4fJp6I1HKhW3bTK3SyJGmczeA7C1evFijRo3SqlWrtGfPHk2bNk2dOnXy+fUkSsF15Ii0caO0du2fx7p1Umrqn8+JiZHKl5fKlTMJT9myJgEqUsT8XUyMVKiQlJkpnTwp/fGHdOiQWTmclmb+3LdPSkmRfv31z/ctVky6+GIpPl5q3Fhq2lSqX18qXDjYVwERxqdEqWCgowgn1atLd95pEqW77pJKlLAdEeBehw8fVv369dW7d2/deOONtsPBaTIzpc2bpSVLpG++kZYulbZsMY97PNJFF0n16kn33ivVqiVVq2ZGfsqVM3/vD0eOSLt2mRH6jRvNsX699PHHZvuo6GipYUOpeXOpbVvpqqtMQgYEGyNKubRrlynu/uc/Td0SgPPzeDyMKFm2c6c0d645/vtfM6JToIBJiK64QmrUyPx3fLzd0oKMDCk5WVq+3CRwCxdKe/ea0aqWLaUuXaROncxoFpBPTL0FyuDB0nvvmXn7UqVsRwO4ny+JUkZGhjJOW1aanp6u2NhYEqU8+uMPadEiadYskxx9/71JjBISpHbtpBYtpMsvl9x+aR1H2rBBmjdPmjFDWrzYPN6ihXTjjVLXrlKZMnZjRMiiPUCgDBlifgi98ILtSIDwMWLECHm93qwjNjbWdkgh59gxaeZMqXdvs7F3u3bS1Klm2mrSJFN8vWyZ9K9/mekstydJkpnqq1tXeuABacECac8e6Y03TP3S4MFSpUomWZo3z0wdAv7GiFIeDRkijRljRpUYAgZyxohS4Jw4YUaMPvzQJEmHDpnC6C5dzNGggf/qitwmNVX64APp7bfNiFlcnNSvn9S/v1S6tO3oEAKYegukX381BY59+kgvv2w7GsDdqFHyL8eRVq82ScJHH5mVZJdcIt16q5mOuvhi2xEGl+OYeqa33zbXIyrKLLwZPNgswgGywdRbIF1wgRlVev110zYAAALtwAHp1VelSy81y+g//tjsGrB6tVnK/+STkZckSWbE7IorpPHjTeuBhx82CdNFF0k9ekg//GA7QoQyEqV8GDzYTLs9/rjtSAD3OXTokJKTk5WcnCxJ2r59u5KTk5WSkmI3sBDjOKauqHdvqXJl08OtTh3ps8/MKtwXXwzv6bXcKldOGjbMNMd89VVT13TxxWb0f/t229EhFDH1lk/vvmuGeJcvNytIABgLFy5Uq1atznq8Z8+eeu+99877+kifesvIMKMir7xilsufqr/p08cUasM3x45Jb70lDR9uRuTuv9+MvEXgLYWzUaMUDCdPmg6yZcqYTy58qgP8I1ITpdRUs6przBizXcj110uDBknt27PNR34cOSKNHm0aBpcoIT37rBmli4qyHRksokYpGKKipOefN/1KZs+2HQ2AUPX999Ldd5v9z4YPlzp3No/NmiV16ECSlF9Fi0pPPWU6kLdrZ0bnGjc2ReBATvjW84Nrr5VatZIefdQs1QWQd0lJSYqPj1dCQoLtUIJi5UqTFMXHm4aKTz5pCpLHjjW1SPCvKlVMK4WlS82mvVdeaabjDh2yHRnciqk3P1m1ynw6efttqW9f29EAoS/cp96WLDGNHz//3KzOeuwxqVs3s8cZguPkSVMD9uSTZmHOm2+a0TtEDKbegqlRI/ND7qmnpMOHbUcDwI0cR5o/X2rd2oxk7NwpTZxopth69yZJCraoKOnBB81mvLVqmdmBvn35GY4zkSj50TPPmEaUo0fbjgSA2yxcaLYSadNG+v13s7XI2rXSbbdRUGxb9eqmu/mphpUNG5reVIBEouRX1aqZ3krPPWdqDABg1SrpmmtMHWNGhinOXrXK1CVRoO0eHo8ZTVq9WipWTGra1HzoZf848G3qZ08+KXm9pjMsgMi1aZN0882mdjElRZo8WVqxwiz3p42Ie9WubQq977/f/Bzv0MFsJozIRaLkZyVKmBGlTz4xLQMARJaUFNOE9pJLTCPacePM9iI33kiCFCqio6VRo8x0XHKySXbXrLEdFWxh1VsAZGaafYeOHjVD7AUL2o4ICD2hturt119NE8PXXzcfmJ54wuxiHxNjOzLkR0qK1KWLtHGj9M47ZtEOwgar3mwpUEB67TVTqPn227ajARBIx49LL79slvi/847Z+3HbNlOvSJIU+qpWlb76SrrpJrMB8T/+Qb+8SEOiFCAJCWZPpiefNJ80AfgmVBpOOo706adS3bpmo9pbbjG71D/1lBlRQvgoUkR6/32TEL/8smkjkJZmOyoEC1NvAfTLL6Y3x+23S0lJtqMBQoubp96Sk03/nQULzHYYL7wgXXqp7agQDAsWmKm4qlWlzz6TKle2HRHygak328qXl4YONRtcrl1rOxoA+bVvnynUbthQ2rPH7O/4xRckSZGkVSvp66+lAwdMC4ENG2xHhEAjUQqwQYPMqNI999CPAwhVJ06YusNataTp06VXXzUffq67jpVskeiSS6Rly6TSpU2HdVY4hzcSpQArXNiMKH3zjVkmDCC0fP212aLo/vulrl3N7vODBkmFCtmODDZVqiQtXmxaB7RvL02ZYjsiBAqJUhC0aCH16iU98oipWwLgfnv2SD16SM2bm9Vr335rNk294ALbkcEtvF5Tp9Sli0miJ060HRECgUQpSEaN+nMDRgDu9ccf0ksvmQ7Nn39ulvwvXWpGDoC/KlxY+vBDk1Tffrv03nu2I4K/kSgFSZkyZmXMxInSvHm2owFwLgsXSg0amF45d9whbd5sirfZkw05iYoypRX9+km9e0tvvWU7IvgTPaOD6I47zKeNAQPMlgZFitiOCIBkVrM99JAZGbjiCmnlSpMwAb4qUMDUo0ZHS3ffbTZAvvde21HBH/icFEQej/lG2rnTbHUA4GzBbDiZmWlGAurUMbUm775rujCTJCEvPB7plVfMiOR995maNoQ+Gk5aMGyYNHy4tHq16eoL4GyBbjj5/ffmk/9XX5nR3tGjpbJl/X4aRCDHMVvYvPaa9O9/m9oluBINJ91qyBCpZk0zl82eQUBwHTtmthmpX1/au1f673/N9hQkSfAXj8csCOjVyxzTp1sOCPlComRBTIw0frwZURo1ynY0QOSYP1+qV08aOdJ8YFm7Vmrd2nZUCEcFCphN0U+1DmART+giUbKkSRMzjz1sGC3wgUDbv1/q2VNq08ZsLZScLP3f/5kPLUCgREWZBQJt20qdOklLltiOCHlBjZJFx46ZotHixU2floKsQQSy+KNGyXHML6oHHpBOnjQjuH36sNwfwXX0qNShg/lQvGSJ2QoHrkCNktvFxJh2AatXm0JSAP6TkiJdf70p1G7XTtq0SerblyQJwVekiKlTKldOuvZa044CoYMfGZadmoIbOpQpOMAfMjOlsWPNxqXffSfNmCF99JGZcgNsKVXKtKA4ckTq2NH8idDA1JsLnJqCK1bMDMsWLmw7IsC+vEy9/fCDGTVavNh0SR41yuzHBbjFqlVm/8+2bc1GulFRtiOKaEy9hYqYGNNr47vvTHE3EMny0nDyxAmTFNWrJ+3aZZb8v/UWSRLcp1Ej6ZNPpFmz2PszVDCi5CIjRkhPPCEtWGA+cQCRzNcRpbVrzX5sq1aZJn//+pcZnQXcbOxY6Z57TAuBvn1tRxOxfBpRIlFykZMnTU+X7dvN6FKpUrYjAuw5X6KUkWE63A8fblYRjRsnNW1qIVAgjwYMMPft/PnSVVfZjiYiMfUWaqKipA8+kNLTpf79zdJmAGdbvtxMYQwfLj32mFk5SpKEUPPKK1KzZqYpZUqK7WiQHRIll6la1Wyk+Mknpm4JwJ+OHJEeeki64gpT27dqlWkcGR1tOzIg9woXliZPlooWlRITpcOHbUeEcyFRcqGuXU0X4UEDTmjLFT1NR8pq1aRnnpGOH7cdHhBYP/8s3XWXFBdnvr77bmn7di1caIq1X3/d1PMtW2a+BkJZ2bKmhcWWLY76X71BTs2LzM/8q6+W5syxHR5EjZJrHZwyV41vulAxOqZlaqoiOmb+IjGRHRYRvn79VWrcWNqxQ+mSvJJSVELPFEnSW0d7qHlz6Z136GyM8DPx6jfU/av+elN36S69bR70eEwTsK5d7QYXvijmDmkNG2rtmhNqouXqpokap9OWRSxdSkEGwtMzz0j//KckZSVKFbVRB1VFz7edp7u/6EJnbYSf77+X4uN1j5I0Tndqia5QI602f1ejhmkQ5vHpdzpyx6eLmq/dxTwejyctLS0/b4FzOXBAWrNGcZJeUF8N1Fg11n/VXR+Zv581S4qPtxkh4HcZGRnKmD1bkvSbSulxDZN0v2prpcaonWJ/Ka1Dh9pajREIiFmzJElPa7CW6WLdqHe1SC1USmnS1q2mB0a1apaDDD9er7ekpIPOeUaM8jWi5PF4SkoiUwIAAKHI6zhOek5PyG+i5ElLS8v05bnp6emKjY3Vzp07c7UTeEJCglasWJHr2PLyumCdy6dr0auXNG2aJOmootVG/9UxxUhqqdWbV0kVKgQsvvy8LiDXwmJ8wT5XJH+f7NiRoX/cvk/z1sXqOk3TvXpQ1+o3bZRUWZJeeknq08dafDbPxffJmcLu+yQtTapdWwlHj2qFpC/UTrdosp7WPzW49fqs3wXnEnbXIh+vy+218Hq9XvkwopSvqbfzvfm5lCxZMlf/M6OionL9gyGvrwvmuaTzXIvXXpPWrZN+/FEllaFp6qVGWiXFTFSJi2rlaro6FK5hbu+LvJ4rFK6FFFnfJ45jmu794x9SkSJlNKXFa+qy6H7t+t/fl5BUMjFRGjRIKnj+H1mhfC3Oh++TM4XN90nJktL48Yq69VaVlHSz5ulxvaan9aLa3LVHV/rwPmFzLfzwOl+vxflGkk7JV6IUDAMHDgza64J5rvOqXNm05544UVq2TBeVK6f3Kh7Ujfd11PDhZquTQMcXzGuYF27/f+z2a5HX1/nzXFu3ms1rFyyQeveWXnjBo1Kl7pPm15Xef980E/v3v6Xbb/e5mDVUr0WguP3f5fZrkdfX5fo1Xbtq4KZNZouG3bv1dP3SWjTR0e1Dqii5g//3LXT1tcjn6/wtaKve8rITeLjKz7UYNkx6+mnp00+lG24ITHzBxH1xpki5HidPmq7ETz4plS9vNrBt1+7M5+zatStrGL1KlSp2AnWJSLkvfBUp12PHDql+faljR+nDD8/9nEi5Fr7Iw7Vw1xYm0dHRGjp0qKJpoZuva/HUU1LnzuYD9saNAQguyLgvzhQJ12P9etNZ+x//MKNJ69adnSRJyroG4XwtfBUJ90VuRMr1iIszDVYnTDDHuUTKtfBFoK4FfZRC0KFD5hfNkSPSt99KpUvbjgg4v+PHTUftZ581rWHGjTP3cXb4pAwYt98uzZwpJSfTJcDP3DWiBP8pXtxMvf3+u3TjjWYXdcDNVqwwm9g+84z0yCPSmjU5J0kA/pSUZD4Q9+ghnThhO5rIQ6IUoqpVMzuZLF0q3XmnWTkEuM2RI2aKrWlTswHoihUmWYqJsR0ZEDq8XlOjtHSp9NxztqOJPCRKIeyqq8yCoAkTsnZ9AFzj1Ca2Y8ZIw4dLy5dLl112/tclJSUpPj5eCQkJgQ4RCBlXXikNGWIW86xdazuayEKNUhgYPVp6+GHp7belvn3P/3wgkNLSzPTaW28pX5vYUqMEnCkjw+wZXbCgqU8tVMh2RCHPbo3Sjh07dOedd6patWoqUqSIatSooaFDh+r48eM5vs5xHA0bNkyVKlVSkSJF1LJlS23YsCFQYQbNs88+qyuuuEJFixbV3/72N59e06tXL3k8njOOpufYDPehh6R77pH695c+/9zPgQdAXq5FuN4XBw4cUI8ePeT1euX1etWjRw/9/vvvOb7G1/si2BxHmjrVbEM4caKpq1i4MG9JUiR6/fXXVa1aNcXExKhRo0b66quvsn3uwoULz7oHPB6PNm3aFMSIA2Px4sXq2LGjKlWqJI/Ho+nTp5/3NYsWLVKjRo0UExOj6tWr64033gh8oEHw12sxZ850vf++WSk6fPjZzw/n+2LEiBFKSEhQiRIlVK5cOXXq1EmbN28+7+v8cW8ELFHatGmTMjMz9eabb2rDhg166aWX9MYbb+jxxx/P8XXPP/+8XnzxRY0ZM0YrVqxQhQoV1K5dOx08eDBQoQbF8ePHdfPNN2vAgAG5el2HDh20Z8+erOOzzz476zkej+lJc9110k03ScuW+SvqwMjLtQjX+6Jbt25KTk7W559/rs8//1zJycnq0aPHeV/ny30RTCkpUmKiWVzQqJG0YYNJ3gswue+T//znPxo8eLCeeOIJrVmzRs2bN9e1116rlJSUHF+3efPmM+6Diy66KEgRB87hw4dVv359jRkzxqfnb9++Xdddd52aN2+uNWvW6PHHH9d9992nKVOmBDjSwDvXtWjY0DQcfuYZswruXMLxvli0aJEGDhyoZcuWad68eTpx4oTat2+vw4cPZ/sav90bjuPk9/DZ888/71SrVi3bv8/MzHQqVKjgjBw5MuuxY8eOOV6v13njjTdycyrXGj9+vOP1en16bs+ePZ3ExESf3/vwYce56irH+dvfHOe77/IWXzD5ei3C9b7YuHGjI8lZtmxZ1mNLly51JDmbNm3K9nW5vS8C6Y8/HOfFFx2nWDHHqVTJcaZMcZzMTP+8d1pamiPJSUtL888butjll1/u9O/f/4zH6tSp4wwZMuScz1+wYIEjyTlw4EAQorNHkjNt2rQcn/PII484derUOeOxu+++22natGkAIwu+069FRobj1K/vOPXqmf8+JVLuC8dxnH379jmSnEWLFmX7HB/uDZ/ynKB+3ktLS1PpHJr+bN++XXv37lX79u2zHouOjlaLFi20ZMmSYIToOgsXLlS5cuVUq1Yt9evXT/v27cv2uUWLSrNmSdWrmwZ+W7YEMdAACtf7YunSpfJ6vWrSpEnWY02bNpXX6z3vvys390WgrFwpXX65mfrt00f6/nupSxefdxrB/xw/flyrVq064/6WpPbt25/3PmjQoIEqVqyoNm3aaMGCBYEM07WWLl161rW75pprtHLlSv3xxx+WogqswoXNDj8bN5reZH8VCfdFWlqaJOWYU/jr3ghaorR161a99tpr6t+/f7bP2bt3rySpfPnyZzxevnz5rL+LJNdee60mTJig+fPn64UXXtCKFSvUunVrZeTQOMnrNXVKF1wgtW1rpkRCXbjeF3v37lW5cuXOerxcuXI5/rvycl/408GD0v33S02amLqkZcukV181+3oi91JTU3Xy5Mlc3d8VK1bUW2+9pSlTpmjq1KmqXbu22rRpo8WLFwcjZFfZu3fvOa/diRMnlJqaaimqwKtf36yCGz7cfEiRIue+cBxHDz74oK666irVrVs32+f5697IdaLk8XiGeTwe57TjrMKxlStXnvGa3bt3q0OHDrr55pvV14dlWZ6/fCR1HOesx9xg2LBh5yycy+la5EbXrl11/fXXq27duurYsaPmzJmjLVu2aPbs2Tm+rmxZad48szKibVtp9+48h+CzQF8LKTzvi3PFf75/V17vC3+YPl26+GKzku35501fpMsvD/hpI0Ju7u/atWurX79+atiwoZo1a6bXX39d119/vUaPHh2MUF3nXNfuXI+HmyeeMNuc3HWXlJkZOffFoEGDtHbtWn300Ufnfa4/7o2CuQtPkjRG0senvvj++1O57J/i4uKy/nv37t1q1aqVmjVrprfeeivHN65QoYIkkwVWrFgx6/F9+/adlRW6waBBg3Trrbfm+JzTr0V+VaxYURdeeKF++OGH8z63cmXpyy+lFi2kli2l+fOlQO4rGshrEa73xdq1a/XLL7+c9Xf79+/P1b8rN/dFXv30kzR4sEmUrr/erGi78MLAnCspKUlJSUk6efJkYE7gMmXKlFFUVNRZo0e5vb+bNm2qD7PbOTWMVahQ4ZzXrmDBgrrgggssRRUcMTGmDUfLlubDy113nf2ccLsv7r33Xs2YMUOLFy8+72bZ/ro3cp0oOY6TKsmnMauff/5ZrVq1UqNGjTR+/HgVOM8SmGrVqqlChQqaN2+eGjRoIMnM3y9atEjPubAdaZkyZVSmTJmgne/XX3/Vzp07z0gWclK9urRokdSqlUmYFiyQqlYNTGyBvBbhel80a9ZMaWlp+vbbb3X5/4Zlli9frrS0NF2Ri/09cntf5MaxY6ZP1/DhUqlS0qRJZmVbID+oDxw4UAMHDszqoxTuChcurEaNGmnevHnq3Llz1uPz5s1TYmKiz++zZs2agNwDbtesWTPNnDnzjMfmzp2rxo0bq1AENBpq0cLszvDII1LHjtJfb4FwuS8cx9G9996radOmaeHCharmw6Z3frs3fK36zuE4p59//tmpWbOm07p1a2fXrl3Onj17so7T1a5d25k6dWrW1yNHjnS8Xq8zdepUZ926dc5tt93mVKxY0UlPT8+2sj0U/PTTT86aNWucp59+2ilevLizZs0aZ82aNc7BgweznnP6tTh48KDz0EMPOUuWLHG2b9/uLFiwwGnWrJlTuXLlXF+L7dsdp1o1x4mLM/9tW26vheOE733RoUMHp169es7SpUudpUuXOpdeeqnz97///YznBOq+OJ/Zsx2nRg3HKVjQcR5+2HGCfakjadXbxx9/7BQqVMgZN26cs3HjRmfw4MFOsWLFnB07djiO4zhDhgxxevTokfX8l156yZk2bZqzZcsWZ/369c6QIUMcSc6UKVNs/RP85uDBg1k/EyQ5L774orNmzRrnp59+chzn7Guxbds2p2jRos4DDzzgbNy40Rk3bpxTqFAhZ/Lkybb+CX7j67X49VfHKVfOcerX3xy298WAAQMcr9frLFy48Ix84siRI1nPycO94VOeE7BEafz48Y5M1+6zjtNJcsaPH5/1dWZmpjN06FCnQoUKTnR0tHP11Vc769aty831dKWePXue81osWLAg6zmnX4sjR4447du3d8qWLesUKlTIqVq1qtOzZ08nJSUlT+dPSTG/9GJjHef77/3wD8qH3F4Lxwnf++LXX391unfv7pQoUcIpUaKE071797OW9gbyvjiXbdsc54YbzE+Htm3t3S+RlCg5juMkJSU5F154oVO4cGGnYcOGZyx77tmzp9OiRYusr5977jmnRo0aTkxMjFOqVCnnqquucmbPnm0hav87tcT9r0fPnj0dxzn7WjiO4yxcuNBp0KCBU7hwYScuLs4ZO3Zs8AMPgNxci48/Nt+zFSr0Dcv7Irt84vTfE3m4N3zKc9jCJIL8/LPUvr30yy/S7Nlm1RJwytGjpkB75EipTBnppZcCP82WE7YwAXznONK115q2MBs2SEWK2I4oJNjdwgTuU7my9NVXUp06UuvW0pw5tiOCGziONGOGdMkl0rPPSg88IG3aZLq8h/miISBseDymTceuXeYDD/yHRCnClC4tzZ0rtWkj3XCD9O9/244INn33nWlOmpho9mRbv94UbhcrZjsyALlVq5b0j3+YJpTbttmOJnyQKEWgokXN5qU9e5pj+HAzqoDIsWeP1Lev1KCB+QQ6Y4YZYWQDWyC0PfGEVK6caecB/yBRilAFC0pvvy0NHWq+sbp3NzUqCG9HjpjNNC+6yPREevVVsxN5x45MswHhoFgxU184c6bZ0gr5RzE39MknUq9eUny89OmnppYJ4SUzU5owQXr8cVPMf999JkEuVcp2ZGc7veHkli1bKOYGcslxpA4dpB9/NIXdMTG2I3Itnz4ekihBkrR6talTOXHCjDSwIi58LFggPfywtGqVWcX23HNSjRq2ozo/Vr0Bebdli1S3rvTkk9JTT9mOxrVY9QbfNWxodoOvVk26+mrp9depWwp1K1aYQu3WraUCBaTFi6XJk0MjSQKQP7VqSQ8+aNp97NplO5rQRqKELOXLm9GHu+6SBg6UbrlFSkuzHRVya+NGqUsXs1nt7t2mcH/5cql5c9uRAQimxx+Xihc30+zIOxIlnCE6WnrtNbOn19y5ZqRp1SrbUcEX27ebVYx160pr1kjvvy+tXSt17kyhNhCJSpaU/vUv0wZm5Urb0YQuEiWc0003mV+2pUtLzZqZRoQnTtiOCueybZsZBaxd2yS3Y8ZImzdLd9whRUXZjg6ATXfeaT48Pfgg5RR5RaKEbFWvLn39tSkEfuop6YorTMdmuMPmzWYEqVYts1rx2WfNKpd77pEKF7YdHQA3KFhQeuEFsyvDtGm2owlNJErIUXS0+QW8ZImpV2rQQHrxRUaXbFq/XrrtNunii6UvvzQ/BLdvNwktHbUB/FX79mYfuIcfljIybEcTekiU4JMmTcxU3N13mxb5CQnSsmW2o4ocjiMtXGi2nbn0UmnpUrMycds26f77Tbd1AMjO6NHSTz+ZqXnkDokSfFa0qPTyy2YFVVSUqV3q10/69VfbkYWv48elDz+UGjWSWrWSduyQxo+XfvhB6t/fjPiFm6SkJMXHxyshIcF2KEDYiI83H3T/9S9p/37b0YQWGk4iT06elN56S3rsMTMH/vTTpqC4UCHbkYWHAwfM9X3tNennn02X3QcflNq2jZwVbDScBPxr/36zfVGPHuZnC2g4iQCKipIGDDAFxR07Svfeaz6xTJrEyor8WLPGJJxVqpgC+g4dTE3SnDmmeWSkJEkA/K9sWWnIEOnNN820PXxDooR8KV/eTAUlJ5tPKrfcYhodzpxJwuSrw4el996TmjY1fas++0x69FEpJUV65x3pkktsRwggXNx3n0mY/vlP25GEDhIl+EW9euYX/Pz5pm7mhhvMCrlJk8w0Hc7kOGa5bp8+UoUKUu/ektdrlu/u2GFGk8qXtx0lgHBTtKg0dKg0caL5gIvzo0YJfuc4Zl+xZ54xy9dr1TJbovTsaZKBSLZxo/TJJ9KECabnUVyc1KuXuTZxcZaD86Nnn31Ws2fPVnJysgoXLqzff/891+9BjRIQGCdOmJHqGjXMB9wIRo0S7PB4pBYtpHnzTAuByy6THnpIqlzZ1DWtX287wuDavNmsNLn0UvPD6aWXpCuvNPvqbd1qPt2FU5IkScePH9fNN9+sAQMG2A4FwF8ULGg+yM6ZIy1aZDsa92NECUGxe7dZxfXmm9LevWa5++23S7feaqaewsmJE6aFwmefSbNmmf3WiheXEhNNDdc114Tnsv5zee+99zR48GBGlACXcRxTTxoVZfqyRehCEUaU4B6VKknDhpmGZ5MnS1WrSo88YkaZ2rUzTdB++sl2lHm3e7f0wQemY3a5ctJVV5nEsF49U3e0b5/ph3TDDZGTJOVWRkaG0tPTzzgABIbHI40caT7UzZplOxp3Y0QJ1vz2myn2njLFdJ3+4w+TWFx/vdSypdlbrnhx21GezXGkLVtMMfZXX5n98E4ttW3cWLruOnM0bsymtLkZURo2bJiefvrpsx5nRAkIDMcxjWzT0qTVqyNyVMmnfzGJElwhPV364gtpxgzz5/79Jslo1Ehq3tysoKtfX6pdO7hNLU+eNElQcrI51qyRVq408RUoYGJq3vzPI5xXqmWXyJxuxYoVaty4cdbXuUmUMjIylHHaRlTp6emKjY0lUQICaPFiU1M6ZYrUpYvtaIKORAmhyXFMAfSiReab+Jtv/pyWK1zYFERffLF04YVnHhUqSCVKmEJFX89z7JhJenbvNseePWaD2R9+MKNG27aZbUQkM3142WWm19FVV5ktXCLp93dqaqpSU1NzfE5cXJxiYmKyvqZGCXC/du1M7eh335kPgBHEp0TJx18pQPB4PFKdOua4+27z2IEDpij6u+/MsWWLmfLatUvKzDzz9cWKmQTG65ViYsz7nRpSPnJEOnTIHAcPnt3jqVAhUz910UVmx+2LLjLtDerXD+/RIl+UKVNGZcqUsR0GAD97+mmzEnfyZLPgBGciUUJIKFXKDA+3aHHm4ydOmL3QfvrJjAylpZlpvLQ0c2RkmJGjUwOnRYuauqfTj7JlzWhRpUpS6dIR94kqIFJSUvTbb78pJSVFJ0+eVPL/OtvVrFlTxd1YeAZEsCuuMNslDRsm3XgjtZV/xdQbAL/r1auX3n///bMeX7BggVq2bOnTezD1BgTPt99KTZqY1bndu9uOJmioUQIQukiUgOC64QZp0yazg4CvtZ4hjj5KAADAN08/bRayTJhgOxJ3IVECAABq0MDsIPDss2xmfjoSJQCukpSUpPj4eCUkJNgOBYg4TzxhRpUmT7YdiXtQowTAlahRAuy45hrTUy45OexXAVOjBAAAcufJJ6V169gD7hRGlAC4EiNKgD1XX212Lli+PKz3gGNECQAA5N6TT0orVkjz5tmOxD5GlAC4EiNKgD2OYxpQFili9t0MU4woAQCA3PN4zAq4xYulr76yHY1djCgBcCVGlAC7MjOlyy6TKlaUvvjCdjQBwYgSAADImwIFpMcfl+bOldassR2NPSRKAFyFhpOAe9x0kxQXJ40ebTsSe5h6A+BKTL0B7vDqq9KDD0pbt0oXXmg7Gr9i6g0AAORPnz5SyZLSyy/bjsQOEiUAAJCt4sWlgQOlt9+WDhywHU3wkSgBAIAcDRoknTghjR1rO5LgI1ECAAA5Kl9e6tnT1CsdO2Y7muAiUQIAAOf10EPSvn3Shx/ajiS4SJQAAMB51aolJSaaVgGZmbajCR4SJQCuQh8lwL0efljavFmaNct2JMFDHyUArkQfJcCdrrzSdO0Ogz3g6KMEAAD866GHpK+/llavth1JcJAoAQAAnyUmmg7dr7xiO5LgIFECAAA+i4oyfZU+/ljau9d2NIFHogQAAHLlzjulggWlN96wHUngkSgBAIBcKVXKNKAcO1bKyLAdTWCRKAEAgFy77z7TgPI//7EdSWCRKAEAgFyrU0e65hpT1J3/TkPuRaIEwFVoOAmEjvvvN20CvvnGdiSBQ8NJAK5Ew0nA/TIzpYsvlurVkyZNsh1NrtFwEgAABE6BAqZWado0KSXFdjSBQaIEAADyrGdPqXhxswIuHJEoAQCAPCte3CRL48aFZ6sAEiUAAJAv/ftL+/dLU6bYjsT/SJQA+NWOHTt05513qlq1aipSpIhq1KihoUOH6vjx47ZDAxAgF18stWwZntNvBW0HACC8bNq0SZmZmXrzzTdVs2ZNrV+/Xv369dPhw4c1evRo2+EBCJB77pFuuUVat0669FLb0fgP7QEABNyoUaM0duxYbdu2LdvnZGRkKOO0Aof09HTFxsbSHgAIEX/8IVWtKnXuLL3+uu1ofEJ7AADukJaWptKlS+f4nBEjRsjr9WYdsbGxQYoOgD8UKiT16yd98IF08KDtaPyHESUAAbV161Y1bNhQL7zwgvr27Zvt8xhRAkLfzp1SXJyUlGQKvF2OESUA/jNs2DB5PJ4cj5UrV57xmt27d6tDhw66+eabc0ySJCk6OlolS5Y84wAQWmJjpY4dzdRbuOz/xogSAJ+kpqYqNTU1x+fExcUpJiZGkkmSWrVqpSZNmui9995TgQK5+1zGFiZAaJo712yW+/XX0pVX2o4mRz6NKJEoAfC7n3/+Wa1atVKjRo304YcfKioqKtfvQaIEhKbMTKlWLalpU+nDD21HkyOm3gAE3+7du9WyZUvFxsZq9OjR2r9/v/bu3au9e/faDg1AEBQoIA0YYDbJ3b/fdjT5R6IEwK/mzp2rH3/8UfPnz1eVKlVUsWLFrANAZOjVS/J4pHfftR1J/jH1BsCVmHoDQluPHtKyZdKWLSZpciGm3gAAgB19+0o//igtXmw7kvwhUQLgKklJSYqPj1dCQoLtUADkw9VXSzVrSuPG2Y4kf5h6A+BKTL0Boe+556Rhw6Q9e6S//c12NGdh6g0AANjTs6fZA27iRNuR5B2JEgAACIgKFUyn7nfesR1J3pEoAQCAgLnzTmnNGmn1atuR5A2JEgAACJgOHaRKlUJ3VIlECQAABEzBglLv3tKECdKRI7ajyT0SJQAAEFB9+kjp6dKUKbYjyT0SJQAAEFDVq0tt2oTm9BuJEgBXoeEkEJ769jVdurdssR1J7tBwEoAr0XASCC/HjkmVK5uE6bnnbEcjiYaTAADALWJipG7dpA8+kE6etB2N70iUAABAUPTsabYz+fJL25H4jkQJAAAERaNGUny89P77tiPxHYkSAAAICo9HuuMOado0KS3NdjS+IVECAABBc/vt0vHj0qRJtiPxDYkSAAAImsqVpbZtQ2f6jUQJAAAEVc+e0tdfS1u32o7k/EiUALgKDSeB8Nepk1SihGkV4HY0nATgSjScBMJb377S/PnSjz9KBewM29BwEgAAuNMdd0jbt5spODcjUQIAAEF31VVStWruL+omUQIAAEFXoIAZVZo0STpyxHY02SNRAgAAVtxxh3TwoGlA6VYkSgAAwIrq1aXmzd09/UaiBAAArOnRQ/rvf6W9e21Hcm4kSgBchT5KQGS58UYpKkr65BPbkZwbfZQAuBJ9lIDIkZgo/fKLtGxZUE9LHyUAAOB+3bpJy5e7c0sTEiUAAGBVx45SsWLSRx/ZjuRsJEoAAMCqokWlzp2lCROk/FcE+ReJEgAAsK5bN2nTJum772xHciYSJQB+d8MNN6hq1aqKiYlRxYoV1aNHD+3evdt2WABcrG1bqUwZaeJE25GciUQJgN+1atVKn3zyiTZv3qwpU6Zo69atuummm2yHBcDFChWSbrnF1CllZtqO5k+0BwAQcDNmzFCnTp2UkZGhQoUKnfM5GRkZysjIyPo6PT1dsbGxtAcAIsg335jNchctkq6+OuCnoz0AAPt+++03TZgwQVdccUW2SZIkjRgxQl6vN+uIjY0NYpQA3KBZM+nCC01Rt1uQKAEIiEcffVTFihXTBRdcoJSUFH366ac5Pv+xxx5TWlpa1rFz584gRQrALQoUkG67TZo0STp+3HY0BokSAJ8MGzZMHo8nx2PlypVZz3/44Ye1Zs0azZ07V1FRUbrjjjuU01R/dHS0SpYsecYBIPJ06yYdOCB98YXtSAxqlAD4JDU1VampqTk+Jy4uTjExMWc9vmvXLsXGxmrJkiVq1qyZT+djCxMgcl16qVS3bsAbUPpUo1QwoCEACBtlypRRmTJl8vTaUx/ITi/WBoDsdOsm/etf0uHDpmO3TUy9AfCrb7/9VmPGjFFycrJ++uknLViwQN26dVONGjV8Hk0CENm6dpWOHpVmz7YdCYkSAD8rUqSIpk6dqjZt2qh27drq06eP6tatq0WLFik6Otp2eABCQPXqUqNG0ief2I6EGiUALkWNEhDZnn9eGjpU2r9fKl48IKegjxIAAAhNN98sHTtmf/qNRAmAqyQlJSk+Pl4JCQm2QwFgUbVqUkKC/ek3pt4AuBJTbwBGjZKeekrat08qUcLvb8/UGwAACF2npt9mzbIXA4kSAABwpbg46fLL7U6/kSgBAADXuuUWac4c6eBBO+cnUQIAAK51001SRoY0c6ad85MoAQAA17rwQqlJE3vTbyRKAADA1W65Rfr8cyk9PfjnJlECAACuZnP6jUQJgKvQcBLAX1WtKjVrZmf6jYaTAFyJhpMATvfSS9KQIab5pNfrl7ek4SQAAAgPN94oHT8uffZZcM9LogQAAFyvalWpcWNp6tTgnpdECQAAhIQuXUzzyaNHg3dOEiUAABASOneWDh+W5s0L3jlJlAAAQEioU0e6+GJp2rTgnZNECQAAhIwuXaQZM6Q//gjO+UiUAABAyOjcWfrtN2nx4uCcj0QJgKvQcBJATho2NCvggjX9RsNJAK5Ew0kA2XngAdOle+dOqUDeh3xoOAkAAMJP587S7t3St98G/lwkSgAAIKRceaVUtmxwpt9IlAAAQEiJipISE02X7vxXEOWMRAkAAIScLl2kH3+UNmwI7HlIlAAAQMhp3VoqWTLwe7+RKAEAgJATHS1dfz2JEgAAwDl16SJ99520bVvgzkGiBMBVaDgJwFcdOkgxMYFd/UbDSQCuRMNJAL644Qbp99/ztKUJDScBAEB4S0yUvvlGSk0NzPuTKAEAgJD197+bXkqzZgXm/UmUAABAyCpfXmraVPr008C8P4kSgIDJyMjQZZddJo/Ho+TkZNvhAAhTiYnS3LnS0aP+f28SJQAB88gjj6hSpUq2wwAQ5hITpSNHpC+/9P97kygBCIg5c+Zo7ty5Gj16tO1QAIS5OnWkWrUCM/1W0P9vCSDS/fLLL+rXr5+mT5+uokWL+vSajIwMZWRkZH2dnp4eqPAAhKHEROn996XMTKmAH4eBGFEC4FeO46hXr17q37+/Gjdu7PPrRowYIa/Xm3XExsYGMEoA4ea++6SlS/2bJEkkSgB8NGzYMHk8nhyPlStX6rXXXlN6eroee+yxXL3/Y489prS0tKxj586dAfqXAAhHVapI1av7/33pzA3AJ6mpqUo9T0e3uLg43XrrrZo5c6Y8nj+b3p48eVJRUVHq3r273n//fZ/OR2duAAHmU2duEiUAfpWSknJGfdHu3bt1zTXXaPLkyWrSpImqVKni0/uQKAEIMJ8SJYq5AfhV1apVz/i6ePHikqQaNWr4nCQBgFtQowQAAJANRpQABFRcXJz8MMUPAFb4o0YJAPzO4/GUlJQmyes4Dk2VAFhBogTAlTxm2VwJSQcdflABsIRECQAAIBsUcwMAAGSDRAkAACAbJEoAAADZIFECAADIBokSAABANkiUAAAAskGiBAAAkA0SJQAAgGz8Py/cupcwon1NAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%display typeset\n", "var('r')\n", "f(x) = r*x - x^3\n", "raízes = solve(f,x)\n", "show(\"Raízes=\",raízes)\n", "F=plot(f(r=2),(x,-2,2))\n", "P=points([(-sqrt(2),0),(sqrt(2),0),(0,0)], pointsize=30, color='red')\n", "F+P" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Você consegue dizer apenas olhando para o gráfico acima, quais equilíbrios são estáveis ou instáveis?\n", "\n", "E no caso do gráfico abaixo quando $r=0$?" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0a70509ad2ee40d3a69539a3528e610c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Interactive function with 1 widget\n", " r: IntSlider(value=0, description='r'…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "@interact\n", "def cubica(r=(-2,2,1)):\n", " P = plot(f(r=r), (x,-1.5,1.5))\n", " raízes = solve(f,x)\n", " show(\"Raízes=\",raízes)\n", " P2=points([(-sqrt(r),0),(sqrt(r),0),(0,0)], pointsize=30, color='red')\n", " show(P+P2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "No caso desta cúbica quando $r=0$, temos apenas um equilíbrio em $0$. Para obter a estabilidade do equilíbrio a chave é olhar para o sinal da derivada de $f(x)=rx-x^3$, com $r=0$ $f'(x)=-3x^2$. Podemos verificar na solução numérica de x(t)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGGCAYAAACJ/96MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAADS90lEQVR4nOxdZ3hU1dpdeya990IKIaEl0qRJC0XFAoi9FxDbVVFR72e99oK9XrBiF0VRwGsBBOkgvUjvvaUxgfRk1vdjcjAiaTPzbuRw1vPMA5nZc9bZZ/bZe513v0WRhAULFixYsGDBgoXaYTvRJ2DBggULFixYsPBPhyWYLFiwYMGCBQsW6oElmCxYsGDBggULFuqBJZgsWLBgwYIFCxbqgSWYLFiwYMGCBQsW6oElmCxYsGDBggULFuqBJZgsWLBgwYIFCxbqgSWYLFiwYMGCBQsW6oHPiT4Bb0EppQA0AXD4RJ+LBQsWLFiwYOEfj1AAe9nADN6mEUxwiaXdJ/okLFiwYMGCBQsnDZIB7GlIQzMJpsMAsGvXLoSFhR23weTJk3HllVeivnbewODBg7F3714sWbJEjAMA1qxZgx49euD111/HsGHDRLnuvPNOfPvttzh48KAoz+HDh5GcnIx7770XTz75pCjXiy++iOeffx6bNm1CXFycKFdaWhrOPPNMfPTRR6I8X3/9NW677TZMnz4dnTt3FuXKzs6Gv78/pk2bJsozb948DBgwAB9//DEuueQSUa5rr70WixcvxsaNG0V5du3ahTZt2uCpp57CiBEjRLkefvhhjB49GgcPHoS/v78Yj9PpRFRUFG666Sa8+uqrYjwA8M477+Chhx7CsmXLkJGRIcrVtm1btGrVCuPHjxfl+emnn3DNNddgwoQJOPPMM0W5Bg4ciJycHCxatEiU548//kCvXr3w5ptvYujQoaJct99+OyZOnIh9+/bV27awsBApKSlAI3al3BJMSqk7APwfgEQAawCMIDmnlraXALgdQAcA/tXtnyQ55Zh2lwJ4BkAGgC0AHiU5obHnFhYWVqsQatKkSYPaeQMxMTFYv369KAcAJCcnAwBKS0vFueLi4lBWVgY/Pz8EBASI8YSGhsJut6O4uFi8TwkJCQCAyspKca7IyEgcOXJEnCcxMREAUFFRIc4VHR2Nffv2ifMkJSUBAMrKysS5YmNj4XA4xHmqJ2uUlJSIc8XHxwNwCRpproiICBQVFWm7d3WM86ioKC33rrFGlZeXi3PFxMRgy5YtplujiouLERgYCF9fX68fv9FO30qpKwG8AeA5AKcDmAPgF6VUai1f6Q3gVwADAHQCMAPA/5RSp9c4ZncA4wB8DqB99b/fKKXOaOz51YXIyEhvHq5erkOHDmnhAWAqLqUUIiIiTNUng8vqk/s8gL4+lZaWorS0VJQnNDQUNpvNlNfP6pP7PIDVp38qlztRcvcBGEPyQ5LrSI4AsAsuK9LfQHIEyZdILia5ieQjADYBuKBGsxEAfiU5kuR6kiMBTK9+32uIiIjw5uHq5SorK0NJSYkoT3BwMOx2OwoKCkR5gD+vny4uHTeY0SddXDr7pOt3MuPYAwCHwyHKo/PBQPc4N+OY0NknXb9TSUkJysrKRHlCQkK0PRhIj4lGCSallB9cVqKpx3w0FUCPBh7DBpdnen6Nt7sf55hTGnrMhsJ1MZO9ech6uMxljbEmXc+5zDjplpWViVtjQkJCYLfbTTHpHstlxnFuxvnIjGMPkL9+NpsN4eHhpuhTYy1MMQDsAA4c8/4BAAkNPMb9AIIBfFPjvYTGHlMp5a+UCjNecImwOhEUFASXDpOHZVr1nMusfWpgBKtHPIA5TOAGrG1az3kAq0+ecFnbtJ5xmaFP7iauPHbGV8d5729QSl0N4EkAV5I8NtSqscd8GICjxqvelAJKKdhsetI0WU+pnnOZ8Sm1vLxcfNINCgqCj4+PKceEGZ5Sj+Uy4zg349gDzPVgYOZx/o/YkgOQC6AKf7f8xOHvFqK/oNpZfAyAK0geG4O8341jjgQQXuPVoL02P7+ihjTzGGYejDonXWlrzImYdKW5rEnXcx7AnCJQF5dZt2ktwek+lxmEbaMEE8lyAEsB9D/mo/4A5tf2vWrL0icAriH503GaLDjOMc+p65gky0gWGi80MJdCQEBxQ5p5DMM0qGOQREZGauMB9PWpoqJC3Gk+KCgIvr6+pjAXH8tlxjGhs0/WNq1nXLoeDMw4zs04H5lh7LmzJfcagJuVUsOUUplKqdcBpAJ4FwCUUiOVUp8ZjavF0mdw+S79rpRKqH6F1zjmmwDOUUo9qJRqrZR6EMDZcKUv8CoCA2UjAgyciCdvXdYYMz3RWdYYz3kAq0+ecOncpjXj9bP65D4PYPWpMWi0YCI5Dq5w/8cBrIArz9IAkjuqmyTCJaAM3AZXgsxRAPbVeL1Z45jzAVwF4EYAqwAMhcvPaWFjz68+BAdXePuQx4XuwVhZWYniYlnrmZEMzNoWcZ8HsHzAPOHS+WBgpjGh0xpjLcSec5lp7BlcOtPsSP1ObmX6JjkawOhaPht6zN99G3jM8QBk884DCA+vMvhEeXSbcA2u4OBgMR6llKm3RXTwAPr6tHz5ci08gN5t2uLiYtFxfqK2aWtWIpDiMsO2yLFcO3bsqL+hF3gAvVtyJOGqKS/HA+iPpg0MDBTjkV6j3I2SO2nRpEkQAKC4WNYEHhAQgLZt22rJLp6amoq2bduivLxcnKtDhw5HyyxIIjExEaeddprohGEgKyvraPp+ScTGxiIzM1O0lpeBFi1aoFmzZuI8kZGRaNWqlXjJA8BVi69du3biT6lKKXTq1AnR0dHiD1bJyclo06YNqqqqRHkAoF27dkhMTBTvU3x8PLKysuDj4yPO1bp1a6SmporzREdHo3Xr1ggKChLnysjIQGZmJsrLy0W5goKCcNpppyEiIkK8T8YaVVZWJs7VoUMHxMXFgaTXuZT0yetCdS4mR301oD79tBBDh4Zjxw4HUlPlJ3kLFixYsGDBwj8LhYWFCA8PB4Dw6sCxenHKWZiM6igarJAWLFiwYMGCBZPgpBdMSqk7lVJrASyqr21ubi4OHFgHAJDeil63bh02bdokSwJXvaulS5fi8GH5hJxbtmzB6tWrxXmKi4uxfPly5ObminPt3r1bi69PRUUFVq1ahT179ohzHThwAIsWLRI3fZPE6tWrsXXrVlEeAMjPz8eSJUvEt+MAYOPGjVi/fr04z5EjR7Bs2TItPiQ7duzAqlWrxHlKS0uxYsUKHDhQZ1o+r2Dv3r1YsmSJOE9VVRX++OMP7Ny5U5wrNzcXixcvRkWFfHCS7jXqyJEj4lxbtmzBmjVr5AiMfb6T/QUgDAAdDgdrw4svvkgghQA4YULt7byBxMREXnTRRaIcJDlu3DgC4MyZM8W5unfvzg4dOojzLFy4kAD4ySefiHNdffXVjIiIEOfZv38/AfDJJ58U53rooYdY373gLQQEBPDGG28U53n33XcJgCtXrhTnat26Nfv16yfOM3nyZALgpEmTxLnOO+88NmvWTJxn3bp1BMC33npLnOu2226j3W6n0+kU5SkpKSEA3nfffaI8JDly5EgC4M6dO8W54uPjeckll4jzfPXVVwTA2bNni3N17dqVnTp1alBbh8NBuKqJhLGBOuOktzA1BtHR0QBcpiVpC1N0dDTy8vJkSWD0Cdq4zNinQ4cOobKyUpQnKioKgL4+6eSy+uQ+D2D1yROuqqoqOBwOUZ6AgAAEBQWZ8vpZfWocTkHB5DILSlvBo6OjkZ+fL0uCPwejLi6z9ckQMtLbIr6+vggLCzPd9TPjmNDVJ2Ps6eIqLCwU3+oxooKtMeE+D6BvTJhtnEv/TqeUYDJ+OEDewhQVFaVFUeu0XERFRaGoqAhlZbLZ0sPCwmCz2Uz39GPWMWH1yT3ofvIG5PMI+fj4IDw83BoTHvAA5rDG1OQB9P1Okg8Gp5RgMn44QN+WHDXkBwHMtdVjs9lMu2hZfXKfB9DXp5KSEnEH87CwMPj4+Jjy+ll9cp8H0NsnM65RUlYmSzAJclVUVIhHBgQFBcHf39+0N7MOHsAc5uKaPIC+3yk/P9+Uk640l1JK27aI7nFupt/J4DJjn3SUKwkJCYGvr68p5r5TSjDV3JLT4cME6Jl0zXozWyZw93kAfX2qrKxEYWGD8r65jcDAQAQGBpru+llbPZ7xAHofDJxOpyiP7m1GHVzGg4EZxsQpJZj8/PyO1qDS4cMEWM57nnCZ4YmkJqKiorRE5Ol0vDXjmNDtpGqGhaQmzPg7RUVFwel0ij8YGBF5Zpv7dD8AW1tyXoJxQXVsyQHmGoxm7pPOCUpXRJ41JtznAfRaLnTwAPrGucPh0PZgYMYxYca5zwwi8KQXTI3J9A1YgslTHkBfn4qLi1FaKlsk2awReWYdE2brk1m35AD5hdjHxwcRERGmGxNmdEewtuT+ISA5imQWgK4Naf+nyQ6Q9FO1oh1ODi4rIs9zHsDqkydcVkSeZ1xWn9znAaw1qjE46QVTY2EIpvJyQDKATbe5s7KyUktEXkBAgCm3EMw4QZnxd9IRkafbhwkwp+OtGbd6zNgnnRF5xcXFojzSEXmnnGAy9r0BICdHnscyrbrPA1hOqp5wmfF3qqqqMlVEnpmd5q35yH0unRF5Zpr7pB8MTjnBVDO1QG6uHI+fnx9CQ0NNabmw+uQ+D2DVyHMX1pjwnMvqk/s8gL4+OZ1Oq0aeB1xSPD4iR/2HgiQuvPBCvPTSSwBkLUwk8cEHH6Bp06ZyJNXo27cvxo4di7S0NDEOYxtk5MiRCAgIEOMx0KZNG3z++efo0qWLONf9998vbrUgicTERHz66ac444wzRLkAYMiQIcjOzhbfvvLx8cHnn3+OrKwsUR6SGDBgAJKSkhATEyPO9dZbb4nzAEC3bt3wxRdfiF4/Yww8/vjj4lYLAGjevDk+++wz9OzZU5zr9ttvx0UXXSTKQRIRERH45JNP0KlTJ3Guyy+/HG3bttUyz3700Uei6wbg6tOZZ56JsWPHIjU1VZzrxRdfRFBQkMjxlfSEqgtKqTAADofDgbCwsFrbFRYWIjw8HIADH38chqFDdZ2hBQsWLFiwYOGfgD+1AMJJNuiJ+ZTbkjMQGiq7JWfBggULFixYMA9OKcH09ddf49prrwUAxMTIbcmRxJAhQ/Duu+/KENTAtGnTcPnll2Pv3r3iXPfffz+eeeYZcZ7ly5fjyiuvxIoVK8S5XnjhBdx9993iPLt27cI111yDKVOmiHONGTMG11xzjThPcXExrr/+enzxxRfiXJMmTcKll14qvnUKAP/617/w+uuvi/PMmzcPV1xxBTZt2iTO9dhjj+Hhhx8W51m/fj2uuuoqzJ8/X5zrrbfewi233CLOk5OTg2uvvRYTJ04U5xo7diwuvfRS8a1Tp9OJG264Ae+//74oDwBMnToVl112Gfbv3y/Odd999+G5554TO/4pJZg2btyIH3/8EQAQFSUnmJRS+N///ofZs2fLENTA3r17MX78eOzevVuc67fffsMvv/wizlNYWIhvvvkGGzduFOdauHAhxo8fL87jdDrx1VdfYeXKleJcq1evxldffYXy8nJRHn9/f4wdOxYLFiwQ5QGAbdu24fvvv8eBAwfEuSZPnoxp06aJ8+Tk5ODbb7/F9u3bxbnmzJmDH374QZyntLQU48aNw9q1a8W5li1bhq+++kqcx8fHB2PHjsWSJUvEuTZs2IDvv/9ePJrMZrNh0qRJWtaoPXv24LvvvtOyRk2fPh2TJ08WO/5JL5gak+k7Njb26P8lLUwG18GDB+UIavAA0MIVFxdnuj7FxsYiJydH3Dlad58A14IsCbvdjujoaG1jD7DGuSdcZuxTUVGReG6fiIgI+Pj4mG6cm3VMSPKc9IKpMZm+jcEIuASTpA9TXFyc+IJl8ADyiyPwp7iQhs4+xcXFobKyUry+W1BQEIKDg015/XSNPcAa555w5eXloaqqSpRH5++k6/oppbSNCd3Xz0y/k8ElyXPSC6bG4FjBJPn76XpK1f3kXVhYiLKyMlGeqKgo2Gw2U14/q0/u8wBWnzzhIimeB8fPzw8RERGmvH5Wn9znAfT1qaCgQMwd4ZQSTDW35KKj5bfkcnJyxJ33zPhEZ7PZEBMTY7onOt1PqWYwgRvQ/ZRaUlKCoqIiUZ6wsDD4+vqacpybbavHjNYY3e4IOsd5rtD20SklmI61MBUWumrKSXFVVVWhoKBAhqAaAQEBCA0NNeUEZcanHzP2KS8vTzyjuJFE0kzjXCll2jFhtj6ZVQRWVFSIZxQPDg5GUFCQKcbEKSWYIiIiYLO5umwk8ZXyYzLjE501QXnOdfDgQVM+0Ulv9fj6+iIyMtIa5x7wAHoDKXTwAPqsjg6Hw1TuCGa0REuPCbcEk1LqDqXUNqVUqVJqqVIqu462iUqpsUqpDUopp1LqjVrajahuU6KU2qWUel0p5dXc8MZWD+DakgPktuV0P9GZzVxs1j6VlZXhyJEjojyhoaHw9/c3nbgw65gwa590uSPoHOdSWz0G7Ha7NncEM4/zf4yFSSl1JYA3ADwH4HQAcwD8opSqrUiMP4Cc6vbHTUKjlLoWwAsAngKQCeAmAFcCGNnY86sPxk1mNsFktieSuLg45Ofno6KiQpRH51aPrjFh1q0eM1pjzPg76Yw8DQkJMd2YMOOOgVnGuTsWpvsAjCH5Icl1JEcA2AXg9uM1Jrmd5D0kPwNQ22ZpdwDzSI6tbj8VwFcAOrtxfnXCWCDNuCUnvdWje3EE5J/ofHx8EBUVZcpJ14zbImaYdGsiNjYWhw8fRmlpqShPZGQk7Ha7KbZFjuUyg+XiWC4zzkdmcEdolGBSSvkB6ARg6jEfTQXQw4PzmAugk1KqazVPOoABAH6q41z8lVJhxgtAaEOIjAsaEgL4+wNSY0X3DVZeXo7Dhw+L8gQHByMwMNAyF3vAA1jiwhOu3NxcK/LUDeiMPDWjuLDmI8+5SktLtUSe+vn5/WMsTDEA7ACOrU9wAECCuydB8msAjwGYq5SqALAFwAySL9TxtYfhslgZrwblXTcsTBUV5YiPlxNM0dHRUEqZatEyEriZqU8Gl9Un93kAfU+pZos8tcaE51xmtMaYLfLULO4I7kbJHWtXU8d5r8FQSvUF8CiAOwB0BHAJgEFKqcfq+NpIAOE1XskN4TIGSV5eHhITgX373D3rumGUjTDjtojZ+mTG7SvdZSPM+ERsxjFh1j7pckfQOc51RZ6adUxIoLGCKRdAFf5uTYrD361OjcEzAD6v9ov6g+QEAI8AeFgpddxzJFlGstB4AWjQflRysktXFRUVISEBkCygnJmZiaCgIDmCajRp0gSpqaniIa8A0KJFC4SGNmj30yMkJCQgKSlJfCIEgGbNmiEqKkrL/npiYiJ8fHxEeQAgNTUV6enpKCwsFOVRSiErKwsBAV4NaD0ukpKS0LRpU5SUlIhztWrVCsHBweI8iYmJSE5OFrcmAEBGRgbCw8PFeeLj49GkSRMopcS50tLSkJycLD4mQkJC0LRpU/j6+oryAEBKSgrS0tLEo2kBa41qLFRjFwml1EIAS0neUeO9tQAmkXy4nu/OBLCi2lG85vtLAUwj+WCN964G8BGAEJL1FkCq9mNyOBwOhIWF1dqusLAQ4eHhcDgceOCBMCxeDCxdWt/RLViwYMGCBQtmgaEFAIRXG13qhTuPuq8B+FwptQTAAgC3AkgF8C4AKKVGAkgieYPxBaVUh+r/hgCIrf67nOTa6vf/B+A+pdRyAAsBNIfL6vRDQ8SSu5C2MFmwYMGCBQsWzIFG+zCRHAdgBIDHAawA0BvAAJI7qpskwiWgamJ59asTgGuq//9zjc+fBfBq9b9rAYwBMAXAbY09v7pw+PBhbN269ejfCQnAgQOAt4NunE4n9u7dKx4SDwDFxcXYtGmTlq2rAwcOYJ+U01cNlJWVYevWrVrMt3l5edi1a5c4T0VFBXbs2CEeyQgADocD27ZtE+epqqrC7t27kZ+fL8515MgRbN68WZyHJPbt24cDBzzxMGgYSkpKsHnzZi3bcTk5OdizZ484T3l5ObZt2ybuOwcABQUF2LFjR/0NPURlZSV27twpXkIEcFk9tmzZIs7jdDqxZ88eU61RJOXXKJKmeAEIA0CHw8HacMMNNzAoKIhGuwkTSIA8eLDWr7iF/Px8AuCjjz7q3QMfB48//jgBMCcnR5wrNDSU1157rTjPmDFjCIBLliwR52rbti179eolzjN9+nQC4Pjx48W5LrjgAiYnJ4vzbNmyhQD4yiuviHMNHz6cAFheXi7KU15eTgC86667RHlI8pVXXiEAbtmyRZwrOTmZF1xwgTjP+PHjCYDTp08X5+rVqxfbtm0rzrN48WIC4JgxY8S5rr32WoaFhYnz5OTkEAAff/xxca5HH32UAJifny/K43Q6GRwczBtuuKFB7R0OB+EKVgtjA3XGKVVLLjEx8S9PPgnVruve3paLiIiAv7+/FmtMYmIiAGjjsvrkPg+gr0/79+8Xz1eku08AxC0/vr6+iI2NNeWYsPrkPg+gr0+FhYXi+Yqio6Ph6+trquunlBIfE6ecYPrr365/vS2YjB9u79693j3wcWDmCUrX9du7d6+4uVh3nyorK8XN7YGBgQgPDzfVpGtw6bx3dY5zHTyAvj7l5uaivLxclCc+Ph5KKVONc6UUEhISTDkmJHlOacEUH+/6V8Lx28ziQgcPoG9xLCkpEQ+/Dw8PR0BAgKkmXYPLjJOuGX+nAwcOoKpKLIbmKA+g1+q4Xzhyx8fHB7Gxsaac+8w4zi0LUx1QSt1ZndZgUX1tjxVMAQFARIQ5BJMuLofDIZ7zJDY2Fna73VTXT4e52ICZJqiaPIDePumyOurqU1VVlbjVMSAgABEREaYdEzp4AKtPnnDl5+eLBQyd9IKJ5CiSWQC61tf2WMEEuPyYJH7HxMRE5OTkiEfAxFebycw08G02G+Lj403VJ4PL6pP7PIC+PpWWlopHRYWFhSEwMNCU18/qk/s8gLmsjgnVzsJmsDqe9IKpMahNMElZmFgd5igJPz8/xMTEaBmMTZo0AaBn4Ddp0sTqk5s4EU6q0mHkMTEx8PHxMdWYUEqZcpybUVwYv5O01VH3fOR0OsXLlQQEBCAqKsoUY+KUEkzBwcF/S5kuKZgAa4LyhMuMfcrJyUFFRYUojxmdVG02GxISEkzVJ4PL6pP7PIC+PpWXl4sXfg4NDUVwcLApr58Z+nRKCSbgzy0sA9KCyXJSdZ9LZ2i8TodOaSdVX19fxMTEWE6qHvAA5gyk0MV1+PBh8VpoZgyNN7jMOCbM0KdTTjAZ+6l//m0eC5PZnFSt0HjPuKw+uc8D6OtTXl6eeGh8XFyc6ayORmi8mfpkcFl9cp8HsCxMXsOxgikxESgoAEpLvctjhcZ7Butm9pzLjH2yQuPdg4+PD+Li4kw5Jqw+uc8D6OtTUVGReGmoqKgo+Pn5WYLJWzC25IzQ+GofO69Hylmh8Z7BmqA85zKj1dEKjfeMy+qT+zyAOULjDcTFxcFms5nq+klbHU85wWRYmIwnuuRk1/u7d3uXR6eTqhUB4zmX2frUpEkTlJWV4dChQ6I8YWFhCAoKMt31M+OY0NUn3ZFeVmi8e7Db7aa0OkpGnp6ygskI909Kcr3vbcEEmHPSNWMYdJMmTaz6TW5Cp9XRjCkgTkSfzGZ1NFtovDXOPYPkfOQjclSNUErdCeBONFD8de3qym/ZtGlTkERoqEJYGLBnj/fP7ZFHHoFS6ugEpZTyPgmA1q1bY/To0ejSpQtIivEAwG233YbBgweL88THx+Ptt99Gr169xDgMXH755cjKyoLNJvv8YLPZMHr0aLRu3VqUBwDOOussfPDBB4iLixPneu655xAWFibO07FjR7z77rvIysoS57rvvvvEBTQANGvWDKNGjUKfPn3EuYYMGYLs7GxUVVXBx0du6g8JCcF///tfdOnSRYzDwAUXXICkpCQEBQWJc7322mtITU0V5+nZsyfee+89pKWliXP95z//gd1uF+fJzMzE6NGj0blzZ3Gu22+/HZdcconIGqWknzZ0QSkVBsDhcDjqnLwLCwsRHh6Omu1OOw3o3x944w0952rBggULFixYOHEwtACAcJINipg65bbkjofkZJktOQsWLFiwYMGCOXBKCabRo0fj+eef/9v7SUneFUx79uzB3XffjTlz5njvoLXg66+/xl133SXOU1RUhHvvvRcTJ04U55o6dSpuvvlm8SK/gGvb9MMPPxTnWbx4Mf71r39h586d4lyvvPIKXnzxRXGezZs3Y/jw4Vi2bJk418cff4yHHnpInCc3Nxf33HMPpk6dKs41ceJE3HrrreI+RZWVlbj//vsxduxYUR4AmD17Nm699Vbk5eWJcz399NN4++23xXn++OMP3HHHHdiwYYM416hRo/DUU0+J8+zatQt33XUX5s2bJ8711Vdf4Z577hHnOXz4MO69915MmjRJjoSkKV4AwgDQ4XCwNgwePJjx8fE8tt1jj5FJSbV+rdHYunUrAfDFF1/03kFrwd13300ALC0tFeWpqKigzWbjHXfcIcpDkq+99hoBcOPGjeJcqampHDBggDjPd999RwCcOnWqOFd2djazsrLEeZYuXUoAfP/998W5rr/+egYHB9PpdIry5OXlEQAfffRRUR6SfOyxxwiAOTk54lyhoaG89tprxXk+/PBDAuDixYvFudq0acOePXuK80ybNo0AOH78eHGuQYMGMTk5WZxn8+bNBMBXXnlFnGv48OFUSrGsrEyUp6ysjEopDh8+vEHtHQ4HARBAGBuoM04pC1Nqaupxi+EmJ7vyMFVWeocnKSkJSins2rXLOwesA4YT4m7hPUUfHx80adJEi4XE6JMuLp2/ky6unTt3ilsudPepqKhIvJZXZGQkgoODtY5zXdfPjONcZ590jYm9e/ei0luLUS1Irs6no+v6kRQvjeLn54eEhATRPp1SgiklJeW47yclAU4ncBwt5RaMH07HDWb0SReXjhvM6JMuLjP+TkeOHIHD4RDliY6ORkBAgNbrJz0mlFLax7mu62fGcb5nzx7xHEw6xUVKSgqcTqe4uPD390d8fLwpx4QkzyklmGoLCZVIXqnr6ccSF55zORwO8bIysbGx8Pf3N9VTviUuPOcB9N27OsSF7j5VVVWJ5/YJDAxETEyMKec+s61R0uvuKSWYarMwSQgmXZOubnNxQUGBeH6a+Ph4+Pr6mkpc2Gw2JCcnm27SNbb/dPAA+ibd3bt3w+l0ivLo/p0qKiqO65LgTQQHByMqKsqUc5+Z5iODy2y/U0pKCnJzc1FcXCxy/FNKMNVmYYqKAgICvG9hysvLE/vhDCQkJMDHx8dUTwqGuDBTnwBzTropKSnYvXu3uL+UbstFeXm5ePbo0NBQREREWOPcTegeE2bs08GDB8Vr1iUmJsJms5nCp/ekF0xKqTuVUmsBLKqvbWJi4nEzfyrl/dQCxsCXdsa22+1ISkoypfOj2SwXxqRrJnGRmpqK0tJS8YK44eHhCAsLM90TsVlFtNn6lJqaiv3796O8vFyUxwgY0jnOdQQM6VqjpOe+k14wkRxFMgtA1/raGpFex0NyMuDNa6zbDGlGnwud4kLXBFVcXIz8/HxRnoiICISEhJhu+8+sT/lm+52MSK+KigpRnqTqQqC6rh9J7JGooVUDvr6+SExMtPwC3YT0unvSC6bGwrjJjkXTpoA3r7GZzcU6I70OHTokyhMVFYXAwEBTLcQnwhnbEhfuc5ktjNwQF7oivcw495n1AVgHD2BZmLyG2hy/mzYFtm/3Ho9us35hYaF4GLlZI73M6Pxo1j6ZLdIrNTVVS6RXQEAA4uLiTDkmzLZ1b9b8UgUFBThy5IgoT1xcHPz8/CwLk7dgWJgOHz78l/fT0lzJK73l/xYbGws/Pz9TqGoDhuXCjE/5ZvqdDC6dkV66+lRZWYn9+/eL8gQFBSE6Otp6yveABzBnn3SNCR0BQ/Hx8VbAUGOP786XlFJ3KKW2KaVKlVJLlVLZdbRNVEqNVUptUEo5lVJv1NIuQik1Sim1r/q465RSA9w5v7pgmKaP3YtOS3P96637wWazmWbf9lguM1mYDC4z+kvpCCMPCQlBZGSk9ZTvAQ9gTmuMLq6cnBzxupOJiYmw2+2mmvvsdru2VCdmGeeNFkxKqSsBvAHgOQCnA5gD4Bel1PFj9gF/ADnV7VfWckw/AL8CSANwGYBWAG4B4HUPO0MwHRsZYAgmb27LmfWJTkfZDd1PdGVlZeJh5GFhYQgPDzflmDDjU74ZLUwHDhwQDyNv0qSJtjByXdHIOktDWdZ1z7mkHoDdsTDdB2AMyQ9JriM5AsAuALcfrzHJ7STvIfkZgNqcbIYBiAJwEcl5JHeQnEvyuALLExiC6djki8nJrvQC3hRM6enpsNnkdz1TU1MRFhaG0tJSca5mzZohOjr6b1ua3kZ4eDgSEhLEnWEBoGnTpoiPj9dSYb1ly5bi22SAa0xER0eLZzAHgObNmx83XYe3kZqaioiICPGtCsB17/r5+Yn7SyUlJSEsLEw8XB0A0tLSkJiYKJ4CwsfHB82bNxe/doDr3o2NjRUPDgGAFi1aiHMArnEeFRUl7u8DABkZGaZcoyIiIkQSLKvGqLBqS1AxgMtJTqjx/psAOpDsU8/3ZwJYUS2yar7/M4D86mNfCJdFaiyAF0ke965TSvnDZb0yEApgt8PhQFhYWK3nUFhYiPDwcByvXUoKMGQI8OyzdfXCggULFixYsHAyw9ACAMJJNujJsrHSMgaAHcCxjhEHACQ08lg1kQ7XVpwdwAAAzwK4H8CjdXznYbgsVsbLY5tsWpp3LUwWLFiwYMGCBXPAXVvcsWYpdZz3GnseBwHcSnIpya/h8nk67jZfNUYCCK/xSq6PpKqqqs7Qe28KpqKiIi1mdpJazNEAUFpaKu5cCbj6VFBQIM4DAOXl5VpM3wC0/U6VlZVatuIAV7Spjm1Tp9MpnjbDQHFxsZatA533bllZmZatTJ33bkVFhbhrgAGHw6FlK72+NcqbOHLkiLVGNRKNFUy5AKrwd2tSHP5udWoM9gHYeMz22zoACdXbgH8DyTKShcYLQL13TosWLXDLLbfU+rm3BNOkSZMQEhKCOXPmeH6wenDWWWchO7vWIEWvYcWKFQgKCsLYsWPFuYYNG4bU1FRxx/K8vDwEBgbixRdfFOUBgKeeegqRkZHiWb5JIjY2FsOHDxflAYBPP/0UYWFhWLVqlThXp06dcMEFF4jzzJgxA8HBwfj555/FuS6++GK0a9dOnGfLli0IDAzEe++9J8517733IjY2VjzLd1lZGYKDg/Gf//xHlAcA3njjDURERGDHjh3iXOnp6bjhhhvEeb7//nuEhoZi3rx54lx9+/ZFnz51eut4BUuXLkVgYCDGjRsnxtEowUSyHMBSAP2P+ag/gPkenMc8AM2VUjXPpyWAfdWcXkFycjK2bdtW6+dNmwJ79wKeim4jImDr1q2eHagBSE5OxtatW8XFhSFgdPXpyJEj4s6pUVFRCAoK0tYnwLV4SUIpheTkZHEe4M8+6Rzn0tB97+7evVs8ak3X2DO4qqqqxMWFv78/4uLitN671jh3DzrXKEB2nLuzJfcagJuVUsOUUplKqdcBpAJ4FwCUUiOVUp/V/IJSqoNSqgOAEACx1X9n1WjyDoBoAG8qpVoqpQYCeATAKDfOr1ZkZGTUeSOnpQGk5zXlMjIyAOiZoDIyMlBcXCyebycqKgoRERHa+gToERcZGRla+6RjgsrIyNDGA+gb53v27BHfEm7atCnsdru2PpHEdmHHSX9/f6SkpGgdE7q4zDQfGVw6xIXuPh05ckQ8bUtMTAxCQ0NFx16jBRPJcQBGAHgcwAoAvQEMIGkokUS4BFRNLK9+dQJwTfX/j9q8Se4CcA6ALgBWAXgLwJsAXmjs+dWFjIyMOp/mvJWLKTw8HNHR0aa8ma0+uc8D6OvT/v37RcJqayIlJQW+vr5ar19dFmJvwNfXF6mpqaYcE2bs09atW8V9i07EA7B0NnvrAdg9uOX0TXI0yTSS/iQ7kZxd47OhJPse014d55V2TJsFJLuRDCCZQfL52lIKuAvjh6sNKSmuXEzemJPNOkGZsU+5ubniTtJJSUnw8/MzlTXLbrcjLS3NlGPCjH3atm2beG6k9PR0APr6VFZWJl7kNywsDDExMaYcE1afGodTqpaccTPXBn9/l2jyxvVOT0/Hli1bxE2rRp90mMDT09NRUFAgHgWTmJiIwMBAbX0C5K+fzWZDs2bNtEwaOhet9PR0U/1OwJ9b99LRf82aNQOg796tqKgQz4gdEhKCuLg4reNc1/Uz25amGe/d9PR00QfgU0ow1WdhAoDmzYHNm73DVVhYKB4VFRcXh+DgYFNZLpRSRwWnNMz09FOTB9DXp507d4qHJzdr1gxKKW19qqqqEi9NERQUhMTERFOOCbP2yWy+RTofgM0wJk4pwRQdHY3Q0NA623hTMAHm2Lc1oPNmNqtg2rNnj3iOn6ZNm8Jms2nrk9Pp1BIVpSv6T/e2khnHuRkdlwsLC8XLJ8XGxmp/ANaxRpllPj/pBZNS6k6l1FoAixrQ9qgZvDa0aOESTJ7e69YTnedc+/btE0+2l5qaarqoKD8/P6SmppoyUs6M41yn47KuMVFUVISDBw+K8kRFRSE8PNxUY8KsD8BmiUY+6QUTyVEkswB0bUj7NCMUrhY0bw4cOQJ4eq/r3rc9ePCgeMbqpKQk+Pr6al2IpaOifHx80LRpU617+Way0Oke59u2bTOVuEhPT0dpaal4VFRERAQiIyNNZaEzLBdm88PRlRZE9727f/9+8QfglJQU+Pj4WBYmb8GwMNWWfr55c9e/nm7LNWnSBP7+/qZQ1Qbsdrs2x2UzP/3o4tq+fbu447Lu7avy8nLs2bNHlCc0NBSxsbGmHBNWn9znAfT16eDBg+JlX5KTk7WnBZFeo4wHYEsweQmGYKrNcmEE0nkqmGw2m2n2bY/lMmOfdu7cKV7OwRh7uvpUWVmJXZ5mYa0HwcHBSEhIMOWYMGufzOZblJeXJ15/LTExEQEBAaYSF9YDcONhCaZjEBQEJCV5z/HbjINx165d4uUcmjZtqj0qStpxOTAwEElJSaYcE2brk660ILp/J4fDIR65Gx8fj6CgIFONCZ0PwFbQgedcUpG7p5xgMnyY6nK89VakXHp6upZyDjodl9PT07WWczDbBGVGnwujT7pyjpmtnENISIip/M1OhG+RmfwCdT8Y6KhnqPMBOD09HU6nUyQtiI/Xj/gPh1FIsW/fvrW2adECWLHCc64rrrgCWVlZ4guJj48PXn/9dbRt21aUBwD69++Pt99+G1FRUeJcTz/9tBaeLl264PXXX0erVq3Eue69915xx0cAaNmyJV5++WX06NFDnGvIkCHIzs5GVVUVfHzkppSoqCi88sor6NmzpxiHgcGDByMxMRH+/v7iXK+88kq90bveQO/evfHmm28iKSlJnOuRRx6Bn5+fOE+7du3w6quvon379uJc//rXv8Qj/wCXuHjxxRdx1llnifKQxJVXXom2bduKB1L4+/vjjTfeQIcOHUR5AODcc89FYGAgIiIivH5sJb2Y64JSKgyAw+FwICwsrNZ2hYWFCA8PR13tXnwRGDkSKChwlUqxYMGCBQsWLJgHhhYAEE6yQanBT7ktuYageXPA4QCEt/otWLBgwYIFCycJThnBVFxcjNdeew2//fZbvW2N1AIbN7rHtWjRIvznP/8RLxdBEqNGjcK3334rygMA69atw1NPPYV9+/aJc3355Zf44IMPxHl2796N559/HmvWrBHn+vHHH/HKK6+I8xw6dAgvv/wy5s6dK841e/ZsPP744+JbzpWVlXjzzTfx448/ivIAwIoVK/D444+LR10BwJgxY/D555+L82zZsgXPPPOMeE4zABg/fjz++9//ivMcPHgQL774IpYtWybO9euvv+K5554T5zHWqGnTpolzLVy4EI8++qh4ZDBJ/Pe//8X48eNFeQBg7dq1eOqpp3DgwAE5EpIn9QvAnQDWAlgPgA6Hg8dDeXk5fXx8OGTIENbVjiSLi0mlyDFjam1SJ9544w0C4Jo1a9w7QCOQlpbG/v37i/NMnDiRAPjTTz+Jc/Xt25ctWrQQ51mxYgUBcNSoUeJcQ4cOZUBAACsrK0V5CgoKCIAPPPCAKA9JPvHEEwTAvXv3ivI4nU6Gh4fziiuuEOUhyY8//pgAOH/+fHGu9u3bs2vXruI8M2bMIAB+9dVX4lyDBw9mfHy8OM/WrVsJgCNHjhTnuvvuu6mU4pEjR0R5ysrKaLfbedttt4nykORrr71GAFy3bp04V2pqKs877zxxnu+++44AOHny5Aa1dzgcBEAAYWyg3jjpLUxsYKZvX19ftGzZEuvXr6/3mIGBQFoasG6de+eUlZUFwKV4pZGVlaWNB9DXpy1btojXXGvZsiWUUljn7g/dCGRmZqK0tFQ8ujAiIgKJiYmmGhNKKVOO88zMTKxbt07cQpeZmQlA37174MAB8dQFTZs2RWBgoLY+kcSGDRtEefz8/NCiRQttYw+AtrnPLPfuSS+YGoPMzMwGD/rMTPcFk+7BuGfPHhQWNshnzW00a9YMfn5+2vrkdDqxadMmUZ7AwECkp6drvZl1XT9dPIC+Pm3cuFE8c3nr1q0B6OlTVlYWDh8+LJ65PC4uDlFRUaYaEzabDa1btzZVnwwuXWMP0Ceid+7cKV66KyMjAz4+PqLX75QSTFlZWTh06FCD2noimJKSkhAaGmqqhdjHxwetWrUyzZOCAd3iQtf127p1q3j+r5YtW8Jms2nrU3l5uXhun7CwMCQnJ5vqKV8pZaqn/Jpc69atEw+J192n3Nxc8fxfKSkpCA4O1jr3NWR3xxMYu0iWhclLMH64hrUFtm0D3FlzjAnKrE8/urYQdD1p7du3r8FC2l2kpaUhICBA2+9EEhvdjVpoIPz9/ZGRkWHacS4N3Qvxpk2bTGWhy8zMRFFREXbv3i3KExMTg5iYGFON8xMhos2wRp1Sgsn44RqCzEyAdD9SLisrCxs2bEBVVZV7B2ggdIsLh8MhXlk9ISEBERERppqg7HY7WrVqpXUh1sVlxj7t2LEDRUVFojzNmzeH3W7XNs4rKirEMy2HhIQgNTXVlGPCbH3KzMzE+vXrxS10uteo/Px8MQvdKSWYWrZs2eC2hjHKEz8mszn56tpW0vn0o3OrzOiTmZx8MzMztTj5pqamIigoSFufdDn5Nm/e3LTjXAcPoK9PmzZtEk8V06pVKyiltPWppKREvIZmVFQU4uLiTDEmTinBFBgYeLSWXH2IjATi408ex28zWWMMLh1Ovrqffg4fPoy9e/eK8sTFxSEyMtJUY8Jms2mz0OkeE2a0XJjFyddAZmYmqqqqsNkbRUbrQFBQEJo2bWq6MaFrnEvfu6eUYALQqHphnjh+6/ZPsJx83UNYWBiSkpJM5fht1jB8Mzr5ZmZmanXy1TkmzODka8CMqWJ0PwBv3rxZvMivtIXulBVMDXHybd3afcGUlpYGf39/y8nXTeh+yjej8+OmTZvEM/laTr6eQdeYMHMgis5tbjOliklPT4efn5+2uU9XqphmzZpZFqbaoJS6Uym1FsCihrQ3JviGiIvMTJfTtzu7Qna7Ha1bt7aefjzgAfQ95et08tV1/XQ6+ZptTJj1KV+HhU53Co2CggIcPHhQlMesqWJatmxpKus6IHvvnvSCqaGZvg0YFqaGOHRmZQHl5YC7a44Zw/AzMzNx8OBB5OXlifIYTr66nvJ1ZvI141O+Gfu0efNmcSff1q1ba3PyzcrKQklJCXbu3CnKEx0djbi4OFONCbNa6AxxIb1G6bauS6WKOekFU2NhRMo1ZH+9XTvXv3/84R6X7ky+Znr6MTL5mvEp34zWGF1Ovr6+vtr6VFVVJb6FoNPJ1yxP+cfyAPr6tH79em2pYnTNfbpSxYSHh5/0a9QpJ5jCwsIAAIcPH663bVycK1Ju1Sr3uDIzMxERESEeFaWUQps2bcS3lABXn0JCQsRN4IBr4BcXF4vzZGZmIiAgQDw03uDy8fFp0PjzBCkpKYiMjITD4RDlAVx9io6OFvct8vX1RWZmpvi1A1x9CgsLE19IAOC0007Tdu8GBQUhNzdXnCsrKwtlZWXi4qJly5YIDAxEQUGBKA/gun7h4eHic19ERARSU1PFfZgA/WuU9EMVILtGKWlTnC4opcIAOBwOx1FRdDwUFhYiPDwc9bUzcM45QFAQMHFi48/J6XRCKQWlVOO/3EhUVVXBbreL8xjjRUefnE4nbDY9ml7X9dPZJ11cZu2TGe9dktaY+Ifz6OTSOc519amha5ShBQCEk2yQOj3lLEyNRfv27luYbDabloEIQMuEC0DbzQVA2+QE6Lt+Ovuki8usfTLjvWuNiX8+j04uneNcV58k1yi3eqCUukMptU0pVaqUWqqUyq6jbaJSaqxSaoNSyqmUeqOeY1+llKJSaqI751YXSDY6QqRdO1dNucZaR6UjUU4El1n7pMvKqqtP7oxzd2HWMaELVp/ch2Ex0wHr3j05uKR5Gi2YlFJXAngDwHMATgcwB8AvSqnUWr7iDyCnuv3Keo7dFMAr1cf0KubPn4/4+HhMnTq1Ud9zx/H71ltvRZs2bRrF4w62b9+O5ORkjB49Wpzr6aefRkxMjHhen9LSUmRkZODBBx8U5QGAMWPGaNm/B4Du3bvj6quvFueZPHkyoqOjsWDBAnGuK6+8Ej179hTnWbVqFRITE/H111+Lc91///1o2rSp+EKck5ODpk2b4oUXXhDlAYDXX38d4eHh4r5fTqcTWVlZuP3220V5AOCbb77Rls3+3HPPxaBBg8R55s6di7i4OEyZMkWc66abbkL79u3FebZs2YKkpCS899574lxPPvkkYmNjRatDuGNhug/AGJIfklxHcgSAXQCOe5eQ3E7yHpKfAajVA1UpZQfwJYAnAHg9vXNKSgpycnKwYsWKRn0vMxPw8WnctlxoaCjWrVsnEtZYE0lJScjJycGyZctEeQAgMjISBQUF4tl7AwICAEBLn2JjY3H48GEtXIGBgViyZIk4T5MmTVBQUKClT8HBwVi2bJm4iE5NTcX+/fu19Ck8PBy7d+8Wj2yNiYlBYWGhlj5FRUXhyJEjWLmyzudVj2Gz2eDv74+lS5eK8gBAfHw8HA6HlusXFBSExYsXi4volJQU5ObmaulTaGgoVq9eLe5YnpycrG2NioiIQH5+vmh6mEYJJqWUH4BOAI4100wF0MPDc3kcQA7JMQ08F3+lVJjxAhBaV/vk5GTExMQ0etLw83OJpsYIpo4dOwJAo8VZY+Hr64t27dppGYxGn3RxLVu2THyC0t2nrVu3ikfzZGZmwt/fX1ufysvLxUOFIyIikJGRYapxrpQ6Os6loXuc//HHH+L5qzp06ABAX59yc3PFo0BTU1MRFRWldUxIi2h/f3+0adPGNOO8sRamGAB2AAeOef8AgAR3T0Ip1RPATQBuacTXHobLYmW86hzNxgTlzgBp1w5ozNd0T1Br1qxBaWmpKE/79u2hlNLWp0OHDmH79u2iPElJSYiNjdV6M1si2n0uM4robdu2aRHRAQEBphLR4eHhaN68uanGuSWiPYMOEe2u2/qxs5Y6znsNglIqFMAXAG4h2ZgEISMBhNd4Jdf3hY4dO7plam/XzuXD1FB/spYtWyIoKEjbYKysrMTq1atFeUJCQtCqVStT3cxmnqDMKKIdDge2bdsmypOYmIj4+HitY2L58uWiPD4+PqYV0cuXLxd39NXdp+3bt4vnhGvdurVWEV1RUYE1a9aI8oSFhaFFixb/KMGUC6AKf7cmxeHvVqeGIgNAGoD/KaUqlVKVAG4AMLj674zjfYlkGclC4wWgXo9GY+A3Fu3bA0eOAFsb6Fllt9vRoUMHa4JyE6effjoAfX3avXu3eDK6Fi1aHPX5kUbHjh1RVVWFP9xNUd9ABAcHo3Xr1qYa52YW0WvXrkVJSYkoT7t27WCz2bT1qbCwEFsbOjG7icTERCQkJJhORLdv396U41xyjWqUYCJZDmApgP7HfNQfwHw3z2E9gLYAOtR4/QBgRvX/d7l53L/BXcFkfK0xv3fHjh2xfv168Qy+bdu2hd1u1zYYi4qKxMtFxMXFITk52VQTlJlF9IoVK8QzOusW0Xv27MGBA+4+AzYMLVq0QEhIiCWi3cSJ2BLWwQPoFdHS1RR0i+jDhw+LFR13Z0vuNQA3K6WGKaUylVKvA0gF8C4AKKVGKqU+q/kFpVQHpVQHACEAYqv/zgIAkqUkV9d8ATgE4HD1317b+ExPT29Qdu9jERsLpKYCjQly6tixI0iKO9UFBATgtNNOM+XNvHTpUtP5rGzYsEG8PECbNm3g4+OjrU/FxcXYuHGjKE9sbCxSUlJMJaJtNpsloj2AbhG9d+9e8VI5GRkZCA0N1dYnp9MpLqKDgoKQmZlpinHeaMFEchyAEXBFta0A0BvAAJI7qpskwiWgamJ59asTgGuq//+zW2fsAZRSaGckVmokOnduvGAC9N3Mq1atEg/v1j1B5eTkiOdIatasGcLDw7X1yRLRnnGZ0fF748aN4jmSdIvokpIS0fBuwJWaITU11XQi+vTTTzflvbty5UrRHEmA/BrlltM3ydEk00j6k+xEcnaNz4aS7HtMe3WcV1odxx9K8iJ3zq0+GMm6GpsjqXNnYOnShjt+Z2Vlwc/PT9tgLCsrE0/iFhERgfT0dFPdzGb2WdEhonWHd+fk5IjnSGratCkiIyNNJaLNFt5dk8usIlo6R9Jpp50GX19fU4no6OhoNG3a9J8lmE5mGIKpsWbIzp1d5VE2b25Ye53h3TotP8bTj/QEpduaZeVIcg86cyTpGhNKKdM+5ZslvNtAx44dkZeXh127vObqelykpqZqE9HGOLdEtPtcUmvUKSeYjJu5sYOxUyfXv43dlluzZg3KysoaxdVYWDmSPIOVI8lzruXLl5vuKd/KkeQerBxJnsES0Z6hY8eOyM/Px86dO71+7FNOMDVv3hxA4wVTVBSQnt54waQjR1JoaChatmwpvr8OWBOUN7jWrl2rLUeSrjGhI0dSkyZNEBcXZyqflRORI0nXmNCZI0lXn6wcSe5BR44kA5Jj4qQXTEqpO5VSawEsakh7u90OwD1zZ6dO/2zHbytHknvQnSNJh4g2Y3i32UW0GXMk6Ug0auVIch9mXKMk++Tj9SNqBslRAEZV15Ortbjvsfi///u/RnN17gw8/TRQVQVU66460bZtW4wcORI9enhaZq9+3HTTTTj77LNRWVkJPz8/EQ6SiIuLw8svv4zevXuLcNTkuuSSS5Camgp/f39RLpvNhldffRUZGRkgCaWUCA9JnHXWWXjjjTfQpEkTca7HHnsMAQEBojwA0LlzZ7z00ktaqp8PHz4cubm5cDqdsNnknveaN2+O559/HmeffbYYh4Frr732qPO3JIKDg/H666+7nY+uMRg0aBBCQkIQHh4uxmFcr5EjRyIuLk6Mx+Dq1asXXn311aO7FJJc//d//4eKigrxe7ddu3YYOXIkunfvLj4f3XzzzTjnnHNE1yjAVZj5pZdeQp8+fbx+bCV9k+qCIZgcDkeduZYKCwsRHh6O+todD7/9Bpx1FrB6NXDaaR6esAULFixYsGDhhMDQAgDCq6uF1IuTfktOJ7p0AWw2YMGCE30mFixYsGDBggWdOGUE0/bt2/HZZ595ZPYODXUV4p1fRxGYqqoqTJ8+HfPrauQl7N+/H5999pm47wMAzJ8/H7/++qs4T0FBAb755hvxjLqAy49t4sSJ4jxFRUWYNGmSeDZsANi0aRO++uorcZ6KigpMmTIFS5cuFefatWsXPvnkE3HfB5KYOXMmZs2aJcoDADk5ORg7dmyj88G5g8WLF+Pnn+XzBBcWFuK7777Djh076m/sIdasWYPx48eL85SWluKnn34S9zkEgG3btuHzzz8X56mqqsK0adOwQMOT/759+/DZZ5+JB7kArjVq2rRpsiQkTfECEAaADoeDx8OTTz5JAFy1ahXralcf7riDbNWq9s+rqqoYGRnJCy+80K3jNwYff/wxAXDmzJniXO3bt2eHDh3EeWbMmEEA/OSTT8S5LrzwQkZGRrKqqkqUZ9u2bQTAJ598UpSHJO+55x4qpZifny/KU1JSQj8/Pw4dOlSUhyRfe+01AuDKlSvFuVJTU9mvXz9xnu+//54AOGnSJHGu3r17s1mzZuI8y5YtIwC++eab4lzXX389/f39WVpaKsqTm5tLALzvvvtEeUjyscceIwDu3LlTlKeyspLh4eG85JJLRHlIcsyYMQTA2bNni3O1bduWHTt2bHB7h8NBAAQQxgbqjFPGwpSdnQ0AHqvqHj2ADRuAvLzjf26z2dCrVy/MnTtX/InY6NOcOXNEeQyulStXwuFosF+9WzjjjDPg6+urrU8FBQXieWmaNm2K5ORkbX0iiXnz5onyBAQEoEuXLtr6BOgb57///rt4XppevXoB0Nenbdu2iWdIb9euHcLCwrT1qaysDEsaE7bsBqKjo5GVlWWqcW6329GzZ0/MmTNHPNBA9727YsUK0Qzpp4xg6tatG3x8fDzeKjMC3n7/vfY22dnZyMvLw/r16z3iqg/p6elITEzUuhBLbzUGBgaic+fOppqglFLIzs7GggULxEuV6F6It2zZgn379onydOjQASEhIdr6VFJSIh5mHRsbi9atW5tqnNvtdvTo0cOUC/GyZcvEi2Z3794ddrtdW59ycnLE3QSaN2+O+Ph4bX1yOp2iW42njGAKCgpCp06dPF7w09KAhIS6/Zh0L8Tz588XL2qoe4LauHEjDhw4IMpz+umnIygoSFufiouLxXO4xMfHo2XLlqZaiH18fNC9e3dTLsRLly5FUVGRKE/37t1hs9m09enAgQPY3NAaUm6iVatWiI2N1danqqoq/F7XU7IXEBISgtNPP91U927NNaqqqkqUS0efThnBBLgu6KZNmzw6hlIuK1Ndgqljx44IDAzUMvB79+6NI0eOiJf1SExMREZGhtabee7cuaI8vr6+pl2IlyxZIh4M0LNnTyiltPVp79694okQMzMzER0dra1PlZWVWLhwoShPWFgYOnToYMqFeN68eaZYiGtyrVmzBnm1+Xx4CZ07d4a/v7+2PhUWFmLVqlWiPElJSWjWrJklmOpCYzJ9GwPfU/ToASxaBNS2u+Ln54du3bqZaoIyuBYtWiQe8aB7Id69e7d4ZE9WVhYiIyO19amiokJ8IQ4PD0f79u1NNc6VUqb1QVy9erV4WY8uXbrAz89PW58cDod4BFtqaipSU1O1jnNpH0R/f3+cccYZprp3Da6FCxeK1W896QUTyVEkswB0ra9tz549vcLZowdQXAzUVV0lOzsbO3fuFF+I27Rpg4iICG2Dsby8HIsWNagKjduIjIxEmzZtMHv2bFEe4M+bWZrLCAaYM2eOtoVY1/VbtWqVeHi8EQygq08FBQXi9bWMYABdfdIVDNC1a1dT3bsG14IFC7QFA+jq07Zt27B7925RHiMYQFefysrKsHjxYpHjn/SCqTGIjo5G69atPT5Ox45AYCBQ1++vS1XbbDb07NkTc+fONd220sqVK0UjHoA/gwF09Sk/Px/r1q0T5WnWrBmaNGliqqg8MwcD/P7776YLBti6dSv27t0rytO+fXutwQClpaXiecesYADPIN2nU0owATha1+3w4cNuH8Pf32VlmjGj9jbdunXTHvGwYcMGUZ4TEfEgHZVnBAOYaYKqGZVntmCATZs2iSc1PRHBANJReWYNBjDLQnws17Jly0wXDHDw4EGPfYjrQ8uWLREXF2cJJm+he/fuAODxtlLfvi4LU23+hiEhIejYsaOpJiizRTzU5NqwYQMOHjwoyqMzGCA7OxtFRUXiUXkJCQlo3ry5FQzgJk5EMEBxcbEoT48ePbT6IO7fvx9btmwR5TkRwQDSUXlmDQbo1auXWDDAKSeYDAuTp7ka+vUDCguButaj3r17Y926dcjNzfWIqz507twZAQEBWvaIe/fujcOHD2NlXQ5cXkBSUhLS09O1RRoC8guxn5/f0YVYGkafdE2GixcvNlVUXu/evbFnzx5s375dlCcrKwtRUVHa+qQjKi88PNyUC7ERlSftg6jz3u3du7e2YABdUXm9e/dGYWEh/vjjD68f+5QTTMnJyQDg8VZPly5AUBAwc2btbXQ9Efv5+Zk24mHRokViEQ8GjGAAXX3atWuXeDDAaaedpj0qT0cwQNu2bU01zs1cGeCPP/4QDwbo2rWr9soAOoIBUlJSTBWVZwQDnOz37iknmAwsWbLEo4XYzw/o2bNuPyadjpa9e/fGjh07sGvXLlGetm3bai9/IBXxYCAqKgpt2rQ56W/mmtAZDKDbmqUjGEB3iR4dwQBpaWlISkoyXTCAGRbi43FZwQDuoX379ggNDbUEkzcRExODnTt3erSY9O0LzJkD1OZXGx0djQ4dOojXXwNcgzEuLk58C8Futx9NlimN7OxsREREYM+ePVoW/fLycnEn6W7duiEiIgI5OTmiPIDr+oWFheHAgQOi1y89PR3NmjVDQUGBGIeB7OxsJCQkiCewDAoKQrdu3TwKDmkosrOzER0d7fF8VB+UUujTpw+Kioq0+GYZY08avXv3hs1mE3eSPv300xEbG4u8vDwt1y8mJkb8ATguLg5t27bVtkbFx8eL37t2ux3Z2dk4cuSI138nJf3D64JSKgyAw+FwICwsrNZ2hYWFCA8PR33tGoL5811WpoULga61ZIGqqqqC3W73iKchcDqdUEpBKaWFy2bTo7V1censk84xoaNPRyt5a/qdzDbOjTnYTH0CzDfOdXKZtU//pHvX0AIAwkk2yGR90luYGpPp29vo0gUIDgZ++632NjomDMC1BaNjIBpcuqCLS2efdI4JHVBKaf2dzDbOdS0igDXOTxYus/bpZB/nJ71gakymb2/D19e1LTd1qm5mCxYsWLBgwYJOnPSCqSEgibvuugsPPfSQ14997rnA3LmA4dKzZMkS9O/fX7zQIAA8++yzGDp0qDjP1q1bMXjwYPzyyy/iXO+//z4GDBgg7iNQUFCAq666Ch999JEoDwBMmDABvXv3Fg+7r6qqwrBhw/Dss8+K8gCu0g19+/bFzp07xbkeeugh3HXXXeI8a9aswfnnny/uqAwAr732Gq644gpxnr179+LSSy/Ft99+K871xRdf4KyzzhLP0VZcXIzrrrsOb731ligPAEyePPlodJwkSOLOO+/Eww8/LMoDAIsXL8bZZ58tHu0HAE8//TSGDRsmzrNlyxYMHjwYU4WtF6eEYFJKYcOGDfj444+9Hrp73nmuIrxGtFxgYCCmTZuGH3/80as8x8OOHTvw5ZdfiofuRkVF4eeff8aECRNEeQAgJycHv/zyi3jEUHh4OH777TeMGzdOlAdwTfBz5szBzLpyUHgBdrsdq1atwueffy7KA7hM3rNmzcJPP/0kzrV582Z88skn4uklwsLCMHnyZPzwww+iPIBLyHz77bfiEUNRUVGYPHkyvvvuO1EeADh06BB+++038ajWwMBALFiwAGPHjhXlAYCKigrMnTsXU6ZMEeVRSmH9+vX45JNPxNNLBAQEYPr06drWqC+++EI8qjUyMlLLGnVKCCYAGDRoEA4ePOj1EgTNmwPp6YBxP2VlZSEtLU3LYBw0aBAqKyvFVXVERASys7Px448/ilt+Bg0aBADi189ms2HgwIGYOXOmeCTUeeedB5vNpm1MbNy4ERs3bhTl6datG6KiorT16ciRI+KJWVNSUtC+fXttfQKAn3/+WZQnICAA/fv3x+TJk8VD1AcOHAhA/t5VSmHQoEFYtGiReBTeWWedhYCAAG1jYv/+/eJlctq0aYPU1FRtfaqoqMCvv/4qyhMVFYWePXuKr1FuCSal1B1KqW1KqVKl1FKlVHYdbROVUmOVUhuUUk6l1BvHaXOLUmqOUqqg+jVNKeVVnyTjZvb2k4JSrm25yZONv1038++//y4eOn7WWWfB399f28Dft2+feKmNdu3aITk5WYvlYtCgQSgvL8e0adNEeaKjo9G9e3etglP6+vn4+OD888/Hb7/9Jl5q4/zzz4dSSts4X7t2rXjoc8+ePREeHq6tTw6HQ3yrsVmzZsjKytLWJ5LibgJBQUE488wz8csvv4hvNeq6d401av78+cjLyxPlOvvss+Hn56dlTAwcOBC7d+8WdYdptGBSSl0J4A0AzwE4HcAcAL8opVJr+Yo/gJzq9rXV0+gL4CsA/QB0B7ATwFSlVFJjz682ZGRkoHXr1iKm1fPOA7ZsATZvdv09cOBAkMRkQ0UJISQkBH379tVyMxuCU8fNPHDgQMybN088XX///v3h6+urTZzt3LlT3G+gY8eOiI+P19KngQMHorS0FL/VFSbqBcTHx6NLly5aBKeuce7r64tzzz0X06ZNQ2lpqSjXgAEDAMj3CXCN85UrV2L37t2iPL1790ZwcLC2cZ6fny9e261FixZo0aKFNnHhdDrFtxpDQ0PRp08f/Pzzz+JbjToEpzsWpvsAjCH5Icl1JEcA2AXg9uM1Jrmd5D0kPwNw3OxYJK8lOZrkCpLrAdxSfW5nuXF+tWLgwIEiNdD69XNFzBljr2/fvggKCtL2pJWbmytelqJVq1bIyMjQ1qeqqirxmzksLAy9e/fGTz/9JH4z69quMLYaZ82aJe43cO6558Jut2sbE1u3bsWGDRtEebp27YqYmBhtfSoqKsKsWbNEeZo0aYKOHTtqW4gBeXHm7++Pc845B1OmTEF5ebkol657F3CNiSVLlmDfvn2iPP369UNgYKC2Ph08eBBLliwR5cnMzBR3h2mUYFJK+QHoBOBYp5mpAHp466QABAHwBVCriUEp5a+UCjNeAELrO6ihQL2N0FBXAkvDOmz5DXiGM888EwEBAdqeiM3oN6DDt83wG/jpp59M49tmt9sxYMAAzJgxQzybve6txvXr12PLli2iPD169EBERIS2Ph0+fFi8rEfTpk3Rtm1brb5t0luNgYGBOPvss/HLL7+IVzfQvUZJusM01sIUA8AO4NgV8wCABK+ckQsvANgDoC7nkofhslgZr3ptwD179vQ4u3dtGDDAlcDScOcYOHAgCgsLtfkN6DJNA/I3s06/AZ1bjYMGDcKCBQu0+A3o2mrU4TcAAB06dECTJk209am8vBzTp08X5YmJiUG3bt20CE5d49zwbZs+fbp4Gg2dW40DBw7E6tWrxYtm9+rVC6GhodqsgYcOHcKCBQtEeQx3GF0PwJLuMO5GyR17d6vjvOcWlFIPALgawCUk69rcHwkgvMYrub5j+/r64qyzXLt83vYbuPBCoKQEMIIBjJtZ11PJypUrxesO9e7dGyEhIdr6pMtvoGXLllr9BqR920JDQ9G3b18tW426LD+Gb9ucOXPE02icc8458PHx0TbBb9u2TTyNRufOnREXF6dtnJeUlGBGXZXJvYCEhAR07txZq+VHekz4+fnh3HPPxa+//iqeRkP3VuOyZcuwZ88eUZ4+ffqIusM0VjDlAqjC361Jcfi71anRUEr9G8AjAM4hWecjK8kykoXGC0CDYsPPO+88AN6vztyyJdC6NTBpkuvvpKQkbX4Dum5mw29g6tSplt+AG9DtN5CTkyOeEyczMxPNmjUzlW+blUbDM+hOo7Fp0yYrjYYbSE5ORocOHaw0Go1AowQTyXIASwH0P+aj/gDme3IiSqn/A/AYgPNIinmH9e/vOnUJ/44LLwT+9z/A2EUaOHAgNmzYgM1G+JwQunfvjsjISG2maR1+A6mpqdr8BnRtNRp+A5MnT9bmN6ArqnHhwoXa0mjoGuc60mi0bdtWWxqNgQMHoqKiQksajR49ephqq9Futx9No1FUVCTKpdO3beDAgVrSaPTo0QPh4eHarLZS7jDubMm9BuBmpdQwpVSmUup1AKkA3gUApdRIpdRnNb+glOqglOoAIARAbPXfWTU+fwDAswCGAdiulEqofoW4163aER0dDcCV8t7bN/NFFwG5ucD8aumoMyfOeeedh2nTponnxNG91ajLbyAsLEyr38D8+R49X9QLw2/ATDlxgoOD0a9fP/z888+my4mjM42GrnG+c+dOrF69WpSnY8eOSEhI0DbOy8rKxNNoxMXFoWvXrqbK2+br64vzzjsPv/76q7Y0GhJjotGCieQ4ACMAPA5gBYDeAAaQNFa1RLgEVE0sr351AnBN9f9r2ubuAOAHYDyAfTVe/27s+TUUO3fuxNq1a716zK5dgYSEP7fldPoNDBo0CKWlpVr8BoycONLQ7TcwdepU0/kNLF++XIvfQHBwsLY+5eXlYeHChaI8LVu2RPPmzU211RgWFoY+ffqYyrfN2GqcPXs2HI7jZq3xGsyYRqNLly6IjY3V1qfi4mLxElGSaTTccvquzpmURtKfZCeSs2t8NpRk32Paq+O80mp8nlZLmyfd7FeD4O2F2GYDLrgAmDgRIF0384ABAzBr1ixtfgO6TPubN28W9xs444wzEB0dra1PRUVFWvwG2rdvrzWqUYffwNlnn40pU6ZoS6Oha6tx8eLF4mk0+vXrpy2NxsCBA3HgwAHxNBqnnXYaUlNTtfWpsrJSvPxGZGSktjQaurcadaTROO+886CU0jYmRNxhSJriBSAMAB0OB+uCw+EgAL755pvcuXNnnW3dwY8/kgD5xx+uv5cuXcoff/yRZWVlXuc6Fp9//jk3bNggzrNp0yZ+8803PHLkiDjX999/z2XLlonz5OTk8NNPP2V+fr4oj9Pp5OTJkzl79mxRHpIsLy/ne++9x71794pzzZ8/n1OmTGFlZaUoj9Pp5EcffcStW7eK8pDk6tWrOXHiRJaUlIhzff3111y9erU4z65duzh27Nh650lP4XQ6+cMPP3DhwoWiPCR5+PBhjhkzhjk5OeJcM2bM4G+//caqqioxDqfTyaqqKr7//vsia9SxWLJkCX/66Scta9Rnn33GjRs3ivNs3LiR3377bZ1rlKEFAISxgTpDUVgp60J18kqHw+GoM9dSYWEhwsPDUV87d1FWBsTFASNGAE895fXDW7BgwYIFCxY8hKEFAITTFWlfL9zNw2ShFvj7AxdfDHz9tWtbzoIFCxYsWLBw8uOkF0xKqTuVUmsB1FlM7cCBA+Kh3IBri/Pss/OwcSMgULbuLzh06JD4vrMBacdhA8XFxeLRQgZ09amiogIHDx7UwrV3715x/woAcDqd4nmrDOTl5YlH1gCue1fXmDh8+LC4k7IBXX0qLS1Fbm6uFi5dfaqsrBT3YTOwf/9+bWvU3r17xXkA1xolnYYB0HfvnvSCieQoklkAutbWZvLkyUhKShKPQgGAwYMH46mnshEVRXz9tRzP6tWrkZCQgM8++6z+xh7irrvuQlZWlnipg7y8PCQmJuKFF14Q5QGAl19+GampqeLZ0SsrK9GiRQsMHz5clAcAxo0bh+TkZPFSB4Ar6/tFF10kzjNv3jwkJiZiwoQJ4lzXXXcdunTpIr5obdu2DQkJCRg9erQoDwA8+uijyMjIQEFBgShPUVERUlJS8Oijj4ryAMD777+P5ORkrF+/XpSHJNq3b48hQ4aI8gCuwIzk5GTxHFmAyyH6zDPPFH+wWrlyJRISEvD555+L8gDAnXfeidNOO018jTrpBVND0L17d/j5+eHTTz8V5+rTpw82b16H7OwDGDdOblsuMzMTcXFxWvrUu3dvFBYWYuLEiaI80dHRaNOmDb744gvxRatv375wOp344osvRHl8fHzQs2dPTJo0SXzR6t27N5RS2sb5okWLxEt6dOrUCcHBwdr6tG/fPvFFKy0tDU2bNsWnn34qvmj16dMHZWVlGDdunChPcHAwunTpgnHjxokvWn369AEA8TGhlELv3r3x66+/ilsvevToAR8fH23jfMOGDVi0qM5NGY/Rpk0bREdHa+uTw+HADz/8IEvUUO/wf/oL9UTJXXPNNfTz8+O2bdtYVztPsXfvXtpsNg4c+CoB8vffRWhIko888ggBcO3atXIkJEtKShgZGclzzjlHlIck33vvPQLgzz//LMrjdDqZmZnJli1b0ul0inJNmTKFADh69GhRHpI8//zzGRYWxuLiYlGe9evXEwAffPBBUR6SvP3222mz2bh7925RnoKCAvr7+/PKK68U5SHJF154gQC4YMECUZ7KykomJSXxjDPOEOUhXZF+APjVV1+Jc3Xr1o1NmjQRj8r8/fffCYAvvPCCKA9JXnnllfT392dBQYEoz+7du2mz2fivf/1LlIckH3zwQQLg+vXrRXlKSkoYHh7O8847r8HfcSdK7oQLHW+96hNMxqL16quvigom0rVohYZGMC7OyREjxGisRctDWIuWZ7AWLfdhLVqe4Z133iEATpkyRZTH6XSyVatWzMzMFH+w+vnnnwmA7733nigPSZ5zzjmMiIgQT5mxdu1aAuDDDz8sykOSt956K202G/fs2dOg9pZgqkMIGYtWp06dxAWTsWidd956JiSQFRViVNai5QGsRcszWIuWZ7AWLfeRn59Pf39/XnPNNaI8JPn8888TABctWiTKU1FRwYSEBPbo0UOUhyS//PJLAuA333wjztWlSxcmJyeLr1Hz5s0jAL700ksNam8JpnqE0EMPPWRcIFHBZCxa3bvfScCVzFIK7777rukWrV9++UXbonXuueeabtG67bbbrEXLTVRUVDAxMVHLojV27Fhti1bXrl21LFrz589v1KLlCa644goGBgby0KFDojy7du2iUop33nmnKA9J/t///R8BiCd3LCoqYlhYGAcOHCjKQ5KjRo0iAP7666+iPE6nky1atOBpp53WoDXKEkz1CKF169ZpEUyka9FSysbMzHJedpkcj7GFdfXVV8uRVMNYtKSz91ZWVjIxMZHdu3cX5SH/XLTGjRsnztW1a1cmJSVpW7RefPFFUR7StWgFBARoW7TuuOMOUR7yz0VLOmt+cXExw8LCOGDAAFEe8s9Fa+rUqaI8xqKVlZUl/mD1008/EQA/+OADUR6SPPvssxkZGcnS0lJRntWrVxMAH330UVEekrz55ptpt9u5b98+UZ68vDz6+fnx2muvFeUhyWeffZYAuHjx4nrbWoKpAULI2JKTLoFhLFqDBk2nnx+ZmyvHZS1a7sNatDyDzkWrf//+1qLlJv6pi5YnMLawevXqJcpDkl988QUBcPz48eJcnTp1Ympqqmj5FZKcM2cOAfCVV14R5SHJSy+9lIGBgeKGih07dlApxeHDh9fb1hJMDRBMhtP3hAkT6r2gnsDpdLJly5Zs2bIXfXycfPttOS7D78JatNzDLbfcQrvdLl5zTeei9dxzz1mLlgfo3LkzU1JSxBetuXPnalu0Lrvssn/couUp/v3vfxMAN23aJMpTVFTE0NBQXnDBBaI8JPn2228TAKdPny7K43Q6mZGRwTZt2og/WP3vf/8jAI4ZM0aUhyTPOussRkVF1btGnZKCCcCdANYCWN8QwWSkFbj88svrbOcNGItW79757NRJjsdYtHr27ClHUg1j0fr222/FuXQvWi+//LIoD6lv0dq5c6c2vwvdi9agQYNEecg/F61p06aJ8jidTjZv3lzrovXhhx+K8pANX7Q8xR9//EEAfOyxx0R5SHLYsGG02+3cv3+/KE9ubi59fX15/fXXi/KQ5NNPP00AXLp0qShPeXk54+LimJ2dLcpDugr8AuB3331XZ7tTUjAd7UgDLUzGRQoICNC2aA0Y8D4BctUqOS5r0XIf1qLlGaxFyzOcyouWN9CxY0c2bdpU/MFq1qxZBMDXXntNlIckL774YgYFBbGwsFCUxzAg3H333aI8JHnvvfcSALds2SLKc+TIEYaEhHDw4MF1trMEUyMEk85FKzIynvHxTko+7OtctG666SZr0XIT1qLlGWbPnm0tWh7AWLQ2b94sytPQRcsbePPNNwmAM2bMEOWpqqpieno627dvL8pDkhMnTiQAfvzxx+Jcffv2ZUxMDMvKykR5VqxYQQB84oknRHlIcujQofTx8eGBAwdqbWMJpkYIptjYWC1+F59//jkB8NJL1zE0lDx8WI5Ll7OgsWi9+uqrojwkeckll2hZtLZv304AvOuuu0R5SPK+++7Tumjp8Lt46623CIC//fabKI/T6WR6ejrbtWsnykOSkyZNIgB+9NFH4lz9+vVjdHS0+KK1cuVKAuDjjz8uykOSN954Y72LljeQk5NDX19fDhkyRJSHJJ988kkC4PLly0V5ysvLGRsbyz59+ojykOQnn3yixa+XJDt06MC0tDTxNWrmzJkEwNdff73WNu4IplOiltzxcOONNyIjI0O8ZtnFF1+Mrl274txzd6CoCPjySzmuW265BV26dBGvgt6rVy/069cPISEhojwAMGzYMGRnZ4tXQW/atCmuuuoqxMbGivIAwJAhQ9CzZ08cOnRIlCc4OBg333wzUlJSRHkA4Oqrr0bnzp1RUVEhyqOUwm233aal0Ob555+P7t27w9/fX5QHAG666Sb06NEDeXl5ojzt2rXDwIEDERERIcoDAEOHDkV2drZ4n2JiYnDDDTcgISFBlAcAbrjhBpxxxhkoKioS5fH19cWtt96K9PR0VFVViXJdeuml6NKlC5RSojwAcOutt6Jz584oLCwU5cnOzkbfvn0RHBzs1eMquqwzJz2UUmEAHA6HA2FhYbW2KywsRHh4OA4dOoTw8HDRc6p5bZVSuPBCYPt2YMUKQGJsktQy6I1+6eKy+uQ+D2CuPpmVy+rTycFlxnvX4JPm+qf1ydACAMJJNkjBnbIWJh0/mlLq6AsAbr8dWLUKWLBAjk8HavZJB5cuHqtPnnHpghm5rD6dHFxmvHcNPh0cJ3ufTlnBdCJwzjlAejowevSJPhMLFixYsGDBQmNwSgimLVu2YPbs2eI8VVVV+O6772rd37bZXFamb74B9u3zjGv//v2YPHmyZwdpAEji119/xZ49e8S5Dh06hAkTJojzAMCiRYuwdu1acZ6SkhKMGzcOOra+161bh99//12cp7KyEl9//bW4vxIA7Ny5E9OnTxfnIYn//e9/4v42AJCbm4sff/xRnIckZs+eja1bt4pzHTlyBOPHjxfnAYAVK1Zg+fLl4jxlZWX46quv4HQ6xbk2b96MOXPmiPNUVVVh/PjxKC4uFufat2+ftjVq6tSp2Lt3rzjXCY9u89YLtUTJOZ1Otm7dmunp6ayoqDjqGS+Rg8koGltXyHNBARkSQj7yiGdc5557LsPCwlhQUODZgeqBUTRWR8izUTRWOpdUfn4+AwICeOGFF4rykH/W35MOea6oqGCTJk3Yvn178VxSRv09HSHPXbt2ZXx8PIuLi0V5jFJGOkKer7jiCvr7+4uXQ9mxYwdtNhuHDh0qykP+WcpIOnqsqKiI4eHh7Nu3rygP+Wcpo4kTJ4ryGFUhMjIyWFFRIcpllDJ68803RXlIV1WI8PBw8ZJdRkqde++9t1HfOyXTCqABmb4/+OADAuAXX3whKpiqqqrYpk0bNmnSpM5kgSNGkJGR5JEj7nP9+uuvBMBnn33W/YM0EAMHDmRgYKB4ePD69euplOItt9wiykOSd955JwHwjz/+EOXJy8tjcHAw+/fvL8pDki+99BIB8KeffhLlKS8vZ2pqKlu1aiVeSPibb74hAI4aNUqUx+l0skePHoyMjBRPYbFw4UIC4AMPPCDKQ5JXX301fXx8uH37dlGenTt30tfXl1dccYUoD0k+/PDDBMB58+aJ8hw5coTR0dHs2rWr+EPIe++9RwAcO3asKE9VVRWzsrKYnJwsnsJiypQpBMCRI0eK8pDkeeedx6CgIObk5DT4O6ekYDrakTryMJWWljIpKYmnnXYaCwoKxAQTSX755ZcEwPfff7/WNtu2kXY7+d//us/jdDrZpUsXxsTE8IgnyqsBmDdvHgHwEU/NYg3A5ZdfTl9fX+7atUuUZ/v27fTx8dFS183Iwr5o0SJRnsLCQkZERLBHjx7iE/x///tfLSVyKisr2bJlSzZt2pTl5eWiXD/++KO2Ejlnn302Q0JCxIuAG3mXdNR1u+mmm6iUEi+YfeDAAQYEBGipNvDMM89oqTZQWlrKxMREtmnTRjxHkZEbULqum9PpZKdOnRgbG8uioiJRLiM3YGMSN1uCqQ4h9PrrrxPAUUEjJZgqKiqYnp5+dAuwNlx5JZmeTnrygD5hwoR6k3N5C3369NGyBbhs2TIC4IgRI0R5SHLIkCG02WziCST37t1Lf39/XnTRRaI8JPn4448TAGfOnCnKU1xczLi4OJ5++uni4uyjjz4iAH7yySeiPE6nk+3atWNCQgJLSkpEuX777TcC4FNPPSXKQ5IXXHABAwICxDPzb9y4kTabjTfeeKMoD0neddddBMAVK1aI8uTn5zM0NJT9+vUT5SH/LAw/adIkUZ6KigqmpaWxRYsW4hbi7777jgD41ltvifKQZK9evRgREdHgtd0STHUIoSNHjjAmJoYdO3YUFUzkn+bVL7/8stY2ixa5rr4nVSuqqqp42mmnMSkpSbxemGFefe6550R5SPL8889nUFAQDx48KMqzbt06KqV46623ivKQ5O23304AXL16tShPbm4ug4ODec4554jykOQLL7xAAPz5559FecrKypiSkqJlC/Drr78mAI4ePVqUx+l0slu3boyKiuJhyfT/JBcsWEAAfPDBB0V5SPLKK6+kj48Pd+zYIcqzY8cO+vj48MorrxTlIckHH3yQADh//nxRnsOHDzMqKkrLFuA777xDAPz6669FeaqqqpiZmcmUlBTxLcCff/6ZAPjCCy80qL0lmOoRQs8+++zROnKSgqm0tJRNmjSp17zauzfZpQvpyb3xxRdfEAA/+OAD9w/SADidTnbu3JkxMTHi5tW5c+cSAB999FFRHpK87LLL6Ofnx927d4vybN26lXa7ndddd50oD0nef//9BMDFixeL8jgcDkZERGgpMWQUYh4/frwoT2VlJVu0aMG0tDTxLUCjELOOEkNnnnkmQ0NDtW0B6igxNGzYMC1bgPv372dAQICWEkNGTcvp06eL8pSUlDAxMZHt2rUTF2dGTUvpEkNOp5Onn3464+LiGhQkYgmmeoRQQUEBQ0NDxQUTSb722mv1RlhMner6BSZPdp+noqKCzZo10xJh8f333xMA33jjDVEekuzdu7eWCIulS5e6FWHhDm644Qba7Xbxat179uyhn58fL774YlEeknzssccIgLNmzRLl0bkFOGbMGALgp59+KspjbAEmJiaKbwFOnz6dAPj000+L8pDkoEGDtGwBbtiwgUopDhs2TJSHJIcPH04AXLlypShPfn4+Q0JCeOaZZ4rykOQrr7xCAPzf//4nylNeXq5tC/Dbb78lAL799tv1ttUmmADcAWAbgFIASwFk19E2EcBYABsAOAG8UUu7S6uj3cqq/724kefUoOK7RuHTqVOn1ntBPUFDIiycTrJbN7J7d8+sTO+++67WCIukpCRx8+rkyZP/0REW7mDt2rVUSvG2224T5SFdKRoAcM2aNaI8OTk5DAoK4rnnnivKQ5IjR44kAP7yyy+iPMYWYOvWrcUdcL/66isC4LvvvivK43Q6ecYZZ2jZAjRSNDz00EOiPKQrRYPOLcCrrrpKlIckH3jgAQLgggULRHmMLcBu3bqJP4SMHj2aADhu3DhRnsrKSrZq1apBW4BaBBOAKwGUA7gZQCaANwAcAZBaS/s0AG8CuAHA8uMJJgDdAVQCeBhA6+p/KwCc0YjzapBg2rx5MwFomeAbEmHx00+uX8GTIIwTEWHx4YcfivLojLCYM2dOoyMs3MUll1xCPz8/7tmzR5Rny5YttNvtvP7660V5yD8fQpYsWSLK43A4GB4ezuzsbFEeknzrrbcIgN954mTYAFRWVrJ58+Zs1qyZuIV40qRJ9eaJ8xb69evH0NBQ8SCRFStWaMsTd+ONN9Jms3Hjxo2iPMYW4ODBg0V5SPKpp57SkieupKSECQkJWvLEffLJJw3KE6dLMC0E8M4x760DMLIB351Zi2AaB+CXY96bDOCrRpxXgwRTjYukLcKiLvOq00l26uTyZ/IERoTFDz/84NmB6oERYdG8eXNTRVhkZ2c3KsLCXSxZsoQAeP/994vykOR1111Hu93OrVu3ivLs3r2bfn5+vPTSS0V5SPI///kPAXD27NmiPEVFRYyNjWWnTp3EJ/gPP/yQqM4TJ4mqqiq2bdu23jxx3oCZ88TdfPPNojzkn3niVq1aJcqTl5fHkJAQLXniXn75ZeIflCdOXDAB8Ku2BF18zPtvApjVgO/XJph2Arj3mPfuBbCjjmP5V4sk45XUGMFkt9u1RljUZV6dNMn1S3gi8g3z6hlnnKEtwuKrr74S5TEiLHQkWTOytDc0wsITnHvuuQwODmZubq4oz+rVqwmA//rXv0R5SPLWW2+lUopr164V5TG2AM877zxRHvLPLO2TPXEybADKysqYnJzMrKwscQuxkaX9vffeE+Ux8sRFR0dryxP38MMPi/KQf+aJ27lzpyiPkSfu6quvFuUh/8zSriNPXGRkpNY8cd98802tbXQIpibVBD2Oef8RABsa8P3aBFM5gGuOee8aAGV1HOtJw1JU89VQwXTdddf9YyIsnE7y9NPJHj0882XSHWHRtm1bbREWOpKsdezYscERFp5g1qxZBMDHH39clIckL774Yvr5+XHv3r2iPFu2bKHNZuMNN9wgykOS9957LwFw6dKlojyHDh1ieHg4e3tq/m0A3nzzTQLghAkTRHkqKiqYkZFRb544b2DixImEpjxxffv21ZInbvny5QTAe+65R5SHJIcOHaqlVNS+ffu05Yl78sknCU154uLj49mhQ4da1yidgqn7Me8/CmB9A75fl2C6+pj3rgVQWsexPLIwLVu2jHa7Xct2z/DhwxkTE8O8vLxa20ye7Po1PMlZZkRY3Hfffe4fpIF45ZVXGBwczHXr1onyGBEWOrZ7xo8fT19fX3HBSbqSrHXu3FlccC5atIhKKfGIL5K89tprmZycLC44jS3AZ555RpSHJB999FGGh4eLZ54vKipiTEyMlu2eDz74gAEBAeJpJ4w8cWeffbYoD0lOnTqVdrtdPOkjSQ4YMICtW7cWd0lYt24dbTYb/+tJSYgG4o477mBsbKy44DRKRf3f//2fKA9JvvjiiwwODq7VKOKOYFJ0iY8GQSnlB6AYwOUkJ9R4/00AHUj2qef7MwGsIDnimPd3Anid5Os13rsXwAiSTRt4bmEAHA6HA2FhYbW2KywsRHh4OA4dOoTCwkKkpKQ05PAeIT8/H35+fggJCam1DQmcfTZw4ACwciVgt7vHtWvXLi19Ki4uRklJCaKjo8W59uzZgyZNmkApJcrjdDqxb98+JCUlifIArkresbGx8PHxEefSNSZycnIQGhqKgIAAcS5dfXI4HACA8PBwca7du3cjKSlJfJyXl5ejoKAA8fHxojyA695NTEyEzWYT5SGJ3bt3axkTBw4cQGRkJPz8/MS5dI3z/Px8+Pv7Izg4WJxr9+7dSE5OFucpKipCWVkZoqKijvu5oQUAhJMsbMgxGyWYAEAptRDAUpJ31HhvLYBJJB+u57szcXzBNA5AKMkBNd77BcAhklc38LwaJZjqa3cisHgx0LUr8PHHwNChJ/psLFiwYMGCBXPCHcHkjux/DcDNSqlhSqlMpdTrAFIBvAsASqmRSqnPan5BKdVBKdUBQAiA2Oq/s2o0eRPAOUqpB5VSrZVSDwI4G66UBacMunQBLrsMeOIJoLT0RJ+NBQsWLFiwYMFAowUTyXEARgB4HMAKAL0BDCC5o7pJIlwCqiaWV786weXMvRzAzzWOOR/AVQBuBLAKwFAAV5Jc2NjzO9nx3HPAnj3A22+f6DOxYMGCBQsWLBhwa2OZ5GiSaST9SXYiObvGZ0NJ9j2mvTrOK+2YNuNJtibpRzKT5PfunNuxyMvLw6uvvorGbj26g19//RW//fabR8do2RK44w7gmWeA/fuP36aoqAgvvfQSysvLPeJqCJYuXYrvv/fKT1EnKioq8Prrr6OgoECca9OmTfj444/FeZxOJ8aMGYOtW7eKc+3btw9va1LZkyZNwsKF8s8yDocDL7/8MpxOpzjX3Llz8csvv4jzlJaW4uWXX0ZxcbE41x9//IGvvvpKnKeqqgqjRo3C/tomLC9ix44deO+998R5SGLs2LFYvXq1OFdubi5ee+01LWvUlClTMHPmTHGeI0eO4KWXXkJFRYU41+LFizFhwoT6G3oDDfUO/6e/UEviSiPb9pdffvkXz3hvJygsKSlhUlISmzZt6nHekfx8MjqaHDr0+J8b2baff/55j3jqg5FtOzw8XDwsffbs2QTAW2+9VZSHdGXbttvt4nWhNm/eTF9fX55zzjni0XBGtu2ff/5ZlKegoICRkZFs06aNeHFaI9v2O++8I8pTUVHBFi1aMD4+Xrw4rZFt+8EHHxTlIV3ZtgMDA8VrFy5btoxKKS157W688UYqpTh//nxRnr179zIoKIg9evQQz41lZNv++uuvRXmKi4uZmJjIZs2aiVdPMLJtS+e1MwruhoeHc9++fY36rlV89zhCqKSkhM2bN2dcXBzz8vLEBBP5Z2Zqb4RMvvOO69dZuPDvnzmdTvbu3ZsBAQHcvHmzx1x1wQhLv/zyy0V5SPL6668nAM6ZM0eUZ/v27QwKCuIZZ5whHhpsZKaWrvN36NAhNmnSxCuCvT4YmamlBXtFRQXbt2+vRbAbmamlBbvT6eTAgQO1CPY1a9bQ19eX5557rrhgNzJTSwv2AwcOaBPsRmZqacFeXFzMjIwMLYL9m2++0SLYq6qq2LNnTy2CfcGCBVRKNbrOnyWYahFC06ZNIwDefPPNooLJ6XTyggsuoN1u5/Llyz06VmUl2b49ecYZ5PEecNauXUtfX1/2799ffDK86667CIA//vijKM/BgwcZFRXFrKws8czeRqXuUaNGifIUFxf/RbBLYvz48V4T7HWhqqqK2dnZWgT7woULqZTiFVdcIcpDukrJAODcuXNFebZt23ZUsEtbLx599FFtgj0xMZFpaWnigv2DDz4gNBTmLi8v1y7YpQtzO51ODhgwgD4+PuJlV1avXq1NsN9xxx1EIwtzn5KCCcCdANYCWF+XELrhhhuOXlApwUS6qloHBwezS5cuHlsvZs1y/UK11RB8/PHHtdSgcjgcXtturA8fffSRlhpUFRUVPP300xkWFiZeCLemYJeENwV7fTgRgl26BpUl2D2DJdg9g27B3q1bt1NasJ+SguloR+opvpuTk8Po6Gi2aNFCVDCR5Ouvv04AfPvttz0+1tVXu/yZcnL+/llJSQlbtmzJ2NhY8cnw+++/JzQUjXU6nezTpw/9/f3Fq4IvXryYNptNSxZxQ7BLF401BHvXrl3FtxvNKNjHjBmjTbB36NBBq2C/5ZZbRHlqCnbpwuZmFOwHDhywBLsHMAT7Aw880KD2lmCqRwh9/PHHDa455wkqKirYsWNHhoaGcvfu3R4da/9+MjKSvP7643/+22+/EQBvuukmj3gaggsvvJB2u53Lli0T5Vm/fj39/Px41llniU+Gd999NwHwhx9+EOU5ePAgo6OjmZmZKV4p/rXXXvOaYK8LJ0Kw//vf/xblqSnYpWt4LVq0iDabjZdddpkoD/mnf6CZBPtjjz32l4AeKZwIwf7cc8+J8phVsA8aNKjBgt0STPUIIafTyezsbC2FO5cuXUqbzcZLLrnE42ONGeP6paZOPf7nQ4cOJQDOmjXLY666sHPnToaEhLBz587ik6FRpPGzzz4T5SksLGRycjJTU1N5+PBhUS5DsEvXQPOmYK8PJ0KwS283rlu3Trtg/9///ifKU1OwS1svDMEuXQPNrIK9d+/elmB3E4Zgb0hAjyWYGmA5Wrp0KQEwOztbfDI0qqp7WhDS6ST79iXT08njRYPm5uYyJiaGrVq1ErdevPHGGwTAN998U5SntLSUrVq1YkxMDHOOtx/pRRhV1e+9915RHqfTyb59+9Lf37/WgpDewpIlS7wm2OuDGQX7E088oU2wJyUlWYLdTViC3TPoFOxRUVFaLez1CXZLMDVAMNW4SPzkk0/qbOspDh8+zJSUFCYnJ7OwsNCjY23YQPr7k7X5U3766acEwKeeesojnvpQWVnJTp06MSQkRLyC+8yZMwmAN954oygPSV500UW02Wzilkdju7Ffv37ik+GIESO8Itjrg+Ef2Lp1a22C/a233hLlKS0tZcuWLRkTE8Pc3FxRrgkTJhAA77vvPlEeswr2IUOGaBXs3gjoqQ+GYP/8889FeYztRh2C3Qjo+acIdkswNUIwtWjRgtHR0eLWix9++IEAOGLECI+P9fzzpM1Gzpv398+cTifPOuss+vn5cf369R5z1QVju/Giiy4S5SFdieoAcMaMGaI8u3btYmhoKDt16sSKigpRLiNR3aeffirK403BXh90CvbOnTtrEewzZswwrWA/88wzLcHuBnQJdmO70RLs7sEQ7HUF9FiCqRGC6eeffyYADhkypM723sCll15Km83GJUuWeHScigqyWzcyI4M83sPAxo0b6e/vz759+2rLLD1hwgRRHmO7sWXLliwpKRHlMjJLv/7666I8paWlbN269Ukn2OuC0+nkmWeeqUWwL1u2zJSCPSQkxJSCPSUlRdx6YUYLu5kFu04Le20BPZZgaoRgcjgcvOmmm2iz2cSd63bv3s3Q0FAOHjzY42Nt3EgGBZG33378z41SMNIT/OHDh5mamsr27duLD3yjFMxHH30kylNZWckuXbowLi5OXJzNmjWLAPjEE0+I8pCuUjD+/v6NLh3QWBiCfWhtNX28CEOwS/uTGIK9b9++ojwk+eabbxIAJ06cKMpjCPaMjAzxrSWjFMwbb7whymMI9rCwMNEIaPJPC7u0zyPpEuw2m008W7ax3XjxxReL8pB/BvRIb6EaAT2nn376cdcoSzA1UjDl5eXx999/r7O9tzBnzhyvPWWNHu365Y6X1LSsrIy//fabV3jqgtPp5OLFi3nw4EEtXJMnTxYXZqTL4XLbtm3iPE6nk1OnThVfsEhyz5494mU4DMycOVNcbJIuwS5dQod0/U7z589nQUGBOFdFRQWn1hYK60U4nU6uWLFCPJzcwJQpU8QTJJLkli1bxLd6DEyfPl28NAvp2m5ctGiROI/T6fTqGlUXSkpKtKxRpCvXXm1WfHcEk6JLbJy0UErdCVe2bxuAVg6HA2FhYbW2LywsRHh4OA4dOoSwsDAopXSdqtdAAuefD6xa5XrFxJyIc6C2a6eLy7gXdHGdjGPvVINZx7k19v75MOt89E8Zf4YWABBOsrAh37HJnpI8SI4imQWga2O+p5T6R/xo7kAp4KOPgIoKYMgQwOk8Eeeg79rp4tI5Jk7WsXeqwazj3MI/H2adj07m8XfSC6ZTFU2aAJ9/Dvz8M/Dqqyf6bCxYsGDBggVzwxJMJzHOOw948EHg4YeBBQtO9NlYsGDBggUL5oWpBRNJfPLJJygpKRHn2rdvHyZOnCjOAwDffvstcnNzAQDPPAOccQZw1VVAfr53eRwOB7788kvvHrQW/Prrr9i0aZM4T3l5OcaMGQMdvnvLli3D77//Ls7jdDoxZswYVFRUiHNt27YNkydPFucBgC+//BKFhQ1yLfAIubm5+Pbbb8V5AOCHH37Anj17xHmKi4vx6aefivMAwNy5c7Fq1SpxnsrKSowZMwZODT4Ia9euxcyZM8V5dK5Re/bswaRJk8R5AOCbb745ukZJwuFwYOzYseI8R9FQ7/B/+gvHiZIz8lhcfvnlR6M0akbJeRMXXnghfXx8xMP5N23aRLvdzl69eh1N0rZjBxkVRZ5/PunNoKt77rlHSzX6/Px8hoWFsWXLluI1oYy0+dLFLcvLy5mens7Y2Fhu3bpVlMuoc3XrrbeKRxL27t2bgYGBXLx4sSjPkiVLCIDnn3++eF6i66+/nkop8fIQu3fvpr+/P08//XTxaCSjMO3o0aNFeYqKihgXF8fU1FTxtBVGYdoHH3xQlKeqqort2rVjeHg4165dK8plFKa96qqrxO/dQYMG0dfXlzNnzhTlWb9+PW02G7Ozs8UTiQ4fPpwAOHbs2EZ/10orcBwhZNRz+89//vOXi+RtwbRnzx4mJSUxMjJSPLTVyNdy/fXXH73JpkxxZQF/6CHv8RQWFrJdu3b08/Pj3LlzvXfg4+D777+nUor9+vUTDdctLy9n//79CYDffvutGA9JLliwgP7+/szKyuKhQ4fEeJxO59EEi6+++qoYD0lu3ryZ0dHRTExMFE/cZ+Rrufvuu0V5cnJymJGRweDg4AZVOfcERj23Cy+8UDTUvri4mN26daPdbueUKVPEeEjy119/pd1u5xlnnMHi4mIxnqqqKl588cVacrKtXLmSISEhTE9PF08ua9Rzk87JtmvXLjZp0oRRUVHiuQeNB9MhQ4aICkGHw8E2bdrQ39+f8+fPb/R3LcF0jBCqrKzkBRdccLSQppRgIl0ZiIOCgtiiRQtRS4nT6eQdd9xBAHz22WePvv/yy65fdNw473Ht2LGD8fHxWiwlL774IgHw5ptvFr3JCgoKmJmZyYCAAPEcJ19//TUB8NxzzxW1lJSVlbFPnz5USomXopg9ezZ9fX3ZoUMHUUuJ0+nkNddcQwAcNWqUGA/pyr8VERHBlJQU7t27V5TroYceIgD+X22FIb2E/fv3s2nTpgwLC+OaNWtEud59910C4BVXXCEqBI8cOcKOHTtqsZT89NNPtNlsf7HmS6CyspIDBgwgAH755ZdiPKTLchsUFMSWLVsyPz9fjMfpdPK2224jAD7//PNiPCS5fft2xsXFMTY2tlE59CzBVIsQOnz4MNu3b08/Pz9OnjxZTDCRrsy2Sin26dOHZWVlIhykK8ndueeeSwAcV62QnE7y6qtdmcC9+aC8cOFCBgQEaLGUDBs2jAD48ssvi/GQriR3MTExTEhI4I4dO0S5nn76aQLgnXfeKcqTm5vLFi1aMDg4WDwDtlGKYvDgwaLJN0tKStijRw/a7XZOnjxZjId0bY/4+PiwS5cuLCoqEuOpqqripZdeSgD84IMPxHhI8o8//mBoaCibNWsmnmT2WGu+FAxrflRUFDdu3CjKdTxrvgQKCwvZtm1b+vn5cd7xioV6EYY1/8wzzzSdNf+0005r8BplCaY6hNDOnTuZmJjIyMhIUcFEkq+88goBcNiwYaI32aFDh5iVlcWAgICjGcuLisjTTyebNiUPHPAe17fffksAPOecc8QtJf369aNSSrxO3dy5c+nn58d27dqJFqd1Op287rrrtBTt3LBhAyMjI5mUlCSeyfnRRx8lAN5///2iPAcOHGBaWhrDwsK4evVqUa7333+fAHjZZZeJWkqKiorYuXNn+vj4cPr06WI8JPnLL7/QZrOxR48eolnYa1rzP//8czEe8sRb8yVgWfM9Q2Ot+aekYIIry/daAOvrE0KLFy9mQEAAAYhaFZxOJ2+55RYC4IsvvijGQ5Jbt25lbGws4+PjuX37dpIuJ/D4eLJrV5eA8haee+45AuDtt98uepPl5eWxRYsWDAoKEi8GadSpGzhwoKilpLS0lD179qTNZuNPP/0kxkOSv/32G318fNi5c2dxS8nll19OAHz//ffFeEhy9erVDAsLY1paGg9480ngOLj//vsJgI888ogoz969e5mcnMyIiAjxgsVvv/02AfCaa64RvXdrWvOlS9dMnDiRSin27dtX3Jp/zjnn/MWaL4Xff//dlNb86Ojof5w1/5QUTEc70sBacsZWQt++fcXNkWeeeSaVUvz+++/FeEhy3rx59Pf3Z9u2bY9aSpYscW3NXXSR9yLnnE4nb7jhBgLgm2++6Z2D1oKNGzcyMjKSTZo04e7du0W5/vOf/xCAeDHNgwcPslmzZgwNDeWqVatEuT788EMC4CWXXCJuKenSpQt9fHw4bdo0MR6SnDx5Mu12O7t37y5uKRk8eDAB8NNPPxXjIcnly5czODiYzZs3Z25urijXnXfeSQB8+umnRXl27tzJhIQExsTEiBeNffnll7Vb8xcuXCjGQ5Ljxo3TZs3v27cvlVLiBZ/nzJmjzZp/7bXXEgDffvvtOttagqkRxXcB8LbbbhO9yfLz89mqVSsGBgZyyZIlYjwk+eWXX/7NUvK//7ki57wZZFRaWsrs7GzabDb++OOP3jvwcTBjxgz6+vqyY8eOPHLkiBhPVVUVr7jiCgLgu+++K8ZDkmvWrGFYWBibNm3K/fv3i3L93//9HwHw4YcfFuXZt28fU1JSGBERwXXr1olyjRo1igB49dVXi1tKOnToQF9fX86ePVuMhyR/+OEHbX6P5513HgHw66+/FuMhyUWLFjEwMJCZmZmihYudTidvvvlmAuBLL70kxkP+1ZovbSl55plnCIB33HGHNmv+smXLxHjIP635gwYN0uL3aLPZ+PPPP9fazhJMjRBMV199NQHwtddeq7O9p9i0aROjoqK0WEqeeOIJAuA999xz9L133nH9yt7sphGGHRISwpUrV3rvwMfBRx99RAC86KKLxMOwzzjjDNrtdvGK8VOnTtUWhn3RRRcRAD/++GMxHvLPMOyMjAxtYdhPPvmkKM+uXbuYmJjI6Oho8TDsV199lQA4dOhQcUvJaaedRn9/fy5YsECMh/zT77F///7arPnSfo/Hs+ZLwOl08vrrr9dqzU9KSjKlNf+PP/44bhtLMDVCMOXk5LB3795USvGHH36o8zueYtasWfT19RVPWOd0Oo8KwZoJ6x580PVLf/KJ97hqhmFLJ6x78MEHCYAPPPCAKM/+/fuZmpqqJWHdO++8QwC88sorTROG/eOPP2pJWFczDNudhHWNwZIlSxgYGMhWrVqJh2HfeuutBMCRI0eK8ZDktm3bGBcXx7i4uEaFYbuD559/ngD4r3/9S4s1X4ff4/Gs+RIoLS1lr169LGu+m6jPmq9NMAG4A8A2AKUAlgLIrqd9n+p2pQC2AvjXcdqMALABQAmAXQBeBxDQiHNqlGByOBzMzc1lRkYGMzIyxLMJf/LJJwTAN954Q5SnpKSE3bt3Z0RExFFTuNNJ3nKLa3tu/HjvcU2bNo12u50jRozw3kGPAyNhnY+Pj/iT/qpVqxgSEsKLLrpIlIckR4wYQQDiQmb37t1s0qQJO3bsKJ5N+I033tDi+2OEYTdp0kTUSkeS3333HQHwqaeeEuUpLy/nWWedxaCgIPGHkPnz59Pf35/Dhg0T5XE6nRwyZAhtNpt4qgvDmn/mmWeK8pB/WvOls8Pn5OQwPT2dLVu2FF+jDGt+fb4/nqK4uJhdu3ZlZGSkqGM7SU6ZMoV2u/24kbxaBBOAKwGUA7gZQCaANwAcAZBaS/tmAIqq22VWf68cwKU12lxbLaauAZAG4BwAewG83ojzarRgIl1h2EZ0mTSmTZsmvmCRrjDsY52KKyvJq64ifX1Jb6azmTVrlqi53cCRI0cancnVXSxYsEDU3G6gsrKSv/32mzgP6RKC0j5TpGuB1DXOt2/fLp6Hh3T1afr06aLWBAP5+fniZWcMzJkzR9R53kBpaam4H5iBJUuWiFoCDRhjQgfWr1/PnTt3ivPovHf37dtX61aZtzFz5szjrlHuCCZFl9hoMJRSCwEsI3l7jffWAZhI8uHjtH8RwGCSmTXeexdAe5Ldq//+L4BMkmfVaPMqgK4ksxt4XmEAHA6HA2FhYbW2KywsRHh4OOprZ0ZUVACXXgpMmwZMmQJkN+jK/jNAEkop03FZ+OfDGnsWThSM9VnHmDjVxp6hBQCEk2xQlW9bYwiUUn4AOgGYesxHUwH0qOVr3Y/TfgqAzkop3+q/5wLopJTqWs2TDmAAgJ/qOBd/pVSY8QIQ2pi+nIrw9QW++Qbo3h0YMACYM+dEn1HDofNGPpUmDQv1wxp7Fk4UlFLaxoQ19upHowQTgBgAdgAHjnn/AICEWr6TUEt7n+rjgeTXAB4DMFcpVQFgC4AZJF+o41weBuCo8drd8G6cuggIAH74AejSBTjvPGDmzBN9RhYsWLBgwcI/H40VTAaO3cdTx3mvvvZH31dK9QXwKFzO5B0BXAJgkFLqsTqOORJAeI1XcgPO2wKA4GDgxx+Bnj1dlqZp0070GVmwYMGCBQv/bDRWMOUCqMLfrUlx+LsVycD+WtpXAsir/vsZAJ+T/JDkHyQnAHgEwMNKqeOeI8kykoXGC8DhRvbllEZQkMvS1KcPcMEFLp8mCxYsWLBgwcLx0SjBRLIcrvQA/Y/5qD+A+bV8bcFx2p8DYAnJiuq/gwA4j2lTBZclyu2N1d27d6OqqsrdrzcKO3bs0MJz8OBBlJSUeOVYAQHAxInA2WcDgwcD337718919enw4cPIy8urv6EXoKtPlZWV2LNnjxaunTt3orHBG+6ApLbrt3fvXpSXl2vh0tWn/Px8FBY2yLfUY+jqU0lJCQ4cqO1Z2bvYsWOHlnHudDqxa9cucR4A2LVrl+nWqAMHDnhtjaoPuvp0FA0Np+Of4ftGWoFhcKUJeB2utAJNqz8fCeCzGu2NtAKvVbcfhr+nFXgSQCGAq6rb9wewGcC4RpzXX9IK5OfnMy0tjQMGDPhLqoFj0wp4Ax9//DH9/f355Zdfeu2Yx0N5eTk7derErl27ejVPS1kZec01pFLkqFGu93799Vf6+Pjw5ZdfFg0zdTqdvPDCC9m8eXPxAqR//PEHg4KCOGLECPEQ8bvvvptxcXHiqRD27t3L+Ph4XnnlleL5iF577TUGBweLJ3o9cuQIW7duzb59+4pWoiddOZZ8fX3FiwdXVVWxT58+bNu2rXgak/nz59PPz49PPPGEeIj49ddfz5SUFPGM/5s3b2Z4eDhvueUW8TQmjz32GCMjI8VTfuTl5TE1NZWDBg0ST2Py4Ycf0t/fn1999ZUoT1lZGTt27MgzzjhDPJfYlClT6OPjw1dffdWtca47ceV2AGVwWZx61/jsEwAzj2nfB8Cy6vbbcEziSrgcwJ+oFkklAHYCGAUgohHn9BfB5HQ6jyYXa9OmzdFJSkIwbd++nW3btiUA8Unqvffeo4+PD1NSUrhixQqvHbeqihwxwjUiHnuMzM3NY9++fQmAN998s2iNq0mTJjE4OJgRERGiuU2Ki4uPZpkdOHCg6CQ1f/58xsXF0d/fXzQbdWVlJe+9914CEJ+k1q9fz+bNm1Mp5fYk1RA4nU6+8sorVEqxRYsW3LBhgwgP6RKcXbp0IQDed999okL6iy++oJ+fH+Pj4/n777+L8TgcDp5//vkEwKuuukpUSP/6668MDw9nSEiIaDbqsrIyDhs2jAB45plniuZaWr58OZOTk+nj48MPPvhAjKeqqupoqZB27dqJ1qfbtm0bTzvttKMlhSTXqHfeeYd2u52pqamiQjo3N5e9e/cmAN56662NFtJWaZTjCKEvv/zyL5OUhGAiXRffKNdw1VVXiSaEmzZt2tFJypuZZp1O8sUXXaPillvIoqI/J6l+/fpZk1QjcaImqWOTlnoTnk5SjcHEiRMZFBTEyMhIzpgxQ4ynqKiIl112GQHwggsuEC1fNG/ePMbGxtLf31+0AG5FRcXRmnvdunUTTVq6bt06pqen02az8fXXXxcV0i+++CKVUmzZsqVo1v+9e/eyc+fOBMB///vfokL6888/P7pGLVy4UIzH4XAcLb58zTXXiK5RU6dOPbpG/fTTT2I8ZWVlHDp0KAHwrLPOatQaZQmmWoRQzUnKSP/ubcFEuiape+65R9sklZGRITJJffwxabeT559PFhQ4+dJLLx2dpCQzK5t9krr66qtP+UmqsVi2bBmTkpLo4+PDMWPGiPFUVVXx0UcfJQC2b99eNLPy1q1bmZWVRQB8+umnRYX0qFGjaLfb2bRpU9HMyjk5OczOzj5aN05SSH///fcMCgpiVFSUaFmhoqIiXnrppQTACy+8UFRIz5kzhzExMQwICOA333wjxlNRUcHhw4cTALt3784DBw6Ica1Zs4bNmjWjzWbjm2++KSqkR44cSQBs1aoVN2/e3KDvWYKpDiFUc5ICIFrDZvTo0donqdtuu82rk9TUqWR4OJmVRW7dSk6YMEH7JDV48GBrkmok1q5d+4+epNzBnj172KlTp6MFmCWLFX/66af09fVlQkICFy1aJMZz6NAhnnPOOQTAa6+9VlRIT548mWFhYQwNDeXPP/8sxlNaWsobbriBANi/f/+jtSwlsHTpUjZp0oS+vr78+OOPxXiqqqr48MMPEwA7dOjAXbt2iXFt2bKFmZmZBMBnn31WVEi//fbbtNlsTEtL4+rVq8V4Dh48yJ49exIAb7/9dtF6eOPHj2dgYCCjo6MbVIrHEkz1WI4OHTrEs846iwB4xRVXiFZU1zlJDRkyRGSSWreOzMggY2LIOXP+Okl99NFHXuM5FqfCJCUppA8ePMhevXoRAO+44w7RSeq77747OknNmjVLjOfIkSO85JJLCIAXXXSRaEX12bNnMzo6moGBgfz222/FeCoqKnjHHXcQAHv27MmDBw+Kca1evZppaWm02Wx86623xHicTieff/55AmBmZia3bNkixrV7926efvrpBMCHHnpIVEh/8skn9PX1ZZMmTbhkyRIxnoKCAvbv358AeP3114uuUb/88gtDQ0MZFhbGyd4sMHoMSktLed111xEAzznnHFEhvXjxYiYmJtLX17feAuCnpGACcCeAtQDWN2SrLS8v76iVSXqSqmmS1DVJtW7d2qtP+7m5ZO/epJ8f+cknf52kHnzwQdFJ6uOPP6avry8TExNNN0mFhobyl19+EeM5dpKStKg2ZpLyBFVVVXzwwQcJgB07duTu3bvFuDZv3szWrVsTAJ9//nlRIf3WW2/RZrOxWbNmXLNmjRjPwYMH2aNHDwLgnXfeKSqkv/32WwYEBDA6Oppz5swR4zly5AgvuugiAuAll1zCoqIiMa5Zs2YxKiqKgYGB/O6778R4ysvL+a9//YsA2KtXL+bk5Ihx/fHHH2zatCltNhv/+9//ivE4nU4+88wzWoT0rl272KFDBwLgI488UusadUoKpqMdaYCFqeZFevHFF005SRlP+96cpMrKyJtuco2WO+4g8/L+OklJPu2bdZIynvalJ6lnn32WAJiVlfWPmKS8gY8++ujo0/7SpUvFePLz849apIcMGSIqpH/66aejT/tTpkwR4ykpKeG1115LADz33HNFhfSiRYuYkJBAPz8/fvbZZ2I8VVVVfOCBBwiAnTp14p49e8S4Nm3axFatWhEAX3jhBdEt7zfeeIM2m43p6elcu3atCA9J7t+/n926dSMA3nXXXaJr1Lhx4xgQEMCYmBjOnTtXjOfw4cMcPHgwAfCyyy47rpC2BFMjBJPD4fjLJDV16tQ6v+cJak5S55133kk5STmd5LvvuixNZ5xBbt+ud5Jq2bIlAXDkyJGmmKQOHDjA7t27EwCHDx8u6uD+T5qkvIWZM2cyKiqKQUFBnDBhghhPeXk5b731VgJgdna2qJBetWoVU1NTabfbOXr0aDEep9PJp59++qiQ3rZtmxjXzp072b59ewLgo48+KiqkP/zwQ/r4+DApKYnLli0T48nPz+eZZ55JALzxxhtFU678+OOPDAkJYXh4OH/99VcxnpKSEl599dUEwPPPP18kKMrA77//zvj4ePr5+fGLL74Q46msrOT9999PAOzSpQv37t37l88twdRIwUS6JqmmTZvy4YcfrvN7nsKYpCIjI8UTNBqT1NVXX+11cbFoEZmS4vJrmjbNNUkFBwc3yMnOExiTVO/evcUT1/34448MDQ3luHHjRHmMSap169aiIpokFy5cyPj4eL700kuiPJWVlfz3v//N+Ph40Ugzkty4cSNbtmzJO+64Q5TH6XTytddeY2hoKJcvXy7KtX//fp5xxhkcNGiQqLggya+++orBwcGiW8MkWVhYyEGDBrFTp07iyVV/++03RkZGiqYmIV1C+pZbbmFaWpqoWwdJrly5kikpKXz00UdFeZxOJ5988klGRkaKRkOTf+YuvO6660R5SPL9999ncHAw582b95f33RFMii6xcdJDKRUGwOFwOBAWFlZru8LCQoSHh6Nmu/z8fERERMBmc7cWccORm5uLmJgYcZ4jR47Ax8cHAQEBXj92bi5wzTXA9OnAU08Bt9ySi/h4+T6Vl5ejuLgYERER4ly6fieSyM/PR3R0tDhXXl4eoqKioJTb1YYaDF3X79ChQwgJCYGPj48oD0nk5uYiNjZWlAdwlRupqqpCSEiIOJeu36mqqgqFhYWIjIwU59J57+bl5WnhysvLQ2RkpPgapXOcHz58GH5+fvD39xfnOt6YMLQAgHC66tHWC0swWXALVVXA008DzzwD9O4NfP45kJIiy0lSy2JvwcKxsMaehRMJXePvVBrn7ggmeZOKBVPCbndZl2bMALZsAdq3B77/XpbzVLmRLfzzYI09CycSusafNc7rhiWYLHiEPn2AlSuBfv2ASy8FbrsNKC4+0WdlwYIFCxYseBeWYLLgMaKigPHjgfffd23NdegAzJt3os/KggULFixY8B4swWTBK1AKuOUWYPlyICYGyM4G7rvPsjZZsGDBggVz4KQXTEqpO5VSawEsOtHnYgFo1QqYMwd46SVg9GjL2mTBggULFsyBk14wkRxFMgtA1xN9LhZcsNuBf/8bWLECiI52WZvuvRc4cuREn5kFCxYsWLDgHk56wVQbfvnlFzz++OMoFt4TIonhw4djxowZojwAsHLlSgwfPhz5+fniXI8//ji+++47eJJ2onVrYO5cl7XpvfeAzExg4kSg5iH37duHG2+8Ebt27fL8pOvB22+/jQ8++ABVVVWiPMXFxbjhhhuwbt06UR4A+Oabb/DCCy+grKxMlMfpdOKWW27B77//LsoDAHPmzMEDDzyAwsIGRfp6hH//+9/45ZdfxHk2b96MW2+9FQcOHBDneuGFF/Dll196dO82BPn5+bjhhhuwdetWUR4AGDNmDN566y1UVFSI8pSXl2Po0KFYsWKFKA8A/PTTT3jiiSe0rFF33nknZs2aJcoDAMuXL8ddd92lZY36z3/+gwkTJoiP87+goRku/+kvHJPp++abbyYAJicn86uvvjqa8frYTN+eYvv27YyOjj5aDmL79u1eOe7xYNQFi4qK4qhRo8Rq/hw+fJhNmzYlAPbr14+rVq3y+JjbtpEDB7pyy19wAWlcpk8//ZQ2m41BQUF8+umnxTIBV1VVsWvXrgTA008/XbQg6LRp0+jv708fHx+OGDFCtDr3pZdeSgDMyMjgpEmTxMrGrF69mmFhYUcLFEuWwjHKGcTHx/Pjjz8Wy3h98OBBxsfHEwAHDhwomt34rbfeIgCGhYXx1VdfFSunUVZWxszMTAJgjx49RItWf/fdd/Tx8aG/vz8feeQRHj58WITH6XQeLUWSlZUlWiJkwYIFDAoKos1m42233SZaCmfYsGEEwJSUFI4bN07s3t22bRujoqIIgJdffrnoGmWU3ImOjubo0aPFSj4VFhYyNTWVAHjWWWdx9erVjT6GVRqlhhByOp38/vvvmZaWdrQO1LJly7wumEgyLy+Pw4cPp91uZ0BAAB977DGxOlozZsxgu3btCIBt27bljBkzRHiKior4xBNPMCAggDabjXfeeSfz8vI8OqbTSX73HZmURAYFkS+9RJaXk8uXL2fv3r0JgGlpaRw/frzI5FFRUcG33nqLERERBMCrr76au3bt8joPSW7ZsuVogeLY2Fi+//77IpOH0+nkF1988f/tnXd4FNX6x78nvRfSQyqhh9BLINIUVFAUEISfBZQgelEEvICCgChIEVQEAQFFUPEqIlcEgwKCF0goIdJDlSSEhJBCCiF99/39MdnJbgrJJjubwvt5nvNkM3N2vnP2nN3znXfOnEPe3t4EgB599FHF1sBLSUmh8PBwEkKQnZ0dLVmyRLEFaSMiIuT1A3v27EnHjh1TRCc7O5tmzpxJ5ubmZG5uTjNnzlRsHa2jR49Sjx49CAC1adOGIiIiFNEpKCigpUuXkp2dHQkhKDw8nG7fvq2IVmxsLD366KMEgLy9vem7775T5LtbUlJCGzZsIFdXVwJAw4cPV2wx6Rs3bsjrqjk5OdFnn32myHJMarWatm/fLl+c9uvXT7GldzIyMuj1118nExMTsrKyovfee0+xPurAgQMUEhJCAKhjx470119/KaKTm5tL8+bNIysrKzI1NaUpU6bQnTt3avx+NkyVGKH8/HxatGgR2djYkBCCXnrpJYMbJg3nzp2Tr4TKR7YMSXFxMa1du1a+alAyshUfH0+jR482aGQrJ4do2jQiExOitm2JIiKkH48ff/yRfH19DRrZqoy0tDR67bXX5MjWwoULFYts7du3j4KDgxWPbN29e5fmzJlDFhYWike2oqOj5YWDlYxsFRYW0ooVK4wS2bp8+TI98cQTike2VCoVff3110aJbCUlJdG4ceMUj2yp1WrauXMnBQUFKR7ZyszMpGnTphklsnX48GHq0qWL4pGtvLw8WrhwoVEiW2fPnqWBAwcSAPLz81MsslVcXExr1qwxSmQrLi5OjrTrE9liw3QfI5SYmEjPPfec5gOipUuXKnbVUFlkSwkae2TrzBmigQOlVjhkCNHFi8pEtqqifGTr559/5shWDeHIVt1oqpGtJUuWkK2tLUe2akF9Rbb69+9Pp0+fNrgOkfEjWx06dKhxZIsNUw0iR3/88Ydsmtq3b0979+69b/7aUj6yNWnSJMVWtW7MkS21mmjHDqIWLYjMzIjefJMoI0OZyFbl+rqRrYcffrjJRLbat2/Pka1aUF+RLU9PzyYT2XrxxRc5slVL6iuy9dprrz1QkS02TDUwTJoPadWqVeTm5kYA6Omnn6Zr167d9321RTuy5eTkRCtXruTIViXk5xMtWUJkZ0fUrBnRihXStsY8ZqsqjBXZKioqos8++4wjW7WEI1t1gyNbtac+I1urVq1S7OLUWJGt9PT0aiNbbJj0MEzZ2dmUmZlJ06dPJzMzM7KwsFD06YsjR45Q165dCQB1795dsSd/yke2tmzZoogOkW5ky9/fn3Jzc+t8zORkokmTiExNiXx8iL78kig/XzeytWjRIgOcfeWUj2wpdd+9fGRr4sSJiugQSU+DvfrqqySEIBsbGzp+/LhiWtqRrUGDBimmUz6y9csvvyimpR3Zat++vSIXPEQVI1uff/65IjpEFSNb6enpiuioVCratGmTHNmaOXOmIjpEFSNbShnp8pGtZ599VhEdooqRrQMHDiimpR3Z6tWrl2J9VPnI1rfffquIDpFuZCsgIECnj3ogDROA1wHEArikr2HSEBsbS+PGjVPs3qqGkpIS2rhxI61atUpRHSIpsvXyyy9TcnKyojqayNZ7771n0ONevkw0ZozUQtu2lZ6uS0/PoClTpih2VaLNwYMH6Y033lDsUV8N9+7do/nz5yt29a3NqVOn6KWXXlKsw9egiWxt2rRJUR0iKbI1fvx4RaduICqLbC1btkxRHSIpsjVp0iTFIgraREREKGpiNGgiW0eOHFFc6+jRozRp0iTFOnwNmqcRt2/frqgOkdRHjR8/XrFb+Bo0kS0lzbqGGzdu0Msvv0y3bt1SVEcT2SrfR9XGMAmSTEejRwjhACA7OzsbDg4OVebLycmBo6MjyucjIgghFD9PzedtDK2mwN9/A3PmAH/8AfToAbz/PvD449LadU0FY7U9Y2sxDR9j/h5x22Pqi8raucYLAHAkohrNkttkZ/rWF2N9kYUQ/KOhB127Ar//Dhw4AJiZAUOHAr16Abt3A03E6xu1PXDbY7Qx5u8Rtz2mvjBUO2fDxDQKBg6UFvHdvx+wsgKGDQO6dZOWWlGr6/vsGIZhmKYOGyam0SAE8MgjwKFDwMGDgJMTMGIE0KUL8OOPQElJfZ8hwzAM01SplWESQkwWQsQJIQqEEDFCiL7V5O9fmq9ACHFdCPFaJXmchBBrhBC3SvNdFEIMrc35MU2fAQOk23SHDgEeHsDYsUDr1sDq1cC9e/V9dgzDMExTQ2/DJIQYA2AlgA8BdAFwGMAeIYRfFfkDAUSU5usCYDGAVUKIZ7TyWADYByAAwCgAbQC8AiBJ3/NjHiz69gX27gViYoDQUGD6dMDPD5g3DzDCwvAMwzDMA4LeT8kJIY4D+JuI/qW17SKAX4hodiX5lwF4iojaaW37AkAnIupd+v9rAGYCaEtExbUqSB2fkmOaBvHxwMqVwJdfSrfoxo2TTFS7dtW9k2EYhnlQUPwpudJIUDcAe8vt2gugTxVv611J/j8AdBdCmJf+/xSAowDWCCFuCyHOCyHmCCFM9Tk/hgkIkAxTYiLw3nvArl1A+/bAoEHSAHEe58QwDMPUBn1vybkCMAVQ/mbHbQCeVbzHs4r8ZqXHA4AWkG7FmQIYCmARgH8DeLeqExFCWAohHDQJgL0e5WCaOM7OwOzZUsTpu++kcU0jRgBBQcDSpUB6en2fIcMwDNOYqO1TcuXv44lKtlWXX3u7CYBUAJOIKIaIfoA0RupfqJrZALK10k3tndevX4cxJuXMyspCRkaG4joAEB8fD7URnqEvLCxEUpJxho8lJiaiuLhWd2FrhKUl8PzzQFQU4ZdfkvDww8CCBYCPD/DSS8CJE4afz+nWrVvIz8837EGr4Pr160bRycjIQHZ2tlG04uLijPLdzc3NxW0jDXRLSEiASqVSXEelUiEhIUFxHQC4efMmCgsLjaJlrHZ++/Zt5ObmGkXLmH3UnTt3FNcBjNdHFRQUIDk5WXGd8uhrmNIBqFAxmuSOilEkDSlV5C8BoHEatwBcISLtX5SLADxLbwNWxhIAjlrJR7MjKysLwcHB6NChA1asWIGUlJT7l6oOrF+/Ht7e3hg9ejQiIiJQotA9H5VKhYceeghBQUFYsGAB4uLiFNEBgF9++QV+fn4YMmQItm3bpuiP4rPPPgsfHx/MmDEDFy5cUEznxIkTGD7cB9eu9cWyZVsxZ04hDh6UJsHs3Fl6us5QvynTp0+Hl5cXXnvtNRw/flyxH8WkpCS0atUKXbp0wapVqxQ17suXL4eXlxdeeOEF/Pnnn4r9KObn56NLly5o06YNFi9ejJs3b1b/plry3XffwcfHB8OHD8fOnTsVM+5EhMceewz+/v6YM2cOrl69qogOAOzduxeBgYEYNGgQtm7diry8PMW0wsPD0bx5c7z55ps4deqUYjoXL15EUFAQQkNDsX79ekWN+/z58+Hl5YUJEybg8OHDin13MzMz0b59e4SEhODjjz9W1LivW7cOXl5eePbZZ7Fnzx7FjHtJSQl69+6Nli1b4v3330d8fLwiOgCwY8cO+Pr6YujQofjpp5+MZtxrs3bbcQBry22LBbCkivzLAMSW27YOwFGt/xcDiAdgorVtKoBkPc5LXnw3MzOTPvzwQ2rZsiUBIFNTUxo2bBjt2LGD0tLSKqwlVxeioqLo+eefJysrK3kF67fffpsuXbpkkONrKCgooM8++4w6d+6sWf+GBg4cSN98843B18A7f/48vfrqq/IioM7OzvT666/TyZMnDbq2mlqtpq+++ooeeughuUw9evSgtWvX0p07dwymQyQtqvvvf/+b3N3dCQDZ2trSiy++RMuWnaWRI9VkZkZkaUn03HNEBw4Q1WUZqh07dtDjjz9OJiYmBIDatWtHH330kcHXTEpNTaX33ntPXv3b3NycnnnmGdq9e7fBVxs/cOAAjRo1iszNzeXFlufPn0/Xr183qM7du3dp+fLl8gK+JiYm9Nhjj9EPP/xA+fn5BtWKiYmhl156iWxtbQkAubu701tvvUXnzp0zqE5xcTGtW7eOevbsKbfzsLAw+vLLLyknJ8egWpcvX6Y33niDnJ2d5UVoJ02aREePHjX4uohbt26VF98GQJ06daKVK1dSWlqaQXWSkpLonXfeIW9vbwJAVlZW9Nxzz9G+ffsMvl5cREQEPfXUU2RqakoAqGXLlrRo0SJKTEw0qE5mZiYtWrRIp4966qmn6L///a/B13qMjIyk5557TqePeuedd+jy5csG1cnPz6eVK1dSp06d5Dbx8MMP07fffmvwPurcuXM0adIksre3lxdKf+ONN+jvv/+u8TGMsvgugDEAigBMANAOwKcAcgH4l+5fAuAbrfyBAO4B+KQ0/4TS9z+jlccXwF0AqwG0BvAEpIjVu3qcl2yYNKjVajp8+DBNmDCB7Ozs5A8WAEVGRupXQ9WQmZlJX3zxBfXq1UtuLH369KGNGzcazJxpOHXqFL355pvk4uJCAMje3p4mTpxIkZGRBv1RvHfvHm3dupUGDRpEQggCQCEhIfTpp59SamqqwXSIiK5cuUJz5syh5s2bEwCytLSksWPH0h9//EElJSUG0ykqKqKdO3fS8OHDyczMjABQixYtaNasj2n27DvUurX0rQgKIlq8mOjmzdpr3bx5kxYvXkytWrWSfxSffPJJ+vnnn6mwsNBgZVKpVLR//34d4+7l5aWIcU9PT6dVq1bJq5oDoAEDBtCWLVt0VgKvK2q1mo4dO0avvfYaOTo6Kmrc7969S5s2baK+ffvKZerevTutWbPG4Mb9/PnzNGPGDPLw8CAAZGNjQ+PGjaODBw8atPMvKCigbdu20ZAhQ3SM+7Jlywy+IPf169eNYtyLi4spIiKCRo8eTRYWFgSA/Pz8aN68eQZfqPjWrVu0YsUKCg4OJgAkhKBHH33U4MZdrVbToUOH6OWXX5aNu5ubG02fPp3Onj1rMB0i4/ZRf//9N02ZMkXubx0cHOiVV16hqKgog/dR3377ba2Mu1EME0nmZHJpRKgQQAyAflr7NgP4q1z+/gD+Ls0fB+C1So7ZG8AxAAUA/gEwB4CpHudUwTBpc/fuXdq8eTOFhYXJH2zXrl1p9erVlJGRIeczRGXGxsbSzJkzydPTkwCQtbU1vfjii3TgwAH5R1GtVtdZq6CggLZv305PPPGE/KPYpk0bWrJkCSUlJdW5HNrEx8fTBx98QIGBgQSAzMzMaMSIEfTrr78a9IqopKSEfv/9dxozZgxZWloSAPLx8aF3332Xrl69ajAdIqLbt2/TJ598QiEhIfKP4qBBg2n+/H30/PPFZG1NJATRI4+o6euviWr7m6JWq+nIkSMUHh4uG3dXV1eaOnUqnT59WidfXcnKyqL169dTaGio3M579+5NGzZsqHAxUVdOnz5NU6dO1THu4eHhdOTIEYP+KObl5dH3339fwbh/8skndPv2bYPpEBFdvXqV3n33XfLx8ZGN+5gxY+j33383uHH/9ddfacSIETrG/YMPPqCEhAQ5nyE+x5s3b9KSJUuodevWsnF/4oknaPv27bJxN8TvkUqloj///JNeeOEFsra2lo37rFmz6OLFi3I+Q5QpPT2dVq9eTV27dpXbef/+/Wnz5s06xr2uWmq1mk6cOKFj3J2cnGjy5MkUHR1tcOP+9ddfU79+/eQydevWjT7//HOdPsoQXLhwgWbOnHlf426oPuqnn36ioUOHyn1U27ZtaenSpTp9lCE+x7i4OFqwYAEFBATIxn3kyJG0a9cu2bhrl8lohqkhpuoMkwbNhzRr1izy9fUlAGRhYUGjR4+mvXv3GvQLUFxcTLt27aKRI0fKtzICAgJowYIFBjc0ycnJtGzZMmrbtq18K2PIkCG0bds2g+qoVCo6ePAgjRs3jmxsbAgAeXh40IwZMwxuaO7cuUNr1qyh7t27yz8gffv2pU2bNhk0QqNWqyk6OpomT55MTk5OBIAcHR3p5Zen0XvvJdDAgWoSgsjammjsWKLdu4lq6xFzc3Npy5YtNGDAALlMXbp0oVWrVhn89kxsbCzNmjVLx7i/8MILdOjQIYO288LCQvr555/pySeflG9ltG7dmhYvXmzw2zMJCQn0wQcfUIsWLWTjPnz4cNq1a5dBdUpKSuiPP/6gsWPH6hj3OXPm6BgaQ1C5cR9EW7duNWiERq1WU2RkJE2cOFE27i4uLvTmm2/ShQsXDKZDJBn3DRs2UO/eveV2HhoaSuvXr6e8vDyDap05c4amTZtGrq6uBIDs7OxowoQJdPz4cUWM++DBg2Xj3qFDB/r4448pMzPTYDpERNeuXaO5c+fq9FHPPvss7du3z6A6lRn3wMBAev/99w0eiUxKSqKlS5fKxt3ExISGDh1KP/30k0HrSaVS0YEDB+jFF1+UjbunpyfNnDlTp49iw6SHYcrOzqaSkhLau3evfH935MiRNamPWpGWlqZzf/fQoUOK6KjVajp69ChNmjSJHBwcqFu3boroEBHl5OTQl19+KUftvv32W8W0zp49S2+99Ra5ubmRh4eHwe/za8jPz6cffviBHnvsMRJC0MKFC4mI6MYNoqVLiYKDpW+NmxvRlClER48S1fa7/s8//9D8+fPJz8+PLCwsKD093YAlKaO4uJh2795NzzzzDJmbm1N4eLgiOkSScf/oo4+oXbt2BIDOnz+viI5KpaK//vqLxo8fTzY2NjRo0CBFdIgk47527Vrq0aMHAaDdu3croqNWq+nkyZP0+uuvk7OzM7Vs2dLg4440aIz7wIEDCQB9/vnniugQEV28eJHefvtt8vLyInt7e4OPZ9FQWFhIO3bsoGHDhpGpqSnNmDFDER0iybgvXLiQgoKCSAhBN27cUERH00f93//9H1laWtLo0aMV0SGSxkR++umn1LFjR0WGrWjQGPdXXnmF7O3tqUePHoroEEn9/caNG6lPnz4EgLZu3aqzT1/DpPdM3w2Vus70nZWVhaysLAQEBCh+rmfPnkVISAiEENVnrgN5eXnyk1RKc+XKFfj6+sLa2lpRneLiYly9ehXt27dXVAeQHpu2traGi4uLvI0IOHNGmtvp+++BW7ekpVhGjQKefRbo2VNaJFgf1Go1Lly4gJCQEAOXoCLp6ekoKCiAj49P9ZnrABHh3Llz6Nixo6I6AHD37l2kpaWhRYsWimtduHABbdq0gZmZmaI6BQUFiI+PR9u2bRXVAaRpHFxcXBRf+aCkpASXLl1Chw4dFNUBgJSUFAgh4OHhoaiOMdt5VlYWsrOz4e/vr6iOpkxNrY+6fPky/Pz85D6qNjN9s2FimFqiUgGHDwM//QRs3w6kptbdPDEMwzDKo/jSKAzDlGFqCgwYAKxZAyQnAwcPAk88IUWfQkOlZVr+/W8gMlIyVwzDMEzjpdEbJiHE60KIWAAn6vtcmAcXjXlau1YyTwcOlJmnhx4CvLyA8HBg505AwbkEGYZhGIXgW3IMoyAqFXD8uGSUdu4ELl8GrK2BwYOBp58GnnwScHev77NkGIZ5sOAxTGyYmAbO5cvAr79K5ikqStrWuzcwbBgwZAjQsSOPe2IYhlEaNkxsmJhGRGoq8Ntvknnavx+4d0+6dff445J5GjwYcHKq77NkGIZperBhYsPENFIKC4EjR4A9e4DffwcuXJDGRYWGSuZpyBBpkWCTRj/qkGEYpv5hw8SGiWki3LghGac9e6ToU24u4OEBDBoEPPKIlPz86vssGYZhGidsmNgwMU2QoiJpvJPGPJ06JU2g2apVmXkaOBDQml+TYRiGuQ+1MUzKTlfLMEydsbCQpiwYMED6/84dac6nP/+U0hdfSAPFO3cuM1B9+wK2tvV40gzDME0MjjAxTCMnMVGa90ljoJKTATMzoHt3oF8/yTyFhQHOzvV9pgzDMA0DjjCVcvbsWcyePRthYWEICwtDjx49YGNjo4jW3Llzcfv2bVmrZcuWiqy/k5GRgTFjxsg6oaGhihm+1atXIzo6Gn369EFYWBiCg4NhosBoY5VKhaFDh6Jz584ICwtDnz594OrqanAdANi+fTu2bdsmf36dOnWCubm5IlrPPfcc3N3dZS1vb29FdI4cOYLly5fLOmPGdIOlpRUuXZIiUIcPSxNnfvSRFIHq2LHMQPXtC3h61lxr2rRpKCwslLUCAgIUaefXr1/H5MmT5fbQq1cv2NnZGVwHAJYsWYIrV67IZWrbtq0iZcrLy8OwYcMQGhqKsLAw9O7dG84KuddNmzZh//79cplCQkJgampqcB0iwvDhw9GqVStZy12hCcX27NmDL7/8Utbp0qULLCwsFNGaOHEirK2tZS1fX19FdE6fPo25c+fK7VzJPmrOnDlIS0tTvI9KTU3F888/L/cbSvZRn332GWJiYuQytW/fXpE+qgI1XaW3oSYArwOIBXAJAGVnZ9Pu3bvJzc1NsxIxmZmZUc+ePWn69Om0ZcsW0uQzBKNHjyYzMzNZy83NjZ5++mn66KOPKDIykgoKCgyiExMTQz4+PrKOEII6duxI//rXv+i7776juLg4g61sPm3aNLKyspK1HB0d6fHHH6eFCxfSgQMHKDc31yA6N2/epJYtW8o6AKhNmzY0YcIE+uqrr+jixYsGK9OKFSvI3t5e1rGxsaGBAwfS3LlzKSIigjIzMw2iU1hYSCEhITplCggIoOeff57Wrl1Lp0+fppKSEoNoff/999SsWTNZx8LCgvr06UMzZsyg//73v5SamkpqNdG1a0Rff0308stEQUFE0ggootatiSZOJNqyhejqVaL7fdSDBw8mU1NTWcvLy4ueeeYZ+uSTT+j48eNUVFRkkDIdPHiQPD09ZR1TU1Pq2rUrTZkyhX744QdKTEw0iA4R0YQJE8jCwkLWatasGT355JO0ZMkSOnToEOXl5RlE59KlSxQQEKDTJoKDg2nSpEm0ZcsWunr1qsHa+bx588jGxkbWsbe3p8GDB9OCBQto3759lJOTYxCdzMxMatOmjU6ZWrZsSePHj6f169fT+fPnSaVSGUTriy++IEdHR1nHysqK+vXrR++88w7t2rWLMjIyDKKjVqupZ8+eJISQtXx8fGjMmDG0atUqiomJoeLiYoNo7dy5s8o+avv27XTr1i2D6BARjRw5UqePcnd3p+HDh9Py5cspKirKYH1UdHS0Th9lYmJCnTp1osmTJ9PWrVspPj7eYO186tSpOn2Uk5MTDRkyhBYtWlTjPio7O1vzfgeqod9osrfkiAjXrl1DZGQkoqKiEBkZidjYWDm/v78/+vbtKzv84ODgWl+J5eXl4eTJk4iMjJT1MjMzAQCWlpbo3r27rNOnTx+4ubnVupyJiYmyTmRkJM6cOQO1Wg0A8Pb2lt19WFgYOnfuXOsoSlFREU6dOqWjdfv2bQCAqampHBXSpObNm9e6TLdv35brKDIyEjExMSguLgYAuLi46JSpe/fusLKyqpWOSqXCuXPndOopISEBACCEQHBwsE6ZAgMDa30llpmZiaNHj8o6x48fR35+PgDAwcFBjjaEhYWhZ8+esLe3r5WOWq3G5cuXdT6/K1euyPs1EQDNZ9i2bVukpJjg8GHg0CEpCnXunJTX1VWaxqB3byn16AFoB3dyc3Nx4sQJWefo0aPIyZEi2dbW1ujZs6es06dPn1pHUYgI8fHxOm3v/Pnzmgsk+Pn56bSJkJAQmJnVLlheUFCAmJgYnTaRnp4OADA3N0fXrl112oSHh0etdAAgOTlZp0ynTp2CqnSRQQ8PD50yde3atdZRlOLiYpw5c0ZHKzk5GQBgYmKCjh07yjp9+vSBn59frdt5eno6oqKi5PYXHR2NwsJCAICzszN69+4t6/Ts2bPWURS1Wo3Y2FidMl2/fl3e365dO5123qpVq1qXKScnB8eOHZN1jh07hnv37gEAbG1tERoaqhNFKb2tozfafZQmXbx4Ud4fGBio0/bqEunPy8tDdHS0TjvPysoCoNtHGSLSf+PGDZ0ynT17VqeP0i5TXSL9RUVF+Pvvv3X6eE0fZWZmptNH9enTp0IfVZtbcvUeITJUAuCAaiJHGRkZtG3bNgJAYWFhZG1tLTtUBwcHevzxx6mwsLBaZ1odKpWKLly4QBs2bKCXXnqJWrVqpXMl1rp1a9qwYUOddYiIcnJyaP/+/fT+++/To48+WiGKMmDAAEpOTq6zjlqtpmvXrtE333xDr776KnXo0EHnSszf358WLlxogBIR5eXl0eHDh2np0qU0bNgwcnFxkXXMzc0pNDSUzp49axCtxMRE+vHHH+nNN9+kbt266URRPD09afLkyQbRKSoqohMnTtCnn35Ko0aNIi8vL50rsS5dutCff/5pEK3U1FT65ZdfaObMmRQWFqYTRXF2dqYRI0boXOllZBDt2UM0fz7R4MFEDg5SBMrEhKhTJ6LXXpOiUFeu6EahSkpK6MyZM7Ru3Tp64YUXKDAwUKedt2/fnv7zn/8YpEyZmZm0Z88emjdvHj388MNka2sr69jZ2dGgQYMMEjVWq9V06dIl2rRpE4WHh1Pbtm11yhQUFESffvpp3QtERLm5uXTw4EFatGgRDRkyhJycnGQdS0tLeuihh+iff/6ps45arab4+HjaunUrTZ48mTp16kQmJiayVvPmzentt982QImICgoKKCoqipYvX07Dhw+vEEXp0aMHHT9+3CBaycnJtH37dnrrrbeoV69eZG5urhPpHz9+vEEiGsXFxRQTE0OrV6+msWPHkq+vb4VI/65duwxQIqL09HTatWsXzZ49m/r161ch0j9kyBCDRHO1+6jx48dXGun/8ssvDVAiqY/at28fLViwgAYPHlxpH5WSklJnHU0ftWXLFpo0aRIFBwfrlMnf358+/PBDOT9HmPQc9G1lZYXTp0/LTjg1NRWHDh1S5PxSU1N1ogDh4eEIDw83uI5KpcL58+dl133q1CmcPn1akfE6WVlZOHr0qFyu/v3747333jO4DhFViKIcPHgQXl5eBtfKzc3VuRLz9fXFhg0bDK5DREhISNC5Elu/fj1CQ0MNrlVYWKgTRVGpVNi1a1eV+VUq4OJF4Ngx4OhRKWkufF1cpChUjx5S6t5ddy28W7du6VzFzpw5E6NGjTJ4mUpKSuQoSlRUFK5du4bo6GjFxg9qR1FGjhyJadOmGVxHE0XR6Bw7dgwxMTGKjOHKycnB8ePH5brq1KkTVqxYYXAdIsI///yj08537NiBNm3aGFwrPz9f57vr4OCA77//3uA6gG6kPyoqCsuWLcOgQYMMrqMd6Y+KikJGRgYOHjxocB1AivRrouKRkZF45ZVX8PLLLxtcR7uP0twlOX36dK2jxPcjMzNTJ1r4yCOPYO7cuQB4HqY6PyVHRIr84DJMdWi+hw21/WVmSosIa0zUyZPS9AYA4OsrGSeNgerWDWjWrH7Pl9EP/u1j6ov6antsmNgwMY2Uxtb2iID4eMk4RUdLf2NigNIhTWjRosxAde8OdO0K8CweDZfG1v6YpkNjMkxNclqB2sI/GEx90djanhBAYKCURo+WtqnVwLVruiZq1y4gL0/a37KlNLmmdvL2lo7F1C+Nrf0xTYfG1PY4wsQwjGKoVMClS5J5OnMGOH1aSqUPkcLVtaKJatNGmniTYRhGKTjCxDBMg8LUFAgOlpIGIml2co15On0a+PlnQDPm2NISCAmRzFOnTkCHDlJSaE5ThmGYGtHoDZMQ4nVIk1caYZpPhmHqihCAn5+UnnqqbHtWFnD2bJmJOnkS+OYbafFhAPDwKDNPmhQcDNRyCiuGYRi94FtyDMM0WEpKpHFR58/rpqtXpTFTAODvX9FItW0L1HJ+U4ZhHgD4KTk2TAzzQFBQII2NOndO10jduCHtNzEBgoIk49S2LdCuXdlrXoSYYRgew8QwzAOBlVXZIHFtsrOB2FjJSF26JKWffgISEqSxU4B0a6+8iWrXDvDxkYwWwzBMZbBhYhimyeDoWLYWnjZ5edJtvIsXy4xUVBSwebMUrQIAGxvpCT2NkWrdWpoKoVUrnkOKYRg2TAzDPADY2EhP3HXqpLtdpZJu4126pGum9u4FStfgBSAt/9KqVcXUsqXuAsUMwzRdamWYhBCTAcwE4AXgAoBpRHT4Pvn7A/gEQDCAZAAfEdEXVeQdC+A/AHYS0fDanB/DMExNMDUtm4BzyBDdfZmZ0oDzq1fLUmwssHNn2TxSAODlVRaJKm+mbGyMWx6GYZRDb8MkhBgDYCWAyQAiAbwKYI8Qoj0R3agkfyCACAAbAbwAIAzAWiFEGhH9XC6vP4AVAKo0XwzDMMbA2blskeHyZGToGqmrV6WJObdvL1seBpDMVIsWUgoMLHvdooW0j8dMMUzjQe+n5IQQxwH8TUT/0tp2EcAvRDS7kvzLADxFRO20tn0BoBMR9dbaZgrgfwC+BtAXgJM+ESbtp+QuXbqE3bt3IyAgAAEBAQgMDISPjw/Mzc0N/pScZoVvjU5AQACaNWtm8Oner127hk2bNuno+Pn5wdLS0qA6APDVV18hLS1NR8vd3d3gZcrMzMSSJUt0dPz9/WGjwGX5jh07EBsbq6Pl5eUFEwP3WESEWbNmwdfXV0fLXoHJgg4ePIj//e9/OjrNmzdXZNXvRYsWwcbGRtYJCAiAswKPm509exbbtm3TKZOvry8sLCwMrvX5558jLy9PR8vV1bVO7ZwISEsrM1HXrwMXLtzD8eNpuHvXDTk5tnJeS0sgIKByQxUYWLtxU1u3bkVCQoJOmTw9PQ3+3c3Pz8e8efN0dAICAmBra1v9m/UkIiICJ0+e1NHx9vaGqampwbXeffdduLm56WiVPkllUI4dO4aIiIgK7VyJ7+7y5cshhNApkxJ91JUrV7B582aj9FEbN25ERkaGTpn07aMUn1ZACGEBIA/AaCL6r9b2zwB0JqL+lbznEIBTRDRVa9sIANsA2BBRcem29wF0JKIRQojNqMYwCSEsAWjXhD2Am9nZ2diwYQNmzpypk9/ExAS+vr7w8fFBZGQk3nnnHbRt21au3ObNm8PU1FTvhQB9fHyQlJSks83e3l7HrJV/7eTkVOPja9i+fTtGaxbtKkUIAW9v7yq1fH19YW5urrfWQw89hMjISJ1t1tbW9y2Ti4uL3l/A6Oho9OzZs8J2Dw+PKrX8/PxgVYsJdp5//nl8//33OtssLCzg7+9fQUvz18PDQ+8ypaWlwd3dvcJ2FxeXKsvk7+8PW1tbvdveu+++i8WLF+tsMzMzq2DWyptEfTsaIoKdnR3yNIvCleLo6HjfNlGbC5KNGzdi0qRJOttMTEzQvHnzKnV8fHxq1dG0b98eFy9e1Nlma2t73zI5Ozvr3Sb27duHRx99tPQ/awABAFrAwaELbGw6wNQ0CEVFPsjOdkFRUdn31cWlzEAFBEjzTWmnysZODR06FHv27NHZZmVlJbfzysrk5uamd5muXLmCNm3aVNju5uZWpY6/vz+sra310gGAyZMnY926dTrbzM3N4efnV6WWp6en3hdDBQUFsLGxQfk+0dnZuUqdgIAA2NViENuyZcvwzjvv6GwzNTWFj49PlVqaPkpfvLy8kJKSorOtsj5KW7M2fdSPP/6IsWPH6mzT7qMqK5Omj9L3t6937944duyYzjZNH1VVPZXvo4xhmLwBJAEII6Iore1zAIwnogrfICHEFQCbiWix1rY+kG7neRPRLSFEGIAfIZmu9BoapgUA3iu/PTs7G/b29khPT0d8fDzi4+MRFxcnv7527RquXr1a4XiajubEiRNw1WMNhqKiIiQmJlbQ0vxNTk6u8B5HR0dMnDhRjk7VlMzMzErLFBcXh7i4ONy7d08nv4mJCXx8fLBr1y507NixxjolJSVISkqqUuvmzZtQa2YNLMXOzg5PPPEEfvjhB73KlJOTg4SEhEp14uPjkZWVVeE9Xl5e2LRpEx5//PEa66jVaty6datKnRs3bqCkpETnPVZWVujWrRuOHDmiV5ny8vLuW6Z07dHEpbi5uWHp0qWYMGFCjXWICKmpqVW2vYSEBBQWFuq8x9zcHP7+/jh//rxeV36FhYW4ceNGlWUq/4MMAM2aNcPUqVMxf/58vcp0586dKttefHx8BeNmamoKX19fHDx4EAEBATXWKi4uxs2bN6vUSUpKqtB5Ojg4YOzYsVi/fn2NdQAgKysLCQkJlerExcXh7t27pTndAQQCCIKDQ2f06zcOubkeiIsDbt6UBqlraNaszDz5+Ul/fX1VsLZOA1E87ty5goQEXa3ExESotA8CwMbGBgMGDMBvv/2mV5lyc3MrtHPt8t25c6fCezw9PbF69WqMGjWqxjpqtRq3b9+usp4SEhJQXFys8x5LS0u0bt0aZ86c0asjzs/Pv287T01NrfAeV1dXzJ07F1OnTq3kiJVDRHIfVZlOfHw8CjSPb5ZiZmYGPz8/REdHo1mzZjXW0vRRVelU1kc5OTlh4sSJWL58uV5lysrKqrJM9+ujIiIiEKy9flI1aPdRlbW9qvqoYcOGyRfOxpyHqbzLEpVsqy4/AJAQwh7AdwBeIaKKPUnVLIE0kFyDPYCbgORq3dzc4Obmhh7lBiBoPqSrV69WMFU3btzQ+zaDhYUFgoKCEBQUVOn+goIC+QuoXan6/LBrcHZ2hrOzM7p06VJhn6ajqayhurm56aVjZmYGf39/+Pv7o3//CkFDFBcXV2oSa1MmBwcHhISEICQkpNL9mi9geS0PDw+9dDRRiubNmyMsLKzCfpVKValJrE042cbGBu3atUO7du0q3Z+bm1tpmby8vPTSEULAw8MDHh4e6NWrV4X9arUaKSkpFXQyMjL0LpelpSVatWqFVq1aVbo/Pz9f7jy1tfz8/PQuk4uLC1xcXNCtW7cK+4kIaWlplf7w69vOzc3NERgYiMDAQAwcOLDC/qKiokq/uy1atNBLB5A6ICcnJ3Qq/5heaZkqvxg6hE8/HYGWLaW2XlIC3LolzSlVPu3bJ/3NyzMF4AnAE9bWobKRatUKGDQI8PFRwdo6FWp1AnJzryAx8R/Ex8frdZGowc7ODsHBwVV2dDk5OZXWk6enp146JiYm8PLygpeXF3qXny8C0ndXczGkrVVcXKx35Mza2hpt2rSpNHoGAPfu3av0YsjHx0cvnfv1UYDUJjQmUVsrMTFR7+iPPn2Udpn0/T0XQlTbR2VkZFTaJvRtf9X1UUVFRZVeDFX1GdSUer8lB+nJuVMAtC97NLFUNYA2RPRPDc6NZ/pmGOaBhUgajK4xUTduVDRWGRll+YWQJvH08ak6NW/OS8wwTRPFI0xEVCSEiAEwGMB/tXYNBrCzircdBTCs3LZHAZwkomIhxCUA5cMLiyBFjKYCSNTnHBmGYR5EhABcXaVUSXAOAHDvnmSkEhOlW3za6X//k/5qT5kAAG5u9zdVPj48fQLzYFCbW3KfAPhWCHESkhmaBMAPwBcAIIRYAqA5EY0rzf8FgDeEEJ9AmlqgN4BwAP8HAERUAOC8toAQIqt0n852hmEYpvbY2kozmVdxtxgAkJsLJCVVNFQ3bwJHj0p/yw/Dc3aWjJOXF+DtLSXNa81fT0/pyUCGaazobZiI6EchhAuA+ZAmrjwPYCgRJZRm8YJkoDT544QQQwF8CuB1SBNXvll+DiaGYRim/rGzk5aIqWIYDwAgPx9ITtY1U4mJ0hiry5eBgwel10VFuu9zcancTLGxYhoDes/D1FDhMUwMwzANByLgzh3JWN26Jf3Vfq39tzJjVd5MeXhIydOz7LWzs3QrkmH0xZhPyTEMwzBMlQghGR8XF6CKh2ABVG+sNBGr27fLFkrWYG5eZp60k7ap0vzP5oqpK2yYGIZhmHpDH2N1965knFJSpL/lX8fGAgcOVG2u3N2rNlUeHtIAd3d36VwUmHSbaeRwk2AYhmEaPEJIy8U4OEjzSt2PqsyV9v+xsVLkKiWlorkCpIlB3dwqT+7uuv+7ugIKrN7DNDAavWESQrwOaTA5L2PJMAzD1NpcpaVVnaKjy16Xm0AfAODoeH9TVT7x/FaNDx70zTAMwzA1hEiaeqEyU5WaWvn2cqv5AJCmeNDcitROrq5Vb7e353FYhoIHfTMMwzCMggghGRd7e2lh5JqQl1fRRGVkSCk9XfqbmgpcvFi2vbLbhGZm+hksFxdpsDuPxzIM/DEyDMMwjILY2JQtlFxT8vLKzFRVKT0dOHOm7P/s7MqP5eQkmadmzaTk7FyWtP8v/9rGhiNa2rBhYhiGYZgGho0N4OcnpZpSUiJN0VA+eqVJd+5IS9+kpgKXLkmvMzOBnCpuSJmbVzRS1ZkszeumOEaLDRPDMAzDNAHMzKTB5u7u+r2vpATIypLMk8ZUVfU6MVGKamm2VzY+CwCsrSuaLCcn3eToWHGbk5M0WL8h3kZsgKdUdw4cOIDffvsNjo6OcHJygqOjo5zMSmvhzp07sLGxkf+vLfPnz0dJSYl8/PJ6mv9tbW0h6hDbPHPmDDZv3nxfDU2yqOPzrStXrkRKSkq1ZbKzs4OJSe0fTkxMTMSKFSuqLY+TkxMs67hWwjfffIPz589X+/k5ODjUqUx5eXl4++23a1QmKyurOrWJ3bt346+//qpRmerazmfNmgVzc/Nq24SNjU2dyhQVFYXt27dX0Civ5+joCHNz8zqVacmSJfLAz+raeV3KdPnyZaxbt67aNuHo6Fjndv7FF18gLi6u2jZhb29fp3aenp6ODz74oMbtvC5s27YN0dHRNWrnpqamtdZRq9WYOnVqteVxdHSEtbV1ndrE/v37sWfPnhq1ibp+d+fNmweVSlVtmVxcbOHqqn+ZCgsl4xQZGYtt2/bD1NQVQjQDkTNUKgcUF9uhoMAGOTlWSEmxQG6uKXJyTJCVJQ2erwo7u6oN1uXLx1FSkg5nZwEXF1O4uprD3d0Cnp5WaN7cFn5+dmjWrO59VAWIqEkkAA4AKDs7mxYvXkwAapRsbW3J29ub2rVrR6GhoZSSkkL64ObmViMdU1NTcnZ2psDAQOrcuTO9++67euls3bq1xmWytrYmT09PatOmDfXq1YvOnDmjl1b37t1rpCOEIEdHR/L396eOHTtSeHi4XjpHjhypcZksLS3J3d2dWrVqRT169KA//vhDL61Ro0bVWMvBwYF8fX2pQ4cONGTIEL10EhMTa6xjbm5Orq6uFBQURN26daMtW7bopTVjxowaa9nZ2VHz5s2pffv21Lt3b7p3716NddRqNZmbm9e4nTdr1oxatGhBXbp0oWXLlulVpjVr1tS4TDY2NuTl5UVt27al0NBQun79ul5aQUFBNdIxMTEhJycnCggIoE6dOtG0adP00tm1a1eNy2RlZUUeHh7UunVr6tmzJ0VFReml9cgjj+j13fXz86OQkBAaM2aMXjrnzp2rcZksLCzIzc2NWrZsSd27d6cdO3bopRUeHl5jLXt7e/Lx8aHg4GDq16+fXjo5OTk11jEzMyMXFxcKCgqirl270tq1a/XSWrhwYY21tPuo3r17U1paml5azZo1q/F3V7uPmjdvnl4633zzTY3LpOmjWrduT127DqaIiMt08iTRn38S/fwz0VdfEX38MdG8eURTphCNG0f01FNE/foRdexIZGGRTEAWAVRF6iy3cycnJ7mPmjhxony+2dnZmvNxoBr6jCYZYZo9ezamT5+O7OxsnZSVlYWUlBRMmTIFb7/9NvLz8yvs1/cKLyUlBbm5uTrHKH/Myv4nPadzeO655zBq1KhKy1Td//peiZ84cQL37t3TqzzZ2dlQq9V66YSFhaGoqAg5OTl6f376XjVs27ZNrm99yqRvPfn4+KCkpKRWZdKX5cuXY+HChXqVR5P0ueoXQqCgoAB3796tkUZdPr/JkycjPDy8Vu1c38jq1atX5e+ukm3iySefRFFRkd7lyc7O1jtism/fPuTl5Slepg4dOqC4uLhW7VzfyMzGjRuxevVqvdu5vr9H9vb2KCkpqVU715e5c+dixowZtWrn+vZRaWlpRmnnL774IsaMGVOLdn4HgYFqtG1bcy0iT9y7dw937iQhKSkHycl5uHUrH6mpRUhLK4Kn5zgUFg6pc5nKw/MwMQzDMAzzQFGbeZga/ezYQojXhRCxAE7U97kwDMMwDNM0afSGiYjWEFF7AD3r+1wYhmEYhmmaNHrDxDAMwzAMozRNbtB3TlUzcJXbX10+hmEYhmGaJrXxAE1p0HdzADfr+zwYhmEYhmk0+BBRUk0yNiXDJAB4A7hbTVZ7SMbKpwZ5a8oJGHYMVUM/nqGPyXXS8I7HddLwjsd10vCOx3XSsI6nb33YA0imGhqhJnNLrrTA1bpErTlA7tb0UcIaHFNtqGM1huMZ+phcJw3yeJqXXCcN53ial1wnDed4mpdcJw3geLWoD710edC3YVjzgB1PqWMakob+GTb04ylBQy9zQz+eEjT0Mjf04ylBQy9zQz+eYjSZW3I1RTPBJfSYrIpRFq6ThgfXScOD66ThwXXSsFC6Ph7ECFMhgPdL/zINA66ThgfXScOD66ThwXXSsFC0Ph64CBPDMAzDMIy+PIgRJoZhGIZhGL1gw8QwDMMwDFMNbJgYhmEYhmGqgQ0TwzAMwzBMNTxQhkkIMVkIESeEKBBCxAgh+tb3OTVVhBD9hBC7hBDJQggSQgwvt18IIRaU7s8XQvwlhAgul8dSCLFaCJEuhLgnhPhVCOFj1II0EYQQs4UQ0UKIu0KIVCHEL0KINuXycJ0YESHEv4QQZ4UQOaXpqBBiiNZ+ro96pvR7Q0KIlVrbuF6MSOlnTeVSitZ+o9XHA2OYhBBjAKwE8CGALgAOA9gjhPCrz/NqwtgCOAPgjSr2zwLwVun+HgBSAOwTQthr5VkJYASAsQAeAmAHYLcQwlShc27K9Ic0QVwogMGQZvnfK4Sw1crDdWJcbgJ4B0D30nQAwE6tH3uuj3pECNEDwCQAZ8vt4noxPhcAeGmlEK19xqsPInogEoDjANaV23YRwJL6PremngAQgOFa/wsAtwC8rbXNEkAWgFdL/3cEUARgjFYebwAqAI/Vd5kaewLgVlov/bhOGk4CcAdAONdHvdeDHYArAAYB+AvAytLtXC/Gr4sFAE5Xsc+o9fFARJiEEBYAugHYW27XXgB9jH9GDzyBADyhVR9EVAjgfyirj24AzMvlSQZwHlxnhsCx9O+d0r9cJ/WIEMJUCDEWUmT2KLg+6ps1AH4jov3ltnO91A+tSm+5xQkhfhBCtCjdbtT6aDKL71aDKwBTALfLbb8N6cNmjIvmM6+sPvy18hQRUWYlebjO6oAQQgD4BMARIjpfupnrpB4QQoRAMkhWAHIBjCCiWCGE5oec68PIlBrXrpBu75SHvyfG5ziAcZAifh4A5gKIKr11bdT6eFAMk4by05qLSrYxxqM29cF1Vnc+B9AR0r388nCdGJfLADoDcALwDIAtQoj+Wvu5PoyIEMIXwGcAHiWigvtk5XoxEkS0R+vfc0KIowD+ATAewDFNtnJvU6Q+HohbcgDSId2vLO8m3VHRmTLKo3nC4X71kQLAQgjhfJ88jJ4IIVYDeArAQCK6qbWL66QeIKIiIrpGRCeJaDakByWmguujvugG6fOLEUKUCCFKID0w8Wbpa83nyvVSTxDRPQDnALSCkb8nD4RhIqIiADGQng7SZjCAKOOf0QNPHKRGLNdH6Tiz/iirjxgAxeXyeAHoAK4zvSl99PZzACMBPExEceWycJ00DASkQatcH/XDn5CewOqslU4C2Fr6+jq4XuoVIYQlgHaQBnsb93tS3yPgjTjSfgykkfITSj/sTyGNGfCv73NrignSUyadSxMBmF762q90/9uQnmQYUdpwvweQDMBe6xjrACQCeATSVBB/AjgNwLS+y9fYEoC1pZ93f0hXY5pkrZWH68S4dbIYQF8AAZA66Q8hRcIHc300nAStp+S4Xurl819R+rsVCKAXgF0AcjR9tzHro94/DCN/8JMBxAMohOQ6+9X3OTXVBGAAJKNUPm0u3S8gPS56C0ABpKcaOpQ7hhWA1QAyAOSVflF867tsjTFVURcE4CWtPFwnxq2Tr7R+j1IB7NeYJa6PhpMqMUxcL8b9/H8oNUBFAJIA/AygfX3Uhyg9GMMwDMMwDFMFD8QYJoZhGIZhmLrAholhGIZhGKYa2DAxDMMwDMNUAxsmhmEYhmGYamDDxDAMwzAMUw1smBiGYRiGYaqBDRPDMAzDMEw1sGFiGIZhGIapBjZMDMMwDMMw1cCGiWEYhmEYphrYMDEMwzAMw1QDGyaGYRiGYZhq+H+s7Ow4ll6eBwAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "desolve_rk4(-x^3,x,ics=[0,.2],ivar='t', end_points=500, output='slope_field')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## Bifurcações\n", "\n", "Em vários modelos alterações no valor de certos valores podem alterar o número de equilíbros ou mesmo a natureza destes. Retomando um modelo que já vimos:\n", "\n", "$$\\frac{dx}{dt}= c \\left( x-\\frac{x^3}{3}+A \\right) \\equiv f(x)$$\n", "\n", "Já vimos que este modelo apresenta 3 equilíbrios: 2 estáveis separados por um instável, quando $A=0$, por exemplo.\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGGCAYAAACE4a7LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNBklEQVR4nO3dd3hU1dbH8e+BkAACgxIBURCvghBAiJSQSL1IUaKIBSk3lvfaKCpFVPSKoCKioqCAWO4VRVQUBbFhBSx0JGLBoICgSFVICCVAMu8fOzRJQsrM7DNnfp/nmScyzslZc3KSrOy99tqO3+9HRERERI5XynYAIiIiIm6lRElEREQkH0qURERERPKhRElEREQkH0qURERERPKhRElEREQkH0qURERERPKhRElEREQkH0qURERERPKhRElEREQkH0FLlBzHqe04zn8dx1nnOM5ex3HWOI4z0nGc6BMc5ziOM8JxnD9yj5vnOE6DYMUZKo7j3Os4zgLHcfY4jrOzkMdMcRzH/7fHoiCHGnTFvBZevS9OdhxnquM46bmPqY7jVD7BMZ65LxzH6Zf7M2Kf4zjLHcdpfYLXt8193T7HcdY6jnNLqGINtqJcC8dx2uVxD/gdx6kXypiDwXGcNo7jvJv7ve53HOeyQhzjyfuiqNfC4/fFMMdxljqOs8txnK2O48xyHOfcQhxX4nsjmCNK9XI//81AA2AQcAvw8AmOuxMYDAwAmgObgU8cx6kYvFBDIhp4E3imiMfNAU476nFxgOOyoTjXwqv3xatAE6BL7qMJMLUQx4X9feE4ztXAOGAUEA98CXzoOE6tfF5/FvBB7uviMT9LnnIc54qQBBxERb0WRzmXY++Dn4MYZqicBHyL+V4/IS/fFxTxWhzFi/dFW2Ai0BLoCEQBHzuOc1J+BwTs3vD7/SF7AEOBtQX8fwfYBNx11HMxwE7g5lDGGsRrcB2ws5CvnQLMsh2z7Wvh1fsCqA/4gYSjnmuZ+9y5Xr8vgMXAM397bhUwOp/XjwFW/e25ycBC2+/FwrVol3ufVLYde5Cvix+47ASv8ex9UYxrERH3Re57PTX3vbYJ9r0R6holH/BXAf//LKA68PGhJ/x+fxYwH0gKbmiu1S53mHG14zjPO45T1XZAFnj1vkgE0v1+/+JDT/j9/kVAOid+X2F9X+ROwTflqK9pro/J/70n5vH6j4BmjuOUCWyEoVPMa3HICsdxNjmO85njOO2DEqD7efK+KKFIuC98uR8LyikCcm+ELFFyHOds4FZMNpef6rkft/zt+S1H/b9I8iHQB/gnMAQz5fS54zgxVqMKPa/eF9WBrXk8v5WC35cX7otYoDRF+5pWz+f1UbmfL1wV51psAm4CrgAuB9KAzxzHaROsIF3Mq/dFcUTEfeE4jgM8AXzl9/u/L+ClAbk3oooR4Ajg/hO8rLnf71921DE1MDUVb/r9/hcKcRr/30+bx3PWFedaFIXf759+1D+/dxxnGbAe6Aq8XZzPGSzBvha5PHVf5H7MK/4C31c43ReFUNSvaV6vz+v5cFToa+H3+9MwvwQPWeg4Tk3gDuCL4ITnal6+Lwotgu6LCcB5QKtCvLbE90aREyVMgK+f4DW/HvqP3CRpLrAQk+kWZHPux+qYzPiQqhyfFbpBka5FSfn9/k2O46wH6gTqcwZQMK+FV++L84Bqefy/UynC+3L5fZGf7UA2x4+YFPQ13ZzP6w8CfwY0utAqzrXIyyLgX4EKKox49b4IFE/dF47jPA1ciqlN+v0ELw/IvVHkRMnv92/HfGOfkOM4p2OSpOXA9X6/P+cEh6zDvLGOwIrczxGNqXa/q6ixBltRrkUgOI5TBajJscmCKwT5WnjyvnAcZyHgcxynhd/vX5L7XAJm7n1BYc/n5vsiP36/f7/jOMsxX9OZR/2vjsA7+Ry2ELjkb891Apb5/f4DgY8yNIp5LfISTxjdAwHkyfsigDxxX+ROtz0NdAfa+f3+dYU4LDD3RhAr0mtgliR+BpyOyeqqA9X/9rqfgO5H/fsuzGqm7kBDzPLpP4CKtqvsS3g9amGWfg8HduX+dxOgQl7XAqgAPI4pRquNWc2wAPg90q6Fx++LDzHLf1vmPlYC7/7tNZ68L4Crgf3A/2FWAD4JZAJn5v7/0cDLR73+LGA3pjahfu5x+4ErbL8XC9diIHAZZhSxQe7/9wOX234vAbgWFY76meDHtJZpAtSKwPuiqNfCy/fFpNzfAW05Kp8Ayh31mqDcG8F8U9flfoGOe/ztdX7guqP+7QAjMBnwPszKpoa2v0gBuB5T8rke7fK6FkA5THX+1twv7Prcz1HT9nsJ9bXw+H1xCvAKkJH7eIW/Le318n0B9MNMQ2ZhRp7bHPX/pgDz/vb6tsA3ua9fB9xi+z3YuBaYvmK/AHsxq36+BC62/R4CdB3a5fPzYUqk3RdFvRYevy/yzCf+9nsiKPeGk/uJRERERORvtNebiIiISD6UKImIiIjkQ4mSiIiISD6UKImIiIjkQ4mSiIiISD6UKImIiIjkQ4mSiIiISD5Clig5jhPjOM6IMNvhPCh0LY7QtTiWrscRuhZH6FocS9fjCF2LI4J1LULWcNJxnEpAOuDz+/0ZITmpS+laHKFrcSxdjyN0LY7QtTiWrscRuhZHBOtauH7qzXGc/qE6LpTnKi63vy9di5KfqzjC4X2F6nroWpT8XOFwDYvD7e9L1yIwxwVcCPdpqYTZl6VSEY/7sZjnK/JxoTpXca+F29+XrkVAjtH3ia5FwK6F299XCY7x5L2ha1Gy40ryfVLQI6rgNKpgjuM4QMVCvvzQ6yqawwqtVO5wWlEV57hQnau416I45yruMaE6l67FsfR9coSuxRH6PjmWV+8NXYuSHVeca7HLn5tl5adENUpHzQeKiIiIhBuf/wT1TCVNlIoyoiQiIiLiJsEdURIRERHxMtevehMRERGxRYmSiIiISD6UKImIiIjkQ4mSiIiISD6UKImIiIjkQ4mSiIiISD6UKImIiIjkQ4mSiIiISD6UKImIiIjkQ4mSiLiSY1RyirELrIhIoEQF4HNoDxQRCbj09HR8Ph/p6dp3W0SColB/hGlESURERCQfSpRERERE8qFESURERCQfSpRERERE8qFESURERCQfgVj1Vig9ekCLFnDHHaE6o4iIhKOcHPjlF0hLg59/hnXr4K+/ID3dPPbvhwoVjjwqVYKzz4Z69aB+fahdG0qXtv0uxCscv7/Eq/sL9Qm6dIHoaJg9u6SnE5FIkJGRcbg9QKVKlWyHI0F08CAsXgyffAILF5r/PtQVonx5+Mc/oEoV8PnMIzoadu+GzEzz2LnTJFaZmUeOueACaNsWOneGpk1B3bgkD4W6K0KWKA0bBq+8Ar/9VtLTiUgkUKLkbTk58OWXMG0azJgBO3bAySdDUhIkJpoZiLg4qFGjcEmO3w8bN8KqVbBiBcyfD199BRkZJtHq0QOuvhoaN1bSJIe5K1F64w1zk27bBrGxJT2liHidEiVvWrMGnn0WXnsNfv/dTJP16gXdukGzZoGdMjt40CRM06fDW2+Z6btmzUwJyBVXQFTIik/EpdzVcLJJE/NxxYpQnVFERNxi4UKTnNSpA//7H1x6KXz9NaxdCw8/DAkJga8rioqCDh3guedg82Z4912oXBl69oRzzoFx42DPnsCeU7wnZInSOeeYojslSiJSkIkTJxIXF0fz5s1thyIl5PfDnDlmOi0pCb7/HiZPNiUYEyea50I1DVamDCQnmzqoFSugTRsYOhTq1oWXXjJTgSJ5CdnUG0CrVlCzphlyFREpiKbewtvy5XDnnfD55yYhuvtu6NoVSrmoKc3atSauN980sx4TJpgicIkY7pp6A4iP14iSiIiXrV8PvXubWqBNm+Cdd0xR9SWXuCtJAlPk/cYbZgowOhpat4ZBgzQdJ8cKeaK0evWRJZwiIuINBw/CE0+YlWrz5sHzz8PKlaYWye2rzJKSYMECeOwxMzXYuLFZkScCFhIlv99884iIiDcsX26Kse+4A264wTSKvOGG8FpVVro0DBkCqalQtarpwXTPPSYBlMgW0kSpQQNTUKfpNxGR8JeVZWp8WrQwCcWiRTB+PFSsaDuy4jv3XPjiCxg1Ch59FC68ELZvtx2V2BTSRCk62iRLSpRERMLbDz9Ay5Zmuu3BB2HZMpMweUHp0qZJ8ty58OOP5n398IPtqMSWkJfWqaBbJLzs2LGDlJQUfD4fPp+PlJQUdu7cWejjb775ZhzHYdy4cUGLUULH7zf1R82amRGlxYvNFFWZMrYjC7zWrWHpUtPaJjERPvjAdkRig5VE6fvv4cCBUJ9ZRIqjd+/epKamMmfOHObMmUNqaiopKSmFOnbWrFksXryYGjVqBDlKCYXdu+Haa+Gmm8zH5cvNz3QvO/NMsyqufXuzcm/8eNsRSaiFvNQuPt7s/Pzjj2ZlgYi416pVq5gzZw6LFi0iISEBgOeff57ExETS0tI499xz8z1248aNDBgwgI8++oiuXbuGKmQJkrQ0uPxys/z/lVegTx/bEYVOxYrw9tumHmvgQLN/3H/+4/7VfBIYIR9ROrQhoabfRNxv4cKF+Hy+w0kSQMuWLfH5fCxYsCDf43JyckhJSWHo0KE0aNAgFKFKEL3/vqnTyckxU1GRlCQdUrq0aR/w0EMwfDjce6+ZhhTvC/mIUsWKZjuTFSvguutCfXYRKYrNmzdTtWrV456vWrUqmzdvzve4MWPGEBUVxW233Vboc2VlZZGVlXX43xkZGUULVoJi/HjThDE52YwkRXqT9HvvhXLlTCuBvXtNMbtGlrzNSp9UFXSL2DVixAgcxynwsWzZMgCcPH4L+P3+PJ8HWL58OePHj2fKlCn5viYvo0ePPlww7vP5qFmzZvHenARETo5JkAYONP2RZs1SknTI4MEwaZLZVHfAAI0seZ2VdmDx8fDhh+Yb0W0t7UUiwYABA+jZs2eBr6lduzYrV65ky5Ytx/2/bdu2Ua1atTyP+/LLL9m6dSu1atU6/Fx2djZDhgxh3Lhx/Prrr3keN2zYMAYPHnz43xkZGUqWLNm7F1JSYOZMs/9Z//62I3Kfvn1Ny5sbboCTToIxYzSy5FXWEqVdu8yGhOecYyMCkcgWGxtLbGzsCV+XmJhIeno6S5YsoUVuk5zFixeTnp5OUlJSnsekpKRw4YUXHvNc586dSUlJ4frrr8/3XDExMcTExBThXUgwbN8O3bqZUf+ZM80WJJK3f//bbMk1cCBUqQJ33WU7IgkGa4kSmG9EJUoi7lW/fn26dOnCjTfeyLPPPgvATTfdRHJy8jEr3urVq8fo0aPp3r07VapUoUqVKsd8njJlylC9evUCV8mJfevWQefOsHOnabZ4VA2/5OP2201yeffdULOm2RBYvMXKxFfVqlCjhuqURMLBtGnTaNSoEZ06daJTp06cd955TJ069ZjXpKWlkZ6ebilCCYRffoE2bUy9zcKFSpKK4oEH4JprzAKluXNtRyOB5vhLXoVWrE+QnGxqlNTpVETykpGRgc/nIz09nUqqIg6qtDT45z/NquTPPzd/yErR7N9vfq8tWQJffQUNG9qOSAqhUFVl1kqp4+Phm2+0WkBExKZVq6BdO6hcGebNU5JUXNHRMGOG6eR96aXw55+2I5JAsZYoNW0KW7bAH3/YikBEJLL98INJkmJjzZRR9eq2IwpvlSrB7NlmsVKPHtqqyyusJUrNmpmPua1aREQkhFauNEnSaaeZJCmPvqJSDGeeaUaWvvgChg61HY0EgrVE6fTTzTfm8uW2IhARiUypqaYmqVYtU5NUiE4RUgRt28KTT5qu5m+9ZTsaKSlriZLjmFEljSiJiITOTz9Bx45w1lnw6adwyim2I/Km/v3hyitNr6W1a21HIyVhtS9206ZmREkF3SIiwffbb9CpE1SrBh99BCefbDsi73IceOEFk4j27GlWxUl4spooNWsGW7fC77/bjEJE3GTixInExcXRvHlz26F4yvbtJkkqXdokSRpJCj6fD954w0x1qmt3+LLWRwlg40Y44wzTJv+yy0oahoh4ifooBc6uXdChA6xfb3r81KljO6LI8tRTpoO3fte5jrv7KIHp11G9uuqURESCJSsLunc3TSXnzFGSZMOtt5qvwf/9n1rihCOriZLjHKlTEhGRwMrOhj594Ouv4d13j+yzKaHlOPD88xATY4q7VZcbXqwmSnBk5ZtuHBGRwBo0CGbNgunTzT5uYk+VKvDf/5pRveeesx2NFIX1RKlpU1Nk+NtvtiMREfGOp56Cp5+GiRPNlhpi38UXw003weDBsGaN7WiksFyRKIHqlEREAmX2bBg4EO64A26+2XY0crSxY02z5Ztv1kxKuLCeKNWoYVroq05JRKTkli+HXr1M8fCYMbajkb+rUAEmT4bPPoOXX7YdjRSG9UQJ1KFbRCQQfvsNkpOhYUOYOhVKueInvPxd586myH7wYNi2zXY0ciKu+DZSh24RkZLZs8f06ImJMVNv5cvbjkgK8sQT5uPgwXbjkBNzRaLUrBn8+adphiYiIkXj95si4VWrzCq3atVsRyQnUrWqqVd65RXTKV3cyxWJ0qGCbtUpiYgU3RNPwLRp8OKL0KSJ7WiksK69Ftq3h1tugd27bUcj+XFFolS9Opx+uuqURER7vRXVJ5/AnXeavcSuvtp2NFIUjgPPPgubNsEDD9iORvJjda+3o3XrBnv3wscfB+KziUi4015vJ7ZmDTRvDgkJ8N57ZsNbCT8PPmgeP/ygLWZCzP17vR1NHbpFRAovM9MUb1epAq++qiQpnN1xh2mTM2SI7UgkL65JlJo2hR074NdfbUciIuJufr+pb/n1V1O8ffLJtiOSkihXDh5/3OzHp8Ju93FVogSqUxIROZExY+Dtt02vpAYNbEcjgXDllWY/vkGD4MAB29HI0VyTKFWrBmecoZVvIiIFmTcP7r0X7rnHTL2JNzgOjB8PP/1kOneLe7immBtMy/1du+DTTwP1GUUkXKmY+3ibNkF8PMTFmdVuqkvynptugjffhJ9/hthY29F4XngVc4M6dIuI5OfgQbOHW6lSKt72socegpwcuP9+25HIIa5KlJo1g507Ye1a25GIiLjLfffBV1/B66+b3nPiTVWrmq/1s8+aUSWxz1WJkjp0i4gc74MP4JFH4OGHTcGveFv//qZdwH332Y5EwGWJ0qmnQq1aWvkmInLIpk2mFcDFF5t+O+J95crBiBEwfboGDtzAVYkSmC6zS5fajkJExL6cHLjmGoiKgilTTH2SRIZrr4V69czqRrHLdd92LVqYEaXsbNuRiIgN2uvtiMcfh88+M/2STj3VdjQSSlFRMGqU2dbr889tRxPZXNUeAGD+fGjXDr77Dho2DORnFpFwEuntAZYuhaQks63FI4/YjkZs8PvNPn6OA4sWmY8SUOHXHgBMQXepUrB4se1IRETs2LXLtAKIjzebpUpkchyTJC9ZYraqETtclyhVqGBa8i9ZYjsSERE7+veHrVvhtdegTBnb0YhN//yneYwcqR6DtrguUQJTp6QRJRGJRK+8YmqSJk2Cs8+2HY24wfDh8O23ZtNcCT3XJkrffQe7d9uOREQkdNasgb59ISUF/vUv29GIW7Rtax4aVbLDlYlSQoJZFvvNN7YjEREJjQMHTF1S9eowcaLtaMRthg83vxM/+MB2JJHHlYlSgwZQvrym30TcYMeOHaSkpODz+fD5fKSkpLBz584THrdq1SouvfRSfD4fFStWpGXLlmzYsCH4AYepBx+EFSvMPm4VK9qORtymfXto1QoeeECjSqHmykQpKsqsflNBt4h9vXv3JjU1lTlz5jBnzhxSU1NJSUkp8Jg1a9bQqlUr6tWrx7x58/j222+57777KFu2bIiiDi+LF5vtSYYPN013Rf7Occz9sWQJfPSR7Wgii+v6KB1yxx3w5puwfn0wPruIFMaqVauIi4tj0aJFJCQkALBo0SISExP56aefOPfcc/M8rmfPnpQpU4apU6cW+9yR0kdpzx7TBqByZfj6a/OHokhe/H644ALzccEC9VUKgPDso3RIQgJs2ACbN9uORCRyLVy4EJ/PdzhJAmjZsiU+n48FCxbkeUxOTg7vv/8+devWpXPnzlStWpWEhARmqRFMnu66y/yse/llJUlSsEOjSosWwaef2o4mcrg2UWrRwnzU9JuIPZs3b6Zq1arHPV+1alU25/NXzNatW8nMzOSRRx6hS5cufPzxx3Tv3p3LL7+c+fPn53uurKwsMjIyjnl43SefwIQJ8OijkM/gnMgxOneGZs1g9GjbkUQO1yZKtWpBtWpKlESCYcSIETiOU+Bj2bJlADh5jO/7/f48nwczogTQrVs3Bg0aRJMmTbj77rtJTk5m8uTJ+cY0evTowwXjPp+PmjVrBuCduteOHXD99dChg2kwKVIYjmNGIefO1QbyoeLagV7HUeNJkWAZMGAAPXv2LPA1tWvXZuXKlWzZsuW4/7dt2zaqVauW53GxsbFERUURFxd3zPP169fnq6++yvd8w4YNY/DgwYf/nZGR4elk6bbbIDMTXnzRbNskUljdu8M555iRyDfftB2N97k2UQJTp/TYY6ankn6QiARObGwssbGxJ3xdYmIi6enpLFmyhBa58+GLFy8mPT2dpKSkPI+Jjo6mefPmpKWlHfP86tWrOfPMM/M9V0xMDDExMUV4F+HrrbeOdOD2cC4oQVK6tFnw1Lcv/Pwz1KljOyJvc3X60aIFpKfD6tW2IxGJTPXr16dLly7ceOONLFq0iEWLFnHjjTeSnJx8zIq3evXqMXPmzMP/Hjp0KNOnT+f555/nl19+YcKECbz77rv069fPxttwlW3bzC+47t2hTx/b0Ui4uvZaOPVUePxx25F4n6sTpUP9RFSnJGLPtGnTaNSoEZ06daJTp06cd955xy37T0tLIz09/fC/u3fvzuTJk3n00Udp1KgRL7zwAm+99RatWrUKdfiuc9ttkJ0Nzzyj5d1SfGXLwu23w0svQR6z4xJAru2jdEi9eqbYUS39RSKLF/sozZplRpJeeUWjSVJyO3bAGWfAnXfC/ffbjiYshXcfpUMSEjSiJCLh76+/4JZb4JJLoHdv29GIF5x8MlxzjRmd3L/fdjTe5fpEqUUL+PZb2LfPdiQiIsU3cCBkZcHkyZpyk8C59VYz9fbGG7Yj8a6wSJQOHIDUVNuRiIgUz/vvmxVuTz4JNWrYjka8JC4OOnaE8eO1WW6wuD5RatwYoqPVT0lEwtPOnXDTTXDRRWalkkig3XYbLFtmtjaRwHN9ohQdDeefrxtARMLTkCGwaxc8+6ym3CQ4Lr4Yzj4bnnrKdiTe5PpECSAxERYutB2FiEjRfPQR/O9/MHasGktK8JQqZWqVZsyAjRttR+M9YZEoJSXB+vXwxx+2IxGRYJs4cSJxcXE0P9RILUxlZsLNN5v2JjfcYDsa8brrr4dy5cwKOAks1/dRApMhn3GGyZavuCLYZxMRNwj3PkqDBpnptu+/h3/8w3Y0Egluvx1efRV++800pJQT8kYfJYDTT4datTT9JiLhYckSUy/ywANKkiR0BgyAP/80yZIETliMKAH06mWm3xYsCMXZRMS2cB1ROnAAmjaFMmXMat0oV289Ll6TnAy//w4rVmjxQCF4Z0QJTEH38uWmYZuIiFs9/jj8+CM8/7ySJAm9224zTZq/+MJ2JN4RNolSUpJp0f7NN7YjERHJ288/w8iRMHiwaWsiEmodO8K555oO8BIYYZMoNW5sKvo19SYibuT3m8aSp58OI0bYjkYileOY+/Dtt2HbNtvReEPYJEplykDz5kqURMSdpkyBefPMSrfy5W1HI5HsmmvMx5dfthuHV4RNogRm+m3BAu1nIyLusn07DB0KKSlw4YW2o5FIFxtrWuk895x+XwZCWCVKiYmwebNZ/SYi4hZ33gnZ2aaQW8QNbroJVq9WUXcghF2iBJp+ExH3+OILePFFGDMGqla1HY2I0bYt1KljVl9KyYRVonTqqeYLr8aTIuIG+/fDLbeYP+K0TYm4yaGi7hkzTBNKKb6wSpTA/EDSiJKId4XTXm9jx5rpjcmTzcakIm5y7bWQkwNTp9qOJLyFTWfuQ559Fvr3h/R0OOmkUJ5ZRELJ7Z25166FBg3Mru2PPmo7GpG89ewJK1fCDz+oU3cevNWZ+5CkJFM0uXSp7UhEJFL5/WZfrapV4f77bUcjkr8bb4RVq+Drr21HEr7CLlGKi4OKFTX9JiL2vPUWfPghPP20RrbF3dq3h7PPNq0CpHjCLlEqXRpatlRBt4jYkZEBt98Ol10Gl15qOxqRgpUqZRYavPmmKVmRogu7RAnUeFJE7Bk+3PzCGT/ediQihZOSYlZovvmm7UjCU1gmSomJ8NdfZrWJiEiorFhhpttGjoRatWxHI1I4p58OnTqZbXak6MIyUUpIMNX7mn4TkVDJyYF+/cxKt9tvtx2NSNFce60p6P75Z9uRhJ+wTJQqVzZF3SroFpFQeeklWLQIJkyAqCjb0YgUTbdu4POZ+1iKJiwTJTB1SlruKCKhsGMH3HUX9OkDbdrYjkak6MqVg6uvhpdfNqOjUnhhmyi1agU//qjW7CISfMOHw969aiwp4e266+C332DuXNuRhJewTZRatzYfNaokIsGUmgqTJsGIEVCjhu1oRIqvZUuoW1dF3UUVtolS7dqmkv/LL21HIiKB5Ka93g514K5XD267zXY0IiXjOKao+623TD8wKZyw2+vtaL16wbp1psBSRLzFDXu9vfyy+cXy+eemw7FIuPvtNzjzTPjf/8xUXITz5l5vR2vTBpYvh927bUciIl6Tng533mkKYJUkiVfUrGl+d06bZjuS8BHWiVLr1nDwoEaURCTw7r8fMjPh8cdtRyISWH36mFHSTZtsRxIewjpRiouDk09WnZKIBNZ335l+ScOHwxln2I5GJLCuuMLsmzp9uu1IwkNY1yiB2ZRy92747DObUYhIoNmqUfL7oW1b2LoVVq6E6OiQnVokZC67DDZuhKVLbUdilfdrlMDMtS5caDb8ExEpqVdfNaPUTz+tJEm8q08fWLZMe6YWRtgnSq1bm0Zw33xjOxIRb9qxYwcpKSn4fD58Ph8pKSns3LmzwGMyMzMZMGAAZ5xxBuXKlaN+/fo888wzoQm4BDIy4I47zNREx462oxEJnuRkqFjR/GEgBQv7ROn886F8edUpiQRL7969SU1NZc6cOcyZM4fU1FRSUlIKPGbQoEHMmTOHV155hVWrVjFo0CBuvfVW3nnnnRBFXTwjR5pk6YknbEciElzlysHll5vVbyWvwPG2sE+UypQx3UaVKIkE3qpVq5gzZw4vvPACiYmJJCYm8vzzz/Pee++RlpaW73ELFy7k2muvpV27dtSuXZubbrqJxo0bs2zZshBGXzSrVsFTT8G990KtWrajEQm+Pn3gl1/MFJzkL+wTJTB1Sl99pY3+RAJt4cKF+Hw+EhISDj/XsmVLfD4fCxYsyPe4Vq1aMXv2bDZu3Ijf72fu3LmsXr2azp07hyLsIvP7YeBAkyANHmw7GpHQaN8eqlVTT6UT8USi1Lq12d37hx9sRyLiLZs3b6Zq1arHPV+1alU2b96c73FPPfUUcXFxnHHGGURHR9OlSxcmTZpEq1at8j0mKyuLjIyMYx6h8v778PHHMHYslC0bstOKWBUVBT17wuuvQ3a27WjcyxOJUsuW5guu6TeRwhkxYgSO4xT4ODRN5jjHr6D1+/15Pn/IU089xaJFi5g9ezbLly9n7Nix9OvXj08//TTfY0aPHn24YNzn81GzZs2Sv9FCyMqCQYOgQwfo1i0kpxRxjV69YMsW+OIL25G4V9j3UTqkZUs46yx47TXbkYi43/bt29m+fXuBr6lduzavvvoqgwcPPm6VW+XKlXnyySe5/vrrjztu7969+Hw+Zs6cSdeuXQ8/f8MNN/D7778zZ86cPM+XlZVFVlbW4X9nZGRQs2bNoPdReuwxGDYMUlOhYcOgnUbElfx+s8l8164waZLtaEKuUH2UooIdRai0bm2WOfr9ZodkEclfbGwssbGxJ3xdYmIi6enpLFmyhBYtWgCwePFi0tPTSUpKyvOYAwcOcODAAUqVOnbAunTp0uQUUEgYExNDTExMEd5FyW3eDA8+CH37KkmSyOQ4cNVVMHWqWcwQ5ZmsIHA8MfUGpqD7jz9g3TrbkYh4R/369enSpQs33ngjixYtYtGiRdx4440kJydz7rnnHn5dvXr1mDlzJgCVKlWibdu2DB06lHnz5rFu3TqmTJnCyy+/TPfu3W29lTzdc49ZOTtypO1IROzp0cN0otf0W948kyhdcIH5qDolkcCaNm0ajRo1olOnTnTq1InzzjuPqVOnHvOatLQ00tPTD//79ddfp3nz5vTp04e4uDgeeeQRRo0axS233BLq8PO1dCm8+KIZUTrlFNvRiNjTvDmceSa88YbtSNzJMzVKAI0aQUICvPCC7UhEpKSCudeb32/+uMrMNF39Nd0gke7OO2HKFDMzE0HfD5Gx19vRWrfWiJKInNirr5o9IsePj6hfCiL56tEDtm2D+fNtR+I+nkqU2rQxG/wV0N5FRCJcZqb56/mKK0zDPRGBpk3NynFNvx3Pc4kSqCBNRPL3yCPw55+mLYCIGIdWv731Fhw8aDsad/FUolSjBtSpA3Pn2o5ERNxo7Vp4/HG44w7z17OIHNGjh/kjQr9Dj+WpRAnMUPq8ebajEBE3GjoUYmNNg0kROdb558M//gFvvmk7EnfxZKL000+waZPtSETETT7/HN5+G8aMgZNOsh2NiPs4jqnde+cd7f12NM8lSu3amY8aVRIJTxMnTiQuLo7mzZsH7HMePAi33w5JSdC7d8A+rYjndO9umk8uXGg7EvfwVB+lQ+LioFUreO4525GISHEFso/SpEkwYAAsWQLNmgUoQBEPysmB0083f1CMHWs7mqCLvD5Kh7Rvr2I0ETF27IDhw+G665QkiZxIqVLQrRvMnGkas4pHE6V27eCXX+D3321HIiK2PfQQ7NsHo0bZjkQkPHTvbvZNXbnSdiTu4NlECVSnJBLpfv4Znn4a7r4bTjvNdjQi4aF9e/D5zKiSeDRROvVUaNhQ028ike6uu6B6dRgyxHYkIuEjOhq6dlWidIgnEyVQnZJIpJs3z/ygHz0aypWzHY1IeOne3Uy9rV1rOxL7PJ0orVsH69fbjkREQi07GwYPhhYtoFcv29GIhJ8uXSAmBmbNsh2JfZ5NlNq2Nc2zVKckEnmmToUVK+DJJ80qHhEpmgoVoGNHTb+BhxOlU06B887T9JtIpMnMhHvugauvNg0mRaR4uneHr7+GLVtsR2KXZxMlOFKnpF4QIpHj0Ufhr7/gkUdsRyIS3i65xMzMzJ5tOxK7PJ8obdhgapVExPt++w0efxwGDYLatW1HIxLeTj0VWrfW9JunE6U2bUx9gqbfRMJHSfZ6u+ceqFgRhg0LQmAiEah7d/jsM8jIsB2JPZ7c6+1ozZtD3bowbZrtSESkKIq619uSJZCQYPZ4vPHGEAQoEgHWrzejs9OnQ48etqMJuMjd6+1oF14In36qOiURL/P7TTuARo3g//7PdjQi3nHmmeb76v33bUdiT0QkSlu3wvff245ERIJlxgyzOueJJ6B0advRiHhLcjJ88IHpTxaJPJ8oXXABlC1rRpVExHv27YM77zQ/zC+80HY0It6TnAzbt5vp7Ujk+USpbFlo1UqJkohXjR8Pv/9uVruJSOAlJECVKvDee7YjscPziRKYvzLnz4f9+21HIiKBtHUrjBoF/frBuefajkbEm0qXhosuitw6pYhJlHbvhkWLbEciIoE0fDhERZmPIhI8ycnw7bemV1mkiYhEKT7ebGmi6TcR7/juO3j+eZMkValiOxoRb+vc2YwsReKoUkQkSqVKQYcOSpREvMLvhyFD4OyzzbSbiARX5cqmS3ck1ilFRKIEZvptyRJIT7cdiYiU1IcfwiefmALu6Gjb0YhEhuRk06V7zx7bkYRWRCVK2dkwb57tSESkJA4cMKNJ7dubTTtFJDS6djXtOCJtW7CISZT+8Q846yxNv4m43Yn2env2WUhLM80lnUJtQCAigXDuuWa6O9Km3zy/19vRbroJvvwSVq2yHYmInEhee73t2AF16sBll8ELL9iNTyQSDRwIb70FGzZ44g8V7fX2dxdeCD/9ZJrTiUj4eeghM/T/0EO2IxGJTMnJ5nfoypW2IwmdiEqU/vlPkwF/8ontSESkqH7+GZ5+GoYNg+rVbUcjEpnatIEKFSKrTUBEJUqxsdC0KXz8se1IRKSo7rwTTjsNBg+2HYlI5IqOhk6dIqtOKaISJTBNsz75JHJ3QRYJR/PmwaxZ8MgjUK6c7WhEIltystnpYts225GERkQmSn/+Cd98YzsSESmM7GwzitSyJfTsaTsaEbnoItP09aOPbEcSGhGXKLVsCRUrRs4XWKSkRo0aRVJSEuXLl6dy5cqFOsbv9zNixAhq1KhBuXLlaNeuHT/88EOxzv/aa7BiBTz5pCdW2YiEverVoUmTyCljibhEqUwZs52JEiWRwtm/fz9XXXUVffv2LfQxjz76KE888QQTJkxg6dKlVK9enY4dO7Jr164in/+BB8xIUsuWRT5URIKkc2eTKOXk2I4k+CIuUQLzBV64UNuZiBTGyJEjGTRoEI0aNSrU6/1+P+PGjePee+/l8ssvp2HDhrz00kvs2bOHV199tcjn37HD1CaJiHt06gRbtkRGm4CITZSys+Hzz21HIuI969atY/PmzXTq1OnwczExMbRt25YFCxYU+vNs3Gg+DhgAZ54Z6ChFpCQuuADKl4+M2ZmITJTOOst0942EL7BIqG3evBmAatWqHfN8tWrVDv+/vGRlZZGRkXH4MXz4fgAGDQperCJSPDExZr/FSPg9GpGJEphRpY8+MpX7IpFmxIgROI5T4GPZsmUlOofzt8prv99/3HNHGz16ND6fL/fxT2bMiAYgd/cSEXGZzp3hq69g927bkQRXlO0AbOnSBSZMgNWrzUZ/IpFkwIAB9DzBWvvatWsX63NXz22bvXnzZk477bTDz2/duvW4UaajDRs2jMGDB+P3w8UXl+fPP3eRllasEEQkBDp1ggMHTJ+zrl1tRxM8EZsotWtnhg4//FCJkkSe2NhYYmNjg/K5zzrrLKpXr84nn3xCfHw8YFbOzZ8/nzFjxuR7XExMDDExMbz9NixYADNnlqZ796CEKCIBULeuqR/86CNvJ0oRO/V20kkmWYqk/WpEimPDhg2kpqayYcMGsrOzSU1NJTU1lczMzMOvqVevHjNnzgTMlNvAgQN5+OGHmTlzJt9//z3XXXcd5cuXp3fv3gWeKyvLbFVy8cVmb0YRcS/HOVLG4mURO6IEJgMeMgR27TJNKEXkeMOHD+ell146/O9Do0Rz586lXbt2AKSlpZF+VL+NO++8k71799KvXz927NhBQkICH3/8MRVP8I02cSL8+ivMnh3wtyEiQdC5Mzz3nPm+LeZsves5/pJXM4dtOfSaNXDOOfD222iIX8Sy7dvN92OfPiZhysjIwOfzkZ6eTiVVdIu40s6dZsP5iRPh5pttR1Nkher1H7FTbwBnn23qkz74wHYkIjJypFmFOmKE7UhEpLAqV4aEBG9vZxLRiRKY6bcPPlCbABGbfvoJnnkG/vMfOPVU29GISFF07gyffQYHD9qOJDiUKHWFP/6A1FTbkYhErqFDoVYtuPVW25GISFF17my2BFu82HYkwRHxiVKrVqaQW6vfROz49FN47z0YMwbKlrUdjYgUVbNmcPLJ3l39FvGJUnQ0dOyoREnEhuxss/L0ggvgyittRyMixVG6NFx4oRIlT+va1QwZbttmOxKRyDJlitl9/IknTE8WEQlPnTvD0qXw11+2Iwk8JUqY5nZ+v3ezYRE32rUL7r3XtANo0eLI8xMnTiQuLo7mzZvbC05EiqRzZ/N79NNPbUcSeBHdR+lozZpBnTrw2mu2IxGJDP/5D4wdC2lpppD779RHSSS8NGgALVvCf/9rO5JCUx+loujaFebM8e7yRhE32bDBJElDhuSdJIlI+OnY0Ywoea3djhKlXBdfbDqMLlxoOxIR77vnHvD54K67bEciIoHSoYP5I2jNGtuRBJYSpVzNm5tGd1r9JhJcS5bAtGnw0EPaY1HES9q2NSvgPv/cdiSBpUQpV6lScNFFSpREgsnvh8GD4bzz4PrrbUcjIoFUqZIZdPjsM9uRBJYSpaN07Qrff2+GDkUk8GbMgK+/NvVJpUvbjkZEAq1DBzOilJNjO5LAUaJ0lE6dICoK3n3XdiQi3rNvn6lJSk42zelExHs6dIDt2+G772xHEjhKlI5SuTK0awfvvGM7EhHvefppM1r72GO2IxGRYElMNFsReWn6TYnS33TrBnPnmhVwIhIY27aZ4u2+faFePdvRiEiwlC1rtiRSouRh3bqZXkoffmg7EhHvGDHCbFFy//22IxGRYOvQAb74Ag4csB1JYChR+puaNeH88zX9JhIoP/4Izz4L990HsbG2oxGRYOvQATIzTSsQL1CilIdu3cyI0v79tiMRCX933AG1a8OAAYV7vfZ6EwlvTZuahrJemX7TXm95+PZbaNLEbJLbqZPtaETC15w5pj/ZjBlwxRVFO1Z7vYmEr8suM7W+8+ZZDqRg2uutuM47z/wFrOk3keI7cAAGDTLdei+/3HY0IhJKHTqYLcH27LEdSckpUcqD45jpt3fe8d7mfiKh8swzkJYG48aZ7ykRiRwdOpjyla+/th1JySlRyke3brBxIyxfbjsSkfCzfbtZ4XbjjWYaW0QiS/36ULUqzJ9vO5KSU6KUj9at4eSTNf0mUhz332+2MHjwQduRiIgNjmOm3V1eo1QoSpTyERUFl1wCM2fajkQkvHz/PUyeDMOHm78oRSQytWtnWgTs3m07kpJRolSAK66AH36An36yHYlIePD7YeBAOPtsuPVW29GIiE1t25pFHQsX2o6kZJQoFaBTJ6hQAd56y3YkIuFh9mzTO2XsWIiOth2NiNgUF2eazIZ7nZISpQKULQtduypREimMrCwYMsT8gZGcbDsaEbHNccz0W7jXKSlROoErr4QVK2DtWtuRiLjbU0/Br7/Ck0+qHYCIGO3aweLF4d1PSYnSCVx0EZQrp1ElkYJs2WJWuPXta4bbRUTgSJ3SokW2Iyk+JUoncNJJ0KWL2YJBRPJ2771mpeiIESX/XNrrTcQ7DtUphfP0m/Z6K4RXX4U+fWDDBqhZ03Y0Iu6yYoXZBHP8+MCudNNebyLecOWVsHUrfPGF7UiOo73eAiU52azgeftt25GIuIvfD7ffbrrw3nKL7WhExI3atjV1Snv32o6keJQoFUKlSmYlj6bfRI41YwZ8+aUp4C5TxnY0IuJG7dqZfd/CtU5JiVIhXXGF2dxv0ybbkYi4w969MHSoGXHt1Ml2NCLiVg0aQJUq4VunpESpkC69FEqX1pYmIoeMHQt//GE+iojkp1QpaNNGiZLnnXIK/POf8OabtiMRsW/jRhg92hRv161rOxoRcbtD/ZT27bMdSdEpUSqCnj1NK/aNG21HIhI6o0aNIikpifLly1O5cmUAhg2D8uXhvvuOf/2BAwe46667aNSoESeddBI1atTgmmuu4Y8//ght4CLiGu3ame794VinpESpCLp3NwWrb7xhOxKR0Nm/fz9XXXUVffv2BcxfhVOnwqhRkJs3HWPPnj1888033HfffXzzzTe8/fbbrF69mksvvTS0gYuIazRsaGZmwnH6TX2Uiuiyy0xdxpIltiMRCa0pU6Zw++2DqF9/B/v2wfLlpm6vMJYuXUqLFi1Yv349tWrVKtQx6qMk4i3du8OOHa5KltRHKRh69YKlS+GXX2xHIhJ6Bw70YPFi0w6gsEkSQHp6Oo7jHJ66E5HIc6ifUlaW7UiKRolSEV1yidnWZPp025GIhNbevWXYt28kV10F7dsX/rh9+/Zx991307t37wJHhrKyssjIyDjmISLe0bo1h0ejw4kSpSIqXx66dYPXXrMdiUjxjRgxAsdxCnwsW7bsmGPeeacxfn8lHn+88Oc5cOAAPXv2JCcnh0mTJhX42tGjR+Pz+Q4/amq/IBFPadwYKlQwTWrDiWqUiuG998zI0sqV0KiR7WhEim779u1s3769wNfUrl2bsmXLArBqFTRqlENU1Cj27ctjqVseDhw4QI8ePVi7di2ff/45VapUKfD1WVlZZB01Jp+RkUHNmjVVoyTiIZ06QUwMvPuu7UiAQtYoRQU7Ci/q1AlOPtmMKilRknAUGxtLbGxsoV7r98Ntt8Epp2SSlTUBOHGidChJ+vnnn5k7d+4JkySAmJgYYmJiChWTiISnVq1g3DjIyTGNKMNBmITpLtHRZjfk1183v0REvOy557bx6afQseMH5OTsITU1ldTUVDIzMw+/pl69eszMbVt/8OBBrrzySpYtW8a0adPIzs5m8+bNbN68mf3799t6GyLiAq1bm5VvP/5oO5LCU6JUTL16wbp1poJfxKv27IEhQxzgfV59tReZmZnEx8cTHx9/TA1TWloa6enpAPz+++/Mnj2b33//nSZNmnDaaacdfixYsMDSOxERN0hIgKio8KpT0tRbMbVpA6edZqbfWra0HY1IcDz6KBw4EMvq1V2pUyf/4dOjax1r165NAGofRcSDypeHpk1NopTbw9b1NKJUTKVLQ48epkt3drbtaEQCb906eOQRGDIE6tSxHY2IeEWrVvDVV7ajKDwlSiXQqxds3uyqLqMiATN4MMTGwj332I5ERLykdWv47TdYv952JIWjRKkEWrSAc84x+16JeMlHH8GsWfD446bviYhIoFxwgfkYLqNKSpRKwHHgmmtgxgw4agGQSFjbv9+0A2jbFq6+2nY0IuI1sbFQv374FHQrUSqhlBTYvRveftt2JCKBMW4crFkDTz9t/hgQEQm0cKpTUqJUQrVrQ7t28NJLtiMRKbnffoORI6F/fzVTFZHgad0afvgB/vzTdiQnpkQpAK65BubOhQ0bbEciUjKDBoHPBw8+aC+GiRMnEhcXR/Pmze0FISJB1aqV+fj113bjKAwlSgFw5ZVQrpyKuiW8zZkDb70FY8eCza3V+vfvz48//sjSpUvtBSEiQVW7Npx+enhMvylRCoCKFeHyy830m/rsSTjatw8GDIB//hN69rQdjYh4neOYUaVwKOhWohQg114LP/8MixbZjkSk6MaMMVPHEyeqgFtEQqNVK1i+3Pyh5mZKlAKkfXs44wx4+WXbkYgUzZo1MHo03HEH1KtnOxoRiRSJiXDggEmW3EyJUoCULg3/+he8/rr7s2ORQ/x+M+VWvTr85z+2oxGRSHLeeWbvt4ULbUdSMCVKAXTttbBzp+loLBIOZs40Rdzjx5sfWCIioVKmDDRvDgsW2I6kYEqUAqhePdOa/b//tR2JyIllZsLAgZCcDJdeajsaEYlESUlmRMnNC6GUKAXYDTfAp5+anddF3OzBB2HbNnjqKRVwi4gdiYlmc/lff7UdSf6UKAXYVVeZHjQaVRI3++EHeOIJuPdeOOss29GISKRKTDQf3VynpEQpwE46CXr3hhdfhIMHbUcjcrycHLjpJjjnHBg61HY0IhLJYmOhbl131ykpUQqCG26AP/4wRbIibvPcc+aH0rPPQkyM7WhEJNIlJmpEKeI0bQrx8fDCC7YjETnWpk1w993w739Dmza2o8mb9noTiSxJSfDtt7B7t+1I8ub4S15q7uJadXsmTYLbbjO7sZ92mu1oRIwePWD+fFi1Ck45xXY0BcvIyMDn85Genk4lm5vPiUhQffed6ak0dy60axfSUxdqGYtGlIKkd2+Ijob//c92JCLG++/Dm2/Ck0+6P0kSkcgRF2cWQbm1TkmJUpBUrgy9epk6kOxs29FIpMvMhH79oFMnc1+KiLhF6dLQsqV765SUKAVRv35m6u39921HIpFu+HDTM+mZZ9QzSUTcJzHRjCi5sfGkEqUgatoUWrQw9UoitixfbrYoGTEC/vEP29GIiBwvKQn++gtWr7YdyfGUKAVZv37w0Ufwyy+2I5FIdPCg6ZnUsCEMGmQ7GhGRvCUkmNFuN06/KVEKsh49TOHs5Mm2I5FI9PTTsGIFPP+82YBSRMSNfD5o0MCdBd1KlIKsXDn4v/8zq9/27rUdjUSSDRvgvvugf38zBSwi4mZubTypRCkEbrkFduyA6dNtRyKRwu83953PB6NG2Y5GROTEkpLMPpTp6bYjOZYSpRA4+2zo0gUmTnRnRb94z9Sp8OGHpj2FejWKSDhISjK/Ixcvth3JsZQohciAAbBsGSxaZDsS8bpNm+D226FPH0hOth2NiEjh1KkDVaq4r05JiVKIXHSRuQnGj7cdiXiZ329WWkZHh++9pr3eRCKT47izTkmJUoiUKmX2fpsxwzShFAmGN96AWbNM764qVWxHUzz9+/fnxx9/ZOnSpbZDEZEQS0w0My85ObYjOUKJUghddx1UqGBqlUQCbds2M8V75ZVwxRW2oxERKbqWLSEjA9LSbEdyhBKlEKpQAW64AZ57Dnbvth2NeM1tt5mptwkTbEciIlI8zZqZKTg3FXQrUQqxAQPM0sepU21HIl4yaxa8/jo89RRUq2Y7GhGR4qlUCerXhyVLbEdyhBKlEKtdG7p3hyefhOxs29GIF/z1F/TtC5dcAr162Y5GRKRkWrTQiFLEGzrUbPz3zju2IxEvGDzYdH1/5hkzZC0iEs4SEmDlSvfsZqFEyYKEBGjbFsaMUQNKKZkPP4SXXjIjlKefHpxzjBo1iqSkJMqXL0/lypWLfPzNN9+M4ziMGzcu4LGJiPe0aGE29F6xwnYkhhIlS+66y8zBzp9vOxIJVzt2mMUBnTubFZXBsn//fq666ir69u1b5GNnzZrF4sWLqVGjRhAiExEvatQIypZ1T52SEiVLunSB884zo0oixTFggFk9+cILwZ1yGzlyJIMGDaJRo0ZFOm7jxo0MGDCAadOmUaZMmSBFJyJeU6YMnH++e+qUlChZ4jhmVGnOHPj2W9vRSLh54w149VXTk+uMM2xHc7ycnBxSUlIYOnQoDRo0sB2OiISZFi00oiRAjx5mFdyjj9qORMLJpk1mlduVV0Lv3rajyduYMWOIioritttuK/QxWVlZZGRkHPMQkciUkABr15pGurYpUbIoKgqGDIHp0+HXX21HI+HA74cbbzRD0yVZ5TZixAgcxynwsWzZsmJ97uXLlzN+/HimTJmCU4QAR48ejc/nO/yoWbNmsc4vIuGvRQvz0Q07GTn+ki+70rqtEtizB848E3r2hKefth2NuN0LL5hE6d13ITm5+J9n+/btbN++vcDX1K5dm7Jlyx7+95QpUxg4cCA7d+4s8Lhx48YxePBgSpU68ndYdnY2pUqVombNmvyaz18FWVlZZGVlHf53RkYGNWvWJD09nUqVKp34TYmIZ/j9ULWq2eR75MignaZQf8lFBe30Uijly5utJx5+GO69F6pXtx2RuNXatTBoEPz73yVLkgBiY2OJjY0NTGB/k5KSwoUXXnjMc507dyYlJYXrr78+3+NiYmKIiYkJSkwiEl4cxz11Spp6c4Fbb4WYGNUqSf4OHoRrr4XYWHjiidCee8OGDaSmprJhwways7NJTU0lNTWVzMzMw6+pV68eM2fOBKBKlSo0bNjwmEeZMmWoXr065557bmiDF5GwlZBgEiXb/QaVKLlA5cowcCBMngybN9uORtzo4YdhwQJ4+WWzF1IoDR8+nPj4eO6//34yMzOJj48nPj7+mBqmtLQ00tPTQxuYiHhaixZmi6Y1a+zGoRoll9i506yA+/e/YexY29GIm3z9NbRpA//5T1Dn6l0nIyMDn8+nGiWRCPXXX1ClCrzyCvTpE5RTFKpGSSNKLlG5Mtx+u1nJtGWL7WjELXbuND8gWraE++6zHY2ISOiccgqcc479OiUlSi4ycKBZ9v3YY7YjETfw++GWW0yyNG2aaSchIhJJEhLsd+hWouQiJ59skqVJk1SrJGaz2+nTTe1a7dq2oxERCb0WLczmuPv324tBiZLLDBpkNgN86CHbkYhNq1ebvdyuu8702BIRiUQJCSZJsrnVlxIll6lcGe6+G5591n6lv9ixf7/ZmqRGDTUhFZHI1rixKUmxWaekRMmFBgwwHUmHD7cdidhw332wcqXZ9LZCBdvRiIjYU7YsNGlit05JiZILlS8P999vflGmptqORkLpww9N49GHHoJmzWxHY8fEiROJi4ujefPmtkMRERdo3hyKufVkQKiPkksdOAANGkCdOvD++7ajkVBYvx7OPx8SE2H2bCgV4X/GqI+SiAC8+KLpMZieDhUrBvRTq49SOCtTBkaNgg8+gC++sB2NBFtWFvToYX4IvPyykiQRkUOaNTPtUlassHN+/Th2sSuuMEOOgwdDTo7taCSYhgwx06wzZpgmayIiYtSvD+XK2Zt+U6LkYqVKwbhxsHy56akj3vTaazBxovlaR2pdkohIfqKiID5eiZLkIykJevWCYcMgI8N2NBJoq1bBjTeadgC33GI7GhERd2rWzAwa2KBEKQyMGWOSpIcfth2JBFJmpplerVXL9M1yClVWKCISeZo1M41409NDf24lSmGgZk246y548kk1ofSKQ/u4bdgAb72lfkkiIgU5VJbwzTehP7cSpTAxdChUqwZ33GE7EgmESZPMRrcvvGAKFUVEJH9165o/KG3UKSlRChPly5tGhLNmwWef2Y5GSmLuXLj9dvPQPm4iIidWurTpM2cjUVLDyTDi90Pr1rBzp+knUaaM7YikqNatMy0fmjSBOXPMag7JmxpOisjRBg+Gd94JaAmKGk56jePAhAnw00/wxBO2o5GiysyEbt3A54Pp05UkiYgURbNmsHYt/PVXaM+rRCnMNGlipmxGjoRff7UdjRRWTg5cd50ZUZo9G6pUsR2Re2mvNxHJy6GC7lC3CdDUWxjKzDQFwI0bw7vvall5OHjgAbPR8axZZlRJTkxTbyJytJwcOPlkuPtu01swADT15lUVKpgpuPffh9dftx2NnMhrr5kk6YEHlCSJiBRXqVLQtGnoC7qVKIWpbt3g6qvh1lthyxbb0Uh+vvzSTLmlpMB//mM7GhGR8GajQ7cSpTD29NMmwx4wwHYkkpe0NJPQXnCB6ZekKVIRkZJp1gzWr4dt20J3TiVKYezUU80U3IwZ5iHusXUrXHwxVK9uOm9HR9uOSEQk/Nko6FaiFOauugq6d4d+/UKbYUv+9uyBSy+F3bvhgw9M8aGIiJTcWWeZn6mhrFNSohTmHMdsh5GTA//+t2lKKfZkZ8O//gXffQfvvQe1a9uOSETEOxzHjCopUZIiqV4dXnzRtAp45hnb0UQuvx8GDTKdY1977cgQsYiIBI4SJSmWSy6B/v1hyBD4/nvb0USm4cNNgf2kSWbqTUREAq9ZM9i4ETZtCs35lCh5yGOPwdlnQ69esHev7Wgiy2OPwUMPmY2Lb77ZdjQiIt7VtKn5+M03oTmfEiUPKVfOTPn8/DPcdZftaCLHs8/CnXfCvffC0KG2oxER8bZatUxB94oVoTmfEiWPadQIHn/cTAG98YbtaLzvtdegb1/T+PPBB21H4w3a601ECuI4cP75oRtR0l5vHuT3Q58+pqh44UI47zzbEXnTu++a1gz/+hf873+m+acEjvZ6E5H8DB1q+geuW1eiT6O93iKV45hO0HXrwmWXwZ9/2o7Ie957D6680nTefuEFJUkiIqEUHw+//go7dgT/XPrx7lHly5ud6nftgp494eBB2xF5x6xZcPnl0LWrmXqLirIdkYhIZImPNx9DUaekRMnDzjzT1CnNnQvDhtmOxhvefNN0Q7/sMpg+XVuTiIjYULeuGRBQoiQl1r49jB1rCrxfecV2NOHt1VfN6FyPHua/y5SxHZGISGQqXRoaN1aiJAFy221w/fXwf/9nRpek6J57DlJSzOPllzXdJiJiW3y8EiUJEMeByZOhbVuzSuu772xHFD78frPs/+abzcbD//uf+UsmkowaNYqkpCTKly9P5cqVC33cqlWruPTSS/H5fFSsWJGWLVuyYcOG4AUqIhElPh5++slsRB5MSpQiRHQ0vPWW2Xm5Y0fTlFIKlpNjRuOGDzfJ0lNPRebqtv3793PVVVfRt2/fQh+zZs0aWrVqRb169Zg3bx7ffvst9913H2XLlg1ipCISSeLjzc/plSuDex71UYowW7eakaXdu+Grr0yHUzleZqbpj3Roo+GbbrIdkX1Tpkxh4MCB7Ny584Sv7dmzJ2XKlGHq1KnFPp/6KIlIQbKyoEIF80dsEf6OO5r6KMnxqlaFTz4x00cdOsDmzbYjcp/ff4fWreGzz0zTTiVJRZOTk8P7779P3bp16dy5M1WrViUhIYFZs2bZDk1EPCQmBho0CH6HbiVKEeiMM0wSsGePGV1S2cgRy5ZBixbw11/w9deQnGw7ovCzdetWMjMzeeSRR+jSpQsff/wx3bt35/LLL2f+/Pn5HpeVlUVGRsYxDxGRgoSioFuJUoT6xz9g/nzYvx9atYK0NNsR2ffKK9CmjZmOXLLE21u/jBgxAsdxCnwsW7asWJ87JycHgG7dujFo0CCaNGnC3XffTXJyMpMnT873uNGjR+Pz+Q4/atasWazzi0jkiI83C5QOHAjeOZQoRbBzzjF1ShUqmKmmUO3E7DZ79sC//22W/l91lWmhUK2a7aiCa8CAAaxatarAR8OGDYv1uWNjY4mKiiIuLu6Y5+vXr1/gqrdhw4aRnp5++PHbb78V6/wiEjnOP9/8wb9qVfDOoW4wEe700+GLL+Cii6BdO5g920zHRYoffzQNJNeuhRdfhOuusx1RaMTGxhIbGxuUzx0dHU3z5s1J+9sw5erVqznzzDPzPS4mJoaYmJigxCQi3tS4sWmB8803wZsF0IiSEBtrapaaNYMLL4Tnn7cdUWhMmQLNm5teScuWRU6SVFQbNmwgNTWVDRs2kJ2dTWpqKqmpqWRmZh5+Tb169Zg5c+bhfw8dOpTp06fz/PPP88svvzBhwgTeffdd+vXrZ+MtiIhHVaxoZkeCOiPi9/tL+hCP2L/f7+/Xz+8Hv79/f/NvL9qxw++/5hrzPq+/3u/PzLQdkbtde+21fkwbkGMec+fOPfwawP/iiy8ec9x///tf/znnnOMvW7asv3Hjxv5Zs2YV6bzp6el+wJ+enh6AdyEiXtWjh9/funWxDi1UnqM+SnKc556D/v0hMdFs11G7tu2IAsPvN003b73V9JGaMAGuucZ2VJIf9VESkcIYMwYeegjS04vcFFh9lKR4brrJFDRv2GDmfF980SQZ4ey336BbN1OsnZBgapOUJImIhL/4eNMkeM2a4Hx+JUqSp1atTFv4K680m+ledhls2WI7qqLLzjZdW+PiTB3S22/DrFmml5SIiIS/+HjzMVh1SkqUJF+VKplNYGfNgoULoWFDeOON8Bhd8vvhgw/MiojbbzdL/1etMpsCi4iId5x6qlnBHawO3UqU5IS6dYPvvze9lq6+2jRlXLLEdlR58/vh00+hfXvo2hWqVDGxTpoEPp/t6EREJBjOP18jSmJZ1apm2urjj03BXEIC9O4NP/xgOzIjJ8eMfCUkQMeOZr76nXdg3jzTAkBERLzr0FYmwZjxUKIkRdKxo7kZX3jBNKps2NA0q/z0UztTclu2wGOPmRqk7t2hXDn46CNYuhQuvdQ0IhMREW+Lj4dt2+CPPwL/uZUoSZGVLm22/Fi71rQP2LTJJFCNG5ukJdib7O7eDTNnmsTojDPgvvvMsOuXX5r96zp1UoIUziZOnEhcXBzNNRQoIoV0qKA7GHVK6qMkJeb3w+efw+TJ8N57sG8fJCVBly6mVqhFC4iOLv7nz8oyN//XX5tE6NNPzTmaNDEJW+/ecMopAXs74hLqoyQiheX3m5rUgQNh+PBCH1aoP6mVKElA7dpl9ot7801TH5SeDuXLQ6NGUK8e1K8PdeqYxMbnMyvrypY1o0SHHps2mX4Ya9eafkfLlplkqXx5U4N08cWmwLxOHdvvVoJJiZKIFMWFF5otTY7aTelElCiJXdnZpp5p/nzTk+mnn8wS/V27Tnyszwdnnw1160LLlnDBBWZqr0yZ4Mct7qBESUSKYuhQ08Jm/fpCH6JESdzH7zcFd+npkJFhHnv3wkknHXlUrWpGnFRnFNmUKIlIUfz0k5mRaNeu0L8/lCiJSPhSoiQiQaa93kRERERKQomSiIiISD6UKImIiIjkQ4mSiIiISD4CUcwtIhJwjuNUAtIBn9/vz7Adj4hEJiVKIuJKjuM4QEVgl18/qETEEiVKIiIiIvlQjZKIiIhIPpQoiYiIiORDiZKIiIhIPpQoiYiIiORDiZKIiIhIPpQoiYiIiORDiZKIiIhIPv4fV7hOeAWKyrgAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('A')\n", "f(x) = x-x^3/3+A\n", "g = f(A=-1)\n", "plot(g,(x,-2,2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "É fácil ver que para valores de $|A| \\gt A_1$ dois dos equilíbrios desaparecem. Na figura abaixo, mostramos os pontos $A_1=-A_2$ em que os dois equilíbrios coalescem e como a partir destes limiares temos apenas um equilíbrio real e dois complexos iguais com sinais opostos na parte imaginária.\n", "\n", "Esta mudança no comportamento qualitativo do modelo é chamada de bifurcação, e o parâmetro $A$, é o parêmetro de bifurcação. Como esta curva de bifurcação parece dobrar-se sobre si mesma, este tipo de bifurcações que vemos é chamado de bifurcação em \"dobra\" ou \"fold bifurcation\".\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGRCAYAAACjVS2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABtYklEQVR4nO2dd3wVVfqHn0sHhaCgFEVArNhWWATsqMvqKivrrmvBgqvuqtj7qiu6Cz+aAQQiTYoUaVKkSVkgdDACWUoEIjUYghRTgCSQZH5/HEMyuZdIcpO5c+d+n8/nfryTOXfOuY/vXF/PzLzHZ1kWQgghhBCi9FQI9QCEEEIIIcIdJVRCCCGEEEGihEoIIYQQIkiUUAkhhBBCBIkSKiGEEEKIIFFCJYQQQggRJEqohBBCCCGCRAmVEEIIIUSQKKESQgghhAgSJVRCCCGEEEGihEoIIYQQIkiUUAkhhBBCBIkSKiGEEEKIIFFCJYQQQggRJEqohBBCCCGCRAmVEEIIIUSQKKESQgghhAiSSqEegBAiMvD5fOcAXTG/O5cAk4EvgT6ADzgH6G5ZVkLIBimEEKVECZUQotzx+XxVgM+ANyzLSvb5fI2BXcD9wKvApcAc4GfgxVCNUwghSosu+QkhnOA5YJRlWcm/bGdhZqV2W5a1C6gIJAITQjQ+IYQICs1QCSGc4GfLshYU2v7tL/+cB2BZ1jfAN46PSgghygjNUAkhyh3LssYW+VM7IBdYEYLhCCFEmeOzLCvUYxBCRBg+n289cNKyrNahHosQQpQFmqESQjjKL0/7XQfEFvn7MyEZkBBClAFKqIQQ5YrP5zvP5/N96/P5uv7yp7sxvz3fFm4D3BiK8QkhRFmghEoIUd7cBrQCfD6frzrwEJAMnI3541nAAOCjUA1QCCGCRfdQCSHKFZ/PVxPoB5zAJFE9gFrA/wF7gCpAb8uyNoZskEIIESRKqIQQQgghgkSX/IQQQgghgkQJlRBCCCFEkCihEkIIIYQIEiVUQgghhBBBooRKCCGEECJIlFAJIYQQQgSJEiohhBBCiCBRQiWEEEIIESRKqIQQQgghgkQJlRBCCCFEkCihEkIIIYQIEiVUQgghhBBBooRKCCGEECJIlFAJIRzHZ6jl8/l8oR6LEEKUBWWRUFln+tq5c+cZt/XqSw7kQA6w0tLS8oC0X/4Z8vEoDuRADsLGgWtxdIaqUqVKTnbnSuRADkAOhEFxIAcgB+ANB44mVLGxsU5250rkQA5ADoRBcSAHIAfgDQeOJlTNmjVzsjtXIgdyAHIgDIoDOQA5AG84cDShys7OdrI7VyIHcgCR6yAmJobmzZvTqlWrUA/FFURqHBRGDiLbwcmTsGIFfP99+Dtw9KLlwYMHnezOlciBHEDkOujSpQtdunQhPT2dqKioUA8n5ERqHBRGDrztYMcOyMmByy/333fyJLRvD+Zq30EOHID333d4gGWIozNULVq0cLI7VyIHcgByIAyKAzmA8HVw/DikpJx+//vvwyWXwBVXwN//7r9/0aL8ZAqgBR99BLm5ZT9Op3A0oZo5c6aT3bkSOZADkANhUBzIAbjXQV7e6ffNmQPnnw8NGkDHjmYWqjA//QT/938F28OHw5Yt9jY1ahTemkm1alAhjKtj+iwr6LIOZ3yAzMxMqlevHmx/YY0cyAHIQf4lv7S0NGrVqhXq4YSMSI8DkANwn4O9e+GPf4RNm+Cuu2DaNDjrLHubxo1Nu3wmT4YHHyzYPnTIJFyFU4yEBLjySvtxXngBBg+GqlUzGTOmOn/9668Oz7XFgB3NBaOjo53szpXIgRyAHAiD4kAOwFkHOTnw/PMmIbrvPpP4FOXNN+F//zMzVAsWQKDhnThh387Ksm/XrQvdukH+WgivvuqfTAF89hmkpcG770afSTLlahydoRJCCNAMlRDlxdSpMGQI1KsHffqYS3KFGTAAXnmlYPuxx2DsWHub3/0O/vvfgu1XX4V+/extRo2CZ5819zzdcAMsWVL0Ep7hwAGTxF1wQVBfqzCaoQLo1q2bk925EjmQA5ADYVAcyAGcuYN9+8zs0dtvm0SlKOvXw0MPmWRo/HgCzvjs3m3f3rPHv80rr0DlyuZ97drw9NP+bZ56Cn74AdauheXLAydTYBK7M0mmvBAHjs5QHThwgHr16gXbX1gjB3IAcqAZKkOkxwHIARgH559fjxkz4Oef4f77oU4de5vjx+Hqq2HXLrN9xRXmslyVKgVtvvgCOncu2D77bMjIsB9n7Vq47TbIL301dGjgJ/C2bjX3PN1wA1x4YbDf8NcpQRxohgrg66+/drI7VyIHcgByIAyKg8hx8NNPZgYpM9N/39dff81zz8EDD5jZoNatITXV3iYxsSCZApPwJCXZ29x0k/3m8fbt/ftq3dokVf36wcKFgZMpMAnbAw84k0yBN+LA0cKeLVu2dLI7VyIHcgByIAyKg8hw8N//mlmn48dNorJ8ublpO58WLVrSpUvB9o4dpj5Tx44Ff7voIjjnHDODBeZSWtH7oy65BJYuNTNV9erBG28EHs9115mXm/BCHDg6Q3Ug0EXfCEMO5ADkQBgUB+HvID0dfv97qFYNbrkFAhU9/+ADk0yBmVkaNsy+/6efDlC/vv1vRZOlc86B+fPhD3+ADh3M+0D3LbVsaW48f/99M6ZwIdzjABxOqE4Ufc4yApEDOQA5EAbFgfsdTJhgkpjnnvO/DAemeOWCBeaepBUr4L33/Nvk3+CdT6Ui14ZOnDjBV1+ZsgL165un81q39j9Oq1amoObMme6bYQoWt8fBmeDoJT8vrCYdLHIgByAHwqA4CK2DI0dMwlS9uikfUPgGb4Bly6BTp4LilCkpMGOGvU3RGalAdZ369IF77zX9tWplkrPCNGvWjGuuMTeBRypeOBccnaFaunSpk925EjmQA4hcBzExMTRv3pxWrVqFeiiuIFLjoDDl6eCnn+zVvAtz7BjcfDO8+KK5EfyBB/zbrF9vr/S9fr1/m2efLbj0VqWKf7IE0KaNuYF8925YvRqKPtiqOPCGA0fLJqSmplK7du1g+wtr5EAOQA5UNsEQ6XEA5edgwAB47TVT7fvpp+Hzz+37ly6F22+3/+3nn03dpXzWrzfJ0MmTZvvJJ2H0aP++fvgB4uLMZbjmzUs+VsVBiRyobALAoEGDnOzOlciBHIAcCIPioHQOUlLgz382N2D37++/PzMTXn+9YHHfESPg22/tbS68ECpWLNg+91xTt6kwLVqY+6P+8Q/o3t3UbArEJZfAI4+ULpkCxQF4w4GWnhFCOI5mqERxrFhhZnxuuskUlizK3Xebp9zymTsX7rmnYDsz09RjKvyft1WroG1b+3HGj4ePPjKX7GJizCVA4Xo0QwXeKC0fLHIgByAHwhCpcXD8eEGyU9TBV1/BrbeaGaYbbzQzREXZurX47erVoUePgu1HHjGX7orSqZMpmPm//4U2mYrUOCiMFxw4OkOVlpZGVFRUsP2FNXIgByAHmqEyRFocZGWZYpXz55v13ebOhcaN7Q7+9Cf7k3SB7lt69VX49FPzvnp1M5t11VX+/e3ZY5K3K68s4y9SxkRaHASiBA40QwUwZswYJ7tzJXIgByAHwuC1ONiwwdxv9O67kJbmv3/o0IJLdT/+aBbhLergoovsn2nc2P84ffuam8z/9S9zKS9QMpX/WbcnU+C9OCgNXnDgaB2qdu3aOdmdK5EDOQA5EIZwi4PkZMjNhUaN/PclJZmn5tLTzfaaNWb5lMIUXag3Pd3fQbdupp9vvzWX/v75T/++KlQwT+55hXCLg/LACw4cnaFKTEx0sjtXIgdyAHIgDOEUBx9/bC7TXXSRub+pKN99V5BMgSmKmf+UXT5PPVWQjFWubKqKF3VQsyZMmWIu140dG17Lp5SWcIqD8sILDhxNqKpXr+5kd65EDuQA5EAY3BIHGRnwzjvmfqVA9RUPHDBPw+XTrx9s325vc801ULVqwfb115uZpMJccIG5AXz+fNiyxZQ+cIuDUCIH3nDg6CW/OnXqONmdK5EDOQA5EAan4iAnxyx7ct554AtwS+8jj5g14gAmTTIFLQvXVAr07FLR2adLLoHZs2HgQLOQ7//9X+CxnHMOtG9fsK1zQQ7AGw4cnaGKj493sjtXIgdyAOHtoEePHrRq1YqaNWty/vnn07FjR7Zt2xbqYYUlTsTBli3QpAnUq2fWkfv5Z/82y5cXvM/O9i+CWb++/V6mF16AK67wP85dd8HXX5un8ho2PLPxhfO5UFbIgTccOFo2ISUlhfr16wfbX1gjB3IA4e3g7rvv5uGHH6ZVq1bk5OTw/vvvs2nTJhISEjjrrLPO6Bgqm2AoizhYvRoWLjTLntx/v//+Dh3MzFE+//oX/Pvf9ja/+x3897/mfaVKsG4dXHut/7F27TKzXZdeGtSQbYTzuVBWyEGJHKhsAsDnRRdTikDkQA4gvB3MmzePzp07c9VVV3HdddcxatQo9u7dy7p16077mezsbNLT020vEXwcxMbCLbdA166mvlNMjH+brKzit8Fc5nvhBXNP08yZgZMpgKZNyzaZgvA+F8oKOfCGg6ATqgkTJrBjxw569+5Ndnb2qWqn3bp1Izk5mREjRhAXF8f8+fNp3rw5CQkJDBgwgPT0dFvbI0eOEBMTw8aNG5k5cyZz5sxh/fr1DB06lIMHD9raHj9+nOjoaLZt28bkyZNZtGgRq1atYvTo0SQlJdna5ubm0qNHD/bs2cPYsWNZsWIFsbGxTJw4kcTERPr06UNWVpbtMykpKQwfPpy4uDjmzZvH9OnT2bx5MwMHDiQtLc3WNjU1lUGDBrFp0yZmzJjB3LlzWbduHcOGDePAgQO2tpmZmVSvXp3ExEQmTZrE4sWLWblyJWPGjGHv3r10796dvLw8unXrRl5eHt27d2fv3r2MGTOGlStXsnjxYiZNmkRiYiLR0dFkZmbajn/gwAGGDRvGunXrmDt3LjNmzGDTpk0MGjSI1NRUW9u0tDQGDhzI5s2bmT59OvPmzSMuLo7hw4eTkpJia5uVlUWfPn1ITExk4sSJxMbGsmLFCsaOHcuePXvo0aMHubm5ts8kJSUxevRoVq1axaJFi5g8eTLbtm0jOjqa119/3db24MGDDB06lPXr1zNnzhxmzpzJxo0biYmJ4ciRI7a26enpDBgwgISEBKZNm8b8+fOJi4tjxIgRJCcn29pmZ2fTu3dvduzYwYQJE4iNjWX58uWMGzeO3bt307NnT3Jycmyf2bdvH6NGjWLNmjUsXLiQKVOmsHXrVvr168fRo0dtbQ8dOsSQIUOIj49n9uzZzJo1i/j4eAYPHszhw4dtbTMyMujfvz8JCQlMnTqVG264gbVr1zJy5Ei/cZ88eZJevXqxc+dOxo8fz7Jly1i2bBnjx49n586d9OrVi5MnT/qdayNHjmTt2rUsWLCAqVOnkpCQQP/+/cnIyLC1PXz4MIMHDyY+Pp5Zs2Yxe/Zs4uPjGTJkCIcOHbK1PXr0KP369WPr1q1MmTKFhQsXsmbNGkaNGsW+fftOxRJArVq16NmzJ7t372bcuHEsX76c2NhYJkyYwFtvvUVUVNSpV6NfHvXav3+/7Tdi2rRpEfUb8eyzz/r9RkRHR5/6jXjxxcU0abKS5s3HsGyZ/2/Ee+91Jzd3LzAGWMnw4f6/ERdd1A0zcdiNBg0OcM45/r8RX345iO7dU/nNb7pxzz3O/kbccccdfr8Rx48fj6jfCMDvN2LBggWe+Y3Ib5uTk3Pa34hHHnnkjPIIV2NZVrCvM+Y///lPSZp7EjmQA8vyjoO8vDyrQ4cO1s0331xsu6ysLCstLe3UKykpyQKstLQ0h0bqTt588z9WcnLgfUuXWpa5Hdy8Wrb0bzNwoL3NM88EPlZysmWtWGFZqallN/aywivnQjDIQYkclEXeUi4vR++hysrKolokFBUpBjmQA/COgy5dujBnzhxWrFjBhRdeeMaf0z1U8Npr0L9/FlCNf//b3NtUmFGj4G9/K9iuXdv/hvK8PHjrLVOG4NprYfBgCLcVTLxyLgSDHJTIge6hAhg4cKCT3bkSOZAD8IaDl156iZkzZ7JkyZISJVORgGWZe5G++AJSU/33b9sG/fsDmDj48EP46Sd7m7vugnPPLdj+61/9j1OhAkRHw+bN8OWX4ZdMgTfOhWCRA284cLQOVceOHZ3szpXIgRxAeDuwLIuXXnqJ6dOnExsbS9OmTUM9JNfx3HMwbJh5f/nlpgxB4Ym4ghpOHU/9rejFgkaNzOe++sqULXj88fIccegI53OhrJADbzhwdIaquKeAIgU5kAMIbwddunRh3LhxfPnll9SsWZOUlBRSUlLIzMwM9dAcIS8PPvvMXLILVFU8NxdGjCjY3rbNv92VV5qkC0wcvPeeqRNVlGbNCiqYF6067hXC+VwoK+TAGw4cnaGK9DobIAcgBxDeDgYPHgzA7bffbvv7qFGj6Ny5s/MDcph//hN69zbvBw40a9bdeGPB/ooVoW5ds1xLPoH+dQ8eDDfdVJ+bbjLlCCKVcD4Xygo58IYDRxOqSpUc7c6VyIEcQHg7KIMHWVxNfpLUurVZBLjozNDcuQXvc3NNUc3CCRWYy3RPPWXun3r7bVOhPBBNmlSK6GQKwvtcKCvkwBsOHJ1E3rVrl5PduRI5kAOQA7cyeDC8/LJJiN56y9zwXZSiRS+vuca/zc03Q2IiHDxojnM6FAdyAHIA3nDgaEJ16623OtmdK5EDOQA5CBWTJ5uK4q+8AhkZ/vtXrbJvr1zp3+azz+Dpp02F8v794YEHSj8exYEcgByANxw4mlB9+eWXTnbnSuRADkAOQsGyZfDww2bx3gED4Jln/NvcdJN9++ab/dtERcHnn5vjvfJKcGNSHMgByAF4w4GjhT1zc3OpWLFisP2FNXIgByAH5VHYc+NGkyiddRa8/z6cf759f3Q0vPlmwXaTJmax36IMHlxwD9Urr4CvHMsIRnocgByAHECJHKiwJ0CPHj2c7M6VyIEcgByUNQcOwO23m3IFAwZA+/b+bW6+2TyBl89ttwU+1vPPw4QJ8Oqr5ZtMgeIA5ADkALzhwNEZKiGEgJLPUGVnw8iRkJlpajLVqWPfv2iRqSxemNRU/8rh8+fDxIlmduqddyDCV/sQIhzRDBVgW1k7UpEDOYDIdRATE0Pz5s1pdbo6AqehQwd44QV44w1TouDoUfv+K6+EmjULti+/PPAyLL//vVkjr2tXdyRTkRoHhZEDOQBvOHB0hiopKYlGjRoF219YIwdyAHJQdIZq/35z2a55c6hSxd72yBH/Gally8xTdoVZs8bcJ3XWWfDvf8NFF5XvdygLIj0OQA5ADqBEDjRDBbBo0SInu3MlciAHIAeFmTrVXIK7/nrzlF3R2adatewJVeXKEGgt5jZtYMoUGD06PJIpUByAHIAcgDccOJpQXXbZZU5250rkQA5ADgrz7rtw4oR5/913UPTp6UqVYPZs+O1v4aqrYPx47yzVojiQA5AD8IYDR2u9R8riqcUhB3IAkeMgK8uUKoiLM0/h/d//2Z+0A5MwFbcNZvYpLq7chhkyIiUOikMO5AC84cDRhOrw4cNOdudK5EAOIHIcdO0KMTHm/bffmtpQb7xhb9O/P/z5z3DsGLRrB506OT7MkBEpcVAcciAH4A0HjiZU1113nZPduRI5kAPwjoOjR2HTJmjcGBo29N+/ZUvx22CevNu/39x83qiR/2LEXsYrcRAMciAH4A0Hjv50zZ4928nuXIkcyAF4w0FKCvzmN6aMQbNmMG+ef5sOHezb990X+Fg1a5qkLJKSKfBGHASLHMgBeMOBo2UTjh8/To0aNYLtL6yRAzkAbzj4z3/gww8Lttu0gdWr/dt99ZW5/+m22+APfzB/K4+lZ8IRL8RBsMiBHECJHKhsAkDfvn2d7M6VyIEcQHg4SEqCXr1g+HDIyfHfX7Vq8dv5/OUv5jj5yZQoIBzioLyRAzkAbzjQ0jNCCD9++slcztu/32w//LBZ364wGRnm/qfVq+G88+Cbb6BlyzM7vmaohBClRDNU4I3S8sEiB3IA7newfHlBMgXmsl3R//eqWRNWrjTt9u0782RKFOD2OHACOZAD8IYDR2eoDh48yHnnnRdsf2GNHMgBhN5BaioMGQJ5efCPf/gv7bJhg0mQ8n8eLr0Utm8vu/41Q2UIdRy4ATmQAyiRA81QAUybNs3J7lyJHMgBhNZBTo6p9/TPf8L778Ott0J2tr3N9dfD55/D1Veb/TNmhGSonkfnghyAHIA3HDhah6qkK8x7ETmQAwitg927IT6+YDshwcw+XXONvd3f/mZeovzQuSAHIAfgDQeOzlDtL3xTRoQiB3IA5e9g82ZYssQs/VKUevWgdu2C7Zo14YILynU4p4iJiaF58+ae+PEsC3QuyAHIAXjDgaMJVW5urpPduRI5kAMoXwf9+5vZpjvugJtvNku6FKZmTbPY8M03Q9u2MHMmnHtuuQ3HRpcuXUhISCDOiwvzlQKdC3IAcgDecODoJb8mTZo42Z0rkQM5gPJ18PHHBe/XrYNZs0zZg8LcdJN5kk+EFp0LcgByAN5w4OgM1XL9gssBcgDl6+Css4rfFu5B54IcgByANxw4WjbhyJEjnOvUtQWXIgdyAKV3kJNjqo5v3mwqjz/+uH+b+fPhr3+F9HR48kkYNQp8LnvQWGUTDDoX5ADkAErkwGW/ZgU4OkP12WefOdmdK5EDOYDSO3jvPfjgA5g4EZ54AgI9afz738ORI3D0KIwe7b5kShSgc0EOQA7AGw609IwQYcRNN8GqVQXbr70G4bgElmaohBClxLX/i6ilZxxGDuQASu/gxhvt2zfdVAaDESFD54IcgByANxw4OkOVnp4e8f83KgdyAKd3sHAh/Pe/ZmHiRx7x/9zJk9CjR8E9VJ07l/tQywXNUBl0LsgByAGUyIFmqABGjx7tZHeuRA7kAAI7+OYbc/9T797w6KOmnlRRKleGDz+EyZPDN5kSBehckAOQA/CGA0cTqrvuusvJ7lyJHMgBBHYwe3bBYsRg6kcJb6NzQQ5ADsAbDhxNqLZu3epkd65EDuQAAju46qrit4X30LkgByAH4A0HjlZKP0sVBuUAOYDADp5/HlJSYMECcw9Vz57Oj0s4i84FOQA5AG84cDShivTCZSAHELkOFi6EkSOhYUO47z5/Bz4f/Pvf5iUig0g9FwojB3IA3nDg6CW/jRs3OtmdK5GDyHTwv//Bvfeagpx9+8Jrr0WeA4CYmBiaN29Oq1atQj0UVxCJ50JR5EAOwBsOHC2bkJycTMOGDYPtL6yRg8h0MHw4/P3vBdu1ayfz88+R5aAwKptgiMRzoShyIAdQIgcqmwAwcuRIJ7tzJXIQmQ5uuAEqFbrAXq9e5DkQ/kTiuVAUOZAD8IYDLT0jhEMsWGAWKm7QAD76CCJ4YkYzVEKI0qIZKvBGaflgkYPIddC+PUyYYO6hGjAgMh0IO5F6LhRGDuQAvOHA0Rmq7OxsqlatGmx/YY0ceNNBRoZJlipXNlXOf+3redFBSdAMlSHS4wDkAOQASuRAM1QAn376qZPduRI58J6D7Gy4/Xb4xz/gb3+D++6zVzwPhNcciNKhOJADkAPwhgNHZ6h27NhBs2bNgu0vrJED7zn47jsoWgVg3z644ILTf8ZrDkqKZqgMkR4HIAcgB1AiB5qhAvj222+d7M6VyIH3HNSvby715XP22VC7dvGf8ZoDUToUB3IAcgDecOBoQtWgQQMnu3MlcuA9BxdeCGPHwsUXw+WXw9Sp8GurKHjNgSgdigM5ADkAbzhwdOmZihUrOtmdK5EDbzp46CHzOlO86ECUHMWBHIAcgDccODpDtWfPHie7cyVyIAcgB8KgOJADkAPwhgNHE6qbb77Zye5ciRzIAciBMCgO5ADkALzhwJGEaswYaNYM2rSZyJYtgdvk5MDatXDokBMjCh0TJ04M9RBCjhzIgTAoDuQA5AC84aDcyybYHynPoXr1Shw/bm9z6JBJuNLTzfaAAfDSS/7HeuklWLoUbrsNBg48fZ9Hj5onrdxITk4OlSo5euua65CDyHUQExNDTEwMubm5bN++PeLLJkRqHBRGDuQASuQgcssmzJ1beKsnmZlw5Ii9zfPPFyRTAO++63+cp56CQYNg0ybzz86d/dtMmmQWoK1ZExo2xC9xA/O3J5+E+++HzZtL8YWCpGfPns536jLCzUFODowcCf36QUpK2Rwz3ByUFV26dCEhIYG4uLhQD8UVRGocFEYO5AC84aDcZ6jWroU2bQq2q1WDzEx7m44d4euvi29z0UWQlFSw3agR7N1rb1OzppmdyqdTJxg3zt6mYUPYv9+8r1QJfvgBGje2t3npJRgyBCpUgG7d4K23/L/X3r2mzRVXwBNP+O8X3uHBB+Grr8z7xo1hwwY455zQjincUWFPIUQpidwZqtatYfhwkxDVrduN1av92/TrZ1/77M03/dtceaV9+4or/NucPGnf/vln+3ZqakEyBWbmYexYe5vVq80MWE4OnDgBb7/tP6O2Ywdccgn06GFmuzp29B8LwL33Qt26JqHMT/SKLgB55AisWAFZWYGP4UXCaRHMkydNXal89uyBVauCP244ORDlh+JADkAOwCMOLMsK9nXGJCUlnXbfzz9b1tixlrVhQ+D92dmWddNNllW7tmXdeKPZLso//mFZZhU1y6pYMfCxKlQoaAOWNWuWff/nn9v3g2X973/2Nk88Yd9foYJ/P5062du0bu3vYOxYy/L5zP7q1S1r507/4xw7ZlkPPmhZt91mWQsWBHYTbhQXB27kwgvt/643bQr+mOHmoKxJS0uzACstLS3UQwkpkR4HliUHliUHllUiB2WRt5TLy9GyCQsXLjztvtq14bHH4De/Cby/ShUzk/Pzz7BypdkuypAhMGMGdO0K27YFPtYXX5gq1lWqwLPPmoVsC/PnP0P16gXbderA1Vfb25x/vn278LIj+axfb99OTDT/LOzglVcKFtHNzISnn/Y/TvPmMGWKuRn/97+HQLeefPSRmeGrUgX+9S///WBmyAYPhtmzA+93kuLiwI3MnAk33GCqoH/+uX88lIZwcyDKB8WBHIAcgDccOJpQXVn0ul05cP/9JsE43RqLjz1mkovsbBg2zH9/7drmvqpOnUyCs3u3uZeqML16wWWXmfcVKphLhEW55x779g03mH8WdpCba29T9JIlmEtM+VgWjB5t379rF3z8sbk8efKkuecrP3nLJzXV3Dv2wgvQoYNxFIiPP4arrjJJZU5O4DZlgRNxUJZcf725F3DrVvNwRFkQbg5E+aA4kAOQA/CGA0ef08zIyHCyu1LTsKH/zeyFqVDBzICdOBF4pgwgOtr885tvzH+Q8+/VKuzg44/h1VfN+8qVISbG/zjVqtnvr2rd2r5/+3b/z2zbBpdeWrDdowcUVj9zpv9nevc2iShAQgLccgt+97slJpr7wX7+2TjauBHOPdf/WIsWwfffw6OPBt4fLnFQnsiBAMUByAHIAXjDgaMzVKmpqU52V+6cLpnKJzraJCfjxxfMchV28MorZtZj3DhIToZrr/U/xpw55sb2GjXMjFnRJwrbtTNPN+Zz9tlw1132NoX3A/gCPCMxfbp9e+NG/zYdOpib6C0LfvwRHnjAv80zz5j+X3oJLrgA9u3zb/PDD6nceSfcdJOZ+YlEvHYuiNKhOJADkAPwhgNHE6prrrnGye5cSVEHl19uLi/WrRu4/R13wMGDcOyYuX+nKFWqwM6d8Pjj5ji7dplZrcK89579Eug77/gfp21b+/ZFF/m3Kfq044ED/m0KX5LMyvKvKZaXB2+8cQ2LF5un5W66KXDS9dpr5l62WrVgwgT//fnH2rjRXsMsXNC5IEBxAHIAcgDecOBoQvXNN9842Z0rKQ8Hdeua5X3GjQucmFWoYO4L27PHXPrr0cO/Td++pt5SnTpw3XWwfLl/m6L3D738sn+boguGF50d+/57yMwscJCbC7Nm2dssXAj9+5uELCPD3PeWl2dvk5pqvut115n73gLdx5Z/rJdfNpde3YTOBQGKA5ADkAPwiIMyeFTwjMnIyChJc08S7g6++MKUjfj668D7o6MLSgzUr29ZmZn2/ceOWZbPl2ErKbFunb1Njx7+pSsOHLC3eeQR+/7q1f3HEhNjbxMd7d8mO9uy/vxny7ruOsvq3/+MNQRNuMfB0qVLrfvuu89q0KCBBVjTp08v0edVNsEQ7nFQFsiBHFhWiRyEvDzC6V6OzlD179/fye5cSbg7eOIJU3rij38MvP/1183lyR9+MEVUi15+rFEDHnqoP3XrQlSUuRm+RQt7m0cesc901a3rX6qiaCHUojNYAJ98Yt8OpL5tW1O483//Mw8IBHryszwI9zg4duwY1113HYNONzUozohwj4OyQA7kALzhoNyXnhGiNMTHm/uvataEESPMvVSF2bXLVM/Pzjbbb74JffrY27RoYZaJyefqq81akIWpWtU8rZnPnXfCf/9bZl8jIvD5fEyfPp2Op1syAMjOziY7/18WZumZRo0aaekZIURJ8e7SMxMmTGDHjh307t2b7OzsU+Xju3XrRnJyMiNGjCAuLo758+fzyCOPkJCQwIABA0hPT7e1PXLkCDExMWzcuJGZM2cyZ84c1q9fz9ChQzl48KCt7fHjx4mOjmbbtm1MnjyZRYsWsWrVKkaPHk1SUpKtbW5uLj169GDPnj2MHTuWFStWEBsby8SJE0lMTKRPnz5kZWXZPpOSksLw4cOJi4tj3rx5TJ8+nc2bNzNw4EDS0tJsbVNTUxk0aBCbNm1ixowZzJ07l3Xr1jFs2DAOHDhga5uZmck999xDYmIikyZNYvHixaxcuZIxY8awd+9eunfvTl5eHt26dSMvL4/u3buzd+9exowZw8qVK1m8eDGTJk0iMTGR6OhoMjMzbcc/cOAAw4YNY926dcydO5cZM2awadMmBg0aRGpqqq1tWloaAwcOZPPmzUyfPp158+YRFxfH8OHDSUlJsbXNysqiT58+JCYmMnHiRGJjY1mxYgVjx45lz5499OjRg9zcXNtnkpKSGD16NKtWrWLRokVMnjyZbdu2ER0dzYcffmhre/DgQYYOHcr69euZM2cOM2fOpEKFjXToEMPQoUcYMKCgbXp6OgMGDCAzM4GhQ6fx6qvzGTkyjiuuGEFycrLtuF9+mU21ar2BHVSvPoG33opl+fLljBs3jt27d9OzZ0/q1csB8pc86MaVV+5j1KhRrFmzhoULFzJlyhS2bt1Kv379OHr0qO34hw4dYsiQIcTHxzN79mxmzZpFfHw8gwcP5vDhw7a2GRkZ9O/fn4SEBKZOnUrnzp1Zu3YtI0eO9Bv3yZMn6dWrFzt37mT8+PEsW7aMZcuWMX78eHbu3EmvXr04efKk37k2cuRI1q5dy4IFC5g6dSoJCQn079+fjIwMW9vDhw8zePBg4uPjmTVrFrNnzyY+Pp4hQ4Zw6NAhW9ujR4/Sr18/tm7dypQpU1i4cCFr1qxh1KhR7Nu371TbyZMnk5OTQ8+ePdm9ezfjxo1j+fLlxMbGMmHCBN566y2ioqJOvRo1agTA/v37bb8R06ZNi6jfiHfffdfvNyI6OjqifiP+/ve/+/1GHD9+/Fd/IzZu3EhMTAxHjhyxtc3/jUhISGDatGnMnz+fuLg4Rozw/43Izs6md+/e7NixgwkTJhAb6/8bkZOTY/vMvn1l/xtx1113+f1GLFiwwFO/Ed26dSv2N+L1118/ozzCzTg6Q3Xo0CHqnu5xtghBDtzlYO9eaN/ePLH4u9/B5MnO9OsmB8GiGarS46U4KC1yIAdQIgfenaEqCV999ZWT3bkSOXCXg4suMrXAfv7ZuWQK3OXACapWrUqtWrVsLxF5cRAIOZAD8IYDRxOqNm3aONmdK5EDOQA5EAbFgRyAHIA3HDiaUO0LVMExwpADOQA5EAbFgRyAHIA3HDi6ll8Z3K8V9siBHED4Ozh69Cg//PDDqe1du3YRHx/Pueeey0WByuyLgIR7HJQFciAH4A0HjiZU+U/2RDJyIAcQ/g6+++472rVrd2r79ddfB+DJJ59kdOH1h0SxhHsclAVyIAfgDQeOXvJbvXq1k925EjmQAwh/B7fffnvASsFKpkpGuMdBWSAHcgDecOBo2YTDhw9Tp06dYPsLa+QgPB1kZpoiorVrl83xwtFBWZKenk5UVFTEl02I9DgAOQA5gBI5UNkEgMGDBzvZnSuRg/BzMHEinHOOeT3/fNkcM9wciPJBcSAHIAfgDQdaekaIYsjLM8veHDtW8Ldly+CWW0I3Ji+gGSohRCnRDBVwqpx8JCMH4eXAsgrWC8wnMzP444aTA1F+KA7kAOQAvOHA0RmqjIwMatasGWx/YY0chJ+D7t3hgw/M+zvvhHnzoFKQz8eGm4OyRjNUhkiPA5ADkAMokQPNUAGMGDHCye5ciRyEn4P334ctW2DVqrJJpiD8HIjyQXEgByAH4A0Hjtahat++vZPduRI5CE8HzZuX7fHC0UFZEBMTQ0xMDLm5uaEeiiuI1DgojBzIAXjDgaMzVN9//72T3bkSOZADiFwHXbp0ISEhgbi4uFAPxRVEahwURg7kALzhwNGEKtKvEYMcgByAHAiD4kAOQA7AGw4cTaiioqKc7M6VyIEcgBwIg+JADkAOwBsOHE2otmzZ4mR3rkQO5ADkQBgUB3IAcgDecOBo2YTk5GQaNmwYbH9hjRzIAciByiYYIj0OQA5ADqBEDlQ2AWDkyJFOdudK5MCbDn7+Gfr3h5gYOH7819t70YEoOYoDOQA5AG840NIzQgRJVha0agWbN5vtW26B2Fio4Oj/roQXmqESQpQSzVCBN0rLB4sceM/B5s0FyRTA8uWwf3/xn/GaA1E6FAdyAHIA3nDg6AzVyZMnqVy5crD9hTVy4D0Hyclw8cUFa/5FRZm/1ahx+s94zUFJ0QyVIdLjAOQA5ABK5EAzVAB9+/Z1sjtXIgfec9CwIUyaBFddBddfD19/XXwyBd5zIEqH4kAOQA7AGw4cnaHauXMnF198cbD9hTVyIAcgB5qhMkR6HIAcgBxAiRxohgpg9erVTnbnSuRADkAOhEFxIAcgB+ANB44mVI0aNXKyO1ciB3IAciAMigM5ADkAbzioFOoBCBEpbNoEX35p7rm6+upQj0YIIURZ4mhClZSU5GR3rkQOItPBDz/AjTfC0aNm+5ZbkmjXLrRjCgUxMTHExMSQm5sb6qG4gkg8F4oiB3IA3nDg6CW/tm3bOtmdK5GDyHSwZElBMgWwaVPkOQDo0qULCQkJxMXFhXooriASz4WiyIEcgDccOJpQTZkyxcnuXIkcRKaD5s3t27VrR54D4U8kngtFkQM5AG84UGFPh5GDyHUwciQMHw4NGkDfvidp0iTyHOSjsgmGSD0XCiMHcgAq7FlievXq5WR3rkQOItfB3/4Gq1fDtGkwblxkOhB2IvVcKIwcyAF4w4EWRxZCOI5mqIQQpUQzVOCNxQ+DRQ7kAAI7OHECnnrKlFX4wx/g8OEQDEw4is4FOQA5AG84cHSGKjk5mYYNGwbbX1gjB3IAgR307g3vvFOw3bkzjBrl7LicQjNUBp0LcgByACVyoBkqgHnz5jnZnSuRAzmAwA6KlmHxQFkW8SvoXJADkAPwhgNHE6qrrrrKye5ciRzIAQR28MgjULWqee/zwZNPOjwo4Tg6F+QA5AC84cDRSulpaWlOdudK5EAOILCDG2+EuDhYuhSuuw5uuSUEAxOOonNBDkAOwBsOHE2oMjIynOzOlciBHMDpHVxzjXmJyEDnghyAHIA3HDh6ye/KK690sjtXIgdyAKV3kJQErVvDWWfBgw9CdnYZD0w4is4FOQA5AG84cDShWrBggZPduRI5kAMovYPXXoNvv4Xjx+Grr2DgwDIemHAUnQtyAHIA3nDgaNmEjIwMatasGWx/YY0cyAGU3sGtt8Ly5QXbb74JffqU4cDKmZiYGGJiYsjNzWX79u0RXzZB54IcgBxAiRyobALAp59+6mR3rkQO5ABK7+CFF6DCL2dtrVrwxBNlOCgH6NKlCwkJCcTFxYV6KK5A54IcgByANxxo6Rkhwoz16yEhAW6+GZo0CfVoSocKewohSolmqMAbpeWDRQ7kAIJz0KIFPPbY6ZOpvDwYPx769VNxULejc0EOQA7AGw4cnaE6fPgwderUCba/sEYO5ADK18Fzz8HQoeZ9vXqwYQM0aFAuXZUazVAZdC7IAcgBlMiBZqgAJk+e7GR3rkQO5ADK18H48QXvDxyARYvKrSsRJDoX5ADkALzhwNGEqm3btk5250rkQA6gfB0UvRQYrvdZRQI6F+QA5AC84cDRhCpJN3TIAXIA5etg8mSzjE2zZtC3r7l5XbgTnQtyAHIA3nDg6NIzPp9rL306hhzIAZSvgyuvhJUrf71dfLy5gb1Fi3IbivgVdC7IAcgBeMOBozNUF154oZPduRI5kAMIvYMXXoDrr4eWLeGpp0I6lIgm1HHgBuRADsAbDhxNqNasWeNkd65EDuQAQusgKQkGDy7YHj0atm0L2XAiGp0LcgByAN5w4GjZhEOHDlG3bt1g+wtr5EAOILQOUlKgYUMofOrv2uXszesqm2DQuSAHIAdQIgeuvTbo6AzVkCFDnOzOlciBHEBoHdSvD716gc9nXv/+t54EDBU6F+QA5AC84UBLzwgRoaSnm1mqqKjA+3NzYfNms7+sEy7NUAkhSkm5zVD5fL5HgZcsyypVDQctPeMwciAH4A4HtWqdPpnKyYE//AF+8xtTfiEmpmz6jImJoXnz5rRq1apsDhjmuCEOQo0cyAGE3oHP56sF9AUal/oYTs5QHT16lLPPPjvY/sIaOZADcL+D2bOhQ4eC7Ro14Nixsju+ZqgMbo8DJ5ADOYASOSiXGSqfz9cXeA3IAapYpUiOHJ2hGj58uJPduRI5kANwv4PKle3blRytWBc5uD0OnEAO5ABC68Dn8zUHLgD2Y+pzluoJAUcTqnvuucfJ7lyJHMgBuN9B+/bw8MPmfZUq9jILouxwexw4gRzIAYTcQU/gbeDAL9v1S3MQRxOqTZs2OdmdK5EDOQD3O/D5YMIE2LcPfvoJHn00cLtDh2DOHNi61dnxeQW3x4ETyIEcQOgc+Hy+PwPfWZa1B0j55c+lSqgcncivXbu2k925EjmQAwgfBxdccPp9e/ZA27awf7+5JPjll/Dgg86NzQuESxyUJ3IgBxAaBz6frzrQBfjDL38KnxmqmjVrOtmdK5EDOQBvOBg92iRTYJ4K7NMnpMMJS7wQB8EiB3IAIXPwLtDPsqysX7bDJ6H6/vvvnezOlciBHIA3HBR9OO90JRjE6fFCHASLHMgBOO/A5/M1Ba6yLGtWoT+HT0L1u9/9zsnuXIkcyAF4w8Hzz5taVQBNm8Knn4Z2POGIF+IgWORADiAkDnpgZqgKk38PVb3SHNDRhGr06NFOdudK5EAOwBsOqlUzN6RnZcHOndC8eeB2S5aYy4EeWPu0zPFCHASLHMgBOOvA5/O1B24Bxvl8vjX5L+CDX5qUaoZKS88IIcqNCROgUyezxE3FijB3rinJoMKeQohSElRhT5/PVxlYAPzRsqyMIvsuA7YBWyzLurqkx9bSMw4jB3IAkePgyy9NMgVmbcBJk0I7HrcRKXFQHHIgB+Cog1eBkUWTqV8IqmyCozNUOTk5VIrwkstyIAcQOQ5efhkGDizY/s9/4IMPNEOVT6TEQXHIgRxAiRyUeobK5/NdCIwA7j7d0jI+n+84UA2oalnWyZIcP6h/gz6fz5eWlnbG7fv27cvrr78eTJdhjxzIAUSOg3fegR9/hHXrsmndOptHHzXFQjMyzP8cpqenh3iEoSVS4qA45EAO4MwdREVF1QIySrrWns/nawxMAyYVk0xVBo4C1TFL0ewuUR/BzFD9sjrzmWdUQgghhBDBEWVZ1hn935jP56sLLAUuByoCucAoy7KeLdJuGXAVcO4vfzoM7ARusywr84z6CjKh8qWlpeWdSdv09HQaNWpEUlJSiab4W7VqRVxcXInG5dbPyIEcQGQ6yM7OJjs7+9T2/v37ueGGG0hISOBf/7qAqVPN3ytUgP/+F1q2dG5sofpMJMZBUeRADqBkDqKioqIoxQyVEwR1ya80X6hWrVolCpqKFSuW+B4LN38G5ADkAOQATHXktWsLPpeXB5s2Qbt2oR2b4kAOnPwMyAGcmYMznZkKBY4+5VcaunTp4qnPlAY3fx85kIPSfiafNm0K3leoAK1alW0/bv5MaXDz95EDOSjtZ7yAY0/56akeOQA5ADkA2Ldv36kp/qioC+naFfbuhcceg44dQz06Z1AcyAHIAZTYQVB1qMoTx57TrFq1Ki+99BJVq1Z1qkvXIQdyAHIAnPruVatWpWZN6Nu3+PYbNsDrr0Nmpim7cN99DgyynFEcyAHIAXjHgaMJ1YUXXhj2woJBDuQA5ADsCdWvkZNj1gxM+aXk3l/+Atu3w0UXlecIyx/FgRyAHIB3HDha2DM7OzvshQWLHMgByEFJpvgPH4a6de1/W7oUbr21HAfoEJEeByAHIAdQIgeuveTn6E3pffr0cbI7VyIHcgByUBLq1IGbby7YbtwYfvObkA2nTFEcyAHIAXjDgRZHFkI4TklvxD12DD77zNxD9cwz0LChA4MUQrgRzVCBFoAEOQA5ADkoKWedBW+9BR9+ePpkasQIM3vVvDksW+bs+EqL4kAOQA7AGw4cnaFKTk6mYYT/r6UcyAHIQVk/Kr51K1x1lSkMCnDuufDTT1CxYtCHLlciPQ5ADkAOoEQOIm+Gavfu3Tz99NM0bdqU6tWr06xZM5577jlOnDhR7Ocsy+Kjjz6iYcOGVK9endtvv50tW7aU1zDLle7du3PjjTdSo0YNateuDcA333xT7Gc6d+6Mz+ezvdoUrnwYZpTGgZdiAODnn3/m8ccfJyoqiqioKB5//HGm5q+1chq8FgflTXJyQTIFcOQIHD8euvHk89lnn9G0aVOqVatGy5YtWb58uW1/4XMhNjbW79+5z+dj69atTg+7TFi2bBkdOnSgYcOG+Hw+ZsyYEbBdYQdLly6lZcuWVKtWjYsvvpghQ4Y4NNryoaQOvBYDAD169KBVq1bUrFmT888/n44dO7Jt2za/dkX/uxCOsVBuCdXWrVvJy8tj6NChbNmyhX79+rFy5Uree++9Yj/Xu3dv+vbty6BBg4iLi6N+/fr87ne/O7U6fThx4sQJHnzwQZ5//vlTf7v22mt/9XN33303+/fvP/WaO3dueQ6zXCmNAy/FAMCjjz5KfHw88+bNY968ecTHxzN58uRf/ZyX4qC8ad3aXOrL509/gpo1QzcegEmTJvHqq6/y/vvvs2HDBm655Rbuuece9u7de6pNoHNh27Zttn/vl156qZPDLjOOHTvGddddx6BBg4ptl+9g165d/OEPf+CWW25hw4YNvPfee7z88su/+j8fbqakDvLxSgyASYy6dOnCmjVrWLhwITk5ObRv355jx47Z2hV2ELaxYFlWsK8z5umnn7aaNm162v15eXlW/fr1rZ49e576W1ZWlhUVFWUNGTKkJF25ilGjRllRUVGWZVnWvHnzim375JNPWvfff3/5D8phztSB12IgISHBAqw1a9ac+tvq1astwNq6detpP+fVOBg0aJB15ZVXWpdddpkFWGlpaWV27J9/tqwhQyxr3DjLOnmyzA5bam644Qbrueees/3tiiuusN59991T24XPhSVLlliA9fPPPzs1RMcArOnTpwfcl+/g7bfftq644grbvn/84x9WmzZtynt4jnAmDrwcA/n89NNPFmAtXbrU9vfC58KvxEJZ5C3l8nL0pvTU1FTOPffc0+7ftWsXKSkptG/f/tTfqlatym233caqVaucGGK5UzQrD0RsbCznn38+l112Gc8++yw//fSTAyNzjuIceC0GVq9eTVRUFK1btz71tzZt2lCjRo1f/T5ejIMuXbqQkJBQ4tXrz4TateEf/4BOnaDSaUoWd+0KF18Md9wBe/aU+RBOceLECdatW2eLY4D27dvb/r0HOheuv/56GjRowJ133smSJUvKb5AuId/B6tWr/Xz9/ve/57vvvuPkyZOhGJpjFI0DL8dAWloagF8uUNhBcbHg8/kql/8oS4djCdWOHTuYP38+zz333GnbpPxSCrlevXq2v9erV+/UvnDniiuuKHb/Pffcw/jx41m8eDHR0dHExcVxxx13kJ2d7dAIy5/iHHgtBlJSUjj//PP9/n7eeecV+30iIQ6cZvp0+Pe/YdcuWLIEnnqq/Po6dOgQubm5vxrHhc+FBg0aMGzYMKZOncq0adO4/PLLufPOO1kWLo8slpJ8BykpKQF95eTkcOjQoVAMzTHyHXg9BizL4vXXX+fmm2/m6quvtu0rfC4UFwtAkTK/7qHECZXP5/vI5/NZhV5+N9B99913ts8kJydz9913c/XVV/PMM8+cSR+2bcuy/P4WKj766KOANw0W9/0L89///rfY4z/00EPce++9XH311XTo0IFvvvmG7du3M2fOnLL+KqWmvB2Au2MASuYg0LiPHTtW7PcJhzgIN3btsm/v3l3+ff5aHBc+Fy6//HKeffZZWrRoQdu2bfnss8+49957+eSTT8p/oCGksINAvgL93WvkO/B6DLz44ots3LiRCRMm+O0r+t+F08UCLq59WZq1/AYBE/M3vv/++++LNmjSpMmp98nJybRr1462bdsyYMCAYg9cv359wGSnDRo0OPX3n376yS9bDRUvvvgiDz/8cLFtCn//onTu3LlE/TVo0IDGjRuTmJhYos+VJ+XpIBxiAM7cwcaNGzlw4IDfvpMnT5bo+7gxDsKNDh3g448hPd1sd+pUfn3VrVuXihUr+s1CFo3jX/s9aNOmDePGjSuPIbqGfAf169cP6KtSpUrUqVMnBCNzjuLiwCsx8NJLLzFz5kyWLVvGhRde6Le/sIPiYiEnJ+dweY+1tJR4hsqyrEOWZW3Nf11xxRUUfVWrVg2AH3/8kdtvv50WLVowatSoX33SoWnTptSvX5+FCxee+tuJEydYunQpN954Y0mHWi7UrVvX7/ue7vsH4teSyqIcPnyYpKQkW3IRasrTQTjEAJy5g7Zt25KWlsa333576rNr164lLS2tRN/HjXEQblx6KXz3HURHw9Sp8J//lF9fVapUoWXLlrY4Bli4cKHt3/uv/R5s2LDB8//O8x20bdvWz9eCBQv47W9/S+XKrr1tpkwoLg7CPQYsy+LFF19k2rRpLF68mKZNmwZsV9hBcbFgWZZ7b6grgzvbA/Ljjz9al1xyiXXHHXdY+/bts/bv33/qVZjLL7/cmjZt2qntnj17WlFRUda0adOsTZs2WY888ojVoEEDKz09/XRduZY9e/ZYGzZssD7++GPr7LPPtjZs2GBt2LDBysjIONWm8PfPyMiw3njjDWvVqlXWrl27rCVLllht27a1LrjggrD8/pZVcgeW5a0YsCzLuvvuu61rr73WWr16tbV69Wrrmmuuse677z5bG6/HQVHS0tLK/Cm/smLwYMt65BHL6t/fsvLySn+ciRMnWpUrV7ZGjBhhJSQkWK+++qp11llnWbt377Ysy7Leffdd6/HHHz/Vvl+/ftb06dOt7du3W5s3b7beffddC7CmTp0a7FcKCRkZGafOd8Dq27evtWHDBmvPnj2WZfl//507d1o1atSwXnvtNSshIcEaMWKEVblyZeurr74K1VcImpI68FoMWJZlPf/881ZUVJQVGxtrywOOHz9+qk0JYyHkT/Od7lVuCdWoUaMszLVOv1dhAGvUqFGntvPy8qyuXbta9evXt6pWrWrdeuut1qZNm07Xjat58sknA37/JUuWnGpT+PsfP37cat++vXXeeedZlStXti666CLrySeftPbu3RuaL1AGlNSBZXkrBizLsg4fPmx16tTJqlmzplWzZk2rU6dO1nvvvWdr4/U4KIpbE6qhQ82vYv7rk0+CO15MTIzVuHFjq0qVKlaLFi1sj4o/+eSTVpMmTU5t9+rVy2rWrJlVrVo165xzzrFuvvlma86cOcENIITklwAo+nryySctyzLf/7bbbrP+85//nPpMbGysdf3111tVqlSxmjRpYg0ePDhEoy8bSurAazFgWdZp84DCv/lFzwXLKjYWQp44ne7l6NIzR44cKbZsQiQgB3IAclDWS8+UFY8/DoVvV7n/fjhNcesyIdLjAOQA5ABK5MC1Tyg4Wocq0J39kYYcyAHIgVtp27b47bJGcSAHIAfgDQelecqv1Nxyyy1OdudK5EAOQA7cygsvQE4OLFtmlrN5443y7U9xIAcgB+ANB47OUO12ovCLy5EDOQA5cDMvvwxffQVvvQUVTvMLmZEBO3aY5CsYFAdyAHIA3nDgaEJVsWJFJ7tzJXIgByAH4cyyZdCoEVxyCbRpU1DXqjQoDuQA5AC84cDRhCqca2mUFXIgByAH4czbb8Mvy5Gxbh0MG1b6YykO5ADkALzhwNGEqjwWRA035EAOQA7Cmbw8+3ZubumPpTiQA5AD8IYDR8smHDx4kPPOOy/Y/sIaOZADiFwHMTExxMTEkJuby/bt211XNuFMWLTIlFM4dgyuvtpcAjznnNIdK1LjoDByIAdQIgcqmwAwdOhQJ7tzJXIgBxC5Drp06UJCQkJY/9/onXfCnj2wcaNZyqa0yRREbhwURg7kALzhwNEZKiGEAPcW9ixLdu0y91pde+3pnxYUQpQYzVABdOvWzcnuXIkcyAHIgdf59FNo1gyuvx7uu+/091kpDuQA5AC84cDRGarjx49To0aNYPsLa+RADkAOvDxDlZcHNWpAdnbB3775Bu6+279tpMcByAHIAZTIgWaoAAYPHuxkd65EDuQA5MDL+HxQqcgaFJUrB26rOJADkAPwhgNHE6r77rvPye5ciRzIAciBl/H5YPDggiTqscfgjjsCt1UcyAHIAXjDgaMJ1f/+9z8nu3MlciAHIAde5/HH4eBB+PFHGDvWJFmBUBzIAcgBeMOBo4sj16lTx8nuXIkcyAHIQSQQFWVexaE4kAOQA/CGA0dnqKpXr+5kd65EDuQA5EDAvn0walR1PvgADh0K9WhCh84FOQBvOHA0odq+fbuT3bkSOZADkINI59gxuOUWGD9+O927Q7t2kJMT6lGFBp0LcgDecOBoQnXnnXc62Z0rkQM5ADmIdLZtg927AUwcbN5s7reKRHQuyAF4w4GjCdUXX3zhZHeuRA7kAOQg0mncGEz5LRMH9erB+eeHdEghQ+eCHIA3HGjpGSGE43i5sOeZsmoVfPyxqVnVvTv85jehHpEQYYEKe4I3SssHixzIAUSug5iYGJo3b06rVq1CPZSQc+ONcMst3ZgzJ7KTqUg9FwojB95w4OgMVW5uLhUrVgy2v7BGDuQA5EAzVIZIjwOQA5ADKJEDzVAB9O7d28nuXIkcyAHIgTAoDuQA5AC84cDRGao9e/bQuHHjYPsLa+RADkAONENl+LU4WLoURo2C+vXh/fehZk0HB+cQkX4ugBxAiRxohgpg2bJlTnbnSuRADkAOhKG4ONiyBdq3hy++gF69oFMnBwfmIDoX5AC84cDRhKpp06ZOdudK5EAOQA6Eobg4WLsWTpwo2PbAf28ConNBDsAbDhxNqHIitRRwIeRADkAOhKG4OGjZ0pRUyKd1awcGFAJ0LsgBeMOBo4sjp6SkONmdK5EDOQA5EIbi4uC662DmTPj8c3MPlQeeKg+IzgU5AG84cDShatmypZPduRI5kAOQA2H4tTi45x7z8jI6F+QAvOHA0Ut+M2bMcLI7VyIHcgByIAyKAzkAOQBvOHC0bEJWVhbVqlULtr+wRg7kAORAZRMMkR4HIAcgB1AiByqbAPDJJ5842Z0rkQM5ADkQBsWBHIAcgDccaHFkIYTjaIZKCFFKNEMF3lj8MFjkQA5ADoRBcSAHIAfgDQeOzlClpKRQv379YPsLa+RADiByHcTExBATE0Nubi7bt2+P+BmqsoqDkyehcuUyGFAIiNRzoTByUCIHmqECmDVrlpPduRI5kAOIXAddunQhISGBuLi4UA/FFQQbB0ePwp13QpUq0Lw57NpVRgNzkEg9FwojB95w4GhC9Zvf/MbJ7lyJHMgByIEwBBsHffvC4sXm/fffw1tvBT8mp9G5IAfgDQeOJlSHDx92sjtXIgdyAHIgDMHGQWpq8dvhgM4FOQBvOHA0ocrMzHSyO1ciB3IAciAMwcbB3/8O555r3lepAq+/XgaDchidC3IA3nDg6NIzl156qZPduRI5kAOQA2EINg6uuAK2bIG4OPM+HMNK54IcgDccODpDtWTJEie7cyVyIAcgB8JQFnFQvz506BCeyRToXAA5AG84cLRsQlpaGlFRUcH2F9bIgRyAHKiwpyHS4wDkAOQASuRAZRMABg4c6GR3rkQO5ADkQBgUB3IAcgDecKClZ4QQjqMZKiFEKdEMFXijtHywyIEcQHg76N69OzfeeCM1atSgdu3aoR5OWBPOcVBWyIEcgDccODpDlZqaGvE/wHIgBxDeDrp27Urt2rXZt28fI0aMILUUxY80Q2UI5zgoK+RADqBEDjRDBTBu3Dgnu3MlciAHEN4OPv74Y1577TWuueaaUA8l7HEqDrp0gTZtTGV1txHO50JZIQfecOBoHarbbrvNye5ciRzIAUSeg+zsbLKzs09tp6enh3A07sGJOOjQAWbPNu/XroWcHHj7bXub9euhY0fIyIDHH4cBA05/vLw8qFCG/yseaedCIOTAGw6CPi0mTJjAjh076N27N9nZ2aeug3br1o3k5GRGjBhBXFwc8+fPZ9y4cSQkJDBgwADS09NtbY8cOUJMTAwbN25k5syZzJkzh/Xr1zN06FAOHjxoa3v8+HGio6PZtm0bkydPZtGiRaxatYrRo0eTlJRka5ubm0uPHj3Ys2cPY8eOZcWKFcTGxjJx4kQSExPp06cPWVlZts+kpKQwfPhw4uLimDdvHtOnT2fz5s0MHDiQtLQ0W9vU1FQGDRrEpk2bmDFjBnPnzmXdunUMGzaMAwcO2NpmZmbSt29fEhMTmTRpEosXL2blypWMGTOGvXv30r17d/Ly8ujWrRt5eXl0796dvXv3MmbMGFauXMnixYuZNGkSiYmJREdHk5mZaTv+gQMHGDZsGOvWrWPu3LnMmDGDTZs2MWjQIFJTU21t09LSGDhwIJs3b2b69OnMmzePuLg4hg8fTkpKiq1tVlYWffr0ITExkYkTJxIbG8uKFSsYO3Yse/bsoUePHuTm5to+k5SUxOjRo1m1ahWLFi1i8uTJbNu2jejoaBISEmxtDx48yNChQ1m/fj1z5sxh5syZbNy4kZiYGI4cOWJrm56ezoABA0hISGDatGnMnz+fuLg4RowYQXJysq1tdnY2vXv3ZseOHUyYMIHY2FiWL1/OuHHj2L17Nz179iQnJ8f2mX379jFq1CjWrFnDwoULmTJlClu3bqVfv34cPXrU1vbQoUMMGTKE+Ph4Zs+ezaxZs4iPj2fw4MEcPnzY1jYjI4P+/fuTkJDA1KlTmTp1KmvXrmXkyJF+4z558iS9evVi586djB8/nmXLlrFs2TLGjx/Pzp076dWrFydPnvQ710aOHMnatWtZsGABU6dOJSEhgf79+5ORkWFre/jwYQYPHkx8fDyzZs1i9uzZxMfHM2TIEA4dOmRre/ToUfr168fWrVuZMmUKCxcuZM2aNYwaNYojR46cSpK6detGTk4OPXv2ZPfu3YwbN47ly5cTGxvLhAkTeOutt4iKijr1atSoEQD79++3/UZMmzYton4j1q1b5/cbER0dXaa/EQsX5t+b0g04wMCB/r8RN900iKSkVFJTuzFwIPz5z/6/EXffPQ+fL46KFYfzxz8G/o2Ij0/k8ccn8uGHZ/4bMWfOHL/fiOPHj0fUb0TPnj39fiMWLFgQ9r8R+/bts7Ut7jdixYoVZ5RHuBrLsoJ9nTFz5swpSXNPIgdyYFnuc9C1a1cLcz/kaV9xcXG2z4waNcqKioo6o+NnZWVZaWlpp15JSUkWYKWlpZXDtwkfnIiDK6+0LCh4derk36bwfrCsp5+27//hB/82q1bZ26SlWVbNmgX777gj8HgGDLCsli0t69FHLSs3133nQiiQgxI5KIu8pVxejl7yq1evnpPduRI5kANwn4MXX3yRhx9+uNg2TZo0KfXxq1atStWqVUv9ea/iRBwsXgy33QY//ggtWsCYMf5tGjWCpKSC7Ucese8/dMj/M8nJ9u2+fc0lw8L95uRApUL/lRk6FF5+2bxftw527oRBg+wOfvoJWrc2423a1CyrE+i5hW3bYOtW+N3voEaNAF88jHDb70Eo8IIDR29KX7dunZPduRI5kANwn4O6detyxRVXFPuqVq1aqIfpOZyIg/r1TfJx9CgsWxb4/qfNm+Gee0zC9eWXcOed9v2tW5ukK5/zzoP777e3KfqAls9nT6bAHLsw8fH+Du65B3bvhpMnYft2c29XUT780Kxd2LEjnH++ScKKcuiQ2X/XXeYeMTfjtt+DUOAFB46WTThw4IAnstBgkAM5gPB2sHfvXo4cOcLMmTPp06cPy5cvB+CSSy7h7LPPPqNjqGyCIZziICcHPvkETpwwN7UHyq+vvRY2bTLv//lP+L//s+9/4w37k4aNG8PatXYHDRpASkpBm2bN4Icf7MepWtWMI59HHvFP1s45B/IrelSsaGbDLrrI3ua112DwYLP/00/hmWf8v1N6OkyfDs2bQ6tW/vvLgnCKg/KiBA5UNgFg+PDhTnbnSuRADiC8HXz44Ydcf/31dO3alaNHj3L99ddz/fXX891334V6aGFHOMVBpUrw7rtmduh0k5UbN8LBg5CZ6Z9MAURHm5mtmjXNYs7Llvk7ePBB+2cef/zXx+Yr8p/YvXsLkimA3Fz46it7m9hY6N8fsrPh+HH4+9/tSRrAvn1mhq9zZ7jhBpOABeKVV+Cqq+Bvf/v1sQYinOKgvPCCAy09I4RwHM1QieKIjob//hf++Ed4/nn//f/+N3Ttat7XrGlmn+rWLdifk2NmsfLyCv62fDncfHPB9qefwquv2o+7c6e5byufRx+FCRMKtitX9k+6XnjBzHLl88ADMHWqvc2iRXDffZCVZS6dbt0a+L6vjz6CAwdM4tq4sf9+AWiGyuCF0vLBIgdyAHIgDIqDwA7eeAO++SZwMgVmlmz3bpN0HTpkT6bAzKZ9+SVERZnE5Z//tCdTAA89ZBKkfOrUsSdTAFWq2LcD3X+2YIF9e8UK/zYPPWSSKTA3/3fubN/frVs3rr0WPv4YhgyByy4zs2NFGTTI3Kt2zjkwapT/fjD9jB8Pq1cH3u9WvHAuODpDlZmZSfXq1YPtL6yRAzkAOdAMlaEs4mDcOJg3D667Dl5/3dwPFE6E8lzYts3cD3b22WaWqWgopqebJOvIEbPduze89Za9zQMPmHus8rn1Vli61N6mRg1zGTSf22+HJUsKto8dy+Tss+0O3n0XevQo2E5MNIlWPj6fudfs/PML/paaama28uvmdu4cOPF66SWYM8fc2D9jhn/iCGaWb9cucw9bWRZyPR0liAPNUAF89tlnTnbnSuRADkAOhCHYOJgyxdxjNH68SQw++qhsxuUkoTwXLr8cvv7a+AuU19eqZe4J27ABDh/2T6YAJk82T0Weey60bWtm1orSqVPBe58PPvjAvn/IkM/8kpais2UbNti3Lcs8nVmYrl0LkimAL77wH8s775iZrl27zFjbtfNv88035j65yy4zl1R37fJvk5UFf/2rmfn7+mv//SXFE7+JZVDM6ozZvn17SZp7EjmQA8uSg7S0NBX2tIKPg5deshfbvO22shmXk0TKuTB2rGW9/LJlrVvnv2/79u1WTIxlVapkWT6fZd11l3+bw4ctq3Llgn/X1apZ1rFj9jZvvWWPhwoV/I9z/fX2NrVq+bepX9/e5qab/Ns0a2Zvs2SJf5uXXjLfByzroYcCarE2bbKsP/3Jsh58cLuVnR24TRFCXsDzdC9HZ6jWu70YiAPIgRyAHAhDsHHQpo19u3XroA4XEiLlXHjsMXMjfIsW/vvWr1/PCy+Y2lt5ebBwoX+bc881s1S33mpmlTZv9r+xvVs3U3Yinzff9D9O0XvJLr3Uv83Jk/btwpcr89m50749erR9e98+GDjQpFsAkyb531+2axdcf725ZDplyvqAYwknHK2Uft555znZnSuRAzkAORCGYOPg0UdNdfL5800NqPffL6OBOYjOhTN3cNVV/vdnFaZKFVPB/rvvoGFD8yrKgAHmnrDFi+GSS2DuXP82H3xQUCKiQgXz1GVRzj7bXhm/aDJfuJZYPj/+aN8eOdLcq2U4j717zaXEcK0h7GhCpaUn5ADkAORAGMoiDv7xD/MKV3QulL2D3/62+P3jxhW//9VXzUzYypWm3EPR+7nAzKJ17GiSqr/8xf+JzN/+Fi68sOBpxXPOgT/9yd7muusKb1WlYsXwTabA4ZvSd+zY4WR3rkQO5AAi10FMTAzNmzenVXmVnA4zIjUOCiMH7nTQooV5GjBQMgVmRmr/frOkUdHLffns2mUelPjnP01iVfRpwr/8xTxUUbkyVKmy47THCRccLZuwd+9eLipa+z/CkAM5ADlQ2QRDpMcByAHIAZTIgcomAIwdO9bJ7lyJHMgByIEwKA7kAOQAvOHA0RmqvLw8KjhRIczFyIEcgBxohsoQ6XEAcgByACVyoBkqgP8LtFpmhCEHcgByIAy/FgcLFphlS155xb7Yr5fQuSAH4A0HmqFyGDmQA5ADzVAZiouDjRvNk1L5NYHuvjtwFe5wJ9LPBZAD0AxVielReGGiCEUO5ADkQBiKi4PvvrMXWAy3xW7PFJ0LcgDecKCn/BxGDuQA5EAzVIbi4mDzZmjZEk6cMNv33guzZzs4OIeI9HMB5AD0lF+JiY2NdbI7VyIHcgByIAzFxcHVV5tLfJ06wRtvwJdfOjcuJ9G5IAfgDQeOVkpv1qyZk925EjmQA5ADYfi1OLjjDvPyMjoX5AC84cDRGars7Gwnu3MlciAHIAfCLNkxZUo2w4eb9csiFZ0LcgDecODoDNXBgwed7M6VyIEcgBxEOidOwO23w/r1Jg6+/BIWLTIL0UYaOhfkALzhwNHTt0WLFk5250rkQA5ADiKdLVtg/XoAEwexsQWLyEYaOhfkALzhwNGEaubMmU5250rkQA5ADiKd+vXzF4o1cXD22XDuuSEdUsjQuSAH4A0HjpZNyMzMpHr16sH2F9bIgRxA5DqIiYkhJiaG3Nxctm/fHtFlE6ZNg3feyaRKler07w+/+12oRxQaIvVcKIwclMiByiYAREdHO9mdK5EDOYDIddClSxcSEhKIi4sL9VDKlWPHoHt3ePNN2Lo1cJsHHoAnn4xmy5bITaYgcs+FwsiBNxw4OkMlhBDg/cKev/+9WYcPzKW8zZuhQYPQjkkIj6AZKoBu3bo52Z0rkQM5ADnwMrm5sHBhwfaRI/Dtt4HbKg7kAOQAvOHA0RmqAwcOUK9evWD7C2vkQA5ADrw+Q3XVVZCQYN5XrgybNsHll/u3i/Q4ADkAOYASOdAMFcDXX3/tZHeuRA7kAOQg3Jk9G/r1K0iaAu1/4AFo1w6mTg2cTIHiAOQA5AC84cDRwp4tW7Z0sjtXIgdyAHIQzvTpA2+/bd7XqAFr1sA119jbNG1qEqlfQ3EgByAH4A0Hjs5QHThwwMnuXIkcyAHIQTgzdmzB++PHYfr00h9LcSAHIAfgDQeOJlQnTpxwsjtXIgdyAHIQzjRpYt9u3Lj0x1IcyAHIAXjDgaMJlRdWkw4WOZADkAO3cuIEPPecuan8qafMDFRRhgwxdaOaNIHXX4cnnih9f4oDOQA5AG84cDShWrp0qZPduRI5kAOQA7fSsycMHWpuNh89Gj76yL9Nw4amxtSuXRAdDb4gnjlSHMgByAF4w4GjZRNSU1OpXbt2sP2FNXIgByAHbi2b8MQT9nuk/vQns0RMeRHpcQByAHIAJXKgsgkAgwYNcrI7VyIHcgByECqWLoUuXaB3bzh50n//X/5in3H6y1/KdzyKAzkAOQBvONDSM0IIxwnFDNW6ddC2bUEi9eyzMGyYf7vYWFixAm64Adq3d2RoQogzRzNU4I3S8sEiB3IAchAKYmPts1KFl4cpzO23wwcfOJNMKQ7kAOQAvOHA0RmqtLQ0oqKigu0vrJEDOYDIdRATE0NMTAy5ubls3769TGeoNm+GgQPhrLPgn/+E886z71+0CO66q2C7Y8fgakiVBZEaB4WRAzmAEjnQDBXAmDFjnOzOlciBHEDkOujSpQsJCQnExcWV6XF/+gluu81cwuvXL/Ds0p13wqhRJql65hkYObJMh1AqIjUOCiMHcgDecODo0jPt2rVzsjtXIgdyAHJQ1mzaBEeOFGzHx0NaGhT9H97Onc3LLSgO5ADkALzhwNEZqsTERCe7cyVyIAcgByVlxQq47jq47DKYMMF//xVXwNlnF2xfdpl/MuVGFAdyAHIA3nDg6AxV9erVnezOlciBHIAclISTJ+H++wtmoJ54Alq3hosvLmhzwQUwfz588om5hypc7m9VHMgByAF4w4GjCVWdOnWc7M6VyIEcgBwUZf16SEqCW2+Fc86x78vIsF/Oy8mBH3+0J1QAN95YvkU4ywPFgRyAHIA3HDh6yS8+Pt7J7lyJHMgByEFhYmKgZUvz1F2LFuYG88Kcey7cc0/B9pVXmnZeQHEgByAH4A0HjpZNSElJoX79+sH2F9bIgRyAHBQu7HnddbXYvbtgX0wMvPCCvf2JE2ZJmMxM6NTJfxYrXIn0OAA5ADmAEjlQ2QSAzz//3MnuXIkcyAFEjoPUVLjvPqhfHx5+2CRERSm6fFegZKlKFXj6aXjxRe8kUxA5cVAcciAH4A0HWnpGCFFuvPACDB5csP3hh/Dxx/YZqsTEWvzpT5CcbGafRo2CCo7+r54QIozQDBV4o7R8sMiBHIB3HEybBk8+CT16BF5seN++4rfB3D+1dy9kZ8MXX0RWMuWVOAgGOZAD8IYDR2eosrKyqFatWrD9hTVyIAfgDQcLFsDvf1+w/cor0L+/vc3UqfDXv0JeHlSubEobtGsXmsWR3YgX4iBY5EAOoEQONEMFMHDgQCe7cyVyIAcQHg5+/NHUdRo5EnJz/fcvW1b8NsCf/wwrV5obzePiTDIlCgiHOChv5EAOwBsOHK1D1bFjRye7cyVyIAfgfgcHD8INN5j7msAsLDx+vL1N69b27RtuCHysNm3MS/jj9jhwAjmQA/CGA0dnqNatW+dkd65EDuQAQu8gO9uUIfjii8BP3i1bVpBMAUyeDEXvDujQwdxAfv/98M47/pf7AhETE0Pz5s1p1apVUOP3CqGOAzcgB3IA3nDg6AxVpNfZADkAOYDQOsjLg3vvNbNOAJ9/DkuWQKVCvwZNm4LPV5BENWlitotS0sWGu3TpQpcuXU7dQxXp6FyQA5AD8IYDR2eoKlVyNH9zJXIgB1C+DizLzCgNGmSfZcpn9+6CZArMwsPbttnbtGgBQ4eaquQ33QTTp5fbcCManQtyAHIA3nDgaEK1a9cuJ7tzJXIgB1C+Dl56CR56yPzzt7+FAwfs+885Bwo/TFOlCtSt63+cZ5+FhASTcF19dbkNN6LRuSAHIAfgDQeOJlS33nqrk925EjmQAwjOwdix8Pbb5jJdIL74ouD9/v2wcKF9/znnwMSJ5jLeRRfBuHFQr16phyOCQOeCHIAcgDccOJpQffnll05250rkQA6g9A569oQnnoA+feCuu+yX7vK56KLit8HcSL5rF+zZAw8+WKqhiDJA54IcgByANxw4WtgzNzeXihUrBttfWCMHcgCnd9C/vyl++ZvfmCVaqlSx77/pJli1qmD79dchOtreZvNm+NvfzKW+F1+Et94q8+EHjQp7GnQuyAHIAZTIgQp7AvTo0cPJ7lyJHMgBBHYwahS89hrMm2dmoj74wP9zV11V/DaY+52+/dbMPrkxmRIF6FyQA5AD8IYDLY4shEO8+aZ5cq5hQ5gwwTxJV5guXeCzzwq277jD/5Le0aPw6qtmFuoPf4B//StwOQO3oxkqIUQpce0vnhZHdhg58KYDyzKX4uLiAu+fPdtcmjt6FLZvh3vu8Xdw55327Tvu8D/O2WebulFr1sCHH4ZnMiUK8OK5UFLkQA7AGw4cTaiefPJJJ7tzJXLgPQeWZW7svukms/zKCy/4t/npJ/t2To6/gwceMPWjnnnG1JB6771yGnAQ7N69m6effpqmTZtSvXp1mjVrRteuXTlx4kSohxaWeO1cKA1yIAfgDQeOJlSLAj2SFGHIQfg5SE2Fd9+F55+HjRv992/cCFOnFmwPHuxf+6lDB/vTdrfcEtjBgw/C8OHm8p8bZ5+2bt1KXl4eQ4cOZcuWLfTr148hQ4bwnhuzvzAg3M6F8kAO5AC84cDR0qSXXXaZk925Ejlwp4OcHPvSK4W57z5YudK8nzDBFLts2LBgf/Xq9vYVK0LVqva/nXcerFtnnuBr0ACqVXOfgzPh7rvv5u677z61ffHFF7Nt2zYGDx7MJ598EsKRhSduPBecRg7kALzhwNEZqsxAq7BGGHLgLgebN8PFF5vyBA88AEWvXJ08WZBMAaSlwfr19jaXXWZKHPh8JikbNAhq1/bvq25d6NTJ3BvlJgfBkpaWxrnnnltsm+zsbNLT020v4a04KC1yIAfgDQdBJ1QTJkxgx44d9O7dm+zs7FM3lnXr1o3k5GRGjBhBXFwc8+fPZ+7cuSQkJDBgwADS09NtbY8cOUJMTAwbN25k5syZzJkzh/Xr1zN06FAOHjxoa3v8+HGio6PZtm0bkydPZtGiRaxatYrRo0eTlJRka5ubm0uPHj3Ys2cPY8eOZcWKFcTGxjJx4kQSExPp06cPWVlZts+kpKQwfPhw4uLimDdvHtOnT2fz5s0MHDiQtLQ0W9vU1FQGDRrEpk2bmDFjBnPnzmXdunUMGzaMAwcO2NpmZmYyevRoEhMTmTRpEosXL2blypWMGTOGvXv30r17d/Ly8ujWrRt5eXl0796dvXv3MmbMGFauXMnixYuZNGkSiYmJREdHk5mZaTv+gQMHGDZsGOvWrWPu3LnMmDGDTZs2MWjQIFJTU21t09LSGDhwIJs3b2b69OnMmzePuLg4hg8fTkpKiq1tVlYWffr0ITExkYkTJxIbG8uKFSsYO3Yse/bsoUePHuTm5to+k5SUxOjRo1m1ahWLFi1i8uTJbNu2jejoaJKTk21tDx48yNChQ1m/fj1z5sxh5syZbNy4kZiYGI4cOWJrm56ezoABA0hISGDatGnMnz+fuLg4RowY4Xfc7Oxsnn++N++8s4MPP5xAbGwsy5cvZ9y4cezevZuePXvy/PM57NrVDcuC6dO7ER29j1GjRrFmzRoWLlzIjBlTuPTSrUA/4CiVKnWjeXNz/EOHDjFkyBDi4+Np0WI2kyfPYsWKeCxrMIcPH7aNJSMjg/79+5OQkMDUqVNZvHgxa9euZeTIkX7jPnnyJL169WLnzp2MHz+eZcuWsWzZMsaPH8/OnTvp1asXJ0+e9DvXRo4cydq1a1mwYAFTp04lISGB/v37k5GRYWt7+PBhBg8eTHx8PLNmzWL27NnEx8czZMgQDh06ZGt79OhR+vXrx9atW5kyZQoLFy5kzZo1jBo1in379vH6668zcOBALrzwQnJycujZsye7d+9m3LhxLF++nNjYWCZMmMBbb71FVFTUqVejRo0A2L9/v+03Ytq0aRH1G7Fjxw6/34jo6OiI/404fvy4Y78RvXv3ZseOHUyYEPg3Iicnx/aZffvsvxFTpkxh69at9OvXj6NHj9raFv6NmD17NrNmzSI+Pp7Bg+2/EcOGDfP7jViwYIEnfiMKty3uN2LLli1nlEe4Gsuygn2dMVu3bi1Jc08iB845+Ppry6pQwbLAsnw+y5oyxb/NNdeY/fmvHj382yQlWdZjj1lWhw6WtWhR2YzNbXHQtWtXC1MC5bSvuLg422d+/PFH65JLLrGefvrpXz1+VlaWlZaWduqVlJRkAVZaWlp5faWwwG1xEArkQA4sq0QOyiJvKZeXo5f8Zs+e7WR3rkQOysZBXh78/e9QsyZcey1s3erfZtIk0w5MujRpkn+bN9+ECr+cBQ0bwmOP+be58EKzft7MmYFLGZQGt8XBiy++yPfff1/s6+pCKyQnJyfTrl072rZty7Bhw371+FWrVqVWrVq2l3BfHIQCOZAD8IYDRwt7Hj9+nBo1agTbX1gjB2fmYP9+GDPG1F165hn/m7zHjjVr2uVz882wfLm9zQcfQPfuBdtvvQW9e/v3tWmTWdfuxhvNfU5OEM5x8OOPP9KuXTtatmzJuHHjSrVkhgp7GsI5DsoKOZADKJEDFz7/bHB0hqpv375OdudK5MA4OHECTncPYmoqtG1rShW8+CJ07Ojfpmhdp6LbYBKqzp2hWTMz8/TRR4H7u+Ya+OMfnUumIHzjIDk5mdtvv51GjRrxySefcPDgQVJSUkhJSQn10MKScI2DskQO5AC84UBLzwjHGT0a/vEP8wTdhx/6JzoLF0L79va/HT0KZ51VsL13L7RqVZBI9e8Pr7xSjoMWAIwePZqnnnoq4L6S/JZohkoIUUo0QwXeKC0fLF53cPQovP02PPIIzJ3rv//YMXj66W6cOGHua/r4Y9iyxd6mcWN7TagGDaDoTPBFF0F8vLn0t2JF+CVT4RoHnTt3Pu0NmaLkhGsclCVyIAfgDQeOzlAdPHiQ8847L9j+wppwd7Brlylsef319uKW+fzlLwVVwytWNGvO/fa3Bft//hnOPfcgUOBg7VqzZEthJk829z/VrAkDB5r+vES4x0GwaIbKEOlxAHIAcgAlcqAZKoBp06Y52Z0rCWcHixdD8+amcvhVVwVehqVwEczcXJNQFeacc6BduwIH995rT7jy+etf4X//M7NPXkumILzjQJQdigM5ADkAbzhwNKFq1aqVk925Erc6OHHCXKarUQNatoTdu/3b9O8PWVnmfWqqWbOuKDfdVPC+YkVo08a/zSeftOLbb2HpUlOKoIKjUegO3BoHwlkUB3IAcgDecODoWn779+93sjtXEioHy5bB0KFQp465CbzoSiGDB8PEieb9+vXw0kswa5a9TdErM1FR/v2MHg1Nm0JSkilrEGj2af/+/dx7b2m/iTfQuSBAcQByAHIA3nDgaEKVm5vrZHeupDwcnDgB06eb93/6k1mXrjCJifD73xfMLm3cCLGx9jYHDxa/DdCjh7kMt3mzmYl6913/NmefDX36FD9exYEcCIPiQA5ADsAbDhy92NKkSRMnu3MlpXGQmmrKBAR6fiAvz9zT9PDD5nXPPebepcKsX1+QTIH9Pqd8HnusYEFfnw9eeMG/TaNGpghmVpa5tynQAsBnguJADoRBcSAHIAfgDQeOJlTLi5ayjkBK6mDSJKhXz5QSeOAB/2Rpxw5TtymfxYvNjFRhWrSAatUKtm+80b+fK64ws0/jxsG339qrkBelaNXykqI4kANhUBzIAcgBeMOBo2UTjhw5wrlFb96JMAo7SEkxM0NbtphZpsGD7fWXAM47Dw4dKtj++mtT1TufQ4fgggvMZT8wl/uSkuD88+3HWbrUfg9VnTpl/93OFMVB5DqIiYkhJiaG3Nxctm/fHvFlEyI1DgojB3IAJXKgsgkAn332mZPdhZxPP4UOHUw18JMnzd8KO3j5ZVi0yCRWn38OQ4b4HyMnp/jtunVNccsGDaB+ffjiC/9kCuC22+DLL01Np1AmUxB5cRCISHXQpUsXEhISiIuLC/VQXEGkxkFh5EAOwBsOtPRMKdm82VyOu+ACePZZUyKgMCNGmEV983nvPftCvWAuva1eXbD99tvQq5e9zeefw3PPmUt9d9wB33zjf9O5EOGGCnsKIUqJZqggfErLZ2XBlCnm8lpenv/+H34wi/d26wbPP29eRSn6P+D524UdFF4SrXp1eOgh/+M884ypCfW//8GCBd5IpsIlDsoTORCgOAA5ADkAbzhwdIYqPT3dFf83un07ZGSYCtxFi0qePGlmglasMNsPPmiWQSnM0KFm1iif88+HAwfsbSZONIUy8+ne3cxSFXWwZIlZyuWOO+DKK8vgy4UBbomDUBLpDjRDZYj0OAA5ADmAEjnQDBWYlerLm6ws2L8/cIkBMLWULr/cFJzs0MH/qbn4+IJkCsxMVdFk6fLL7dtXXOHfz8MPmyfmOneGAQPgn/80fy/qoF076NIlcpIpcCYO3I4cCFAcgByAHIA3HDiaUN11111BHyPQJbh8Vq40C/Y2bGgSlcxM+/6TJ+Ff/yrYnjvXPP1WmDp17LNW1aubYpWFuf1280Teb38L998P48cHHk+nTjBqlKk67vslpy4LB+GOHMiBMCgO5ADkALzhwNGEauvWraX+7KFDpjp3pUrmn4VLCeTz6qvw88/m/dKlMHKkfX+FClC5sv1vRWsqXXwxxMSYopXnn2+ejDvrLP++nnvO3Bc1YwZceOGZf49gHHgFOZADYVAcyAHIAXjDgaMJ1VmBMhPM5bmXXzYFLNu2hZ07/dt89BGsWmXarlpltouSnV38dsWKpjRBflL197/bF/PN57nnTGJ24AB07Phr36pknM5BJCEHciAMigM5ADkAbzhwJKEaOxauvhrefPNc1q/33z9+vKmP9NNPsGaNSXSKkj/zdLptgP/8p2DG6corzf1LRXnySThyxPQ1dGiJv0rQRHrxNpADkANhUBzIAcgBeMNBuSdU339vEpstW2Dz5o106ODf5scfi98Gs7ZcjRrmfY0agUsV3H+/KWmwejV89x2c7t/P2WebCuShYOPGjaHp2EXIgRwIg+JADkAOwBsOyr1swrx5ZsFeQzLQkMxM+9pyP/wAN9xQMOvUpw+8+ab/sXbuhA0bTLmDiy8OdtihITk5mYYNG4Z6GCFFDuRAZRMMkR4HIAcgB1AiB5FbNqFNG7Owr2Ekf/yjPZkCuOQSWL/e3N+0cGHgZApMEvXnP4dvMgUwsuid8hGIHMiBMCgO5ADkALzhwJHCnikppiZTrVrm8p8Xqn0LIUqPZqiEEKUkcmeowCza++ab8NNP3SI+mfJCef1gkYPIdRATE0Pz5s1p1apVqIfiCiI1DgojB3IA3nDg6NIz2dnZVC1a+CnCkAM5ADnQDJUh0uMA5ADkAErkILJnqPL59NNPnezOlciBHIAcCIPiQA5ADsAbDhydodqxYwfNmjULtr+wRg7kAORAM1SGSI8DkAOQAyiRA9fOUJVFQiWEECXC5/PVAtKAKMuy0kM9HiGECBYlVEIIx/H5fD6gJpBh6UdICOEBlFAJIYQQQgSJozelCyGEEEJ4ESVUQgghhBBBooRKCCGEECJIlFAJIYQQQgSJEiohhBBCiCBRQiWEEEIIESRKqIQQQgghguT/AdInu23W9eH/AAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "pts = []\n", "for v in np.linspace(-2,2,60):\n", " g = f(A=v)\n", " xvals = solve(g,x)\n", " pts.extend([[v,n(i.rhs().real_part())] for i in xvals])\n", " \n", "show(points(pts),axes_labels=['$A$','$x$'],gridlines=True)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "[-1.00551492842663 - 0.182156015180445*I,\n", " -1.00551492842663 + 0.182156015180445*I,\n", " 2.01102985685326]" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sols = solve(f(A=0.7),x)\n", "[s.rhs().n() for s in sols]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## Bi-Estabilidade e Histerese\n", "\n", "Quando um sistema apresenta dois equilíbrios estáveis é denominado bi-estável. Esta bi-estabilidade nos leva a um outro fenômeno que pode ser observado no modelo cúbico acima, denominado de Histerese. Histerese é quando a transição entre os equilíbrios ocorre em diferentes valores do parâmetro de bifurcação dependendo se nos aproximamos pela esquerda ou pela direita.\n", "Bifurcações em um Parâmetro\n", "\n", "Vamos examinar brevemente exemplos simples de alguns tipos de bifurcações locais mais comuns:\n", "### Bifurcação em dobra\n", "\n", "A equação diferencial mais simples que apresenta bifurcação em dobra é a seguinte:\n", "\n", "$$\\frac{dx}{dt}=f(x)=r+x^2$$\n", "\n", "Se variarmos $r$ a parábola resultante ganhará ou perderá dois pontos de interseção com o eixo $x$. Logo a bifurcação ocorrerá quando $r=0$. Vejamos:\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAGRCAYAAACuS130AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWCklEQVR4nO3deXwV1f3/8dcIsqgYFa0LouLG4lZFqrhblapftVat3fSnttpacSu21qV1DbIZQCCyySIB2WSRnVAw7GAEImAEIwgEA8iaBElClvn9MYTkknuzce9MZs77+Xjch5nLufd+7Nubfjgzc45l2zYiIiIiUnPHeF2AiIiIiF+pkRIRERGpJTVSIiIiIrWkRkpERESkltRIiYiIiNSSGikRERGRWlIjJSIiIlJLaqREREREakmNlIiIiEgtqZESERERqSU1UiIiIiK1pEZKREREpJbUSImIiIjUkhopERERkVpSIyUiIiJSS2qkRERERGpJjZSIiIhILdX3uoBosSzrZOBNnH+nC4FxwCdAD8ACTgY627ad7lmRIiIiEiiBaKQsy2oAfAi8ZNt2lmVZ5wLfA78GXgQuAqYDe4FnvapTREREgiUop/aeBobZtp116DgfZxZqk23b3wP1gAxgtEf1iYiISAAFYkYK2GvbdnK546sP/XMWgG3bM4GZrlclIiIigRaIGSnbtpOOeOpWoBhY5EE5IiIiYgjLtm2va4g6y7JWAoW2bV/jdS0iIiISXIGYkSrv0N17VwApRzz/pCcFiYiISGD5vpGyLOs0y7K+sCzrzUNP3Ynz7/VF+THAdV7UJyIiIsHl+0YKuBloB1iWZTUGfgdkASfgPHk80Ad4y6sCRUREJJh8f42UZVlNgF7AQZzmqQtwIvAesBloAHS3bXu1Z0WKiIhIIPm+kRIRERHxShBO7YmIiIh4Qo2UiIiISC2pkRIRERGpJTVSIiIiIrWkRkpERESkltRIiYiIiNSSGikRERGRWlIjJSIiIlJLaqREREREakmNlIiIiEgtqZESERERqSU1UiIiIiK1pEZKREREpJYC10hZjhMty7K8rkVERESCrb7XBUSJXfpDdnY2cXFxZGdne1mPuGzjxo2cf/75XpchLlLmZlHe5qlm5p5PmgRuRkrMVL9+UP5OINWlzM2ivM3jl8zVSEkgpKSkeF2CuEyZm0V5m8cvmauRkkC44IILvC5BXKbMzaK8zeOXzP0xbyZShYKCAq9LEJcpc7Mob3Ps2wdpabB9uz8yVyMlgbBz506vSxCXKXOzKG8zbNkC110HP/wAxx67k1NOgQ4dvK6qcjq1J4Fw1VVXeV2CuEyZm0V5+9/UqdCpE3zySeQxAwY4TRRAYeFVvPeeO7UdDTVSEghTpkzxugRxmTI3i/L2twkT4L77oFcv+NOfoF+/8OOOO6780ZQjjusmy7btqkfVfYf/JXJycg6vI3XiiSd6WZO4KC8vj8aNG3tdhrhImZtFeddNeXnQsSMsXQo33gh9+0LDhhXHPfkkDBlSdnz33TB9esVxOTlw553O+zVrlsfs2Y255JJKS9A6UtGSmJhImzZtaNeundeliAcSEhK8LkFcpszNorzdd/Cgc5qtuDjymLffhmHDYN06GDyYiKfiLr208uNSJ54IS5bAnj3wt78lVNVE1QmakRIREZEQ6enORd4//ACXXQZz58Jpp1Uc99vfwqeflh3/6U8wcmTFcSUl8Oab8Pnn0LYtdO8efuaqFjQjJRIN8fHxXpcgLlPmZlHe0bNihXPB99atkce8/nrZRd9r1kCkCcGHHir72bJCj8s75hh4911YtAg++KB6TZRfMtfyBxIITz31lNcliMuUuVmUd3SMGAGPPw62DSef7FyL1LJlxXEHD1Z+XOp3v4OmTWHZMrj+erj11ujV6pfMNSMlgfDZZ595XYK4TJmbRXlXrqjImTV69llYsCDyuH79nCYKYO9eGDUq/Lj//Me5Xgng7LPh+ecjv+fttzvjo9lEgX8y14yUBELbtm29LkFcpszNorwr99xzzhpMAAMHOjNNV19dcdyR1zmFu+4JoH17+O472LgRWrcua6rc5JfMNSMlgbBjxw6vSxCXKXOzmJr31q3wm9/AtdeGLh9wpOTksp+LipyLusPp1w+uvBIaNXJOyz39dOT3PO00uOYab5oo8E/mmpGSQDgY6QS+BJYyN4upef/+97B4sfPzF19Aq1bOtUhH+vnPndmj8sfhtGgBK1dGu8rY8EvmmpGSQPDLLuESPcrcLEHLOyUFmjWDxo2dO+Qi+eabsp9tO/S4vCFDnEUvb7sNPvoI7rgjquV6wi+Zq5GSQJg/f77XJYjLlLlZ/JT3jz/C5s2Vj/nDHyArC/LznUUsFy4MP+6++8p+btIk8gXdJ53kLIj5v//BX/5Sq7LrHL9krgU5JRD27dvHSSed5HUZ4iJlbha/5N2vH7zwgrMA5eOPO6t+H8m2nWuUyp+5mjjRuRbqSEVF0L8/bNvmNF+XXRaz0uucamauBTmjRVvEmK1fpB0wJbCUuVnqQt4LF8K8eZG3TCkogH/8w2miAIYPd+6eO5JlOc1WqUsucZYQCKd+feeOvPfeM6uJgrqReXVoRkpERKQKTzzhNEYA994Lkyc7q3WXV1AAxx1X1kiBs5J3uIvDwbmzbvdu+NWvnNN2UiuakRKJBr9sJSDRo8zNEqu88/KcBmnECKcRCmfbtrImCmDqVGfblCM1bAjdujkzTuDccXfddZE/+9ZbnS1V1ESF55fvuGakJBCys7OJi4vzugxxkTI3SyzyLiqCm2+GJUuc49tuc9ZjOnKmad8+Z02loiLn2LKcxSrPPz/8+2Zmwk8/OUsVSO1VM3PNSIlEw4gRI7wuQVymzM1S07y3b4f4eGfblAMHwo9Zt66siQKYOzf83XYnneSsFt6woXPNUrdukZsogObN1URFg1++41qQUwLh1mhv8iR1njI3S03yzslxTql9/71zPGUKhLuT/tRToUGDsrvnGjd2NvIN589/hscec+64q6//53SFX77jmpGSQMjIyPC6BHGZMjdLad5ffw0vvghvvgm5ueHHpqWVNVHgbOK7e3fFcWecAUlJcO65zorfY8c6s0+R1KunJspNfvmO6z8JCYTGjRt7XYK4TJmbpXHjxmRlwY03wt69znOLFjmn44503nnOabjSi8dPPz1yg/Tww85D6h6/fMc1IyWB0LRpU69LEJcp82BZtMg5ffbqq+Fnmpo2bUpqalkTBc7yAaUXgJd3zjkwfjy0awc33QQzZjizSeIvfvmOq5GSQEhLS/O6BHGZMg+Ob75xFqQcNgy6dnVW8D5SWloabdo41zSVuuSSyKfa7r3X2eR3/ny46qrY1C2x5ZfvuBopCYR7773X6xLEZcrcH2bOhEcegddei3z33BdfhK7hFO7C8HvvvZeLLnIWwuzQwTkdN21aTEqWOsIv33E1UhIIH330kdcliMuUed23fLkzMzRqFHTpAk8+GX7clVeGziz94hcVx5TmfdddMHu2c2H4uefGoGipM/zyHQ/MgpyJiYkkJiZSXFzMt99+qwU5RURiaPJkZ6Pdiy+Gl18OPeVW6oMPnDvsSp19trNYZTgzZsDgwc6F4Z07g08ujxHvaUHOaOnYsSPp6emkpqZ6XYp4wC9bCUj0KHPvzJ0LDzzgLB3w3/9Cp07hx7VrF7pKePv2kd/z7rth0iQYMCB8E6W8zeOXzAMzI1X6g7aIMVN+fj6NGjXyugxxkTKPjUmTYNYsuOwy6NixbN+48t56C95+u+z4sstg9erw7zd5snNq75xznNeccELt6lLe5qlm5pqREomGvn37el2CuEyZR9/Uqc5M06BB8Nxz8M474cddc03lx+Xdf7+zFEFCQu2bKFDeJvJL5mqkJBDuv/9+r0sQlynzmpk5E155xbmuKZIjF7cMt9glOBd8JyXBb37jXB/Vp0/06oxEeZvHL5mrkZJAWLFihdcliMuUefVNmOBcg9StGzz4IES6Gapt29DjytZfeuQRpynr1s3Zoy7WlLd5/JK5toiRQDjjjDO8LkFcpswdS5dCaipcf33FRqjU1KkVj8MtRfDoo7BnjzN7ddllUJeu9VXe5vFL5mqkJBDqaydR4yhzZ0bot7+FkhJnHaYZM+COOyqOa9268uPyXnjBedQ1yts8fslcp/YkEL4vv9W7GCHomX/3nbNy944dkcckJTlNFDh7zo0aFX7cSy/BP//pLEfwzDPOXXd+E/S8pSK/ZO6Pdk+kCjfddJPXJYjLgpz5zJnO3W4HDzprKi1eDC1bVhx3zjmVH5eqXx969Ih6ma4Kct4Snl8y14yUBMInn3zidQniMr9m/tNPsHkzFBdHHpOQ4DRRALt3O8sRhPPuu86dc82aORv9vvpq9OutK/yat9SeXzLXgpwSCMXFxdSrV8/rMsRFfsx8yRK45x7Yu9c5zfa//0G4X1MPPOAsjFnq7bfhjTfcq7Mu8mPecnSqmbkW5IyWxMRE2rRpQ7t27bwuRTzQpUsXr0sQl/kx83/9y2miwLnTbuDA8OPef7/sVN6tt0begsUkfsxbjo5fMteMlIjIUfr2W/jTn5xTdo88Aj17hh937bWwfHnZ8XvvVX46rqAAGjaMbq0iAaMZKZFo8MvmlhI9dSnzJ56AL7+EnTuhVy9nS5Rw4uPhuOOcn1u3hr/+tfL3VRNVpi7lLe7wS+ZqpCQQHnvsMa9LEJe5kfnevc6ecw8/DMnJkcdlZVV+XOr222HTJli50nk0bRq1UgNP33Hz+CVzNVISCHMjbQomgeVG5r//PfTr58ww3XMPrFkTflz5VcJPPdVZuiCS006DK6+Eqje1l/L0HTePXzLXOlISCBdffLHXJYjLjiZz23a2Sdm7F379azjppPDjli0r+7mw0Dl9d9llFce9/rpzF97mzXDnndC8ea1Lkwj0HTePXzJXIyWBkJeX53UJ4rKjyfzvfy+7Y65lS/jii/DLENxwg7PtCkCDBvCLX0R+zw4dal2OVIO+4+bxS+Y6tSeBsHv3bq9LEJdFyrywECr7/VtcDB99VHa8fj2kpIQfO3q0s7XKI4/ArFlwySW1r1eOjr7j5vFL5jFtpCzLusmyrKmWZWVZlmVblnV/NV5zs2VZKyzLyrcsa6NlWU/HskYJhiuuuMLrEsRl4TJPSoImTeD44+G118K/rl495zql8iJtMn/iic7WKklJznpO4h19x83jl8xjPSN1PPAV8Gx1BluW1QKYASwErgTeA/pYlvVgzCqUQJg2bZrXJYjLjsw8P9+56LugwLkGqksX+Oqr8K/99FO46CLnwvBu3So/ZSd1g77j5vFL5q4tyGlZlg38xrbtyZWM6QbcZ9t263LPDQCusG27fSVvrwU5DXfgwAGOK12gRwInI8PZV6642FnA8tJLK2aem1vxOqdFi+D6610uVmJC33HzVDNzLch5hPbAkau1zAautizr2HAvsCyrYU5ODuUfYp6ekZaSFt/Lz4fbbnNOr33yifNzTk7FzJs0gZdeKju+805nJXEJBn3HzeOXzOtaI3UGsOOI53bg3F14aoTXvBoXF0fpo3m5+47j4+PJyspiyJAhpKamMnv2bCZOnEh6ejp9+vQhJyfn8Mqp8fHx7Nmzh8TERFavXs2UKVOYPn06K1euZODAgezcuTNk7IEDB0hISGD9+vWMGzeOuXPnsmTJEoYPH05mZmbI2OLiYrp06cLmzZtJSkpi0aJFpKSkMGbMGDIyMujRowf5+fkhr9m+fTuDBw8mNTWVWbNmMWnSJNauXUvfvn3Jzs4OGbtv3z769evHmjVrmDx5MjNmzGDFihUMGjSIHTt2hIzNy8sjISGBjIwMxo4dy7x581i8eDEjRoxgy5YtdO7cmZKSEuLj4ykpKaFz585s2bKFESNGsHjxYubNm8fYsWPJyMggISGBvLy8kPffsWMHgwYNYsWKFcyYMYPJkyezZs0a+vXrx759+0LGZmdn07dvX9auXcukSZOYNWsWqampDB48mO3bt4eMzc/Pp0ePHmRkZDBmzBhSUlJYtGgRSUlJbN68mXr16lFcXBzymszMTIYPH86SJUuYO3cu48aNY/369SQkJHDgwIGQsTt37mTgwIGsXLmS6dOnM2XKFFavXk1iYiJ79uwJGZuTk0OfPn1IT09n4sSJzJ49m9TUVIYMGUJWVlbI2IKCArp3786GDRsYPXo0KSkpLFy4kJEjR7Jp0ya6du1KUVFRyGu2bt3KsGHDWLZsGXPmzGH8+PGsW7eOXr16sX///pCxu3btYsCAAaSlpTFt2jSmTp1KWloa/fv3Z/fu3SFjc3Nz6d27N+np6UyYMIHk5GSWL1/O0KFDK9RdWFhIt27d2LhxI6NGjWLBggUsWLCAUaNGsXHjRrp160ZhYWHIa7Kyshg6dCjLly8nOTmZCRMmkJ6eTu/evcnNzQ0Zu3v3bvr378+qVWn06DGVXr2mkZaWxoABA9i1a1fI2IyM/WRm9gLWAeP58cc5TJ68jGbNmrF169aQsV27FvHss10ZM2YTf/jDSJYsWUhKSgqjR49mw4YNdO/enYKCggp163dE3f8dcckllxzV74guXbrod4TPfkc0bdqUtLQ0pk6dyrRp4X9H1Am2bbvywDn9dn8VY74FXj3iuesPvfaMCK9pmJ2dbZc+MjMzbcDOzs62xRzvvvuu1yVIDZWU2PbDD9u2c0WTbT/9dPhx+fm23aJF2bizzrLtnBxlbhrlbZ5qZu5aHxPpUdeukVoArLJt+4Vyz/0GGAccZ9t2YYSX6hopw+3cuZPTjrwVS+q0tWsrLm75ww9w1lkVx27e7Fw8XlQEL78MF1+szE2jvM1Tzcx1jdQRlgJ3HPFcB+DLSpooESZOnOh1CVLOrFlw881w992Qnh5+TOPGocfHHBN525Rzz4UBA5z1n0oXO1bmZlHe5vFL5rFeR+oEy7J+blnWzw891eLQ8TmH/ryLZVkjyr1kAHCuZVk9LctqbVnWn4G/AO/Hsk7xv3bt2nldghyyebOz19yCBTBzpnPRd7iJ7wsucO7Esyxnbac+feCUU6r/OcrcLMrbPH7JPNYzUlcDqw49AHoe+vmdQ8dnAueUDrZt+3vgbuAWIA34L/C8bdsTYlyn+Ny2bdu8LsEIhYWwZEnkWSaA775z1nIqlZnp3GUXzn/+A/v3O4+OHWtWizI3i/I2j18yj+lee7Ztp1DJ+Uvbth8P89x84KrYVSVBVFxc7HUJgXfwINxxhzPTBM5Cli+/XHHcVVc51zllZTnH118PcXGR37e2SwMpc7Mob/P4JfO6do2USK2cd955XpcQeLNnlzVRAG++Gf6U3cknO7NWr74K8fHO6b1YUOZmUd7m8UvmaqQkEBYuXOh1Cb42d66zMe8//xn5NNyRF4c3bOhc3xTOuefCe+/B6687C2XGgjI3i/I2j18yd235gxjT8geG27NnD6fU5EplOWz1arj6auf6J4B77oGpU8OPffJJGDLEaaqSkuBBD3fBVOZmUd7mqWbmWv5AJBo+/PBDr0uos6r6u1JqalkTBc7+dJF89BHs3Qt79njbRIEyN43yNo9fMteMlEhAFRfDE0/A6NFwzjkwaRJcfnnFcV995cxIFRU5x3fdBTNmuFuriEgtaUYqWhITE2nTpo1v1p2Q6KpT+y7VEaNGOaffiopg40Z46qnw4664AqZNg4cfhuefdzYG9gNlbhblbR6/ZK4ZKQmEnJwco/LeuxdWrIDzz3ce4fTuDf/4R9nxhRdCRoYr5bnCtMxNp7zNU83MNSMlEg3Dhw/3ugTXbN3qnKK74w5o1Qo++yz8uIcfhrPPdn62LOjUyb0a3WBS5qK8TeSXzGO6IKeIW26//XavS3DN0KFOMwXOReLvvQe//nXFcWedBatWwfz5znIEV1/tbp2xZlLmorxN5JfMNSMlgbBu3TqvS4iK1FRnxfBZsyKPOf74yo/LO/VU5+66oDVREJzMpXqUt3n8krlmpCQQjq+sm/CJ+fPh9tvL7p4bNCj8BeJ//7tzV928edCsGXzwgbt11hVByFyqT3mbxy+Za0ZKAiEIC/V9+mlZEwUwdmz4cccd56xEnpPjbAh82WXu1FfXBCFzqT7lbR6/ZK5GSgJh9erVXpdQqdGjoWNHGDEi8pgj775r0aLy92zSJPIWLSao65lLdClv8/glcy1/IIGQlZXFWWed5XUZYX38MTz+eNnxhx86p+eOVFQEL7wAycnw85/D4MFw0kkuFelDdTlziT7lbZ5qZu75Xyc1IyWBMHToUK9LiGjOnMqPS9WvD4mJzlpP48eriapKXc5cok95m8cvmWtGSqSWbBsGDnTutLv1VnjkkfDj3n8f/vWvsuO334Y33nCnRhGRgNOMlEg0eLGVQM+ezim6oUPh0Udh5Mjw4zp1grfegttug9decx5y9PyyfYREh/I2j18yD8yMVGJiIomJiRQXF/Ptt99qRsowBQUFNGzY0NXPvOcemD697PjPf4YhQ1wtwWheZC7eUd7mqWbmmpGKlo4dO5Kenk5qaqrXpYgHPojyYkoff+ycjps7N/KYIxe5DOKil3VZtDOXuk15m8cvmQdmRqr0B10jZaYNGzZwwQUXROW9unQpO/12zDEwe7azUOaRiorg3Xeda6R++Ut46SWzlyNwWzQzl7pPeZunmpl7/ls3MDNSYrYvvvgiau81bVrZzyUlMHNm+HH16zsXjs+YAf/8p5oot0Uzc6n7lLd5/JK5GikJhDPPPLNa45YuhaSksk1/w7n00tDjSy45isIkZqqbuQSD8jaPXzLXXnsSCPXq1atyzIABZQthNm0Ky5dDuFnjhARnaYO1a+Guu5yLyKXuqU7mEhzK2zx+yVwzUhIImzdvrnLMhx+W/bx7d+S97E44wdkweMkS+O9/o1SgRF11MpfgUN7m8UvmaqQkEK655gb27q18zM9+Vvmx+MsNN9zgdQniIuVtHr9krkZKfG/+fLj88jGccgr8+tdQWBh+3IABcOWVzozT44/DE0+4WqZE2ZgxY7wuQVykvM3jl8y1/IH4Xps28M03RZRe8jdihLPSuARbUVER9evrMk9TKG/zVDNzz++X1oyU+F5eHkDXw8cHDnhWirioa9euVQ+SwFDe5vFL5oGZkdIWMcGTnQ3x8fDjj/Dkk3DjjeHHffwx/OUvUFzsLFWweDHExblbq4iIeEIzUtGiLWKC53e/g/ffd07VdegA69eHH/fYY/Dcc/HMnw9ffKEmyhR+2dBUokN5m8cvmQdmRqr0B10jFRzHHx96mi4pCR55JPzYrVu3cvbZZ7tTmNQJytwsyts81cxcM1JipsJC+Omnysdcc03Zzw0aOHfcRTJnzpzoFCa+oczNorzN45fM1UiJ6z791Dn9dsIJ8MILkceNHw/PPAMPPQRTp1a+VUvr1q2jX6jUacrcLMrbPH7JXPeSiqtKSpz1m5w77aBPH/jtbyHcumtNm0JiYvXeNzc3N3pFii8oc7Mob/P4JXPNSImrSkrKmqhSVZ3iq459+/Yd/ZuIryhzsyhv8/glczVSElULFkByMhQVhf/z+vXhP/8pO775Zrj11qP/3Msuu+zo30R8RZmbRXmbxy+Zq5GSqHn6aacx+tWv4K67IjdTb70Fq1ZBSgrMmeNcSH60Zs6cefRvIr6izM2ivM3jl8y1/IFExd69cMopoc8tXQrXXuvO5+/fv58TTjjBnQ+TOkGZm0V5m6eamWv5AwmGhg2dR3luLozZu3dv9z5M6gRlbhblbR6/ZK4ZKalScTHMmgW2DXfe6VznFM7o0c5WLgcPwjvvwKuvuluniIgYRzNS0ZKYmEibNm1o166d16UEim3Dgw/CPffAvffCr3/t3HkXzh/+ALm5zl15bjdRftlKQKJHmZtFeZvHL5lrRkoqtWEDXHhh6HPffAOtWnlTTyS7du3i1FNP9boMcZEyN4vyNk81M9eMlNRtJ54YeiqvXr26uSnwp59+6nUJ4jJlbhblbR6/ZK5GynBZWfDjj5H//LTT4KOPnIaqSRMYOBDOPNO9+qrrWrduD5Q6Q5mbRXmbxy+Zq5Ey2IsvQrNmcMYZ0L175HGPPQbZ2ZCTA3/5i2vl1cjWrVu9LkFcpszNorzN45fM1UgZ6uuv4YMPnJ9tG155Bfbs8bamoxGQa/2kBpS5WZS3efySuRopQxUXhx7bduS78fygefPmXpcgLlPmZlHe5vFL5mqkDHX55fDEE2XH//kP+PmGmKVLl3pdgrhMmZtFeZvHL5nHfPkDy7KeAf4FnAl8Dbxo2/bCCGNvAT4P80etbdteV8nHaPmDclatgr594YQTnAbpZz+LPPabb5y97i64wL36YmH37t00bdrU6zLERcrcLMrbPNXMPNjLH1iW9TugN9AZuBJYCMy0LOucKl7aEqfxKn1kxLDMQNm2DW69FYYNc5qpO++sfHzr1v5vogD69+/vdQniMmVuFuVtHr9kHtMZKcuylgMrbdv+e7nnvgEm27ZdYe3rcjNSJ9u2va8GH6UZqUNmz67YPO3fD8cf7009IiIiMRTcGSnLshoAbYHkI/4oGbiuipevsixrm2VZcy3LurWKz2mYk5ND+YfJLrnEOaVX6tJLzWii/LKVgESPMjeL8jaPXzKP5am9U4F6wI4jnt8BnBHhNduAvwIPAg8A64G5lmXdVMnnvBoXF0fpo/xV/vHx8WRlZTFkyBBSU1OZPXs2EydOJD09nT59+pCTk3M4qPj4ePbs2UNiYiKrV69mypQpTJ8+nZUrVzJw4EB27twZMvbAgQMkJCSwfv16xo0bx9y5c1myZAnDhw8nMzMzZGxxcTFdunRh8+bNJCUlsWjRIlJSUhgzZgwZGRn06NGD/Pz8kNds376dwYMHk5qayqxZs5g0aRJr166lb9++ZGdnh4zdt28f/fr1Y82aNXz55WTefnsGt9++guuuG0RS0o6QsXl5eSQkJJCRkcHYsWOZN28eixcvZsSIEWzZsoXOnTtTUlJCfHw8JSUldO7cmS1btjBixAgWL17MvHnzGDt2LBkZGSQkJJCXlxfy/jt27GDQoEGsWLGCGTNmMHnyZNasWUO/fv3Yt29fyNjs7Gz69u3L2rVrmTRpErNmzSI1NZXBgwezffv2kLH5+fn06NGDjIwMxowZQ0pKCosWLSIpKYnNmzdTVFREcXFxyGsyMzMZPnw4S5YsYe7cuYwbN47169eTkJDAgQMHQsbu3LmTgQMHsnLlSqZPn86UKVNYvXo1iYmJ7NmzJ2RsTk4Offr0IT09nYkTJzJ79mxSU1MZMmQIWVlZIWMLCgro3r07GzZsYPTo0aSkpLBw4UJGjhzJpk2b6Nq1K0VFRSGv2bp1K8OGDWPZsmXMmTOH8ePHs27dOnr16sX+/ftDxu7atYsBAwaQlpbGtGnTmDp1KmlpafTv35/du3eHjM3NzaV3796kp6czYcIEkpOTWb58OUOHDq1Qd2FhId26dWPjxo2MGjWKBQsWsGDBAkaNGsXGjRvp1q0bhYWFIa/Jyspi6NChLF++nOTkZCZMmEB6ejq9e/cmNzc3ZOzu3bvp378/aWlpTJ06lWnTppGWlsaAAQPYtWtXyNj9+/fTq1cv1q1bx/jx45kzZw7Lli2jadOmbN26NWRsUVERXbt2ZdOmTYwcOZKFCxeSkpLC6NGj2bBhA927d6egoKBC3Sb9jpg8eTIzZsxgxYoVDBo0iB07/PE74vzzzz+q3xFdunTR7wif/Y44/vjjq/wdURfE7NSeZVlnAT8A19m2vbTc868Dj9q2Xa3d2izLmgrYtm3fF+HPG2ZnZ+eXHufk5NC8efNAntobOxb69IGmTZ01oFq08LqiuqN37968+OKLXpchLlLmZlHe5qlm5p6f2qtf9ZBa2wUUU3H26WdUnKWqzDLgkUh/aNt2Qc1L85+vvoI//rFsractWyAtzdOS6pQOHTp4XYK4TJmbRXmbxy+Zx+zUnm3bB4EVwB1H/NEdwJIavNWVOKf8jLZuXeiCmenp3tVSF33zzTdelyAuU+ZmUd7m8UvmsZyRAugJJFmW9SWwFOf6p3OAAQCWZXUBmtm2/f8OHb8IbMJZb6oBzkzUg4ceRrvhBjj5ZNi71zm+5x5v66lrmjRp4nUJ4jJlbhblbR6/ZB7TRsq27bGWZTUF3sBZD2otcLdt25sPDTkTp7Eq1QB4H2gG5OE0VP9n2/aMWNbpB82awdKl8PHHzjVSzz7rdUV1S1xcnNcliMuUuVmUt3n8knnMt4ixbftD27bPs227oW3bbW3bXlDuzx63bfuWcsfdbdu+0LbtxrZtn2Lb9o0mNFEbNsD778Mnnzh73kXSsiW89x689BI0bOhefX7w9ddfe12CuEyZm0V5m8cvmcf61J5UYfNmaNeu7JTd8uXOHXlSM3dWtYS7BI4yN4vyNo9fMtemxR6bPbusiQIYM8a7Wvxs6NChXpcgLlPmZlHe5vFL5jHftNglvt0iZs4cKH+H5zXXwLJl3tUjIiLiI56vI6UZKY/dcQd06wYXXwy33AKjRnldkT/VpVVuxR3K3CzK2zx+yVwzUhIIhYWFHHvssV6XIS5S5mZR3uapZuaakYqWxMRE2rRpQ7t27bwu5bCVK+GNN2D48MrvxpOj17NnT69LEJcpc7Mob/P4JXPNSMXI6tXO9U75h3YBfPll5xSexMbGjRs5//zzvS5DXKTMzaK8zVPNzDUjFVQzZ5Y1UQCTJnlXiwmWLl1a9SAJFGVuFuVtHr9krkYqRlq2DD1u1cqbOkzRvHlzr0sQlylzsyhv8/glcy3IGSP33++cyhszBs4/Hz780OuKREREJNrUSMXQyy87D4m9zMxMr0sQlylzsyhv8/glc53ak0Bo37691yWIy5S5WZS3efySuRqpWpg4ER5/HLp3h6Iir6sRgPHjx3tdgrhMmZtFeZvHL5lr+YMamjkT7r677Pif/4QePaL+MVJDWqzPPMrcLMrbPFqQM6Dmz6/8WLzRTYt0GUeZm0V5m8cvmWtGqoYmToQHHyw7fuYZSEyM+seIiIhI1TQj5TcPPACDB8N998G//w0JCV5XJOCfzS0lepS5WZS3efySeWBmpBITE0lMTKS4uJhvv/3W8y1ixF1ZWVmcddZZXpchLlLmZlHe5qlm5pqRipaOHTuSnp5Oamqq16WIB2bNmuV1CeIyZW4W5W0ev2QemEZKzHbJJZd4XYK4TJmbRXmbxy+Zq5EqJz8f1q2D/fu9rkRqKjs72+sSxGXK3CzK2zx+yVyN1CE//ACXXQatWzt74331ldcVSU3k5uZ6XYK4TJmbRXmbxy+Zq5E6pGdP+O475+edO+GttzwtR2qodevWXpcgLlPmZlHe5vFL5mqkDjny5sVg3MxojuTkZK9LEJcpc7Mob/P4JfPALH9Q+kNtF+TcuhVuvhk2boRTT4XkZLjyypjUKjGQm5tLkyZNvC5DXKTMzaK8zVPNzLX8QV1x9tmwdi18/bXTTKmJ8pcPPvjA6xLEZcrcLMrbPH7JXDNSIiIi4leakRKJBr9sJSDRo8zNorzN45fMAzMjpS1izLZ7926aNm3qdRniImVuFuVtnmpmrhmpaNEWMWYbN26c1yWIy5S5WZS3efySeWAaKTFb+/btvS5BXKbMzaK8zeOXzNVISSBkZmZ6XYK4TJmbRXmbxy+Zq5GSQLAsz0+Ti8uUuVmUt3n8knngG6m8PHj8cbjoInjsMedYgufss8/2ugRxmTI3i/I2j18yD3wj9e678PHHzj56I0bAO+94XZHEwrJly7wuQVymzM2ivM3jl8wD30h9/33o8caN3tQhsfXQQw95XYK4TJmbRXmbxy+ZB76RevhhKD3Nalnwu995W4/ExoABA7wuQVymzM2ivM3jl8wDsyBn6Q/htohZsACWLIH27Z2NiUVERCQQPL8iPfAzUgA33QSvvKImKsj8spWARI8yN4vyNo9fMjdiRkqCb//+/ZxwwglelyEuUuZmUd7mqWbmmpGKlsTERNq0aUO7du28LkU8MHjwYK9LEJcpc7Mob/P4JXPNSEkgrFu3jlatWnldhrhImZtFeZunmplrRkokGtasWeN1CeIyZW4W5W0ev2SuRkoC4aSTTvK6BHGZMjeL8jZPLDO3LOsKy7KSLMtaZFnWPZZlnWxZVm/LsvpbljXJsqyfV/e96sesShEXNWnSxOsSxGXK3CzK2zwxzvwF4AngFWAosODQcxcDs4GtwHPVeSPNSEkgfPPNN16XIC5T5mZR3uaJVeaWZV0AZNm2XQScBZwCvGfb9g9AU2A/MLXa76eLzSUItm7d6psNLiU6lLlZlLd5qpl5jS82tyzrOiDPtu1VlmWtBvbYtn1LLUoENCMlATF8+HCvSxCXKXOzKG/zxCpz27aXHGqiTgUuBVKO5v00IyUiIiJ+VevlDyzL+i0wDrjVtu2U2r6PZqQkEPyylYBEjzI3i/I2jwuZ3woUAMuO5k00IyWBUFRURP36ugnVJMrcLMrbPNXM/GhmpL4BdhzN9VEQgOUPLMtqmJmZefg4NzcXcBoqMUfPnj3p1KmT12WIi5S5WZS3eaqTeVxc3IlArl3DWSHLss4AWgFja1/hoffy+4yUZVldcNaBEBEREfPE2bZdo9kTy7KuwFkv6pe2bacfzYcHoZFqmJmZmV96vG3bNn7xi1+Qnp5Os2bNYva57dq1IzU1NWbvr8+ovpycHJo3b05mZmZMT+cG4X+roHyGG5kH4X+noHyGvuPmfUZ1M4+Li4ujFjNS0eT7U3u2bReEe75JkyYx/cLVq1cv5tdg6TNq5sQTT1TmBn0GxDbzoPzvFJTPAH3HTfsMqDrzms5ExYLu2quljh076jPq0Ge4ISj/WwXlM2ItKP87BeUz3BCU/62C8hl+4ftTe4cc/pfYunXr4elArYJrBt2paR5lbhblbZ4aZF7ru/aiJXAzUg0bNgz5pwRfw4YNee6555S5QZS5WZS3efyUuRop8b2GDRty9tlnK3ODKHOzKG/z+CnzwJ3a0xSwmQoKCnzxhZPoUeZmUd7mqWbmOrUnEg09evTwugRxmTI3i/I2j18y14yUiIiI+JVmpESiQRuamkeZm0V5m8cvmWtGSgIhKyuLs846y+syxEXK3CzK2zzVzFwzUtGSmJhImzZtaNeundelSAx8+OGHtGjRgkaNGtG2bVsWLlwY8uczZ848/HNKSgqWZVV4rFu3zu2ypRYWLFjAvffey1lnnYVlWUyePDnsuPKZz58/n7Zt29KoUSPOP/98BgwY4FK1Eg3VyVzf8eDo0qUL7dq1o0mTJvzsZz/j/vvvZ/369RXGlc8c6u73PDCNVMeOHUlPT4/5/kLivrFjx/Liiy/y+uuvs2rVKm688UbuuusutmzZcnjM5ZdfXuF169evZ9u2bYcfF110kZtlSy399NNPXHHFFfTr16/ScaWZf//999x9993ceOONrFq1itdee43nn3+eCRMmuFGuREF1Mtd3PDjmz59Px44dWbZsGXPmzKGoqIgOHTrw008/hYwrn3mk77llWQ+6XX8Ftm0H4XFYdna2DdjZ2dllT+7YYdspKc4/xXd+8Ytf2E8//XTIc61atbJfeeWVw8ezZs06/PPnn39uA/bevXvdKlFiBLAnTZoU9s9KM3/55ZftVq1ahfzZ3/72N/vaa6+NdXkSA5Ey13c8uH788UcbsOfPnx/yfPnMI33PgaW2xz1IYGakIkpLg1at4JZboGVLWLXK64qkBg4ePMiKFSvo0KFDyPMdOnRgyZIlh4+P/JsMwJVXXsmZZ57Jbbfdxueffx7zWsVdpZkvXbq0wn8fv/rVr/jyyy8pLCz0ojSJAX3Hgys7OxuAU045JeT58plH+p4DV1uWdWysa6xM8Bupnj1h717n5337ICHB03KkZnbt2kVxcTGnn356yPOnn34627dvP3zcqlWrwz+feeaZDBo0iAkTJjBx4kRatmzJbbfdxoIFC1yrW2KvNPPt27eH/e+jqKiIXbt2eVGaxIC+48Fk2zadOnXihhtu4NJLLw35s/KZR/qeA/WBU2NfaWT1vfxwVzRuXPmx+IJlhd6YYdt2yHP/+9//aNOmDQAtW7akZcuWh/+sffv2ZGZm8v7773PTTTe5U7DEXPnMw/33Ee558S99x4Pp2WefZfXq1SxatKjCn5XPHCJ/zyl3574Xgj8j9cYb0Lq183PLlvDmm97WIzVy6qmnUq9evZDZJ4Aff/wx5G8njz/+eKXvc+2115KRkRGLEsUjpZmfccYZYf/7qF+/Pk2bNvWgMokFfceD57nnnmPKlCl8/vnnnH322RX+vHzmkb7nQBGwO6aFViH4jVSzZvD117BzJ3zzDYQJS+quBg0a0LZtW+bMmRPy/Jw5c7juuusOH/fp06fS91m1ahVnnnlmTGoUb5Rm3r59+wr/fSQnJ3P11Vdz7LGeXjohUaTveHDYts2zzz7LxIkTmTdvHi1atAg7rnzmkb7nwJe2bXt6MWTwT+0BWBac6ukpVDkKnTp14tFHH+Xqq6+mffv2DBo0iC1btvD0008D8Oqrr/LDDz8cHt+7d2/OO+88LrnkEg4ePMjIkSOZMGGCbof3if379/Pdd98dPv7+++9JS0vjlFNO4Zxzzjmc94gRIwB4+umn6devH506deKpp55i6dKlDBkyhNGjR3v1ryA1VN3MS+k77m8dO3bkk08+4bPPPqNJkyaHZ5ri4uJofOjymyMzj/Q9B9734F8hlNe3DUbpcVjY5Q/E9xITE+1zzz3XbtCggX3VVVeF3Cb72GOP2eedd97h427dutkXXHCB3ahRI/vkk0+2b7jhBnv69OlelC21UHpr+5GPxx57zLZtJ++bb77Zfvfddw+/JiUlxb7yyivtBg0a2Oedd57dv39/j6qX2qhO5vqOB0e4rAF72LBhh8ccmbltR/yee91/aIsYCYY9e/ZUuHVWgk2Zm0V5m6eamXt+R0nwr5ESI+g0jnmUuVmUt3n8knlgGinttWe2G2+80esSxGXK3CzK2zx+yTwwjZT22jPbpk2bvC5BXKbMzaK8zeOXzAPTSInZ6tWr53UJ4jJlbhblbR6/ZK5GqlReHjz4IJx4orMvn7PQl/iE1o8xjzI3i/I2j18yVyNVqkcPmDgRcnNh/nx4+WWvK5Ia0Cld8yhzsyhv8/glczVSpXbsqPxY6rQHHnjA6xLEZcrcLMrbPH7JXI1UqcceK9vQuF49eOopb+uRGhk4cKDXJYjLlLlZlLd5/JK5FuQs79tvYckSuPxyuOqqaNcoIiIi0aUFOeuUiy+Gxx9XE+VD8fHxXpcgLlPmZlHe5vFL5pqRkkA4cOAAxx13nNdliIuUuVmUt3mqmblmpESioX///l6XIC5T5mZR3ubxS+b1vS7Al1auhNmzoXVruP9+r6sR4J577vG6BHGZMjeL8jaPXzIPzIyUa3vtffEFtG8Pr70Gv/kN9OwZ28+Tavnqq6+8LkFcpszNorzN45fMA9NIubbX3qRJcPBg2fGYMbH9PKmWpk2bel2CuEyZm0V5m8cvmQemkXLNBRdUfiyeaFy6BpgYQ5mbRXmbxy+Zq5Gqqb/8Bf71L2jZ0jm116+f1xUJ8O2333pdgrhMmZtFeZvHL5lr+QMJhMzMTJo3b+51GeIiZW4W5W2eamau5Q9EouHjjz/2ugRxmTI3i/I2j18y14xULH3+OYwfD+efDy++CPW12oSIiEgUaUYqsJYvhw4doH9/55qq55/3uqJA88tWAhI9ytwsyts8fslcM1Kx0q0bvPJK2fGFF0JGhnf1BFxxcTH16tXzugxxkTI3i/I2TzUz14xUYP3856HH2gg5prp37+51CeIyZW4W5W0ev2SuGalYGjoUxo6FFi2cGaq4OG/rCbDNmzdz7rnnel2GuEiZm0V5m6eamWtGKlpc2yKmJv78Z2dPvgED1ETF2IIFC7wuQVymzM2ivM3jl8wD00i5tkVMLMybB489Bq++Cj/95HU1vtSiRQuvSxCXKXOzKG/z+CVz3Y/vta++gjvvhMJC5/jbb2HCBG9r8qGioiKvSxCXKXOzKG/z+CXzwMxI+dayZWVNFIBPpjLrmu3bt3tdgrhMmZtFeZvHL5mrkfJa27ZQ/vbOa67xrhYfa9u2rdcliMuUuVmUt3n8krkaKa9dfTVMmgQPPADPPgsjR3pdkS9NnjzZ6xLEZcrcLMrbPH7JXMsf+MlPPzkXpjdtCtdd53U1dUp+fj6NGjXyugxxkTI3i/I2TzUz1/IHUk379zvN0333wfXXwxtveF1RnfL+++97XYK4TJmbRXmbxy+Za0bKLyZMgIceKjtu3BgOHPCuHhEREe8Fd0bKsqyTLctKsiwr+9AjybKsk6p4zXDLsuwjHstiVaOvnHxy6PFJJ3lSRl3ll80tJXqUuVmUt3n8knnMZqQsy5oJnA389dBTg4BNtm3fW8lrhgOnA0+Ue/qgbdt7qvi44M9IAbz0EvTp4zRVo0fDbbd5XVGdsX37ds444wyvyxAXKXOzKG/zVDPzYM5IWZbVGrgTeNK27aW2bS8FngLusSyrZRUvL7Bte3u5R6VNlGVZDXNycij/CKyEBCgogB9/rLyJ+vFH6NULPvoodI2qAJs6darXJYjLlLlZlLd5/JJ5rE7ttQeybdteXvqEbdvLgGygqtvNbrEs60fLsr61LGuwZVk/q2L8q3FxcZQ+mjdvfvgP4uPjycrKYsiQIaSmpjJ79mwmTpxIeno6ffr0IScn5/DUYXx8PHv27CExMZHVq1czZcoUpk+fzsqVKxk4cCA7d+4MGXvgwAESEhJYv34948aNY+7cuSxZsoThw4eTmZkZMra4uJguXbqwefNmkpKSWLRoESkpKYwZM4aMjAx69OhBfn5+yGu2b9/O4MGDSU1NZdasWUyaNIm1a9fSNzGR7OzskLH79u2jX79+rFmzhsmffMKMK65gRadODHrqKXbce2/I2Ly8PBISEsjIyGDs2LHMmzePxYsXM2LECLZs2ULnzp0pKSkhPj6ekpISOnfuzJYtWxgxYgSLFy9m3rx5jB07loyMDBISEsjLywt5/x07djBo0CBWrFjBjBkzmDx5MmvWrKFfv37s27cvZGx2djZ9+/Zl7dq1TJo0iVmzZpGamsrgwYPZvn17yNj8/Hx69OhBRkYGY8aMISUlhUWLFpGUlMTmzZtJS0ujuLg45DWZmZkMHz6cJUuWMHfuXMaNG8f69etJSEjgwIEDIWN37tzJwIEDWblyJdOnT2fKlCmsXr2axMRE9uzZEzI2JyeHPn36kJ6ezsSJE5k9ezapqakMGTKErKyskLEFBQV0796dDRs2MHr0aFJSUli4cCEjR45k06ZNdO3alaKiopDXbN26lWHDhrFs2TLmzJnD+PHjWbduHb169WL//v0hY3ft2sWAAQNIS0tj2rRpTJ06lbS0NPr378/u3btDxubm5tK7d2/S09OZMGECycnJLF++nKFDh1aou7CwkG7durFx40ZGjRrFggULWLBgAaNGjWLjxo1069aNwsLCkNdkZWUxdOhQli9fTnJyMhMmTCA9PZ3evXuTm5sbMnb37t3079+ftLQ0pk6dyrRp00hLS2PAgAHs2rUrZOz+/fvp1asX69atY/z48cyZM4dly5aRmZnJ1q1bQ8YWFRXRtWtXNm3axMiRI1m4cCEpKSmMHj2aDRs20L17dwoKCirUHajfEX37Vv47YvJkZsyYwYoVKxg0aBA7duzwxe+IvXv3HtXviC5duuh3hM9+R3z33XdV/o6oC2Jyas+yrNeAx23bvviI578Fhtm23SXC634H7Ac2Ay2Ad3G2sWlr23ZBhNc0zM7Ozi89zsnJoXnz5sE8tVcdycnwq1+FPvfTT3Dccd7U45JZs2Zx5513el2GuEiZm0V5m6eamXt+aq9Ge+1ZlvUW8GYVw9od+me4Ds2K8LzzAtseW+5wrWVZX+I0Vf8HTIzwmrANlrHOOcdZKb242Dk+/XTnDr+Ay8vL87oEcZkyN4vyNo9fMq/ppsX9gDFVjNkEXI5z0fiRTgN2VPfDbNveZlnWZuCi6r7GeK1awbBh8N570KQJJCaC5XnDHnMXXaT/REyjzM2ivM3jl8xrdI2Ubdu7bNteV8UjH1gKxFmW9YvS11qWdQ0QByyp7udZltUUaA5sq0mdxnv0UfjmG/jiC2jXLvK4AQOcZRROO81Zp8rHPv/8c69LEJcpc7Mob/P4JfNYL39wFvC3Q08NAjaXX/7Asqx1wKu2bU+yLOsE4C1gAk7jdB7wHnAO0Nq27dxKPs6M5Q+i6fvv4cILoaTEOW7UCHbuhBNO8LauWsrOziYuLs7rMsRFytwsyts81czc81Musdwi5k/AGiD50GM18OgRY1rizFIBFAOXAZ8B3wIfH/pn+yqaKKmNPXvKmiiA/HxnGxqf6tu3r9cliMuUuVmUt3n8krm2iDFVUZGzFtWCBc7xb38L48Z5W5OIiEjNBHpGSuqy+vWdpRI+/RSmTIExldxDkJrqLKnQoQMsq5s79tSlNUXEHcrcLMrbPH7JXDNSUrn9++Hcc51TgeBcnP7993Vur799+/ZxUh2rSWJLmZtFeZunmplrRkrquKyssiYKYN8++OEHz8qJZOTIkV6XIC5T5mZR3ubxS+ZqpKRy550HrVuXHV90EVxwgWflRHLzzTd7XYK4TJmbRXmbxy+ZB6aRSkxMpE2bNrSrbN0kqbkGDSAlBV5/HV57zbk4vVGj8GNXroRbb4X27WHmTFfL3LBhg6ufJ95T5mZR3ubxS+Y1Xdm8zurYsSMdO3Y8fI2URNHPfgZVXfRXWAh33w07Di1c/8ADkJEBZ58d+/qABg0auPI5Uncoc7Mob/P4JfPAzEiJx/btK2uiwFmXavNm1z7+9NPD7UgkQabMzaK8zeOXzNVISXSceipcd13Z8XnnweWXRx5fXOw0W1GyYsWKqL2X+IMyN4vyNo9fMtfyBxI9ubnQvz/k5cFf/wpnnhl+3KRJzn6ABw7AP/4BCQlH/dE7duzwzd9eJDqUuVmUt3mqmbmWP5AAadIEXn4Z3nwzchNl2/DYY/DTT87PPXvCkmrvYx3R4MGDj/o9xF+UuVmUt3n8krlmpMRdRUXOXX/FxWXPzZwJd97pXU0iIuJXmpESw9SvD6+8UnZ8ww3wy1+GH1tSAklJzqm/LVsqfVu/bCUg0aPMzaK8zeOXzDUjJd748kvIzoYbb3TWqgrnqafgo4+cn08/HVatinjKMC8vj8aNG8eoWKmLlLlZlLd5qpm5ZqTEUFdfDbfdFrmJAhg9uuznHTtg3ryIQz/88MMoFid+oMzNorzN45fM1UhJ3dWiReXH5dx3331w8GCMC5K65L777vO6BHGR8jaPXzJXIyV117hxzjVUF10EH3wQuk5VecuWsbJdO+ci9j/8IfRCdgmslStXel2CuEh5m8cvmQdmi5jExEQSExMp1v+JBkfr1rBwYdXjnnqK07KznZ/HjIF774U//jG2tYnnTjvtNK9LEBcpb/P4JfPAzEh17NiR9PR0UlNTvS5F3JaTQ8Pyx6VNlQRaw4YNqx4kgaG8zeOXzAPTSInBXn2Vw3uEX3ghPPxw+HG5ufDMM9ChAwwa5FZ1EiN+2RleokN5m8cvmWv5AwmELbNnc05JCVx/PUTK/ZFHYNSosuOpU+Gee9wpUKJuy5YtnHPOOV6XIS5R3uapZuZa/kAkGpK+/BLuuityEwXOOlSVHYuvJCUleV2CuEh5m8cvmWtGSgKhpKSEY46p4u8FL77o3P0HcMwxsGCBM4MVztChsHats3VNhw5RrVWio1qZS2Aob/NUM3PNSIlEw3vvvVf1oIQEZ5PkZ56B2bMjN1GdO8Nf/gK9ejmN1Jw50S1WoqJamUtgKG/z+CVzzUhJIET1b6vXXw9LlpQdd+rkNGFSp2iGwizK2zyakRJxUZcuXaL3ZpddVvlxeTNnwrvvOqcJxVVRzVzqPOVtHr9krhkpCYSo3tHz00/wz38610jdfTe8+mr4cR9/DI8/7vx8zDHOXYB33x2dGqRKuovLLMrbPLprT8RFKSkp0Xuz44+H/v2dVdUjNVEAn35a9nNJCUycGL0apEpRzVzqPOVtHr9kHpgtYsRsF1xwgfsfeuGFlR+XN2sWLFoE11zjbGEjR82TzMUzyts8fsk8MI2U9tozW0FBgfsfGh8Pe/ZAair88pfw0kvhx40fH7ra+scfw//7f+7UGGCeZC6eUd7m8UvmgTm1p732zLZz5073P/T4452mKD0d+vWDY48NP+6zzyo/llrxJHPxjPI2j18yD0wjJWa76qqrvC4hslatQo9btow8duRIZ7YqIcG57koiqtOZS9Qpb/P4JXM1UhIIU6ZM8bqEyP79b3j+ebjySvj73+GNN8KPGzcOHn0UkpKcuwbfecfdOn2mTmcuUae8zeOXzLX8gQRCXl4ejRs39rqMo/Pss5CYWHZ8660wb5539dRxgchcqk15m6eamWv5A5FoSAjCyuPXXFP5cSnbhtdfh0sugQcfhF27Yl9bHRSIzKXalLd5/JK5ZqRE6pL+/SE5Ga64wmmWwl3AXn4hUHDuCBw71rUSRUTqEM1IiURDfHy81yVEx9//DpMmwVtvRb4L8LvvKj8uz7YhKwvy8qJWYl0RmMylWpS3efySuRopCYSnnnrK6xLcc9990KBB2fFDD4Ufl58Pt90GzZrBGWeAT1YJri6jMhflbSC/ZK5GSgLhM5PWZmrXDpYudTZLHj8+8jY2I0bA5587P+fkwAsvuFejC4zKXJS3gfySeWBWNheztW3b1usS3HXVVc6jMgcPVn5c3ubNzl6BZ54Jv/sdWJ5fdlAl4zI3nPI2j18yVyMlgbBjxw6vS6h7Hn0UBg2CNWucU4GdO4cft3WrM8tVuorw4sXQt697ddaSMjeL8jaPXzIPzKm9xMRE2rRpQ7t27bwuRTxwsLLZFlPFxcEXXziPjRvhgQfCj0tOLmuiAEaNcqe+o6TMzaK8zeOXzAPTSGmvPbP5ZZdw1zVq5Mw2NWsWecx551V+XN7gwdC6NVx3HaxeHY0Ka02Zm0V5m8cvmQemkRKzzZ8/3+sS/OuXv4Ru3eD88+H662H06PDjVq6Ev/0N1q1zLnaPNMPlEmVuFuVtHr9krgU5JRD27dvHSSed5HUZwTZxorOSeql69aCwMPyF6QUFzinD4493GrUYUOZmUd7mqWbmnt8ZoxkpCYR+/fp5XULw3XRT6CnCSHf3HTzorF91333OP59+OiblKHOzKG/z+CVzzUiJSPVlZcGYMXDyyfD//p8zK3Wk+fPhlltCn8vNhRNOcKVEETGKZqREosEvWwn43llnQadO8MQT4ZsocJqs8o47Dho2DD92+nT4+c/h6qthwYIalaLMzaK8zeOXzDUjJYGQnZ1NXFyc12VIqS5d4O23oXFjGDYM7r+/4pgdO5w7BPPzneO4OPjhB+e6qmpQ5mZR3uapZubBnZGyLOt1y7KWWJZ1wLKsfdV8jWVZ1luWZWVZlpVnWVaKZVmXxKpGCY4RI0Z4XYKU9+qrzkbJe/eGb6LAOU1Y2kQBZGfDrl3hxxYUwPDhMGQI/PQToMxNo7zN45fMY3lqrwEwHuhfg9e8DHQCngXaAduBOZZlNYl+eRIkt956q9clyJGq2mamdWu47LKy4+uug+bNK44rKYG77nJOJz75pHMBe2GhMjeM8jaPXzKPWSNl2/abtm33AtZUZ7xlWRbwItDZtu2Jtm2vBR4DjgP+WMnrGubk5FD+IebJyMjwugSpqUaNnOuievaEPn2c5RKOCfMrafPmss2XAZYvh2++iZx5UZEzgyWBou+4efySeV262LwFcAaQXPqEbdsFwHzgukpe92pcXBylj+bl/kYbHx9PVlYWQ4YMITU1ldmzZzNx4kTS09Pp06cPOTk5hy9mi4+PZ8+ePSQmJrJ69WqmTJnC9OnTWblyJQMHDmTnzp0hYw8cOEBCQgLr169n3LhxzJ07lyVLljB8+HAyMzNDxhYXF9OlSxc2b95MUlISixYtIiUlhTFjxpCRkUGPHj3Iz88Pec327dsZPHgwqampzJo1i0mTJrF27Vr69u1LdnZ2yNh9+/bRr18/1qxZw+TJk5kxYwYrVqxg0KBB7NixI2RsXl4eCQkJZGRkMHbsWObNm8fixYsZMWIEW7ZsoXPnzpSUlBAfH09JSQmdO3dmy5YtjBgxgsWLFzNv3jzGjh1LRkYGCQkJ5OXlhbz/jh07GDRoECtWrGDGjBlMnjyZNWvW0K9fP/bt2xcyNjs7m759+7J27VomTZrErFmzSE1NZfDgwWzfvj1kbH5+Pj169CAjI4MxY8aQkpLCokWLSEpKYvPmzUyZMoXi4uKQ12RmZjJ8+HCWLFnC3LlzGTduHOvXrychIYEDBw6EjN25cycDBw5k5cqVTJ8+nSlTprB69WoSExPZs2dPyNicnBz69OlDeno6EydOZPbs2aSmpjJkyBCysrJCxhYUFNC9e3c2bNjA6NGjSUlJYeHChYwcOZJNmzbRtWtXioqKQl6zdetWhg0bxrJly5gzZw7jx49n3bp19OrVi/3794eM3bVrFwMGDCAtLY1p06YxdepU0tLS6N+/P7t37w4Zm5ubS+/evUlPT2fChAkkJyezfPlyhg4dWqHuwsJCunXrxsaNGxk1ahQLFixgwYIFjBo1io0bN9KtWzcKCwtDXpOVlcXQoUNZvnw5ycnJTJgwgfT0dHr37k1ubm7I2N27d9O/f3/SNm1i6oUXMq1FC9IyMhgwYAC7du0KGbu/QQN6HXss63CmuOfUr8+yzEwWLlzI1q1bQ8YWJSXRtXFjNjVuzMj772fhwoWkpKQwevRoNmzYQPfu3SkoKKhQt35H1P3fEStXrjyq3xFdunTR7wif/Y6YO3cuaWlpTJ06lWnTppGWllbhd0RdEPOLzS3Lehzobdv2SVWMuw5YDDSzbTur3PODgHNt2/5VhNc1zM7OPnyhRU5ODs2bN9fF5oZJTU3VPotBNmMGvPACFBdD9+7w0EMVMy8ocC5YLz8b9dVXcPnl7tcrUafvuHmqmbm/LjY/dCG4XcXj6qOs6cjOzgrzXNlg2y448cQTKf8Q86SlpXldgsTS3XdDRoaz+fJDDwFhMj94sOIpvdzc8O/3ww/OOlj33Qf/+1/065Wo03fcPH7JvH4Nx/cDxlQxZlPtSmH7oX+eAWwr9/zPgB21fE8xxL333ut1CeKyCpk3aeLMWn3wgXN8xx1wzTWRXgyrVjk/JyfDmjVw0UWxK1aOmr7j5vFL5jWakbJte5dt2+uqeORX/U5hfY/TTN1R+oRlWQ2Am4EltXxPMcRHH33kdQnisrCZ9+4Ny5bBvHnO6cD6Yf6uWFwM5f+mW1AAX38d+YMmTIAPP3SWaxDP6DtuHr9kHrNrpCzLOgc4BbgP+Bdw46E/+s627f2HxqwDXrVte9Kh438DrwJPABnAa8AtQEvbtiPM0QNakFNEauKWW5ytbABOPBHWrg2/9MKLL5bNcJ15JqxcCWec4VaVIlI1f10jVUPvAKuAt4ETDv28Cih/DVVLoPyypd2B3sCHwJdAM6BDFU2USJ26g0PccVSZf/aZs2jo0087DVW4JgqcRUBLbdsGs2dHfs8ff3ROERYW1r4uiUjfcfP4JXNtESOBkJ+fT6NGjbwuQ1zkSuaXXebMVpWaOxd++cuK4z77DH7/e2el9nbtnFOL2qQ5qvQdN081Mw/0jJSIa/r27et1CeIyVzIfPdrZULl5c+jcOXwTBfDvf5dtd5OaCiNHxr42w+g7bh6/ZK5GSgLh/kj7uUlguZL5pZc6jdGWLfDaa5HHHbkie7gV2gG++85Z16pRI/jDH3QasAb0HTePXzJXIyWBsGLFCq9LEJfVqcx79oTjj3d+vuEGePTR8OM6dnSuoyoogDFjYPBg92r0uTqVt7jCL5mrkZJAOEN3UhmnTmV+553OIp8bNkBKCjRuHH7czp2hx7t3hx+Xm+ts0nzVVc5MWElJVMv1ozqVt7jCL5kHppFKTEykTZs22kLAUPXDrRckgVbnMo+Lg/PPh3r1Io957jmwDl0b27Qp/DHCfuz/+pdzx+CqVdClCwwcGPVy/abO5S0x55fMA9NIdezYkfT0dFJTU70uRTzw/fffe12CuMyXmT/xBHzxhXMR+1dfwQUXhB+3bl3lx6VKSqBHD/jtb8EnF+bWli/zlqPil8z90e6JVOGmm27yugRxmW8zv/pq51GZ++8vWzD0mGOcPQHD6d7dWQ8L4NNP4dhjnbWxAsi3eUut+SXzwMxIidk++eQTr0sQlwU68xdfhLFj4fXXnTWpbrst/Lhly0KPl1Sym9aECfD8875dmiHQeUtYfslcC3JKIBQXF1OvsmtTJHCUOc5pvZdfLjseNAieeqriuNGjQ6/HSkyEZ56JfX1RpLzNU83MtSCnSDR06dLF6xLEZcoc+Oc/oVcvZ02q/v3DN1FQcWubWbMiv+fixfDWW84MVh2ivM3jl8w1IyUiEnQ9e8JLL5Udv/46hNvHLCUFbr8dioud49694YUX3KhQpLY0IyUSDX7Z3FKiR5nXwIsvwhtvwM03O7NYb7wRftxnn5U1UQATJ0Z+z7VrnVOLkydHs9KIlLd5/JK57tqTQHjssce8LkFcpsxr4Jhj4O23qx538cWhxxddFH7cV19B+/aQl+ccd+kCr7xydDVWQXmbxy+Za0ZKAmHu3LlelyAuU+Yx8Le/ORevX345/OlPzinBcCZPLmuiwLmYPZKMDEhIgPHjj6o05W0ev2SuGSkJhIuP/Ju0BJ4yj4FjjoFu3ZxHZc4/P/S4RYvw4777Dtq1g+xs5/iVV5zZq1pQ3ubxS+aakZJAyCv/t2MxgjL30COPwL//DRdeCHffDQMGhB83Y0ZZEwVQ2bpA33/vNHDDh4fdW1B5m8cvmQdmRioxMZHExESKy18oKcbYHWnzVwksZe4hy4KuXZ1HZc47r/LjUlu3wi9+Abt2OceLF8PgwSFDlLd5/JK5lj+QQFi/fj0tW7b0ugxxkTL3iXfegREj4JxzYOjQ8M3UiBFQ/sLiJk0gJydkyOG8v//embU66ST4+9+hUaNYVi8equZ3XMsfiETDtGnTvC5BXKbMfeKNN5xrpebNizwjdeQ1V2E2c542bRr8+KNzt+A770CnTs5mzRJYfvmOa0ZKAuHAgQMcd9xxXpchLlLmAdO3r7M6++mnO1vdHLH0woEDBzjuf/+DX/+67EnLgoMHoX6Yq1QyMpz3bNzYuROxadMY/wtItFXzO64ZKZFo6BnpNm0JLGUeMM89B+np8PnnYdev6tmzp3Nxe/m91y68MHwTtWcP3Hij00h17w533AHBmDQwil++45qREhER/xg3zlmX6qST4IMPoFWrimPmz4dbbgl9budOOPXUimPXrIHOnZ2lH958E3Tdnd9oRkokGvyylYBEjzI3y+G8H34Yli93NmIO10SBs0L7CSeUHZ93HpxySsVxOTlw220wdqyzqOhtt0F+ftRrl9rxy3dcM1ISCDt37uS0007zugxxkTI3S43zXrTIWZ6hcWN4773w292sXg1XXBH63Hffhb3YnWXL4F//gsJC52L3Dh1q9i8gNVbNzDUjJRINEyvbXFUCSZmbpcZ533ADTJvmbE0Tac/A88+HZs1Cj88+u+K4vDz4v/9zmrPly+E3v4EdO2pWj9SYX77jaqQkENq1a+d1CeIyZW6WmOR9wgnO9VR//auzJtXnn0PDhhXH7dzpXMBe6sABZxHRcJKTnWbs5JOhd+/o12wQv3zHA7OyuZht27ZtXpcgLlPmZolZ3hdcAAMHVj6mWTNnz8DUVOe4ZUto3briuOJiZ22r0sVE//EPuP12uPTS8O+7bx/s3x9+Fkx88x3XjJQEgrYGMo8yN4unederB//7n7MXYHw8LFwI4dY3ys+vsCI7O3eGf89PPnHWzGreHH7/+7D7C5rOL9/xwDRSiYmJtGnTxjdTgRJd50VaMVkCS5mbxfO8TzzRWdjz9dch0gXQxx8Pjz9ednzVVXDtteHH/v3vzmKi4Nw1mJwc+bNTU2Hq1IpNWsB5nnk1BaaR6tixI+np6aSWTr2KURYuXOh1CeIyZW4W3+Q9dKjT9IweDQsWOHcNhlNUFHpcWBh+3PvvOxs633efc3px797o1luH+SVzLX8ggbBnzx5OCbdOjASWMjdL4PL+8ENnNfeSEmfl9Rkzwq/Sfvrpzh6DpYYNC531KmXbThP3/ffwwAPObJjPVTNzLX8gEg0ffvih1yWIy5S5WQKX9zPPwMaNkJYGM2eGb6IA4uJCj086Kfy4f/4TnnzSWaX9+uudNbJ8zi+Za0ZKRESkrlq8GB56yJmV+vOfnQ2drTCTMBdc4DRmpXr0cJqrI+3f7ywsum6dswH0iy/GrHSXaEZKJBr8spWARI8yN4uxeV9/PWzbBgUFMHhw+CYKKm6XE2nPwOefhwEDICXFWZ5h3LjKP9/DyRa/ZK4ZKQmEnJwc5W0YZW4W5V2FHTvg2Weda6T++Efo1Cn8uLZtYeXKsuPXXnNOBx4pM9OZsfrqK2ctrAkTQvcvdEE1M9eMlEg0DB8+3OsSxGXK3CzKuwqnn+5sh/Pll5GbKIBf/ars52OOcZqkcF5+GVatci6GT0527h6MZNs2mDs36tvm+CVzrWwugXB7pF8GEljK3CzKO0ri452V1Netg3vugVtvDT+u/JY44Y5LpaY6zVhOjnMh/Oefw89/HpVS/ZK5ZqQkENatW+d1CeIyZW4W5R0lxxzj3DHYpw906BB53PPPw7HHOj/HxTl3BIbTs2fZQqH79lW+v+D06c4F8GPGVKtUv2SuGSkJhOOPP97rEsRlytwsyttl//d/zvVR6enOgqDNm4cfd2QukXKaNMlZ36rU7t3QsWOlJfglc81ISSAEaqE+qRZlbhbl7YHWreHBByM3UQBvvVW2gfNll8F//xt+3PTplR+XKilxrvFq2ZJTunaNfEqxDglMI6W99sy2OgCLz0nNKHOzKO866uyznVmrffucRUDPOCP8uEsuCT2+9NLw4wYNgl694NtvWZ2SAi+8EM1qY0LLH0ggZGVlcdZZZ3ldhrhImZtFeftcSYkzW/X5584SDD16QKNGFcf961+H7xDMAs667jpnUdLItPyBSDQMHTrU6xLEZcrcLMrb5445xlmvaskS6Ns3fBMFznVUhy5yHwrwu9+5VmJtaUZKRERE6o4VK2DOHOd04L33VjVaM1Ii0eCXrQQkepS5WZS3Qdq2hVdeIf6rr7yupFo0IyWBUFBQQMOGDb0uQ1ykzM2ivM1Tzcw1IyUSDR988IHXJYjLlLlZlLd5/JK5GikJhAcffNDrEsRlytwsyts8fsk8KKf2DrMs60QgG4izbTvH63pEREQkuILYSFlAEyDXDtq/nIiIiNQpgWukRERERNyia6REREREakmNlIiIiEgtqZESERERqSU1UiIiIiK1pEZKREREpJbUSImIiIjUkhopERERkVr6/37Wpkd3yGzqAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def drawbif(func,l,u):\n", " ipts = []\n", " epts = []\n", " for v in np.linspace(l,u,100):\n", " g = func(r=v)\n", " xvals = solve(g,x)\n", " dg = diff(g,x)\n", " est = [(e.rhs().real_part(),dg(x=e.rhs().real_part())) for e in xvals]\n", " for e in est:\n", " if e[1]<0:\n", " epts.append((v,n(e[0])))\n", " elif e[1] == 0:\n", " pass\n", " else:\n", " ipts.append((v,n(e[0])))\n", " eplot = points(epts, color=\"blue\")\n", " iplot = points(ipts, color=\"red\")\n", " show(eplot+iplot,axes_labels=['$r$','$x$'],gridlines=True, xmax=2)\n", "var('r')\n", "f(x) = r - x^2\n", "drawbif(f,-2,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### Bifurcação Transcrítica\n", "\n", "Este tipo de bifurcação tem a seguinte equação como seu exemplo mais simples:\n", "\n", "$$\\frac{dx}{dt}= r x -x^2$$\n", "\n", "à media que r varia, a função se transforma como podemos ver abaixo:\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGECAYAAADJKQ/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB90UlEQVR4nO3dd3iM6dcH8O+kFxKiBiF6751o0SVYvUZfBKsua1eLtqyyavReVg/RopcguoSQ6IIgIkqq9Pv947xh/VZJmZl75sn5XNdcFsnM1+yTmTN3ObdKCAHGGGOMMfZfBrIDMMYYY4zpKi6UGGOMMca+gQslxhhjjLFv4EKJMcYYY+wbuFBijDHGGPsGLpQYY4wxxr6BCyXGGGOMsW/gQokxppNUxEqlUqlkZ2GMZV5GargP7ljJGFO78PBwWFtbIzw8XHYUxpgypepDGI8oMcYYY4x9AxdKjDHGGGPfwIUSY4wxxtg3cKHEGGOMMfYNXCgxxhhjjH2DOna9Mca+RgggMhJ49w54/55+DQ8HYmKAjx+/vCUlff6eFAYGgJkZYG7+5a9ZsgA2Np9v2bMDxsZy/o0sXRITgQ8fgLdv6bJ49w6Ijv7vpREX9/XvV6kAC4vPN0vLz/9tZQXkzg3kykV/zhjLGC6UGEuPxETg+XMgOPjL27//LDT0cwH0Nebmn29G//pRTGkblJQExMb+t5j6mqxZAVtbIH/+/96KFAGKFqWvYRoXHQ08eAA8fQq8ePHfSyQ0lOrlbzE0/HxZmJp+vhz+LTmZLono6G8XUwAVTrlzfy6ccucGChUC7O2BwoXp1/z56TEZY1+nEiLDbZC4jxJTrogI4M4d4N69z7e7d4FHj4D4+M9fZ20NFCjw5S1Pni9HfWxs6OssLGhkKK19FBMS6N0xKurzCFXKaFVYGPDqFb0z//v274x58gDFitGtdGmgXDmgfHnAzi7tWbQgIiLiUx8lKysr2XG+IATVxDdvAvfvf749eEBPewojIypEChT4XLfmzUuXQo4cX/6aJQsVR2kdHExKossiJoZuHz4Ab95QQZbya8rt9Wsq4F6//vz9xsZAwYJA8eJA2bJAmTJ0K12aLlfGFCxVL3xcKDGW4s0bwNcXuHHj868PH37++4IFgZIlgVKl6NfixenP8ufXzdEaIaiAevyY/h0ptwcPgIAAmhYEaK4mpWiqVg2oWZPeKSUPM+hKoZSUREWQr+/nm58fTZsBVPeWKEG34sU//1q4MI3gGOjgStCYGCqYnjwBgoLo13v36LJ4/PjzDHCBAkCVKkD16nSrVo0KO8YUggslxr4pIYHe7c6fBy5cAK5coSECgIqeypXpHaJyZaBCBXr3s7CQGlmthACePQNu3wb8/enXmzfpnTI5mYY3UoqmlFu+fFqJ5u7uDnd3dyQlJeH+/ftaL5TevgV8fD5fGr6+VFgANG1VufLnW8WKOjsgl24fP9KgaUAAXRrXrtEtZbqwSJHPhVONGvSrmZnczIylExdKjH2SkABcvgycOAF4e9N/x8TQK3z16kDt2kDVqvTuV7Sobg4DaENUFL0rXr78+fbyJf1d0aJAo0afb7a2Go2irRGl168/Xxbnz1OBAFBd6OBAxUDlykClSjRFlhklJ9Ns89Wrn283blBRZWpKdXSDBnSrW5cLJ6Y3uFBimZgQ9LH4xAng+HHgzBmaasqeHahfn94BHRxo1MjERHZa3RYcDFy6RM/h6dOfK4mSJYHGjYGWLQFHR7WPuGmqUIqNpZGiY8fo5udHf16mDFCvHl0WdevSQmcljRSpW2IicOsWcO4cFZne3jTTa24ONGwING9Ot5Il+XlkOosLJZbJxMfTm7mnJ3DgAE2lmZjQu16TJkDTplQY8RafjHn9+nPRdPw4LWoxM6NRJicnutnbZ/hh1FkovXgB7NtHl4W3N42E5M1Ll0SzZnR55M2b4ciZmhA0g3v0KHDkCBVQ8fE0Xdm8OdCiBT3fWbLITsrYJ1wosUwgPBzw8qLi6PBh2qVmbw+0bUuvzPXqcTMZTRKCVjofOkQ3b28aaihTBvjpJ6BzZ1rjlY4hhYwWSnfvAnv3UoF05QrtQGvYkC6LZs1o/TqPdGhOdDTV00eP0u3+faqnW7QA2rcHWrcGsmWTnZJlclwoMYWKiAA8PIDt24FTp2j9UZUqVBz99BPt3uJ3QDkiImiU6eBBKl7fv6eF8J070y0N1UlaCyUhaD36zp1UIN29S7OBLVsC7doBrVrRzCuT49Ej+rH18KCZXCMjmrnt0IF+dHPnlp2QZUJcKDEFiY+nkaOtW2n+JC6OVo526AC0aUPb9JluiY+nQjalcvnwgVordO4MdOlCo07fkdpC6flzuiy2bKGWVzly0GhFu3Y01WNuruZ/F8uw4GC6JDw8aBASoFE+Fxf6rKOkDaZMp3GhxPRccjLt096yBdi1i5orVqwI9OgBdOtGTV6YfoiPp4X1O3fSXFh4OO027NuX/l9+ZQ7me4VSeDiwezddGmfP0s6rn36iN9qmTflEF30SGkoF0+bN9OOeJQt9/nFxoalSXlLINIgLJaanXrwA1q8H1q6lbngFCwLdu1OBVK6c7HQso+LiaD3T+vU0SmhsTMM/ffvSXMz/t2b430JJCFrzsmoVjUbEx9NmOxcX+nYda97N0uHRIxod3LyZeqPmzw/07w8MGED9qhhTMy6UmB5JSqKtMqtW0foWMzOanunTh/ZrZ9a+Rkr36hW9K65fT4uK7OzonXHgQERYWsLa2hqPHoVjzx4rrF5NTcVLlqQv6d6d3kiZ8ghBLbw2bKDCKSYGcHYGXF1pio5fDpiaaL5QUqlUqvDw8OR03wFj794BGzcCq1fTSFL58lQcderEB00pkBACHxM/IiouCpHxkYiIi0BUfBQi4yLwMeA2kr3PAtevIjkhAbfydMLSUzuhMgiCgWFWVG0YjMYdnqNC1SiYGpnAytQKVqZWyGqSFVZmVrA0toSKF/ErTmQkzbyvXUvtBwoVopcIFxc66Jex9LK2trYGECl+UAhltFCyAvCdc7AZY4wxxnSWtRAi4ntfoLURpYiICNjZ2eH58+dp6olSvXp1XL16Nc3Z0vN92nqs9D4X6Xms9H6PRh5LCGpSuGwZbSHPlQuxvXqhzPz58Mtsz8U36PrPSWxiLGq0qIHfF/yOe2H3EBQehKAPQXjy/gk+xH749HVmRmbImzUvclvmRh7LPMhjmQceWzwwYeQEWJnRSFAW4yzIapoVWU2yIjYiK7ZtMsM/Gy0QFmYIh3pxaNPmKcaNrY7HDRsi29kziLfJhrj+vRDv0h0frSwQFR+FiLiIL25vP76F+wZ31GtZDyFRIQiNDkVIVAjiEuM+ZbMytUKR7EVQOHthFM5WGEWyF0HpXKUxqP0gXL90XaPPX3q/L9O+ZnzD06cRqFBhJgoX/hNPnhiienVg2DDa7fi9xd+6/u9S4muGNh8rrc9FakeUjFKd4Ct+dOdfY2Vllab/mYaGhulqNpee79PmYwFpfy7S+1jSn8PYWNqetHAh7d+uWJEWH3TtCsTF4e38+ZnnuUglXfg5CY4Ihl+IH269vgX/UH/cen0L98LuIckpCYNPDIadlR2K2RRDFfsq6Fi5I4pmL4oi2YugSPYisDG3+c802IUpFzC60egv/iwoCJg7F1i3jtorubgAw4cDZcsCwcFxGDcWMN68GdkTEoBFi4Clq4HFq4B+/YAxY4Cytf+T22OMB/bv2P/p90IIhMeFI+hDEB6+e4hH7x7Rr+8fYdejXQiOCIaAADoBNTbVQIU8FVAxT0X6NW9F2FnZfXNKj18z5DxWoUIAsAI3bvyFc+esMH8+0Ls3ULgwMGoUrWH7WosBXf936ftrhi48FpD65+JHI0kpMlQoacPQoUO19n3afKz00vV/1xffEx0NrFxJ74SvX9PHvaVLqf9RyhtPXNzX70gb+XT0sdIjo/+uhKQE+IX4wee5D3yCfeDz3AfBEcEAAGtTa1TIUwENCzXE8BrDcf/8fUxxnQIr07S9gP07Y0AA8NdftFA3Wzbgjz+AIUOoB9JXFS5MhfakSTQiuXgxsGIFrWUbN44ajn7lcQBApVIhm1k2VMpbCZXyVvrPXcckxCDgTQAWbFuAHEVz4Obrm5h3cd6nEbJcFrlQx64OaheojTp2dVAtXzWYG5t/9bHS81xompJ/TgwM6GWldWvg+nXg77+pUJo+HRg9mq6pf79f6vq/S9evi/R+nz78nHyP1na9aeskcH2g+OciPBxwdwcWLKAmg716Ab/9Rh2a/4fin4s00tbzEREXAe+n3jj/7DwuBl/E1RdX8THxI0wNTVEtX7VPhUHVfFW/O6KSVlevArNm0fb+/PmBsWNp6/fXTpkJDg7+NIxe4H97ZsXE0KjkvHnAkyd0WNvEiVSEq4EQAs8jnuNmyE1ceXEFPsE+uBx8GdEJ0TAyMEIV2yqoU6AOHAs7ooF9gzQXjWnFPydf+t7z8fgxMGcObaQ0Nwd++QUYMQLImVNSWA3ja+OzdDwXqXthE0Jk9JYqsbGxYsqUKSI2Nja136JYin0u3r4VYtIkIaythTA1FWLIECGCgr77LYp9LtJJU89HYlKiuPDsgph4cqKovaa2MJxqKOAGYTvPVnTY0UHM95kvLj6/KGITNPP/4eJFIZo2FQIQonhxIdasESIu7vvfExoaKgCI0NDQb39RQoIQO3YIUakS3bmjoxDnzqk3fMpDJSUI31e+wv2Ku+ixp4couKCggBuE4VRDUWdtHTHl9BRx7uk5EZ8Yr/bH5p+TL6Xm+QgOFmLUKCEsLISwtBRizBghvncp6Su+Nj5Lx3ORqjqH+yixjIuMpGmRefPoQNTBg2n9SL58spNlau8+vsORh0dw+MFhHHl4BG8/voWNuQ0cCzuiceHGaFy4MYrZFNPolvpbt2ig58AB6hU6aRJ1XU5Nt+U0fToUgs6WmzKFHrRpU2DqVKD2f9cwqYsQAo/eP8KJxydw4vEJnHpyCu9j3yOLSRY0KdIErUu0hlNxJ+TJkkdjGdiPhYXR8rbFi6ld26hR9PLEB/IycMNJpnGxsbRO5M8/6TDUIUOA8eP5dEuJnrx/gl0Bu7D/3n5cDL6IZJGMSnkrwam4E5yKO6FG/howNND8mRD371PNsn07UKwY1SxduqTtOIp0TSkkJ9O83pQptHGgRQtasFKtWvr+IWmQlJwE3xBfHH90HIceHILPcx8AQM0CNdGmRBu0LdUWZXJ9/3w7pjlv39KU3JIl1M923DialvvatC/LNLhQYhqSmEjrQ6ZOpc7KffsCkyfzGQOSPP3wFLsCdmHnnZ24+vIqzI3M0axoMzgVd0Kr4q2Q30p77aufPgWmTaMeora2dFn06ZO+s9cytPYiOZkOg3NzAwIDqUqbORMoWjTtQdLpTfQbHH5wGPvv78fRh0cRnRCNsrnKonPZzuhctjNK5SyltSzss1ev6FJYtQqwsQEmTAAGDqTzAlmmw4USUzMh6PTKP/6gIYMuXehd8SuLtJlmPQ9/jt0Bu7EzYCcuBV+CmZEZWhVvhc5lOsOphBOymGTRap5374AZM2gNf8outkGD6JN7eqllkWpiIlVtkycDb97QtPCkSVpv6RybGIsTj09g552d2Hd3HyLjI1EhTwV0LtMZ3cp3Q5HsRbSah1FriqlTgU2b6HztWbPofGZu7p6pcKHE1Oj6ddpv6+1N0xl//glUriw7VaYSFR+FPQF7sOHmBpwJOgMTQxO0LNYSnct2RusSrZHVNKvWM8XHA8uX0xtOQgJtbhw5kk6Azyi17uaJiaGFKrNnU8H/22+0WOVrzXY0LDYxFkcfHsWOOzuw/95+RCdEo36h+uhTsQ86luko5f9jZnb3LhX2e/cCNWvSZl0NLm1juoULJaYGL1/S2PTGjUDp0tSopHlz2akyDSEEvJ96Y8PNDdh1ZxeiE6LRuHBj9KrYC21LtoW1mZzz8FLWTo8dS9uxBwygYilvXvU9hka2PYeF0byLuzuFnTOHRkYlDSPEJMRg39192OC3AScen4C5sTk6lumIPhX7oIF9Axio+PRXbTlzhj4L+vpSL9zZs1MaWzIFk9se4MmTJ6Jfv37C3t5emJmZiSJFiojJkyeLuB/sCU5OThZTpkwRtra2wszMTDRo0EDcvn07tVv9dNaMGTNE7dq1hbm5ubC2tk7V9/Tu3VuACtFPt5o1a2o2aIroaCGmTaN9tTlzCrFsGW3FVoP0PBdKvS7evXsnevbsKaysrISVlZXo2bOneP/+vXgX804suLhAlFxSUsANouiiomL62eki6H2Q3OtCCOHvL0TDhrQbv3lz+r06LV26VJQuXVqUKFFCABDh4eHqfQAhhHj4UIiffqJ/hIODENevq/8x0mjG4hkiW+tsQjVcJeAGkXd2XjH73GzxJvrNf7729OnT/7kGAIjAwEAJydXr7NmzwtnZWdja2goAYu/evT/8njNnzogqVaoIU1NTUbhwYbF8+fJ0PXZiohDr1gmRN68QZmZC/PGHEBER6bortUjrc6Hk6+LPP/8U1apVE1myZBG5cuUSbdu2FXfv3v3h9/3g2khVnaOxQsnLy0v06dNHHD16VDx69Eh4enqK3LlzizFjxnz3HzV79myRNWtWsWfPHuHv7y+6dOkibG1tRYTMq1UNJk+eLP7++28xevToNBVKLVq0EK9evfp0e/v2rWaDJicLsXu3EHZ2QhgbC/Hrr0K8f6/Wh0jPc6HU66JFixaiXLlywsfHR/j4+Igi9YoIu2F2wnyGuTCaZiQ67+osTj85LZKTkz99j5TrQggRHk59aQwNhShZUojDhzX9eOGaK5RSHD8uRNmyQqhUQgwYIERIiOYe6zu2b98ujI2NxerVq8WdO3dEp9GdhFFHI2E63VSYTjcVvfb2EpeDL3/6+pQ3xHv37n1xHSQmJkrJr06HDx8WEyZMEHv27ElVcfD48WNhYWEhRowYIQICAsTq1auFsbGx2L17d7ozREYKMXEiFUt58wqxeTO9NGpbWp8LJV8XzZs3F+vXrxe3b98Wfn5+wsnJSRQsWFBERUV983tScW3ILZS+Zs6cOaJw4cLf/Pvk5GSRN29eMXv27E9/FhsbK6ytrcWKFSvS8lA6a/369WkqlNq2bavRPF948ICGCAAhWrem32tQap8LpV4XAQEBAoDw9vEWG3w3iGqrqgm4QWAkxMg9I8WryFdf/T5tXxfJyUJs3UpvGBYWQsye/eNmkeqglUJJCBopXbpUiOzZqVnqsmU0tKBFNWrUEIMHD/7iz0qVKiWGjx8uZp+bLQotKCTgBlFtVTWx3ne9OHLiiAAg3qv5Q4yuSU1xMG7cOFGqVKkv/mzQoEGiVq1aGX78p0+F6NyZXhIbNRJC5sBMWgolpV8XQnxuSHv27Nlvfk0qro1U1TlanQAPDw+HjY3NN//+yZMnCAkJQbNmzT79mampKRo0aAAfHx9tRNQ5Z86cQe7cuVGiRAn8/PPPCA0NVf+DfPxIfWfKlaOVjZ6ewP791ABHByj1ujh2/hhMm5mis09n9PHsg5wWObG/635YbbBChfAKyJvl2wt+tHJdgFoRNWoE9OgBODjQ5fHbb4CJiUYeTg4jI2DoUODBA6BzZ+oHVrs2cOOGVh4+Pj4e169f/+L6BoBmzZrBz8cPvzn8hkfDH+FAtwPIaZETfT37ovOlzoAjUKF2Bdja2qJx48Y4ffq0VvLqmosXL/7nuWvevDmuXbuGhISEDN13wYLAjh3A0aPA8+dAhQq0ZDMmJkN3q3GVK1dW/HURHh4OAN+tKdR1bWitUHr06BGWLFmCwYMHf/NrQkJCAAB58nzZyTZPnjyf/i4zadmyJbZu3YpTp05h/vz5uHr1KhwdHRGXgYNk/+PwYSqQZs0Cfv2VTitt00Z9968GSrsunrx/AteDrvj15a+IrxGPtiXbImBIALx6eKF1ydbIk+v7/y5tXBeRkXQ5VKxIfWeOHgV27VJ4q6wcOai5zvnz1Ey1enXawheRqgPG0y0sLAxJSUnfvb4NDQzhXMIZXj288OCXB2hXpB1MG5jidffXqDG9BnKXyY3GjRvD29tbo1l1UUhIyFefu8TERISFhanlMZo1A/z9qUiaPx8oWxY4eFAtd61Wtra2WLVqFfbs2QMPDw+ULFlSkdeFEAKjR4+Gg4MDypUr982vU9e1keZCSaVSualUKvGvG/73du3atS++5+XLl2jRogU6deqEAQMGpOYxvvi9EEKjxyykl5ub23/+7T96LtKiS5cucHJyQrly5dC6dWt4eXnh/v37OHToUMbDv35Nu32cnIAiRehVYMaMdG+X1vRzASjgusitgqq9CkUWFsEO/x1oaNAQRTyLYIXzCpTOVfrT9//o36XR6wLAkSNUOy9bRk2tb92iN4pMo25daocxZw6wZg3t9ty1i7b6aVBqr+9iNsWwodsGvBr7Cm4N3XD5w2XsyLkDuYfnxh/L/9BoRl31tefua3+eEWZmNPDu70+t41q3Btq1A549U9tDZFjJkiXx888/o0qVKqhduzaWLVsGJycnzJs3T3Y0tRo2bBhu3bqFbdu2/fBr1XFtGKUtHgBgKYDtKb8JDAwM/N8vsLe3//TfL1++RKNGjVC7dm2sWrXqu3ec9//3FoeEhMDW1vbTn4eGhv6nKtQFw4YNQ9euXb/7Nf9+LjLK1tYWhQoVwoMHD9J/J0IAW7fScdoGBvTfauiypsnnQt+vC/+3/lgZuBInX5yErYUt+pXsh9GNRmPfrn0Y/Wz0f77/zZs3afp3qeW6AB3xMGoUsHkz0KQJbZcuXDhDd6m/jI3pQLBOnehnpXNnwNmZmkYVKKDWh8qZMycMDQ3/M4r4o+s7u3l2/F7vd4yqPQpbbm3B7wd+x4XsF9BkUxO4NXSDQ0EHtebUVXnz5v3qc2dkZIQcOXKo/fGKF6cPE7t304BjmTLUSmDIEHpJ1TW1atXCli1bZMdQm19++QX79++Ht7c3CvzgZ1Ft10ZqFzN95/ZNwcHBonjx4qJr166pWnWfsmj3r7/++vRncXFxer9o99/Sspj7f4WFhQlTU1OxcePG9D3406dCtGxJKxO7d5d+lHZaF3Pr23Vx7uk50XRTUwE3iOKLi4u1N9aKuMTPq6BTFnNfvvx5N9OlS5cEgFRte02R0esiOVmI7duFyJVLiGzZaHu0jB0+/0tri7lTY98+IWxthbCyEmLlSiGSktR69zVq1BCurq5f/Fnp0qXF+PHjU30f7Tu0F2U7lRUVllcQcINovLGxOPf0nFpzahtSuZi7dOnSX/zZ4MGD1bKY+0fCw4UYMuRzl4l79zT3WKl5Lr6mQ4cOolGjRuoPpGXJycli6NChIl++fOL+/fup+p5UXBtyd729ePFCFCtWTDg6Oorg4OAvtir+W8mSJYWHh8en38+ePVtYW1sLDw8P4e/vL7p166aIbeBPnz4Vvr6+YurUqSJLlizC19dX+Pr6isjIyE9f8+/nIjIyUowZM0b4+PiIJ0+eiNOnT4vatWuL/Pnzp/25SEqinTxZsgiRP78Q+/er85+WZml9LoTQr+vi2otrosWWFgJuEBWWVxA7bu8QiUlf/6DQokULUaFCBXHx4kVx8eJFUb58eeHs7PzF12jsuhBCBAcL0aYNvRJ06CDEq69vtJNCpwolIahNRv/+9GQ1bEi9mNQkpT3A2rVrRUBAgBg5cqSwtLQUQUFBQgghxo8fL1xcXD59/YIFC8TevXvF/fv3xe3bt8X48eMFALFnzx6RlJwk9gTs0duCKTIy8tNrAgDx999/C19fX/H06VMhxH+fi5Qt4KNGjRIBAQFi7dq1GW4PkFZnzghRtCi1E5gzR20t59L8XHzvutB3rq6uwtraWpw5c+aLeiImJubT16Tj2pBbKK1fv/6rja9oEOszAGL9+vWffp/SWDBv3rzC1NRU1K9fX/iru6OdBF9rEghAnD59+tPX/Pu5iImJEc2aNRO5cuUSxsbGomDBgqJ3797i2bNnaXvg+/eFqF+f/lcPHCjEhw/q+0elU1qfCyH047q4E3pHdNjRQcANotTSUmLn7Z0iKfn7Iw9v374VPXr0EFmzZhVZs2YVPXr0+M/WXk1cF8nJQqxZQwMkefJQ6yxdo3OFUooTJ4QoXFgIc3NqK6Cm4Td3d3dRqFAhYWJiIqpUqfLFtufevXuLBg0afPr9X3/9JYoWLSrMzMxE9uzZhYODgzh06NAX95eUnCQ8Ajy+KJguPb+klqya9K2mib179xZC/Pe5EIKaClauXFmYmJgIe3v7dDeczIjoaCHGjBHCwECIatXU04g1rc9Faq4LffWteuLf7xPpuDZ0r48S06LkZHoRNzenjzqnTslOpFiP3j0Svfb2EgZTDUShBYXEet/1IiFJTR8pNSAkhNpkAUL06SPEu3eyE32dzhZKQggRFfV5zqVpUyGeP5ed6JtSCqbyy8oLuEF02NFB3AvT4BxRJnfxohClSwthYiLEX39pvSUXSxsulDKt4GB68Qboxfw7nUtZ+oVGhYohB4cIo2lGIu+8vGLp5aUiNiFWdqzv2ruX1iLlykXLbnSRVo4wUZcjR4TIl48aVW7ZohuLu74hMSlRbPTbKAouKCgMpxqKwQcGi5cRL2XHUqTYWCHGjaOG7w4OQjx6JDsR+4ZU1Tl8KK7SbNtG2y8sLIB16/gAWw2IS4zDkitLMMN7BgDgd4ff8UvNX2BhrP2T6FMrIoJ26KxfT22yVq8GcueWner7NHIoria8fw8MGwb88w/QsSPtjMuZU3aqb4pNjIX7FXfMPDcTcUlxGFN7DMbWGYusplllR1Occ+eAXr3oLOYFC4D+/aWdv8y+Tu6huEzL3r4VoksXGkXq2pV+z9QqOTlZeAR4iKKLigrDqYZiyMEhIjRK7s7B1Dh7Vgh7e1rLv3atTg96fEGnp96+ZscOIWxsaNHXgQOy0/zQ+4/vxW/HfxNmM8xE3nl5xXrf9T9cU8fSLiLi8x6A1q2lHSfIvi5VdY4Odn1gaebtTS2Ujx6lT7XbtgHfaevO0s73lS8cNzmi/c72KJ6jOG653oK7kztyWeaSHe2b4uLouJGGDan1z82bQL9+/IlWYzp3Bm7fBqpWpW6Ew4ZRh28dlc0sG2Y3mY17w+6hoX1D9PXsi5prauLi84uyoylK1qzUt3T/fuDyZXqpPnZMdiqWFlwo6bPERGoV26gRdde+dYuaRzK1CY0OxYD9A1B1VVW8jnoNrx5e8OrhhTK5ysiO9l0PH1KD6QUL6HSaM2foEmEaZmtLZ1u4u9O7Y82adECeDitoXRDbOmyDdx9vJItk1FlXBz09eiI4Ilh2NEVp3ZpeoitVohUR48YB8fGyU7HU4EJJXz19SkMFM2cCbm7AqVMKP4hLu5KSk7Ds6jKUXFoSe+/uxZKWS3DL9RZaFGshO9oPbdsGVKkCfPgAXLxIo0qGhrJTZSIqFa0TvHyZhvWqVqXFYRlfD6pR9QrVw5UBV7C2zVocf3wcJZeWxDyfeUhIytjBsuyzPHnoeM1584CFC+nDzMOHslOxH+FCSR/t2UPjt8+fA2fPApMm8TuhGl15cQU119TE0MND0alMJ9wfdh9DawyFkUF6TvzRnuhoWizavTt9er1xg96jmSQVK9KZcV270pxnz54aP2A3owwNDNGvcj88+OUBBlYZiN9O/IYqq6rgwrMLsqMphoEBnY7j40MfZipXppOkmO7iQkmfJCQAo0fTzpqmTWnRSd26slMpxvuP7zHowCDUWlMLySIZF/tfxKrWq5DDQv3nRambvz8ddr99O2123LIF0OWNYpmGpSWwdi29Ex44QEN9GTwcWhusTK2woMUCXPv5GiyMLeCw3gED9g/A25i3sqMpRrVq9GGmXTuqofv2BWJiZKdiX8OFkr4IDqaptqVLgcWLgZ07gWzZZKdSjD0Be1DavTS239mOxS0X4+rPV1GrQC3ZsVJl3TqgRg3AyIjeg/v25QXbOqd7d3pXzJYNqFOH5l10fCoOACrbVoZPPx8sd1qO3QG7UXJpSazzXYdkkSw7miJkzQps2gRs3Ajs2AHUrs1TcbqICyV9cOIEfRJ99ox2uP3yC78TqsnLyJdov6M9Ou7qiNp2tRE4NBDDagyDoYHuT2XGxgI//0zTbT170pKY0qVlp2LfVKwYzbcMGwaMGkW75HR8Kg6g6bjB1Qbj3rB7aFm8Jfrv7w/HjY54+I7f0dWlVy/6+f34kabL9+2TnYj9GxdKuiw5GZg+HWjWjCayfX2BWvoxyqHrhBBYfX01yriXgc9zH+zqtAsenT2QL2s+2dFS5ckTmnXdsoVGlFavBszNZadiP2RiAvz9N7B7N7XzqF6dWgrogTxZ8mBzu8047nIcT8OfosLyClhwcQGSkpNkR1OE8uVpRLhJE5qOGzeONjYz+bhQ0lVv3wJOTrT9f/Jk2iqhw91+9cnDdw/huMkRAw8ORPvS7REwNAAdy3SESk9G6Q4fpk+dHz7QAEXfvrITqZe7uzvKlCmD6tWry46iOR060LuiqSm1ENCj1bxNijSBv6s/fq7yM8YcGwOH9Q4IfBMoO5YiWFlRDT1/PtXTjRsDr17JTsX4CBNddOUK0KkTbWPaupWPIVGTpOQkLLy0EBNPT4RtFlusar0KTYo0kR0r1ZKSgKlTaZDR2ZnWNmTPLjuV5ujNESYZERMDuLrS/8wRI2jfuJFu7678twvPLqDf/n4I+hCEKQ2mYGydsTA2NJYdSxHOnQO6dKGlbDt2APXry06kSKn6dMwjSrpm3TqgXj1qXOfry0WSmjx5/wSOmxwx9vhYDK46GP6u/npVJL1/TwOMM2fSzdNT2UVSpmFhAWzYQJs03N3p5z0sTHaqVKtbsC78BvlhVK1RmHR6EmqtrcWjS2pSrx6t/y9VCnB0BBYt0ov1/4rEhZKuSEykT5T9+wO9e9OibW4gmWFCCKzzXYcKKyrg6YenONX7FBa0WABLE0vZ0VItMJB2tV25Ahw5AvzxB/ViYQqhUgFDh9KmDX9/2jfu5yc7VaqZG5tjdpPZuNT/EmISYlBlVRUsubwEapityPTy5gWOH6e1/yNHAgMGUA9Tpl38cqsL3r4FWrSgT5RLlwIrV9KiT5Yhr6Neo+32tui/vz86l+mMW6630NC+oexYaXL4MK3fNzUFrl6l9llMoRo0oHVLNjbUQmDHDtmJ0qR6/uq4PvA6BlQegOFHhqPF1hZ4GflSdiy9Z2QEzJ1Ls7Nbt9Lo0uvXslNlLlwoyXbnDg0X+PnRJ8qhQ3nrvxrsDdyLcsvL4VLwJezrsg9r266Flan+rHMRAvjrL1qL1LAhHUVStKjsVEzjChYEzp+nbU9duwLjx9PiND1hYWyBJa2W4EiPI/B/7Y/yy8tjd8Bu2bEUwcWFDmJ48uRzs0qmHVwoyeTpScMFlpY0XNCwoexEei8mIQY/7/8Z7Xe2h0NBB9wechttS7WVHStNPn6kvkjjxwMTJgB791JjOpZJWFhQ34d582gowdkZCA+XnSpNmhdrDn9XfzSyb4ROuzqh195eCI/Vr3+DLqpZk94q8uYFHBz0btBRb/GuNxmEoBW5kyYB7dtTW9YsWWSn0nv+r/3RZXcXBH0IwuKWi9G/cn+92fKf4sUL4KefaKBxwwbqSZhZZYpdbz9y/DjtgC1QADh4ELC3l50oTYQQ2HRzE37x+gU25jbY0n4LHAo6yI6l9z5+pGazW7fSh6lp03jdYjrxrjedFBsL9OhBRZKbG7BrFxdJGSSEwPKry1F9dXUYGRjh2sBrGFBlgN4VSdeu0ZD669fAhQuZu0hi/69pU5p3jYmh4YTLl2UnShOVSoXelXrjlust2FnboeGGhph1bhYfgZJB5ubA5s00Pf/nnzRTGxkpO5VycaGkTWFh1HZ1714qkKZM4Y8BGfT+43t02NkBQw4PQf/K/XF5wGWUyVVGdqw027+f1vLa29PQeuXKshMxnVG6NBVIxYrR9PyuXbITpZl9Nnuc7n0av9X9DRNOTUDLrS0RGh0qO5ZeU6moe/eBA8Dp09Rn6cUL2amUid+lteXBAzrx8P59uqo7dpSdSO9deHYBlVZWwumg0/Do7AF3J3eYG+vfOR6LF9N0W8uWwKlTQJ48shMxnZMrF3DyJA0ddO4MzJqld011jAyMMLPxTBzpeQS+r3xRaUUlnAk6IzuW3nNyohHot29pyeutW7ITKQ8XStpw/jwVSYaGwKVLfF5bBiWLZMw+PxsNNjSAnZUdbg6+iXal28mOlWZJSdQ6a8QI4NdfgZ07+bw29h1mZrQoZcoUaqbVty8QHy87VZo1K9oMNwffRMmcJdF4U2NMOzuNz4vLoPLl6a0lVy5a5H30qOxECiOEyOiNfc+2bUKYmAjRoIEQb9/KTqP33n98L9psayPgBvHHiT9EQlKC7EjpEhUlRJs2QhgYCLF8uew0umXp0qWidOnSokSJEgKACA8Plx1J92zZovevK4lJiWLK6SlC5aYSjhsdxavIV7Ij6b3ISCGcnIQwNBRi1SrZafRCquoc3vWmKULQ8PiECdQAY/Vq6hrI0u3W61tov6M93n58i83tNsO5hLPsSOkSEkI7vu/do1Gkli1lJ9JNvOvtB86fpznbHDloCEHPdsSlOPXkFHp49AAA7Oq0i3fFZVBiIjB8OLB8ObUYmTmTl8J+B+96kyYxERg4kIqkKVNo+z8XSRmy6eYm1FpTC1lNs+L6wOt6WyTduUObl169okMvuUhi6ebgQPMtiYk0tX/zpuxE6eJY2BG+g3xRIkcJNNrYiI8/ySAjIzrkYd482hXXvTtttmbpx4WSusXEUG+kDRvo5ubGnbYzIC4xDq4HXdF7X290KdcFPv18UCR7Edmx0uXCBXpvy5aNNjFVqiQ7EdN7xYoBPj5Avny07en0admJ0iVvlrw44XICw6oPw/Ajw9FrXy/EJMTIjqW3VCpgzBjaIOnpCbRqBUREyE6lv3jqTZ3evwfatKHe8nv20PltLN2ehT9Dp12d4Bfih6Utl+plb6QUBw7QZqWaNemFy9padiLdx1NvaRAZCXToQGdcbN6s1024tvlvQ//9/VEiRwl4dPHQ2w9GuuLcOaB1a6BIEcDLi3fV/g+eetOqly/pE11AAO3x5iIpQ84/O49qq6rhddRrXOh3AT9X/Vlvi6R162hXd6tWwJEjXCQxDcialTp3d+pEZ8QtWSI7Ubp1K98NlwZcQlR8FKquqgqvB16yI+m1evUAb29aG1m3LvD4sexE+ocLJXW4f59O+/7wgRZY1qwpO5FeW3tjLRw3OqJMrjK4NvAaquWrJjtSuqSs5+/fn44b2LmTdngzphEmJnTE/OjRtJr3jz/0rtdSigp5KuDqz1dR164unP5xwtwLc3ndUgZUqEAztAYG9Fbl5yc7kX7hQimjrl+nhSfm5nQlli4tO5HeSkxOxMgjIzHgwAD0q9wPx1yOIadFTtmx0iU5GRg1it6r3NyAZcuojVZmMXPmTNSpUwcWFhbIli2b7DiZh4EBreKdN4+q9L59abG3Hspunh37u+3HeIfxGHdiHPp69kVcYpzsWHrL3p4+xxcoQKcAnDkjO5H+4EIpI06epCMFihShK9DOTnYivfX+43u02toKS68shXsrd6xwXgETQxPZsdIlIQHo1Ys6bi9fThsf9XTWMN3i4+PRqVMnuLq6yo6SOY0ZQ80pt26lUwD0dNuTgcoAfzb+E1vabcH229vRaGMjvI56LTuW3sqdm9b716hBq0M8PGQn0g+8mDu9du0CevYEGjWihduWlrIT6a27YXfRZlsbhMWEYXfn3XAs7Cg7UrrFxQFdugCHD9N7VKdOshPJtWHDBowcORIfPnxI8/fyYm41OHyYFnnXrQvs26fXB3BfDr6Mn3b8BGMDY+zvth+V8laSHUlvxcUBvXvT29jKlcCAAbITScOLuTVmzRp6N+zYkU4z5SIp3Y48PIJaa2rByMAIV3++qtdFUnQ07S45epTekzJ7kZRWcXFxiIiI+OLGMihlB8GVK0DTprQzV0/VLFATV3++ilyWuVB3XV14BPJwSHqZmgL//AMMHkzrJxctkp1It3GhlFYLF9KVNWQIbcM10c/pIV2w+PJiOP3jBIeCDrg04BKK2hSVHSndwsNpKNvHhz7Et2olO5H+mTVrFqytrT/d7HgqWz0aNKCduPfv01KB1/o7dVXAqgDO9T0Hp+JO6LCzA2Z6z+RF3ulkYAAsXQqMHQuMHAn8+afsRLqLC6W0mDmTVuiOG0fbb7kvfLokJSdh5JGRGHFkBEbVGgXPrp6wMtXfqZW3b4HGjYHbt4ETJ2g2Vonc3NygUqm+e7t27Vq67//3339HeHj4p9vz58/VmD6Tq1aN9oi/eUP7xZ8+lZ0o3SyMLbCj4w64NXDDxNMTMWD/ACQkJciOpZdUKurePXUqHSQxYYLebpTUKCPZAfSCEHQFzZoFTJsGTJyY+Vbnqkl0fDR6ePTAgfsH4N7KHUOqD5EdKUNCQmhG4/VrWiSp5G7bw4YNQ9euXb/7NfYZOG/M1NQUpnzUj+aULUubTpo0oWLp1Cnq7K2HVCoVpjScgiLZi6D//v4IjgzGrk679PoDlywqFTB5Mq0g+fVXWkKwYAG/xf0bF0o/krLPe/FiYP586lHC0uV11Gu03tYaAW8CsL/rfjiVcJIdKUOePaORpJgY+rBeqpTsRJqVM2dO5Mypn+0a2P8rUoRaNTduTFNyp08DJUrITpVuLhVdkN8qP9rvaI966+vhcPfDyG+VX3YsvTRmDGBhQatKoqOBFSsyV0uT7+G5o+9JTgYGDaJpthUruEjKgIA3Aai1thaCI4Lh3ddb74ukBw/oQ3lSEr3vKL1ISqtnz57Bz88Pz549Q1JSEvz8/ODn54eoqCjZ0Vj+/NREx9qaiqW7d2UnyhDHwo640O8C3n98j1pra8H/tb/sSHrL1ZWOKF23jlqc6GkLLrXj9gDfkpwMDBxIV8yGDXTVsHQ5G3QWbbe3hZ21HQ53Pww7a/1epHvvHq1DsramNUn5+QPsf/Tp0wcbN278z5+fPn0aDRs2TNV9cHsADQsNpZGl0FCahitbVnaiDHkZ+RLO/zjj4buH2NN5D5oWbSo7kt7atQvo3p2OLt2+HTA2lp1IY1I1wciF0tf8u0jauBFwcZGdSG95BHqg255uqF+oPnZ32g1rM/0+6CylSMqend5b+IBJzeFCSQvevKE1Sy9fUgPdChVkJ8qQyLhIdN7dGScen8Aq51XoW7mv7Eh668ABasHl7Azs2KHYYon7KKULF0lqs/r6anTa1QntSrXDwW4HuUhiTNfkykUXs50d4Oio94eAZTXNigPdDqBvpb7ot78fpp2dxu0D0ql1a+rcffAgnbOckIk3FnKh9G9cJKmFEAIzvGdg4MGBGFJtCP7p8A9MjfR7NxMXSUyxcuSg0aTChalYun5ddqIMMTIwwkrnlZjRaAamnJmCEUdGIFkky46ll5yd6eCJAweAbt0yb7HEhVIKLpLUIlkkY8SREZh0ehKmNZyGxS0Xw0Cl35fZ/ftcJDGFy54dOH6cdsA1bkydvPWYSqXChPoTsMJpBZZeWQqXvS6IT4qXHUsvtW5NxdL+/Zm3WNLvdzB14SJJLeKT4tHDoweWXlmK5U7LManBJKj0vBlHSjNjLpKY4mXLBhw7Rou6mzXT+5ElABhUbRB2dtqJ3QG70XZ7W0THR8uOpJdatwZ276ZiqXv3zFcscaHERZJaRMVHofW21vAI9MDOTjsxuNpg2ZEyjIskOdzd3VGmTBlUr15ddpTMx8oK8PKifhfNmgG3bslOlGEdy3TEoe6HcO7pOTTd3BTvPr6THUkvtWlDu+E8PYEePTJXsZS5d71xkaQWYTFhcPrHCYFvArGv6z69Ptg2BRdJ8vGuN4k+fKApuOfPgbNngdKlZSfKsCsvrqDV1lawzWqLIz2OcGPKdPL0pAO/f/qJDtY10u+21bzr7buEoO5aXCRlSHBEMBzWOSDoQxDO9DmjiCLpyRNa05otGxdJLJNKmYbLk4cKpocPZSfKsBr5a+Bc33P4EPsBddfVxYO3D2RH0ktt29LI0t691F4wKUl2Is3LnIWSEHSozapVwNq1XCSl05P3T1BvfT3EJsbifN/zqGJbRXakDHvxgtrKmJvTRiAuklimlSMHdVS1sqJPDkFBshNlWOlcpeHTzwdmRmaov6E+7oTekR1JL7VtS40od+ygwyuSFb6pMHMWSlOnAn//TUeT9OWGZOlx/+191FtfD0YGRvDu643iOYrLjpRhKb33EhLo/cHWVnYixiTLk4c+MZiY0MhScLDsRBlmZ20H777eyG2ZGw03NoTvK1/ZkfRShw6fjzsZNYrGH5Qq8xVK8+ZRoTRrFjBsmOw0eul26G3UX18f1mbW8O7jjYLWBWVHyrD372nt6vv39L5QqJDsRIzpiPz56YciMZGKpZAQ2YkyLLdlbpzufRr22ezhuMkRl4Mvy46kl1xcgOXL6cz4iRNlp9GczFUorVgBjB0L/PEHMH687DR66carG2i4oSHyZsmLM73PwDar/g+7REYCrVoBz57RSFJx/R8cY0y9ChWiBXtRUTTsGhYmO1GG2Zjb4ITLCZTNVRZNNjeB91Nv2ZH00qBBwPz5wJ9/0k2JMk+htHkzMGQIMHw4MGOG7DR66VLwJThudERRm6I43fs0clnmkh0pwz5+pG2vAQG0drVcOdmJGNNRRYtSsRQWBjRtSsOves7azBpHeh5Bjfw10GJLC5x4fEJ2JL00ejRN1EyYACxcKDuN+mWOQsnDA+jTh9YjLVgA6HkTRBnOBp1F081NUT5PeRx3OY7s5tllR8qw+HiaZ79yBTh0CKhaVXYixnRcyZI07PrsGXUhjImRnSjDsphkwcFuB9HQviGc/3HGwfsHZUfSS5MmAePG0Xql1atlp1Ev5RdKR47QiX6dOtEuNwPl/5PV7cTjE2i5tSVq5q+JIz2OwMpU/3vaJCZSh9mTJ6kviIOD7ESM6Yly5YDDh+kA3U6dFNF50NzYHHu77EWr4q3Qfkd7eN71lB1J76hUwOzZwNChNB23c6fsROqj7Krh3DmgXTugRQuaejM0lJ1I75x8fBKtt7VGQ/uGONj9ICxNLGVHyjAhqM/ovn3UD6RJE9mJGNMzNWtSI53jx2mkXgH7w02NTLGj4w60LdUWnXZ1wv57+2VH0jsqFS3s7t4d6NmTLg8lUG6hdOsWDQ3Xrk2lrbGx7ER65/ST05+KJI8uHjAzMpMdSS1++w1Yv576jLZpIzsN+198hImeaNoU2LqV2jOPHKmI/eHGhsb4p/0/aFOyDTru7IgD9w7IjqR3DAzo9bVJExqn0PPzlQEo9QiTJ0+AunWpEc7p09QwjaXJ2aCzaPVPKzgUdIBnV0/FFElz59I8+qJFtK6f6S4+wkRPrFwJDB5Mq3knT5adRi0SkhLQbU837L+3H3s670Hrkq1lR9I70dFUS9+/T5M7OnoKTiY9wiQ0lBriWFrSPDq/wKbZuafn0OqfVqhjVwf7uuxTTJG0YQMVSRMmcJHEmNoMGgTMnAlMmQK4u8tOoxbGhsbY1mEb2pRsgw47O/AC73SwtAQOHgTy5qW35OfPZSdKP2UVSikNcaKiPp9TxNLkwrMLaLm1JWoVqAXPrp4wNzaXHUkt9u8HBgyg1/Tp02WnYUxhfv+dtjv98guwbZvsNGqRUiy1Ltka7Xe052IpHWxsgKNHaXlws2b6235LOYVSXBxNiD54QDvdCheWnUjvXHx+ES22tkD1/NWxv+t+WBhbyI6kFufOAV260OXh7s7dIRhTO5WKTj1wcaGTUo8ckZ1ILYwNjbG9w3Y4l3BGh50dcOj+IdmR9E7+/DRu8fYt4ORE4xj6RhmFUlIS/YCePw8cOABUrCg7kd65HHwZzbc0RxXbKjjYTRm72wDgzh1asF2nDrBlC298ZExjDAyANWuAli2B9u2VsYoXVCzt6LgDrYq3QoedHXDy8UnZkfROiRKAlxcQGEiXRny87ERpo/+FkhC04GTPHjrKuH592Yn0ztUXV9FsSzNUzFsRh7ofUkyRFBxMnSEKFaKdzKamshMxpnDGxvQ6XKkSDR88fCg7kVqkjCw1KtwIbba3wYVnF2RH0jtVq1JLlrNnaRmEPm2S1P9C6a+/gGXLaOdF27ay0+idW69vofmW5iibqywOdz+MLCZZZEdSi/BwWq5mYMBr+hnTKnNzGtm3saFPKqGhshOphamRKTw6e6BG/hpo9U8rXH95XXYkvePoSJtqNm/Wrw2S+l0obdtGiwinTKESlaXJvbB7aLq5KYpkLwKvHl7IappVdiS1SFmuFhxMSyXy5ZOdiLFMJkcO+uGLigKcnWmvuAKYG5tjf9f9KJOrDJptaYbbobdlR9I73bpRB+8ZM/TnqBP9LZTOnqXz23r3pkKJpUnQhyA02dwEOS1y4kjPI7A2s5YdSS2Sk+my8PGhnW462ruDMeUrXJiGcwMDaTdFYqLsRGqR1TQrDnc/jILWBdFkUxM8ePtAdiS9M24c4OpKNy8v2Wl+TD8LpcBA4KefgHr16Pw23saUJq8iX6HJpiYwNTTFCZcTyGmRU3YktRk3jpZI/PMPn9/GmHRVqgC7d9Me8SFD9GthyndkN8+OYz2PwcbcBo03NcbTD09lR9IrKUedtGxJxwXeuCE70ffpX6EUEkLPboECtIDbxER2Ir0SFhOGJpubIC4pDid6nYBtVlvZkdRm8WJg/nz6tX172WkYYwCA5s1pjmX1appvUYhclrlwotcJGBsao/GmxngZ+VJ2JL1iZARs306j/k5OwFMdrjX1q1CKjqb57oQEGtK1VsZ0kbaEx4aj+ZbmCIsJwwmXE7DPZi87ktrs30/HTf36KzBsmOw0LCP4rDcF6tOHOr1OnkznwylEvqz5cLLXScQlxaHJpiZ4E/1GdiS9ktK929ycxj/ev5ed6Ov056y3xERaoXvmDHUQrFRJKw+rFLGJsWi5tSX8QvxwpvcZVMyrnF5TN27QLGyLFsCuXbTTjek/PutNYYQA+vWjefGTJxU1N37/7X3UX18fdtZ2ONXrlGI2xmjLvXvU6658eZql1WIrFwWd9ZbSK8nLi+a7uUhKk6TkJPTw6IFLwZdwoNsBRRVJwcFA69ZA2bK05ZSLJMZ0lEpFbVzq1KE1pgrpsQQAJXKUwJGeR3D/7X2039kecYlxsiPplZIlAU9P4NIloG9f2pSjS/TjbWXuXGD5cvoha95cdhq9IoTAkEND4HnXEzs77oRDQeV8iouKoiLJyIim3iyUceIKY8plYkJrS3PkoIUpujrXkg6V8laCZ1dPnHt6Dr339UZScpLsSHrFwYE+7G7fDvzxh+w0X9L9QmnXLuC334CJE4H+/WWn0TuTT0/GqhursKbNGrQu2Vp2HLVJSqJ+HI8eAYcO0QnVjDE9YGNDP7RhYfp5nsV3NLRviG0dtmFXwC6MODICaljakql06kRHBv71F7B2rew0n+l2oXTlCh2w2L07MG2a7DR6Z8nlJZhxbgb+avIX+lTqIzuOWo0eTTOxu3YB5crJTsMYS5Nixeg8Cx8fYPBgxbQNAIB2pdthpfNKuF91x3Tv6bLj6J1Ro4CBA+myOHtWdhpiJDvANz1/TkeSVK5MpSX3SkqT7be3Y8SRERhTewzG1hkrO45aLV1KLQCWL+eZWMb0Vr169Nru4kKnpo4fLzuR2gyoMgCh0aGYcGoCclvmxuBqg2VH0hsqFb3GP3z4+WzlokUlZ9LJXW9RUfRD9O4dPUt58qj9IZTs+KPjcPrHCV3LdcWGnzbAQKXbA4dpcegQ0KYNtQKYP192GqZJvOstk5gyhWYMdu6kuReFEEJg1NFRWHx5MXZ22omOZTrKjqRX3r0DatUCDA2BixeBbNk08jCpGoHRvUIpOZnKyJMnaVi2fHm13r3SXX1xFY02NkID+wbY12UfjA2NZUdSm5s3acGfoyPg4UE/QEy5uFDKJIQAevQA9u6l9i81a8pOpDbJIhkue12wO2A3Dnc/jMZFGsuOpFfu36diqXp1+pBspP45MD1tD/D773Ty9PbtXCSl0b2we2j1TytUyFMBOzvuVFSR9Po17XArUYLasHCRxJhCqFTAunV03EmbNkBQkOxEamOgMsD6tuvRyL4R2u1oh5shN2VH0islSlBHoFOnaO2SLLpVKK1fD8yZQ3MqTk6y0+iV0OhQtNzaErkscuFg94OwNLGUHUlt4uJokDEhgXptWCrnn8YYAwAzM1rcbWlJxVJUlOxEamNiaILdnXejmE0xOP3jhOCIYNmR9IqjI+DuTuuWli2Tk0F3CiVvb2DQIFruPmKE7DR6JSYhBq23tcbHxI/w6uEFG3Mb2ZHURgg6S/PaNRqZL1BAdiKmaXyESSaVKxc1RHvyBOjdW/e6DmZAFpMsONj9IAwNDOH0jxMi4iJkR9IrAwfSutThw4Hjx7X/+LqxRunpU5qELFeO+pcbK2fKSNOSkpPQaVcnHH10FN59vFE1X1XZkdRq0SL6Adm4kTpFsMyD1yhlUp6e1LnbzY0WeivIndA7qLuuLmoWqImD3Q4qanmEpiUl0WDjhQvUwbtUKbXcrZ6sUYqJoTPcLC1p1wMXSWky9vhYeN7zxI6OOxRXJB07Rv2Sfv2ViyTGMo22bekAXTc32rWhIGVzl4VHFw+cfnIagw8O5oaUaWBoCGzbRrMKzs7abeout1ASgrpt37tHnyJy5pQaR98subwECy4twJKWS+Bcwll2HLV68ADo0gVo1gyYPVt2GsaYVk2YQK0CevUC/P1lp1Erx8KOWNtmLdb5rcPMczNlx9ErVla01+v9e6BrVxpl0ga5hdKcObS7bcMGoEIFqVH0jeddz08NJYdUHyI7jlqFh9MQa5489AmCd7gxlsmoVLS5p3hxejEIC5OdSK1cKrpgWsNpmHR6Erbc2iI7jl4pXJgmn06epE3y2iCvUPLyon9lyicHlmpXX1xFtz3d0L50e8xpOkd2HLVKOcPt1Sta16mhJmOMMV1naUk74aKj6T0iIUF2IrWaWH8i+lXqh36e/XDqySnZcfRK48Z0JtzcudQuRtPkLOa+fx+oUYO6b3t6Agbyl0rpiyfvn6DW2lookr0ITvU6BXNjc9mR1GrcOOoO4eVF024s8+LF3AwAcO4c7REfNIj2iCtIQlICnP5xwpUXV3Ch3wWUzV1WdiS9IQRtjty1ixZ4V6mSrrvR0c7cERGfO69eugRYW2f08TON9x/fo+66uohLisOl/peQyzKX7Ehq9c8/1KD377/lNhdjuoELJfbJypV0SuqqVcDPP8tOo1YRcRGot74ePsR+wKX+l2Cb1VZ2JL3x8SNQvz4QGgpcvQrkzp3mu9DBXW/JyUDPnjSv4unJRVIaxCXGof3O9ngd/RpePbwUVyTdvAkMGECXx8iRstOwjAgKCkL//v1RuHBhmJubo2jRopgyZQri4+NlR2P6atAgwNUVGDoUOH9edhq1sjK1wqHuh5CUnITW21ojJiFGdiS9YW5O/fViYzU7O6vdQmnKFODgQRo6KFFCqw+tz4QQGHxoMHye+8CzqydK5FDWc/fuHXWIKFmSPjiqUlXjM1119+5dJCcnY+XKlbhz5w4WLFiAFStW4I8//pAdjemzRYuAOnWAjh2Bly9lp1GrAlYFcLD7QQSGBaL3vt5IFspptqlpBQoAe/bQwbkam4kQQmT0ljq7dgkBCDF7dqq/hZG5F+YKuEFsublFdhS1S0wUonlzIWxshHjyRHYapilz5swRhQsX/u7XxMbGivDw8E+358+fCwAiPDxcSymZzgsJESJ/fiHq1BEiLk52GrXzCPAQcIOYfGqy7Ch6Z8UKKjHWrEnTt6WqztHOiFJSEo0mde1Kq3VZqh28fxDjjo/D7w6/o0eFHrLjqN2UKdSSfvt2wN5edhqmKeHh4bCx+f7ROrNmzYK1tfWnm52dnZbSMb2RJw+t3r16lTrRKky70u3wp+OfmOY9Ddtvb5cdR68MGkS36dNpKk6dtLeY+80b2u5pYZHRx8s0bofeRu21tdG4cGN4dPGAgUpZuwP37aMpt9mzgd9+k52GacqjR49QpUoVzJ8/HwMGDPjm18XFxSEuLu7T7yMiImBnZ8eLudl/LVtG65W2bKEdIAoihECvfb2wO2A3zvY5ixr5a8iOpDfi44G3bwHb1K+H19FdbyxVwmLCUGN1DWQ1zYoL/S4gi0kW2ZHU6u5d6hDRvDk1D+N1SbrPzc0NU6dO/e7XXL16FdWqVfv0+5cvX6JBgwZo0KAB1qxZk6bH411v7JtS9obv3k27pxXWsDg2MRaNNjbC0w9PceXnKyhgxaeBawgXSvoqPikeTTc3ReCbQFz9+SoKZSskO5JaRURQkWRoSK9xWbPKTsRSIywsDGE/6JBsb28PMzMzAFQkNWrUCDVr1sSGDRtgkMZ+aVwose+KiaHF3VFRwLVriutO+zrqNaqvro5clrng3ccbliaWsiMpERdK+kgIgZ8P/IzNtzbjVK9TqFuwruxIaiUE0KEDtZ+/epU3PyrVixcv0KhRI1StWhVbtmyBYTrOoeFCif3Qo0dAtWrUvHjfPsU1L74ZchN119VFy+ItsaPjDsUtv9ABOthHif3QosuLsNZ3LVY5r1JckQRQM8m9e4FNm7hIUqqXL1+iYcOGsLOzw7x58/DmzRuEhIQgJCREdjSmNEWLAlu30kmps2bJTqN2FfNWxJb2W7A7YDfczrjJjpNpGckOwD7zeuCFMcfGYGydsehdqbfsOGp3/jwt2h43DmjbVnYapinHjh3Dw4cP8fDhQxQo8OXaCjWMYDP2pVataPvspEk0utS8uexEavVTqZ8wq/Es/H7yd5TOWRrdyneTHSnT4ak3HRH4JhC11tZC/UL1sa/LPhgapH2qQpeFhgKVKwPFitG0mxGX6OwHeOqNpVpyMuDsDFy+DFy/rrheI0II9N7XG7sCduFCvwuoYpu+g83Yf/AaJX3xIfYDaqyuARNDE/j094GVqbLeFJKS6EPe7duAr2+atm6yTIwLJZYm797RiFL27HRK6v9vKlCK2MRY1F9fH6+jX+Paz9cUd4yVJLxGSR8kJSehh0cPvIl5A8+unoorkgBg6lTg9Glg2zYukhhjGmJjQ2dZBAQAw4bJTqN2ZkZm8OjigdjEWHTe3RkJSRo62Iz9BxdKkk05MwVeD7ywrcM2FLUpKjuO2nl5UafU6dOBRo1kp2GMKVrlytSMcu1aYPNm2WnUroBVAezutBvnn53H2ONjZcfJNLhQksgj0AMzz83En43/RItiLWTHUbtnz4CePWmt5fjxstMwxjKFvn2pGeXgwUBgoOw0alevUD0sarEIiy4vwqabm2THyRR4jZIkd0LvoOaammhVvBV2dNwBlcJaU8fHA/XrA69eATduADlyyE7E9IW7uzvc3d2RlJSE+/fv8xollnbR0dTVVqWiBd6WymrWKITAgP0DsNV/K873O49q+ar9+JvY1/Bibl31/uN71FhTA+ZG5vDp76O440kAYMQIYPlyaglQg48qYunAi7lZhgQEANWrA507A+vXy06jdrGJsWiwoQFeRr7E9YHXkdsyt+xI+ogXc+uilMXbb2PeYm+XvYosknbuBBYvBhYs4CKJMSZJmTL0aW3DBropjJmRGTw6eyAhKQGddnXixd0axIWSlk05MwVHHx1V7OLtBw+A/v2Brl2BIUNkp2GMZWq9egH9+tGL0e3bstOoXX6r/NjTeQ8uPr+IMcfGyI6jWDz1pkUH7h1Am+1t8Kfjn/i93u+y46hdXBydURkZST3f+LBblhE89cbUIiYGqFkTSEykAyazKG8Uf8W1FXA95IrN7TajZ4WesuPoE5560yWP3z+Gy14XtC3ZFuMdlLkFbNw4+tC2YwcXSYwxHWFhAezaBTx/Dri60sncCjOo6iD0rtgbAw8MxO1Q5Y2cycaFkhZ8TPiIDjs7IKdFTmz4aYPidrgBgKcnrUuaN49amTDGmM4oVQpYuRLYsgVYt052GrVTqVRY5rQMxXMUR4edHRARFyE7kqJwoaQFww4Pw92wu9jTeQ+ymWWTHUftnj2j1iU//aTIhriMMSXo0QMYMAD45RfaEacwFsYW2NN5D0KiQtDPsx8fQK1GXChp2Noba7HObx1WOK1AxbwVZcdRu8REoHt3mvZfu5baljDGmE5atIgOzO3aFYiNlZ1G7YrZFMOGthuwJ3APFl5aKDuOYnChpEE3Xt3A0MNDMbDKQPSu1Ft2HI1wcwMuXaJz3GxsZKdhjLHvsLAAtm8H7t8Hfv1VdhqNaFe6HX6t/SvGnRiH88/Oy46jCLzrTUPefXyHqquqIod5Dpzvdx5mRso6yRoATpwAmjUDZswA/vhDdhqmNLzrjWmMuzutE9i3D2jbVnYatUtMTkTjTY3x4O0D+A7yRZ4seWRH0lXcmVuWZJGMNtvawOe5D24MugH7bPayI6nd69dAxYpA+fLA0aOAAY9NMjXhI0yYxgkBtG8PeHsDN28CBQrITqR2ryJfofLKyiiTqwyOuRyDkYGR7Ei6iAslWWZ6z8TE0xNxqPshtCreSnYctUtOBlq2BPz86DUmb17ZiZgS8YgS06h37+jTXpEiwKlTgKGh7ERqdzboLBpvaoyxdcZiVpNZsuPoIu6jJMPxR8cx6fQkTKo/SZFFEkBHkxw7BmzezEUSY0xP2dgAW7fSgZQzZ8pOoxEN7BtgVuNZmH1hNvbf2y87jt7iESU1ehHxApVWVkLlvJXh1cMLhgbK+4Ti50fntw0fTj2TGNMUHlFiWuHmBkyfDpw5A9SrJzuN2gkh0H5ne5x+cho3Bt1AkexFZEfSJTz1pk0pi+cevnsIv0F+yGWZS3YktYuJAapVA0xMgMuXAVNT2YmYknGhxLQiMRFwdASCguiToAK3736I/YBqq6ohq2lWXOx/UZGbi9KJp960adrZaTj/7Dy2ddimyCIJAMaOBZ48Af75h4skxphCGBnRFFxUFPDzz4o84iSbWTbs7rwbgW8C8esxZbZF0CQulNTgxOMTmOE9A1MbTkX9QvVlx9GIgweBZcuAv/8GypSRnYYxxtTIzg5Yswbw8AA2bJCdRiMq5a2EBc0XwP2qO3YH7JYdR6/w1FsGhUSFoNKKSiifpzyO9DiiyHVJISFAhQp0APf+/dx9m2kHT70xrevfH9i5k6bgihaVnUbthBDosrsLjj46Ct9BvrxeidcoaV5SchKabWmGgDcB8Bvkp8imXsnJgJMT4OsL3LoF5M4tOxHLLLhQYloXGQlUqkQvdOfO0bScwoTHhqPyysrIaZET5/udh4mhiexIMvEaJU2beW4mTj85ja3ttyqySAKApUuBI0doNJqLJMaYomXNCmzZAly5Avz5p+w0GmFtZo2dnXbCL8QP40+Mlx1HL3ChlE5ngs5g6tmpmNxgMhwLO8qOoxH+/sC4cdQKoEUL2WkYY0wLatcGJk4Epk2j7b0KVC1fNcxtOhcLLi3g/kqpwFNv6RAaHYpKKyqhVM5SOO5yXJHrkmJjgerV6b+vXgXMeDcp0xI+woRJl5AAODhQ925fXyBLFtmJ1E4IgXY72sH7qTf8BvuhoHVB2ZFk4DVKmpAsktFya0v4hfjBb5AfbLPayo6kESNHAitWUJFUvrzsNCwz4jVKTKoHD4DKlYFu3YDVq2Wn0Yh3H9+h8srKyJ81P872OQtjQ2PZkbSN1yhpwt8X/8axR8ewud1mxRZJR44AixYBc+ZwkcQYy6SKFwcWLqS2Afv2yU6jETbmNtjeYTuuvLiCqWenyo6js3hEKQ2uv7yO2mtrY2StkZjTdI7sOBrx9i1Qrhxt/Dh8mFsBMHl4RIlJJwTQrh2dB+fvD9gq88Pxn+f+xMRTE3Gq9yk0tG8oO4428dSbOkXFR6HKyiqfWsArcUulEECXLsDJk8Dt24p9TWB6ggslphPevKFGchUrAl5eivz0mJSchCabm+DB2we4OfgmcljkkB1JW3jqTZ1GHhmJF5EvsK3DNkUWSQCwfTuwaxd14OYiiTHGAOTKBaxfDxw9Cri7y06jEYYGhtjSbgs+Jn5E//39oYYBFEXhQikVdt3ZhbW+a7Gk5RKUyFFCdhyNePECGDoU6NqVRpUYY4z9vxYtgGHD6MDLu3dlp9GI/Fb5sa7NOnje88SKaytkx9EpPPX2A8/Cn6HiiopoWqQpdnTcAZUCh12FAFq1Am7epCk3BR6ezfQQT70xnRITQ7vgsmUDLlxQZNduABhyaAjW+63H1Z+volzucrLjaBpPvWVUUnISenr0RFaTrFjpvFKRRRIArFpFO93WruUiiTHGvsrCAti4Ebh2jbYEK9T8ZvNRNHtRdNvTDR8TPsqOoxO4UPqOWedn4cLzC9jafiuym2eXHUcjHj4ERo8GBg0CWraUnYYxxnRYrVrAb78Bbm40BK9A5sbm2NZhGx68fYCxx8fKjqMTeOrtGy4+v4h66+vhj3p/YFqjabLjaERSEtCgAfDqFf3MK7D5LNNjPPXGdFJcHB1boFJRR14TZW7ucb/ijmFew+DZ1RNtSraRHUdTeOotvcJjw9Hdoztq5K+ByQ0my46jMfPnAz4+NJrMRRJjjKWCqSmwaRMQEEDnwSnUkOpD0LpEa/Tf3x+vo17LjiMVF0pfMfTwULyNeYut7bfCyECZC/b8/YFJk2gTh4OD7DSMfebu7o4yZcqgesphg4zpmkqVgMmTgdmzgStXZKfRCJVKhTVt1sBAZZDpWwbw1Nv/2HJrC1z2umBr+63oXr677DgaER8P1KhBU2/XrtEHJMZ0DU+9MZ2WkADUqQNERQE3bgDm5rITacTB+wfReltrrHBagUHVBsmOo2489ZZWQR+CMOTQEPSs0FOxRRIATJ1Ko8abN3ORxBhj6WJsTOsWnjwBJk6UnUZjnEs4Y2CVgRh9bDQevH0gO44UXCj9v2SRjD77+sDG3AburZTZfRWgtYezZwNTptDoMWOMsXQqUwaYORNYsADw9padRmPmN5+PfFnzwWWvCxKTE2XH0ToulP7fgosL4P3UGxt+2gArU2UO88fFAX36UM+0336TnYYxxhRg5Eigbl16cY2Kkp1GI7KYZMGWdltw7eU1zPSeKTuO1nGhBOB26G38ceoPjKo1StEnJ0+bBjx4AGzYoNimsowxpl2GhvSi+vo1MG6c7DQaU7NATUyoNwHTvafjcvBl2XG0KtMv5o5PikfNNTWRkJSAawOvwczITHYkjbh+HahZk/qkKXg6nSkIL+ZmemXZMjow8+hRoFkz2Wk0IiEpAXXX1cWH2A/wHeQLSxNL2ZEyihdzp8bUM1NxO/Q2NrfbrNgiKT6eRoUrVOApN6Ydbdq0QcGCBWFmZgZbW1u4uLjg5cuXsmMxpjmDBwNNmgADBgAREbLTaISxoTG2tN+CF5Ev8OuxX2XH0ZpMXSj5PPfB7Auz4dbADZVtK8uOozEzZtCB1+vX00YNxjStUaNG2LlzJ+7du4c9e/bg0aNH6Nixo+xYjGmOgQGwejXw7h0wfrzsNBpTIkcJzG82Hyuur8Ch+4dkx9GKTDv1FhUfhUorKiGXZS6c63tOsY0lfX2p2/6kSbTTjTEZ9u/fj59++glxcXEwTmW1zlNvTC8tXQr88gtw5gydEaVAQgg4b3PG9ZfX4e/qj1yWuWRHSq9UTb1l2kLJ9aArNt3ahJuDb6KYTTHZcTQipbEkQM1jFXokEdNx7969g6urK168eIHz589/8+vi4uIQFxf36fcRERGws7PjQonpl+Tkz4do3roFWFjITqQRIVEhKL+8PBwKOsCjswdUqlTVHLqG1yh9i9cDL6y4vgLzm81XbJEEALNmAXfu0IYMLpKYtv3222+wtLREjhw58OzZM3h6en7362fNmgVra+tPNzs7Oy0lZUyNDAyAtWuBFy/omBOFypslL1a3Xo19d/dhvd962XE0KtONKL2NeYtyy8uhUt5KONz9sL5WwT908yZQrRrw+++KPreRaZGbmxumTp363a+5evUqqlWrBgAICwvDu3fv8PTpU0ydOhXW1tY4ePDgN3/meESJKcrcubRW6cIFoFYt2Wk0pp9nP+wJ3AN/V38UtC4oO05a8dTb/xJCoMvuLjj55CT8Xf2RL2s+2ZE0IiHhy7PceDSJqUNYWBjCwsK++zX29vYwM/vv7tHg4GDY2dnBx8cHtWvXTtXj8RolptcSE4HatYHoaFosqtDzoj7EfkD55eVROmdpHO15VN8GH1IVVpkrmL9h2+1t2BWwCzs67lBskQTQESX+/sDly1wkMfXJmTMncubMma7vTflA9u8RI8YUzcgIWLcOqFqVth5Pny47kUZkM8uGNa3XoMXWFlh9YzUGVh0oO5LaZZoRpeCIYJRfXh6tirfC1vZbZcfRmDt36IiSsWPpCCLGtO3KlSu4cuUKHBwckD17djx+/BiTJ0/Gq1evcOfOHZim8pM1jygxRZg6lYqkq1fpxVmhBh4YiG23t8Hf1R/22exlx0ktnnpLIYRAy60t4R/qj9uut5HdPLvsSBqRlAQ4OAAfPgB+food6WU6zt/fHyNGjMDNmzcRHR0NW1tbtGjRAhMnTkT+/PlTfT9cKDFFiI+nBaOGhrT9WKHN7CLiIlB+eXkUsymG4y7HYaDSi71iPPWWYr3fehx9dBSHux9WbJEEAMuXA5cuAefOcZHE5ClfvjxOnTolOwZjusHEhLr91qxJC7z/+EN2Io2wMrXC2jZr0XRzU6y4tgJDqg+RHUlt9KLky4jgiGCMOjoKfSv1RcviLWXH0Zhnz2iHm6srjSoxxhjTEVWrAr/+StNwAQGy02hMkyJN4FrNFWOPj8Xj949lx1EbRU+9CSHg9I8Tbr6+iTtD7iCbWTbZkTRCCMDZmVoC3LkDWFvLTsRYxvHUG1OUjx9pjVK2bNQywNBQdiKNiIqPQvnl5VHQuiBO9z6t61Nw3HByg98GeD30wirnVYotkgBgxw7g8GE6vJqLJMYY00Hm5tSI8soVYPFi2Wk0JotJFqxvux7eT72x9MpS2XHUQrEjSsERwSi3rBx+KvUTNvy0QXYcjXn7Fihdmjrm79olOw1j6sMjSkyRhg+ngunOHcDeXnYajRnuNRxrbqzBzcE3UTxHcdlxviXz7npLObDP95Uv7gy5o+gF3H36AJ6eQGAgkDev7DSMZZy7uzvc3d2RlJSE+/fvc6HElCUiAihTBqhYETh4ENCvBo2pFh0fjYorKiJvlrw42+csDA10cqox8069bbq5CYcfHMaq1qsUXSSdOAFs3AjMm8dFElOOoUOHIiAgAFevXpUdhTH1s7IC3N1pvYSCpwEsTSyxvu16+Dz3weLL+j3VqLgRpRcRL1B2WVm0LdUWG3/aKDuOxsTEAOXK0cjtyZOK/VDCMjGeemOK1r494OND0wHZlfuBfvTR0Vh+bTn8BvmhZM6SsuP8r8w3oiSEwKCDg2BhbIGFzRfKjqNRU6YAr14BK1dykcQYY3pnyRL6xDt+vOwkGjXDcQYKWhdEH88+SEpOkh0nXRRVKG2+tRmHHhzCSueVip5yu34d+PtvwM0NKK6za+QYY4x9U/78wKxZwKpVwPnzstNojIWxBda1WYfLwZf1dhecYqbeXka+RNllZeFcwhmb222WHUdjEhKAGjXovxXcDZ8xnnpjypdy7lR4OODrq+gjFYZ7Dcda37W47XobhbMXlh0nReaZehNCwPWQK0wNTbGoxSLZcTTq77+BW7eANWu4SGKMMb1maEgjSg8eAHPmyE6jUX82/hM5LXJi4MGBUMMAjVYpolDaHbAb++/txzKnZbAxt5EdR2MePaLptlGjqCM+Y4wxPVe+PB1vMmMGcO+e7DQak8UkC1Y5r8KJxyewwW+D7DhpovdTb+8+vkNp99JwKOiAPZ33yIyiUUIALVsCd+9SnzJLS9mJGNMsnnpjmcbHj1Qw2dkBp04peodOn3194HnPEwFDAmCb1VZ2nMwx9fbrsV8RlxiHJS2XyI6iUTt3AkePAkuXcpHEGGOKYm4OrFgBnDkDbNggO41G/d38b5gYmmCY1zDZUVJNrwulE49PYL3fesxrNg/5suaTHUdjwsOBkSOBdu3o8FvGGGMK06QJ4OJC03ChobLTaIyNuQ3cW7nDI9ADuwN2y46TKno79RaTEINyy8qhULZCONXrFFQKHqocNow6cAcGAgUKyE7DmHbw1BvLdN68ocM7W7QAtmyRnUZjhBDosLMDLjy/gMChgTLXFit76m3y6cl4FfUKq5xXKbpIunoVWLYMmDaNiySWObi7u6NMmTKoXr267CiMaVeuXHQm1datwPHjstNojEqlgnsrd8QlxmH00dGy4/yQXo4oXXt5DTXX1MSfjn/iN4fftP3wWpOYSD2ThKCCychIdiLGtIdHlFimJATQuDHw9Cng7w9YWMhOpDHrfNeh//7+ONLjCJoXay4jgjJHlBKSEtB/f39UyFMBo2vrfiWaEe7ugJ8fHVPCRRJjjGUCKhW96L94QS0DFKxvpb5oXLgxBh4ciMi4SNlxvknvCqV5PvNwJ/QO1rZZC2ND5XZcDA4GJk4EXF0/d+JmjDGWCRQvTmfAzZtHPWEUSqVSYVXrVQiLCcOEUxNkx/kmvSqU7oXdw9SzUzG69mhUsa0iO45GjRwJZMkCzJwpOwljjDGt++03oGBB2s2jZ52s06JI9iKY1nAall5ZiisvrsiO81V6s0YpWSSj0cZGeBHxArdcb8HCWLnztocOURuAbduArl1lp2FMDl6jxDI9Ly+gVSvFvxkkJieixuoaSBbJuPrzVW3OFilrjdLq66vh/dQbq1qvUnSRFBMDDB0KNG0KdOkiOw1jjDFpWrYE2rcHRo8GIiJkp9EYIwMjrGq9Cv6h/lh4aaHsOP+hF4XSi4gXGHdiHPpX7g/Hwo6y42jUtGlASAi1BFBw1wPGGGOpsXAhFUlTpshOolHV8lXD8BrDMeXMFDx5/0R2nC/oRaE04sgImBuZY27TubKjaFRAADB/PjBhAlCsmOw0jDHGpLOzAyZPBhYvBm7elJ1Go6Y7Tkcuy1xwPeQKNSwLUhudL5QO3j+IPYF7sLDFQmQ3zy47jsYIQWv27O2BceNkp2GMMaYzRo4ESpUChgwBkpNlp9GYLCZZ4N7KHUcfHcX229tlx/lEpwul6PhoDD08FM2KNkOXsspesLNjB3D6NLBkCWBqKjsNY4wxnWFiQo31fHwUf2iucwlndCrTCSOOjMC7j+9kxwGg44XS1LNTERodimWtlin6mJLISGDMGDr0tkUL2WkYk4uPMGHsKxo2BHr2pCmHt29lp9GoRS0WIT4pHuOO68b0is62B7j1+haqrKyCaY2m4Y96f2jiIXTG2LH0YSEwEChUSHYaxnQDtwdg7H+EhAAlS1KrgJUrZafRqJXXVmLwocE40/sMGtg30NTDpGoERicLpWSRjLrr6iIiLgK+g3xhYmii7ofQGQEBQMWKgJsbLeJmjBEulBj7iqVLgeHDgYsXgZo1ZafRmGSRjPrr6yMsJgw3B9+EqZFG1qTobx+lVddX4VLwJaxwWqHoIunfC7h//VV2GsYYYzrP1RWoVIl+TUqSnUZjDFQGWOm8Eo/eP8JcH7k73nWuUAqJCsH4E+PRv3J/1CtUT3YcjeIF3IwxxtLE0BBYvpxOTF++XHYajSqbuyzG1B6Dmedm4vH7x9Jy6NzUW7c93XDi8QncHXoXOSxyqPOudUpkJO32rFkT8PCQnYYx3cNTb4x9x6BB9Gn77l0gb17ZaTQmOj4aZZaVQdlcZXGo+yF1b+zSv6m3Y4+OYfvt7fi72d+KLpIA6sD9/j2wYIHsJIwxxvTOn38CRka0G0jBLE0ssbjFYng99MLeu3ulZNCZQuljwke4HnKFY2FH9KzQU3YcjQoIoK70EybwLjfGGGPpkCMHMHs2sGULcOGC7DQa1bZUW7Qu0RojjoxAVHyU1h9fZwqlGd4zEBwRrPieSbyAmzHGmFr07QtUrUq74BS8sBsAFrdcjLcxb+F2xk3rj60ThdLdsLuY6zMXvzv8jpI5S8qOo1E7d/ICbsYYY2pgaEhvJjduAGvXyk6jUfbZ7DGp/iQsvLQQ/q/9tfrY0hdzCyHQdHNTPPnwBHeG3IGZkVlG8+gsXsDNWOrxYm7GUql3b+DQIeDBAyC7cs9EjU+KR8UVFZHDPAe8+3rDQJXhsR79WMy9K2AXTj45iSUtlyi6SAKA6dN5ATdjP8JHmDCWRrNnA/HxwJQpspNolImhCZa1WoYLzy9go99GrT2u1BGlyLhIlHIvhRr5a2BvFzmr2bXl3j2gXDm6jidOlJ2GMd3HI0qMpcG8ecD48YCvL1C+vOw0GuWy1wVeD7xwb9i9jO6Q1/0RpWlnp+H9x/dY2HyhzBhaMWoUYGfHC7gZY4xpwPDhQLFi9GvGB0B02rym85CYnIjxJ8Zr5fGkFUp3Qu9g4eWFmFh/IgplU/Ye+cOHAS8vYP58wEzZs4uMMcZkMDGhvjNnzgC7dslOo1F5suTBn43/xBrfNbj4/KLGH0/K1JsQAg03NkRIVAhuDb6lqcPudEJ8PI2CFigAnDgBKLjzAWNqxVNvjKVD27Y0/RYYCFhayk6jMUnJSai1thYSkhJwbeA1GBkYpedudHfq7R//f+D91BtLWy5VdJEE0M7Nhw+BRYu4SGKMMaZhf/8NhIYCf/0lO4lGGRoYYrnTctx6fQtLLi/R6GNpvVAKjw3HmGNj0KlMJzQt2lTbD69Vr1/TUSWurrSQmzHGGNOookVpMeycOcBjeQfJakO1fNUwpPoQTD4zGS8jX2rscbReKE05MwVR8VH4u/nf2n5orZswgfqBTZ0qOwljjLFM4/ffgVy5gDFjZCfRuBmOM2BuZI6xxzV35p1WC6WbITex5MoSuDV0QwGrAtp8aK27fh1Yt456J+VQ9vm+jH1TXFwcKlWqBJVKBT8/P9lxGMscLC2pXcC+fcCxY7LTaFQ2s2z4q8lf+Mf/H5wNOquRx9DaYu5kkYx66+vhQ+wH+A3yg7GhcUYfV2cJAdSrB4SH05o6o3StMWNM/40YMQIPHjyAl5cXfH19UalSpVR/Ly/mZiwDhAAaNqQ1ILdu0a44hUoWyXBY54DI+EjcGHgjLfWFbi3m3nRzE3ye+8C9lbuiiyQA2L6dDnNeuJCLJJZ5eXl54dixY5g3b16qvj4uLg4RERFf3Bhj6aRSAYsX07EmS5fKTqNRBioDuLdyR8CbACy9ov5/q1YKpWSRjFnnZ6FH+R5oaN9QGw8pTXQ0MHYs0K4d0Lix7DSMyfH69Wv8/PPP2Lx5MywsLFL1PbNmzYK1tfWnm52dnYZTMqZwFSsCgwbRrqI3b2Sn0ajKtpUxuOpgzLs4D/FJ8Wq9b61NvYVGhwIAclvmzujj6bTJk2mzQUAAUKSI7DSMaZ8QAq1atULdunUxceJEBAUFoXDhwj+ceouLi0NcXNyn30dERMDOzo6n3hjLiLAw6tjdvTuwbJnsNBr1/uN7xCTEIL9V/tR+i25NveW2zK34IikoCJg7lzYacJHElMbNzQ0qleq7t2vXrmHJkiWIiIjA77//nqb7NzU1hZWV1Rc3xlgG5cxJn+BXrgRu35adRqOym2dPS5GUalIPxVWaTp0AHx86ADdLFtlpGFOvsLAwhIWFffdr7O3t0bVrVxw4cACqf3VYTUpKgqGhIXr06IGNG1N36jcv5mZMTeLjgbJlAXt72gXH3Y9TpOqJ4EJJTU6fBhwdgc2bgZ49ZadhTJ5nz559sRD75cuXaN68OXbv3o2aNWuiQIHUtQbhQokxNdq/n443OXAAcHaWnUZXcKGkLYmJQNWqgIUF7XYzkHbUMGO6J7VrlP4XF0qMqZEQQJMmQHAwTcEZK3v3eSrp1holJVu7ltpULF7MRRJjjDEdpFIBCxbQ4aMKX9StbjyilEEREbShoGVLIJVLLxhjqcAjSoxpwKBBwM6dVDDxsRE8oqQNs2YBUVHAzJmykzDGGGM/MH06kJQEuLnJTqI3uFDKgKAgGskcOxZI5fpUxhhjTJ7cuYFJk4Dly6nhH/shnnrLgG7dgLNngfv3uR0AY+rGU2+MaUhcHFCmDFCiBODlJTuNTDz1pkkXL9KZbjNncpHEGGNMj5iaUnfkI0cye6GUKjyilA5CAHXqALGxwLVrgKGh7ESMKYe7uzvc3d2RlJSE+/fv84gSY5ogBNCoERAaCty8mVnbBXAfJU3ZsQPo2hU4eZKaTDLG1I+n3hjTMF9fagK4aBHwyy+y08jAhZImxMYCpUrRocyenrLTMKZcXCgxpgX9+wP79gGPHgHZsslOo228RkkTFi0CXrwA5syRnYQxxhjLoOnTaQRg1izZSXQWF0ppEBpKi7eHDAFKlpSdhjHGGMugfPmAX3+lUYCnT2Wn0UlcKKXBlCm0cHvyZNlJGGOMMTUZO5am3SZMkJ1EJ3GhlEp37gCrVlGRxF3fGWOMKUaWLMC0acDWrcD167LT6BxezJ1KLVvS0Th37gAmJrLTMKZ8vJibMS1KTAQqVADy5AFOnaJDdJWPF3Ory4kT1Jdr9mwukhhjjCmQkRE1oTxzBjh0SHYancIjSj+QnAxUqwaYmQEXLmSWIpsx+XhEiTEtEwJo3BgICQFu3aLiSdl4REkdtm2jnlxz53KRxBhjTMFUKmDePCAwEFi7VnYancEjSt+R0lyyShXAw0N2GsYyBz7ChDHJXFyA48eBBw+ArFllp9Ek7sydUfPnA7/9Rgu4uW8SY9rFU2+MSfLsGVCiBDBuHO2GUy6eesuId++AGTOAn3/mIokxxlgmUrAgMHIkjRa8fCk7jXRcKH3DrFlAQgI1mWSMMcYyld9/B8zNucMyuFD6qqAgYPFialaaN6/sNIwxxpiWWVvTSMG6dYC/v+w0UvEapa9IWcf28CE1LGWMaR+vUWJMsvh4oGxZoFgxwMtLdhpN4DVK6eHrS13cp07lIokxxlgmZmIC/PUXdVw+flx2Gml4ROl/NGtGC/5v384MvbYY0108osSYDhACqFcPiIoCbtwADBQ1vsIjSml17BgVzX/9xUUSY4wxBpWKOi7fvAn884/sNFLwiNL/S0oCqlal3lre3tyFmzHZeESJMR3Srh3g5wfcvQuYmspOoy48opQWW7dSwcxHlTDGGGP/488/aV3KihWyk2gdjygB+PiRmkrWqAHs3i07DWOZGx9hwpiOGjAA8PQEHj0ClPEzyUeYpNacOcCECXRUSYkSstMwxgCeemNM5wQHA8WL09EmU6fKTqMOPPWWGu/e0YjioEFcJDHGGGPfVKAA8MsvdLTJ69ey02hNpi+UZs8GEhO5SztjjDH2Q+PHA8bGwPTpspNoTaYulF68AJYsAcaMAXLnlp2GMcYY03E2NlQsrVxJa5UygUxdKE2bBlhaUqHEGGOMsVT45RcaXZg0SXYSrci0hdKDB8DatXRAMq8TZYwxxlLJwgJwcwO2baNu3QqXaXe9de0KXLgA3L8PmJvLTsMY+1+8640xHZaYCJQrBxQqBBw9KjtNevGut2/x9QV27ACmTOEiiTHGGEszIyPaMn7sGHDypOw0GpUpR5RataI1aHfu8JlujOkqHlFiTMcJAdSuTWeAXbmij8da8IjS13h7A15ewIwZXCQxxhhj6aZSUY+da9cUfaxFphpREgJwcABiY4GrVwGDTFcmMqY/eESJMT3RqhXw8CFN0xgby06TFjyi9L8OHgR8fGhalYskxnSTu7s7ypQpg+rVq8uOwhhLjVmzqFBav152Eo3INCNKyclApUpAjhzAqVP6OJXKWObCI0qM6ZFu3YBz56hgMjOTnSa1eETp37ZtA/z9qfDlIokxxhhTo6lTgZAQYPly2UnULlOMKMXHA6VKAeXLA56estMwxlKDR5QY0zMDBgD79wOPHwNZsshOkxo8opRizRogKAiYOVN2EsYYY0yhJk8GwsOBRYtkJ1ErxRdK0dF0yHHPntRElDHGGGMaULAgMGgQMHcu8P697DRqo/hCafFi4O1bmj5ljDHGmAb98QeQkEDFkkIouuXi+/fAnDlU4BYuLDsNY/ohPj4eiYmJGboPJycnvHr16os/69OnD4YPH57q+4iNjUXJkiURGxsLIx3oDmtkZAQTExPZMRjTbXnzAsOH0/TbiBFAnjyyE2WYohdz//47jSg9fqyI/1eMaVx8fDzu3LmD5ORk2VF0joGBAcqWLcvFEmM/8u4djU707QssXCg7zfekajG3/I9pGvLqFRW0o0ZxkcRYaiUmJiI5ORn29vYw5xOjP/n48SOCgoKQmJjIhRJjP2JjA/z6K50VNno0rV3SY4odURo2DNi6FXjyBMiWTXYaxvRDTEwMAgMDUbp0aVhYWMiOozNSnpd8+fLB1NQUpqamsLS0lB2LMd0VGQkUKQL89BOwerXsNN+SedsDPHtG/1/GjuUiiTGmPgcPHsSmTZuwY8cOREdHy47DmO7KmpXWv6xfDzx4IDtNhiiyUJo5E7CyovVkjDGmLpaWljAxMUFERATi4uJkx2FMt7m60toXNzfZSTJEcYXS48fAunXAb7/pS2NQxpi+SJl2Y4ylgrk5MGnS5zPE9JTiCqXp0+ng2yFDZCdhjDHGMrl+/WgH3KRJspOkm6IKpfv3gU2baFqU16EyxhhjkpmY0NSbpydw5YrsNOmiqEJp6lTA1pYaTDLGGGNMB3TvDpQpA0ycKDtJuiimULpzh6ZBJ0wAzMxkp2GMMcYYAMDQEJg2DTh+HDhzRnaaNFNMoeTmRj2t+veXnYQxxhhjX2jfHqhalUYzMt6/UasUUSj5+QG7d9NaMW6ayxhjjOkYlYo6dfv4AMeOyU6TJooolKZMAYoWBXr1kp2EMabroqKi0KFDBzx79kx2FMYyl+bNgVq1gMmT9WpUSe8LpatXgf37qVgyNpadhjGmy9atW4e5c+fCw8ODD/5lTNtUKtp1deUK4OUlO02q6f1Zby1bAkFBwO3btF6MMZZ+Xz3rLSYGuHv3x99cqpTe9OVQqVR48uQJ7O3tU/X1Kc9LUFAQPnz4gMjISPTq1Qs2NjaaDcqY0ggB1KsHxMVRwaRK1XFrmpKqBzfSdApN8vEBjhwBtm/nIokxjbl7lxZh/sj160CVKgCAwMBAHDt2DFu2bEGRIkWQM2dOnDlzBnfu3AEAvHv3DnPnzsX3PqiZm5tjypQpavknMMZ0RMqoUpMmwKFDgLOz7EQ/pNcjSk2aAKGhtJjbQO8nERmTT10jSgcPHoSzszNsbW2xdetW1KtXDyEhIbCzs9Ng+tTjESXGJBICaNgQiIoCrl2TOaqk7BGls2eBkycBDw8ukhjTKAuLTyNFqeXs7Iy7d+8iW7ZscHR0BAC1F0mLFi3CkydPvvn3DRo0QLt27dT6mIwxNUgZVWrUiBYZt20rO9F36WWhJAS1AqhcGfjpJ9lpGGNfc+LECTRu3Pirf/f27VvMmzcvQ1NvI0aMyHBGxpgkDRvSbcoUoHVrnR7x0MtC6cQJ4Nw54MAB2evAGGPfcvLkSbi4uHz173LkyIFZs2ZpORFjTKdMnQo0aADs20cNKXWU7pZw35AymlSzJuDkJDsNY+xbnj59ikaNGsmO8YVt27bB1dUVADB+/HgsW7ZMciLGMrH69YHGjeloDR1u16F3I0qHDwOXLwNHj/JoEmO67MaNG7Ij/Ee3bt3QrVs3LF++XHYUxhhAo0oODrTguGNH2Wm+Sq9GlISghp4ODkDTprLTMMYYYyxD6tYFmjXT6VElvSqUDhwAbtygQ4h5NIkxxhhTgKlTgTt3gF27ZCf5Kr0plISg57JePVoozxhjjDEFqFULaNGC3uSTkmSn+Q+9KZQOHaLRJDc3Hk1ijDHGFGXqVCAwENi5U3aS/9CLQillNMnBgfpTMcYyp6tXr2LkyJHYuHEjBg4c+N2Gk4wxPVKjBm1l18FRJb3Y9eblRV3Ojx/n0STGMqu4uDh06tQJly9fRp48eVCiRAn07dsXZ86ckR2NMaYObm5A9erAtm1Az56y03yi84VSymhSnTrUboExpl0xCTG4G/bjs95K5SwFC2MLjeXw9vaGlZUV8uTJAwCoUaMGLl26hNevX3/6M8aYHqtWDWjThnZsde0KGOlGiaIbKb7j6FHgyhXum8SYLHfD7qLqqqo//LrrA6+jii2dCRcYGIhjx45hy5YtKFKkCHLmzIkzZ87gzp07AIB3795h7ty5aTrCJCgo6ItDaA0NDZE1a1bcuXOHCyXGlGLKFKBqVWDHDqBHD9lpAOh4oZQymlSrFvdNYkyWUjlL4frA66n6uhSPHj3CiBEjMHv2bPz111+oV68eQkJCPv29jY1Nmo8wCQsLg5mZ2Rd/ZmZmhg8fPqTpfhhjOqxKFcDZGZgxg0aVDA1lJ9LtQun4ceDSJVqjxKNJjMlhYWzxaaQotZydnXH37l1ky5YNjo6OAAA7O7sM5bC2tv7PCFRUVBRy5syZoftljOmYlHPK9uwBOneWnUZ3C6WU0aQaNYDmzWWnYYyl1YkTJ9D4GwsL3759i3nz5qVp6q1UqVJYvXr1p9/HxcUhMjIShQoVUl9oxph8KW/806fTsSYGcjfo62yhdPIk4OND/ZN4NIkx/XPy5Em4uLh89e9y5MiR5qm3+vXrIzQ0FMHBwShQoADOnj2L6tWrc6HEmBJNnkzHm+zbB7RvLzWKThZKKaNJ1aoBLVvKTsMYS4+nT5+ikRobnxkZGWHjxo2YOXMmatWqhbNnz2Lr1q1qu3/GmA6pUwdwdKRRpXbtpI6Y6GShdPo0cP48ne3Go0mM6acbN26o/T6bNGmCJk2aAAB69+6t9vtnjOmQyZPpzLKDB4HWraXF0MnO3FOn0u5AJyfZSRhjjDEmRYMGQP361FfpO+sZNU3nCqUzZwBvbyokeTSJMcYYy8QmTaKjOY4ckRZB5wqlqVOBypWljrIxxhhjTBc0bgzUri11VEmnCqVz52hEiUeTGGOMMQaVioqCS5doO7wEOlUozZgBVKhAR70wxtjXREVFoUOHDnj27JnsKIwxbWjenA7LnTZNysPrTKF09Spw7Bjwxx/Se0sxxnTUunXrMHfuXHh4eCA5OVl2HMaYNqhUtFbp3Dng7FntP/z3OuOmklomDX/6CQgMBAICdOJoF8YypZiYGAQGBqJ06dKwsLD4/z8D7t798feWKgX8/7donEqlwpMnT2Bvb6+Vx0t5XoKCgvDhwwdERkaiV69eXxzSyxjTICHoHDgbG3VOwaVqkY9O9FHy9wc8PYENG7hIYkzX3L1L7Tp+5Pp1eh0DgMDAQBw7dgxbtmxBkSJFkDNnTpw5cwZ37twBALx79w5z585N0xEmjLFMLGWtUvv21GjRwUF7D60LI0rdutE6rfv3AWPjjN4bYyy91DWidPDgQTg7O8PW1hZbt25FvXr1EBISkuGDcVPwiBJjmVByMlCxIpAvH3D0qDruUT9GlO7dA3bsAJYt4yKJMV1kYfF5pCi1nJ2dcffuXWTLlg2Ojo4AoLYiiTGWSRkY0FqlLl2Ay5eBmjW18rDSC6XZswFbW6BPH9lJGGPqdOLECTRu3Pirf/f27VvMmzePp94YY2nToQNQujSdAXfwoFYeUmqhFBQEbNkCzJkDmJnJTMIYU7eTJ0/CxcXlq3+XI0cOzJo1S8uJGGN6z9AQmDAB6NmTFkamZgFlBkndiD9nDpAtGzBwoMwUjDFNePr0KRo1aqTW+9y2bRtcXV0BAOPHj8eyZcvUev+MMT3QpQtQrBgwc6ZWHk7aiNLLl8C6dbSI3dJSVgrGmKbcuHFD7ffZrVs3dOvWDcuXL1f7fTPG9ISRETB+PDBgAPUUKlNGow8nbURp/nyabhs6VFYCxhhjjOklFxfAzg7QwhS+lEIpLAxYsQIYPhywtpaRgDHGGGN6y8QEGDsW2LYNePxYow8lpVBauJB6R40YIePRGWOMMab3BgwAcuQA/vpLow+j9ULpwwdgyRLA1ZX+fYwxxhhjaWZuDoweTcd6vHihsYfReqG0dCkQFweMGaPtR2aMMcaYori6UlfcefM09hBaLZSiomjabcAAIG9ebT4yY4wxxhTHyooWPK9cCbx5o5GH0GqhtHIlEB4OjBunzUdljDHGmGINH07HmyxcqJG711qhFBtLI2O9ewMFC2rrURljjDGmaDlyAIMH09qeDx/UfvdaK5TWrQNCQ6lHFGOMMcaY2owZQwug3d3Vftda6cwtBLBgAdC1K3UdZ4zpto8fP8qOoFP4+WBMx9naAv360bb6ceMAY2O13bVWCiWVCjh1CkhO1sajMcbSy8jICAYGBggKCpIdRecIIZCUlCQ7BmPsWyZOpJElNRZJgBbPerOz09YjMcbSy8TEBGXLlkViYiLCw8Nx8OBBGBsbw8TEBDdv3sStW7e++/2tWrVCREQEzp8/j1q1aqF48eIAgKSkJHh4eKBSpUqf/ux/JSUlIflfn6bi4+Ph4eGBrl27wljNL3zpkZiYiISEBMTFxcmOwhj7mnz5NHK30g7FZYzpJhMTE5iYmEAIAUNDQ3z4/8WR2bNnR61atb77vfHx8YiIiEBISAhiY2MRGhr66e+ioqLw6NEjWKfy3KL4+HiEhITg9evXMDExSfe/RxOsrKxgamoqOwZjTAtUQoiM3keG74Axppuio6PTPIISGRmJ8uXLY9asWejWrRsAGo2pUqUKxo0bh549e6b6fkqWLIl79+4ha9asac6uSaamprC0tJQdgzGWMarUfBGPKDHGvsnS0jLNBYGNjQ369euHWbNmoXjx4ihUqBDmzp2LhIQEuLi4IHv27Km6HyMjI8TFxSF79uywsrJKT3zGGMswLpQYY2o3d+5cGBkZwcXFBR8/fkTNmjVx6tSpVBdJjDGmK3jqjTGmkyIiImBtbY3w8HAeUWKMaUKqpt7UUSgxxpjaqVQqKwDhAKyFEBGy8zDGMiculBhjOkmlUqkAZAUQKfiFijEmCRdKjDHGGGPfoLWz3hhjjDHG9A0XSowxxhhj38CFEmOMMcbYN3ChxBhjjDH2DVwoMcYYY4x9AxdKjDHGGGPfwIUSY4wxxtg3cKHEGGOMMfYN/wefZwhbItxRigAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 3 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f(x) = r*x-x^2\n", "p1 = plot(f(r=-1),(-2,2), color='red', legend_label='$r=-1$')\n", "p2 = plot(f(r=0),(-2,2), color='green', legend_label='$r=0$')\n", "p3 = plot(f(r=1),(-2,2), color='blue', legend_label='$r=1$')\n", "show(p1+p2+p3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para a maior parte dos valores de $r$ o sistema tem dois equilíbrios, mas quando $r=0$ o sistema perde um dos equilíbrios e troca de estabilidade. Vejamos:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGRCAYAAABFfOb3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJdElEQVR4nO2deVxU5f6An8kFtRRvmVtZmWlqtphRZpmt/rK0fbnVLS3bbd+te691wxAMNRXXBELNLZYUDTUVN9Q7gSSKIKFsISQQWyyynN8f7x2GETe2M+cw3+fzmQ9zzrznvF+e+Z4z77znzPtaNE1DEARBEARBqB/nODsAQRAEQRAEMyKNKEEQBEEQhAYgjShBEARBEIQGII0oQRAEQRCEBiCNKEEQBEEQhAYgjShBEARBEIQGII0oQRAEQRCEBiCNKEEQBEEQhAYgjShBEARBEIQGII0oQRAEQRCEBiCNKEEQBEEQhAYgjShBEARBEIQGII0oQRAEQRCEBiCNKEEQBEEQhAYgjShBEARBEIQGII0oQRAEQRCEBiCNKEEQBEEQhAbQ2tkBCILgWlgslr8Bk1DnnyuAlcD3wFTAAvwNmKxpWrzTghQEQTgLpBElCIJuWCyWtsAc4H1N0zItFsulwBHgQeAdoC+wFvgTeMNZcQqCIJwNcjlPEAQ9eRUI0DQt83/LZajepxRN044ArYAkYJmT4hMEQThrpCdKEAQ9+VPTtA21lm/4398IAE3TfgJ+0j0qQRCEBiA9UYIg6IamaYtPWHUHUAXscEI4giAIjcKiaZqzYxAEwUWxWCwxQIWmaTc5OxZBEIT6Ij1RgiA4hf/9Su9aIPKE9S86JSBBEIR6Io0oQRB0wWKxXGixWP5rsVgm/W/Vvahz0H9rlwGGOSM+QRCE+iKNKEEQ9GIE4AFYLBZLe+BJIBM4D7XyXGAm8LmzAhQEQagPck+UIAi6YLFYOgLTgeOohpMX0An4CkgF2gI+mqbtc1qQgiAI9UAaUYIgCIIgCA1ALucJgiAIgiA0AGlECYIgCIIgNABpRAmCIAiCIDQAaUQJgiAIgiA0AGlECYIgCIIgNABpRAmCIAiCIDQAaUQJgiAIgiA0AGlECYIgCIIgNABpRAmCIAiCIDQAaUQJgiAIgiA0AGlECYIgCIIgNABpRAmCIAiCIDQAaUQJgiAIgiA0AGlECYIgCIIgNABpRAmC4BQsik4Wi8Xi7FgEQRAaQlM0orSzfezcufOsy7bUhzgQD+JAPQoKCqqBgv/9dXo8kgviwAgP8VAvB05H156o8vJyPaszJOJAIR7EgWBHckEc2BAP5nKgayPq2LFjelZnSMSBQjwYy4GXlxceHh507NiRrl278tBDD5GYmHjG7bZu3cqQIUNo164dl19+OfPmzdMh2paHkXLBWYgDhXgwlwNdG1HXX3+9ntUZEnGgEA/GcrB161YmTJjA7t272bhxI5WVlYwcOZK//vrrlNscOXKE++67j+HDh7N3714+/fRT3nrrLYKDg3WMvGVgpFxwFuJAIR7M5UCXRlRMDIwfD+PHr8ZEDcxmYfXq1c4OwRCIB2M5iIiIYNy4cVx11VVce+21BAQEkJaWRnR09Cm3mTdvHpdccgkzZsxgwIABvPjii7zwwgt8/fXXOkbeMjBSLjgLcaAQD+ZyYNG0Rt+bddod/P47DBwIhYUApdxwQ3us1sZWaV5KS0tp3769s8NwOuLB2A5+++03+vbtS1xcHIMGDTppmdtuu43BgwfzzTff1KwLDQ3liSeeoKSkhDZt2py2jsLCQtzd3SkoKKBTp05NGr/ZMHIu6IU4UIiHejlw+i97m70nat8+WwMKwJdffoHS0uau1bj4+vo6OwRDIB6M60DTNN577z1uvfXWUzagALKysujWrZvDum7dulFZWUlOTk6d8uXl5RQWFjo8BIVRc0FPxIFCPJjLQaMbUcuWLSM5ORkfHx/Ky8vx9PQEwNPTk8zMTOLiFtGunRVYDwykb994Fi6cSWFhIa+95snPP8Pnn3uSl5eHn58f+/btY/Xq1axdu5aYmBjmz5/PsWPHHPZbUlKCr68viYmJrFy5kk2bNhEVFUVgYCDp6ekOZauqqvDy8iI1NZXFixezY8cOIiMjWb58OUlJSUydOpWysjKHbbKysli4cCFWq5WIiAhCQ0PZv38/s2bNoqCgwKFsfn4+s2fPJi4ujrCwMNatW0d0dDQLFiwgOzvboaytdZ2UlMSKFSvYvHkzO3fuJCgoiLS0NCZPnkx1dTWenp5UV1czefJk0tLSCAoKYufOnWzevJkVK1aQlJSEr68vpaWlDvvPzs5mwYIFREdHs27dOsLCwoiLi2P27Nnk5+c7lC0oKGDWrFns37+f0NBQIiIisFqtLFy4kKysLIeyZWVlTJ06laSkJJYvX05kZCQ7duxg8eLFpKam4uXlRVVVlcM26enpBAYGEhUVxaZNm1i5ciWJiYn4+vpSUlJSkz+enp4cO3aM+fPnExMTw9q1a1m9ejX79u3Dz8+PvLw8h/0WFhYyc+ZM4uPjCQkJYf369VitVhYtWkRmZqZD2fLycnx8fEhOTmbZsmVERkayfft2lixZQkpKClOmTKGystJhm4yMDAICAmruDVq1ahUJCQlMnz6d4uJih7I5OTnMmzeP2NhYwsPDWbNmDbGxscydO5fc3FyHskVFRcyYMYP4+HiCg4PZsGED99xzD/7+/nXirqiowNvbm8OHD7N06VK2bdvGtm3bWLp0KYcPH8bb25uKioo6x5q/vz979uxhw4YNBAcHEx8fz4wZMygqKnIom5uby9y5c4mNjWXNmjWEh4cTGxvLvHnzyMnJYejQoezbt4+hQ4dSXFzM9OnTSUhIYNWqVWzcuJHdu3cTEBBAZWUlW7ZsqdlvZWUlQUFBAAQHB7N9+3YiIyNrzhGjR4/G3d295tGrVy8AgoKCsFqtrF+/npCQEOLj45k5U50jasfdks8R//znP2vOEb6+vi55jujXr5/DOaJ2WVc6RzzyyCM154g9e/YY8hxRu+zpzhEZGRkOZSsrK5kyZQopKSksWbKkzjnC1o6o/fmQmZnJokWLTnqOMASapjX2cUZ27NC0xx7TtOuv/1LLyFDrPv9c00A9hg7VtNLSs9mT+fnyyy+dHYIhEA/GdPDGG29oF198sXb48OEzlh0+fLj21ltvOawLCQnRWrdurR0/frxO+bKyMq2goKDmkZ6ergFaQUFBk8VvVoyYC3ojDhTioV4OmqIN06hHs98TVZvs7Gy6detGdTW0bw/Hj9tfW70axoxpbCjGx+bA1REPxnKgaRpvvvkmoaGhREZG0rdv3zNu8/HHH7NmzRri4+Nr1r322mvExsaya9euM24v90TZMVIuOAtxoBAP9XLQ8u+Jqs2PP/6oKj0Hzj3X8TVXOYfaHLg64sFYDiZMmMCSJUv4/vvv6dixI1lZWWRlZVFa6wbGiRMn8txzz9Usv/rqq6SmpvLee+9x8OBB/P39WbRoER988IEz/gVTY6RccBbiQCEezOVA10bUkCFDap5/9x107AgWC7z5JowYATk5cM89cMEF8PjjLfMG9NoOXBnxYCwHc+fOpaCggNtvv50ePXrUPFasWFFT5ujRo6SlpdUs9+7dm3Xr1hEZGcl1113Hl19+ycyZM3n00Ued8S+YGiPlgrMQBwrxYC4HrfWsLDs7u+b5mDGQnw8VFeDmptZ98gn8/LN6/sMPMGgQTJqkZ4TNT20Hrox4MJaDs7msHxgYWGfdiBEjiImJaYaIXAsj5YKzEAcK8WAuB7r2RB2vfRMU6rKerQEFkJnpWP7oUR2C0pkTHbgq4kEcCHYkF8SBDfFgLge6NqL69Olz2tdffFE1rADatQPb7Re7dsHbb4Ovr+q5MjNncuAqiAdxINiRXBAHNsSDuRzo2ojaunXraV9/5BHYswcWLoToaBg2TA3WefvtMHMmfPABvPaaPrE2F2dy4CqIB9d14Ofnx8CBA/Hw8HB2KIbBVXOhNuJAIR7M5UDXIQ7y8/Pp3LlzvXb+zTfwzjv25YsvhvT0eu3CUDTEQUtEPIgDGeLAjqvnAogDG+KhXg5ca4iD2bNn13uba6899fK+ffDrr40MSmca4qAlIh7EgWBHckEc2BAP5nKga09UQwkMhMWL4ZJL4Ouv1RAIr78Oc+eq1198UV0CFATBPEhPlCAIjcS1eqJsc+jUl3HjYNMmCAhQDajUVHsDCuDbb+G335omxuamoQ5aGuJBHAh2JBfEgQ3xYC4HuvZEFRQU4O7u3tj6yMxU90bVDj01VfVUGZ2mcmB2xIM4kJ4oO66eCyAObIiHejlwrZ4o2wzvjaVnT5g8WY12brHAf/6jGlBpaXDXXdCnD/z7301SVZPTVA7MjngQB4IdyQVxYEM8mMuBriOW33HHHU22r4kT1XAHmgZ/+5ta98ILsHmzev7ll+omdKPNQNGUDsyMeBAHgh3JBXFgQzyYy4GuPVFJSUlNur/One0NKIAjRxxfT0lp0uqahKZ2YFbEg+s6kHGi6uKquVAbcaAQD+ZyoGsjqn379s26/2eesT/v2FHNzwcQGQn//Keaj8/ZNLcDsyAeXNfBhAkTiI+Px2q1OjsUw+CquVAbcaAQD+ZyoOvlvAsuuKBZ9/+f/8B116keqTFjoF8/2LABRo2C6mpVZtYseOONZg3jtDS3A7MgHsSBYEdyQRzYEA/mcqBrT1RsbGyz1/HII/D++6oBBbB6tb0BBRAW1uwhnBY9HJgB8SAOBDuSC+LAhngwlwNdG1FjbNfXdKR/f8flK69UfzUNkpLg6FF943GGAyMiHsSBYEdyQRzYEA/mcqBrI+rbb7/VszpAjWz+8ccweDA8/zx4e6ueqSeeUL1VF18Mc+boF48zHBgR8SAOBDuSC+LAhngwlwNTTPvS1GzerMaTstG2LZSUQKtWzotJEFwNGWxTEIRG4lqDbZppKPfmQhwoxIM4EOxILogDG+LBXA507YkqKyujXbt2ja2v0VRXw9//DqtWwTnnwOzZauDOhAR4803Iz4cPPoAnn2z6uo3iwNmIB9d14Ofnh5+fH1VVVRw6dEh6onDdXKiNOFCIh3o5cK2eqFmzZulZ3Sk55xxYsULdWP7776oBBWpYhJ9/hl9+UWNOxcc3fd1GceBsxIPrOpBxouriqrlQG3GgEA/mcqBrI+qhhx7Ss7rTYrHAFVdA9+5qubISkpPtr1dVwW+/NX29RnLgTMSDOBDsSC6IAxviwVwOdG1ERUdH61ldvWjdGu6/377crRvcfLN6/vPP8PXX0BRfnI3sQE/EgzgQ7EguiAMb4sFcDnQdsby7rdvHoPzwA8ybp+6JGjsWLrwQvvsOxo1Tr7duDRs3wu23N7wOozvQC/EgDgQ7kgviwIZ4MJcDXRtRrVvrWl29cXODt992XLd0qf15ZSWsXNm4RpTRHeiFeBAHgh3JBXFgQzyYy4Gul/OOHDmiZ3VNQu/eJ1/WNDXaeWlp/fZnRgfNgXgQB4IdyQVxYEM8mMuBro2o2267Tc/qmgQfH3j0UdV4evlleOcdKC+HkSOhZ0/o0QMiI89+f2Z00ByIB3Eg2JFcEAc2xIO5HOjaiPr+++/1rK5JcHdX90odPgzz50ObNrB4sbrZHKCgAN566+z3Z0YHzYF4EAeCHckFcWBDPJjLga6DbVZVVdGqBcyt4ucHb7xhX+7XDxITz27bluKgsYgH13Ugg23WxVVzoTbiQCEe6uXAtQbb9PLy0rO6ZuMf/4Crr1bP27QB2wj1v/wC992nhko41S80W4qDxiIeXNeBDLZZF1fNhdqIA4V4MJcDl5yAuCkoK4N9+9Q9Ub16QWGhum8qL0+9fsEFcOQIdOzo3DgFwajIBMSCIDQS1+qJMtOkgmeiXTu48UbVgAI1fYytAQWQm6vWnUhLctAYxIM4EOxILogDG+LBXA50bUSNHTtWz+p0pXdv6NvXvtyvn304hJ9/hm+/hYyMlu2gPogHYznYtm0bY8aMoWfPnlgsFsLCwk5bPjIyEovFUueRkJCgT8AtDCPlgrMQBwrxYC4HujaiNm3apGd1utKuHWzdCh99BB9/rJ67uYGXF9xzD7z0Elx/PaxY0XId1IeWnAtni5Ec/PXXX1x77bXMnj27XtslJiZy9OjRmkff2t8khLPGSLngLMSBQjyYy4Guw4L269dPz+p0p0cP8PZ2XLdggf35sWOQkdGyHZwtLT0XzgYjORg1ahSjRo2q93Zdu3alc+fOTR+Qi2GkXHAW4kAhHszlQNeeqNL6Du/dAujZ03G5Y0e7g7/+0jkYA+GKuXAiLcHB4MGD6dGjB3fddRdbtmw5bdny8nIKCwsdHoKiJeRCYxEHCvFgLgeNbkQtW7aM5ORkfHx8KC8vr7khzNPTk8zMTBYtWoTVamX9+vWsW7eO+Ph4Zs6cSWFhoUPZvLw8/Pz82LdvH6tXr2bt2rXExMQwf/58jh075lC2pKQEX19fEhMTWblyJZs2bSIqKorAwEDS09MdylZVVeHl5UVqaiqLFy9mx44dREZGsnz5cpKSkpg6dSplZWUO22RlZbFw4UKsVisRERGEhoayf/9+Zs2aRUFBgUPZ/Px8Zs+eTVxcHGFhYaxbt47o6GgWLFhAdnY2Hh6eDBkCHTp48sYbpaSkBBIdnUS/fis477zNXHLJTnx9g0hLS2Py5MlUV1fj6elJdXU1kydPJi0tjaCgIHbu3MnmzZtZsWIFSUlJ+Pr6Ulpa6hBLdnY2CxYsIDo6mnXr1hEWFkZcXByzZ88mPz/foWxBQQGzZs1i//79hIaGEhERgdVqZeHChWRlZTmULSsrY+rUqSQlJbF8+XIiIyPZsWMHixcvJjU1FS8vL6qqqhy2SU9PJzAwkKioKDZt2sTKlStJTEzE19eXkpISFvyvi87T05Njx44xf/58YmJiWLt2LatXr2bfvn34+fmRl5fnsN/CwkJmzpxJfHw8ISEhrF+/HqvVyqJFi8jMzHQoW15ejo+PD8nJySxbtozIyEi2b9/OkiVLSElJYcqUKVRWVjpsk5GRQUBAALt372bjxo2sWrWKhIQEpk+fTnFxsUPZnJwc5s2bR2xsLOHh4axZs4bY2Fjmzp1Lbm6uQ9mioiJmzJhBfHw8wcHBbNiwgd27d+Pv718n7oqKCry9vTl8+DBLly5l27ZtbNu2jaVLl3L48GG8vb2pqKioc6z5+/uzZ88eNmzYQHBwMPHx8cyYMYOioiKHsrm5ucydO5fY2FjWrFlDeHg4sbGxzJs3j5ycnJpj29PTk+LiYqZPn05CQgKrVq1i48aN7N69m6ioKLy9vRk1ahQhISEUFxdz11138corr5CSksKSJUvYvn07kZGRNeeI0aNH4+7uXvPo9b9fZQQFBdWcI0JCQlzuHGF7Tzw9PSktLcXX15ekpCRWrFjB5s2b2blzJ0FBLf8cER4e7nCOqF3Wlc4Rv/76a805Ys+ePYY8R9Que6pzREBAABkZGQ5lKysrmTJlyinPEbZ2RO3PhxPbEbXPEUZA1yEOEhMTufLKKxtbn6lJTEzku++upPYwGE8+CcuXOy8mZyC5YFwHFouF0NBQHnrooXptN2bMGCwWC6tXrz7p6+Xl5ZSXl9csFxYW0qtXLxniAOPmgp6IA4V4qJcD1xriIDw8XM/qDEl4eDhFRY7rXPGqhuRCy3MwdOhQkpKSTvm6m5sbnTp1cngIipaWCw1BHCjEg7kc6NoTVVJSQocOHRpbn6kpKSkhNbUDw4ersaTat4fwcLjzTvWLvlmz1Hx9np7qRvWWiuSCcR00tCfqscceIy8vj82bN59VeRls045Rc0FPxIFCPNTLgWv1RE2bNk3P6gzJtGnTGDAADhyAiAg4eFA1oA4fhlGjIDgY/P1h9GhnR9q8SC4Yy0FxcTGxsbHExsYCcOTIEWJjY0lLSwNg4sSJPPfcczXlZ8yYQVhYGElJSRw4cICJEycSHBzMG7UnlRTOGiPlgrMQBwrxYC4HMu2LQfjxRzjxi39FBbTWdRAKwVWJjIzkjjvuqLN+7NixBAYGMm7cOFJSUoiMjATAx8eHBQsW8Pvvv9O+fXuuuuoqJk6cyH333XfWdUpPlCAIjcS1eqLMNJR7c3EqB4MHO86zN2yYvQG1aROEhkJJiQ4B6oTkgrEc3H777WiaVucRGBgIQGBgYE0DCuCjjz7it99+o7S0lLy8PLZv316vBpTgiJFywVmIA4V4MJcDXXuijh07xoUXXtjY+kzN6Rz88gvMmQOdO8M//wnnnw9vvaXukwI14vmOHeo+KrMjuSAOpCfKjqvnAogDG+KhXg5cqycqJCREz+oMyekc3HCDuh9q2jTVgKqoAD8/++sxMerm85aA5ILrOvDz82PgwIF4eHg4OxTD4Kq5UBtxoBAP5nKgayNKTpr1c9C6NZz4Bf2CC5o4ICchueC6DiZMmEB8fDxWq9XZoRgGV82F2ogDhXgwlwNdG1FHjx7VszpDUh8HFosahLNrVzXB8RdfgIcHZGSov23awP33m3P6GMkFcSDYkVwQBzbEg7kc6Prbr6qqKj2rMyT1dfB//wfZ2Y7rPvxQ3T8FsG4d+PrCv//dRAHqhOSCOBDsSC6IAxviwVwOdO2Juuyyy/SszpA0hYPc3NMvmwHJBXEg2JFcEAc2xIO5HOjaiNq+fbue1RmSpnDwxhv24Q86dYLx49XziAgYN05d9qs1RZkhkVwQB4IdyQVxYEM8mMuBrkMc5OXlcf755ze2PlPTVA4OHFCPoUPhkktg1y4YPhxsvaDPP69+6WdUJBfEgQxxYMfVcwHEgQ3xUC8HrjXEwZw5c/SszpA0lYOrroInnlANKFDjR9W+jGz0oRAkF8SBYEdyQRzYEA/mciDTvrQQIiPVHHy2t/Pvf4dly9Tyjh3ql3633KL+CoIRkJ4oQRAaidM/0WTaF51pLge3364aTQ8+CO+8AwsXqgbU3/8Ot92mLvWNHdssVTcIyQXXdSCDbdbFVXOhNuJAIR7M5UDXnqjCwkKX/8app4PEROjf33Hd4cPQu7cu1Z8WyQVxID1Rdlw9F0Ac2BAP9XLgWj1RtslMXRk9HXTo4Hj57pxz1DojILkgDgQ7kgviwIZ4MJcDXRtRd999t57VGRI9HfTqpQbibNVKDYkwcyZ066Z6qG64QY2E/uGHuoXjgOSCOBDsSC6IAxviwVwOdG1EJSQk6FmdIdHbwbvvQkmJekyYoNaNHQvR0XDsGHz9NThjrkfJBXEg2JFcEAc2xIO5HOg67cu5556rZ3WGxBkO2rZ1XM7MPP2yHkguiAPBjuSCOLAhHszlQNeeKFcfQAyM4eCll+zPL7wQHnhAPf/xR3jrLQgKav4YjODB2YgDwYbkgjiwIR7M5UDXRtS+ffv0rM6QGMHBv/6lpohZuBBiYtSAncHB8NBDMGuWutz3zTfNG4MRPDgbcSDYkFwQBzbEg7kc6DrEQWZmJj179mxsfabGqA5eegm+/da+fO+98NNPzVefUT3oias68PPzw8/Pj6qqKg4dOiRDHOC6uVAbcaAQD/Vy4FpDHPgbeTI3nTCqg2uvdVy+5hr1t6pK3YT+229NW59RPeiJqzqYMGEC8fHxWK1WZ4diGFw1F2ojDhTiwVwOZNoXAVCjm3/5JWzeDEOGwFdfqXGl7rsPfv5ZjTc1bZoaDV0QmgIZbFMQhEbiWj1RZhrKvbkwqgOLBf79bzUHn68vuLnBxo2qAQWqkTVxon1uvsZiVA96Ig4EG5IL4sCGeDCXA117osrLy3Fzc2tsfabGTA42boSRI+3LHTtCYWHT7NtMHpoLV3cgPVF2XD0XQBzYEA/1cuBaPVHfNPdPvkyAmRzcfTf84x/qedu2MH++ev7LL3DjjWpevoYOh2AmD82FOBBsSC6IAxviwVwOdO2JSk5Opk+fPo2tz9SY0UF2tppzr2NHtdyzJxw9qp6fcw7s3w8DBtRvn2b00NS4ugPpibLj6rkA4sCGeKiXA9fqifrvf/+rZ3WGxIwOunWzN6DKyuwNKIDqakhLq/8+zeihqREHgg3JBXFgQzyYy4GujagePXroWZ0hMbuDdu3UoJw2eveGoUPV8x9+UDenb99+5v2Y3UNT4KoO/Pz8GDhwIB4eHs4OxTC4ai7URhwoxIO5HOjaiGrVqpWe1RmSluBg5Uo1MOe0abB7N7i7qxHOH39cDZNw++2wadPp99ESPDQWV3Ug40TVxVVzoTbiQCEezOVA10ZUamqqntUZkpbgoE0bGD8e3n0XunZV60JD7a9XV8Pq1affR0vw0FjEgWBDckEc2BAP5nKgayPq1ltv1bM6Q9JSHVx5peNy//7qb2UlJCZCfr7j6y3VQ30QB4INyQVxYEM8mMuBro2o5cuX61mdIWmpDr7+Gp57Dq67Dj75BF55BYqL4ZZbVIPq4ovVuFM2WqqH+mAkB9u2bWPMmDH07NkTi8VCWFjYGbfZunUrQ4YMoV27dlx++eXMmzev+QNtoRgpF5yFOFCIB3M50HWIg8rKSlq3bt3Y+kyNKzmYNQveesu+fN11sHeveu5KHk6FkRz89NNP7Ny5k+uvv55HH32U0NBQHqr9C4ITOHLkCIMGDeKll17ilVdeYefOnbz++ussW7aMRx999KzqlCEO7BgpF5yFOFCIh3o5cK0hDqZMmaJndYbElRyc2D6vvexKHk6FkRyMGjUKT09PHnnkkbMqP2/ePC655BJmzJjBgAEDePHFF3nhhRf4+uuvmznSlomRcsFZiAOFeDCXA5mAWGg2iorgjjsgOhrOPReCg+H//g+2bIF//UsN1OntDTff7OxIhdpYLJYz9kTddtttDB482GFk4dDQUJ544glKSkpo06bNGeuRnihBEBqJa/VEmWlSwebClRx07Ai7dkF8vBqQ8//+D3Jz4YEHYOdOT7Zvh/vvV/dOuSJmzoWsrCy6devmsK5bt25UVlaSk5Nz0m3Ky8spLCx0eAgKM+dCUyEOFOLBXA4a3YhatmwZycnJ+Pj4UF5eXvPPe3p6kpmZyaJFi7Baraxfv55u3boRHx/PzJkzKSwsdCibl5eHn58f+/btY/Xq1axdu5aYmBjmz5/PsWPHHMqWlJTg6+tLYmIiK1euZNOmTURFRREYGEh6erpD2aqqKry8vEhNTWXx4sXs2LGDyMhIli9fTlJSElOnTqWsrMxhm6ysLBYuXIjVaiUiIoLQ0FD279/PrFmzKCgocCibn5/P7NmziYuLIywsjHXr1hEdHc2CBQvIzs52KFtaWkp5eTlJSUmsWLGCzZs3s3PnToKCgkhLS2Py5MlUV1fj6elJdXU1kydPJi0tjaCgIHbu3MnmzZtZsWIFSUlJ+Pr6Ulpa6rD/7OxsFixYQHR0NOvWrSMsLIy4uDhmz55Nfn6+Q9mCggJmzZrF/v37CQ0NJSIiAqvVysKFC8nKynIoW1ZWxtSpU0lKSmL58uVERkayY8cOFi9eTGpqKl5eXlRVVTlsk56eTmBgIFZrFJmZm/j555UkJiby1Ve+FBeXAAUA/PmnJwcPHmP+/PnExMSwdu1aVq9ezb59+/Dz8yMvL89hv4WFhcycOZP4+HhCQkJYv349VquVRYsWkZmZ6VC2vLwcHx8fkpOTWbZsGZGRkWzfvp0lS5aQkpLClClTqKysdNgmIyODgIAAdu/ezcaNG1m1ahUJCQlMnz6d4uJih7I5OTnMmzeP2NhYwsPDWbNmDbGxscydO5fc3FyHskVFRcyYMYP4+HiCg4PZsGED1157Lf7+/nXirqiowNvbm8OHD7N06VK2bdvGtm3bWLp0KYcPH8bb25uKioo6x5q/vz979uxhw4YNBAcHEx8fz4wZMygqKnIom5uby9y5c4mNjWXNmjWEh4cTGxvLvHnzHBpAnp6eFBcXM336dBISEli1ahUbN25k9+7dNY2gE+MGyMjIYMmSJWzfvp3IyMiac8To0aNxd3evefTq1QuAoKCgmnNESEiIS54jxo0bV3OO8PX1dalzRFRUFJs2beKCCy4gMTERX19fSkpKHMoeO+Y654hhw4bVnCP27NljyHNE7bKnOkcEBASQkZHhULayspIpU6aQkpJy0nOErR1RUFDgEHftdkTtc4Qh0DStsY+zxt/fvz7FWySu7qC0VNMGDNA08NdA0wYP1rSKCvXaqlWaNm2apiUnOzdGvTBqLgBaaGjoacsMHz5ce+uttxzWhYSEaK1bt9aOHz9+0m3Kysq0goKCmkd6eroGaAUFBU0Vumkxai7oiThQiId6OWiKNkyjHrr+BGBAfWepbYG4uoN27WDbNvjsswFcdhm89hq0bg0ffww+PqrMl19CTAxcdpkzI21+zJwLN998M2vWrHFYt2HDBm644YZT3g/l5uaGm5ubHuGZDjPnQlMhDhTiwVwOdL0nqqioSM/qDIk4gC5d4LHHipg4ETp3VusWL7a//uefsG6dU0LTFSPlQnFxMbGxscTGxgJqCIPY2FjS/je79MSJE3nuuedqyr/66qukpqby3nvvcfDgQfz9/Vm0aBEffPCBM8I3PUbKBWchDhTiwVwOdG1E5Z84bLULIg4UJ3o4sdfJtlxVBUePqpHPWxpGyoVffvmFwYMHM3jwYADee+89Bg8ezL///W8Ajh49WtOgAujduzfr1q0jMjKS6667ji+//JKZM2ee9RhRgiNGygVnIQ4U4sFcDnS9nHf11VfrWZ0hEQeKEz0sXgwvvAAZGTBuHNx3H2RlwV13qV/3XXop/PwzXHGFc+JtDoyUC7fffjvaaYY7CQwMrLNuxIgRxMTENGNUroORcsFZiAOFeDCXA117on766Sc9qzMk4kBxooc+fWDrVkhOVmNIAUyZohpQAKmp8L9OkRaD5IJgQ3JBHNgQD+ZyoOtgm8XFxZx33nmNrc/UiAPF2Xh47TWoPR3bww9DSEgzB6Yjrp4LMtimHVfPBRAHNsRDvRy41mCbM2bM0LM6QyIOFGfj4d13wTaeY+fOMHGier5mDdxzDzz5JKSnN1uIzY6r5oKfnx8DBw7Ew8PD2aEYBlfNhdqIA4V4MJcDmfZFMDT5+eqSXt++cOGF6vm119pvNL/+ejWtjGA+pCdKEIRG4lo9UWYayr25EAeKs/XQuTMMG6YaUAAHDjj+Uu/XX+tOdGwWJBcEG5IL4sCGeDCXA117onJycujSpUtj6zM14kDRUA/p6XD11fC/WQG491746SeorobQUDUP3yOPqHn7jI6r54L0RNlx9VwAcWBDPNTLgWv1RP3www96VmdIxIGioR569VIjnr/9NnzxBdh2M3YsPPaYGh7hllugpKTpYm0uJBcEG5IL4sCGeDCXA13HiRo6dKie1RkScaBojIdrroHa9x2WlMCSJfbluDjYtUuNMWVkJBcEG5IL4sCGeDCXA117ojIyMvSszpCIA0VTemjXzj59DIDFAt2725dLS5usqiZFckGwIbkgDmyIB3M50LUR1QT3X5kecaBoSg/nnKPGj7r8cujaFWbOhKuugqQkNcJ5hw5w++3qfikjIbkg2JBcEAc2xIO5HOjaiOrVq5ee1RkScaBoag933KFGO8/OhjfeUOs++ECtAzUautGGHnHVXJBxouriqrlQG3GgEA/mcqBrI2rXrl16VmdIxIFCDw+FhadfdjaumgsTJkwgPj4eq9Xq7FAMg6vmQm3EgUI8mMuBrkMc5ObmcsEFFzS2PlMjDhR6eFi3Tg13UF6uLvPt3Kku7y1fDitXqueff64u9zkDV88FGeLAjqvnAogDG+KhXg5ca4iDuXPn6lmdIREHCj083HefGuH8p59g/37VaPr5Z3jqKTWm1NSpMGFCs4dxSiQXBBuSC+LAhngwlwOZ9kVwKSZPhn/+077cvz8cPOi8eFwZ6YkSBKGRuFZPlJmGcm8uxIHCWR5uvVUNgWBj+HD1t6ICwsMhIkKNfq4HkguCDckFcWBDPJjLga49UUVFRXQ0w3wczYg4UDjTw+rVaqTzPn3gk0+gdWt16W/DBvX644+re6aaG1fPBemJsuPquQDiwIZ4qJcD1+qJWrRokZ7VGRJxoHCmhwcegKAgmDQJ3NzU/VK2BhTAqlWgx1hvkguCDckFcWBDPJjLga6NqJEjR+pZnSERBwojeejcWQ3YaaNtWzjvvOav10gO9ETGiaqLq+ZCbcSBQjyYy4GujaiDcgevOPgfRvJw6aUwa5Ya6qBTJ/D3Vw2r6Gh1ya99ezWAZ1MPomskB3oi40TVxVVzoTbiQCEezOVA10aUq1/nBXFgw2geXn8d/voLCgrgmWfUuuefh8OHoawM/PwgLKxp6zSaA8F5SC6IAxviwVwOdG1Eubu761mdIREHCjN4yMk5/XJjMYMDQR8kF8SBDfFgLge6NqIOHDigZ3WGRBwozODh7bftzy+9FB58UD0PDIRx42DOnMZd4jODA0EfJBfEgQ3xYC4Hug5xkJmZSc+ePRtbn6kRBwqzeNi5E37/He66Cy64AAIC4IUX7K/7+sJ77zVs32Zx0FzIEAd2XD0XQBzYEA/1cuBaQxz4+/vrWZ0hEQcKs3i45RZ44gnVgAKIjHR8fevWhu/bLA6E5kdyQRzYEA/mciDTvghCPfDzU7/Us/Hll2oambIyiIqCLl3gmmucF5+ZkJ4oQRAaiWv1RJlpKPfmQhwozOrh9dfh669hzBjVgJo4EUpLYcQIdcnv2mvBx+fs9mVWB0LTI7kgDmyIB3M50LUnqqKigjZt2jS2PlMjDhQtyUNICDz6qH25Qwc1XMKZaEkO6oOfnx9+fn5UVVVx6NAh6YnCdXOhNuJAIR7q5cC1eqKmTZumZ3WGRBwoWpKHc891XD7b0c5bkoP6IINt1sVVc6E24kAhHszlQNdG1OOPP65ndYZEHChakof/+z946SX1vGNH9Qs+gC1boF8/uOgiWLCg7nYtyYHQOCQXxIEN8WAuB7o2onbt2qVndYZEHChamocFC9QlvD//hPvug6oqeOQRSEqCzEx47TVISHDcpqU5EBqO5II4sCEezOVA10ZUr1699KzOkIgDRUv00KEDtGqlnpeUQH6+/bXqasjKcixvNAdz5syhd+/etGvXjiFDhrB9+/ZTlo2MjMRisdR5JJzYUhTOCqPlgjMQBwrxYC4HujaiBMFV6NgRavdIX3013HijGuF84UJ45x0w0i1BK1as4J133uGzzz5j7969DB8+nFGjRpGWlnba7RITEzl69GjNo2/fvjpFLAiC4Hxa61lZenq6ntUZEnGgcAUPy5apX+399Rc89pjqqfrPf2DSJFuJdK65Bu65x5lRKqZNm8b48eN58cUXAZgxYwbr169n7ty5eHl5nXK7rl270rlzZ52ibLm4wvFwJsSBQjyYy4GuPVE333yzntUZEnGgcAUPrVrBk0+qaWJsv+D/6afaJW5mwwZnRObI8ePHiY6OZuTIkQ7rR44cSVRU1Gm3HTx4MD169OCuu+5iy5Ytpy1bXl5OYWGhw0NQuMLxcCbEgUI8mMtBoxtRy5YtIzk5GR8fH8rLy2sGyfL09CQzM5NFixZhtVpZv349kyZNIj4+npkzZ1JYWOhQNi8vDz8/P/bt28fq1atZu3YtMTExzJ8/n2PHjjmULSkpwdfXl8TERFauXMmmTZuIiooiMDCQ9PR0h7JVVVV4eXmRmprK4sWL2bFjB5GRkSxfvpykpCSmTp1KWVmZwzZZWVksXLgQq9VKREQEoaGh7N+/n1mzZlFQUOBQNj8/n9mzZxMXF0dYWBjr1q0jOjqaBQsWkJ2d7VC2tLSUN998k6SkJFasWMHmzZvZuXMnQUFBpKWlMXnyZKqrq/H09KS6uprJkyeTlpZGUFAQO3fuZPPmzaxYsYKkpCR8fX0pLS112H92djYLFiwgOjqadevWERYWRlxcHLNnzyY/P9+hbEFBAbNmzWL//v2EhoYSERGB1Wpl4cKFZGVlOZQtKytj6tSpJCUlsXz5ciIjI9mxYweLFy8mNTUVLy8vqqqqHLZJT08nMDCQqKgoNm3axMqVK0lMTMTX15eSkhJeffXVmrLHjh1j/vz5xMTEsHbtWlavXs2+ffvw8/MjLy/PYb+FhYXMnDmT+Ph4QkJCWL9+PVarlUWLFpGZmelQtry8HB8fH5KTk1m2bBmRkZFs376dJUuWkJKSwpQpU6isrHTYJiMjg4CAAHbv3s3GjRtZtWoVCQkJTJ8+neLiYoeyOTk5zJs3j9jYWMLDw1mzZg2xsbHMnTuX3Nxch7JFRUXMmDGDXr3igWBgA+DLn3/6k5mZyaRJnlit8PHHnlRUVODt7c3hw4dZunQp27ZtY9u2bSxdupTDhw/j7e1NRUVFnWPN39+fPXv2sGHDBoKDg4mPj2fGjBkUFRU5lM3NzWXu3LnExsayZs0ali1bRlVVFVFRUeTk5NSUjY+PJzMzk+nTp5OQkMCqVavYuHEju3fvJioqCm9vb0aNGkVISAjFxcXcddddvPLKK6SkpLBkyRK2b99OZGRkzTli9OjRuLu71zxs9z0EBQXVnCNCQkJc8hyxatWqmnOEr6+vS54j/vWvfzmcI2qXdaVzxOzZswkODmbDhg3s2bMHf3//OnHrfY4IDw8nNjaWefPmOZwjPD09KS4uPuk5IiAggIyMDIeylZWVTJky5ZTnCFs7ovbnw4ntiNrnCCMgg23qjDhQuKqHv/6CDz+E/fvh3nsr+PTTNuTmwq23ql/vtWsHwcHqF356kZmZyUUXXURUVJTDN8DJkyezePHis75ZfMyYMVgsFlavXn3S18vLyykvL69ZLiwspFevXjLYJq57PNRGHCjEgwy2eUq8vb31rM6QiAOFq3o491yYMwe2bYPqauVg0SL78AdlZfCvf+kbU5cuXWjVqhVZJ/x88I8//qBbt25nvZ+hQ4eSlJR0ytfd3Nzo1KmTw0NQuOrxUBtxoBAP5nIgExALgpOZPh3ee8++PHQo6D1Myk033cSQIUOYM2dOzbqBAwfy4IMPnvbG8to89thj5OXlsXnz5rMqLxMQC4LQSFyrJ8pMkwo2F+JAIR7sDl5+GYYNU+vOPx98fdXzsDAYNAgGD4atW5s3lvfee49vv/0Wf39/Dh48yLvvvktaWlrNvQkTJ07kueeeqyk/Y8YMwsLCSEpK4sCBA0ycOJHg4GDeeOON5g20hSLHgziwIR7M5UDXnqjMzEx69uzZ2PpMjThQiAdHB9XVcPSoakS1b69GOb/8crDdQuTurtZ16NB88cyZMwcfHx+OHj3KoEGDmD59OrfddhsA48aNIyUlhcjISAB8fHxYsGABv//+O+3bt+eqq65i4sSJ3FePm7mkJ8qOHA/iwIZ4qJcD1+qJioiI0LM6QyIOFOLB0cE556g59tq3V8uZmfYGFEBBgZpSpjl5/fXXSUlJoby8nOjo6JoGFEBgYGBNAwrgo48+4rfffqO0tJS8vDy2b99erwaU4IgcD+LAhngwlwNdG1FXXXWVntUZEnGgEA+ndzBokHrYuO026NFDzcm3cCF88UXdufgE8yLHgziwIR7M5UDXEcsLCgr0rM6QiAOFeDi9g3btYPt2+O47aNMGnn9e9Va98oqa7Bhg2jTYu1dd9jMTfn5++Pn5UVVV5exQDIMcD+LAhngwlwNdG1FFRUV6VmdIxIFCPJzZQefO8PbbjutCQuzPCwth0ybzNaImTJjAhAkTau6JEuR4AHFgQzyYy4Gul/MGDBigZ3WGRBwoxEPDHJw4v2+/fupvaSkcOgQlJU0QmKA7cjyIAxviwVwOdG1EbTDCRGFORhwoxEPDHCxbpkYzv+468PODESPgyBEYMACuvFI1shITmz5WoXmR40Ec2BAP5nKg6xAHRUVFdOzYsbH1mRpxoBAPTeeg9n1SAM88A0uWNHq3zY4McWBHjgdxYEM81MuBaw1x8M033+hZnSERBwrx0HQOTvwe1PjvRYLeyPEgDmyIB3M5kGlfBMHkJCfD7bdDRgZ07w6bN6vLe4sXw+zZcOGFMGsW9O7t7EgdkZ4oQRAaiWv1RJlpKPfmQhwoxEPTOejTR40ZtX8/JCWpBlR0NIwdC//9L6xdC48+2iRVCc2EHA/iwIZ4MJcDXXuicnNzueCCCxpbn6kRBwrx0LwOvv9e3Rtlo3174/1yT3qi7MjxIA5siId6OXCtnqiVK1fqWZ0hEQcK8dC8DoYPh7/9zb78wAPq7/Hj4O+vLvM19zQyp8LPz4+BAwfi4eHhnAAMiBwP4sCGeDCXA10H27z55pv1rM6QiAOFeGheB716wa5d6ld6F14Ir76q1j/yiLq8BzBnDlitcO65zRbGSZHBNusix4M4sCEezOVA156o9PR0PaszJOJAIR6a38GVV8KXX8Jbb0HbtqrnydaAAjh4UN07JTgfOR7EgQ3xYC4HujaiLBanX750OuJAIR70d9CxI5x/vn25dWu46CL1vKICsrNleARnIceDOLAhHszlQNdG1MUXX6xndYZEHCjEg/4OWreGH3+Ea6+FK66AwED1y77YWLjkEjU8ws03qzn5BH2R40Ec2BAP5nKgayNq9+7delZnSMSBQjw4x8Gtt6pGU1KS/dd7H34IWVnq+Z496qZzQV/keBAHNsSDuRzoOsRBTk4OXbp0aWx9pkYcKMSDcRwMHw47dtiX//Uv+M9/mr9eGeLAjlFywZmIA4V4qJcDp1/307Unat68eXpWZ0jEgUI8GMfBv/6lxpECuPRSNRcfqF/v3X03vP46FBU5Lz5XwCi54EzEgUI8mMuBTPsiCAKZmZCSAldfrW5ADwuDhx+2v/7cc/Ddd01Tl5+fH35+flRVVXHo0CHpiRIEoaG4Vk+UmYZyby7EgUI8GMtBz54wbJhqQAHs3ev4emxs09U1YcIE4uPjsVqtTbdTk2OkXHAW4kAhHszlQNeeqOLiYs4777zG1mdqxIFCPBjbwfbtalLj6mq1/P778PXXauqY0FA17tTDD6tf/DUUuSfKjpFzQS/EgUI81MuBa/VELVy4UM/qDIk4UIgHYzsYPhwiItT9UDNmgLe3mjLmzjvhH/+AJ56Axx5zdpQtByPngl6IA4V4MJcDXXuiEhIS6N+/f2PrMzXiQCEezOfgv/+Fm25yXJeVBd26NWx/0hNlx2y50ByIA4V4qJcD1+qJiouL07M6QyIOFOLBfA4uvBBatbIvd+hgv4dK06C83DlxtQTMlgvNgThQiAdzOdC1EdW5c2c9qzMk4kAhHsznoHdvWLBA9Tz16gUrV6qG1NatqoHVvj288IJMHdMQzJYLzYE4UIgHcznQtRHV0fa11YURBwrxYE4HL7ygLuGlpcH999vX5eaqxlNAAKxe7dwYzYgZc6GpEQcK8dD8DiwWy7UWi2WxxWLZYbFYRlsslr9ZLJYZFotlrsViCbVYLNed7b50bUQdPHhQz+oMiThQiIeW4+DEgTgLCk5f3s/Pj4EDB+Lh4dF8QZmMlpILjUEcKMSDLg7eBp4HIgB/YCEwFVgJ3A+MP9sd6dqIuueee/SszpCIA4V4aDkOJk60P7/qKnjoIdUrNW0aPPooTJ3qeIlPxomqS0vJhcYgDhTioXkdWCyWPkCmpmmVQE/gfOArTdN+By4AioE1Z7s/XRtRgYGBelZnSMSBQjy0HAfvvqsG5/zpJ9i9Gzp1gpkz1dhSISHw0UeqQSWcmpaSC41BHCjEQ7M76AYE/+/5rcAOTdNiADRN+0HTtPM1TdtwtjuTaV8EQWhynnoKli+3Lz/6KPzwg2MZGeJAEIRG0uAhDiwWSxfgD+A/mqZ93tD9yLQvOiMOFOKhZTsYPtxx+bbb1N/CQjUvX1SU7iEZmpacC2eLOFCIB90c3IFqhEU2Zie69kRVVlbSujHzRLQAxIFCPLR8B/Pmqeljhg1TI58XFsLNN4PtntFPPy3kq6+kJwpafi6cDeJAIR7q5aAxPVFzgBeAzpqmlTV0P7r0RP3yC4wdC7fd9jV//KHW5ebC22+r2eF371brqqvB1xeefhoWLbJv/9NPaqqJTz9Vc3cBHD4ML70EL74Iv/2m1pWWwj//Cc88A+Hh9u2/+07t08cHqqrUOqtVxfTmm3DsmFqXkwNvvaVi+u9/7TF9/bXaPiDAvs+1a1U9n32m6gVITlbxvPSSem6L6bPPVNm1a+Hrr78G1L6eflrt2zY/2Z49qu633lKxgIrtzTdVrLb7cKuq1P/y9NPqf7MRHq7q+ec/7TElJdljOnxYrSspUS7/8Q/l1saiRWqfvr72mHbvVjG9/bZ6zwD++MMeU3S0PSZvb7V9UJB9n6tXq5j+9S8o+1+aHjoEQ4d+zUsvQUqKWvfXX+oG5X/8A9avt2+/cKHa5/Tp9piiolRM77wDeXlqXXY2TJigYrJNnltZCV5eavslS+z7DAtTMU2aZB8gMiFB/VT/5ZchNVWtKy6Gjz9WMW3caN9+wQK1zxkz7DdM79gBzz6r7g/680+1LitLxTRunH0C38pK+Oortf0//vF1zT5DQlRMn39uj+ngQRXTK6+oIQVA/RLuo49UTD//bI9p3jy1z5kz7TFt365ieu89yM9X644eVQ2aceNg3z61rqICJk9W29e+BPfDDyqmL75QU74AxMfD88/Dq69CerpaV1gIH36o6tq82b59dbWKxfa+rV1rb0ABzJql/mZmwmuvqf3axtirqIAvv1T1r1xp32bVKrXuyy/tMe3fr7Z97TX4/Xd7TB98oGKKjFTrNA38/NT/6edn3+eWLarcBx+o7QAyMtT/+PzzcOCAWnf8OPznP6r+Vavs269YodZ5eqq4Qf0ftpgyM9W6ggJ1n9izz8K2bfaYZs2CG274mrlz7fvcvFm9xx99ZP/1Y3q6yoUXXlDvgy2mL75Q9QcH27dftkz9n5Mnq5wD+PVX9b6//rrKA1B58d57Kqbt2+0xffON2n7ePPs+f/7ZHlNxsVqXlmaPyfbelperY+uZZ9Q8izaWLlX7/Oore0x796qYJkyASZPU8fDnn+o4eu452LnTHtOMGWr7BQvs+9ywQcX0ySf2mFJS1HE8fjwkJqp1ZWXw73+rmH780b79kiVqn1Om2D8bYmLUeeSNN9R5BdR55p13VEy7dql11dXqXr+nn4Zvv7XvMyJCxTRxojqvARw5os7B48er858tpn/9S8VUe1iQp5/+mqefVudTW0y2z9A33+SsP0P9/e37bOxnaGCg2ufUqXU/Q99668yfoVOn1u8zdNiwr2s+Q5uRO4DdjWlAAaBpWmMfpyUjQ9M6ddI0dRgc0a6/Xq2/5RbbOk0791xNO3JE0zw97etA0777TtP27NG0Vq3s6/7+d00rKdG0Sy6xr7voIk0rLta0556zrzvnHE3bsUPTli1z3Oe//61paWma1rGjfZ2Hh4pp6FD7uvPO07TUVE374gvH7Zcs0bRdu9T+beueeUbT/vpL0y6+2L6uVy+17pln7OtatdK0kJAj2pIljvv84gtNS0lRddrWDR2qYvLwsK/r2FHT0tPV/1B7+2XL1P9aO6bnnlNOLrrIvu7SSzWttFQ5rB3Tnj3Kde19enpq2uHD6r2xrbvlFhXT9dfb13XqpN7jzz5z3H7lSk3bulXTLBb7uuef17TCQk3r0UPlAmjaZZdpWlmZpj3+uL1c69aa9ssvmubv77hPLy9N++03TevQwb7utttUTNdea1/n7q5pmZma9sknjtsHB2vali2OMb34oqYVFGha9+72dZdfrmnl5Zr2yCOOMcXEaNrChY779PHRtEOHNK19e/u6O+5QMV19tX1d586alpWlaR9+WHv7I1pYmKb9/LNjTK+8oml//qlpXbva111xhaYdP65pDz5oX9emjabFxmravHmOMfn6alpCgqa1a2dfd/fdmlZdrWkDB9rXnX++pv3xh6a9957j9mvWaNqGDY7rXn9d0/LyNO3CC+3r+vbVtIoKTRs92r6ubVtNi4vTND8/x+1nzKgbp5tbgQZoffsW1Ky74AJNO3ZM095+27Hs2rWa9tNPjuvefFPTcnI0rUsX+7orr9S0qipNGzWqdj2aduCAps2c6bj9rFmatn+/itm27r77NK2yUtP69bOv69JF03JzNe2NNxy3j4jQtPBwx3XvvKPiP/98+7oBA5T7kSMdYzp4UNOmT7fnAmjanDmatm+fem9tZceMUZ6vuMK+7sIL1fvx2mv2dRaLpm3cqGk//ugY0/vva1p2tqb97W/2dVddpWK66y77unbtNC0xUdO+/tpx+/nzNW3vXseYHnpI5ePll9vXdeumafn5mvbyy44xbd6saSEhjvv86CNNO3pUHRe2df37H9E0TdNuv92+rn17TUtK0jRvb8ftv/1W06Kj1XFpW/foo+pc0ru3fV337ur4Hj/eMabISE374QfHfU6cqGm//67OH7Z1112njuXhw+3rOnTQtORkTfvqK8ftAwI0zWp1/Lx64gl1zr3sMvu6nj01rahI08aNs6875xxN275d01assOcCaNo//3niZ6imDRmiYho2zL7O9hn65ZeOMQUFadru3Y4xPfXUqT9Dn33WMaadOzXt++8d9zlpkvoMrf15deONKqabbrKvs32Gfv654/ZLl2paVJTj59U//nHiZ+gRrVcvFecZoCEPoDugAZ83dB+2R6P6DC0Wi6XgDIPC7N5t/3YHG4mJeZKjR+3fMEC11nfsUN8Ia7Npk/rGZGv5gvoGd/Cg/Zs5qG+fcXFq5GQb1dXq21ztcqC+lV51lePYNlar6jWwteZBfavZufPkMaWm2r9d22I6cEB9e7WRnq7W1Y6pqgqWLdvIeec96bDPLVugb1/7NylQsWRl2XufQMUcFXXymC65pG5McXH2b+ag4o6PrxvTli32b7a1Y7r0Uvs3KVB1Hz2qvqnZKCxUsZ4spu7d1eFgY+tW1fuhvgVvBJ4kJUW9n7VjqqxU792vvzruc/Nm6NHD/k0KVN78/rtj2YKCk8f0889wwQV1Y4qNVa5tHD6svsHaegtsMW3Z4vh+2GK64AL7NylbTOnp9l4VUN/49+w5MaaN/Pzzk3TsWDemvXvt3zhBfVNMSnKMqaJC5fOJ9xdt3qymYymr9f1q+3b7+28jL099W7T11Nj4+Wdo185xXWSket9t3zhBxZOcbO/BANUzEhlZd5+bN8M995QD9rlhNK3of/upOUGQm6u+dZ+4/aZNcM4J/eaRkTB6tL3XFtT7dviwY0zl5cpp7V4yW0znnGPv0QK13eHD9t4CUPuPjj55TLYeldoxjRxp7yEFld8pKXVj2ratdkzqeNi8We3T1qNli+m33+y9BaDeh717HY8bTVMx1T4+bDHdfru9hxTUuSktzTGmsrITY7L/nyUljjFt26Yc2Xq3QfXanCymn3+uO3bYli3qMq+thxQgIWEjGRlPOsRUWqpiPFlM+fmO/rduVe//kSP2dVlZ6txwMk+1c9kW0w03OMYaG6t6EnfssK8rKVHLJ4vpjz8cP6+2brW//zYyM9V5sPaxXF2ttle9lioXbDFde23tz1CVi0ePOh73f/116s+r33+vG1N8fN3P0P3768a0ebNj7LaYBgxw/Lz673+V6z177OuKi1WMJztuLr/c8fNq61ZVv/0zdCPp6U9y4AD068cpcXd37wQUaVrtM+hZ0Q3IRo0L1SgadU+UxWLpBJxhaD1BEARBEIRmwV3TtMIzF2seGtuIshQUFFSfqZzVCt98U8iaNb2Ijk7niis6ceyYujaen6+uyw4bplrLM2ao1v9tt6n1Hh4efP65lRUr4OKL1TXd885T38p8fNS3ig8/VK3Vv/5S17b9/T2YO9fKAw+o+gMCVIv66qvV9f/WrVWLed48NabNp5/C6NEerF1r5auv1DeRl19WN8FWVanr3r/+Cnfcoa5pA6xZA6++6sG4cVY+/RTOPVd9M/fxAYtFxWTrXfLyUj0T999fyMsv9yI9PZ1VqzoRGQnXXKNiatVKXWtfsADc3VVMXbuqb3ceHh7cdZeVV1+Fm25S376mTVM9HXfeqe69AHVd/YcfVA/SunUeREdbSUxU911ZLOr+nj59VExffaVa/U8+aZ++o29fD4YOtXLdder6f6tW6tvNt99C584qpgsvVN84vvpK9Yy9/jq8/roHu3ZZ+fpr9Q337rvVtXJQ9x+FhMBll6n7Fjp0gF9+KeSuu3rx6KPpfPZZJ/r0Ufv66iv1jeipp2DUKLX9ggXq29H118OyZR5YrVZ27FAxnX++iqlLF/XN7KuvVA68/rr6RllRAf36eXDrrVbuuUddpwcVT1iYmgvuk0/UnG/x8eq+q1atYPduD2JjrRQWqn0ePaqu5//f/6nt581TXoYMUdf/zzkHBg3y4IYbrFxwgYrpggvU/+Llpb65vvGG+h8qKtT78euvhfz0k8qFTp068cMP6v27/HIVU7t2yuX06SpfP/5YxTtkiAd3320lK0vd43DPPeoYmDdPfeu74QZ138Q556hvgIGBsGWLB3v3Wjn/fPWeT5miYnrzTRg8WPXETJ2q7gsbNUr9rx4eHnz4oZU1a+CKK1T97dqpnPvmG2jTRsV56aXqGP7qK1i61IPAQGtNTHPnqphuukn9/8ePl7NxYznff6/y6B//OMrdd98IxAMX1ZwvNm5U376nTlU9C/ffD3//u3ptxQp1r8aOHR4kJFhxc1Pf6r/5BtzcVEyXXKJ6Xb76SvUMPPcc3HWX+p/GjrWye7c6tl9/XR0Xmzap+/i6dVP3sfztb+pb+pQpsHq1B+vWWbnmGtV75OOjemBGj1bHDqj7j9atgyuvVPcL3XKLBwsXWpk1Szn75BM112BensqHP/5Q9wHdcYfyNHVqIZMn92LSpHTefbcTFotysGSJiunTT9Xxl5Ki7pOpqFDH5/PPe7B9uxVvb3U+fOABePxxFdPSperenAED1L1ebduqXqIxYzx46CErEyfCRRepmCZPVj2Azz8PI0aoHoJZs1SP4C23wKJF6rjbsEHtt3t3FZO7u+r18fZW56R331W9/KWlMGCAB7fdZuXBB9XwFqD+n/XrYeBAFVObNqpXxc8PWrcuZMUKdTxUVHRi8mQV2/jx6pee1dXqPY6JUTG9+qra58CBHnh4WOnRQ8XUqZPqHbPd//ree8pBaalyf+QIWK0qd0C97xs3Osb0yy8qpo4dVT706AHXX+/BiBFW/vxT3bNz661q/998o7wOH64+M0DlwvLlyu+GDeo8nJysYqquVvfF9e+vjkEvL9VD/MgjapDawsJCevXqxahR6Qwe3In331fHv9UKc+aomD79VL0HtT9DrVYP9u+3UlWlzhm//qreyxdfVDGtXUudz9DrrvPgxhutdT5DvbxU/j/2GDWfof7+qgdq504PDh2ynvQztFs3ldu2z9BXXoGhQ9Vx98QT1pN+hq5apY7XiRPtn6GTJxcSGtqLyEjl4HS4u7u707CeqKajsdcDz3jF8n8UFKj7HwoKCs52E03TNG3AgAH1Km/kbVqig4Zs1xI9iIP6b5Oenq4B2sMPp9fcGzFsmLofraJC3W/2wguaFhbmnPj02kZyoWU6aMh2LdFDMztoijaM8+6J0oMJEya0qG0agtH/H/EgDhq6Dahv8+PHq3ty7r9f9Zp88IH6lRGonuSICHWvkd7xSS6Ig4Zu05jt9KjHyNuYCd3GiZLRicWBDfEgDgAyMjLo1Utdwrn44osdXhsyxPEHDBMnqssELRHJBXFgQzzU20GDx4lqKnQbsdzNzY3PPvsMNzc3vao0HOJAIR7EAVDzv5/MgYfHyZfz89U9TLV/FWZ2JBfEgQ3xYD4Hul3Oc3Nzo127dqYR0xyIA4V4EAdw+kbU9OnqJtqEBHVz68MPq5vihw1TP9Jo21YNwvngg3pH3fRILogDG+LBfA5kAmJBEJxCfS9d/Oc/aiRsGzfe6DgujSAILofrXM4DmVgRxIEN8eC6Dvz8/Bg4cCAeJ16zOwPnnnv6ZTPjqrlQG3GgEA/mcqBrT1RmZiY9e/ZsbH2mRhwoxIM4qG9PVEkJjBmjxny76CI1Hs8116j5I//5TzUm05w5auwss+HquQDiwIZ4qJeDltsTlZKSwvjx4+nduzft27enT58+vPrqqxyvPcfCSdA0jc8//5yePXvSvn17br/9dg7YZgA1IZMnT2bYsGF06NCBzp0781PtGX9Pwbhx47BYLA6PoUOH6hBt83CiA+CMHlpaHgD8+eefPPvss7i7u+Pu7s6jjz5Kfu15L05CS8uFxtChg7qpvKBA3Rd1zTVq8MTx49X9Ur/9pgZ2tE3gbCTmzJlD7969adeuHUOGDGF77blNcDweIiMj67znFouFhIQEvcNuMrZt28aYMWPo2bMnFouFsLCwOmVOPCds3bqVIUOG0K5dOy6//HLm1Z4N2YScjQOwe2iJeeDl5YWHhwcdO3aka9euPPTQQyTaZomuhZlyodkaUQkJCVRXVzN//nwOHDjA9OnT2blzJ59++ulpt/Px8WHatGnMnj0bq9VK9+7dueeeeyiqPdmdiTh+/DiPP/44r732GgDXXHPNWW137733cvTo0ZrHunXrmjPMZuVEB3BmDy0tDwCefvppYmNjiYiIICIigmPHjvHss8+ecbuWlAtNQadOaqRxUKPn154XrKjIcZ4xI7BixQreeecdPvvsM/bu3cvw4cMZNWoUabUmLzvZ8ZCYmOjwvvft21fPsJuUv/76i2uvvZbZs2efskxtB0eOHOG+++5j+PDh7N27l08//ZS33nqL4OBgPcJtFs7GAdTNhZaUB1u3bmXChAns3r2bjRs3UllZyciRI/mr9iStmCwXmmDEzrNm/PjxWu/evU/5enV1tda9e3dtypQpNevKyso0d3d3bd68efWpynAEBARo7u7uWkRExBnLjh07VnvwwQebPyidsTnQNO20HlpiHsTHx2uAtnv37pp106dP1wAtISHhlNu11FzQtIaPzlyb0lJNGzzYPhv8mDFqfVmZGvH8/fc1LTa2iQJuIDfeeKP26quvOqzr37+/9sknn9Qs1z4etmzZogHan3/+qVeIugJooaGhddbXdvDRRx9p/fv3d3j9lVde0YYOHdrc4enCqRxomt1DS88DTdO0P/74QwO0rVu3OqyvRy44fcRyXW8sz8/P5/zzzz/l60eOHCErK4uRtYYmdnNzY8SIEUSdOFW9STmxxX0qIiMj6dq1K/369eOll17ijz/+aObI9OV0HlpiHuzatQt3d3duuummmnWXXHIJ7u7uZ/yfWnouNIZ27dTciosWqbnZQkLU+ueeU/PY+fqqec6cNa7U8ePHiY6OdshlgJEjRzq87yc7HgYPHkyPHj2466672LJlS7PH6mxqO9i1a1cdZ//3f//HL7/8QkVFhd6h6cqJudCS86CgoACgTrvgbHPBYrG0af4oT49ujajk5GTWr1/Pq7aZI09CVlYWAN26dXNY361bt5rXzE7//v3PWGbUqFEsXbqUzZs34+vri9Vq5c4776TciDd7NJDTeWiJeZCVlUXXrl0d1vXv35+uXbue9n9yhVxoLOedBy+8AM88oyZrBah9S0VxMZxwC5Ju5OTkUFVVdcZcrn089OjRgwULFhAcHExISAhXXnkld911F9u2bdMtbmdQ20FWVtZJnVVWVpKTk6N3aLpi89DS80DTNN577z1uvfVWBg0a5PDa2eYC0EWHUE9LvRtRFovlc4vFotV61Lnx7ZdffnHYJjMzk3vvvZdBgwbxom1a6dPX4bCsaVqddc7k888/P+kNf6dzYOPnn38+4/6ffPJJ7r//fgYNGsSYMWP46aefOHToEGvXrm3qf6XBNMYBnJ0Ho+cB1M/DibH//PPPZ/yfzJALRuTqq+3PzzkHrrpKPVcz3qu/enKmXK59PFx55ZW89NJLXH/99dx8883MmTOH+++/n6+//lq3eJ3BieeEkzk72fqWhs1DS8+DN954g3379rFs2bI6r51tLmCAcSobMmL5bGC5beHgwYMHTyxw2WWX1TzPzMzkjjvu4Oabb2bmzJmn3XH37t0B1fLs0aNHzfo//vijTkvUmbzxxhv8/e9/P22Z2g5qM27cuHrX16NHDy699FKSkpLqvW1z0RgHcHoPZskDOHsP+/btIzs722H9uHHj+Pe//12v/8mIuVBf/Pz88PPzo6r2HeFNzMqV8O67kJ0Nr74KN9wABw7AHXfAsWPQtSts2QIDBzZbCAB06dKFVq1a1eltPDGXz3ReGDp0KEuWLGmOEA1DbQfdu3c/qbPWrVtzwQUX6ByZvpwuF1pKHrz55pusXr2abdu21Zk3E84+FyorK3ObO9Yz0gQ3Vp2SjIwMrW/fvtrf//53rbKyUvvyyy9PV7zmhmJvb++adeXl5aa+odiG7abqMzk4GTk5OZqbm5v23XffNUNk+lH7xvLTeWiJeWC7sXzPnj01615++eUz3lh+Ii0lFzStaW4srw/PPmu/AR007bnndKlWu/HGG7XXXnvNYd2AAQMcbiw/03nh0Ucf1e64445miU9vOMVN1bUdfPTRR9qAAQMcXn/11Vdd4sby0+WC2fOgurpamzBhgtazZ0/t0KFDpyxXj1xw+o3lzdaI+v3337UrrrhCu/POO7WMjAzt6NGjNY/aXHnllVpISEjN8pQpUzR3d3ctJCREi4uL05566imtR48eWmFh4amqMjSpqana3r17tS+++EI777zztL1792p79+7VioqKasrUdlBUVKS9//77WlRUlHbkyBFty5Yt2s0336xddNFFLuNA01peHmiapt17773aNddco+3atUvbtWuXdvXVV2ujR492KNPSc6E2ejeiXnjBsRE1frwu1WrLly/X2rRpoy1atEiLj4/X3nnnHe3cc8/VUlJSNE3TtE8++UR79tlna8pPnz5dCw0N1Q4dOqTt379f++STTzRACw4O1ifgZqCoqKjmuAe0adOmaXv37tVSU1M1Tavr4PDhw1qHDh20d999V4uPj9cWLVqktWnTRvvhhx+c9S80mvo6aIl58Nprr2nu7u5aZGSkQ5ugpKSkpkw9c6HlNqICAgI01PXKOo/aAFpAQEDNcnV1tTZp0iSte/fumpubm3bbbbdpcXFxp3xTjM7YsWNP6mDLli01ZWo7KCkp0UaOHKldeOGFWps2bbRLLrlEGzt2rJaWluacf6AJqK8DTWt5eaBpmpabm6s988wzWseOHbWOHTtq11xzTZ2fL7f0XKiN3o2oI0c07fLL1Vnv8ss17X9tGO2bbzStf39NGzFC007z5bhR+Pn5aZdeeqnWtm1b7frrr3f4SffYsWO1yy67rGbZ29tb69Onj9auXTvtb3/7m3brrbdqa9eubZ7AdML2c/0TH2PHjtU0ra4DTdO0yMhIbfDgwVrbtm21yy67TJs7d64TIm86zsbBiBEjanphWmIenKpNUPvcX89ccHojStdpX/Ly8k47xIErIA4U4kEc1Hfal6agogKOHoUePaBNGzU8wogR9tcHD4aYGF1CccDVcwHEgQ3xUC8HTv+Vga7jRJ3sLnxXQxwoxIM4cAZt2sAll6i/UHf8KGeNJyW5IA5siAdzOWjIr/MazPDhw/WszpCIA4V4EAdG4O67oUsXsA099OST6u9ff8GCBWoevhdeUL/ma04kF8SBDfFgLge69kSlpKToWZ0hEQcK8SAOjMDFF8N//ws+PvDddzB3rrrt/N574b33YOJENeL5WU400GAkF8SBDfFgLge69kS1atVKz+oMiThQiAfXdaDHOFH1oXdv+PBD+3J2NuzYYV9OSoJ9++Dmm5svBlfNhdqIA4V4MJcDXXuiag+c6KqIA4V4cF0HEyZMID4+HqvV6uxQTsrf/qYu8dlwc1P3UQEUFcFvv4GacaLpcNVcqI04UIgHcznQtRFl1JOmnogDhXgQB0albVtYuxZuuQWGDIHgYLjoIti5UzWm+vaFG29s2qljJBfEgQ3xYC4Hug5xcOzYMS688MLG1mdqxIFCPIgDZwxx0BhuuQWiouzLU6bAxx83zb5dPRdAHNgQD/Vy4FpDHMyfP1/P6gyJOFCIB3FgNqqrT7/cGCQXxIEN8WAuB7r2RAmCINgwW0/Uli3wwANQXAxXXaUG6jz/fPD0hNWrYcAAmDkT3N2dHakguAyu1RPl6empZ3WGRBwoxIM4MBt33AGpqRAXB9HRqgG1eDH8619gtUJQELz1VsP2LbkgDmyIB3M50LUnqqSkhA4dOjS2PlMjDhTiQRyYrSfqZEycqO6NsnHDDapBVV9cPRdAHNgQD/Vy4Fo9UXPnztWzOkMiDhTiQRy0BO6/H2oPafPAA+pvfj7MmQMBAXD8+Jn3I7kgDmyIB3M50HWwzdGjR+tZnSERBwrx4LoOjDbYZmO49VaIjFRDIgwYAM89ByUlav2BA6rMDz+o10+Hq+ZCbcSBQjyYy4GuPVG//vqrntUZEnGgEA+u68Dog23Wl1tvBS8v1YACiImxN6AA1q2DvLzT78NVc6E24kAhHszlQNdG1AUXXKBndYZEHCjEgzhoqfTs6XiJr3Nn6NhRPS8rg9zcuttILogDG+LBXA50bUS1b99ez+oMiThQiAdx0FK5/HI1mXGfPjBoEPz4I7RpA2vWwAUXqCllnn7acZwpyQVxYEM8mMuBro2oQ4cO6VmdIREHCvFgHAd//vknzz77LO7u7ri7u/Pss8+Sf4Y5TcaNG4fFYnF4DB06VJ+ATcAzz6g59uLi4Lbb1LqXX1b3SwEsWwbh4fbyRskFZyIOFOLBXA50vbH8rrvu0rM6QyIOFOLBOA6efvppMjIyiIiIAODll1/m2WefZc2aNafd7t577yUgIKBmuW3bts0ap9kpKzv1slFywZmIA4V4MJcDXXuivvvuOz2rMyTiQCEejOHg4MGDRERE8O2333LzzTdz8803s3DhQsLDw0lMTDzttm5ubnTv3r3mcf755+sUtTnx9ATL/0a1GTpUDYdQWakG67z99u/44oumnUrGbBjheDAC4sFcDmTaF0FwYfz9/XnvvffqXL7r3Lkz06dP5/nnnz/pduPGjSMsLIy2bdvSuXNnRowYweTJk+natesp6yovL6e8vLxmubCwkF69epl6sM36kpQEx46pQTnbtlUNq3/9y/761KnwwQfOi08QTIb5B9tctmwZycnJ+Pj4UF5eXjNcu6enJ5mZmSxatAir1cr69et56qmniI+PZ+bMmRQWFjqUzcvLw8/Pj3379rF69WrWrl1LTEwM8+fP59ixYw5lS0pK8PX1JTExkZUrV7Jp0yaioqIIDAwkPT3doWxVVRVeXl6kpqayePFiduzYQWRkJMuXLycpKYmpU6dSVlbmsE1WVhYLFy7EarUSERFBaGgo+/fvZ9asWRQUFDiUzc/PZ/bs2cTFxREWFsa6deuIjo5mwYIFZGdnO5QtLS1l1KhRJCUlsWLFCjZv3szOnTsJCgoiLS2NyZMnU11djaenJ9XV1UyePJm0tDSCgoLYuXMnmzdvZsWKFSQlJeHr60tpaanD/rOzs1mwYAHR0dGsW7eOsLAw4uLimD17Nvn5+Q5lCwoKmDVrFvv37yc0NJSIiAisVisLFy4kKyvLoWxZWRlTp04lKSmJ5cuXExkZyY4dO1i8eDGpqal4eXlRVVXlsE16ejqBgYFERUWxadMmVq5cSWJiIr6+vpSUlHD33XfXlD127Bjz588nJiaGtWvXsnr1avbt24efnx95eXkO+y0sLGTmzJnEx8cTEhLC+vXrsVqtLFq0iMzMTIey5eXl+Pj4kJyczLJly4iMjGT79u0sWbKElJQUpkyZQmVlpcM2GRkZBAQEsHv3bjZu3MiqVatISEhg+vTpFBcXO5TNyclh3rx5xMbGEh4ezpo1a4iNjWXu3Lnk5uY6lC0qKmLGjBnEx8cTHBzMhg0beOWVV/D3968Td0VFBd7e3hw+fJilS5eybds2tm3bxtKlSzl8+DDe3t5UVFTUOdb8/f3Zs2cPGzZsIDg4mPj4eGbMmEFRUZFD2dzcXObOnUtsbCxbtmzh3HPPJTY2lnnz5pGTk4Onpyddu3bl+++/p7i4mOnTp5OQkMCqVavYuHEju3fvpn379nzzzTc8+eST+Pr6Eh4ezp133omnpycpKSksWbKE7du3ExkZWXOOGD16dM19V+7u7vTq1QuAoKCgmnNESEhIiz5HHDgQRn7+OuLi1Dli165swLPm8d//luLr6+uS54gnn3zS4RxRu6wrnSPeeuutmnPEnj17nH6OWLNmDeHh4XXOEbaypzpHBAQEkJGR4VC2srKSKVOmnPIcYWtH1P58OLEdUfscYQR07YmqqqqiVe3f/rog4kAhHprXweeff84XX3xx2jJWq5UNGzbw3Xff1bl017dvX8aPH88nn3xyVvUdPXqUSy+9lOXLl/PII4+ctIz0RNVl3jx47TWAKqAV/v7w/POqt2rdOjVcwj33ODlInZBzgkI81MuB+Xui6oOPj4+e1RkScaAQD83r4I033uDgwYOnfQwaNIju3buTnZ1dZ/tjx47RrVu3s66vR48eXHrppSQlJZ2yjJubG506dXJ4uDqvvqqGQ7jxRh+WLlUNqD/+gCFDYNw4GDnS8XJfS0bOCQrxYC4HuvZEpaamcumllza2PlMjDhTiwRgODh48yMCBA9mzZw833ngjAHv27GHo0KEkJCRw5ZVXntV+cnNzueiii1iwYAHP2YbuPgMtYQLipqJ2LgQEwAsv2F/r0kX1TLV0jHA8GAHxUC8HrtUTtW3bNj2rMyTiQCEejOFgwIAB3Hvvvbz00kvs3r2b3bt389JLLzF69GiHBlT//v0JDQ0FoLi4mA8++IBdu3aRkpJCZGQkY8aMoUuXLjz88MPO+ldMTe1cOLEDsPZydbX6RV9LxAjHgxEQD+ZyoGsjqnfv3npWZ0jEgUI8GMfB0qVLufrqqxk5ciQjR47kmmuuYfHixQ5lEhMTKSgoAKBVq1bExcXx4IMP0q9fP8aOHUu/fv3YtWsXHW3zmwj1onYu3HcffPyxmi5mwACwvRXffQfnnQft24OJrnacNUY5HpyNeDCXA10H26xsqV+h6oE4UIgH4zg4//zzWbJkyWnL1L7s3759e9avX9/cYbkUJ+bClCnqYaOwEF56CSoq1PLHH8PDD0PfvjoG2cwY5XhwNuLBXA507YnKysrSszpDIg4U4kEcCHbOlAulpfYGlI3CwmYMyAnI8aAQD+ZyoGsjasiQIXpWZ0jEgUI8uK4DPz8/Bg4ciIeHh7NDMQxnyoVu3dQv92yMGgWDB6upYz77DB5/HJYvb+YgmxlXPR5ORDyYy4GujaiwsDA9qzMk4kAhHlzXwYQJE4iPj8dqtTo7FMNwNrng7w9bt8LGjbBmDZxzDrz1Fnz1FfzwAzz1FJj5KqurHg8nIh7M5UDXIQ7Kyspo165dY+szNeJAIR7EgQxxYKehuXDNNRAXZ1+eNAk+/7zp4tITVz8ebIiHejlwrSEOvv76az2rMyTiQCEexIFgp6G5cMst9ucWC9x6q3p+9CiEhMCBA00QnE7I8aAQD+ZyIBMQC4LgFKQnqvEcP64u5yUlqV/rPfaYej5sGOTkQOvWsGyZWi8ILRDX6omyTUToyogDhXgQB4KdhuZC27bq8t3SpfaGUkCAakCBGphzxowmCbHZkeNBIR7M5UDXnqisrCy6d+/e2PpMjThQiAdxID1RdpoyF6ZOhY8+si+PHq1uRDc6rn482BAP9XLgWj1Ra8xwJDcz4kAhHsSBYKcpc+GNN1TD6ZxzYOBAe0/UjBng7g49esDatU1WXZMhx4NCPJjLga4jll933XV6VmdIxIFCPIgDwU5T5kL79qrnqbpaNaQA4uPhvfdA09QgnX//O+TlQZs2TVZto5HjQSEezOVA156o3NxcPaszJOJAIR5c14EMtlmX5siFc2qd3XNyVAPKRnGxGgXdSLjq8XAi4sFcDnRtRJUa7ah1AuJAIR5c14EMtlmX5s6Fm26CG2+0Lz/7LHTqBEVFasTzl1+G//63WUM4I656PJyIeDCXA10v5/VtSbNlNhBxoBAP4kCw09y54OYGkZEQHg4dOsB996n1TzwBERHq+fffw6+/Qp8+zRrKKZHjQSEezOVA156oLVu26FmdIREHCvEgDgQ7euRC+/Zqjr3771cDc6p67a//9Zdze6PkeFCIB3M50HWIg4KCAtzd3Rtbn6kRBwrxIA5kiAM7zsqFW2+FnTvV8zZtYO9euOoqNeL5wYMwaBB07apPLK5+PNgQD/Vy4FpDHMyaNUvP6gyJOFCIB3Eg2HFWLgQHw/PPw5gx8OOPqgG1Zw9ceSXcdRf07w/79ukTixwPCvFgLgcy7YsgCE5BeqKMyRNPwKpV9uUXXoBFi5wXjyCcBtfqiTLTUO7NhThQiAdxINgxUi6ce+7pl5sLIzlwJuLBXA507YnKz8+nc+fOja3P1IgDhXhwXQd+fn74+flRVVXFoUOHpCcKY+VCejqMHAkJCXDNNbBhA3TrBpMmwcKF0LMnLF4MAwY0bb1GcuBMxEO9HLhWT9SSJUv0rM6QiAOFeHBdBzJOVF2MlAu9eqmbyvPz1ZAH3brBTz/Bf/6jbjiPjoZ//KPp6zWSA2ciHszlQNdG1IgRI/SszpCIA4V4EAeCHSPmQu0fR2VkOL524nJTYEQHzkA8mMuBro2o5ORkPaszJOJAIR7EgWDH6Llw332qR8rG88+rv3l56jLfZ59BZmbj6jC6A70QD+ZyoOuI5W3bttWzOkMiDhTiQRwIdoyeCxddpC7jrVmj7ol64AGoqoI771SX/ACWLYO4uIbfiG50B3ohHszlQNdGVLfaX2VcFHGgEA/iQLBjhly46CJ49VX78u+/2xtQAEeOqJvRhwxp2P7N4EAPxIO5HOh6OS86OlrP6gyJOFCIB3Eg2DFjLnTt6jiaeceOcMkl6nl2NsTEQFnZ2e/PjA6aA/FgLge6DnGQnZ1tqhZmcyAOFOJBHMhgm3bMmguxsfDJJ1BRAZ9/DsOHq1/yPfoolJaqEdC3bYPzzz/zvszqoKkRD/Vy4FpDHCxcuFDP6gyJOFCIB9d14Ofnx8CBA/Hw8HB2KIbBrLlw3XUQEQGbNqkGFMA//6kaUAAHDpz9aOdmddDUiAdzOZBpXwRBcArSE9Uyuekm+O9/7cvTp8M77zgtHKFl41o9UWYayr25EAcK8SAOBDstKRd8fcE22PTQofDii1BdDe+/ryY2fvRRNTTCibQkB41BPJjLga49UaWlpbRv376x9ZkacaAQD+JAeqLstLRcKCmBnBy4+GI45xyYOxdef93++rPPQlCQ4zYtzUFDEQ/1cuBaPVFz5szRszpDIg4U4sE4DiZPnsywYcPo0KHDWc/ZpWkan3/+OT179qR9+/bcfvvtHDhwoHkDbcEYJReaig4d1C/1zvnfJ8yJYyeebCzFluagoYgHcznQtRH1wAMP6FmdIREHCvFgHAfHjx/n8ccf57XXXjvrbXx8fJg2bRqzZ8/GarXSvXt37rnnHoqKipox0paLUXKhuXjkEWjTxr7897+rv1lZMGUKzJoF//d/LdvB2dLSc+FsMJMDXRtRMTExelZnSMSBQjwYx8EXX3zBu+++y9VXX31W5TVNY8aMGXz22Wc88sgjDBo0iO+++46SkhK+//77Zo62ZWKUXGguhg2DqCj46itYvRrefBMKCuDmm2HiRHjrLXjmmZbt4Gxp6blwNpjJga6NqAsvvFDP6gyJOFCIB/M6OHLkCFlZWYwcObJmnZubGyNGjCAqKsqJkZkXs+ZCfbjhBtVgGjNGLf/yC6Sk2F/ft+9CpCPTNXLhTJjJga7Tvri5uelZnSERBwrxYF4HWVlZQN2pGbp160ZqauoptysvL6e8vLxmubCwsHkCNCFmzYXGcNll6hJfRYVaPv98N847Tz3PzYWiIrj0UrA4/dZhfXHFXDgRMzlodE/UsmXLSE5OxsfHh/Ly8pqfJnp6epKZmcmiRYuwWq2sX7+eFStWEB8fz8yZMyksLHQom5eXh5+fH/v27WP16tWsXbuWmJgY5s+fz7FjxxzKlpSU4OvrS2JiIitXrmTTpk1ERUURGBhIenq6Q9mqqiq8vLxITU1l8eLF7Nixg8jISJYvX05SUhJTp06lrKzMYZusrCwWLlyI1WolIiKC0NBQ9u/fz6xZsygoKHAom5+fz+zZs4mLiyMsLIx169YRHR3NggULyM7OdihbWlrK7NmzSUpKYsWKFWzevJmdO3cSFBREWloakydPprq6Gk9PT6qrq5k8eTJpaWkEBQWxc+dONm/ezIoVK0hKSsLX15fS0lKH/WdnZ7NgwQKio6NZt24dYWFhxMXFMXv2bPLz8x3KFhQUMGvWLPbv309oaCgRERFYrVYWLlxIVlaWQ9mysjKmTp1KUlISy5cvJzIykh07drB48WJSU1Px8vKiqqrKYZv09HQCAwOJiopi06ZNrFy5ksTERHx9fSkpKWHatGk1ZY8dO8b8+fOJiYlh7dq1rF69mn379uHn50deXp7DfgsLC5k5cybx8fGEhISwfv16rFYrixYtIjMz06FseXk5Pj4+JCcns2zZMiIjI9m+fTtLliwhJSWFKVOmUFlZ6bBNRkYGAQEB7N69m40bN7Jq1SoSEhKYPn06xcXFDmVzcnKYN28esbGxhIeHs2bNGmJjY5k7dy65ubkOZYuKipgxYwbx8fEEBwezYcMGNmzYgL+/f524Kyoq8Pb25vDhwyxdupRt27axbds2li5dyuHDh/H29qaioqLOsebv78+ePXvYsGEDTzzxBBaL5bSPpUuXsmbNGsLDw4mNjWXLli1omuaw3+LiYqZPn05CQgKrVq1i48aN7N+/H4CjR4/WOdaOHDlCSkoKS5YsYfv27URGRtacI0aPHo27u3vNo1evXgAEBQXVnCNCQkJc8hyRnJxcc47w9fV1iXNE27bpvPRSIH37RjFo0Cbuvvt7Dh1K5OmnfenevYTevT159FH48kvXOkds27at5hyxZ8+eZjtHBAcHEx8fz4wZMygqKnIom5uby9y5c4mNjXU4R8ybN4+cnJwzniN2795NQEAAGRkZDmUrKyuZMmXKKc8RtnZE7c+HE9sRtc8RRkDXIQ7S0tK4xDa5kosiDhTioXkd5OTkkJOTc9oyl112Ge3atatZDgwM5J133iE/P/+02x0+fJg+ffoQExPD4MGDa9Y/+OCDdO7cme++++6k252sJ6pXr14yxAFyPIDdQefO6n4pG+HhcP/9TgtLdyQX6uXA6f2Uut4TtXjxYj2rMyTiQCEemtdBly5d6N+//2kftRtQ9aF37950796djRs31qw7fvw4W7duZdiwYafczs3NjU6dOjk8BIUcD3YH1dWO66uqnBCME5FcMJcDXXuiqqurOeccXdtthkMcKMSDcRykpaWRl5fH6tWrmTp1Ktu3bwfgiiuu4Lz/3aTSv39/vLy8ePjhhwHw9vbGy8uLgIAA+vbty1dffUVkZCSJiYl07NjxrOqVwTbtGCUXnInNwcKF8NprqvF0772wZg1UVsIHH4DVCiNGgJcXtGrl7IibB8mFejlwek8UmqY19nHWfPnll/Up3iIRBwrxYBwHY8eO1VBfhhweW7ZsqSkDaAEBATXL1dXV2qRJk7Tu3btrbm5u2m233abFxcXVq96CggIN0AoKCproPzEvRskFZ1LbQUaGpu3fr2lVVWr54481DewPHx8nBakDkgv1ctAUbZhGPaQnSmfEgUI8iAPpibLj6rkAp3cwZoy6N8rGuHEQEKBPXHojuWCunihd3ykvLy89qzMk4kAhHsSBYEdy4fQObGNL2Rg9Wv1NTVWjnYeGNmNgOiO5YC4H8us8nREHCvEgDqQnyo6r5wKc2cEPP9jvibrvPkhLgyFD1ETHAB9/rKaQMTuSC/LrvFMSGRmpZ3WGRBwoxIPrOvDz82PgwIF4eHg4OxTD4Kq5UJszOXjsMfD2Vg0ogHXr7A0ogFOMrGE6JBfM5UDXRlSfPn30rM6QiAOFeHBdBxMmTCA+Ph6r1ersUAyDq+ZCberr4MSOitrLf/2FaaeQkVwwlwNdG1G1B9pzVcSBQjyIA8GO5EL9Hdx3H3z+uWo83XwzLFmi1n/zDXTqBO7u8J//NH2czY3kgrkc6NqIOnbsmJ7VGRJxoBAP4kCwI7nQMAeTJqmby6OioG9fOHYM3ntPDdipaer1w4ebIdhmRHLBXA50bURdf/31elZnSMSBQjyIA8GO5ELTODh+vO6I56Wljd6trkgumMuBro2o1atX61mdIREHCvEgDgQ7kgtN4+Cii9Ro5zaefhquugoKC+H11+H//g/8/RtdTbMiuWAuB7oOcVBaWkr79u0bW5+pEQcK8SAOZIgDO66eC9C0DvbuVVPF3HADWCzw1FOwfLn99Z9+UlPKGBHJhXo5cK0hDnx9ffWszpCIA4V4EAeCHcmFpnUweDB4eKgGFKhGVW1OXDYSkgvmcqBrT5QgCIKfnx9+fn5UVVVx6NAh6YkSmp0JE2DOHPW8VSvYvl39oi85GXbsUJf8brjBuTEKDcK1eqI8PT31rM6QiAOFeHBdBzJOVF1cNRdq05wOvvkGpk6FV1+FiAjVgIqNheuuU/Pw3XST4+U+ZyK5YC4HuvZEZWdn061bt8bWZ2rEgUI8iAO5J8qOq+cC6O/g/fdh2jT78ogRYISBsiUX6uXAtXqifvzxRz2rMyTiQCEexIFgR3JBfwcnfkbXXq6sVONMOQPJBXM50LURNWTIED2rMyTiQCEexIFgR3JBfwdvvw1PPAEdO8KwYTB9ulr/739D+/ZqxPPQUF1DAiQXwFwOWutZWXZ2tp7VGRJxoBAP4kCwI7mgvwM3N1ixwnFddDR8+aV6XlQEzz4LBQXqZnS9kFwwlwNde6KOHz+uZ3WGRBwoxIM4EOxILhjDQX6+43JJCVRU6BuDETw4GzM50LURZaaZmZsLcaAQD+JAsCO5YAwHw4fDrbfal99+G9q1g5wcNUzCU0+p4RGaEyN4cDZmcqBrI2rr1q16VmdIxIFCPLiuAz8/PwYOHIiHh4ezQzEMrpoLtTGCg7Zt4eef1YjmO3bY75N68EE1ztTy5WrqmOTk5ovBCB6cjZkc6DrEQX5+Pp07d25sfaZGHCjEgziQIQ7suHougHEdaBq0bu04sfGqVfDYY81Tn1E96Ek9HLjWEAezZ8/WszpDIg4U4kEcCHYkF4zrwGJRv96z0aEDXH+9ev7bbxAWBunpTVefUT3oiZkcyLQvgiA4BemJEsxCbi588QXk5cFrr8Ett8CmTXD//VBeDp06qYE6Bw92dqQuh2v1RJlpKPfmQhwoxIM4EOxILhjbwQUXwMyZsGSJakCBmkqmvFw9LyyE+fObpi4je9ALMznQtSeqoKAAd3f3xtZnasSBQjyIA+mJsuPquQDmczB2LAQF2Zc//himTGn8fs3moTmohwPX6okKqp1xLoo4UIgHcSDYkVwwn4OvvlKX7ywWuO02+OQTdRP6G2/AeefBgAGwb1/992s2D82BmRzoOmL5HXfcoWd1hkQcKMSDOBDsSC6Yz8FFF0FMDFRV2Uc0/+EH8PNTzxMS4Pnn1Sjo9cFsHpoDMznQtScqKSlJz+oMiThQiAdxINiRXDCvg9pTwvzxh+NrJy6fDWb10JSYyYGujaj27dvrWZ0hEQcK8eC6DmSwzbq4ai7UpiU4ePhh1UNl44031N/ff4d33oG33oKUlNPvoyV4aCxmcqDr5bwLLrhAz+oMiThQiAfXdTBhwgQmTJhQc2O54Lq5UJuW4KBHD3WJb+NG6NVL3St1/DjcfrsaUwrgxx8hPh7OPffk+2gJHhqLmRzo2hMVGxurZ3WGRBwoxIM4EOxILrQcB127wjPPqAYUQFqavQFlWz7dtDEtxUNjMJMDXYc4yMrKonv37o2tz9SIA4V4EAcyxIEdV88FaLkOSkuhTx84elQtd+miGlXu7qoxlZ4ON9ygftEHLddDfaiHA9ca4uDbb7/VszpDIg4U4sE4DiZPnsywYcPo0KHDWc/ZNW7cOCwWi8Nj6NChzRtoC8YoueBMWqqD9u3V5b3HHlP3TG3cqBpQK1ZA//5wxx1qGpmcHFW+pXqoD2ZyINO+CIKLM2nSJDp37kxGRgaLFi0iPz//jNuMGzeO7OxsAgICata1bduW888//6zrlZ4owZW56ip1b5SNadPg3XedF49Jca2eKDMN5d5ciAOFeDCOgy+++IJ3332Xq6++ul7bubm50b1795pHfRpQgiNGyQVn4moOOnRwXLbdaO5qHk6GmRzo2hNVVlZGu3btGlufqREHCvFgPAeBgYG88847Z90TFRYWRtu2bencuTMjRoxg8uTJdO3a9ZTblJeXU26bbAzVE9WrVy/picJ4ueAMXM3B7t0wZoy6jHfvvRAWpkY/Hz++jE2b2nHNNWquvi5dnB2p/tQjF8zfE7Vs2TKSk5Px8fGhvLy8pgXp6elJZmYmixYtwmq1sn79el5++WXi4+OZOXMmhYWFDmXz8vLw8/Nj3759rF69mrVr1xITE8P8+fM5duyYQ9mSkhJ8fX1JTExk5cqVbNq0iaioKAIDA0lPT3coW1VVhZeXF6mpqSxevJgdO3YQGRnJ8uXLSUpKYurUqZSVlTlsk5WVxcKFC7FarURERBAaGsr+/fuZNWsWBQUFDmXz8/OZPXs2cXFxhIWFsW7dOqKjo1mwYAHZ2dkOZUtLS3nsscdISkpixYoVbN68mZ07dxIUFERaWhqTJ0+muroaT09PqqurmTx5MmlpaQQFBbFz5042b97MihUrSEpKwtfXl9LSUof9Z2dns2DBAqKjo1m3bh1hYWHExcUxe/Zs8vPzHcoWFBQwa9Ys9u/fT2hoKBEREVitVhYuXEhWVpZD2bKyMqZOnUpSUhLLly8nMjKSHTt2sHjxYlJTU/Hy8qKqqsphm/T0dAIDA4mKimLTpk2sXLmSxMREfH19KSkp4aGHHqope+zYMebPn09MTAxr165l9erV7Nu3Dz8/P/Ly8hz2W1hYyMyZM4mPjyckJIT169djtVpZtGgRmZmZDmXLy8vx8fEhOTmZZcuWERkZyfbt21myZAkpKSlMmTKFyspKh20yMjIICAhg9+7dbNy4kVWrVpGQkMD06dMpLi52KJuTk8O8efOIjY0lPDycNWvWEBsby9y5c8nNzXUoW1RUxIwZM4iPjyc4OJgNGzbw4Ycf4u/vXyfuiooKvL29OXz4MEuXLmXbtm1s27aNpUuXcvjwYby9vamoqKhzrPn7+7Nnzx42bNhAcHAw8fHxzJgxg6KiIoeyubm5zJ07l9jYWNasWUN4eDixsbFs2bIFTdMcyhYXFzN9+nQSEhJYtWoVGzduZPfu3bRv355vvvmGJ598El9fX8LDw7nzzjvx9PQkJSWFJUuWsH37diIjI2vOEaNHj8bd3b3m0atXL0BN8WA7R4SEhLjkOWLWrFk15whfX1+XPEe8+OKLDueI2mVb4jmib99c3nzTkz//hFtu8eT48SIef3wGS5b8k6NHg1m/fgPPPbfHUOeIefPmkZOTc1bniICAADIyMhzKVlZWMmXKlFOeI2ztiNqfDye2I2qfIwyBpmmNfZw1hw4dqk/xFok4UIiH5nUwadIkDdVLfMqH1Wp12CYgIEBzd3dvUH2ZmZlamzZttODg4FOWKSsr0woKCmoe6enpGqAVFBQ0qM6WhBwP4kDTNO2ttzQNDmlqFj5Nu+MOZ0fkHOqRC03RhmnUQ9d7oqLrO4lQC0QcKMRD8zp44403OHjw4GkfgwYNarL6evTowaWXXnra6Rrc3Nzo1KmTw0NQyPEgDgCeegpat1YeLBYYN06tT06GiRPBywv++st58emFmXJB1xHLXX3sCxAHNsRD8zro0qULXXS8mSI3N5f09HR69OihW50tCTkexAHA0KGwYEF3Skrgmmtg+HA4dgyGDbPPw/fzz7Bpk3PjbG7MlAu69kS1bq1rm82QiAOFeDCOg7S0NGJjY0lLS6OqqorY2FhiY2MpLi6uKdO/f39CQ0MBKC4u5oMPPmDXrl2kpKQQGRnJmDFj6NKlCw8//LCz/g1TY5RccCbiQNG3b2smTFANKACr1XEi482boazMObHphZlyQddG1JEjR/SszpCIA4V4MI6Df//73wwePJhJkyZRXFzM4MGDGTx4ML/88ktNmcTERAoKCgBo1aoVcXFxPPjgg/Tr14+xY8fSr18/du3aRceOHZ31b5gao+SCMxEHihM99OsHbdval/v0AdsP11JTYd8+qK7WMUAdMFMu6DrEQWpqKpdeemlj6zM14kAhHsSBDLZpx9VzAcSBjZN5CA+HqVOhUyfw9VUNq1mz4O231S3o992nJjY2UQfOaalHLph/iIP68P333+tZnSERBwrxIA4EO5IL4sDGyTyMHg1bt8KaNaoBpWnw0UfqL8C6dWo6mZaCmXJB156oqqoqWrVq1dj6TI04UIgH13Xg5+eHn58fVVVVHDp0SHqicN1cqI04UJyNB02Djh0df6m3YQPcc08zB6cT9cgF1+qJ8vLy0rM6QyIOFOLBdR1MmDCB+Ph4rFars0MxDK6aC7URB4qz8WCxwJw50KaNWn7qKbj7bigqgn/8AwYMgDffhMrKZg62mTBTLsgExIIgOAW5J0oQGseff6reqIsvVstvvAF+fvbXfXzgww+dE5tOuFZPlJkmFWwuxIFCPIgDwY7kgjiwUR8Pf/ubvQEF8Ntvjq8nJzdRUDpjplzQtScqPT29Zr4sV0UcKMSDOJCeKDuungsgDmw0xoO/P4wfr56fcw789BOMHAnx8RAaCpdcoi73WZzef3N66uHA6f+Jrj1Rm1r6MKtngThQiAdxINiRXBAHNhrj4YUX1C/1PD1h2zbVgEpMhJtugn/+E557Dj74oAmDbSbMlAu6NqL69eunZ3WGRBwoxIM4EOxILogDG431MGoUfPYZ3HKLWo6IgFqTD/DDD43avS6YKRd0bUSVlpbqWZ0hEQcK8SAOBDuSC+LARlN7uOKKUy9nZcHRo01aXZNgplzQtRGVm5urZ3WGRBwoxIM4EOxILogDG03t4f77wdsbrrpK9VJ9951aP2kS9OgBPXuqnisjYaZc0LURde211+pZnSERBwrx4LoO/Pz8GDhwIB4eHs4OxTC4ai7URhwomsPDRx/B/v3qfqmLL4aMDPjPf+yvf/UVpKQ0ebUNxky5oGsjKjw8XM/qDIk4UIgH13Ugg23WxVVzoTbiQKGHh5NNWFxV1ezVnjVmygVdhzgoKSmhQ4cOja3P1IgDhXgQBzLEgR1XzwUQBzb08vDeezB9unr+5pswcyYcO6YmNT5yRA2FMGFCs4dxUurhwLWGOJg2bZqe1RkScaAQD+JAsCO5IA5s6OVh2jQ4dAgSElQDCtQQCcuWwe7davTziAhdQjlJbObJBZn2RRAEpyA9UYJgLC6/XPVC2fj6a3j/fefFcxa4Vk+UmYZyby7EgUI8iAPBjuSCOLDhTA+jR9ufu7nBPfeo57/+CrNmqQE89cBMuaBrT9SxY8e48MILG1ufqREHCvEgDqQnyo6r5wKIAxvO9FBdDfPnq1/qPfYYeHjAzp1w551w/LiaLua77+DZZ5s3jno4cK2eqJCQED2rMyTiQCEexIFgR3JBHNhwpodzzoHXXlPjStlGIFm2TDWgADQNgoKaPw4z5YKujSgZF0Yc2BAPrutAxomqi7gQBzaM5uHEeYAvucT+vLAQysubvk6jOTgdujaijhpxfHmdEQcK8eC6DmScqLq4ai7URhwojObh3Xdh3Di46CI1+vnUqWr9hAng7g6dO8PKlU1bp9EcnI7WelZWZaTRvJyEOFCIB3Eg2JFcEAc2jOahbVsICHBct307zJmjnpeVqaERHn9c3TPVFBjNwenQtSfqsssu07M6QyIOFOJBHAh2JBfEgQ0zeCgpcVwuLz/5KOgNxQwObOjaiNq+fbue1RkScaAQD+JAsCO5IA5smMHDnXfCHXfYlydNglatID0dnnlGDZXw888N378ZHNjQdYiDvLw8zj///MbWZ2rEgUI8iAMZ4sCOq+cCiAMbZvFQWQl79qj7ogYNUuuuuQbi4tRzNzc16fEVV9R/3/Vw4FpDHMyxXUR1YcSBQjyIA8GO5II4sGEWD61bwy232BtQFRX2BhSoS3zx8Q3bt1kcgEz7IgiCk5CeKEFoWYwYYR/VvHNn1RN10UUQGwv79sGwYQ3rmToNrtUTZaah3JsLcaAQD67rQMaJqour5kJtxIHCzB5Wr4ZPP4XXX1eNqYsugtBQuOEGGDsWrrsOfvnlzPsxkwNde6IKCwtd/hunOFCIB3EgPVF2XD0XQBzYaGke/u//YMMG+/KECTB79um3qYcD1+qJCgwM1LM6QyIOFOJBHAh2JBfEgY2W5qFrV8flbt3szysrT76NmRzo2oi6++679azOkIgDhXgQB4IdyQVxYKOleZg6FW69Fc49Fx56CD74AKqq4Omn1UCel1wCMTGO25jJga6NqISEBD2rMyTiQCEejOEgJSWF8ePH07t3b9q3b0+fPn2YNGkSx20zjp4CTdP4/PPP6dmzJ+3bt+f222/nwIEDOkXd8jBCLjgbcaBoaR66d1cjnBcXq/uj2reHJUvUxMaapsaWeuUVx23M5EDXRtS5556rZ3WGRBwoxIMxHCQkJFBdXc38+fM5cOAA06dPZ968eXz66aen3c7Hx4dp06Yxe/ZsrFYr3bt355577qGoqEinyFsWRsgFZyMOFK7gIT//9MtmcqBrI8oMA4g1N+JAIR6M4eDee+8lICCAkSNHcvnll/PAAw/wwQcfEBIScsptNE1jxowZfPbZZzzyyCMMGjSI7777jpKSEr7//nsdo285GCEXnI04ULiCh7//HS69VD23WODDD9XzQ4fg+edh9uzzSUpyXnz1QddG1L59+/SszpCIA4V4MK6DgoKC057Ijxw5QlZWFiNHjqxZ5+bmxogRI4iKitIjxBaHUXNBT8SBwhU8dOsGe/eqIRH27oWXX4a//lLTyQQGQnj4Pu64o+4cfUaktZ6VjRo1Ss/qDIk4UIgHYzpITk5m1qxZ+Pr6nrJMVlYWAN1q/8zmf8upqamn3K68vJzy8vKa5cLCwkZG23IwYi7ojThQuIqHv/0NxoyxL6emwu+/25ZG8fvvkJYG/fs7I7qzp9E9UcuWLSM5ORkfHx/Ky8trBsny9PQkMzOTRYsWYbVaWb9+Pe+//z7x8fHMnDmTwsJCh7J5eXn4+fmxb98+Vq9ezdq1a4mJiWH+/PkcO3bMoWxJSQm+vr4kJiaycuVKNm3aRFRUFIGBgaSnpzuUraqqwsvLi9TUVBYvXsyOHTuIjIxk+fLlJCUlMXXqVMrKyhy2ycrKYuHChVitViIiIggNDWX//v3MmjWLgoICh7L5+fnMnj2buLg4wsLCWLduHdHR0SxYsIDs7GyHsqWlpYwfP56kpCRWrFjB5s2b2blzJ0FBQaSlpTF58mSqq6vx9PSkurqayZMnk5aWRlBQEDt37mTz5s2sWLGCpKQkfH19KS0tddh/dnY2CxYsIDo6mnXr1hEWFkZcXByzZ88mPz/foWxBQQGzZs1i//79hIaGEhERgdVqZeHChWRlZTmULSsrY+rUqSQlJbF8+XIiIyPZsWMHixcvJjU1FS8vL6qqqhy2SU9PJzAwkKioKDZt2sTKlStJTEzE19eXkpISnnvuuZqyx44dY/78+cTExLB27VpWr17Nvn378PPzIy8vz2G/hYWFzJw5k/j4eEJCQli/fj1Wq5VFixaRmZnpULa8vBwfHx+Sk5NZtmwZkZGRbN++nSVLlpCSksKUKVOorKx02CYjI4OAgAB2797Nxo0bWbVqFQkJCUyfPp3i4mKHsjk5OcybN4/Y2FjCw8NZs2YNsbGxzJ07l9zcXIeyRUVFzJgxg/j4eIKDg9mwYQNffPEF/v7+deKuqKjA29ubw4cPs3TpUrZt28a2bdtYunQphw8fxtvbm4qKijrHmr+/P3v27GHDhg088cQTWCyW0z6WLl3KmjVrCA8PJzY2lilTpnDPPffQt29fXnzxRTw9PSkuLmb69OkkJCSwatUqNm7cyP79+wE4evRonWPtyJEjpKSksGTJErZv305kZGTNOWL06NG4u7vXPHr16gVAUFBQzTkiJCTEJc8R/v7+NecIX19flzxHvPvuuw7niNplXekcMWXKlJpzxJ49e5rtHBEcHEx8fDwzZsygqKjIoWxubi5z584lNjbW4Rwxb948cnJyHMqe7Byxe/duAgICyMjIcChbWVnJlClTTnqOqKpKplMnH6AceI6LL4Zly+q2I2qfI4yATPsiCC2QnJwccnJyTlvmsssuo127dgBkZmZyxx13cNNNNxEYGMg555z6+9Xhw4fp06cPMTExDB48uGb9gw8+SOfOnfnuu+9Out3JeqJ69eolg20KggCoe6K8vNTzTz+Fvn3PuIlrDbZppqHcmwtxoBAPzeugS5cu9O/f/7QPWwPq999/5/bbb+f6668nICDgtA0ogN69e9O9e3c2btxYs+748eNs3bqVYcOGnXI7Nzc3OnXq5PAQFHI8iAMbruyhXz8ICIA+fTzPpgFlCHTtiSovL8fNza2x9ZkacaAQD8ZwkJmZyYgRI7jkkksICgqiVatWNa9179695nn//v3x8vLi4YcfBsDb2xsvLy8CAgLo27cvX331FZGRkSQmJtKxY8ezqlumfbFjhFxwNuJAIR7q5cC1eqK++eYbPaszJOJAIR6M4WDDhg389ttvbN68mYsvvpgePXrUPGqTmJhIQUFBzfJHH33EO++8w+uvv84NN9zA77//zoYNG866ASU4YoRccDbiQCEezOVA156o5ORk+vTp09j6TI04UIgHcSA9UXZcPRdAHNgQD/Vy4PSeqKZoRAmCINQbi8XSCSgA3DVNk/EOBEEwHdKIEgTBKVgsFgvQESjS5EQkCIIJkUaUIAiCIAhCA9D1xnJBEARBEISWgjSiBEEQBEEQGoA0ogRBEARBEBqANKIEQRAEQRAagDSiBEEQBEEQGoA0ogRBEARBEBqANKIEQRAEQRAagDSiBEEQBEEQGoA0ogRBEARBEBrA/wOMsUDdQ8iHYAAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def drawbif(func,l,u):\n", " pts = []\n", " ipts = []\n", " epts = []\n", " for v in np.linspace(l,u,100):\n", " g = func(r=v)\n", "# dg = diff(g,x)\n", " xvals = solve(g,x)\n", " pts.extend([[v,n(i.rhs().real_part())] for i in xvals])\n", "# for e in pts:\n", "# if e[1]<0:\n", "# epts.append((v,n(e[0])))\n", "# elif e[1] == 0:\n", "# pass\n", "# else:\n", "# ipts.append((v,n(e[0])))\n", "# eplot = points(epts, color=\"blue\")\n", "# iplot = points(ipts, color=\"red\")\n", " \n", " show(points(pts),axes_labels=['$r$','$x$'],gridlines=True)\n", "var('r')\n", "f(x) = r*x + x^2\n", "drawbif(f,-2,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Bifurcação Pitchfork (Garfo)\n", "\n", "Um exemplo simples de bifurcação Pitchfork é:\n", "\n", "$$\\frac{dx}{dt}= r*x -x^3$$\n", "\n", "Aqui novamente temos uma bifurcação quando o parâmtro de bifurcação $r$ cruza o valor de $r=0$. Na equação acima, quando $r$ torna-se positivo, dois novos equilíbrios aparecem:\n" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGDCAYAAAA77lRGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzs3Xlc1NX+x/HXADIsCooL4IbiBmi54q7kmnpx18y9bM8ss2z93Zvd26LltVtJu7mXLWqaVuaGmIai4i6uuIsLyiL7cn5/nAAxRUCG7wx8no/H9wEDw8xnxhHec77nfI5JKaUQQgghhBC3ZGd0AUIIIYQQ1kzCkhBCCCFEASQsCSGEEEIUQMKSEEIIIUQBJCwJIYQQQhRAwpIQQgghRAEkLAkhhBBCFEDCkhBCCCFEASQsCSGEEEIUQMKSEEIIIUQBJCwJIYQQQhRAwpIQwqoopUhISEC2rRRCWAsJS0IIq5KYmIi7uzuJiYlGlyKEEICEJSGEEEKIAklYEkIIIYQogIQlIYQQQogCSFgSQgghhCiAhCUhhBBCiAI4WPTWDxyAhQvh3XfBZLLoXQkhhBDlTXp6OpmZmUaXYXUcHBxwdHQsudsrsVu6lf37YcYMcHOD116z6F0JIWxbSEgIISEhZGVlGV2KEDYhPT2dAwcOkJ2dbXQpVsfOzo6mTZuWWGAyKUt3fnvjDfj3v+HHH2HoUIvelRDC9iUkJODu7k58fDxubm5GlyOE1UpOTubQoUPUq1cPZ2dno8uxGikpKZw8eRJ/f39cXFxK5DYtO7IEOixFRcHYsVCvHrRubfG7FEIIIcoLZ2fnEgsFZUl8fDypqamYzWZcXV3v6rYsH5bs7GDePAgKggEDYPt2qFXL4ncrhBBCiPJr1apVJCUl4ebmxogRI+4qMJXOajhnZ1ixQgengQMhOblU7lYIIYQQ5ZOrqyuOjo4kJCSQlpZ2V7dVeq0DvL1h5Uo4dAjGjQOZkCaEEEIICzGbzZjN5hK5rdLts9SyJSxeDMuW6blMQgghhBBWrvSbUg4apPsuvfWWDk5CCCGEEFbM8hO8b+Wll/TpuAkToH596NjRkDKEEEIIIe7EmO1OTCb4/HNo105P+D52zJAyhBBCCCHuxLi94cxm+OknqFoV+vaFK1cMK0UIYbyQkBACAgIIDAw0uhQhhBXYtm0bp0+fJisri3PnzhEeHm5YLcZupOvhAb/8AvHxugdTSoqh5QghjDNx4kQOHjxIRESE0aUIIazAp59+io+PDw4ODgwaNAgPDw/DajFmztKNfH1h1Sq47z7d5fv773U/JiGEEEKUW/Xq1ePs2bMopahdu7ahtVhHKmnbFpYsgeXLYepUo6sRQgghhBWoVauW4UEJrGFkKceAAfDhhzBpkt5DbtIkoysSQgghbEtyst6PtSB+fnDDXnKHDh3i999/Z9GiRfj6+lKtWjVCQ0M5cOAAAFevXuX9999HKXXbm3R2duaNEu6fmJSUxNy5czGbzaxbt46pU6fi7+9fovdRWNYTlgCeeQZOnoTnnoO6dfVKOSGEEEIUTlTUnTes37kTWrXKvXj8+HGee+45pk+fzowZM+jSpQsxMTG53/fw8ODdd9+1VMW3NWzYMNq1awdAjRo1GDx4MAcPHsTOgKk61hWWAN57D06dgpEjYeNG3V5ACCGEEHfm56fD0J2uc4Pg4GCioqKoXLky3bt3B6BOnTolWtaHH35IdHT0bb8fFBTE4MGD832t9Q2hr2HDhhw+fJi9e/fSokWLEq2tMKwvLNnZwcKF0LMnBAfDli3QuLHRVQkhhBDWz8Ul36hRYa1bt44ePXrc8nuxsbHMnDnzrk7DPffcc0WqJzw8nJ49e3LlyhWcnJxITEwEwNHRsUi3U1KsLywBODnpTXc7d4bevWHrVqhZ0+iqhBBCiDJp/fr1jB079pbfq1q1aqmfhqtduzYvvfQSTk5OAGzZsoWOHTsSEBBQqnXksM6wBLoH05o1eiuUPn0gLAwqVza6KiGEhYSEhBASEkJWVpbRpQhR7pw6dYpu3boZXUau2rVr06VLF2bOnElWVhZHjhxh+fLlhtVjUgWNq1mDQ4f0CFPTpjo8OTsbXZEQwoISEhJwd3cnPj4eNzc3o8sRwmolJydz6NAh/P39cblhdVt5l/O8nDx5kri4OBITExk3btxdNbW0jj5LBfH3100rd+yAUaMgM9PoioQQQghRjlh/WALo0AF+/BF+/hmeegqsfDBMCCGEEGWHbYQlgH794Ouv4auv4F//MroaIYQQQpQT1jvB+1bGjYOLF+Gll6BGDenyLYQQQgiLs52RpRxTp8ILL+gu34sWGV2NEOVKWFgY/fv3p2bNmphMJn766ad833/ooYcwmUz5jvbt2xtUrRDCSBEREUyePJn58+fz+OOPF9iU0trZ1shSjvfeg6tX4aGHoFIl2RZFiFKSlJRE8+bNefjhhxk6dOgtr9OnTx/mzp2be9moJnJCCOOkpaUxfPhwtm3bhqenJ40bN+bhhx8mNDTU6NKKxTbDkp0dfPklJCbCAw/A6tW647cQwqL69u1L3759C7yO2WzGy8urlCoSQlijsLAw3Nzc8PT0BKBt27aEh4dz8eLF3K/ZEtsMSwD29rB4sR5VGjgQ1q3Tq+aEEIYKDQ2lRo0aVK5cmaCgIN5++21q1Khx2+unpaWRlpaWezkhIaE0yhSiTErOSCbqSlSB1/Gr5odLhby+TIcOHeL3339n0aJF+Pr6Uq1aNUJDQzlw4AAAV69e5f333y/SdicnT57M19fI3t6eSpUqceDAAQlLpc7REZYu1R2++/WD0FBo3tzoqoQot/r27cvw4cPx8fEhOjqaf/7zn3Tv3p2dO3diNptv+TPvvvsub775ZilXKkTZFHUlitZftC7wOjsf30kr77z9444fP85zzz3H9OnTmTFjBl26dCEmJib3+x4eHkXe7iRnT7cbOTk5ERcXV6TbsRa2HZZAbxq4ahV07673kdu8WTbeFcIgI0aMyP28WbNmtGnTBh8fH1avXs2QIUNu+TOvvvoqU6ZMyb2ckJBQ4jueC1Fe+FXzY+fjO+94nRsFBwcTFRVF5cqV6d69O8Bd/x90d3f/20jU9evXqVat2l3drlFsPywBuLnBb79BUJCeu7R5M/j4GF2VEOWet7c3Pj4+HD169LbXMZvNtx11EkIUjUsFl3yjRoW1bt06evToccvvxcbGMnPmzCKdhvPz8+PLL7/MvZyWlkZiYiI+Nvq3uWyEJYBq1WDtWujSRY8ybdoEtWsbXZUQ5VpsbCxnzpzB29vb6FKEEAVYv349Y8eOveX3qlatWuTTcF27duXSpUucPXuW2rVrs2nTJgIDAyUsWYWaNWH9ej3C1L27nsNUs6bRVQlRZly/fp1jx47lXo6Ojmb37t14eHjg4eHBtGnTGDp0KN7e3pw8eZLXXnuNatWqMXjwYAOrFkLcyalTp+jWrVuJ3Z6DgwPz58/n7bffpn379mzatInFixeX2O2XNpMqaFzNVp04oQNTxYo6MNngzHshrFFoaOgtf6GOHz+eTz/9lEGDBhEZGUlcXBze3t5069aN//znP0Wa/5CQkIC7uzvx8fG4ubmVZPlClCnJyckcOnQIf39/XFxc7vwD5UTO83Ly5Eni4uJITExk3Lhx+VbnFVXZGlnK4esLGzbkH2GqXt3oqoSweffdd1+B8xbWrFlTitUIIUTpsL3tTgqrUSPYuBFiY/Wk79hYoysSQgghhA0qu2EJoEkTPcJ04QL06gXXrhldkRBCCCFsTNkOSwABAXrS9+nTug+TjTbEEkIIIWzJtm3bOH36NFlZWZw7d47w8HCjSyq2sh+WAO65R2+Hcvy47vYt2ykIYXVCQkIICAggMDDQ6FKEECXg008/xcfHBwcHBwYNGnRXE6yNVj7CEkCLFroPU1QU3H8/xMcbXZEQ4gYTJ07k4MGDREREGF2KEKIE1KtXj7Nnz3LmzBkiIiJobMO7a5SfsATQurUeYTp8WOYwCSGEEBZWq1YtapeBBtFls3VAQdq00XOYevWCHj30aFPVqkZXJYQQQty15GR9AqUgfn56W9Uchw4d4vfff2fRokX4+vpSrVo1QkNDOXDgAABXr17l/fffL9J2JwBJSUnMnTsXs9nMunXrmDp1Kv7+/sV+bEYqf2EJoGVL3VagRw/dh2ndOunDJIQQwuZFRemTKAXZuRNa3bB93PHjx3nuueeYPn06M2bMoEuXLsTExOR+38PDo8jbnQAMGzaMdu3aAVCjRg0GDx7MwYMHsbOzvZNa5TMsgZ70HRqqw9J99+nRJi8vo6sSQgghis3PT4ehO13nRsHBwURFRVG5cmW6d+8OUKSu+7fT+obU1rBhQw4fPszevXtp0aLFXd92aSu/YQl0W4FNm/IC04YNspecEEIIm+Xikn/UqLDWrVtHjx49bvm92NhYZs6cWaTTcOHh4fTs2ZMrV67g5OREYmIiAI6OjkUvzgqU77AEunFlTmAKCtKBqQQStRBCCGEr1q9fz9ixY2/5vapVqxb5NFzt2rV56aWXcHJyAmDLli107NiRgICAu67VCBKWABo2zAtMXbroOUwNGxpdlRBCCFEqTp06dctNsourdu3adOnShZkzZ5KVlcWRI0dYvnx5id1+aZOwlKN+fQgL06vkunSB33/X85qEEKUiJCSEkJAQsrKyjC5FiHJn165dJX6b3bp1K9EAZiTbm5JuSXXqwObN4O2tT8lt22Z0RUKUG9KUUghhrSQs3ax6dd1WoGlT3VpgwwajKxJCCCGEgSQs3Yq7O6xZA507Q79+sGKF0RUJIYQQwiASlm7HxQVWroT+/WHoUFi82OiKhBBCCGEACUsFcXSEJUtg/HgYOxY++cToioQQQghRymQ13J3Y28NXX+lTcxMnwtWr8PrrYDIZXZkQQgghSoGEpcIwmeC//9Ub7v7f/8GFC/DRRzpICSGEEKJMk7BUWCaTHlHy8oLHH4eYGD2P6a/upEIIIYQom2TOUlE98gj89BP8+ivcfz/ExRldkRBCCCEsSEaWiqN/f1i/HoKDdbfv336DWrWMrkoImyYdvIUonpSUFKNLsCqWeD5MqqBthEXBDh2CPn1AKd2Xyd/f6IqEsHkJCQm4u7sTHx+Pm5ub0eUIYbXS09M5cOAA2dnZRpdidZRSnDhxgsTERBITExk3bhweHh7Fvj0ZWbob/v6wdasOTJ06wapV0LGj0VUJIYQoBxwdHWnatCmxsbGsWrUKV1dXzGaz0WVZhaysLDIzM0vs9iQs3a1atfR+cgMH6u1RFiyA4cONrkoIIUQ54OjoiNlsJikpiYyMDAlLN0lLSyuR25GwVBIqV9an4SZMgAcegBkzYOpU6cUkhBDC4sxmM25ubiQkJJCenm50OVbHzc3trkOkhKWS4uSkWwk0aAAvvwwnTsDs2eAgT7EQQgjLcXV1ZcSIESU2ilLWmM1mXF1d7+o25C95STKZ4D//AV9f3Yvp5En4/nuQSapCCCEsyNXV9a4Dgbg96bNkCQ8/rNsJhIdD585w5ozRFQkhhBCimCQsWUqPHnqlXEICtGsHu3YZXZEQQgghikHCkiUFBOjRpdq1oWtX3flbCCGEEDZFwpKleXlBaKjuxTR4MLzzjm5iKYTIJyQkhICAAAIDA40uRQgh8pEO3qUlOxv+/W94800YORLmzAFnZ6OrEsLqSAdvIYS1kZGl0mJnB9Om6dVxP/2kT8udO2d0VUIIIYS4AwlLpW34cPjjD4iJgcBAiIgwuiIhhBBCFEDCkhFatYLt26FuXT3C9O23RlckhBBCiNuQsGQUb2898Xv4cBg1Cl5/HbKyjK5KiAKFhYXRv39/atasiclk4qebVngqpZg2bRo1a9bE2dmZ++67jwMHDhhUrRBClAwJS0ZycoL58/Vecu++C/37w7VrRlclxG0lJSXRvHlzZs+efcvvv/fee8yaNYvZs2cTERGBl5cXvXr1IjExsZQrFUKIkiOr4azFmjV6lVyVKrB8Odx7r9EVCVEgk8nE8uXLGTRoEKBHlWrWrMnkyZN5+eWXAb3jt6enJzNmzOCJJ54o1O3KajghhLWRkSVrcf/9sGOH3keufXv45hujKxKiSKKjo4mJiaF37965XzObzQQFBbF169bb/lxaWhoJCQn5DiGEsCYSlqyJry9s2QJDh8Lo0fD885CRYXRVQhRKTEwMAJ6envm+7unpmfu9W3n33Xdxd3fPPerUqWPROoUQoqgkLFkbFxdYsAA++ghmz4aePeHiRaOrEqLQTCZTvstKqb997Uavvvoq8fHxuccZ2XhaCGFlJCxZI5MJJk2CjRvhyBHdaiA83OiqhCiQl5cXwN9GkS5duvS30aYbmc1m3Nzc8h1CCGFNJCxZs86dYedOqFdP92P6+GPZV05Yrfr16+Pl5cXatWtzv5aens6mTZvo2LGjgZUJIcTdcTC6AHEHNWvqEaapU+HZZyEsDL76Ctzdja5MlEPXr1/n2LFjuZejo6PZvXs3Hh4e1K1bl8mTJ/POO+/QqFEjGjVqxDvvvIOLiwujRo0ysGohhLg70jrAlixbBhMmQNWq8MMP+vScEKUoNDSUbt26/e3r48ePZ968eSilePPNN/n888+5du0a7dq1IyQkhGbNmhX6PqR1gBDC2khYsjUnTsADD8C+ffDBB/DUU3qOkxBlhIQlIYS1kTlLtianvcDjj8PEifDggyB9aYQQQgiLkbBki8xmPdn7hx/gt9+gdWvYvdvoqoQQQogyScKSLRs2TK+Wq1RJd/3+9FNZLSeEEEKUMAlLtq5hQ9i6FR55BJ5+GgYPhitXjK5KiCILCQkhICCAwMBAo0sRQoh8ZIJ3WbJihV4t5+Sku4D36GF0RUIUmUzwFkJYGxlZKksGDoS9e8HPD3r1gpdfhvR0o6sSQgghbJqEpbKmVi1YuxZmzIBZs6BjR71lihBCCCGKRcJSWWRnpzt+h4frtgItW8LXX8vkbyGEEKIYJCyVZa1bw65dMHKkngA+fLhM/hZCCCGKSMJSWVexot5L7ocf9B5zzZrBqlVGVyWEEELYDAlL5cWwYbB/vx5t6t8fHn1UOn8LIYQQhWDRsBSfGs+KqBWWvAtRFN7eelTpiy/gu++geXPYtMnoqoQQQgirZtGwNCdyDoO+G8QbG98gW2Vb8q5EYZlM8NhjsGcP1KkD3brBCy9AaqrRlYlyTppSCiGslUWbUiqlmP7HdF7b8BrDAoYxf9B8XCq4WOruRFFlZcEHH8Drr0ODBjB3LrRrZ3RVopyTppRCCGtj0ZElk8nEq11eZdkDy/jl6C90nduVcwnnLHmXoijs7eHFF/X+ci4uuifT1KmQnGx0ZUIIIYTVKJUJ3oP9B7NlwhYuJV0i8MtAIs5FlMbdisJq1kz3ZHrnHfj4Yz2XKSzM6KqEEEIIq1Bqq+FaeLVg+2Pb8ansQ9d5Xflu/3elddeiMBwc9PYoe/ZAjRoQFAQTJ0JiotGVCSGEEIYq1dYBXhW92Dh+I8MChvHg0geZFjpNJn5bmyZN9KjShx/CvHl61GnNGqOrEkIIIQxT6n2WnBycWDBoAe90f4c3N73J8B+Gk5Am/X6sir09PPus7svUqBH06QMTJsC1a0ZXJoQQQpQ6Q5pS5kz8XvHgCtadWEe7r9oRdSXKiFJEQerX15vyfvklLF0KAQHw44+yx5wQQohyxdAO3gOaDCDisQjsTHYEfhnIskPLjCxH3IrJpLt9HzgAbdvq/eWCg+HkSaMrE0IIIUqF4dudNK7amG2PbqNvw74M/X4or657lazsLKPLEjerXRtWrIDly2HvXj3KNGMGZGQYXZkQQghhUYaHJYCKjhX5bth3zOw1k/e2vkefxX24knzF6LLErQwaBAcPwpNPwmuvQcuWsGWL0VWJMkA6eAshrJVFO3gXx4boDYz4cQQuFVxY+sBS2tRsY3RJ4nYiI3Vo2r5dn6qbMQM8PIyuStg46eAthLA2VjGydKPu9buz6/FdeLp60unrTszePhsry3MiR8uWsHUrhITA99+Dnx8sXCgTwIUQQpQpVheWAOq412Hzw5t5svWTTPp1EsN+GEZcapzRZYlbsbeHp5+GqCjo3h3GjYMePfSEcCGEEKIMsMqwBGB2MPNh3w9ZPmI5G6I30PLzlmw/t93ossTteHvDkiXw229w9qzeMuX55yE+3ujKhBBCiLtitWEpxyC/QUQ+EZl7Wm7Wn7PktJw1u/9+2LcP3npL92dq3BjmzoVs6dQuhBDCNll9WAKoV7keYQ+H8Vy753jh9xcYuGQgV1OuGl2WuB2zGV55BQ4f1qfkJkyAjh0hQjZQFkIIYXtsIiwBONo7MrP3TH4e+TNbzmzh3k/vZUP0BqPLEgWpVQu++QY2bYKUFGjXDh57DC5fNroyIYQQotBsJizlCG4czJ4n99CkWhN6LujJ1N+nkpaZZnRZoiBdu8LOnfDxx3q7lEaNYOZMSJN/NyGEENbP5sISQG232qwdu5b3er3Hh9s+pN1X7ThwSVZfWTUHB5g4EY4ehTFj9Gm6gAC955zMQRNCCGHFbDIsAdiZ7Hix44tsf2w7GdkZtPmyDR9v+1gmf1u7atVg9my9ZUqTJjBsGAQFwY4dRlcmDCYdvIUQ1srqOngXR0pGCi+ve5mPt39Mn4Z9mDNgDjUr1TS6LFEYa9bACy/ovkzjxsHbb+t96ES5JR28hRDWxmZHlm7kXMGZj/p+xK+jf2V3zG6aftKU+bvnyyiTLbj/fti9Gz77DH79VbcaeOMNSEw0ujIhhBACKCNhKUefhn048PQB+jfuz0MrHqL/t/05l3DO6LLEnTg4wBNPwLFj8Oyzeo+5hg31Nirp6UZXJ4QQopwrU2EJwMPZgwWDF7DywZXsvLCTpp80Zd7ueTLKZAvc3GD6dDhyBPr1g0mTwN9fdwaXppZCCCEMUubCUo7+Tfpz4OkDDGgygIdXPEzwt8EyymQr6tbVXb/37NEr5kaOhDZtYO1aoysTdzBt2jRMJlO+w8vLy+iyhBDirpTZsAT5R5kiL0TS9JOmfLXrK7KVjFLYhHvugZ9/hrAwcHKC3r2hVy/ds0lYraZNm3LhwoXcY9++fUaXJIQQd6VMh6UcOaNMg/wG8djPj3HfvPs4dPmQ0WWJwurSBbZsgZ9+gnPn9CjTgw/qnk3C6jg4OODl5ZV7VK9e3eiShBDirpSLsARQxbkK8wbNY/249cRcj6H5Z83518Z/kZqZanRpojBMJhg4UPdnmjNHhyd/f3jkETh50ujqxA2OHj1KzZo1qV+/Pg8++CAnTpwo8PppaWkkJCTkO4QQwpqUiT5LRZWamco7m99h+h/TqVe5Hp8Ff0b3+t2NLksURUoKfP45vPsuXLumQ9Prr0uPJoP9+uuvJCcn07hxYy5evMhbb71FVFQUBw4coGrVqrf8mWnTpvHmm2/+7evSZ0kIYS3KZVjKcejyIZ5Y9QSbT29mXPNxzOw1k+qucsrApiQl6RYD772nezM98QS8+ip4extdmQCSkpJo0KABL730ElOmTLnlddLS0ki7YZ/AhIQE6tSpI2FJCGE1ys1puFvxr+5P6EOhfNX/K34+/DNNZjchZHsImdmZRpcmCsvVFV56CaKj4Z//hIULoUEDePFFuHzZ6OrKPVdXV+655x6OFjC/zGw24+bmlu8QQghrUq7DEug95h5p9QhRz0Qx1H8ok36dRKvPWxF6MtTo0kRRVKoE//d/OjS9+CJ88QXUr6837L10yejqyq20tDQOHTqEt4z0CSFsWLkPSzlquNbgywFfsv2x7bg6utJtfjdG/DiC0/GnjS5NFEXlyvDvf+vQNGmSPkVXrx5MmQIXLhhdXZn34osvsmnTJqKjo9m2bRvDhg0jISGB8ePHG12aEEIUm4Slm7Sp2YYtE7awYNACwk6F4Tfbj/9s+g8pGSlGlyaKompVPfn75Ek90vT113qkaeJEOC0B2FLOnj3LyJEjadKkCUOGDMHR0ZHw8HB8fHyMLk0IIYqtXE/wvpPEtETeCnuLD8I/oJZbLd7v9T5D/YdiMpmMLk0UVXw8zJ4NH3wACQkwfryeCO7ra3Rl4iYJCQm4u7vLBG9hcVlZEBenF9RevaqPa9fg+nVITr79kZWld2DKOW68rBQ4OuqjQoW8z3OOSpX04eaW/6O7O1SvDjVqgLOz0c+MuJmEpUI4EnuEKWumsProatrXbs/7vd6nc93ORpcliuP6dfjsM5g5E65cgdGj4bXXoEkToysTf5GwJO5GZiZcvKjPup8/rz/e+HlMTF4wiou7/e24uOj1Iy4u+Q9nZ733t51d/sPeXn8EyMjQe4DfeGRkQGqq/hWUmKjfv2Vk3Pq+K1bUoSnn8PQELy+9E5SPjz7q1tUbG4jSIWGpCDZEb2Dq2qnsurCLgU0GMr3ndPyq+RldliiOlBT48kvdcuD8eRgyBF5+GQIDja6s3JOwJAqSmQlnz+oz7DlHdHTe52fP5t93285Ohw1vb314eUG1auDhkXdUqZL/c1dX3QfX0tLSdHBKSNDh6fJlvR7l4kX98cYjJ+zd+Bfb01MHp/r19fs9Pz/9sXFjHbhEyZGwVETZKpvv9n/Haxte40z8GR5t9SjT7puGV0XZLNQmpaXB/Pnw/vtw7Bjcd58OTfffXzq/LcXfSFgSSumB36goOHxYHzmfnzihT3vl8PbWazjq19cffXygVi2oWVN/r3p1PepTFqSn6zB46pQ+Tp/WH48f189NTEzedevU0cHJ3x+aN4cWLaBpUxmNKi4JS8WUlpnGJxGf8J+w/5Celc6UDlOY0mEKlZ0qG12aKI6sLFi+HGbMgB079G+Xl16CBx7QY+7C4kJCQggJCSErK4sjR45IWConLl3Suxjt3Qv79+tQFBWl5w6BHhmqVy//qMmNwUj++OeJi8sfLqOi4OBBOHJEB1B7ex2eWrSAli2hXTto1UrmSBWGhKW7dC3lGu/+8S4fb/8YJwcnXuzwIs+2e5ZK5kpGlyaKQykIDdWhac0a/Rv5hRdgwgQ9YUFYnIwslU1pafqP9969sGdPXkC6eFF/38VFj3z4+eUFIz8/3WNWAtHumyATAAAgAElEQVTdSUrSQXT37rxjzx49G6FCBR2e2reHDh30x3r1ZGD9ZhKWSsj5xPNM/2M6n+/8nEqOlXip00tMDJyIq6Or0aWJ4tq9W5+e++473b9p0iR4+mk9ri8sRsKS7cvM1CMaO3ZARIQ+9u7Nm9Bcv74evL333rzD17fsnC6zBRkZsG8fhIfDn3/qj8eO6e95e0O3btC9u/5Yv76EJwlLJexM/Bne2fwOcyLnUMW5Cq90eoUn2zyJcwUZ57RZ0dEwaxbMmaNHnsaMgcmT9dtgUeIkLNmW7Gw4elQHopxwFBmpRy1MJggIgDZt9NGqFTRrppfLC+tz5YoOTWFhsHEj7Nql/33r1tXBqXt36N1bTywvbyQsWcjJuJO8FfYW83bPo4ZrDaZ2nMrjrR+XkSZbFhsLn3+u+zVduKB/azz/vEwGL2ESlqxbcrIORFu2wB9/6FGJnCX4DRroBaWBgXnhSFZl2a64uLzgtHGjPnUH+t+3Xz/4xz+gdeu8lgllmYQlCzt+9ThvbX6LRXsX4W5259l2z/JM22fwcPYwujRRXOnp8P33usHlrl16xuTkyTB2rMyULAESlqzLxYs6GOWEo1279Gm2SpX0HJdOnfTH1q310ntRdl26BL/9Br/8oqd0xsXpWQl9+0JwsA5QrmV0PEDCUik5FXeK//75X77c9SUOdg482fpJpnSYgncl2WDUZikFmzfr0LRihf5L8eSTeksV2Ti22CQsGevMmbyRhM2b9bJ00CvPOnXKO5o1kzlG5Vlmph5V/OUXWL1az39ydtbBadgwPepUlv77SlgqZZeSLvG/8P8REhFCamYqD7d4mBc7vkhDj4ZGlybuxvHj8NFHel5Tejo8+KAebWrVyujKbI6EpdJ18aIORhs26I85k3ybN4euXfPCUe3axtYprNuJE7B0Kfz4I2zfrrd2uf9+HZwGD9YjkbZMwpJB4lPj+XTHp8z6cxZXkq8woMkAnm//PF19usrec7YsLk4Hpo8+0h3jOnSAZ57RvzEcHY2uziZIWLKs2FjdHSNn9OjgQf11f/+81U9BQbrLtRDFceoULFumg9PWrXrEafBgPVOhZ0/bbF0nYclgKRkpLN63mA/CP+Dg5YO09GrJ8+2fZ0SzETjayx9Xm5WZCT//DCEhsH693uDp8cfhiSfkLfptSFNKy0hP13+wfvtNzzPZvVt/vUGDvHB0331y5lhYxpkzsHgxLFyog7mnJ4wapYNTixa2szZGwpKVUEqx9sRaPgj/gN+O/YZ3RW8mBk7k8daPU91V+vrYtIMH4ZNP9LYqKSkwaJAebQoKsp3fFKVIRpbu3okTeeFowwa9eWv16noBZ69eOiDVrWt0laI8UUovDli4EL79Vk8Wb95cv4ccPRrc3Y2usGASlqzQwcsH+TD8QxbsXUC2ymZYwDCebP0knet2llN0tiwhQf+mCAmBQ4d0n6aJE/VbLFlfnUvCUtFdv65Pra1Zo0PSsWP6VEfHjtCnj5470qJF+VjiLaxfRgb8/jt89ZUegDeb9TTPxx+Htm2t8z2khCUrFpscy7zd8/hs52ccu3qMptWb8mSbJxl771jcnaw8hovbU0pPFpk9W6+iq1gRxo/Xp+ik0aWEpUJQSu//tWoV/PqrXtKfnq63qcgJR927l63VSKJsOn8evv4avvxST/Ns3ly/hxwzxro6sUhYsgHZKpsN0Rv4bMdn/BT1E2YHM6OajeKpwKdo5S2rrWza6dO60eVXX+lx6U6ddGgaNsy6flOUIglLt5aRoXsd/fwzrFypR4+cnPQptT599NGokXW+KxfiTrKyYO1a+PRT/Rr38NAjTRMnQq1aRlcnYcnmnE88z5xdc/hi1xecTThLS6+WPNTiIUbdM4pqLrJ8xWalp+tRps8/1xPCq1SBceN0cPL3N7q6UiVhKc+1a/q02s8/6xGkuDg9ETs4GPr3hx49ZH9nUfYcP64H3ufM0dM8hw+H556Ddu2Mq0nCko3KzM7kl6O/MG/3PH4+8jMmTAQ3DuahFg/Rt2FfKthXMLpEUVxHj+qRprlz4fJl6NJFv8UaNqxcbL9e3sPSsWN5o0ebN+t33C1awIABOiC1aiVzj0T5kJAA8+bpTizHj+uB99de040vS3sEVcJSGXA56TLf7v+WebvnERkTSXWX6oy5dwzjm4/nXs97ZVK4rUpLg59+0qNNGzfqcenx43Vw8vMzujqLKW9hKTtb77W2bJkOSFFResJr9+46HAUHQ506RlcphHGysvT8vOnT9Ua/zZvDq6/q94+l1UVewlIZsydmD/P3zGfR3kVcTr5MQPUAHmz6IA82e5BGVRsZXZ4oriNH9AzIuXN1V8GgIHjsMRgypMzNbSoPYSkzU48aLVsGy5fDuXN6aX9wsB5B6tlTFkgKcTOlYNMmeOcdPb+pYUN4+WW9oNhstux9S1gqozKyMlhzfA3fHfiOn6J+4nr6dVp5t2Jks5E80PQB6rpLkxWblJam/8J+/rn+reHurju8PfKIPj9TBkYRy2pYSkuDdev0P9+KFTrz1qmj8+6QIfoUg+y1JkTh7NihR5qWLdMTwP/1L/3+0VIkLJUDKRkprD66miX7l7D66GpSM1PpVKcTQ/yHMNhvMPWr1De6RFEcR4/qE/rz5un1t/feCxMm6A5vNrhXRVns4H39up6gvWyZPo2QmKhXrA0dqo/WrctEvhXCMIcOwdtv6zUxH39sufuRsFTOJKQlsPLwSr478B1rj68lLSuN5p7NGew3mEF+g2SOky3KzNQd3r7+Wk96MZlg4EAdnHr1srnhClsfWYqL0/8My5bpJpGpqXqCds4IUkCABCQhSppSlv1/JWGpHLuefp3fjv3G8qjlrDqyioS0BHyr+DKoySAGNBlAxzodZVWdrbl8GRYt0mtuDxzQ+9CNHw8PP6w3A7MBthiWEhJ0QPr+ex2Q0tN19+whQ/QGor6+RlcohLgbEpYEAOlZ6WyM3sjyqOWsOLyCmOsxuJnd6OXbi36N+tGnYR9qVqppdJmisJTSJ/XnzNEbMSUk6N1SJ0zQ53+suDmPrYSlxER9au3773UPpLQ06NABRozQq3SsoZGeEKJkSFgSf5Otstl1YRe/Hv2VX479wraz21AoWni1oG/DvvRr1I92tdrJqJOtSE7W54S+/lq3IHBzgwce0CNOnTpZ3Tkhaw5LSUmwerUOSKtX61NsbdvmBSTZnFaIsknCkrijK8lX+P347/x67Fd+O/YbV5KvUNGxIl19utKjfg+61+/OvZ73YmeSTnlW7/hxPSF84UI4dUqfHxo3Tq+9tZJzRdYWlpKT9cjR99/rkaTkZD0xe8QI3Vm4Xj2jKxRCWJqEJVEkWdlZ7Lywkw3RG1gfvZ4/Tv9BamYq1Vyq0a1eN7rX706QTxB+1fxkorg1y86GsDBYsAB++EEv2+rSRY82DRumWxIYxBrCUmqqXsX2/fd6LlJSkp6k/cAD+rCR6V9CiBIiYUncldTMVMLPhrP+xHrWR69n+7ntZKksqjpXpVPdTnSq04nOdTvT2rs1ZgcLdw0TxZOUpDsjLligGwGZzXpW8vjxujtiKa+mMyosZWbChg2weLF+OhIT4Z578gJS48alVooQwspIWBIlKjEtkW3ntvHH6T/44/Qf/Hn2T5IzkjHbm2lbqy2d63amY52OBNYMxLOip9HlipudPavTwvz5uoGJtzeMGaNP1TVrViollGZYUgq2b4dvvoHvvoOLF3UfpFGj9Gm2craHsRDiNiQsCYvKyMpgz8U9ueHpj9N/cDHpIgB13OoQWCuQwJr6aFOzDe5Oxp3+ETfIWU23YIFeTRcbqzuEjx8PI0fqvTkspDTC0uHDOiB9843euNbLCx58UPfzlEaRQoibSVgSpUopxcm4k0ScjyDiXAQR5yPYeWEn19OvA9C4amMCawbSwqsF93reS3PP5jICZbT0dPjlFz3atHq1DlJ9+ugRpwEDSmxvOkt38D5/Xo8eLV4MO3dCpUq6i8Lo0dCtm8317hRClCIJS8JwWdlZHIk9khugdlzYwb6L+0jKSALA09UzNzg192rOvZ730qRqE5kDZYQrV2DJEp04wsPzEseYMbqPUwkkjpIcWYqPh6VL9QjShg1QoQL84x/6NNs//lHm9iAWQliIhCVhlbJVNieunWBPzB72XtzLnot72HNxDyfjTgJgZ7LDt4ovftX88K/mj181v9zPqzhXMbb48uLYMR2aFi3Sn9esqVPImDF6n7pinsu627CUmqoHwhYv1gNh6ek6x40erTtqV5GXhxCiiCQsCZsSnxrP/kv7OXTlEFFXonI/Rl+LRqFfyjVca+BXzY9GHo3wreKLbxVfGlRpgG8VXzycPaSlQUnLmSW9aJEedbpyRU8GHzNGh6c6dYp0c8UJS1lZsGmTDkhLl+oRpZYtdUAaMULv+iKEEMUlYUmUCSkZKRy9epSoK1G5Ier41eMcv3acqylXc6/nbnbPDVC+VXyp41aH2m61qeOuP9ZwrSHNNe9GRobe1HfRIvjpJ70HSFCQDk5Dh0Llyne8icKGJaUgMlIHpCVL9JwkX1+dz0aNkpVsQoiSI2FJlHlxqXGcuHaCE9dOcPzqcf15nL58NuEs6VnpudetYFeBWm618kLUXx+9KnrhWdETT1dPPCt64m52lxGqO0lI0A2LFi2C9evB0RH699fBqW9fffmWP1ZwWDp+XM9BWrxYr2qrXl2PHo0eDe3ayUo2IUTJk7AkyjWlFJeTL3M24Sxn4s/ojwn5P94cqAAc7R2p4VojNzzlfF7DtQYezh65RxWnKvqjcxWcHJwMepRW4Nw5PfyzaBHs3g0eHrrT45gx0LFjvoRzq7B08aLupr14MWzbBhUr6r6Zo0bpvpkODkY9MCFEeSBhSYg7UEoRlxrHxaSLXEq6xMXrF7mYdJGL1/+6nHQx93uXki7ltkG4mbODM1Wcq+SGKDezG5XMlajkqI+KjhXzLpv/uvzX55UcK+FSwQUnB6fcw8HOwTZHt/bv16nnm2/g9GmoX18PC40eDX5+uWHp7Nl41q9345tvdGNxk0kPSI0apTsWuLgY/UCEEOVFscKSUorExERL1COEzUvPSic+NZ5rqde4lnKNuNQ4/TFNf7yWqo/EtESup18nKT2JxHT9ec5RmP+WJpMpNziZHcw4OzhjtjfnXnZycMJsb8bsYMbBzgEHOwfs7eypYFch77LJPvfzCnYVsLfLu5xzfROm3FBmwoSdyS73azkf7/S1nHrzfS07G9PRo6g/tmAXsQNTcgrpdRsQUWkUny//Dw6O0WSme9Ck5VW63H+edr1icKucme9+cp+Lm2q88fs31nTz92/+mr3JXj9H9nnPkYPpr+fnr6/d+BxWsK8gc9yEsEGVKlUq0pvNYoWlnHd+QgghhBC2pqitSSw6spSQkECdOnU4c+ZMkfulBAYGEhERYfGfKc37Ku7zYe2PS56Lu/u5svD/RCmFQv3tY4eOHfjjjz/yfS1bZQNwcL+JZUsrsGJ5BWLO2+NVM5N/9L9O23v28cQzwexs1xz3fXvA2RnVuxdq0EBU+w5gb5/v9nLuv/+A/qxYsUJf/uv7N36ec92bvz9s+DC+//773NoysjLIzM7MPXIvq7zLr7z+CtPenJbvOhnZGaRmppKWmUZKZgppWWmkZqbqzzPTSMlIYfOfm7mn1T25l9Oy9HWT0pNISk8q8Pl3sHPQp2TNlXBzdMPDJW9OnIeTR77LU5+ZyrJvluHh5EFl58o42BVuUpe1vJ5upSz8PynJn5HfoXmK81wUdWSpWNMiTSZTkf5x3Nzcivzitre3L5WfKe37gqI/H9b+uOS5KJmfK4v/TyqYKuBZNW+7mlOn8vZk278/b5736NF6nrednQdnz9rBM1Djx1XUzszU85sWLoRvH9GbuOU0vmzRIt/EcHOamWZ1i77Zr3OyM4G+gUX6mRnnZ/BEpyeKfF8BswLYNmfbLb+XrbK5nn6dxLREEtISSExPJOZaDAOHD+SzuZ+RaZeZ+/W41DiuplwlNiWWM3FniE2OJTYlNm++XB8IXJD3mDycPfCq6JV7eFf0/tvn3pW8sbO3s+rXE5TN/yfyO7Rkfq44r43Csto1JBMnTiyVnynt+yoOa39c8lyUzM+V1n2V9nN45YpeyfbNN7Bli95iZNAgePdd6N37th0EtHr14PXX4bXX9IZuCxfqY9YsaNpUh6bRo6FOHZt/bdiZ7HAzu+FmdqMWtQBIqJQAUTAyYGSh/gikZ6VzNeUqs+fM5v5B9xObEktsciyXky8Tcz2GmOsxnE04y47zO7iQeIHE9PxnCBxGONDgowb4uPvgU9mHum519Uf3uvi4+1DHvc7fVnXK/xPj7qs4bOFxlebzUVgWXQ1XGruH2xJ5PvLIc5GnLD4X16/DihU6IP3+u24gef/9MHKkDkoVK97+Z8+ePZs7pF77Vq23MzJg7dq8xpepqbrx5dixuvFlGZpPaenXRlJ6Um6Iirkew/nE85yOP83phNOcijvF6fjTXLh+Id/PeLp66vBU2YeGVRrSqGojGnk0olHVRni6elpshWZZ/H9yN+T5yFMaz4VFR5bMZjNvvPEGZrNseAryfNxInos8ZeW5SE+HNWt0QFqxAlJSoFMn+PBDGD5cN48sjJzn4bbPR4UK0K+fPnIaXy5cCI8+ChMn6r4CY8ZAnz76ujbM0q8NV0dXGng0oIFHg9teJy0zjbMJZzkVr8NTToiKjotm29ltnEk4k3vdio4VaejRUIenvwJUQPUAAqoHUNGxgIRcCGXl/0lJkecjT2k8F9JnSQhRbNnZ8McfOiD98ANcvaq3hRs9Gh58UJ9FK6piv0s8d04XsnAh7NsH1arp1t5jx0LbttLa20JSMlI4ce0ER68e5WjsUf3xr8/PJZ7LvZ6Puw9NazSlWfVmNK3RlKbVm+Jf3R+XCtIwS1g/CUtCiCJRCvbu1fOuv/0Wzp6FunXz9mS75567u/0SGVLfu1efplu8WG8a16iRHm0aM0ZvICdKRVJ6EoeuHOLApQMcuPzXcekAp+JPAbq/lW8VX1p4taCVdytaerWklXcrPCt63uGWhShdEpaEEIVy4oQOR998AwcP6oGbBx7QAalDB7Arod6MJTr/ICsLQkP1aNPSpXoyVceOerRp+HCoWrVEahZFk5iWyMHLBzlw+QD7L+0nMiaSyAuRxKfFA1CzUs3c4NTKuxVtarahttst5q8JUUokLAkhbitnT7ZvvoHwcHB11RO0R42CXr0sMyXIYpM1k5P1ZKqFC/Wsczs7+Mc/9GhTcDDI3A9DKaWIjotm14Vd+Y7LyZcBqFWpFu1rt6dD7Q60r92eVt6tcK7gbHDVoryQsCSEyCcuTi8yW7Lk73uy9e+vA5MlhISEEBISQlZWFkeOHLHsKp+LF/M29t2xAypX1iNNY8dC584yv8lKKKU4l3iOiHMRhJ8NJ/xcOBHnIkjJTMHBzoEWXi3oULsDnet2JsgnSE7fCctRFpKenq5eeukl1axZM+Xi4qK8vb3V2LFj1blz5yx1l1Zh6dKlqnfv3qpq1aoKUJGRkXf8mblz5yrgb0dKSkopVGyM4jxPtiw7O1u98cYbytvbWzk5OamgoCC1f//+An+mNF8X8fFKLVyoVHCwUhUqKGUyKdW1q1KffabUlSslfnd3qCVeASo+Pr507vDgQaVef10pHx+lQClfX6XefFOpkydL5e5DQkJUvXr1lNlsVq1atVJhYWG3ve7GjRtv+Zo4dOhQqdRqhE2bNqng4GDl7e2tAPXDsh/UrvO71CfbP1Hjlo9TDT9qqJiGYhqqycdN1BM/P6G+2fuNOpdgu39rbn7My5cvL/D65fF1oZRS77zzjmrTpo2qWLGiql69uho4cKCKioqyyH1ZbAfI5ORkdu3axT//+U927drFsmXLOHLkCAMGDLDUXVqFpKQkOnXqxPTp04v0c25ubly4cCHf4eTkdOcftFHFfZ5s1XvvvcesWbOYPXs2EREReHl50atXrztuG2TJ10VSEnz3HQwZAjVq6EGV2Fh4/304cwY2bYInnigH03r8/eGtt/SkrNBQ3bPpvff0Ur4ePfRpu6SCtyIpru+++47Jkyfz+uuvExkZSZcuXejbty+nT58u8OcOHz6c7zXRqFEji9RnDZKSkmjevDmzZ88GwMHkQEvvljwV+BTzB83n6KSjnJtyjm+Hfku3et0IOxXGqGWjqDWrFo0+bsSjKx9l4Z6FXEi8cId7sh43P+bCKk+vC4BNmzYxceJEwsPDWbt2LZmZmfTu3ZskS/x/tUgEu43t27crQJ06dao079YQ0dHRRRpZcnd3L4WqrE9RnidblZ2drby8vNT06dNzv5aamqrc3d3VZ599dtufs8TrIjlZqR9/VGr4cKWcnfVASmCgUu+/r5S1/Lcs9ZGlW0lMVGrePKXuu08/SRUrKjVhglJhYUplZ5fY3bRt21Y9+eST+b7m5+enXnnllVteP2cE4dq1ayVWgy2hEKMsSikVkxijvt//vZq4eqJq9kmz3JGnez65R7245kW19vhalZJhGyP3hXnM5f11kePSpUsKUJs2bSrx27bYyNKtxMfHYzKZqFy5cmnerU24fv06Pj4+1K5dm+DgYCIjI40uSZSQ6OhoYmJi6N27d+7XzGYzQUFBbN26tcCfLYnXRVqantc8erQeQRo2DI4ehX/9C44fh+3b4cUX9fJ/8ZeKFWH8eNi4UY84vfgibNgAXbvqNgRvvQV3GP25k/T0dHbu3JnvdQHQu3fvO74uWrZsibe3Nz169GDjxo13VUdZ5FnRk+FNhzO732z2PbWPSy9e4psh39DKuxWL9y2m18JeeMzwoO/ivvwv/H8cunwod2NlW1beXxfx8Xo1pYeHR4nfdqmFpdTUVF555RVGjRpV7luz38zPz4958+axcuVKvv32W5ycnOjUqRNHjx41ujRRAmJiYgDw9Mw/+dTT0zP3e7dyN6+L9HT45Rf9975GDb2Cbe9eePllOHwYIiPhlVek5VCh1K8Pb7yhk2VoKHTpAtOn69N0PXvqSeLJyUW+2StXrpCVlVWk14W3tzdffPEFS5cuZdmyZTRp0oQePXoQFhZWjAdWflR3rc7Ie0Yyb9A8zk05x94n9/Lvbv8mMzuTV9a9QsAnATSe3ZgX1rxA2KkwMrMzjS65SOR1oRcDTJkyhc6dO9OsWdE31C7MHZSIRYsWKVdX19zjxkmK6enpauDAgaply5bGDq2XsIIe892cXsrKylLNmzdXkyZNKslyDWOp58la3fx4Q0NDFaDOnz+f73qPPvqouv/++wt9u3d6XaSkKPXzz0o99JBSVaros0dNmij1r38pdeDAXT2kUmUVp+HuJDFRqblzlQoK0k90pUpKPfqoUn/8UejTdOfOnVOA2rp1a76vv/XWW6pJkyaFLiU4OFj179+/CMXbLgp5Gq4oktKT1M+Hf1aPr3xcec30UkxDVZ1RVY1bPk79eOBHlZiWWKL3V1TFfczl6XWhlFJPP/208vHxUWfOnLHI7ZfY3nADBgygXbt2uZdr1dK7ZmdkZPDAAw8QHR3Nhg0bytSo0u0e892ys7MjMDCwzIwsWep5slY3P960tDRAjzB5e3vnfv3SpUt/G1UoyK1eF9evw6+/6n6Lq1fry02awFNP6YaR994rq+AtomJFeOghfZw4AQsWwLx58NVX+jTdo4/qYb0C/n2rVauGvb3930aRivq6aN++PYsWLSre4xC4VHAhuHEwwY2D+VR9yo7zO1gRtYKVR1ayYM8CHO0d6VG/B0P8hzDYbzBVXWxjxUN5el1MmjSJlStXEhYWduvNt0tAiYWlSpUqUalSpXxfi4vLYOTIxzlz5igbN26kahlbVnOrx1wSlFLs3r2be+523wgrYannyVrd/HiVUnh5ebF27VpatmwJ6PkqmzZtYsaMGYW+3ZzXRePG7ViwAJYt0xvXpqZCy5b6FNuQIRAQUOIPSRTE1xemTdOTwDZtgjlz9Oevv6439X3sMd3B094+3485OjrSunVr1q5dy+DBg3O/vnbtWgYOHFjou4+MjMwXwkXx2ZnsaFurLW1rteXtHm9z4toJVh5eyYrDK3hi1RM8uepJevr25IGmDzDYbzBVnKsYXfJtlYfXhVKKSZMmsXz5ckJDQ6lfv75F78wiMjIyVNOmXylIUSNGXFbbt19UFy5cUBcuXFBpaWmWulvDxcbGqsjISLV69WoFqCVLlqjIyEh14cKF3OuMHTs232qXadOmqd9++00dP35cRUZGqocfflg5ODiobdu2GfEQSkVhnqeyZPr06crd3V0tW7ZM7du3T40cOVJ5e3urhISE3OsU9LpYt26f6thxnjKZ1ih7+ywFSnXooNTMmUodP27EI7IcmzgNdyexsUp9+KFSzZrp03R16+reTadP57vakiVLVIUKFdScOXPUwYMH1eTJk5Wrq6s6+VePp1deeUWNHTs29/offPCBWr58uTpy5Ijav3+/euWVVxSgli5dWqoPrzQlJiaqyMhIFRkZqQA1a9YsFRkZWeqrqmMSY9Qn2z9R9827T5mmmVSFf1dQ/Rb3U/Mi56lrKSW7Cu1Oj1leF9pTTz2l3N3dVWhoaG6+uHDhgkpOTi7x+7JYWNJzUSor+D8FVxSkK/haQSO1ceNGS92t4W7XSPCNN97IvU5QUJAaP3587uXJkyerunXrKkdHR1W9enXVu3fvv81jKGsK8zyVJTlNKb28vJTZbFZdu3ZV+/bty3edm18XEya8qSpXfkOZTGEKspTJlKlat45TISFKlcXerrNnz1b+/v6qcePGth+WcmRnKxUertQjjyjl6qqUnZ1S/foptXy5UunpSindlNLHx0c5OjqqVq1a5Vv2PH78eBUUFJR7ecaMGapBgwbKyclJValSRXXu3FmtXr26tB9Vqbpdw4K4J8UAACAASURBVMUb/6+UtvMJ59XH2z5WXb7uokzTTMr8H7Ma/v1wterwKpWemX7Xt3+nxyyvC+1WzxGg5s6dW+L3VSrbnVy/Dl98ATNnQkyM3lXgtdegeXNL37MQtiM7G3buhJUr9bF3Lzg66jM4Q4fqrUaqVTO6Ssuz2N5wRktM1FusfPklRESAl5ee8/Too9CggdHViWI6l3COJfuXMH/PfPZd2kcN1xqMajaKcc3H0cKrBSaZNFgmlOrecKmpeg7kjBlw8iTcfz88/zz07i2TUEX5lJKi2/esXAk//wwXLkCVKnp/1wED9P+RspQXCqPMhqUb7dmjJ4MvWqQ34+vWTc9tGjwYynDn/rJud8xuFuxZwOJ9i7mUdIlmNZoxvvl4xtw7Bq+KXkaXJ+6CIRvpZmTobRZmzdL9XgICYPJkvfm3s2wiLcq4ixf1yrWVK2HtWt2ip2FDGDhQjx516gQOJbb0wvaUi7CUIyUFfvxRB6ewML23zIQJep8ZGW2yWZnZmfx+/Hfm75nPiqgVZKksBjQZwBOtn6Cnb0/sTKXaD1qUAEPCUg6l9O+HDz7QfziqVoUnn9S/Jyy0+k+IUpeVpTe2/+03vcx/+3b99Y4d9ejRgAF6ub+MrmrlKizd6PBh+PxzPfweFwd9+sDTT0Pfvn9bSSdsR1xqHIv2LuLznZ+z/9J+6leuz2OtHuPhlg/LaJMNMTQs3ejYMfjoI/j6a/1mKzhYB6feveX3hLA9ly/rZf2//gq//w5XroC7u3499+unT7NVr250ldap3IalHMnJeuj9k090yvbx0b8MJ0zQ7diFTVJKEX42nC92fcF3+78jIztDRptsiNWEpRwJCbB4sX6DtWeP/j3x2GP690QZbxkhbFhWlp6z++uv+tixQ4+ctmypBwb69oX27cv36bXCKvdh6UYRETo0LVmiX2TDh+vRpo4dZSjSht082tSkahMmtZ3E+BbjqehY0ejyxC1YXVjKoZQ+XfH55/r3REaGPl0xbpz+w+PoaHSForyLjob162HdOn3ExkLlynr0qG9ffRbFS0bZi0zC0i3ExurTc599pofhmzfXoWnUKN1NXNgkpRRbzmzho20fsezQMio6VuSRlo8wse1EfKvIxo3WxGrD0o3i4vSikTlzYPduPbdpxAgYOxbatZM3WKJ0XLmiV66tW6dD0okTYGcHgYF6P9W+ffXrUUaP7o6EpQJkZ+sX4Cef6OWTFSvqd5CTJkHjxkZXJ+7CmfgzfBLxCV/s+oJrKdfo36Q/k9tN5r5690n7AStgE2HpRvv3w8KF+lTduXN6G6YxY2D0aFk8IkpWUhJs3pwXjnbv1l/394cePXRACgrSo0ni7oWEhBASEkJWVhZHjhyRsHQnp0/rBnZffKEnyfXrp5cV9+wp7yBtWEpGCov3LeajbR+x79I+2tRsw0sdX2KI/xDs7WQCr1FsLizlyMqC0FAdnJYu1Y0vW7aEYcP0IW+yRFHFx8OWLXqFZliYnneUkQE1a+q/Pz166KOM7wNsOBlZKqLUVD1X4cMPdaIPCIDnntPvIl1cjK5OFJNSirUn1jJjyww2RG+goUdDXuzwIuNbjMfJQXpxlTabDUs3Sk7WfWuWLoVVq/SIwD336K7HAwfq0/vyRkvc7OJFPXK0ebMOR3v26Lly3t7QpQt07arDkSzrL10SlooppxfL//4HK1bo7qaPPw4TJ0ovFhsXcS6C97a+x9KDS6nuWp3n2j3HU22esuqNfMuaMhGWbpSSopds//ijPqWfkKBHAnKWa/foIfMhy6PsbIiKgvBw+PNPHZAOH9bf8/XVwSgnIDVoIOHISBKWSsCJEzB7tp7omZSkh9snT9ZLMoXNOnb1GDO3zmTe7nk42jvybLtneb7981R1qWp0aWVemQtLN0pP138UV6/Wx5EjehVdUJAOTj176hFr+cNY9ly+DNu26XC0bZteWZmQoP+tmzbNC0ZdushpNWsjYakEJSbqVXQffaRX0bVtC1Om6GF3WYlgs2KuxzDrz1mERIRgZ7Lj2bbPMqXDFAlNFlSmw9LNjh3LC06bNukwVaMGdO+ujx49oH59CU+2JiFBT9WIjNShKDxcv7EG/e/bvr1epda+PbRpU/72WrM1EpYsIDsbfvlFb5ewYYP+RTdlCjz8MLi6Gl2dKKZLSZf479b/MjtiNnYmOya1ncSUDlOo5lIOdtwuZeUqLN0oORm2btW/NzZs0L3fsrOhbl3o3Fn3fOvQAe69V96AWZMLF3Qoyjl274bjx/X3zGY9yf/GcOTjI+HX1khYsrBdu+D99+GHH3Rb+Wee0Ye0lLdZl5Mu898//8vs7bMxmUw8E/gMUztNxcPZw+jSyoxyG5ZuFh+vT9lt3KhD1M6deiWUq6seue7QAVq3hlat5A9wabh+HQ4dggMH4OBB2LdPh6OLF/X33d11MLrx8POTYFsWSFgqJSdP6pGmr77S7xQfegheeEHv6ixs0pXkK/x363/5ePvHONg58HKnl3m23bO4Osro4d2SsHQbqak6MG3dqicE//n/7d15XNVV/sfx9wURRW+4UOJCSgqlYoFCmYhppSS55E6ZuTI6laWjpuaSmo2OM06ThktNzKRDipWWpuao5Qwulak4Wo5OjZQK6E8twSUE5PfHGUlcCBX4fu/l9Xw8zsN7L3f5oI/g3fme8znbpIwM87Xq1c0v5+bNzZ933236PXl7W1uzq8nPN3+n33wj/ec/P4ejr74yLWQuCgw0a8suDUYNGhBY3RVhqYydOCHNn2/WNR0/LnXvLo0ZY6Zn4ZKOnTmmV/75iuZ/OV81fWpqcpvJGtJ8iLw8vawuzWURlq7DxUtAO3f+/Gdqqvmap6fZVdW4ceHRsKFUo0b5/cWek2Oahx48aELR5ePsWfM8h+PnUNS06c9/3nUXSyrKG8KSRc6dkxYtkmbPNv/30qaNNGGC1L59+f0B5uJSf0zVS5te0uLdi3VH9Ts0/cHp6t20N4f23gDC0k06edLMhOzbV3hcOjPidJqZkAYNTCC4eDsgwJwddtttrnfWXX6+2Whz7Ji5NJaWJh06dOXIyDDPlczRIPXrm1n+y0dgoFS5srXfE6xFB2+byMuTVq6UZswwiznDw6WJE6XOnc1/xHA5e47u0YRPJmjVgVUK8w/TH6P/qLYN2lpdlkshLJWS06dNH5+DB81ITTXj4u1z5wo/v0YNqVYtE55q1TIBqlo1szbH17fw7VtukSpVMpf9Lh2exeyEf+GCucx47tzP4+L9rCyzfuvHH8249Pbx4yYcXRw//VT4fX18TAC8fNSrZ2bdGjRwvVCIssfMkk3k55uzfqZPN80umzUzM009exb/hw1sZcv3WzTq76P0+ZHP1e2ubvp9+9+rYQ3OCSsOwpIF8vNN2DhyxMy8HD1qxsXbGRnm66dOmXH6dPHe19PThBEvLxOI8vMLj4uP5eQU7/2qVi0c1Pz8TIi7GOYuvV27tlnLxWw9bhZhyYaSk6VXXjEdf4ODpfHjzYGcXqyBcTX5+flasneJxm0Yp4zTGXr+vuc1sc1E+Vbytbo0WyMsuYC8PNNL6GJ4OnVKys6+9sjNNaHl0uHh8fPtSpXMqFzZjEtvV636czhiZxmsQFiyse3bpd/+VvrgA3NNfexY06upEmeVuZqzOWc1e+tszdwyUz5ePnq53csa0nyIKnjwg/9qCEsAbIWw5AL27DGhadkyM708Zow0bBgLD11QWlaaXtz4ot7e/bZCbgvR3I5zWc90FazWA1BiBgwYIIfDUWi05Dwy99OsmbRkidnN8sgjJizdcYc0d+6Vixlha3WcdfTXx/6q7XHb5azoVLu326nv8r5Kz0q3ujRbISwBKFGPPPKI0tPTC8aaNWusLgmlJThYSkgwu1mio81hvUFB0oIF5jwpuIzwOuHaPGizErok6O/f/l13xd+l1z57TbkXcq0uzRYISwBKlLe3t/z9/QtGjRocueD2GjY0B/bu22f6Mz39tAlSb71V/B0lsJyHw0MDwwZq/7P79UTIExq5bqTC3wjX1kNbrS7NcoQlACVq06ZNuu222xQcHKy4uDgdO3asyOdnZ2crMzOz0ICLCg6WEhOlvXtNB/AhQ0xn2bffNjtP4BJqVK6h+Z3m6/Mhn8vL00uRCZEa9OEgnTh7wurSLMMCbwAlJikpSVWrVlX9+vV18OBBTZo0Sbm5udqxY4e8r3Ee0JQpUzR16tQrHmeBtxv417+kKVOkFStMkJo6Verdm+aWLiTvQp7e3Pmmxm8cLy8PL83tOFe9m/aWo5z1iSEsAbghiYmJGjp0aMH9tWvXKioqqtBz0tPTVb9+fS1dulTdu3e/6vtkZ2crOzu74H5mZqYCAgIIS+5k505p8mRp9WpzqObMmeYYFbiM9Kx0DV87XO/ve1+dgztr3qPzVO+WelaXVWYISwBuSFZWlo4ePVpwv27duqp8la3jQUFBGjJkiMaOHVus96V1gBtLTja9mbZtkx56yISm8HCrq8J1WLFvhZ5e87TO5pzVrIdnKa5FXLk4a879v0MApcLpdKpRo0YF42pB6cSJEzp06JBq165tQYWwnagoacsW09QyPV2KiDCX5Q4csLoyFFO3xt2075l96t2kt4atHqZ2b7fTgRPu/+9HWAJQIk6fPq3Ro0dr27ZtSk1N1aZNm9S5c2f5+fmpW7duVpcHu3A4pK5dzXqmhAQzy9SkiWlqmU5vH1dQrVI1vdnlTW18aqMOZx7W3fPv1qwts5R3Ic/q0koNYQlAifD09NSePXvUtWtXBQcHq3///goODta2bdvkdDqtLg924+lpjko5cMBcjlu2zLQgmDDBnO8E23sw8EHt+fUePXvvsxq3YZwe+OsD+vbkt1aXVSpYswTAVlizVE79+KM0a5b0pz9JTqf08svSoEEcUukikr9LVv8P+uvYmWOa3WG2ftXiV261Y46ZJQCA9apVM+fNXewGPnSoFBoqrVtndWUohqj6Udo9bLf6NuurYauHKeadGKVlpVldVokhLAEA7CMgQFq0SNq+XapZ05w917Gj9NVXVleGX+D0dmph54Va/cRqpWSkKGReiJL2JlldVokgLAEA7Cc8XNq0SVq+XPrPf6S77zaLwH+hIzysFxMUo72/3qv2Ddsr9v1Yxb4Xqx/O/WB1WTeFsATAFuLj49WkSRNFRERYXQrswuGQunWTvv5amj1bSkoyB/X+6U+cOWdzNX1qKqlnkpb0WKJ1365T6MJQbfl+i9Vl3TAWeAOwFRZ445pOnJAmTZIWLjRnzs2ZY5pbwta++/E79V3eV58d/kxT2k7R+Nbj5enhaXVZ14WZJQCAa6hZU5o3T9qxw9x++GGpRw8pNdXqylCE+tXqa9OATXox6kVN/nSyHl78sI5kHrG6rOtCWAIAuJbQUOkf/5DeeUf67DOpcWNzSO+5c1ZXhmuo4FFB09pN0yf9P9GBEwd0z4J7tGr/KqvLKjbCEgDA9Tgc0uOPm1YDI0aYtgONG0vvvy+xusS22jZoq93DdqtVQCt1WdpFz699Xtm52b/8QosRlgAArqtqVWnGDGnvXikkROrZ07Qb+OYbqyvDNfj5+OnD2A8155E5WrBjgVr/pbVSf0y1uqwiEZYAAK4vKEj66CNp1SpzhEpIiOkCnm3/WYvyyOFwaPh9w7V10FYdP3tcLd5ooY+/+djqsq6JsAQAcB+dOpkGliNHStOmmf5Mn3xidVW4hhZ1WmjHr3aoZb2WikmM0UufvmTLA3kJSwAA9+LjYy7NpaRItWqZ9gL9+klHj1pdGa6iRuUaWvX4Kk1rN00v//NlxbwTo+Nnj1tdViGEJQCAe2ra1Oya+8tfpLVrTW+mhQulCxesrgyX8XB4aGKbiVr35DrtTN+p5gub64sjX1hdVgHCEgBboIM3SoXDIQ0YYHbN9ehhjkxp3dp0BYfttG/YXjt/tVN1b6mr1gmttfDLhVaXJIkO3gBshg7eKFXJyVJcnPTf/0oTJ0rjxkkVK1pdFS5zPu+8frPuN4rfHq9hLYbptY6vqaKndf9OzCwBAMqPqCizlumFF8xuuRYtpC/sc7kHRkXPino95nX9ufOf9daut9R+cXv935n/s6wewhIAoHypVEmaPl3avt3MKt1/vzRqlHTmjNWV4TKDmw/Wp/0/1b+P/1sRb0Zod8ZuS+ogLAEAyqfQUOnzz6WZM82Zc82aSRs3Wl0VLhN5e6S+jPtSNX1qqlVCK7339XtlXgNhCQBQflWoII0ZI/3rX9Ltt5vDeYcMkU6dsroyXCLAN0DJA5PV5c4u6vVuL03+dLIu5JfdrkbCEgAAQUGmeeWCBVJSErNMNuTj5aN3ur+jGQ/N0PR/TlfPZT115nzZXDolLAEAIEkeHtLQodKePVKjRmaW6dlnWctkIw6HQ+Naj9PKx1dq/X/Xq81f2+hI5pFS/1zCEgAAl2rQQNqwQZozR0pIkO65R9qyxeqqcIlOwZ20eeBmHTtzTPf++V7tSt9Vqp9HWAJgCzSlhK14eEjDh5s2A7fealoOvPCC9NNPVleG/7nH/x59MeQL1XHW0YRPJpTqZ9GUEoCt0JQStpOXJ82eLU2aZC7Pvf22FB5udVX4n7M5Z/VT7k+qUblGqX0GM0sAABTF09PMKu3YIXl7Sy1bSlOnSrm5VlcGmYXfpRmUJMISAADFExJi+jJNmCBNmyY98IB08KDVVaEMEJYAACguLy8zq5ScLKWlmcaWiYlWV4VSRlgCAOB6tWplFn936SI9+aTUty+NLN0YYQkAgBvh6ystXmxmlj76iBYDboywBADAzXjiCWn3bqlePalNG+mll1j87WYISwAA3KwGDaRNm6QpU6RXXjF9mVJTra0JJYawBABASahQwfRiSk6WMjKksDDpgw+srgolgLAEwBbo4A23cf/90q5dUrt2Urdu0siR0vnzVleFm0AHbwC2QgdvuI38fGnuXGn0aNNiIClJCgy0uircAGaWAAAoDQ6H9NxzZofc8ePmstyKFVZXhRtAWAIAoDRFREg7d0oPPSR17y6NGMFlORdDWAIAoLRVqya99540Z440b57UujVHpbgQwhKAYlm+fLmio6Pl5+cnh8OhlJSUK56TnZ2t4cOHy8/PT1WqVFGXLl10+PBhC6oFbMjhkIYPl7ZuNZflWrSQPv7Y6qpQDIQlAMVy5swZRUZGaubMmdd8zogRI7RixQotXbpUmzdv1unTp9WpUyfl5eWVYaWAzYWHSzt2mCNTYmKkl1+WLlywuioUgd1wAK5LamqqAgMDtWvXLoWGhhY8furUKd16661avHix+vTpI0lKS0tTQECA1qxZo+jo6GK9P7vhUG5cuCBNn24aWXbqJC1aZC7XwXaYWQJQInbs2KGcnBx16NCh4LE6deooJCREW7dutbAywKY8PKTJk825csnJZiH4nj1WV4WrICwBKBEZGRmqWLGiqlevXujxWrVqKSMj45qvy87OVmZmZqEBlCsxMdKXX0pVqkgtW0pLllhdES5DWAJwhcTERFWtWrVgJCcn3/B75efny+FwXPPrM2bMkK+vb8EICAi44c8CXFbDhmbhd/fu5mDeESOknByrq8L/EJYAXKFLly5KSUkpGOHh4b/4Gn9/f50/f14//PBDocePHTumWrVqXfN148eP16lTpwrGoUOHbrp+wCX5+Jh1S6+/LsXHS+3bm11zsBxhCcAVnE6nGjVqVDAqV678i69p0aKFvLy8tH79+oLH0tPTtXfvXrVq1eqar/P29tYtt9xSaADllsMhPfOMtGmTtG8f65hsooLVBQBwDSdPntT333+vtLQ0SdL+/fslmRklf39/+fr6avDgwRo1apRq1qypGjVqaPTo0WrWrJkefvhhK0sHXE9kpLR9u9S1qzmY929/kx57zOqqyi1mlgAUy8qVKxUWFqZHH31UkhQbG6uwsDAtWLCg4DmvvvqqHnvsMfXu3VuRkZHy8fHRqlWr5OnpaVXZgOu6/XZp82apY0epWzfTZoBuP5agzxIAW6HPEnCZCxdM48opU6Q+faSEBLO+CWWGmSUAAOzMw0N66SVzttyqVVJUlMRGiDJFWAIAwBX06CFt2WJ2yEVESNu2WV1RuUFYAgDAVYSGmoXfQUFSu3ZSUpLVFZULhCUAthAfH68mTZooIiLC6lIAe7vtNmnDBqlXLyk2Vvrtb1n4XcpY4A3AVljgDRRTfr40bZpZ+D1woLRggVSxotVVuSX6LAEA4IocDrPwu2FDadAg6bvvpPffl6pVs7oyt8NlOAAAXNmTT5rLcikpUqtW0sGDVlfkdghLAAC4ujZtzO64nBzpvvukzz6zuiK3QlgCAMAdBAebwBQcbHbKffih1RW5DcISAADuws/PXJLr1Enq3l164w2rK3ILhCUAANxJpUrS0qXSM89IQ4eaReBsfL8p7IYDAMDdeHpKr70m1a0rjRsnpaVJ8+dLFfi1fyP4WwMAwB05HNLYsVLt2tLgwVJGhun4zSG8143LcABsgQ7eQCl56ilzAO+nn0oPPWTOlsN1oYM3AFuhgzdQSr78UoqJkapXl9atkxo0sLoil8HMEgAA5UF4uLR1q5SbK0VGSl9/bXVFLoOwBABAedGokbR5s1SzphQVJW3fbnVFLoGwBABAeVK7tvSPf0h33ik9+KBZy4QiEZYAAChvqleX1q+X7r9f6tiRbt+/gLAEAEB5VKWK2SXXubPUo4e0aJHVFdkWYQkAgPLK29t0+x4wQOrfX5o71+qKbImmlAAAlGeentKbb5pLc889J2VmShMmWF2VrRCWANhCfHy84uPjlZeXZ3UpQPnjcEizZklOpzRxopSdLU2dah4HTSkB2AtNKQGL/e535jy5F16QZs4kMImZJQAAcKmxY81appEjzQzTq6+W+8BEWAIAAIWNGGEC09NPS+fPS6+/LnmU3z1hhCUAAHClX/9aqlhRioszgWnhQrMYvBwiLAEAgKsbPNgEpgEDTGBKSJAqlL/oUP6+YwAAUHz9+pnA1LevWcP0t79JXl5WV1Wmyu8FSAAAUDx9+kjvviutWCHFxko5OVZXVKYISwAA4Jd16yYtX26OSOnbV8rNtbqiMkNYAgAAxdOp088zTP36lZvARFgCYAvx8fFq0qSJIiIirC4FQFG6djXnyb37rjRwoFQOuu7TwRuArdDBG3ARy5ZJjz8uPfWU9NZbbt2Hid1wAADg+vXubS7D9etn2gksXOi2gYmwBAAAbswTT5jANGCACUzz5rnl0SiEJQAAcOOeesqsWxo0yASmOXPcLjC553wZgBK3fPlyRUdHy8/PTw6HQykpKVc8p23btnI4HIVGbGysBdUCKFMDB0pvvGHOkBszRnKz5dDMLAEoljNnzigyMlK9evVSXFzcNZ8XFxenadOmFdyvXLlyWZQHwGpxcabD9/Dhkq+vNGmS1RWVGMISgGLp16+fJCk1NbXI5/n4+Mjf378MKgJgO88+K2VlSS++KDmd0ogRVldUIrgMB6BEJSYmys/PT02bNtXo0aOVlZVldUkAytL48dLYsdLIkaalgBtgZglAienbt68CAwPl7++vvXv3avz48dq9e7fWr19/zddkZ2crOzu74H5mZmZZlAqgNM2YIWVmmktzTqdpM+DCCEsArpCYmKihQ4cW3F+7dq2ioqJ+8XWXrmUKCQlRUFCQwsPDtXPnTjVv3vyqr5kxY4amTp1680UDsA+Hwyz2Pn3anCNXtaoUE2N1VTeMDt4ArpCVlaWjR48W3K9bt27BQu3U1FQFBgZq165dCg0NLfJ98vPz5e3trcWLF6tPnz5Xfc7VZpYCAgLo4A24g9xcqVcv6eOPpbVrpbZtra7ohjCzBOAKTqdTTqfzpt/nq6++Uk5OjmrXrn3N53h7e8vb2/umPwuADVWoYM6R69zZjI0bpXvvtbqq60ZYAlAsJ0+e1Pfff6+0tDRJ0v79+yVJ/v7+8vf317fffqvExETFxMTIz89PX3/9tUaNGqWwsDBFRkZaWToAK3l7SytWSB06SB07Sps3S40bW13VdWE3HIBiWblypcLCwvToo49KkmJjYxUWFqYFCxZIkipWrKiNGzcqOjpad955p5577jl16NBBGzZskKenp5WlA7BalSrSRx9JdepI0dHS4cNWV3RdWLMEwFYyMzPl6+vLmiXAHR05IrVqZXbIJSdL1atbXVGxMLMEAADKRt260rp1Unq6WcN07pzVFRULYQkAAJSdu+6S1qyRdu2SYmPNjjmbIywBAICydd990nvvSatXS8OG2f7gXcISAFuIj49XkyZNFBERYXUpAMpCx45SQoI5EsXmh+6ywBuArbDAGyhn/vAHacwYac4cafhwq6u5KvosAQAA64weLWVkSM8/L/n7m47fNkNYAgAA1po1y+yQ69fP9GKyWSNb1iwBAABreXiY9UstW0pdukgHDlhdUSGEJQAAYL2Lx6LUqmUWfx87ZnVFBQhLAADAHqpXNz2YzpwxM0xnz1pdkSTCEgAAsJMGDcw5cnv2SE8+KeXlWV0RYQkAANhMeLiUlCR9+KE0apTV1RCWAACADXXqJM2dK732mhkWonUAAFuIj49XfHy88mww5Q7AJp5+WkpNlUaOlO64wxy+awE6eAOwFTp4AyjkwgWpZ09p/Xppyxbp7rvLvAQuwwEAAPvy8JAWL5aCgszM0tGjZV9CmX8iAADA9ahSRVq5UsrJkR57TPrppzL9eMISAACwv3r1zO64lBRp0CCpDFcREZYAAIBriIiQFi2SliyRpk8vs48lLAEAANfRq5c0bZo0ebK0bFmZfCStAwAAgGuZOFH697+l/v2lwEAz41SKmFkCAACuxeGQ3npLCg2VunaVDh8u1Y8jLAEAANdTqZL0wQeSl5c0cGCpfhSX4QDYAh28AVy3WrWk1atNcCpFdPAGYCt08AZgN1yGAwAAKAJhCQAAxChtEQAAAHxJREFUoAiEJQAAgCIQlgAAAIpAWAIAACgCYQkAAKAItA4AYCv5+fnKysqS0+mUw+GwuhwAICwBAAAUhctwAAAARSAsAQAAFIGwBAAAUATCEgAAQBEISwAAAEUgLAEAABSBsAQAAFAEwhIAAEARCEsAAABFICwBAAAU4f8BBGD3BseNENoAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 3 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f(x) = r*x-x^3\n", "p1 = plot(f(r=-5),(-2,2), color='red', legend_label='$r=-5$')\n", "p2 = plot(f(r=0),(-2,2), color='green', legend_label='$r=0$')\n", "p3 = plot(f(r=5),(-2,2), color='blue', legend_label='$r=5$')\n", "show(p1+p2+p3)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGGCAYAAABrI8X1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXd4VMX+uN8QIPReQugtEEDpvdpQvOC16/Varle9FizY2/1dQOnSBAKKiIAIAgJSRKQXAekgSA0EEgiRFk4SSoBkfn/Md3N2EwjFTPac7Od9nn3Y/ew5Z2bf+ZyTYfbsTJBSSiEIgiAIgiBckTz+roAgCIIgCIKTkc6SIAiCIAhCFkhnSRAEQRAEIQuksyQIgiAIgpAF0lkSBEEQBEHIAuksCYIgCIIgZIF0lgRBEARBELJAOkuCIAiCIAhZIJ0lQRAEQRCELJDOkiAIgiAIQhZIZ0kQBEEQBCELpLMkCIIgCIKQBdJZEgRBEARByALpLAmCIAiCIGSBdJYEQRAEQRCyQDpLgiAIgiAIWSCdJUEQBEEQhCzI6+8KCIKQu0lISKB3795cvnyZqKgoHn30UZ544gneffddlFIkJCTw8ccfU69ePX9XVRAE4YpIZ0kQBGNcvHiRV155hSFDhhAWFsbhw4epXr06c+bMYfjw4ezfv5+//e1vlCxZklGjRvm7uoIgCFdEvoYTBMEYX3zxBc8++yxhYWEAFChQAKUU1apVo3r16qSmplK7dm3+8Y9/+LmmgiAIV0dGlgRBMEbJkiXp3Llz+utNmzYBcM899wDQpUsXunTp4pe6CYIgXC8ysiQIgjGeeuopn9fLly8nODiYdu3a+alGgiAIN06QUkr5uxKCIAQGTZo0IV++fKxfv97fVREEQbhuZGRJEIQcISEhge3bt9OpUyef+Lhx4/xTIUEQhOtEOkuCIBjhxIkTtGjRgt69ewOwcOFC0tLSaNGihc82a9eu9VcVBUEQrgvpLAmCYISVK1eyceNGlFKcP3+eadOmERYWRnJyMgBnz57l9ddfp1evXv6tqCAIwjWQe5YEQTBCUlISb775Jvnz5yc5OZkPP/yQxMREPvroI6pWrcrFixd57733uPXWW/1dVUEQhCyRzpIgCIIgCEIWyNdwgiAIgiAIWSCdJUEQBEEQhCyQzpIgCIIgCEIWSGdJEARBEAQhC6SzJAiCIAiCkAXSWRIEQRAEQcgC6SwJgiAIgiBkgXSWBEEQBEEQskA6S4IgCIIgCFkgnSVBEARBEIQskM6SIAiCIAhCFkhnSRAEQRAEIQuksyQIgiAIgpAF0lkSBCFHUEqRmJiIUsrfVREEQbghjHeWNm/ebLoIxyMOxAGIg6SkJIoXL05SUpK/q+JXAj0PPIgHcQDucWC8s/Tnn3+aLsLxiANxAOJA0EgeaMSDOAD3ODDeWbp48aLpIhyPOBAHIA4EjeSBRjyIA3CPA+OdpZo1a5ouwvGIA3EA4kDQSB5oxIM4APc4MN5ZWrlypekiHI84EAcgDgSN5IFGPAS2g5gYGD4chgxZiRt+8xGkDP805cyZM5QoUcJkEY5HHIgDEAeJiYkUL14cy7IoVqyYv6vjNwI9DzyIh8B1EBcHjRvD8eMAZ+jevQSjRvm7VlljfGRplNMN5ADiQByAOBA0kgca8RAYDi5ehO7d4dZb4YUX4Px5WLzY01ECGMXkyf6s4fVhfGRJEAQBZGRJEAKB48f1o04dyJcPPv0U/vc/+/3334d77oHbbrNjDRvCtm05X9cbwfjIUp8+fUwX4XjEgTiAwHUQGRlJvXr1aN68ub+r4ggCNQ8yIh5yn4OZM6FKFbjlFujYEc6dg/37fbfZtw86dYLPPoMaNaBy5T58/71fqntDGB9ZsiyL4sWLmyzC8YgDcQDiQEaWNIGeBx7Eg7sdnD4NY8bo5y+/DKVKQc2acPCgvc24cTr+0EOk38Q9eTL885/2Nm5xYHxkadKkSaaLcDziQByAOBA0kgca8eBeBxcv6tGh//5XPzp21LE8GXoUefLAAw/oe5R69YKff/btKIF7HBjvLN3m/cVkgCIOxAGIA0EjeaARD+5xMHgw1K+v7zWKiYEDB2DHDvv9nTv1iNKwYVCwoI516gT/+Id+fscd0LOn3j8jbnFgvLO0P+MXlgGIOBAHIA4EjeSBRjw408H58xAVBRcu6Ne//ALvvgu7dunnTz4JFSqA9zfpxYrpWNeuelqAqChYuhQKFLh2eU50cCWMd5YKerqZAYw4EAcgDgSN5IFGPDjPwb59ULu2fkREwKFDuuPjzYEDUKIEzJ8Pbdvqx/z54LntqEQJfe9Sxq/krobTHFyNvKYLKF26tOkiHI84EAcgDgSN5IFGPPjfwcyZ8OefcP/9EBYGn3wCR4/q9w4dggED9KhSsWKQmKjjjzyi/23fHn799a/Xwd8OrhfjI0vbnD55Qg4gDsQBiANBI3mgEQ/+ddCjBzz8sJ4wslkziI+HtDTfbdLS9CjR+vXQty9MmqTvS8pO3JIHxqcOiI+PJzQ01GQRjkcciAMQBzJ1gCbQ88CDeMg5B9u2Qf/+epLIXr2gVi39dZll2dtMmKA7TXfcoUebKlaEFSv0tiZxSx4YH1kaN26c6SIcjzgQByAOBI3kgUY85IyDhATdAZo+Hb77Tj+/eBEqV/bdrnJl/Yu3/fvh999h717zHSVwTx7IcieCIOQIMrIkCGZJS4PXXoOpU/Xs2N9/rztLLVr4bhcTo0eVnn1WjyK99BJ89JF/6uwWZLmTHEAciAMQB4JG8kAjHv66g+Rk2LPH/pn/d9/B6NG6g7R5s164NjwcvL/l8rxu0AA2btQdJ392lNySB8ZHli5cuECB65lsIRcjDsQBBK6DyMhIIiMjSU1NZd++fQE/shSoeZAR8fDXHGzfDnfdBSdO6K/LVq7US4m8/769TZ06ujO1b5+eWDJfPvjwQ6hUKZs+QDbgljwwPrI0cuRI00U4HnEgDiBwHXTv3p1du3axceNGf1fFEQRqHmREPNyYg8WLYdo0+yf8PXvqjhLouZCGDNG/bvP+Jf6LL+p/w8Nh7FiIjHRWRwnckwfG51m6//77TRfheMSBOABxIGgkDzTi4fodvP02DB2qn0dEwG+/Zd5GKX2f0tatumNVo4ZecsTpuCUPjI8sbd682XQRjkcciAMQB4JG8kAjHq7sIDYW/vc//VP/pCTdCRo1yn5/9269lEjPnlCmjI7VqAFvvaWfV64M//63OzpK4J48MD6y5Ib5E0wjDsQBiANBI3mgEQ+ZHZw5A23awJEj+vVPP+lZskuXhmPH7O3KloXGjfXitbGxUL26vYCt23BLHhgfWcqb13h/zPGIA3EA4kDQSB5oxAMsWZKXBx6ADz7Qv2jbts3uKAGsWaN/2fb991ClChQpoked2rXT7xctCvXqubejBO7JA+OdpejoaNNFOB5xIA5AHAgayQNNoHuYPx/69o3mxx9h4EC9/EiNGhASYm8TFqbXZevQAQ4f1l/L9e7tvzqbwC15YLyz1KFDB9NFOB5xIA5AHAgayQNNIHmwLHjySWjUCD7+WN+HtH49gO1g/Xo9ejR7NrRtq6cFWLgQgoP9Vu0cwS15YLyzNGXKFNNFOB5xIA5AHAgayQNNIHl48009YeT27dCvH4wbp0eLwHbg6TN06aLvU1q0CG65xS/VzVHckgfGJ6VMTU0lOLd3ja+BOBAHIA5kuRNNoOeBh9zq4ddf4fnn9XxIH30Er76qR4rWrrW3eecd+OwzmDEjlXnzgqlbF959V08aGWi4JQ+Mjyz179/fdBGORxyIAxAHgkbyQJNbPHgPNygFDzygF6E9dgxef10vSvvgg/Y2wcHQrZt+vndvfyZN0p2qQOwogXvyQBbSFQTBKLLciZBb6dULBgzQN2FPmqTnNsr4y7SFC+Huu2HGDNi5Uz9v08YftRX+CrKQbg4gDsQBBK4DWe7El0DNg4y40cO5c/bzDRv0L9NSUvSyI//4h/4l25NP2tvUrau/ggN45BG9vXdHyY0Oshu3ODA+shQbG0vlypVNFuF4xIE4AHEg9yxpAj0PPLjJQ1KS/ups5Ur98/6FC+HAAX0ztoc8efRcScHBMHOmvmfpoYegRImrH9dNDkzhFgfGR5aWLl1qugjHIw7EAYgDQSN5oHGyh7Q0e8FagOHDdUcJ9KzZ77wDHTtC06b2Nq+9pu87ypNHjyI991zWHSVwtoOcwi0OjHeWwsPDTRfheMSBOABxIGgkDzRO9bBtG1SqBMWL67mOzp/XI0veJCbqe5NWrdLzIi1bpjtUN4pTHeQkbnFgvLN0/vx500U4HnEgDkAcCBrJA41TPFy+rO878vDGG/Y6bEuWwJdfwn/+A+XK6VhICLz3nn5eqBDcfz/cdtvNle0UB/7ELQ6Md5ZOnTplugjHIw7EAYgDQSN5oHGCh2+/1eutFSqkf9kGcPas7zZnz0KtWvqXbAsXwq5dvvcq/RWc4MDfuMWB8c5Sw4YNTRfheMSBOABxIGgkDzT+8JCWZj8/f15PHpmSouO9e+sOkfecR1WrwrPP6udly+qf/deokX31kVxwjwPjnaX58+ebLsLxiANxAOJA0EgeaHLaw9tv66/QypeH5cvh4kX98CYpSU8guWeP/gpu+3a9mK0pJBfc48D41AHnzp2jUKFCJotwPOJAHIA4kKkDNIGeBx5y0sOyZXDHHfbrsDA4elTPsD1ypI7dcw/Mn5+zC9dKLrjHgfGRpaFDh5ouwvGIA3EA4kDQSB5oTHk4fx4eewzKlNFfm506BQkJvtt4Xo8YAb/9pkeacrqjBJIL4B4HstyJIAhGkeVOhJzkk0+gZ0/79XPP6Z/1t26t70kC+O9/4dNP/VM/wZ3Icic5gDgQBxC4DmS5E18CNQ8ykh0e/vxTz5LdpAkMGaJjcXG+28TF6V+8rVsHc+bAr786p6MkueAeB8ZHlk6cOEHZsmVNFuF4xIE4AHEg9yxpAj0PPGSHh65d4aef7Ndz50KpUvr+pJQUPZv2tGnw8MN/sbKGkFxwjwPjI0uzZs0yXYTjEQfiAMSBoJE80Nyoh0OH4IUX4F//gt27dWzPHt9t9u7VC9du3qwnk1y3zrkdJZBcAPc4yGu6gObNm5suwvGIA3EA4kDQSB5obsTDxYtw++0QHa1fL1wI+/bp2bM9X78VKKBv6AaoX18/nI7kgnscGO8sHfPMGx/AiANxAOJA0EgeaLLyEB0NP/wAoaHw5JP6viNPRwn0vUpRUfDZZ7pTFB0NDzwAt9ySAxXPRiQX3OPAeGcpNTXVdBGORxyIAxAHgkbyQHM1D7Gx0Ly5/sk/6J/2DxsG1arpr+JAr9NWsyYEBdkzbLsRyQX3ODB+z1K1atVMF+F4xIE4AHEgaCQPNB4Pp07pX6idOKHjixfbHSWA77+H/Pn1xJLPPgtPPaWfFy+e83XObiQX3OPAeGdp9erVpotwPOJAHID7HaxatYpu3boRFhZGUFAQP/74o7+r5ErcngfZxerVq9m5E+rUgfbt9b9bt2Zee616dfvf8eNh0iR33I90PUguuMeB8akDTp8+TalSpUwW4XjEgTgA9zv4+eefWbNmDU2aNOGhhx5i9uzZ3H///de9v0wdoHF7HmQXp0+f5u23SzFhgh37xz9gyhQYOhTGjtX3LH31FdSu7bdqGkVywT0OjI8sjR492nQRjkcciANwv4MuXbrQp08fHnzwQX9XxdW4PQ9ulu3bISICihaFHj20hwIFfLfxvH7rLT0twIoVubejBIGbC964xYEsdyIIwg0TFBR0zZGllJQUUlJS0l8nJiZSuXLlgB9ZClQaNdIdJg+zZ+sbue+8U3eMateGJUugShX/1VEQrkZwr169et3MjlOnTqVQoUKMGzeOZs2aMWDAADp06ECfPn2oVasW06dPJzU1lY8++gilFEoppk6dSkREBJ999ln6tg0aNGD8+PEUKFCA9evXExUVRXJyMnPnzqVq1aoMGzYsfdtmzZoxYsQISpcuzbJly4iPjyc+Pp6lS5dSunRpRo4cmb5t27ZtGThwIFWqVGHevHkkJSVx8OBBfvvtN0JCQhg/fjxNmzb1qXd4eDhTp04lLS2NHTt2sGPHDlJTU5k2bRp169Zl8ODB6dveeuutjBs3joIFC7Ju3ToOHjxIYmIi8+fPp1KlSgwfPjx926VLl7JlyxbKli3LkiVLOH78OHFxcaxYsYKSJUsyatQo2rVrR9++fWnXrh39+vWjWrVqzJkzh+TkZKKiotiwYQMhISFMmDCBxo0bM3DgwPTj16lThylTpgCwbds2/vjjDy5dusSMGTMIDw/3qXfDhg356quvKFy4MGvWrOHw4cMkJCSwYMECKlas6FPvFi1aMGzYMMqVK8fixYs5efIkR44cYeXKlZQoUYIxY8bQpk0b+vXrl75P9erVmT17NufOnWPfvn1s2rSJvHnz8tRTT/Hggw/61DsiIoLJkyeTJ08etmzZwp49e0hJSeGHH36gVq1aDBkyJH3bRo0a8eWXX1K0aFFWr15NTEwMCQkJLFy4kNDQUD7//PP0bVu2bMnQoUMJDQ3ll19+4dSpU8TGxrJ69WqKFSvGF198QatWrXzqXaNGDWbOnElKSgq7d+9my5YtBAcH8+2333LLLbcwaNCg9G3r1avHpEmTyJs3L5s2bWLv3r2cP3+e2bNnU6NGDYYOHZq+bePGjRkzZgzFihXj9ddfp1ixYpw8eZJFixZRvnx5n3q3bt2awYMHExYWxoIFCzhz5gyHDx/m119/pUiRIowdO5aWLVvSv39/n3NtxowZXLx4kV27drFt2zYAvvvuO+rXr+9zrtWvX5+JEyeSL18+Nm7cyP79+zl37hw//vgj1apV86l3kyZNiIyMpGTJkixfvpy4uDhOnDjB4sWLKVu2LMOGDePxxx/nhx9+oE2bNgwaNIhKlSoxf/58LMsiOjqa999/n2eeeYYBAwYwYMAAhg0bpi86wcHUrVs3/Rqxc+dOfv/994C5Rrz88svcfvvtPuda8+bNGTFiRK65RsyYsZLIyBIMGjSG229vw+jR/VixogPJyX2A6sBsjh4dTYMGhWjefBNvvpmXcuUm0qlTo4C6Rtx555088MAD6deIVatWceTIkVxxjRgxYkT6tle7Rqxbt45vvvmG7du3Z9mP2LlzJ7Vq1fprvZ2/iPGRpcTExID/X6Q4EAeQuxzIyNLNk5vy4EqcPau/bouN1a+rVdMzbg8dCh9/rGOVKsGyZYnUrp17PVwPuT0Xrge3ODB+z9IE77v3AhRxIA4g8ByEhIRQrFgxn4eQ+/Lg7Fl9b9H+/fp1dLTdUQI9N1JMDHz0ESxfDpMnw5Yt8PPPE/xQW2eR23LhZnCLA+OTUt55552mi3A84kAcgDgQNLkpDxIS9Fpsu3dDcDB8/TU8+CCUL69n2QYIC9MjSQCdOtn75iYPN4s4cI8D4yNLezKudBiAiANxAO53kJyczLZt29LveYiOjmbbtm3ExMT4uWbuwu154M20afaitqmp0Lu3/rXb0qXw+ON6KoClS6FQocz75iYPN4s4cI8D4yNLhQsXNl2E4xEH4gDc72DTpk3cdttt6a/feustAJ555hnXDKU7Abfmwblz0L07bNigR4iGD8/cCfJ8tPr1YerUrI/nVg/ZiThwjwPjnSU3TDZlGnEgDsD9Djp16oTMNPLXcWse/O9/pE8guWuX/nrtvfdg1iyYMwdKlYIxY67/eG71kJ2IA/c4MP413O+//266CMcjDsQBiANB45Y8WLECpk+HM2f066go3/ejoiBfPvjxR7AsOH4c2rW7/uO7xYNJxIF7HBifOiAuLo6wsDCTRTgecSAOQBzIcicaN+TB//4Hn36qn9euDevXw/z58PTTOhYUpEeTunW7+TLc4ME04sA9DoyPLI0fP950EY5HHIgDEAeCxg158Pnn9vP9++Hnn+Gpp/S/n3wCy5b9tY4SuMODacSBexzIcieCIOQIMrLkTBYvhl699FdqgwdDs2ZQsyYcPGhvs3Ah3H2336ooCH7H+MhSnz59TBfheMSBOIDAdRAZGUm9evVo3ry5v6viCJyUB/HxcP/9sHYtrFwJXbpASoqeOLJqVShYEN5+20xHyUke/IU4cI8D4yNLKSkphISEmCzC8YgDcQDiQEaWNP7Mg5QUvWhthQpQrpyeBqBlS99tjh7Vv3QzX5fAPh9AHIB7HBgfWfrc+8vvAEUciAMQB4LGX3lw5gy0aAGNGun12n7+Wc+H5L0+aYsWEBqaM/WR80EcgHscGB9ZOnDgADVr1jRZhOMRB+IAxIGMLGn8lQfDhsH/zSMKQMOGsG2bXpbkyy8hf3545RXIqaYJ9PMBxAG4x4HxkaUNGzaYLsLxiANxAOJA0ORUHsyeDT17wqpV+nVwsO/7ef9vSuLy5fVUAR98kHMdJZDzAcQBuMeB8c5ShQoVTBfheMSBOABxIGhyIg9Gj9YL2n7yCdx2GyxaBM89B61b6/eLFdO/fPMncj6IA3CPA+PLnQRn/O9MACIOxAGIA0GTE3kwa5b9PC0N5s6Fzp1h9WqIiYGyZaFIEePVyBI5H8QBuMeB8ZGlw4cPmy7C8YgDcQDiQNBkdx7ExMBjj+nO0Pz5OhYe7ruN53VwMFSv7v+OEsj5AOIA3OPA+MhSuxtZLCiXIg7EAYgDQZPdeXDffbB9u36+YgX8/jsMGgTnzukbuO+6C159NVuLzBbkfBAH4B4HxkeWvv/+e9NFOB5xIA5AHAia7MyDtDTYscN+fekS7NqlR44mTNCdpc8+gzzGr/Q3jpwP4gDc48D41AGXL18mb17jA1iORhyIAxAHMnWA5q/kwfjx+qbtwoXhiy+gfXs9u/aiRfr9EiV056lSpWyssCEC/XwAcQDucWD8/xsDBgwwXYTjEQfiAALXgSx34svN5sHevfDCC3D4sB49uv9+SE3VN3P37g09eugbuN3QUYLAPR+8EQfucSAL6QqCkCPIyNJfY/lyuP1235hl5ezcSIIQqMhCujmAOBAHIA4EzfXkwaVL8M9/6nuPmjWDQ4f0UiT16tnbPPCAuztKcj6IA3CPA+MjS0eOHKGSW8aFDSEOxAGIAxlZ0lxPHowcCa+/br/u2hXmzdPru02bpu9ZevxxexZuNxLo5wOIA3CPA+MjS4sXLzZdhOMRB+IAxIGguZ48OH7c9/Wff+p/S5SAF1+EJ590d0cJ5HwAcQDucWC8sxQREWG6CMcjDsQBiANBkzEPjh3TS5KUK6eXJLl8WX8FV6KEfj8oSC9wm9uQ80EcgHscGP+/SVJSkukiHI84EAcgDgRNxjx4/XU9mSToqQEaN9aTSG7frhfBDQ/X9yvlNuR8EAfgHgfGO0tnzpwxXYTjEQfiAMSBoMmYB0ePcsXXVaror9tyK3I+iANwjwPjX8PdcsstpotwPOJAHIA4EGD/fvjii1u44w745Rcd+/e/7fc9N24HAnI+iANwjwPjnaWff/7ZdBGORxyIAxAHAtxzDyxb9jPLlulJJQ8dguefh5UrYcwY2LwZGjb0dy1zBjkfxAG4x4HxqQOSk5Mp4oQlrv2IOBAHIA4CfeqAs2f1vEmQDOg8+OUX6NzZn7XyH4F+PoA4APc4MD6yNHz4cNNFOB5xIA5AHAQacXEweDB89ZWeZLJwYdALrOs8KFcOmjTxaxX9ipwP4gDc40CWOxEEwSiRkZFERkaSmprKvn37AmJk6dQp/au22Fj9+uGHYcYMSEyE4cP1vy+9BLVq+beegiBcH7LcSQ4gDsQBBK6D7t27s2vXLjZu3OjvquQYa9faHSWAmTP1/EnFikGePH0YPFg6SoF6PngjDtzjwPjI0smTJylTpozJIhyPOBAHIA5y+z1L589DwYL6+e+/65GltDT9ukoVOHxYPw/0PPAgHsQBuMeB8ZGlH374wXQRjkcciAMQB7mVpCTo2BEKFYLatSEqCm69FcaNg4gIaN0a5syxt5c80IgHcQDucWC8s9SqVSvTRTgecSAOQBzkVoYN0zNtg+4ovfuufv7ss7Brl/5KrlEje3vJA414EAfgHgfGO0tHjhwxXYTjEQfiAMRBbiUx0ff1tVZvkDzQiAdxAO5xYLyzJD+2EwcgDkAc5BYWLIARI2DvXv36xRehbFn9PCQE3nkn6/0lDzTiQRyAexwYXxuucuXKpotwPOJAHIA4yA0MHmx/zVakCPz2G9SvDzt3wpYtetHbGjWyPobkgUY8iANwjwPjI0vr1q0zXYTjEQfiAMRBbmDSJPt5cjLMnq2flyunlzK5VkcJJA88iAdxAO5xYHzqgFOnTlG6dGmTRTgecSAOQBzkhqkDunaFn36yX0+cCE8/fWPHCPQ88CAexAG4x4HxkaUxY8aYLsLxiANxAOLAbcTFQffu8Nxz8McfOvbll3DHHXrepDffhKeeuvHjSh5oxIM4APc4kOVOBEEwihuXO0lL0/ci7dmjX5cpo5+74D/AgiAYQJY7yQHEgTiAwHXgxuVOTpywO0oAJ0/6vv4rBGoeZEQ8iANwjwPjI0tJSUkULVrUZBGORxyIAxAHbrpnKTUV6tSBAwf065Il9VQBnikC/gqBngcexIM4APc4MD6y9PXXX5suwvGIA3EA4sDJbNgA//kPfPyxnlQyOBiWLIFnnoHHHtPPs6OjBJIHHsSDOAD3ODA+z1Lnzp1NF+F4xIE4AHHgVA4cgNtug3Pn9OstW+Dnn6FaNZgwIfvLkzzQiAdxAO5xYHxkaffu3aaLcDziQByAOHAq69fbHSWA5cvNlid5oBEP4gDc48B4Z8kN30WaRhyIAxAHTqVhQ8iXz37drJnZ8iQPNOJBHIB7HBjvLBUvXtx0EY5HHIgDEAdO4cgRmDvXvnm7fn2YMwe6dYNnn4WZM82WL3mgEQ/iANzjwHhn6Q/PbG4BjDgQB+A8B6NHj6Z69eoUKFCApk2bsnr16qtuu2LFCoKCgjI99mTX7+lziG3bdOfo73+HBg1g2TId79JFd6DGj4fy5c3WwWl54C/EgzgA9zgw3lm65557TBfheMSBOABnOZg2bRo9evTg448/ZuvWrbRv354uXboQExOT5X579+4pVN04AAAgAElEQVTl2LFj6Y/atWvnUI2zhzFjIDFRP79wAT7/POfr4KQ88CfiQRyAexwY7yyNHz/edBGORxyIA3CWg6FDh/Lcc8/x/PPPExERwfDhw6lcufI1lx4oV64coaGh6Y/g4OCrbpuSkkJiYqLPw9+UKJH165zASXngT8SDOAD3OAju1atXr5vZcerUqRQqVIhx48bRrFkzBgwYQIcOHejTpw+1atVi+vTppKamUqpUKX7//XeUUkydOpWIiAg+++yz9G0bNGjA+PHjKVCgAOvXrycqKork5GTmzp1L1apVGTZsWPq2zZo1Y8SIEZQuXZply5YRHx9PfHw8S5cupXTp0owcOTJ927Zt2zJw4ECqVKnCvHnzSEpK4uDBg/z222+EhIQwfvx4mjZt6lPv8PBwpk6dSlpaGjt27GDHjh2kpqYybdo06taty+DBg9O3vfXWWxk3bhwFCxZk3bp1HDx4kMTERObPn0+lSpUYPnx4+rZvv/02I0aMoGzZsixZsoTjx48TFxfHihUrKFmyJKNGjaJdu3b07duXdu3a0a9fP6pVq8acOXNITk4mKiqKDRs2EBISwoQJE2jcuDEDBw5MP36dOnWYMmUKANu2beOPP/7g0qVLzJgxg/DwcJ96N2zYkK+++orChQuzZs0aDh8+TEJCAgsWLKBixYo+9W7RogXDhg2jXLlyLF68mJMnT3LkyBFWrlxJiRIlGDNmDG3atKFfv37p+1SvXp3Zs2dz7tw59u3bx6ZNm8ibNy/R0dE0atTIp94RERFMnjyZPHnysGXLFvbs2UNKSgo//PADtWrVYsiQIenbNmrUiC+//JKiRYuyevVqYmJiSEhIYOHChYSGhvL555+nb9uyZUuGDh1KaGgov/zyC6dOnSI2NpbVq1dTrFgxvvjiC1q1auVT7xo1ajBz5kxSUlLYvXs3W7ZsITg4mG+//ZZbbrmFQYMGpW9br149Jk2aRN68edm0aRN79+7l/PnzzJ49mxo1ajB06ND0bRs3bsyYMWPSJ2E8cuQIJ0+eZNGiRZQvX96n3q1bt2bw4MGEhYWxYMECzpw5w+HDh/n1118pUqQIY8eOpWXLlvTv39/nXJsxYwYXL15k165dbNu2DYDvvvuO+vXr+5xr9evXZ+LEiQB88skn3HXXXZQuXZoff/yRatWqMXv2bOLi4jh69ChNmjQhMjKSkiVLsnz5cnbv3s3ixYv5+uuvGTJkCF988QW33nor3333HW3atGHQoEFUqlSJ+fPnY1kW0dHRvP/++zzzzDMMGDCAAQMGMGzYMH3RCQ6mbt266deInTt35tg1YuvWkUAHYmL60LBhW5o0GUjt2jl7jUhMTMx0jWjevHnAXSOaNWvmc42YOHFiwF0jVq1a5XONWLVqlSOuEfny5WPjxo3s37+fc+fOpV8jvK9tGa8RcXFxnDhxgsWLF1O2bFlGjBiRvu3VrhHr1q3jnnvuuWY/YufOndSqVeumOzrZgjLMp59+aroIxyMOxIFSznFw9OhRBag1a9b4xPv27avCw8OvuM+ePXvU2LFj1ebNm9XatWvVyy+/rIKCgtTKlSuvWs6FCxeUZVnpj9jYWAUoy7Ky9fNcjbNnlfrgA6Uef1ypuXN937t0KUeqcEWckgf+RjyIA6Xc48D4cieXLl0in/fvcgMQcSAOwDkO4uLiqFixImvXrqV169bp8b59+/Ltt99e903b3bp1IygoiLlz517X9jm93Mk//wn/N5hCnjywejW0aWO82GvilDzwN+JBHIB7HBi/Z2no0KGmi3A84kAcgHMclClThuDgYOLj433ix48fp/wN/BSsVatW7N+/P7url22sWWM/T0uDdev8VxdvnJIH/kY8iANwjwPjnaVHHnnEdBGORxyIA3COg/z589O0aVMWL17sE1+8eDFtbmDoZevWrVSoUCG7q5dteH+UPHmgVSv/1cUbp+SBvxEP4gDc48B4Z2mdU/4750fEgTgAZzl46623GDduHOPHj2f37t28+eabxMTE8NJLLwHw4Ycf8vTTT6dvP3z4cH788Uf279/PH3/8wYcffsjMmTN59dVX/fURrslXX8F778Gjj+qJJtu29XeNNE7KA38iHsQBuMeB8YV0K1eubLoIxyMOxAE4y8Fjjz3GqVOn+OSTTzh27BgNGjRgwYIFVK1aFYBjx475zLl08eJF3nnnHY4ePUrBggWpX78+P/30E/fee6+/PoIPJ0/qOZNSU+G116BCBShcGAYO9HfNMuOkPPAn4kEcgHscGO8sCYLgTF555RVeeeWVK743YcIEn9fvvfce7733Xg7U6sa5dAk6dQLPRMDTp8OOHVCwoF+rJQhCLsL413CxsbGmi3A84kAcgDgwRWys3VECvebbvn3+q8+1kDzQiAdxAO5xYLyz5P3T5EBFHIgDEAemCA2FMmXs18WLg5NH9iUPNOJBHIB7HBjvLM2YMcN0EY5HHIgDEAemKFQIfvkF7r4b7rwTfv4ZSpXyd62ujuSBRjyIA3CPA5mUMgcQB+IAxEFOT0rpVAI9DzyIB3EA7nFgfGRpoBN/jpLDiANxAIHrIDIyknr16tG8efNsOd6QIVCnDtx2m74/yW0Eah5kRDyIA3CPA+MjS4IgCJA9I0tLl+qv2jy0aAHr12dTBQVBEK6C8ZGlPn36mC7C8YgDcQDiIDuIjvZ9ffCgf+rxV5A80IgHcQDucWB8ZCkuLo6wsDCTRTgecSAOQBxkx8hSTAw0bgynT+vXr74KI0dmYyVzgEDPAw/iQRyAexwYH1lauHCh6SIcjzgQByAOsoMqVWDjRhg0CCZPhhEj/F2jG0fyQCMexAG4x4HxGbzr169vugjHIw7EAYiD7KJGDXj3XX/X4uaRPNCIB3EA7nFgfGTJsizTRTgecSAOQBzcDH/+CcuWQXy8v2uSfUgeaMSDOAD3ODDeWUpKSjJdhOMRB+IAxMGNsnUr1K0Ld9yh/92yxd81yh4kDzTiQRyAexwY7yxFRESYLsLxiANxAOLgRhk2DM6c0c8tC4YO9W99sgvJA414EAfgHgfGO0uLFi0yXYTjEQfiAMTBjVKoUNav3YrkgUY8iANwjwPjUwckJSVRtGhRk0U4HnEgDkAc3OjUAXFx0Lkz/PEH1KsHixZBxYo5UFHDBHoeeBAP4gDc48D4yNLnn39uugjHIw7EAQSug5td7iQsDHbuhIQE3WHKDR0lCNw8yIh4EAfgHgey3IkgCDmCLKQrCIJbkeVOcgBxIA5AHAgayQONeBAH4B4HxkeWTp06RenSpU0W4XjEgTgAcXCtkaWEBL2MSfXqkMf4f+P8R6DngQfxIA7APQ6MX5KmT59uugjHIw7EAYiDrJgzR9+jVKuWvqk7JcXfNTKH5IFGPIgDcI8D452l1q1bmy7C8YgDcQDiICveeAMuXNDPly6FGTP8Wx+TSB5oxIM4APc4MN5Zio2NNV2E4xEH4gDEQVakpWX9OjcheaARD+IA3OPAeGcpKCjIdBGORxyIAxAHWTF4MOTPr5+3awePPurf+phE8kAjHsQBuMdBXtMFVKpUyXQRjkcciAMQB1nx6KPQsSOcPAl16kBe41cm/yF5oBEP4gDc48D4yNJvv/1mugjHIw7EAYiDa1G+PNSvn7s7SiB54EE8iANwjwPjUwecPHmSMmXKmCzC8YgDcQDiQCal1AR6HngQD+IA3OPA+MjSF198YboIxyMOxAEEroObXe4ktxKoeZAR8SAOwD0OZLkTQRByBBlZEgTBrchyJzmAOBAHIA4EjeSBRjyIA3CPA+MjS8nJyRQpUsRkEY5HHIgDEAcysqQJ9DzwIB7EAbjHgfGRpa+++sp0EY5HHIgDEAceLl2CmTNh9my4fNnftcl5JA804kEcgHscGP+RbpcuXUwX4XjEgTgAceDh4YdhxQr9vGtXmDsXXDIvXbYgeaARD+IA3OPA+MjSjh07TBfheMSBOABx4MHTUQKYPx8OHfJXTfyD5IFGPIgDcI8D452lEiVKmC7C8YgDcQDiwENwsP08f34oXtx/dfEHkgca8SAOwD0OjHeWihYtaroIxyMOxAGIAw+jRkHJklCmDEycCKVK+btGOYvkgUY8iANwjwPjnaXdu3ebLsLxiANxAOLAwxNPwOnTcOIEPP64v2uT80geaMSDOAD3ODA+dcCRI0dcs1CeKcSBOABxIFMHaAI9DzyIB3EA7nFgfGRpwoQJpotwPOJAHIA4EDSSBxrxIA7APQ5kuRNBEIwSGRlJZGQkqamp7Nu3L+BHlgRBcB+y3EkOIA7EAQSug+7du7Nr1y42btzo76o4gkDNg4yIB3EA7nFgfGTp8uXL5M1rfO5LRyMOxAGIA7lnSRPoeeBBPIgDMOtg+/btDB48mOjoaD744APatm1L7969SUlJIT4+np49e9KoUaPrOpbxkaXBgwebLsLxiANxAOJA0EgeaMSDOACzDj7//HO++eYb7rnnHv7973/zwgsv8O677/Loo4/y008/8fXXX1/3sYx3lh4PxN8GZ0AciAMQB4JG8kAjHsQBmHNw4MABwsLCyJs3L3FxcZw+fZqPPvqIihUrcurUKYoUKUK3bt2u+3jGO0u//vqr6SIcjzgQByAOBI3kgUY8iAMw5+DPP//koYceSi+jXbt2NGnSBICHH36Y06dP07lz5+s+nvHOUtWqVU0X4XjEgTgAcSBoJA804kEcgDkHbdq0oXHjxpw8eZKdO3fSqVOnv3Q8452l1NRU00U4HnEgDkAcCBrJA414EAdg3sHy5ctRSjm3s3T+PLz1FkRGHvOJDx8Ob7yhlzvwsGABvPQS/PabHTtwAF55BSZNsmOpqfDee9Czp29ZY8bAa6/B0aN2bNkyfUzvFc5jYuDVV+Grr3z3//hj+PBD39jXX+tto6Pt2KpV+piLF9ux+Hhd9qhRvvv37KnrevEiHDumHUyerD/Tvn32dhs26GPOn2/HTp/WjoYO9T1m//7a6fnzdmzGDH3M33+3Y9u26WPOnm3HkpOhRw8YOND3mEOG6LIsy47Nnav337zZju3ercuZNs2OXbwI77wDn37qe8yRI7WTEyfs2MKFx667jd9/H/7f//M95pdf6vb4K238/vv6+B4mTMjcxmvW6GP+8osd87TxyJG+x+zdW3/+ixft2JQp+jN5z+DvaeOffrLPBcu6/jaeOVPv793Gv/+uYzNn2jHPOde/v+8xr9TG8+dfvY2nTLFjnjbu3dv3mFdq419+0cdcs8aORUdrx97zzikF69bB+vW+x9y7V7fluXN27M8/dTvHx/t+zhUrYM8e3/03bNDH9f59b1QULF+u89/DyZP6mHFxdiwlBVauhD/+8D3m5s3686Sl+X6m5cshMdGOnT6tjxkba8cuXdLXDO92A1i37hirV8Ply3bs8GG9/5kzduzMGV3OoUN2LDUVfv0Vtm71PeaOHbos71w8ckQf89QpO5aUpI954IAdS0uDtWsh48wOu3ZpJxcu2LFjx/Qxvdv97FndHvv32zGl9LmeVRt7rotXa+OVK33PI9B1XLv2+tvY+3qRkqId3Ugbe58zCQn6mDExduzSJVi9GrZv9z3m9u1kauOYGL1/QoIdO3Dg2FXbeMsW32Pu3Jm5jY8evb42VurKbbx799Xb+PhxO3bunG43779doNvY+5oOepsVK3ReeDh+XB/zmFd34MIFXfamTb59hOxm+fLlhISE0KpVq792IGWAlBSl8udXSjdRlCpfXsfr1vXElMqTR6ljx5R64w07BkqNHavUunW+sc6dlbp8WamCBe1YiRL6mE2a2LGgIKWiopTq1ct3/4EDldqxQ7/vibVpo/cvWtSOFS6sY+3b+x5z+3alhgzxPeZHHyl18KD+HJ5Yw4Z6/1Kl7FiBAkrt3Rul7r3Xd/9ff1Xqm298Y6++qtTx40oFB9ux2rX1MStUsGP58il17pxSjz7qu/9PPyk1a5Zv7OmnlUpKUipvXjtWubI+ZvXqdiw4WKlTp5R64QXf/b/7TqmlS31j99+fsY2VKltWH7N+fd82PnJEqbff1nngiY8erdT69b7HvOOOzG1cvLg+ZrNmvu2xd69Sn3ziu/+AAUrt2uXbxq1a6f2LFbNjhQrp2G23+e6/datSI0b4xt57T6nDh33buEEDvX/p0nYsJETXvWtX3/1XrlRq4kTvWJR6+WXt2buNa9XSx6xYMXMbP/GE7zHnzVNqzhzf2BNP6DbOl8+OVayoj1mzZuY2fvFF3/2//Vap5ct9Y/fdp9s4JMSOlSmjj9mgQeY2fu893/1HjlRq0ybfWPv2lgLUI49Y6bF//1sfc+xY2/MttyhlWUpt2aLPc08ubN6sVGKiPs88ZX/xhd7/+eftch5/XMe+/db2XKeO/uy7dunPAUoVKaLUmjXac8uW9v5Dhuj9e/Tw9ZGaqtTMmbbn6tX1NezAAaVCQ3WsYEGllizR7jp0sPf/5BN9zI8/ts+Fu+5S6tIlpRYssD1XrKhzLjZWn6ee/Jo3T+fYPffYx3z/fX3Mfv3sWLt2Sl24oNuzUCEdK1dOqX37lPrzTzsf8uZVato0pdLSlHrwQXv/7t31MT//3D6XmjVT6uxZfV32XC9LldLX1NOnlYqIsPNrwgS9/5NP2sd89lkdGzfObuMGDZTaujVKbdumVMmSdhtv3KhzuXFj+3wfPVrv7523jzyi6z5lin1tq11bqZMnldq9W1+PQF/TV69W6vx5fT3w7D94sD7mW2/Zsa5ddRvPnm23cbVqSsXF6Wu95xpcoIBSixYpdfGi73WkVy99zP/9z47dfrtu44UL9X6gVFiYUocOKXX0qFIVKuhcyJ9fn9eXLyvVpYu9/7vv6mMOGGDH2rTRbbxypf58njbeu1f//ahVy27j77/Xnh56yN7/5Zf1MUeOtNu4SROlkpP1ddlzvSxZUv/tS0iwr+t58ig1frze/+mn7WM+/bSOff213cb16+t9t2+327hYMaU2bNBl2X+7o9SoUcoYdevWVR07dvzLx+FmdkpLS1OWZV318eablgLPo7cCS23Y4B3Tj7/9zVL58vnGSpa0VERE5m379s0cmzkzc6xDB0sVLOgbK1LEUs2bZ952/PjMsdGjM8caN7ZUsWK+sZAQS91+e+ZtFyzIHLvzzt6ZYrVrW6pUKd9YvnyWeuCBzPtv3Zo59sorlgoK8o1VqWKpsDDfWJ48lnruucz7b9+eOfb445YKDvaNlS1rqRo1Mm/77ruZY6tXZ4516WKp/PntPABLlShhqQYNMm87aFDm2LRpmWNt2mRu48KFLdWyZeZtJ03KHBs2LHOsYUNLFS+euY3vuivztkuWZI599FHmWK1alipTxjvWW+XNa6mHH76+9vjPfzK3ccWK+pGxjf/zn+s75iOPWCpvXt9YmTK6rhm3/eCDzLGlSzPH7rrL08b2o3hxSzVocFxBrNdjlwL+77m97c6dlgoN9d0/MtJSjz3mG3v0UUuNGeMbK1fOUrt2Za7T+vWZ83bgQEv9+9++sXvvtdTEiZlz6dChK3/2W2/1jfXsaanXXvONdepkqR9+8I0FB1vq2DE7DzzxefMs1bq177bvvJPZfbNmlvr558x1Ono0s/vvv7fUnXf6xl5+2VKffuobq1fPUqtWZT7mgQP6HPWOff21pf7+d9/Y009bauhQ31jVqpbavPnKuZjx2nTffb3VP/7hG3voIUt9+WXm/NyzJ/Mx163T11Hv2IABlnrhBd/YPfdYavJk31jBgpaKicl8zCVLLNWokW/sv/+11Btv+Mbat7fUrFm+sTx5LBUXl/mcnTPHUm3b+sbeestzzbBzoWlTSy1alLlOR47oa5F3bMoUS3Xu7Bt78cXMfyfr1LHUr79mPua+ffpvrXds7NjMf3+efNJSw4f7xipXvvLfpK1b9XveseHD9TG8Yw88YKmvvvKO9VYlS169P+H9SEtLu6G+yrFjxxSgevbseTNdHR9ualJKz+RygiAIgiAIOcGNTmi7fft27r77bpYtW0a9evX+Utk3dc9S0aJFsSwry0eFChagv8Bv3jwWy7L4+98tQD+KFrU4fdpi7Fg7BhZLl1rUrBlOvnx27M039TGrV7djDRvq2JNPemLhFCxoceKExbRpvsecPdvi6FGLkBA79sILFuHh4URE2LHatfUxX3rJjuXPr/edP98uBywmT9ZlFSpkb/v443r/Jk3sWKVK2kGPHrHpsbx5LQ4csFi92iIoyN529Gi9f/HidjnduulY+/b2duXK6Vjv3nYsTx6LGjXC2bxZP/fEBw7U25YpY8duv13H7r7bLqdkSR0bNszeLijIYt06i927LYKD7Xjp0uFYlkXFinasZUu9/8MP27EiRXQbR0Z6buTQDpYssYiOtnza+I039P41ani71+U884wdK1BAe58xw7eNZ860iI+3Pw9YPPecPma9evZ2tWrp2Kuveu8fTkyMxS+/+B5zwgRd/8KF7dgjj+j9CxSwy6lcWcc++MDeLjjYYt8+izVrPG2sHQwapM+FEiXsbe+9V+/fsaMdK1tWx8qWtcvJk8di61b98G7jvn0929qfp2NHHevSxd6uRAkdGznSt43XrNG5493GH32kt61UyY41b65jjzxil+Np4wkTfN398otFVNRx8uaN/b/PHssTT2wA4K23dhEUpD+DJz/nzfPkvb5OnD5tsWePRd26upw6dXQenj5t8cADertixSzmzNH7DxxoO+nZU5/bixbpvAad6ydP6vPu1lt1rEYNi+3bLc6csXjiCV1O4cIW06fbnvLm1du++66OrVypzz/Q7VW7ts6dpk3tXNi0SW/7/PN2zk6cqGMjRtjnQvfuOrZunUVYmN62VSt9vYmLs2jTRsdCQy2qVdPnwuuv61i+fBZffqn3nzzZomBBHf/Xv3RsyxaLqlX1Z2rSxOLQIYvjxy3uuENvV6aMxbJlvnkbHKzP//DwcH74QZ+/YPHoo9rRjh0WNWvqWIMGFlFR2um99+pySpa0WLhQH/OTT3RuBQVZ9O+vY/Pn223cpYv2sHlzbPo1ODzcYtcui4QEi4cesv9OzJ6t9x882D6///tfHVuyxKJUKb3tXXfpa0N0tP77APpvRo0a4Zw5Y/+tKFTI4vvv9f6RkXYbv/22jq1aZZEnjy6nQwd9XYmJ0fmvr+kWGzfqbV98UcdCQiwqVNBt9PXX9t+al17S261fb18vW7SwiI212LfPzoXy5fXfA8uy6NHDbuMxY3RsyhS7jYsXD09v42rVdKxRI/25jx+3uPNOz3Va/z21LH3N9rTx0KE6NmuW9uu5riUkWPzxh/476Ln+7ttnceqURdeu9jVkwQK9f9++dhv36aNjlSuHp1/bunbV++7bZ1+Da9fWZSQkeK4j2sHkybHX7FNYlkXRokW5ERo2bEh8fPxf7igB3NTXcNeL/hoAZVlWeuzMGf3dqjeXL+vvNT1EREQopfT9BefO+W57+LC+T8CbpCSlataMyPKYHryP6Snn2DF934U3587pbTNSo0aEunzZN7Z3r66DN8eP67palu3g3Dn9PX9Gtm9XmY5Zs2aEOnPGN3bqlP7u3JuUFPuYns/jOWZKiu+2UVH6GN6Eh0eoqCjf2OXLV67njh36mN7lHDyoP6s3SUm+bexxsGaNpTKyY0fmNj5yRLeJdzlJSZnb40ptHBERccW8yaqNvctR6srtkbGNIyIi0tvYG+/28GbNmsznQlSUumYbR0REXPWYnvbw5uBB3abenDmjrtjGVzrnrnTMw4ev3MY3es7FxsYqQMXGxqpz5/R9JN5cuqTvVcpInToRmWKWpbf35vz5zOf25ctXPmZCgr6XI2M5GY954YK+X8eb1FS73bxz50rHTErS97bY9dZ5EBfnWynvY3pz5ox+z7uc5OTMbXTxYuZrUFrald15junN2bP6s3p/pkuX9D1iGY+ZkJC5nnXqZL4uXqmNPe3hfV1U6srurtTGdetGZGqPy5ev7M5zTG93iYm+7aGU/tzJyb6xiIjM11+ldDlXauOM18WUlCu3h/cxPQ5iYqxM7XG1Nk5M9C3nau1hWb7XsIiICJ829pBVG2e8LmY8plK6jb2vtRERETd0zh05kvm66FSMdpYynhDXy6ibuNvLqfuIA3GglDhQyrezZLIcJ++Tk3lws/vlNg9O3Ucc3LwDf2B0IV1ZOFMcgDgAcQBw5MgRKleuTGxsLJUqVfJ3dfyC5IFGPIgDcJcDo5NShoSE0K1bN0JCQkwW42jEgTgAcQCkf/ZAdxDoeQDiAcQBuMuB0ZElgI0bN9K8eXOTRTgecSAOQBy46X+RJgn0PPAgHsQBuMeB8eVOTntP1R2giANxAOJA0EgeaMSDOAD3ODDeWTrrPed5gCIOxAGIA0EjeaARD+IA3OPAeGepbt26potwPOJAHIA4EDSSBxrxIA7APQ6Md5aWLFliugjHIw7EAYgDQSN5oBEP4gDc48BYZ+nSpUu8//77fPnllxQuXJiwsDCefvpp4ryX+s4lzJo1i7vvvpsyZcoQFBTEtm3bfN7/17/+lWmfCRMmEBQUlOlxwXv551zCrFmzmDNnzlX95BaUUvTq1YuwsDAKFixIp06d+MNrifNAzYPIyEjq1avnips4s4PRo0dTvXp1ChQoQNOmTVm9erXP+955sGLFiiu2/549e3K41jnDqlWr6NatG2FhYbzxxhv8+OOP/q6SEbw/Z1BQ0FU/pycXAikP+vfvT/PmzSlatCjlypVj0aJF7N2719/VuibGOkvnzp1jy5YtNGjQgC1btjBr1iz27dvHfffdZ6pIv3H27Fnatm3LgAEDrvj+iBEjrhgvVqwYx44d83kUKFDAZFX9guc76av5yS0MGjSIoUOHMmrUKDZu3EhoaCh33XUXSUlJQODmQffu3dm1axcbN270d1WMM23aNHr06MHHH3/M1q1bad++PV26dCEmJs+eHMoAACAASURBVCZ9myvlwd69e33av3bt2jlZ7Rzj7NmzNGzYkFGjRvm7Kka53s+ZMRcCIQ9WrlxJ9+7d+e2331i8eDH79++nc+fOzr93KSdnwNywYYMC1OGMa0TkEqKjoxWgtm7des1tv/nmG1W8ePEcqJVzuBE/biMtLU2FhoaqAQMGpMcuXLigihcvrr744our7hdIeeA9W290dOalYnIDLVq0UC+99JJPrG7duuqDDz644vbLly9XgEq40poVuRxAzZ4929/VMM71fM5AzoPjx48rQK1cudLfVckS4/cs9enTJ/25ZVkEBQVRokQJ08U6Cm8H3iQnJ1O1alUqVapE165d2bp1aw7XLOe4moPcQnR0NPHx8XTu3Dk9FhISQseOHVm7di0geeDhww+henWoWhU+/tjftck+Ll68yObNm31yAKBz587pOQBXzoPGjRtToUIF7rjjDpYvX268roIzyJgLgZgH/fr1A6BUqVJ+rknWGO8svfLKKwBcuHCBDz74gCeeeCLgJqTzOPCmbt26TJgwgblz5zJ16lQKFChA27Zt2b9/vx9qaJ4rOchNxMfHA1C+fHmfePny5dPfkzzQjB5tP+/XD3LLbYwnT54kNTU1yxwA3zyoUKECY8eOZebMmcyaNYs6depwxx13sGrVqhyrt+A/PLkQqHmglGLPnj20a9eOBg0a+Ls6WZJtnaXvvvuOIkWKpD88NzVOnTqVS5cu8fjjj5OWlsZo7yulC7na58yKqVOnZoq1atWKJ598koYNG9K+fXumT59OeHg4I0eONFHtHCOrPMhNZPycly5dAiAoKMhnO6VUeiyQ8uBGMLuGQM6TVQ6Abx7UqVOHF154gSZNmtC6dWtGjx7N3/72NwYPHpxj9RX8hycXAjUPXn31VTZs2OCKvw95s+tA9913Hy1btkx/XbFiRUD/MXj00UeJjo5m2bJlrh9VutrnzIr27dtfc5s8efLQvHlz148oXM3P9ThwExk/Z0pKCqBHmCpUqJAeP378ePpIQyDlQVa88oo9uvTRR3Adp5ArKFOmDMHBwT6jSOCbA3DtPGjVqhWTJ082UkfBWWSVC7k9D1577TXmzp3Lt99+64qFtbNtZKlo0aLUqlUr/VGwYEEuXbpE9+7d2b9/P0uWLKF06dLZVZzfuNLnvBaHDh265jZKKbZt2+bzh9aNXM3P9ThwExk/Z7169QgNDWXx4sXp21y8eJGVK1fSpk0bILDyICv694eDB+HQIejb19+1yT7y589P06ZNfXIAYPHixek5ANfOg61bt+bq9hdsssqF3JoHSileffVVZs2axbJly7h8+bK/q3RdZNvIUkYuX77Mww8/zIEDB1iyZAmpqanp/+MqVaoU+fPnN1V0jnP69GliYmLS55DyzBkRGhpKaGgowcHBPP3001SsWJH+/fsD0Lt3b1q1akXt2rVJTExkxIgRbNu2jcjISL99DlOcPn2aw4cPkzevTreMfnIDQUFB9OjRg379+lG7dm1q165Nv379KFSoEE888QRAwOeBN9Wr+7sGZnjrrbd46qmnaNasGa1bt2bs2LHExMTw0ksvAfDhhx+yfv369ClUhg8fTrVq1ahfvz4XL15k8uTJzJw5k5kzZ/rzYxgjOTmZqKio9NfR0dFs27aNUqVKUaVKFT/WLHu51uf88MMPOXr0KI899hgQWHnQvXt3pkyZwpw5cyhatCiJiYnEx8dTvHjx6xp88Bumfmbn+Zn4lR7Lly83Vaxf+Oabb674OXv27KmUUmrz5s2qY8eO6plnnknfp0ePHqpKlSoqf/78qmzZsqpz585q7dq1/vkAhrmWn9xCWlqa6tmzpwoNDVUhISGqQ4cOaseOHenvB3oeeE8dkJuJjIxUVatWVfnz51dNmjTx+Un0M888o5o2bZr+euDAgapmzZqqQIECqmTJkqpdu3bqp59+8ke1cwTPT+QzPrzPidzAtT7nM888ozp27Kg2b96slAqsPLhav+Cbb77xd9WyxPg8S1nNMRMoiANxoJQ4CJTO0rUI9DzwIB7EgVLucRCklNnfopw4cYKyZcuaLMLxiANxAOIgMTGR4sWLY1mW63/o8VcI9DzwIB7EAbjHgfF5lr788kvTRTgecSAOIHAdBNracNciUPMgI+JBHIB7HBgfWRIEQQAZWRIEwb3k6HIngYo4EAcgDq7F0qXw7bdw/Li/a2IWyQONeBAH4B4HxkeWzp07R6FChUwW4XjEgTgAcZDVyNInn0DPnvp5pUqwaRNkWDUk1xDoeeBBPIgDcI8D4yNLY8aMMV2E4xEH4gDEQVZ4r4J05AjMm+e/uphG8kAjHsQBuMeB8c5S165dTRfheMSBOABxkBUZR5Fy66gSSB54EA/iANzjwHhnafv27aaLcDziQByAOMiKSZMgIgKKF4e33oJu3fxdI3NIHmjEgzgA9zgwttyJh9ywHtxfRRyIAxAHWdGwIeza5e9a5AySBxrxIA7APQ6Mjyw5eq2XHEIciAMQB4JG8kAjHsQBuMeB8c7Svn37TBfheMSBOABxIGgkDzTiQRyAexwYnzogNjaWypUrmyzC8YgDcQDi4GYmpfzzT/jjD6hXD0JDDVcwhwj0PPAgHsQBuMeB8ZGliRMnmi7C8YgDcQCB6+BmlzvZuhXq1oU77tD/btliqII5TKDmQUbEgzgA9ziQ5U4EQcgRbnRk6emn9YzeHv75T5g82WAFBUEQroIsd5IDiANxAOLgRsk4qa8LJvm9LiQPNOJBHIB7HBgfWUpNTSU4ONhkEY5HHIgDEAc3OrIUFwedO9v3LC1aBBUr5kBFDRPoeeBBPIgDcI8D4yNLgwYNMl2E4xEH4gDEwY0SFgY7d0JCgu4w5YaOEkgeeBAP4gDc48D4yNLhw4epWrWqySIcjzgQByAObubXcLmRQM8DD+JBHIB7HBgfWVq1apXpIhyPOBAHIA6yi19+gccf18uiJCb6uzY3juSBRjyIA3CPA+PLnVSvXt10EY5HHIgDEAfZwbZt0LUrXL6sX0dFwdy5/q3TjSJ5oBEP4gDc48D4yNJlz1UtgBEH4gDEQXawYYPdUQJYs8Z/dblZJA804kEcgHscGO8sxcfHmy7C8YgDcQDiIDto0QLyeo2Ht2vnv7rcLJIHGvEgDsA9Dox/Dde0aVPTRTgecSAOQBxkB40awU8/wYQJ+tdyPXv6u0Y3juSBRjyIA3CPA+MjSz/++KPpIhyPOBAHELgObna5k6vRuTNMmQKDB0PRotlyyBwlUPMgI+JBHIB7HBifOuDChQsUKFDAZBGORxyIAxAHJqcOmD4dXn0VUlNhyBD417+y9fDZSqDngQfxIA7APQ6MjywNHjzYdBGORxyIAxAHpkhIgKeeghMn4PRpeP55Pfu3U5E80IgHcQDucSAL6QqCkCOYGlk6dAgy/vr499/hlluyrQhBEAIcWUg3BxAH4gDEgSmqVoVu3ezXt9+u15JzKpIHGvEgDsA9DoyPLMXHxxMaGmqyCMcjDsQBiAOT9yxdvgzz5ul7lu67D/Lnz9bDZyuBngcexIM4APc4MD6yNG/ePNNFOB5xIA5AHJgkb1544AF4+GG7oxQTA3feCbVqQe/e/q2fN5IHGvEgDsA9Dox3lho1amS6CMcjDsQBiIOc5l//gqVL4cAB6NULnPILZckDjXgQB+AeB8Y7S6dOnTJdhOMRB+IAnONAKUWvXr0ICwujYMGCdOrUiT/++CPLfSZMmEBQUFCmx4ULF3Ko1jdOdHTWr/2FU/LA34gHcQDucWC8s3T+/HnTRTgecSAOwDkOBg0axNChQxk1ahQbN24kNDSUu+66i6SkpCz3K1asGMeOHfN5OHl+lCeesJ8XKwZ/+5v/6uKNU/LA34gHcQDucWB8uZPatWubLsLxiANxAM5woJRi+PDhfPzxxzz44IMATJw4kfLlyzNlyhRefPHFq+4bFBTkihsxPfTtC40b66kF7rsPwsN1PDER9uyBmjWhdOmcr5cT8sAJiAdxAO5xYHxkafny5aaLcDziQByAMxxER0cTHx9P586d02MhISF07NiRtWvXZrlvcnIyVatWpVKlSnTt2pWtW7dmuX1KSgqJiYk+j5zm4YfhnXfsjlJUFEREQMuWULs2bN6c41VyRB44AfEgDsA9DoJ79erV62Z2nDp1KoUKFWLcuHE0a9aMAQMG0KFDB/r06UOtWrWYPn06qampKKXYvXs3SimmTp1KREQEn332Wfq2DRo0YPz48RQoUID169cTFRVFcnIyc+fOpWrVqgwbNix922bNmjFixAhKly7NsmXLiI+PJz4+nqVLl1K6dGlGjhyZvm3btm0ZOHAgVapUYd68eSQlJXHw4EF+++03QkJCGD9+PE2bNvWpd3h4OFOnTiUtLY0dO3awY8cOUlNT+f/tnXl0VeW1wH8hgRBmiEBkkkCYxzCG0Yo+qUsK1r4n+lomtUpBq3214tK+pxYICQUCgcgoMooMMolMQRmCjUCMKSDzTAiBhCEBMmHI+2P35uZGoQz57j0nd//Wuiv33Jzc/flzn7M+9jlnf0uXLqV58+ZMmDChcN+2bdsyZ84cAgICiI+P58SJE2RmZrJu3Trq1avH5MmTC/cdNGgQM2fOpGbNmmzZsoWLFy+SkpLCtm3bqF69OtOmTaNnz56MHTuWnj17Eh4eTsOGDVmzZg3Xr1/n2LFj7N69G39/f+bNm0doaCiRkZGF39+sWTM+/fRTAJKSkvjhhx+4efMmy5cvp2nTpi7jbteuHbNnz6ZixYp88803nD59mitXrrB+/Xrq1q3rMu4uXboQFRVFrVq1iI2NJT09neTkZLZv3061atWYPn063bt3Jzw8vPBvgoODWbVqFVlZWRw5coSEhAT8/PxITEykU6dOLuNu0aIFixYtokyZMiQmJnLo0CFyc3NZsWIFISEhTJw4sXDf9u3bM3PmTCpXrkxcXBxnzpzhypUrbNy4kaCgIKZMmVK4b9euXZk0aRJBQUFs2rSJS5cucfbsWeLi4qhSpQozZswgLCzMZdyNGjXi888/Jzc3l4MHD5KYmIivry8LFy6kTZs2jB8/vnDfli1bsmDBAvz8/EhISODw4cNkZ2ezatUqGjVqxKRJkwr3DQ0NZfr06VSpUoXLly9z4cIF0tPT2bx5M7Vr13YZd7du3ZgwYQJ16tRh/fr1XL16ldOnT7Nz504qVarErFmz6Nq1K+PGjXM51pYvX05eXh4HDhwgKSkJgMWLF9OqVSuXY61Vq1ZERUURHx9PWFgYycnJZGVlsXr1atLS0oiPj+ePf/wjY8aMoUOHDsTExFC9enW2bt3KpUuX6Ny5Mx06dGDIkCGsWrWKiRMnkp6ezhNPPMH48eOpV68e69atIyMjg5MnTzJq1CiGDBlCREQEERERREVFyUnH15fmzZsXniP279/P3r173XKOeP75qRw61BsYQ05OD3bujKRfP/eeI06fPk1wcLDLsda5c2eio6O96hwRHBzMqVOnCs8R8+fPp3379l51jvjiiy/o3Llz4Tlix44dJCcne/QcMX/+fMqWLcuePXs4evRo4TmiYcOGLue24ueIlJQU0tLSiI2NpWbNmkRHRxfu27179589R8THx9OxY0cWLFhwx3nE/v37CQkJecDpzgNSYJjRo0ebDmF51IE6KCjwjINFixYVVKxYsfC1bdu2AqAgJSXFZb+XX365oG/fvnf9vfn5+QXt2rUreP3112+7T05OTkFGRkbh6+zZswVAQUZGxn3/9zwob7xRUADO18CB7h+DHguCelAHBQX2caDLnShKKebatWtcuHChcDs3N5fWrVuTmJhIaGho4ecDBgygWrVqzJ8//66/+/e//z3Jycls2LDhrvY32ZTybjl/Xjp8HzoE9evDli3OS3SKoii3Q5c7cQPqQB2AZxxUrlyZkJCQwlfLli0JCgoiNja2cJ+8vDy2b99O9+7d7/p7CwoKSEpK4uGHHzYxbGM8/DDs2wdnz8r9S46J0vjxULcutG8P/7pKYQw9FgT1oA7APg6MV5auXr1KtWrVTIawPOpAHYB1HERGRjJu3Dg++eQTmjRpQnh4ONu2bePw4cNUrlwZgMGDB1O3bl3GjRsHwIcffkhYWBhNmjQhMzOT6OhoFi5cyDfffEOXLl3uKq4VKks/x86d0KuXc7tJEzhyxFw8q+SBp1EP6gDs48B4ZWnRokWmQ1gedaAOwDoO3n77bd58801GjBhBp06dOHfuHJs3by6cKAGcOXOG8+fPF25fvXqVV155hRYtWvDkk09y7tw5duzYcdcTJSuTnOy6ffas2XhWyQNPox7UAdjHgfHK0r59+2jTpo3JEJZHHagDUAdWrSylp0OHDs5J0ogREBNjLp6354ED9aAOwD4OjFeWjh8/bjqE5VEH6gDUgVV56CHYswdmzIAVK2DaNPl8xw5o21bua/rss5KLp3kgqAd1APZxYLyDdznHEuBejDpQB6AOrEzt2lC0eXluLgwYAFevyvagQRAWBg0bPngszQNBPagDsI8D45Wl2rVrmw5hedSBOgB1YCcyMpwTJYAff4SUlJL5bs0DQT2oA7CPA+OTpe88sZ6AxVAH6gDUgZ2oVQv69nVut2ol68wB3Lwp9zndL5oHgnpQB2AfB8Zv8L5w4YJtZo6mUAfqALzXQUxMDDExMeTn53PkyBHL3eB9O/LyYOFCyMmB3/4WqlWTe5uefhrS0uAXv4Avv4QKFe7te701D4qjHtQB2MeB8crS7NmzTYewPOpAHYD3Ohg5ciQHDhxgz549nh7KPVGuHLz0EowcKRMlgDfflIkSwLZtcD//S701D4qjHtQB2MeBLneiKIpbsGrrgHuhY0dITHRujxsH77zjufEoiuIedLkTN6AO1AGog9LA//2fVJwAGjeGF1+U97t2wdixsG7dv/8OzQNBPagDsI8D45Wl7OxsAgICTIawPOpAHYA6KA2VJYAzZ+TVvj1UqiT9mB5/XJ6YA2loOWLE7f/e2/PAgXpQB2AfB8YrSx999JHpEJZHHagDUAelhQYNoGdPmSgBrFzpnCgBLFt257/XPBDUgzoA+zgwPlnq37+/6RCWRx2oA1AHpZWQENftxo2d77OzIT/f9feaB4J6UAdgHwfGJ0uJRe+G9FLUgToAdVBa+cMf5Cm5Fi3guedg4kT5/M03pa1A1aqwapVzf80DQT2oA7CPA+PLndSsWdN0CMujDtQBqIPSiq8vREW5fhYXB1OmyPsbN2DoUHjmGfDx0TxwoB7UAdjHgfHKkr+/v+kQlkcdqANQB97E9euu21lZcOuWvNc8ENSDOgD7ODA+WbLLisImUQfqANSBN9GnD/To4dx+912pQB05Aq+/fpw+fWDjRs+Nzwro8aAOwD4OjLcOOHPmDA0aNDAZwvKoA3UA3uvArsudPCh5ebBzp3T/7tBBPmvcGE6cOAM0wN8fDh6E4GCPDtNjeOvxUBR1YB8HxitLCxcuNB3C8qgDdQDe68Cuy508KOXKSYXJMVG6cQNOnACQPMjNhaNHPTY8j+Otx0NR1IF9HBivLN26dYsyZYzPySyNOlAHoA5KS1PKB6F3b4iLuwWUoVYt+OEHqFEDpk6V97/6lby8AW8/HkAdgH0cGB9heHi46RCWRx2oA1AHCnz5JfTpE85bb8E//gEPPQT/+7/SZmD2bOjfHzZt8vQo3YMeD+oA7ONAK0tuQB2oA1AHWlkSiudBWJisLefg7bchMtIDA3Mz3n48gDoA+zgwPsJx48aZDmF51IE6AHWgCMXzwHFPU/Htr7+G//kfmDULzP6T1jPo8aAOwD4O9Gk4N6AO1AGoA60sCcXzIDsb/vpX5z1LI0fC9u1yc7ijN9Nf/wqjR3towIbw9uMB1AHYx4HxytK2bdtMh7A86kAdgDpQhOJ5EBAgS6Rs3CgTJZD7lhwTJYANG9w3Pnehx4M6APs4MD5Zalx0VUkvRR2oA1AHinA3edCmzc9v//ADvPqqXJ5LSzMwODeix4M6APs4ML42XG5urukQlkcdqANQB4pwN3nwwgtw7hysXQvNm0vl6eJFaT1w+bLss3UrfP+94cEaRI8HdQD2cWB8spRm93/+lADqQB2AOlCEu82Dt96Sl4Pdu50TJYCkJLh6VTqE2xE9HtQB2MeB8ctwHYo/6uGFqAN1AOpAEe43D1q0gEqVnNtNm0LVqtIVfMAAqTqtXFlCg3QDejyoA7CPA+OTpbVr15oOYXnUgToA73UQExNDy5Yt6dy5s6eHYgnuNw/q1IHNm+HXv4bf/U7e+/hII8u1ayEuDgYOlPua7IC3Hg9FUQf2cWC8dUB2djYBAQEmQ1gedaAOQB1o6wChJPPg1i0oW9b1ybnPP4dnn5X3P/4IfsZvtrg/vP14AHUA9nFgvLI0ceJE0yEsjzpQB6AOFKEk86BMGXjqKed2jRrSEfzMGWjbVhbzffxxuHatxEKWGHo8qAOwjwPjlSVFURTQypIpsrMhOhquXIFhw6BZM3j+eVi61LnP++/DBx94bIiKYnuMV5bGjBljOoTlUQfqANSBIpR0HgQEwKhREBEhEyWQiVNRHNtpaXKZLjGxRIdwX+jxoA7APg6MV5YuXLhA7dq1TYawPOpAHYA60MqS4I482LABnnkG8vKktUBcnDw517UrnD8vN4bPng0vvWR0GHfE248HUAdgHwfGK0tr1qwxHcLyqAN1AOpAEdyRB089Bfv3w+rV8nRc69awZIlMlEAW5o2KMj6MO6LHgzoA+zgwPlnq2LGj6RCWRx2oA1AHiuCuPGjSRPov1akj2zVquP7esb17t1ShnnsODh92y9AAPR5AHYB9HBh/qPTChQumQ1gedaAOQB0ogqfyYOhQ+PprWL4cgoNh+nRIT4e+faUTOMC338Lx49KOwDR6PKgDsI8D45WlvLw80yEsjzpQB6AOFMFTeeDnB59+KvcxHTkCrVrJxMgxUQI4e1bWoANITYWDByE/38x49HhQB2AfB8YnS3ZZUdgk6kAdgDpQBE/ngY+P833z5s7LdAAtW0JQECxaBPXry/ZTT8HNmyU/Dk97sALqwD4OjE+Wtm/fbjqE5VEH6gC814Eud+KKlfKgalXYsQNGjoQ//Uku0/n6yvsff5R9YmPlRvGSxkoePIU6sI8D460Drl69SjW7LotdQqgDdQDqQFsHCHbIg1q1pCeTgxUr5CbwyEjYswcefRTeeMO1SnWv2MGDadSBfRwYryxNmzbNdAjLow7UAagDRbBDHkyZIkulgFyGGzBAml6+955Umf70J5gx48Fi2MGDadSBfRzocieKorgFrSzZi0uXpPN3o0ayBt2AAVB0gfghQ2DePLhxQ6pNdetKuwJFKY3ociduQB2oA1AHimCXPAgMhJAQmSgB9Orl+vvevWUy1bkzPPYYtGgB8+ff/ffbxYNJ1IF9HBivLGVkZFC1alWTISyPOlAHoA60siTYNQ8KCiAmRppYPvqoLJUyfTqMGOHcJzgYTpy4u++zq4eSRB3Yx4HxytKCBQtMh7A86kAdgDpQBLvmgY8PvPYaLFjgXFOuYkXXfRzba9fKor7Nm8OXX/7899nVQ0miDuzjwPhk6bHHHjMdwvKoA3UA9newcuVK+vbty0MPPYSPjw9JSUmeHpItsXseFOWFF+ReJpDlU6ZPl6foBg6UxpeHD8syKleu/PRvS5OH+0Ud2MeB8cnS0aNHTYewPOpAHYD9Hdy4cYMePXoQERHh6aHYGrvnQVHKlpWn4zIypPN3z54yWcrJce6TlSXLqty8CZMmwZ//DAkJpcvD/aIO7OPA+NpwAQEBpkNYHnWgDsD+DgYNGgTAqVOnPDsQm2P3PPg5it6C1rQphIXJOnMgE6hGjeDll+XpOZAKVFRU6fNwr5TGXLhX7OLA+GQpMDDQdAjLow7UAXifg9zcXHJzcwu3MzMzPTga61Da88DPD7ZsgcWL5T6n3/1OuoKvX+/cJzsbTpwQD+fOwd690Lq1LLHiTZT2XLgb7OLA94MPPvjgfv5wyZIlVKhQgTlz5tCpUyciIiLo3bs3Y8aMISQkhGXLlpGfn8/ixYvJysqioKCAJUuW0KJFC/7+978X7tu6dWvmzp1L+fLl2bVrF8eOHeP69eusXbuWRx55hKioqMJ9O3XqRHR0NIGBgXz99dekpqaSmprKV199RWBgIFOnTi3ct0ePHkRGRtKgQQO++OILrl27xokTJ/j222/x9/dn7ty5dOzY0WXcTZs2ZcmSJdy6dYt9+/axb98+8vPzWbp0Kc2bN2fChAmF+7Zt25Y5c+YQEBBAfHw8J06cIDMzk3Xr1lGvXj0mT55cuO/ly5eJi4ujZs2abNmyhYsXL5KSksK2bduoXr0606ZNo2fPnowdO5aePXsSHh5Ow4YNWbNmDdevX+fYsWPs3r0bf39/5s2bR2hoKJGRkYXf36xZMz799FMAkpKS+OGHH7h58ybLly+nadOmLuNu164ds2fPpmLFinzzzTecPn2aK1eusH79eurWresy7i5duhAVFUWtWrWIjY0lPT2d5ORktm/fTrVq1Zg+fTrdu3cnPDy88G+Cg4NZtWoVWVlZHDlyhISEBPz8/Bg9ejT9+vVzGXeLFi1YtGgRZcqUITExkUOHDpGbm8uKFSsICQlh4sSJhfu2b9+emTNnUrlyZeLi4jhz5gxXrlxh48aNBAUFMWXKlMJ9u3btyqRJkwgKCmLTpk1cunSJs2fPEhcXR5UqVZgxYwZhYWEu427UqBGff/45ubm5HDx4kMTERHx9fVm4cCFt2rRh/Pjxhfu2bNmSBQsW4OfnR0JCAocPHyY7O5tVq1bRqFEjJk2aVLhvaGgo06dPL4xbrlw50tPT2bx5M7Vr13YZd7du3ZgwYQJ16tRh/fr1XL16ldOnT7Nz504qVarErFmz6Nq1K+PGjXM51pYvX05eXh4HDhwo2UPs7QAADr9JREFUvI9o8eLFtGrVyuVYa9WqFfPnz6ds2bLs2bOHo0ePkpWVxerVq2nYsKHLuDt06EBMTAzVq1dn69atpKSkkJaWRmxsLOXLl+fjjz9m+PDhzJkzh+7duzN+/Hjq1avHunXryMjI4OTJk4waNYohQ4YQERFBREQEUVFRctLx9aV58+aF54j9+/ezd+9erzlHTJkyhR49ergca507dyY6OrrUnCPi47fz+OPV2LVrOr17yzkiJ6c3J06MAYKBVTzySBwXL/rQr18C8+f7ERMzn1692rNokfecI0aOHMnTTz9deI7YsWMHycnJtj9H1KxZk+jo6MJ9b3eOiI+PJyEhgW+//faO84j9+/cTEhLyYLOdB8R464DU1FSCgoJMhrA86kAdgL0cLF68mFdffbVwe8OGDfT6V6OdU6dOERwczPfff0/79u1v+x0/V1mqX7++17cOsFMelCQXL0rn73PnYNgw6Ns3lVGjgij6MNTAgfDZZ/L+xg0oX16qUqUVb82FotjFgfEbvOfMmWM6hOVRB+oA7OWgf//+JCUlFb46dep0z9/h7+9PlSpVXF6KvfKgJKlVSy7Nbdsm3b/nzJlD8ZSoUgVu3YJBg6BSJXjoIVnct7TirblQFLs40OVOFEW5J+62slQcbUqpFOfiRVl7LjER2rWDDRsgPh5+8xvnPvfS6FJRTKHLnbgBdaAOwP4OLl++TFJSEgcOHADg8OHDJCUlkZqa6uGR2Qu750FJMWbMGGrVgu++k0tuSUnw8MPyvijXr8vPrVshNFRuBC+6Rp2d0VywjwPjlaWcnBzKly9vMoTlUQfqAOzvYN68eQwbNuwnn7///vvczXMiWlkS7J4HJcXtPFy7Ju0G9u6Vp+mio2HoUFmo1/FApb8/nDoFNrjV5Y5oLtjHgfHK0tSpU02HsDzqQB2A/R0MHTqUgoKCn7zu84Far8XueVBS3M5D5cpyKe6rr2TC9NprcOmSc6IEkJsLqakysXrtNejXT+6HshuaC/ZxYLyydPToUZo0aWIyhOVRB+oA1IFWlgRvzwMH9+Lh1i1ZvHfnTtlu1w527YLBg2HZMud+X30FffoYGKwhNBfs48B4Zem7774zHcLyqAN1AOpAETQPhHvxUKYMbNoEMTEwZQps3y6X4hISin+n/Fy2DIYPh1mzSnDABtBcsI8D4x287dA/wTTqQB2AOlAEzQPhXj1UqAAjRrh+1qeP80k5X1/o3RuWLoXnn3fuk5kJb731gIM1hOaCfRwYnyz5+RkPYXnUgToAdaAImgdCSXiIiZHWAidPwnPPQdeu8PHHrvts2SKTpWPHYNEiCAyEV1+FcuUeOPwDo7lgHwfGL8OdPHnSdAjLow7UAagDRdA8EErCQ7ly8O67MHs2/Md/yGehoa77dOgAKSmyuO+HH8If/yhNL62A5oJ9HBif0vXu3dt0CMujDtQBeK+DmJgYYmJiyM/P9/RQLIG35kFxTHkYPhwyMqTzd4cOMkFauVKeqHOwerX8zMmBuXPl5+DB0jHcnWgu2MeB8cqSY/FGb0YdqAPwXgcjR47kwIED7Nmzx9NDsQTemgfFMeXBxwfeeQc2b4aICChbFpo2lZvEHTRrJj9/9SsYORL+/Gfo0eOnDTFNo7lgHwfGWwfk5+fjW5pXQrwL1IE6AHWgrQMEb88DB+72sHAhTJ0q9yxNnQrVq/+0khQXJw0x16yBo0fhl7+UjuGm0FywjwPjlaVx48aZDmF51IE6AHWgCJoHgrs9DBoEu3fL+nMhIbJob2Cg8/dly0K9ehAZCc88A3/5C3TpAv/8p7kxaS7Yx4EupKsoilvQypJiNb79Vm74zs6GDz6QBXzbtZPO4Q4++ADefx/27IHYWGjbVjqGK96FLqTrBtSBOgB1oAiaB4IVPISFSbVp3z6ZKIG0IihKcLB0Du/RA957T+5zmjatZOJbwYGnsYsD45Wls2fPUr9+fZMhLI86UAegDrSyJHh7HjiwqofUVHjxRThyRCZQERFyA3hUlHOfnj3l/qaTJ+GTT6BqVWmYGRBwb7Gs6sCd2MWB8crSV199ZTqE5VEH6gDUgSJoHghW9RAUBOvXSxPLyEh5uq5xY9d9GjeGtDTo1g1Gj5aml88+e++xrOrAndjFgfE+S02bNjUdwvKoA3UA6kARNA8EO3n4wx9k8rRxozwdFxUF//gHXLjg3GfjRsjNhawsGD9ellkZMQJatbr999rJgSns4sD4ZCk7O9t0CMujDtQBqANF0DwQ7OShTBmZIBW9FBcSAn5+8OOPst2okSzu26ePTKQAliyBAwekWvVz2MmBKeziwPhluEtF26Z6KepAHYA6UATNA8HuHpo1g88+k/XonnwSvvxSnqpzTJQArlyB77+XitM778hTdDNmOH9vdwclgV0cGK8stWvXznQIy6MO1AF4rwNd7sQVb82D4pQGD7/5jfMpOgctWsDBg/I+IEC2334boqPlsy+/lIaYAweWDgcPil0cGK8srVu3znQIy6MO1AF4rwNd7sQVb82D4pRWDxs2wAsvwNNPy8SoYUPp0VQUx/Zrr62jdWuZcKWnu32olsAueWC8dUBWVhYVKlQwGcLyqAN1AOpAWwcI3p4HDrzJw7vvQtFG1V98IZfoBg/OAsTBc8/B0qWeGZ8nsUseGK8sTZo0yXQIy6MO1AGoA0XQPBC8ycPo0TBxIgwbBsuXy71LR48COB3INkyYABUryrp1a9d6ZLhuxS55oMudKIriFrSypChOEhKkK3henmyPHQsDBrgu3FuhglSgypWTNgUZGdCkifR+UtyLLnfiBtSBOgB1oAiaB4K3e+jUCV58cQx/+xssWyaX6i5fdt0nKwtycmDuXKhbV57AGzAAStOzEnbJA+OVpbS0NGrWrGkyhOVRB+oA1IFWlgRvzwMH6uGnDvLy4Be/gPh42R42TCZKlSvD9evOv1u3Tm4g/+c/ZV27bt1+2mXcLtglD4xXllauXGk6hOVRB+oA1IEiaB4I6uGnDsqVg6+/hlWrYNMm+Pjj2//t6tXQsSMMGgTt2sllPTtilzwwPlnq3Lmz6RCWRx2oA1AHiqB5IKiHn3dQvjw884w0unTcmzRlinQLB+jfH375S5g503k57sYNWdAXYOtWeO01mDTJ2V3cytglD4w3pTx//rzpEJZHHagDUAeKoHkgqIe7d/Dii3LZLTNTllnx8YHiV65q1YLdu2WS5ZgkHT8OMTElPOgSxi55YLyypF171QGoA1AHiqB5IKiHe3NQu7brk3Djx8vTdBUqSLXpL3+RS3hFq0mxsfJzwwa5obxbN9flWKyAXfLAeGWpYcOGpkNYHnWgDsB7HehyJ654ax4URz08mIOgINi50/Wz0FDX7fbtITVVOoQ71qvt1w/OnZOlWLKz5cZxT95fbZc8MF5ZiouLMx3C8qgDdQDe60CXO3HFW/OgOOqh5B307Qtz5sATT8Arr8Ds2ZCc7JwogfRtSk+XpVhq1pTLd//1X55rR2CXPDDeOuDy5cvUqFHDZAjLow7UAagDbR0geHseOFAP7nGQnS1PzTkW9+3WTSpSjzwiEykHn38Ozz4rrQi++w66dpVFgE1jlzwwXln66KOPTIewPOpAHYA6UATNA0E9uMdBQADExUFEhCy5snkzlCkjzS6LkpMj7Qo6dpT+TqGhsGOH8eHZJg90uRNFUdyCVpYUxTrMnAkjRsCtW9Cli7QcGDxYKkwOhgyBefNkjboFC6B+ffjwQ/DGw1eXO3ED6kAdgDpQBM0DQT141sGrr8KRI9ItfMcOeaqudm3XfWrXhl274Ne/lknU5MkwdKjz9wUF8noQ7JIHxitLmZmZXv+vSHWgDkAdaGVJ8PY8cKAerOfg8mUYOFAmSL16wZIlUlF6/XXnPg8/DCkpciP5G29IK4PJk+Hll+8vptUc3A7jlaV58+aZDmF51IE6AHWgCJoHgnqwnoMaNaQ3U2amPC1XpYrcEO5XpMlQr17SjmD4cFno98YNeX/hgvw+Ph6WL4dLl+4uptUc3A7jfZaeeOIJ0yEsjzpQB6AOFEHzQFAP9nDQsaNMnBYulHuW3ntPKktFWw3k58sEa9EieOst+axBA+koXvzSXnHs4ADcUFk6dOiQ6RCWRx2oA1AHiqB5IKgH+zh48kmZLIWHQ8WKsuTKM884fz9ggHw2ebLzszNnZEHgggKYMEG6jIeHyw3lRbGLA+OVpYoVK5oOYXnUgToAdaAImgeCerCvAx8fWLFC2hCAc9HfwEDX3k2BgTB1qizFAvDFF9K24J13ZDsjA/z97eHAeGXJDs2mTKMO1AF4r4OYmBhatmxpm9XFTeOteVAc9WBvB76+8NRT8vL1lc/mzoVGjaBcOekg/p//CcUb9+/eLdWl//5vqFYNnnuuBps2uX/894rxydLevXtNh7A86kAdgPc60OVOXPHWPCiOeih9Djp0gOPHITdX+jj5+MCjj7ru8+ij0rdpyRLZzsrayyuvuH+s94rx1gEpKSnUqVPHZAjLow7UAagDbR0geHseOFAP3uPg44+li3hYmDw59+mn8NvfOn6bQmBgHdLTPTnCf4/xytLcuXNNh7A86kAdgDpQBM0DQT14j4OXXpJO4MOHy/aAAfKUnTCXv/3NQwO7B3S5E0VR3IJWlhRFcZCTI/cv1aoFzZt7ejT/Hl3uxA2oA3UA6kARNA8E9eDdDsqXh969YcUKezgwXlnKzc3F39/fZAjLow7UAagDrSwJ3p4HDtSDOgD7ODBeWZoyZYrpEJZHHagDUAeKoHkgqAd1APZxYLyydPz4cRo3bmwyhOVRB+oA1IFWlgRvzwMH6kEdgH0c6A3eiqK4BZ0sKYpiV3SypCiKWygoKODatWtUrlwZHx8fTw9HURTlrtHJkqIoiqIoyh0wfoO3oiiKoiiKndHJkqIoiqIoyh3QyZKiKIqiKMod0MmSoiiKoijKHdDJkqIoiqIoyh3QyZKiKIqiKMod0MmSoiiKoijKHdDJkqIoiqIoyh3QyZKiKIqiKMod0MmSoiiKoijKHfh/bIYtI+8VKBQAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f(x) = r*x - x^3\n", "drawbif(f,-2,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "se mudarmos o sinal do termo cúbico obtemos uma bifurcação pitchfork subcrítica:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGGCAYAAABrI8X1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXd4VMX6gN8QIKF3CKG3kADSQZpgxYpdUa+KV68/FcRrV9R7BUWaSA9NpEkR6aAIBqQJSA8tVEEIJdJPEkqAZH5/zN3sbgKhZbLn7H7v8+Qx++Wcmdl3vnMYZ8/OBCmlFIIgCIIgCMJlyeXrBgiCIAiCINgZGSwJgiAIgiBkgQyWBEEQBEEQskAGS4IgCIIgCFkggyVBEARBEIQskMGSIAiCIAhCFshgSRAEQRAEIQtksCQIgiAIgpAFMlgSBEEQBEHIAhksCYIgCIIgZIEMlgRBEARBELJABkuCIAiCIAhZIIMlQRAEQRCELJDBkiAIgiAIQhbIYEkQBEEQBCELZLAkCIIgCIKQBTJYEgRBEARByILcvm6AIAj+zalTp+jWrRuXLl1iz549PP300zz33HN88MEHKKU4deoUn376KbVq1fJ1UwVBEC6LDJYEQTDGhQsX6NixI9988w3h4eHs37+fKlWqMHv2bAYMGMDu3bt58MEHKVasGEOGDPF1cwVBEC6LfAwnCIIxhg8fzj//+U/Cw8MBCA0NRSlF5cqVqVKlCqmpqdSoUYNnn33Wxy0VBEG4MjKzJAiCMYoVK0bbtm3TX69btw6A++67D4D777+f+++/3ydtEwRBuFZkZkkQBGO88MILXq8XL15McHAwrVq18lGLBEEQrp8gpZTydSMEQQgMGjZsSJ48eVi9erWvmyIIgnDNyMySIAg5wqlTp9i0aRO33367V3zUqFG+aZAgCMI1IoMlQRCMcOzYMZo2bUq3bt0AmD9/PmlpaTRt2tTrmJUrV/qqiYIgCNeEDJYEQTDC0qVLWbt2LUopzp07x5QpUwgPDyc5ORmAM2fO8NZbb9G1a1ffNlQQBOEqyDNLgiAYISkpiXfeeYe8efOSnJxMly5dSExM5JNPPqFSpUpcuHCBDz/8kLp16/q6qYIgCFkigyVBEARBEIQskI/hBEEQBEEQskAGS4IgCIIgCFkggyVBEARBEIQskMGSIAiCIAhCFshgSRAEQRAEIQtksCQIgiAIgpAFMlgSBEEQBEHIAhksCYIgCIIgZIEMlgRBEARBELJABkuCIAiCIAhZIIMlQRAEQRCELJDBkiAIgiAIQhbIYEkQBEEQBCELZLAkCEKOoJQiMTERpZSvmyIIgnBdGB8srV+/3nQVtkcciAMQB0lJSRQpUoSkpCRfN8WnBHoeuBAP4gCc48D4YOnvv/82XYXtEQfiAMSBoJE80IgHcQDOcWB8sHThwgXTVdgecSAOQBwIGskDjXgQB+AcB8YHS9WqVTNdhe0RB+IAxIGgkTzQiAdxAM5xYGywdPIkDB4MPXsuxSEDR2MsXbrU103wOeJAHAgayQONeBAH4BwHQcrAV1POnIEmTWD7doDT3H9/UebNy+5anMPp06cpWrSor5vhU8SBOEhMTKRIkSJYlkXhwoV93RyfEeh54EI8iANwjgMjM0sbNrgGSgBD+OUXPdO0cyfcfTc0aABjx5qo2Z4MGTLE103wOeJAHAgayQONeBAH4BwHRmaW9u6FmjXh0iX9unhxSEiA+vUhLu5/FQfBunXQsCFYFuzfD9WrQ/782d0aQRDsgMwsCYLgVIzMLFWtCuPHQ0QEhIV1Z84cyJMHdu92H6MU7NkDGzdCtWpQrx7Urg0HDphokW/p3r27r5vgc8RB4DqIjo6mVq1aNGnSxNdNsQWBmgcZEQ/iAJzjwMjMkieWZVGkSBEAnnkGpkzR8VKlYNMmeOMNmD3bffy//w0DBuiP8mbMgCpV4OWX9UyUU/F0EKiIA3EgM0uaQM8DF+JBHIBzHBhfOmD8+PHpv3//PQwdCl9+CatXQ9mykCtDC3Llgs2boWVL+Oor+Ne/4IMPTLfSLJ4OAhVxIA4EjeSBRjyIA3COA+ODpTvuuCP99zx59EzSZ5/pGSOAL76AsDD9e40a8P77sGABnD/vLmPWLP3fefP0w+FNm8Ly5aZbnn14OghUxIE4EDSSBxrxIA7AOQ6MD5Z2ez6odBnq1IE//9TPM23dCuHhEBnpfUxkJPz9Nzz5JMTGwtq10K6dXqIA4NQp/VB5WpqhN3GTXM1BICAOxIGgkTzQiAdxAM5xYHywlC9fvqsekz+//iZc3rz6dbt20LcvNGqkB0ijR8OhQ3DunPscy4ITJ2D6dP1xXrVq8MADcPGioTdyE1yLA39HHIgDQSN5oBEP4gCc48D4YKlEiRI3dN577+mlBaZOhdKloVYt/W05F82bQ/ny8NZbkJKiYwsW6IfCQT8TNXiwLsPX3KgDf0IciANBI3mgEQ/iAJzjwPhgKTY2NlvKCQ3Vzyl9/bX+tlxMjH4YPONHb2lpMGcOtGihB1LNmsH8+dnShBsmuxw4GXEgDgSN5IFGPIgDcI4D40sHJCQkEOZ6gtsAkybBSy/pj9/atNGzS88/D9OmuY95/nn9TbxZs2DcOD0j1b075NS3FU07cALiQBzI0gGaQM8DF+JBHIBzHBifWRo1apTR8p97Ti9kuXUrLFoEISFQoYL3MeXL64/lnnhCD5iGDIEXXjDaLC9MO3AC4kAcCBrJA414EAfgHAfGZ5Z8QVIS/POfsGoVtGqlHxAfNw46dXIfU6aM3oJl6lR45x29oni/ftC+ve/aLQj+jMwsCYLgVIzPLPliKfNChfTHcIcO6RXDCxTQD4TnyeM+pnVr/W2655/Xxx0+DC++CEeP6r+fPAm7dkFq6s23xynLuZtEHIgDQSN5oBEP4gCc48D4zNL58+cJDQ01WcU1s2iRfnapfHn45BM9SIqI8D4mLk7vWde+vV6qoFUr+PVXuJlvN9rJga8QB4HrIDo6mujoaFJTU9m1a1fAzywFah5kRDyIA3COA+MzS4MHDzZdxTVz110wdqx+uDt/fr020913u/9+xx168PTee+41nX7/XT9EDnrhzIkT9YDqerCTA18hDgLXQadOnYiLi2Pt2rW+bootCNQ8yIh4EAfgHAe5TVfw6KOPmq7ihsmVC37+WS9sqZR+ADw4OPNxSsHKlXpgde6cXjxz7lxo2/ba6rGzg5xCHIgDQSN5oBEP4gCc48D4zNL69etNV3FT5M0Lzz6rv1UXEqJjX3+t13UCvV7Tc8/BqFHu2aYLF2DECP17XJz+SG/gQB2/HHZ3kBOIA3EgaCQPNOJBHIBzHBifWXLC+gkZeeQRiI+HY8f05r65c0PJkt7HlCoFf/2lHxxPTNSx1avdH9l54kQH2Y04EAeCRvJAIx7EATjHgfGZpdy5jY/HjFCyJERF6YESwGef6Y/dQkP1N+m6d4elS90DJdAfzYHeGPjFF+GZZ/TGv051kJ2IA3EgaCQPNOJBHIBzHBgfLO3bt890FTlC4cJ6dfBz5/QgyTWYCgpyH1Orll5J/O679bfupkzRD5Vv2eIfDm4Gf8mDm0EcCCB54EI8iANwjgPjg6XWrVubrsJnNG2qv13XrBk8/LBe4PLvv/XHcy5OnoTw8NYcPaofIG/QAHr18lWLfYc/58G1Ig4EkDxwIR7EATjHgfHB0qTLPcTjR7z4ol4pfPZsqFgRwsK8124qUwbWr5/Eq6/CjBn6Y7kuXfTvgYS/58G1IA4EkDxwIR7EATjHgfFFKVNTUwm+3Pfx/ZhDh6BHD/3tuPfegxo1UqldO5idO93H9OgB774LL7+sF71s0ECv4VSqlO/abZJAzIOMBLoD2e5EE+h54EI8iANwjgPjM0s9e/Y0XYXtKFcOoqPh228hMlI7ePxx999DQ+GBB/RedJMmwfHjEBMDH37oPsbfduwLxDzIiDgQQPLAhXgQB+AcB365ka4dUUo/9P3nn/Doo3om6c039aDKxT336FmmTz6Bb76BYsX0bNNdd/mu3YJws8h2J4IgOB2/3EjXbnTv3p2gIP18U7dueqAEehNf1+KXQUH6I7nly6FnT/0R3t9/6wUxXaSmQkpKzrc/O5A8CFwHst2JN4GaBxkRD+IAnOPA+MxSfHw8FSpUMFmF7cnKQVycHiDVrasXuJw9W888uciTRw+QpkzRg6mUFD3z9OWXOdT4bELyQBzIM0uaQM8DF+JBHIBzHBifWVq0aJHpKmxPVg5q1YLXXtMDJdBrNNWt6/77O+/otZteekmv8ZSWphfEjI3Vf1fKe2FMuyJ5IA4EjeSBRjyIA3COA+ODpQjP79EHKNfjoEABWLECZs6EJUugd2/9kVzGj9+SkmDzZqhQAYoUgTvvhLNns7fd2YnkgTgQNJIHGvEgDsA5DowPls65dp8NYK7XQcGC+qO4Nm3cr99+2/33u+7SM1HvvKOXKQBYvBiGDnUfc+bMTTY6m5E8EAeCRvJAIx7EATjHgfHB0okTJ0xXYXuyw0H//nrxy0WLYP58vWddxgHRmTOQnAx33KEHWFWqwI4dN111tiB5IA4EjeSBRjyIA3COA+ODpXr16pmuwvZkl4NmzfTHba59Bz/5BPLm1b9XqACvvAKDB+uP70Bvu/Lee+7z09KypRk3hOSBOBA0kgca8SAOwDkOjA+WfvrpJ9NV2B5TDh5+WM8cLVyon18qX17PLHnievj7iy8gXz4oXhx80SWSB+JA0EgeaMSDOADnODC+dMDZs2fJnz+/ySpsT046+Osv/TxTQoKedZoxA8qWhUaN3McUKgSnT0Mu40NlN5IH4kCWDtAEeh64EA/iAJzjwPg/l/369TNdhe3JSQeVK8PWrbBgAWzfDg8+CKdOeR+TnKy/Ybdihd6OJSwMBgww2y7JA3EgaCQPNOJBHIBzHMh2JwFASor+Zt3q1fr1m2/qZ5vCwvQq4S7Wr4eGDX3TRsF/ke1OBEFwOrLdSQ7gawchIfqh7zlz9BIDgwfrhS6PHfM+7sgRvX7TSy/pLVk++ST7NvT1tQM7EKgOZLsTbwI1DzIiHsQBOMeB8ZmlY8eOUapUKZNV2B67Onj5ZRgzRv9esyasWQMffAAjR7qPGTYMXn/95uuyq4OcJNAdyDNLmkDPAxfiQRyAcxwYn1maMWOG6Spsj10dfPcdTJ+u/7tqFRQunHldJtfradPg2Wfhv/+9sc187eogJxEHAkgeuBAP4gCc4yC36QqaNGliugrbY1cHQUHw+OPesUcfhWXL9O+5cunlCRYuhKeech9z9CgMH359ddnVQU4iDgSQPHAhHsQBOMeB8cHSkSNHTFdhe5zk4J139HpNmzfDPfdA69bQrZv3Mb//rv978iSMGwehofDPf+r/XgknOTCFOBBA8sCFeBAH4BwHxgdLqamppquwPU5z8NRT3jNJzZt7/71lS71pb8uW7o/ppk/XM1BXwmkOTCAOBJA8cCEexAE4x4HxwVLlypVNV2F7nO6gbVv44Qe9wGWNGvDZZ3qZAc/nmxYtguPHoWRJ2LULTpyAxo0hTx79d6c7yA7EgQCSBy7EgzgA5zgw/oD38uXLTVdhe/zBQfv2MGUKdO+uP24rX949EAK9jUrhwnpZgshIaNFCb+h7/rz+uz84uFmc7mDZsmW0a9eO8PBwgoKCmDVrlq+b5EicngfZhXgQB+AcB8aXDjh58iTFixc3WYXt8VcH06bB55/rPecGDtQfyxUurNdq8jzmiSf818H14HQHv/zyCytWrKBhw4Y88cQTzJw5k0cfffSaz5elAzROz4PsQjyIA3COA+MzS0OHDjVdhe3xVwdPPgnbtsG6dXqgBJkf8s6XT397rmHDoRQoAO3awZkzOd9WO+D0PLj//vvp3r07j2f8CqVwXTg9D7IL8SAOwDkOZLsTIVuZNQueew7OnYN//AO+/x5eecW9+CXoZ56+/NJ3bRRunqCgoKvOLKWkpJDisShXYmIiFSpUCPiZJUEQnEdw165du97IiZMnTyZ//vyMGjWKxo0b06tXL1q3bk337t2pXr06P/74I6mpqXzyyScopVBKMXnyZKKiovj666/Tj61Tpw6jR48mNDSU1atXs2fPHpKTk5kzZw6VKlWif//+6cc2btyYQYMGUaJECX777TcSEhJISEhg0aJFlChRgsGDB6cf27JlS3r37k3FihWZO3cuSUlJ7N27lz/++IOQkBBGjx5No0aNvNodERHB5MmTSUtLY8uWLWzZsoXU1FSmTJlCZGQkffv2TT+2bt26jBo1inz58rFq1Sr27t1LYmIiP/30E+XLl2fAgAHpxy5atIgNGzZQqlQpFi5cyNGjRzl8+DBLliyhWLFiDBkyhFatWvHVV1/RqlUrevToQeXKlZk9ezbJycns2bOHNWvWEBISwtixY2nQoAG9e/dOL79mzZpMmjQJgNjYWLZt28bFixeZOnUqERERXu2uV68e3377LQUKFGDFihXs37+fU6dOMW/ePMqVK+fV7qZNm9K/f39Kly5NTEwMx48f5+DBgyxdupSiRYsybNgwWrRoQY8ePdLPuf/+KlSvPpOOHc/SuPEu1q1bx6+/5mb//heAx4HeREa2ZtOm7hw+HMWrr05gzZpcXLq0gd27d5CSksK0adOoXr0633zzTXq59evXZ8SIERQqVIjly5dz4MABTp06xfz58wkLC2PgwIHpx956663069ePsLAwFixYwIkTJ4iPj2f58uUULlyY4cOH06xZM692V61alenTp5OSksL27dvZsGEDwcHBfP/999xyyy306dMn/dhatWoxfvx4cufOzbp169i5cyfnzp1j5syZVK1alX79+qUf26BBA4YNG0bhwoV56623KFy4MMePH+fXX3+lTJkyXu1u3rw5ffv2JTw8nHnz5nH69Gn279/P77//TsGCBRk5ciS33norPXv29LrWpk6dyoULF4iLiyM2NhaAiRMnUrt2ba9rrXbt2owbN448efKwdu1adu/ezdmzZ5k1axaVK1f2anfDhg2Jjo6mWLFiLF68mMOHD3Ps2DFiYmIoVaoU/fv355lnnmHatGm0aNGCPn36UL58eX766Scsy2Lfvn189NFHdOjQgV69etGrVy/69++vbzrBwURGRqbfI7Zu3crmzZsD5h7xxhtvcOedd3pda02aNGHQoEEBcY+oUqUKM2fOZOjQoeTPn59169aRO3duxo0bR/369b3aHRUVxYQJE8iVKxcbNmxgxw7/ukfcfffdPPbYY+n3iGXLlnHw4EG/uEcMGjQo/dgr3SNWrVrFmDFj2LRpU5bjiK1bt1K9evWbG+3cJMZnlhITEwP+/yID3cFPP8GjjyaSmlqYfPngt990vFUrcH1rtEMHGDvWZ03MEfwpD2Rm6cbxpzy4GcSDOADnODD+zNJYf/8X8BoIdAcPPQTvvTeW8eNh0yZo1gxWrHAPlMC9arhSeuuVNWt801aTBFoehISEULhwYa8fIfDy4EqIB3EAznFgfJ2lu+++23QVtkccQIcOd1Orlvt148Z6uxXXvGbTpvr3Z5/VSxQAvPqq96a+TkfyQADJAxfiQRyAcxwYn1nakXFn1gBEHGR20KaNXujy0Ufh7bdh1CjYvt09UAL49ls4eDCHG2oQp+dBcnIysbGx6c887Nu3j9jYWA4cOODjljkLp+dBdiEexAE4x4HxmaUCBQqYrsL2iIPLO3j6af3jIl8+77/nyqWXIti3D15/HQ4fhv/7P+jc2XBjDeH0PFi3bh133HFH+ut3330XgA4dOjhmKt0OOD0PsgvxIA7AOQ6MD5acsNiUacTBtTmoUgV69IBPP9UDpQED9PYpDz0Eq1frY956C+rW1TNTTsPpeXD77bcjK43cPE7Pg+xCPIgDcI4D4x/Dbd682XQVtkccXLuDLl30opXJyfDmmzq2Z4/3Ma7XO3fC5Ml6LzonIHkggOSBC/EgDsA5DowvHXD48GHCw8NNVmF7xMHNOXj9dRgxQv9etChs3Ah//QX33QcpKfqjugULoHXr7GuvCQI9D2S7E02g54EL8SAOwDkOjM8sjR492nQVtkcc3JyDoUPhu+/0Jr6rV0PlyjB8uB4ogd6s1wnfmpM8EEDywIV4EAfgHAey3YngSDp3hiFD3K///W/9jNOIEfqbdeXK6b+XL++7NgreyMySIAhOxfjMUvfu3U1XYXvEQfY76NoVbr8d8uaFO+6Azz+HpUv1R3br1sHs2XpvOjsRqHkQHR1NrVq1aNKkia+bYgsCNQ8yIh7EATjHgfGZpZSUFEJCQkxWYXvEQc44GDFCD5ZclCoFR4/q33fvhrQ0qFnTaBOyJNDzQGaWNIGeBy7EgzgA5zgwPrM0cOBA01XYHnGQMw7uugsKFnS/fuQR/d/33oOICIiMhE6djDfjikgeCCB54EI8iANwjgPjM0t//vkn1apVM1mF7REHOedg61a9Cni5cnq7lCNHoEIF72N27YIaNYw3JROBngcys6QJ9DxwIR7EATjHgfGZpTX+uCPqdSIOcs5BnTrw5Zf647jgYL24ZUaCg/U+dGPG6GeftmzJkaZJHgiA5IEL8SAOwDkOjA+WypYta7oK2yMOfOcgPBy6dXO/7tIFqlaFd9+Fl1/Wf2vWTO9LZxrJAwEkD1yIB3EAznFgfLuT4OBg01XYHnHgWwf//S+89pp+wNt1Xc6Y4f772bPw668QFWW2HZIHAkgeuBAP4gCc48D4zNL+/ftNV2F7xIHvHZQp4x4ogX7g25OICD2Y+uILuPNO+PBDuHgxe9vgaweCPZA80IgHcQDOcWB8ZqlVq1amq7A94sB+DsaPhzfegP374YUX4P77YeBAvV4TwOLFEBKin3/KLuzmQPANkgca8SAOwDkOjM8s/fDDD6arsD3iwH4OypaFWbP0PnPvvqtjsbHex2R8fbPYzYHgGyQPNOJBHIBzHBhfOuDSpUvkzm18AsvWiANnOPjhB3j2WffrQYP0tiq9e+utU0qVgrFjoW7dGyvfCQ5MIksHaAI9D1yIB3EAznFgfGapV69epquwPeLAGQ6eeQamTYM334Rx4/RAadky+PhjOHhQz0I9/fSNl+8EByaQ7U68CdQ8yIh4EAfgHAeyka4gZMHEifD88+7XBQpAcrLv2uNkZGZJEASnIhvp5gDiwLkO7rlHrwbuokMH/d/Zs/VzT8WL6z3prgWnOhCyF8kDjXgQB+AcB8Znlg4ePEj58uVNVmF7xIGzHRw5AjNnQunS8MQTcO4clCyp/wt6lfDdu/Vil1nhZAfZgcwsaQI9D1yIB3EAznFgfGYpJibGdBW2Rxw420HZstCxIzz5JAQFQVKSe6AEen2m48evXo6THQjZh+SBRjyIA3COA+ODpSjTyyI7AHHgXw7KlNEDJxctWkCDBvDXX9Cypf575856/zlP/MmBcONIHmjEgzgA5zgw/n29pKQk01XYHnHgfw6mTIG5cyElBR5+GPLk0VuqrFyp/z5kCDRpAi++6D7H3xwIN4bkgUY8iANwjgPjg6XTp0+brsL2iAP/c5ArFzzyiHfs0KGsX/ubA+HGkDzQiAdxAM5xYPxjuFtuucV0FbZHHASGg5dfdv9epIh+GFwp+OoraN0aZs++xetZJyEwCYRr4VoQD+IAnOPA+GDpl19+MV2F7REHgeHg3XchJgaGD4cNG/TmvKNGwWefwfLlMHHiL3Tp4utWCr4mEK6Fa0E8iANwjgPjSwckJydTsGBBk1XYHnEQuA7efBOio12vkrnjjoL89psvW+Q7ZOkATaBeCxkRD+IAnOPA+MzSgAEDTFdhe8RB4Dq47z7PVwPSXx86BH376pmnS5d80TLBVwTqtZAR8SAOwDkOZLsTQTDMzz/rj+fq1YN//lOvyVS/vvsB8Pbt9Sa+/kp0dDTR0dGkpqaya9eugJ9ZEgTBech2JzmAOAhsBw8+CAMGwKFD2sHvv3t/U27qVEhN9VHjcoBOnToRFxfH2rVrfd0UWxDI14In4kEcgHMcGJ9ZOn78OCVLljRZhe0RB+IA3A5iY6FhQ/eilVWqwN69+vfUVP2TN6/v2mkKeWZJI9eCRjyIA3COA+MzS9OmTTNdhe0RB+IA3A7q14dvv4WoKL3696xZ+u8//giFC0O+fPDppz5sqGAUuRY04kEcgHMcGB8sNWvWzHQVtkcciAPwdvDKKxAXBytWQN26cPEivPQSnD2r95rr0UMvPyD4H3ItaMSDOADnODA+WDp48KDpKmyPOBAHkLWDixfJtGBlYqLhBgk+Qa4FjXgQB+AcB8YHS/JlO3EA4gCydpA/v17U0sUdd+hNeQF+/RUGDoRt2ww3UMgR5FrQiAdxAM5xYHxvuAoVKpiuwvaIA3EAV3fwzTfw1FOQnAxt2ujNeaOj9cKWoJ9lWrECGjTIgcYKxpBrQSMexAE4x4HxmaVVq1aZrsL2iANxANfmoFkzuPtuPVACGD/e/bdz5/QyA4KzkWtBIx7EATjHgfGlA06cOEGJEiVMVmF7xIE4gBtz8NRT4PllkWHD4PXXs7lhOYQsHaCRa0EjHsQBOMeB8ZmlYcOGma7C9ogDcQA35mDIELj3XqhQATp1gv/7Px3/8Ud4/nn9rTnZLsVZyLWgEQ/iAJzjQLY7EQSH8fPP8NBD7tfvvqufd7Irst2JIAhOR7Y7yQHEgTiA7HOwfHnWr+2GbHfijVwLGvEgDsA5DozPLCUlJVGoUCGTVdgecSAOIPsczJoFjz3mft25MwwadNPFGkeeWdLItaARD+IAnOPA+MzSd999Z7oK2yMOxAFkn4NHH4UxY/SA6dNP4euvdXzbNnjjDXj/fThxIluqEgwg14JGPIgDcI4D4+sstW3b1nQVtkcciAPIXgcvvaR/XBw9Cq1bw8mT+vWSJbBuXbZVJ2Qjci1oxIM4AOc4MD6ztH37dtNV2B5xIA7ArINNm9wDJYD16yEpyVh1wk0g14JGPIgDcI4D44MlJ3wWaRpxIA7ArIOoKChQwP26Zk0Q5fZErgWNeBAH4BwHxgdLRYoUMV2F7REH4gDMOihfHubPh0cegX/8AxYscP9t5UqYNy/zRr2Cb5BrQSMexAE4x4HxwdIHq6Y2AAAgAElEQVQ22f1THCAOwLyDVq30N+UmTIBKlXSsSxe9Ie+DD+pnmjwHTEOHDqVKlSqEhobSqFEjlmexBsGSJUsICgrK9LNjxw6j78kfkWtBIx7EATjHgfGlAw4fPkx4eLjJKmyPOBAHkPMOUlMhNNR7he+5c/WCllOmTOGFF15g6NChtGzZkhEjRjBq1Cji4uKoWLFiprKWLFnCHXfcwc6dO72+9l+qVCmCg4OvqT2ydIBGrgWNeBAH4BwHxmeWRo8ebboK2yMOxAHkvIPg4MzPLRUtqv/br18/XnnlFf71r38RFRXFgAEDqFChwlW3HihdujRhYWHpP1kNlFJSUkhMTPT6EeRacCEexAE4x0Fw165du97IiZMnTyZ//vyMGjWKxo0b06tXL1q3bk337t2pXr06P/74I6mpqRQvXpzNmzejlGLy5MlERUXx9ddfpx9bp04dRo8eTWhoKKtXr2bPnj0kJyczZ84cKlWqRP/+/dOPbdy4MYMGDaJEiRL89ttvJCQkkJCQwKJFiyhRogSDBw9OP7Zly5b07t2bihUrMnfuXJKSkti7dy9//PEHISEhjB49mkaNGnm1OyIigsmTJ5OWlsaWLVvYsmULqampTJkyhcjISPr27Zt+bN26dRk1ahT58uVj1apV7N27l8TERH766SfKly/PgAED0o997733GDRoEKVKlWLhwoUcPXqUw4cPs2TJEooVK8aQIUNo1aoVX331Fa1ataJHjx5UrlyZ2bNnk5yczJ49e1izZg0hISGMHTuWBg0a0Lt37/Tya9asyaRJkwCIjY1l27ZtXLx4kalTpxIREeHV7nr16vHtt99SoEABVqxYwf79+zl16hTz5s2jXLlyXu1u2rQp/fv3p3Tp0sTExHD8+HEOHjzI0qVLKVq0KMOGDaNFixb06NEj/ZwqVaowc+ZMzp49y65du1i3bh25c+dm37591K9f36vdUVFRTJgwgVy5crFhwwZ27NhBSkoK06ZNo3r16nzzzTfpx9avX58RI0ZQqFAhli9fzoEDBzh16hTz588nLCyMgQMHph9766230q9fP8LCwliwYAEnTpwgPj6e5cuXU7hwYYYPH06zZs282l21alWmT59OSkoK27dvZ8OGDQQHB/P9999zyy230KdPn/Rja9Wqxfjx48mdOzfr1q1j586dnDt3jpkzZ1K1alX69euXfmyDBg0YNmxY+kzKwYMHOX78OL/++itlypTxanfz5s3p27cv4eHhzJs3j9OnT7N//35+//13ChYsyMiRI7n11lvp2bOn17U2depULly4QFxcHLGxsQBMnDiR2rVrs2fP18THt+bChe506lQbpcYB8MUXX3DPPfdQokQJZs2aReXKlZk5cyaHDx/m0KFDNGzYkOjoaIoVK8bixYvZvn07MTExfPfdd3zzzTcMHz6cunXrMnHiRFq0aEGfPn0oX748P/30E5ZlsW/fPj766CM6dOhAr1696NWrF/3799c3neBgIiMj0+8RW7duDah7RGJiYqZ7RJMmTQLuHtG4cWOve8S4ceMC7h6xbNkyr3vEsmXLcvwe4Xmt1a5dm3HjxpEnTx7Wrl3L7t27OXv2bPo9wvPelvEecfjwYY4dO0ZMTAylSpVi0KBB6cde6R6xatUq7rvvvquOI7Zu3Ur16tVvfKSTHSjDfPnll6arsD3iQBwo5VsHly65fz9w4JAC1F13rVBjxrjjX331lYqIiLjs+Tt27FAjR45U69evVytXrlRvvPGGCgoKUkuXLr1inefPn1eWZaX/xMfHK0BZlpVN78qZyLWgEQ/iQCnnODD+zNLFixfJkyePySpsjzgQB2AfB//+92EGDSoHrASa88MP0L49fPXVV3z//ffX/NB2u3btCAoKYs6cOdd0vDyzpLFLHvga8SAOwDkOjD+z1K9fP9NV2B5xIA7APg5iY0sCwUACAL//ruNHjx6lTJky11xOs2bN2L17d/Y30M+xSx74GvEgDsA5DowPlp566inTVdgecSAOwD4OWrbMCzQCYv73WsdjYmJo0aLFNZezceNGypYtm/0N9HPskge+RjyIA3COA+ODpVWrVpmuwvaIA3EA9nHwxRfQvv27BAWN4qWXRlOv3nbeeecdDhw4wOuvvw5Aly5dePHFF9PPGTBgALNmzWL37t1s27aNLl26MH36dN58801fvQ3HYpc88DXiQRyAcxwY30i3QoUKpquwPeJAHIB9HOTODT/80J7WrU/Qp88XTJp0hDp16tCz5zwGDqxEjRpw+PARDhw4kH7OhQsXeP/99zl06BD58uWjdu3a/PzzzzzwwAM+fCfOxC554GvEgzgA5zgwPlgSBMGedOzYkY4dOwKwerVeAdy1gOV7741l3Dj3sR9++CEffvihD1opCILge4x/DBcfH2+6CtsjDsQB2NtBTIz3St+//OK7tvg7ds6DnEQ8iANwjgPjg6XmzZubrsL2iANxAPZ2cMstWb8Wsg8750FOIh7EATjHgfHB0tSpU01XYXvEgTgAezt45BEYOBBuuw3++U8YPtzXLfJf7JwHOYl4EAfgHAeyKGUOIA7EAYgDWZRSE+h54EI8iANwjgPjM0u9e/c2XYXtEQfiAJzpYMYMqFMHGjVyL155vURHR1OrVi2aNGmSvY1zKE7MAxOIB3EAznFgfGZJEARnEh8P1avDhQv6dbFicOQIhITcWHkysyQIglMxPrPUvXt301XYHnEgDsB5Dg4edA+UAE6dgtOnfdcef8FpeWAK8SAOwDkOjM8sHT58mPDwcJNV2B5xIA7AeQ7OnoXGjWH7dv36jjtg0SIICrqx8mRmSeO0PDCFeBAH4BwHxmeW5s+fb7oK2yMOxAE4z0H+/Po5pX79YOhQmDfvxgdKghun5YEpxIM4AOc4ML6Cd+3atU1XYXvEgTgAZzooXhzeecfXrfAvnJgHJhAP4gCc48D4zJJlWaarsD3iQByAfznYtg2WLoWUFF+3xHn4Ux7cDOJBHIBzHBgfLCUlJZmuwvaIA3EA/uNgwAC9wvftt+tFLM+d83WLnIW/5MHNIh7EATjHgfHBUlRUlOkqbI84EAfgPw4+/xxcXwtZuxbmzvVte5yGv+TBzSIexAE4x4HxwdKvv/5qugrbIw7EAfiPg/z5vV8XKOCbdjgVf8mDm0U8iANwjgPjSwckJSVRqFAhk1XYHnEgDsB/HMybB+3bQ3IydOgAY8Zc27fkZOkAjb/kwc0iHsQBOMeB8ZmlgQMHmq7C9ogDcQD+4+CBB/QClYmJMHbs1QdKst2JN/6SBzeLeBAH4BwHst2JIAg5gswsCYLgVGS7kxxAHIgDEAeCRvJAIx7EATjHgfGZpRMnTlCiRAmTVdgecSAOwP8dnD0Lhw5BxYqX32xXZpY0/p4H14p4EAfgHAfGZ5Z+/PFH01XYHnEgDsC/HWzfDtWrQ0QE1KoF8fG+bpF98ec8uB7EgzgA5zgwPlhq3ry56SpsjzgQB+DfDrp2hSNH9O9790KfPj5tjq3x5zy4HsSDOADnODA+WIqX/8UUB4gD8G8HaWlZvxbc+HMeXA/iQRyAcxwYHywFyTbl4gBxAP7t4D//gVKl9O8VKsD77/u2PXbGn/PgehAP4gCc4yC36QrKly9vugrbIw7EAfi3g7p1Yc8e+OsvqFZNVvXOCn/Og+tBPIgDcI4D4zNLf/zxh+kqbI84EAfg/w4KF9aDJhkoZY2/58G1Ih7EATjHgfGlA44fP07JkiVNVmF7xIE4AHEgSwdoAj0PXIgHcQDOcWB8Zmn48OGmq7A94kAcQOA6kO1OvAnUPMiIeBAH4BwHst2JIAg5gswsCYLgVGS7kxxAHIgDEAeCRvJAIx7EATjHgfGZpeTkZAoWLGiyCtsjDsQBiAOZWdIEeh64EA/iAJzjwPjM0rfffmu6CtsjDsQBBKaDv/+GSZPg99993RL7EIh5cDnEgzgA5zgwvs7S/fffb7oK2yMOxAEEnoNDh6BJE/c2KF995dv22IVAy4MrIR7EATjHgfGZpS1btpiuwvaIA3EAgedg+nT3QAlgxAjftcVOBFoeXAnxIA7AOQ6MD5aKFi1qugrbIw7EAQSeA9f2J1d6HagEWh5cCfEgDsA5DowPlgoVKmS6CtsjDsQBBJ6DZ56B116D/PkhKgqGDPF1i+xBoOXBlRAP4gCc48D4YGn79u2mq7A94kAcQOA5CAqC4cPhzBmIi4NatXzdInsQaHlwJcSDOADnODC+dMDBgwcds1GeKcSBOABxIEsHaAI9D1yIB3EAznFgfGZp7NixpquwPeJAHIA4EDSSBxrxIA7AOQ5kuxNBEIwSHR1NdHQ0qamp7Nq1K+BnlgRBcB6y3UkOIA7EAQSug06dOhEXF8fatWt93RRbEKh5kBHxIA7AOQ6MzyxdunSJ3LmNr31pa8SBOABxIM8saQI9D1yIB3EAZh1s2rSJvn37sm/fPj7++GNatmxJt27dSElJISEhgc8//5z69etfU1nGZ5b69u1rugrbIw7EAYgDQSN5oBEP4gDMOhg4cCBjxozhvvvu4+WXX+bVV1/lgw8+4Omnn+bnn3/mu+++u+ayjA+WnnnmGdNV2B5xIA5AHAgayQONeBAHYM7Bn3/+SXh4OLlz5+bw4cOcPHmSTz75hHLlynHixAkKFixIu3btrrk844Ol32UHTXGAOABxIGgkDzTiQRyAOQd///03TzzxRHodrVq1omHDhgA8+eSTnDx5krZt215zecYHS5UqVTJdhe0RB+IAxIGgkTzQiAdxAOYctGjRggYNGnD8+HG2bt3K7bffflPlGR8spaammq7C9ogDcQDiQNBIHmjEgzgA8w4WL16MUsq+g6XUVPj9d1ix4ohXfOtWWLYMLlxwxw4dgt9+g+PH3bHkZFi8GPbscceUgpUrIeM3kLdvh6VL4dw5dywhQZf599/u2NmzsGQJ7Nzpff7q1fDHH96xXbv0sWfOuGNHj+oyPXdSP39e1x0X533+2rW6rWlpcOR/J/z5p35PSUnu406c0GUePOiOXbigHWXcjHnjRu3UM7f++kuXefq0O3bqlC7zwAF37NIlWL4cYmO9y9y8Wdd18aI7Fh+vzz950h1LTNT17NvnjqWlwYoVsH69d5nbtmknKSnuWFzckWvu41WrYM0a7zJ37ND9cTN9vGqVLt/F7t2Z+/jYMV3m4cPumKuPt23zLnPdOv3+09Lcsb179XtKTHTHXH28das7cS5evPY+3r9fn+/Zx6dP69j+/e6Y65rbuNG7zMv18cGDV+7jvXvdMVcfr1vnXebl+vjwYV3msWPu2Jkz2vHu3d7t/Ogj+PRT7zK//RbefNM7b5csgddf1+W6OHRIHzdihPf5//mPLtfT3fjx0LGjvvZc/PGHLnPBAnfs2DHo3BkGD/Yu88sv4f33ve9XU6boMj13aVi/Xpc5Z447Zlnw73/DN994lzlixBHeflvnv4vp0/X5mze7Y5s363qmTnXHzp2Dd9+Fnj29y+zXT9fl2Z8//aTL9LyWdu3SZU6Y4I5duAAffgiff+5d5pAh2klCgjsWE6PLXLHCHdu3T/eH59qCqanQpUvWfey6L16pjzt3hmHDvM///HPd1mvt43nz3LFjx7Sj6+njrVvdsdhYXebMme6YZcHbb0OfPt5l9ulDpj6eOVOf73kPXrPmyBX7OOM36gcMyNzH8+ZdWx+npl6+j4cNu3IfL1vmjh04oPst4/PQXbroH0+++04f6/lvxbJlusyYGHcsIUHXPX689xghu1m8eDEhISE0a9bs5gpSBkhNVerBB5XS/zTtUe+9p+N9+rhiSjVvrtS5c0otW6ZUgQI6VqqUUjt2KHXsmFI1auhY7txKTZqkVFqaUk895T7/tdd0mdHRSgUF6ViDBkolJSm1dq1SRYroWLFiSsXGKnX6tFJ16uhYrlxKjRqlz+/QwV3m88/r2Jgx+hhQqlYtpU6dUmrzZqWKF9exQoWU+uMPpZKTlWrUSMeCgpQaNEif36mTu8zHH1dq9+49asoU/V5AqWrVlDp6VKldu5QqXVrH8udXaskSpc6fV6plS/f5PXvqMj/80B277z6lLl1Sas4cpfLm1bGKFZU6eFCp/fuVKldOx0JDlfrlF6UuXlTq7rvd53/2mS7ziy/csTZtlEpJUWrhQqXy5dOxsDCl/vxTqSNHlKpSRcfy5FFqxgzdx+3auc9/+21d5jffuGO33qrU2bNK/f67Uvnz71GgVMmSSsXFKXX8uFIREfq44GClJkzQfdy+vfv8V1/VZQ4b5u7jevWUSkxUat06dx8XLarUxo1KWZZSt9zi7uORI/X5L7/sLvO553Rs/HhdLygVGanUyZNKbd2qVIkS7j5euVKpM2eUatzY3cf9++vzO3d2l/noo7rtU6dqP6BU1apK/f23Urt3K1WmjKs/9qjfftOeb7vNff5XX+kyu3Rxx9q21X38889KhYToWPnySsXHK3XggP4d9N9+/ln3cdu27vO7dNFldu/ujt12m6570SLvPt6zR6mEBN1mVx9Pm6b7+JFH3Oe/9ZYus39/d380aaL7eOVK7Qy0w23blDpxQrt19fGIEZYCVL58VnqZhQvrMps1c9cTFKRzpEcPdwyU+vJLpXbudNftql8pdy64riWllLrzTu/z161TauhQ79gHH+jrxnW9g1K1a+vzS5Vyx0JCtDtPH6BdTpzoHXv1Vf3eXfkF+vpRytVve9LvbUlJ+r7jef6MGUrNnesda99ee3blFyhVtqwus3p1dyw4WN9bPO9BoO9pS5d6xx54QOdYaKg7Vry4LrNuXXcsVy59X/n4Y+/z+/fX151nrHVrfb7rnu7Zxy1aePfx/Pl7VO/e3ud37arz0bOPGzXS5xct6o7ly6fb7pnzoNTq1UoNH+4de+cdfQ/z7OOoKF2m6/4L+l6akqLv2Z7n//qrUj/84B17+WX9b4rrng5KVa6sy6xY0R1z9bHnvzOgr6/58925AEo9+aTuY9c93XV9KuW+V7r64+hRfT16ljlqlL7XesZc/1Z49nGxYrrM+vW9+2PvXv1vg+f5ffsqtWmTd3+0aqXPL1jQHStYUMc8/+0KCtLn9u3rXeZ//6vrcpe5RzVooIwRGRmp2rRpc9PlcCMnpaWlKcuyrvizcKGlwPXTTYGl4uOt/90k3T8TJljq3nu9Y6++aqmePb1jNWpYauVK7xhYascOS5Uo4R0bOdJSTzzhHXvuOUsNGuQdK1fOUps2ZS5zwwZLVarkHevXz1Ivvugde+QRS40a5R0rWtRSe/ZkLvO117qpqCjv2JdfWur1171jd99tqR9+8I7lzWupQ4cylzl/vqUaN/aOffyxpd5/3zvWvLml5s71jgUFWerwYUsFB3vHp02zVJs23rHOnS313/96x+rWtdSiRZnb9NdflipQwDs2frylHnjAnQdgqVdesVTv3t7HVatmqdWrM5cZF2ep0qW9Y8OGWeqpp7xj7dtbasgQ71hYmKW2bMlc5tq1lqpSxTvWt6+lXnrJO9aunaXGjPGOFS5sqb17M5e5ZIml6tTxjnXrZqmOHb2vhTvvtNSPP3oflyeP7o+MZf78s6WaNvWOffih/vGM3XqrPjbj+YcPWyp3bu/Y1KmWuvNO71inTrqtnrE6dSy1eHHmMvfts1ShQt6xMWMs9dBD3rGXXrJUz55HFcSn/1SoEKeA/712HzthQuZ6mjXLnEv581uqRYvMx06ZkjnWp0/mWJ06+hr1jOXNm/keBJZavjxz7IMPMseqVrVUqVLeseBgSz3zTOZjt25154HntZArl/dx4eGWqlDBOxYUlPl+Afp+lTH22GOZ+71ECX0fzXhsxmsbLLVgQebYXXdZKiQk87XQoEHmYwcPzhwbPTpzrHz5bqpgQe9YvnyWuu22zMdOn545lvHfCbBUrVqWKlbMO5Ynj6UefDDzsatWZY6984527RmrUsVSZcpk7uN//CPz+Zf7N6VDh8x9XLas698Zdy4EBVnqrbcyn79+febYww/r9+UZK1bMUpGRmY/NeG2DpebMyRxr08ZSoaHesUKFLNWoUeZjR468tlijRpnvF6Ghlrr9ds+YdpDVmML1k5aWdl1jlSNHjihAff755zcy1PHihhaldC0uJwiCIAiCkBNc74K2mzZt4t577+W3336jVq1aN1X3DT2zVKhQISzLyvLn3XctIB6Ab76Jx7IsJk+2yJ/fAixeeMHi9GmLjRstqlTRsXr1LPbts6hRI4J77tGx4sUtFi7UZX72mY4FB1v07atjM2daFCpkARE88YTFqVMWcXEWERH62Kgoi507LU6csGjXTseKFLH46SeLiIgIevSwCArSP19+qcv85ReLYsX0sQ8+qM/dvduidm1dT7VqFlu36rqeflofV7CgxbRp+vz+/XUbweLdd7WDuXPjKVlSx+66y+LoUYu//rJo2FDHKlWy2LBBn//SS7qefPksJk7UsREjLPLk0ce+9ZaO/f67RViYjrVsaVG9egQHD1rcequOhYdb/PGHPrZjRx3Lm9di1CgdGzdO1wMWr76qY2vXWlSooI9t1MjiwAGLhASLNm10rHRpi0qVIrAsiw8+0LHcuS2GDNHn//ijRYECOv7cc7qPV6yI/1/mxFO3rsXevRbHjlm0bauPK1bMIiZGn//f/+pYrlwWpUvrembPtihcWMcff1x7377d3ceRkRY7dlicPGlRsGBEeh/PnavL7NVLlxcUZNGtm44tWODu4wIFIjh+3OLPPy1uuUXHqla12LxZt799e9dxFlOn6vPLlIlI7+OPP9axxYut9D6+4w6Lv/+22L9fe3RdC0uX6mvh5Zf1caGhFt9/r88fOVL3D1h07qxjlStHULasjjVvbnHokP5p3lzHypa1WLlSH9u5s45BBCNH6tj48boO0HValsX69RYVK7r7eP9+fc3dfruOlSplsWSJPvajj9x9PGiQjk2d6urjCJ59VjvavFk7A+3wzz8tDh06yt13xwPxFC0az8iR+sGKypXj/tdOfU1ZlsUrr1jpsZAQnXPTp7vfD+h6ExLc7wcsOnTQ59ep445Vraqv7bfecsfy5NG5vGCBOwYWo0e78sZdz5NP6jKbNnUfV66cjn36qTsWHGxRtWoEq1bp3HLFBw7Ux7ryCyzuvVfHWrVyXwslS+pYz57u43Ll0vfETZv07654yZL6Wihd2h277TZ9/oMPumNFiujY0KFud0FBFsuX6z7Jndt97Ecf6WNduQD6fhQREcEzz7hj+fNrR+PHe7ubN0871Tmr3XXsqMusUcN9XFSUjr36qjuWN6/2MHFivFeZU6boe0O+fO7Y88/r8+vVc9dTpYqOvfOOdx/v22exaJF3O8PCIjh50vXvhP557DF9frNm7ljZsp73oIj0Pt6+3crUx/37Z+7jAgV0H911lztWvLg+rk8fdywoyGLNGos//nDnAlh07eq6t7iPbdFCxx5+2PN8Xc/w4d5lLlmSuY/fe0+fnzt3RHqsQQMd+8c/3Mfly6e9T57s6S6COXP0/cZ1XwKL117T50dGumMRETpWtKi7nrx59blz5nj3x+TJnn2sHTz9dPxVxxSWZVGoUCGuh3r16pGQkHDTAyWAG/oY7lrRHy2gLMtKj124oJ858SQtTT8X5CLqfx8oW5b+vNWTM2f0s06eXLyoVM2aUVmW6cKzTFc9587pz4o9uXRJH5uRmjWjVMaZwMRE3QZPzp/XbbUst4NLl/Tn3Bk5dUplKrNmzSh14YJ3LCVFPyflSWqqu0zX+3GVmZrqfWxSki7Dk8jIKJWU5B1LS7t8O0+f1mV61pOcrN+rJxcvevexy8H+/ZmFnj6duY/PntV94lnPxYuZ++NyfRwVFXXZvMmqjz3rUery/ZGxj6OiotL72BPP/vBk//7M10JSkrpqH0dFRV2xTFd/eJKcrPvUkwsX1GX7+HLX3OXKPHPm8n18vddcfHy8AlR8fLw6eFA/R+JJUpJ+VikjVatGZYrFxWV+T0eO6OePPN/P2bOXL3PTpsw5Uq1a5mvh6FH9vI4nKSlKbdniXc+Vytyzx7vvXNfCpk3eyexZpidbtui/edazd69+JsqT06d1XZ5cunR5d64yPdm/X79Xz/eUlKSfEctY5qZNmdtZtWpUpuvrcn3s6g/P+6JSl3d3uT6uUSMqU3+cPXt5d64yPd3t3Jn5Wjp6VDv1JDIy6or9cbk+PnHCu54TJy7fH55luhysWmVl6o8r9fHOnd71XKk/4uK873dRUVFefewiqz7OeF/MWKZSuo9d15yrnuu55vRHjN73RbtidLCU8YK4VoYMGXLdddn1HHEgDpQSB0p5D5ZM1mPnc3IyD270PH/zYNdzxMGNO/AFRjfSlY0zxQGIAxAHAAcPHqRChQrEx8dTvnx5XzfHJ0geaMSDOABnOTC6KGVISAjt2rUjJCTEZDW2RhyIAxAHQPp7D3QHgZ4HIB5AHICzHBidWQJYu3YtTZo0MVmF7REH4gDEgZP+L9IkgZ4HLsSDOADnODC+3clJz+VGAxRxIA5AHAgayQONeBAH4BwHxgdLZzz3kghQxIE4AHEgaCQPNOJBHIBzHBgfLEVGRpquwvaIA3EA4kDQSB5oxIM4AOc4MD5YWrhwoekqbI84EAcgDgSN5IFGPIgDcI4DY4Olixcv8tFHHzFixAgKFChAeHg4L774Ioc9t3P3E2bMmMG9995LyZIlCQoKItZzW2ngpZdeynTO2LFjCQoKyvRz/vz5HGp1zjFjxgxmz559RT/+glKKrl27Eh4eTr58+bj99tvZtm1b+t8DNQ+io6OpVauWIx7izA6GDh1KlSpVCA0NpVGjRixfvtzr7555sGTJksv2/44dO3K41TnDsmXLaNeuHeHh4fz73/9m1qxZvm6SETzfZ1BQ0BXfpysXAikPevbsSZMmTShUqBClS5fm119/ZefOnXSAR8AAACAASURBVL5u1lUxNlg6e/YsGzZsoE6dOmzYsIEZM2awa9cuHn74YVNV+owzZ87QsmVLevXqddm/Dxo06LLxwoULc+TIEa+f0NBQk031Ca7PpK/kx1/o06cP/fr1Y8iQIaxdu5awsDDuuecekpKSgMDNg06dOhEXF8fatWt93RTjTJkyhbfffptPP/2UjRs3ctttt3H//fdz4MCB9GMulwc7d+706v8aNWrkZLNzjDNnzlCvXj2GDBni66YY5VrfZ8ZcCIQ8WLp0KZ06deKPP/4gJiaG3bt307ZtW/s/u5STK2CuWbPmf9te7L/6wQ5k3759ClAbN2686rFjxoxRRYoUyYFW2Yfr8eM00tLSVFhYmOrVq1d67Pz586pIkSJq+PDhVzzP3/Pg4kWlduzQWzc4abXeG6Vp06bq9ddf94pFRkaqjz/++LLHL168WAHq1OX2ifFzADVz5kxfN8M41/I+AzkPjh49qgC1dOlSXzclS4w/s9S9e/f03y3LIigoiKJFi5qu1lZ4OvAkOTmZSpUqUb58eR566CE2btyYwy3LOa7kwF/Yt28fCQkJtG3bNj0WEhJCmzZtWLlyJRB4eXD2LLRuDZGRUL48LFjg6xaZ5cKFC6xfv94rBwDatm2bngNw+Txo0KABZcuW5a677mLx4sXG2yrYg4y5EIh50KNHDwCKFy/u45ZkjfHBUseOHQE4f/48H3/8Mc8991zALUjncuBJZGQkY8eOZc6cOUyePJnQ0FBatmzJ7t27fdBC81zOgT+RkJAAQJkyZbziZcqUSf9boOXBhAmwapX+/dw5+PRT37bHNMePHyc1NTXLHADvPChbtiwjR45k+vTpzJgxg5o1a3LXXXexbNmyHGu34DtcuRCoeaCUYseOHbRq1Yo6der4ujlZkm2DpYkTJ1KwYMH0H9dDjZMnT+bixYs888wzpKWlMXTo0Oyq0idc6X1mxeTJkzPFmjVrxvPPP0+9evW47bbb+PHHH4mIiGDw4MEmmp1jZJUH/kTG93nx4kUAgoKCvI5TSqXHAikPADLuDWB2rwD7kFUOgHce1KxZk1dffZWGDRvSvHlzhg4dyoMPPkjfvn1zrL2C73DlQqDmwZtvvsmaNWsc8e9D7uwq6OGHH+bWW29Nf12uXDlA/2Pw9NNPs2/fPn777TfHzypd6X1mxW233XbVY3LlykWTJk0cP6NwJT/X4sBJZHyfKSkpgJ5hKlu2bHr86NGj6TMNgZQHAC+8AOPG6dmlfPngq6+gfXtft8ocJUuWJDg42GsWCbxzAK6eB82aNWPChAlG2ijYi6xywd/zoHPnzsyZM4fvv//eERtrZ9tgqVChQhQqVMgrdvHiRTp16kRycjKLFy+mRIkS2VWdz7jc+7waf/31F3Xr1s3yGKUUsbGx3HLLLTfTPJ9zJT/X4sBJZHyfSinCwsKIiYmhQYMGgH6GZenSpfTu3RsIrDwAyJ8fli2DPXugVCnIk8fXLTJL3rx5adSoETExMTz22GPp8ZiYGB555JH011fLg40bN3oNuAX/Jatc8Nc8UErRuXNnZs6cyZIlS9i+fbuvm3RNZNtgKSOXLl3iySef5M8//2ThwoWkpqam/x9X8eLFyZs3r6mqc5yTJ09y4MCB9DWkXGtGhIWFERYWRnBwMC+++CLlypWjZ8+eAHTr1o1mzZpRo0YNEhMTGTRoELGxsURHR/vsfZji5MmT7N+/n9y5dbpl9OMPBAUF8fbbb9OjRw9q1KhBjRo16NGjB/nz5+e5554DCMg8yJ1bP+ANkJjo27bkBO+++y4vvPACjRs3pnnz5owcOZIDBw7w+uuvA9ClSxdWr16dvoTKgAEDqFy5MrVr1+bChQtMmDCB6dOnM336dF++DWMkJyezZ8+e9Nf79u0jNjaW4sWLU7FiRR+2LHu52vvs0qULhw4dov3/ploDKQ86derEpEmTmD17NoUKFSIxMZGEhASKFClCvnz5fN28K2Pqa3aur4lf7mfx4sWmqvUJY8aMuez7/Pzzz5VSSq1fv161adNGdejQIf2ct99+W1WsWFHlzZtXlSpVSrVt21atXLnSN2/AMFfz4y+kpaWpzz//XIWFhamQkBDVunVrtWXLlvS/B3oeBMLSAUopFR0drSpVqqTy5s2rGjZs6PWV6A4dOqhGjRqlv+7du7eqVq2aCg0NVcWKFVOtWrVSP//8sy+anSO4viKf8cfzmvAHrvY+O3TooNq0aaPWr1+vlAqsPLjSuGDMmDG+blqWGF9nKas1ZgIFcSAOlBIHgTJYuhqBngcuxIM4UMo5DoKUMvsdlWPHjlGqVCmTVdgecSAOQBwkJiZSpEgRLMty/Bc9boZAzwMX4kEcgHMcGF9nacSIEaarsD3iQBxA4DoItL3hrkag5kFGxIM4AOc4MD6zJAiCADKzJAiCc8nR7U4CFXEgDsD/HWzapNdV8sON0rMVf8+Da0U8iANwjgPjM0tnz54lf/78JquwPeJAHIB/O/jpJ3jsMbh0CUJDYeFCaNnS+xiZWdL4cx5cD+JBHIBzHBifWRo2bJjpKmyPOBAH4N8Ovv1WD5QAzp+HMWN82x474895cD2IB3EAznFgfLD00EMPma7C9ogDcQD+7SDD3rGZXgtu/DkPrgfxIA7AOQ6MD5Y2bdpkugrbIw7EAfi3gx494M47oWBBaNcOunTxdYvsiz/nwfUgHsQBOMeBse1OXPjDfnA3izgQB+DfDkqWhEWLfN0KZ+DPeXA9iAdxAM5xYHxmydZ7veQQ4kAcgDgQNJIHGvEgDsA5DowPlnbt2mW6CtsjDsQBiANBI3mgEQ/iAJzjwPjSAfHx8VSoUMFkFbZHHIgD8C8H27bB8ePQrBmEhFzbObJ0gMaf8uBmEA/iAJzjwPjM0rhx40xXYXvEgTgA/3EwYADccgvcfjvcdhucO5f18bLdiTf+kgc3i3gQB+AcB7LdiSAI10WRIpCY6H49ZQo8/fTVz5OZJUEQnIpsd5IDiANxAP7jIONiuwUK+KYdTsVf8uBmEQ/iAJzjwPjMUmpqKsHBwSarsD3iQByA/ziYNw/at4fkZOjQQa/WHRR09fNkZknjL3lws4gHcQDOcWB8ZqlPnz6mq7A94kAcgP84eOABOHVKfxQ3duy1DZQEN/6SBzeLeBAH4BwHxmeW9u/fT6VKlUxWYXvEgTgAcSAzS5pAzwMX4kEcgHMcGJ9ZWrZsmekqbI84EAfgTAebN8MLL8C//gUHDvi6Nf6BE/PABOJBHIBzHBjf7qRKlSqmq7A94kAcgPMcnDih93s7cUK/XrYMtm8HBzxeYGuclgemEA/iAJzjwPjM0qVLl0xXYXvEgTgA5znYudM9UALYvRuOHvVde/wFp+WBKcSDOADnODA+WEpISDBdhe0RB+IAnOegZk3w3OOyRg0oXdp37fEXnJYHphAP4gCc48D4x3CNGjUyXYXtEQfiAJznoEQJWLwYvv4aQkPhP/+Rj+CyA6flgSnEgzgA5zgwPrM0a9Ys01XYHnEgDsCZDm65BcaPh5Ej4Ua3b5LtTrxxYh6YQDyIA3COA+NLB5w/f57Q0FCTVdgecSAOwN4OUlPhlVdg6lSoXh2mTdMfu2UnsnSAxs55kJOIB3EAznFgfGapb9++pquwPeJAHIC9HYwZA+PGwdmzermAN97wdYv8FzvnQU4iHsQBOMeBbKQrCAI9esCnn7pf16kDW7Zkbx0ysyQIglORjXRzAHEgDsDeDp55BkqWdL9+803ftcXfsXMe5CTiQRyAcxwYn1lKSEggLCzMZBW2RxyIA7C/g0OHYMkSqFYNmjXL/vJlZklj9zzIKcSDOADnODA+szR37lzTVdgecSAOwD4OTp2Cxx/Xg6JOncC1Jly5cvCPf5gZKAlu7JIHvkY8iANwjgPjg6X69eubrsL2iANxAPZx8P77MHMm7N0LQ4fCkCG+blFgYZc88DXiQRyAcxwYHyyd8NwvIUARB+IA7ONg714FdAXCgXz07Xs727Zty/KcsWPHEhQUlOnn/PnzOdBi/8IueeBrxIM4AOc4MD5YOnfunOkqbI84EAdgHwfFi/cB+gFDyJ17LTVrhnHPPfeQlJSU5XmFCxfmyJEjXj9OWB/FbtglD3yNeBAH4BwHxrc7qZHdK9s5EHEgDsB3Dv78EywL6tWDXLkUK1cO4OWXPyUy8nHuvBPq1BlHmTJlmDRpEq+99toVywkKCnLEg5h2R64FjXgQB+AcB8ZnlhYvXmy6CtsjDsQB+MZB//56Je5GjeCBB2D37n0kJCTw5ptt+eADHQ8JCaFNmzasXLkyy7KSk5OpVKkS5cuX56GHHmLjxo1ZHp+SkkJiYqLXjyDXggvxIA7AOQ6Cu3bt2vVGTpw8eTL58+dn1KhRNG7cmF69etG6dev/b+/cw6qs0gX+UzFExTC8kBcUJRPUvIEXNDs1jU5ZZjN1pplTOnWynJw8XU51uttkXLyhKGlKjhfUxzSvSCpaKjl4QWTE8H4BCTG5SyIa7PPHmr1xU5kpC77Ffn/Pw+P+9l7stfw97/f5+n7rW4uJEyfi7+/PZ599Rnl5OTabjUOHDmGz2Vi2bBkBAQFMnjzZ0bZ79+7Mnz+fRo0asXv3bo4fP05JSQnr1q2jQ4cOREZGOtoGBQURFRWFt7c3X375JTk5OeTk5LB161a8vb2ZOXOmo+2gQYOIiIjA19eX9evXc+HCBU6ePMmuXbtwd3dn/vz59O3b12ncXbp0YdmyZVRUVJCWlkZaWhrl5eUsX76crl27MmXKFEfbu+66i5iYGDw8PEhKSuLkyZMUFxcTFxdHu3btmD59uqPtU089xSeffELLli3ZsmUL3333HdnZ2Wzbto3mzZsza9YsBg8ezEcffcTgwYMJDQ2lY8eOrF27lpKSEo4fP86ePXtwd3dnwYIF9O7dm4iICMf333nnnSxduhSA1NRUvvnmG65cucKKFSvo0qWL07h79uzJvHnzaNKkCTt37iQjI4OCggLi4+Np27at07j79etHZGQkrVq1IiEhgdzcXLKysti+fTteXl7Mnj2bkJAQQkNDHb/j5+fH6tWruXjxIkePHiU5ORk3NzdSUlIICgpyGndAQACxsbHUr1+flJQUDh8+TFlZGStXrsTf35+pU6c62vbq1YtPPvkET09PEhMTyczMpKCggI0bN+Lj48OMGTMcbfv378+0adPw8fFh06ZN5OXlcebMGRITE2nWrBlz5sxhwIABTuPu1KkTn3/+OWVlZRw6dIiUlBQaNGjA4sWL6dGjB5MmTXK0DQwMZNGiRbi5uZGcnMyRI0coLS1l9erVdOrUiWnTpjna9u7dm9mzZ9OsWTPy8/M5d+4cubm5bN68mdatWzuNe+DAgUyZMoU2bdoQHx9PYWEhGRkZfP311zRt2pS5c+fSv39/wsLCnM61FStWcPnyZdLT00lNTQVgyZIlBAR04/77J1NRMQSYyIkT3cjOjuTQoSQGDBhAVlYWFy9eZM2aNZw/f56kpCTGjx/PxIkT6dOnD9HR0TRv3pyvvvqKvLw8goOD6dOnD6NHj2b16tVMnTqV3Nxc7r//fiZNmkS7du2Ii4ujqKiIU6dO8cYbbzB69GjCw8MJDw8nMjJSXXQaNKBr166Oa8TBgwc5cOCAy1wjMjIy8PPzczrXgoODiYqKcqlrhJ+fH6dPn3ZcIxYuXEivXr1c6hqxfv16goODHdeIHTt2kJWVVWPXiG7dujmda926dWPhwoU0bNiQvXv3cuzYMcc1omPHjk7XtqrXiOzsbM6fP09CQgItW7YkKirK0TYkJOQnrxFJSUn07duXRYsWXTOPOHjwIP7+/jeZ7twkNs18+OGHuruwPOJAHNhsNe+gosJmc3ePtUETx8/UqdtsgC07O9up7bPPPmsbNmzYdX93eXm5rWfPnrYXX3zxZ9tcunTJVlRU5Pg5c+aMDbAVFRXd8N+pLiDngkI8iAObzRwHst2JINRh5s27wLhx57hyBR55BCZOLKNHj+6kpKTQu3dvR7tHHnkELy8vFi5ceN3fPWbMGLKysvjiiy+uq70sSikIgqnIdic1gDgQB6Dfwbx54OsLAQGQmKjeGzPGk9xcf86e9WfNGn+6dQvEx8eHhIQEx+9dvnyZ7du3ExISct192Ww2UlNTuf3226v7r1HnkXNBIR7EAZjjQHtlqbCwEC8vL51dWB5xIA5Ar4NDh9TmtxUV6vi22+D8eaj/E/8dioiIICwsjH/84x/ccccdhIaGsm3bNo4cOYKnpycAo0aNom3btoSFhQHwwQcfMGDAAO644w6Ki4uJiopi8eLF7Ny5k379+l3XGKWypJBzQSEexAGY40B7ZSk2NlZ3F5ZHHIgD0OsgO7syUQLIz4efW77k9ddf56WXXuKFF14gKCiIb7/9ls2bNzsSJYDMzEzOnj3rOC4sLOS5554jICCAoUOH8u2337Jjx47rTpSESuRcUIgHcQDmONBeWUpLS6NHjx46u7A84kAcgF4H338P/fpBero6fvxx+OwzLV3dMFJZUsi5oBAP4gDMcaC9snTixAndXVgecSAOoPocVFTA+PHQoQM88AB89x00aQI7d8LcubB0KSxbVi1dCRqQc0EhHsQBmONA+wret9xyi+4uLI84EAdQfQ7mzYOZM9XrzEx48UVYvhy8vGDMmGrpQtCInAsK8SAOwBwH2itLrVu31t2F5REH4gCqz8Hp087HGRnV8rVCDSHngkI8iAMwx4H2ZGnfvn26u7A84kAcwI07+OEH9WSbfXbh44/D1fvXPvlkNQxOqDHkXFCIB3EA5jjQPsH73LlzxmSOuhAH4gBuzMG//qXmJZ09CyEhsHEjeHrCwYOQkACBgTBsmKYBVxPR0dFER0dTXl7O0aNHXX6Ct5wLCvEgDsAcB9orS/PmzdPdheURB+IAbszBq6+qRAngn/+E6Gj1unt3ePll6ydKAOPGjSM9PZ29e/fW9lAsgZwLCvEgDsAcB7LdiSBYmMGD1VNudt57Dz74oPbGczPI0gGCIJiKbHdSA4gDcQC/7KCsDD7+GCZPhnPn1HvvvFM5P6lDB3juOc2DFLQj54JCPIgDMMeB9spSaWkpHh4eOruwPOJAHMAvO3jwQbDvSevnB/v3w623QlYWnDoFPXuCyQUZqSwp5FxQiAdxAOY40F5Z+vjjj3V3YXnEgTiAazu4cKEyUQKVHCUnq9ft2sHdd5udKAmVyLmgEA/iAMxxoD1ZGjFihO4uLI84EAfwYwelpVBerl43aQI+PpWfubmp225C3UPOBYV4EAdgjgPtyVJKSoruLiyPOBAH4Oxg/Hho3Fitur1uHdSvD3FxMHAg9OgBsbHg71+LgxW0IeeCQjyIAzDHgfbtTlq2bKm7C8sjDsQBVDrYvr1yu5KSEhg9GgoKoG9ftTyAULeRc0EhHsQBmONAe2XJ3d1ddxeWRxyIA6h0cOGC8/vff682xxVcAzkXFOJBHIA5DrQnS6bsKKwTceC6Dmw2mDhRTdCeMOEEpaXw29+q22123nlH3YYTXANXPReqIh7EAZjjQPvSAZmZmfj6+urswvKIA9d1MHcuPP+8/SiT8eN9mTFDram0cyc0bw69e9fmCPUj250446rnQlXEgzgAcxxo///s4sWLdXdhecSB6zo4cODqo8WkpalX7u5w3311P1EC2e6kKq56LlRFPIgDMMeB9spSRUUF9V38HoM4cA0HP/wAkZFw/Dj84Q8wdChs2AAPPWRvUcGkSfV57bXaHGXtIYtSKlzhXLgexIM4AHMcaB9haGio7i4sjzhwDQcvvwyvv65uvT3wgLrNNny4SpheegkefTTUZRMloRJXOBeuB/EgDsAcB1JZqgHEgWs4CAyEQ4cqjydOhLffrjx2BQfXQipLClePAzviQRyAOQ60jzAsLEx3F5ZHHNQ9BwUF8P778H//B2fOqPf69HFuU/W4rjkQbgyJA4V4EAdgjgN5Gq4GEAd1y0FFBQQHg33hWV9fOHhQvX7zTThxAh5/HJ55xvn36pKDG0EqSwpXjwM74kEcgDkOtFeWtm3bprsLyyMO6paDc+cqEyWAzEz45hvw9IRZs9SGuFUTJahbDoQbR+JAIR7EAZjjQHuy1LlzZ91dWB5xYLaDpCQYMwbeekutvu3tDbffXvl506bg5/fL32OyA6H6kDhQiAdxAOY40L43XFlZme4uLI84MNfB0aPwm99Aaak6Tk2F+HjYtEnNVyorg3ffhdatf/m7THUgVC8SBwrxIA7AHAfak6Xz58/r7sLyiANzHezZU5koAdgrxj16qCUBfg2mOhCqF4kDhXgQB2COA+234fpUfSTIBREHZjgoL1e32kJC4H/+R1WNevaEhg0r2wQH3/j3m+BA0I/EgUI8iAMwx4H2ZGndunW6u7A84sAMB9OnQ1iYmqMUFQUTJqgK0po1MGIEPPssrFx5499vggMdREdHExgYSPDNZJp1CFeNg6qIB3EA5jjQvnRAaWkpHh4eOruwPOLAug5++AHc/n0z+umnYcGCys8efhiq8zy2qoOaQpYOULh6HNgRD+IAzHGgvbI0depU3V1YHnFgPQf79qn1kdzd4ckn1S244cOd2zz4YPX2aTUHQu0gcaAQD+IAzHGgvbIkCFakb1/ntZJiY+G//gvWr4ft29XcpD/+sfbGVxeRypIgCKaivbI0ceJE3V1YHnFQuw4qKtRCkRs2qAoSqO1KrsZ+/PDDMGWKnkRJ4kAAiQM74kEcgDkOtFeWzp07R+vrWYSmDiMOas+BzQaPPQarVqnj4cPVPKS5c+GFF9TnHTvC7t3QqpXesbh6HEhlSeHqcWBHPIgDMMeB9srS2rVrdXdhecRB7Tk4fboyUQJVXTp8GMaOVbfh1q1Tf+pOlEDiQFBIHCjEgzgAcxxoT5b69u2ruwvLIw5qzsHKlap6NGYM5OWp/drcrlp6tUEDuPVW9bpXL3XbrXnzGhmaxIEASBzYEQ/iAMxxoH0F73PnzunuwvKIg5pxsHu3mmtUUaGOs7LUXKWYGPjb39Qtt2nToG1b7UP5SSQOBJA4sCMexAGY40B7snT58mXdXVgecaDHQUmJus3m5wdNmsD+/ZWJEqjlAQBGj1Y/tY3EgQASB3bEgzgAcxxovw1nyo7COhEH1e/gyBHo0kWtsN2lCxw7BoMHq3WT7Nx3X7V2edNIHAggcWBHPIgDMMeB9mRp+/bturuwPOKg+h2EhsLZs+p1drbapqR7d9iyBZ57Dj74wHk1bivgqnEg250446pxUBXxIA7AHAfalw4oLCzEy8tLZxeWRxzcnIOCAnj3XZUcPfOMmsD9l7/AwoWVbZ55Bj79tHrGqgtXjwNZOkDh6nFgRzyIAzDHgfbK0qxZs3R3YXnEwc05+POfITpaLQEwcqSam/T229Cunfq8fXt4661qGqhGJA4EkDiwIx7EAZjjQLY7ESyFzQa7dqlH/Pv1U+95e0N+fmWbefPg2WehtBQyM9Uebwbsw+jySGVJEARTke1OagBxcH0ObDb4058gJAT691dzjwDuvruyzS23wIAB6rWHB9x5pzmJksSBABIHdsSDOABzHGivLBUVFXGrfRVAF0UcXJ+Db75Rk7Sv5swZ8PKCjz5Sc5ZGj4Z779U4UI24ehxIZUnh6nFgRzyIAzDHgfbK0qJFi3R3YXnEwU87eOst6NABhgxR6yU1buz8ef360KgRNG2qnnZbsMDcRAkkDgSFxIFCPIgDMMeB9mTpXpP/dasmxMGPHaxcqRKgzExITISnn1aLS4aGQr16as7SjBnQokUtDVgDpsfBqlWrGDZsGC1atKBevXqkpqbW9pCMxPQ4qC7EgzgAcxxoT5aOHTumuwvLIw4gJuYYL7+sNq4FlSRdjf34zTfh++/V6tx/+1vNjlE3psfB999/z6BBgwgPD6/toRiN6XFQXYgHcQDmONC+3YmHKbNvNeLqDmbOhBkzlIPp02HFChgxAv7+dygqUm1GjapsX1d1mR4HTz31FACnT5+u3YEYjulxUF2IB3EA5jjQnix5e3vr7sLyuJqDlBTIzVVPsXl4qM1sodLBpk3w2GNq77YNG6BjR5U81XVcLQ7KysooKytzHBcXF9fiaKyDq8XBzyEexAGY46DBhAkTJtzILy5btozGjRsTExNDUFAQ4eHhDBkyhIkTJ+Lv789nn31GeXk5S5Ys4eLFi9hsNpYtW0ZAQACTJ092tO3evTvz58+nUaNG7N69m+PHj1NSUsK6devo0KEDkZGRjrZBQUFERUXh7e3Nl19+SU5ODjk5OWzduhVvb29mzpzpaDto0CAiIiLw9fVl/fr1XLhwgZMnT7Jr1y7c3d2ZP38+ffv2dRp3ly5dWLZsGRUVFaSlpZGWlkZ5eTnLly+na9euTJkyxdH2rrvuIiYmBg8PD5KSkjh58iTFxcXExcXRrl07pk+f7mibn59PYmIiLVu2ZMuWLXz33XdkZ2ezbds2mjdvzqxZsxg8eDAfffQRgwcPJjQ0lI4dO7J27VpKSko4fvw4e/bswd3dnQULFtC7d28iIiIc33/nnXeydOlSAFJTU/nmm2+4cuUKK1asoEuXLk7j7tmzJ/PmzaNJkybs3LmTjIwMCgoKiI+Pp23btk7j7tevH5GRkbRq1YqEhARyc3PJyspi+/bteHl5MXv2bEJCQggNDXX8Tny8H6NGrSY29iLLlx+lefNk8vPd2L//Q+AhIILRo4eQkDCRQYMCOHYsloCA+qSkpHD48GHKyspYuXIl/v7+TJ061fG9vXr14pNPPsHT05PExEQyMzMpKChg48aN+Pj4MGPGDEfb/v37M23aNHx8fNi0aRN5eXmcOXOGxMREmjVrxpw5cxgwYIDTuDt16sTnn39OWVkZhw4dIiUlhQYNGrB48WJ69OjBpEmTHG0DAwNZtGgRbm5uJCcnc+TIEUpLS1m9ejWdB9qtdgAADxlJREFUOnVi2rRpjra9e/dm9uzZjn5vueUWcnNz2bx5M61bt3Ya98CBA5kyZQpt2rQhPj6ewsJCMjIy+Prrr2natClz586lf//+hIWFOZ1rK1as4PLly6SnpzvmES1ZsoRu3bo5nWvdunVj4cKFNGzYkL1793Ls2DEuXrzImjVr6Nixo9O4+/TpQ3R0NM2bN+err74iOzub8+fPk5CQQKNGjfj0008ZO3YsMTExhISEMGnSJNq1a0dcXBxFRUWcOnWKN954g9GjRxMeHk54eDiRkZHqotOgAV27dnVcIw4ePMiBAwdc5hoxY8YMBg0a5HSuBQcHExUV5RLXCD8/P1avXk1iYiL16tUjOTkZNzc3Fi5cSK9evZzGHRAQQGxsLPXr181rxLhx4xg+fLjjGrFjxw6ysrKMv0a0bNmSqKgoR9ufu0YkJSWRnJzMrl27rplHHDx4EH9//5vLdm4S7UsH5OTk4OPjo7MLy1OXHVy6pCZjN2yojps2VXOO7KxYAQ8/DOPH53DokA/33gvvv6+edHM1TIqDJUuW8PzzzzuOv/jiC+7+94JXp0+fxs/Pj/3799OrV6+f/Y6fqiy1b9/e5ZcOMCkOdCIexAGY40D7P1kxMTG6u7A8ddXBhAnqcf+mTSv3aav6b6CnJ7i7Q/v2MezYoTa4dcVECcyKgxEjRpCamur4CQoK+tXf4e7uTrNmzZx+BLPiQCfiQRyAOQ5kuxPhhqi6gGTDhlBYCF9/Df/5n1BcrFbgnjOn9sYo6OF6K0tVkUUpBUEwFdnupAYw3YHNph7pv+MOePBByMlxvtUGcOUKlJXB0KFqH7eLF50TJdMdVAemO8jPzyc1NZX09HQAjhw5QmpqKjk5ObU8MrMwPQ6qC/EgDsAcB9orS5cuXaJRo0Y6u7A8pjtYvNj50f4RI2D1ajUXKT5evffiixAV9fPfYbqD6sB0BwsWLODpp5/+0fvvv/8+1/OciFSWFKbHQXUhHsQBmONAe2Vp5syZuruwPCY5KCtTVaThw9X6SACnTjm3OXVKzTtatw62bYPdu6+dKIFZDnRhuoO//OUv2Gy2H/3c4AO1LovpcVBdiAdxAOY40L7O0siRI3V3YXlMcvDmm/DvJ7yJj4fmzWHkSAgPh9JS9f6f/qT+bNAA7rnn+r7XJAe6EAcCSBzYEQ/iAMxxoL2ytG/fPt1dWB6rOigqgrffVtuKHDyo3ktOdm6TnAx33QV79sCkSer225tv/vq+rOqgJhEHAkgc2BEP4gDMcaC9smTC+gm6saqDESNgxw71eskS9YTbffepjW3t2Pc47N7d+em3X4tVHdQk4kAAiQM74kEcgDkOtCdLbm7au7A8VnBw5gzMn6/WPfrrX8HNrTJRAvXY/7598N57cNttcOAA/O538Mgj1dO/FRzUNuJAAIkDO+JBHIA5DrTfhjtVdXawC1LbDvLzYeBAtYjkq6+qOUgNGzpXitzdITBQTdwePx5iYtT+bdVFbTuwAuJAAIkDO+JBHIA5DrQnS0OGDNHdheWpaQf79kFYGKxfr4737oVvv638fPNmtQ7Shg1qsvYDD6gn2zp31jcmiQPXdRAdHU1gYCDBwcG1PRRL4KpxUBXxIA7AHAfakyX75o2uTE062LULQkLgrbfUnKQZM6BTp8q92wB8fdU2Jb6+sHSpeupt6FC945I4cF0H48aNIz09nb1799b2UCyBq8ZBVcSDOABzHGhflLK8vJwGDRro7MLy6HSwfj0cPgzDhqmn1t54Qz21ZmfgQPjnP2HVKoiIUHOWpk+/ucnaN4LEgTiQRSkVrh4HdsSDOABzHGivLIWFhenuwvLocjB1qqoevf469O8PKSmqinQ19uPf/14tHrllS80nSiBxAOJAUEgcKMSDOABzHMhGuoZQVgaffqrmGo0aBa1aQVCQmp9k55134IMP4LXXIC4OunWDefPA27v2xi0IdqSyJAiCqchGujVAdTh45BEYN04lQgMHQnEx+Pk5t/HzU0+zTZ0KR46oW29WSZQkDsSBoJA4UIgHcQDmONBeWTpz5gzt27fX2YXl+bUOjh+HRYvUViMvvACXLoGXl3ObL79UlaNnnlFzlkaOhMmToV69ah58NSFxIA6ksqRw9TiwIx7EAZjjQHtlaevWrbq7sDy/xkFOjqocffghvPIK/PGP0LSpuu1mx81NPcnWqpW63Xb8OEyZYt1ECSQOQBwICokDhXgQB2COA+3JUpcuXXR3YXmu5WDlSnjuOZg9G2w29eRabm7l53Fx6tZaXJyaxN2jh9qaROeaSDqQOBAHgkLiQCEexAGY40D7OuOl9q3qXZifc/D55/D445XHhYXw0EPQoAGUl6v3unRRFaPgYLWGkqlIHIgDQSFxoBAP4gDMcaC9spSXl6e7C8uTl5dHSQm89BI8/DDExqr3q1Yft25VlaPYWFVF+t3vYO3amh+vDiQOxIGgkDhQiAdxAOY40F5Z6tmzp+4uLE/Pnj0ZO1bdPgN1S611a+jb17ldnz7qzyeeUD91CYkD13UQHR1NdHQ05fZyqYvjqnFQFfEgDsAcB9orS3Fxcbq7sBxJSTBggEqGNmxQDqru9LB3L/z3f6uJ2cOGqZW3DXmC8oZwxTioiqs6kO1OnHHVOKiKeBAHYI4D7UsHXLx4kcaNG+vswlJcugRt20J+vjpu1AgOHrzIpEmNmTtXvVe/PmzfDoMH1944axpXi4OfwtUdyNIBClePAzviQRyAOQ60V5amTZumu4ta5ZVXVELk66ueZMvLq0yUQCVPkydPY+ZMVTl6+ml1G86VEiWo+3FwPYgDASQO7IgHcQDmOJDtTn4FFy9CRga0b6/WPtq4ER54oPLzTp3g2DEYMgR27lTvde2qtiQxIHEWBK1IZUkQBFOR7U6uk1OnICAAAgPhjjsgPV1Vka4mL0/dYtu0CSIjISICvv4apk2rGw5uhroSBzeDOBBA4sCOeBAHYI4D7ZWl8+fP07JlS51daGHHDjhzBn77W7VS9l//CnPmVH7+xBNqIcn+/eHoUfXehAnw/vs//i5THVQn4kAcSGVJ4epxYEc8iAMwx4H2ytKqVat0d1HtTJoE99wDTz4JvXvD2bM/3c7LC/bsUatw79jx04kSmOmguhEH4kBQSBwoxIM4AHMcaE+WgoODdXdxU2Rnw2uvwf/+L3z7rXovOtr581Wr4PXXoUMH9d7tt8N776nXt94Kf/gD3H33z/dhdQc1gTgQB4JC4kAhHsQBmONA+6KUZ3+uLGMBysrgP/5DTcoGWLMG0tKgZUvIzKxs16oV+PnBoUOVE7ybNLn+fqzsoKYQB+JAUEgcKMSDOABzHGivLFlp1d7p0+Guu+DBB1UydPp0ZaIEcOIEnDwJ//iHmszdpAmMGwePPaY+9/BQT7f9mkQJrOWgthAH4kBQSBwoxIM4AHMcaK8sdezYUXcXP0l5OeTmQosWamPahAR4+WX1WVqamo8UH68+z81V73t7q6pRs2bqabfqorYcWAlx4LoOZLsTZ1w1DqoiHsQBmONAe2UpMTFRdxc/IiNDVYB8fKB7dzUX6fhx5zbHjqm1khIS1Oa2Dz0EmzerRKm6qQ0HVkMcuK4D2e7EGVeNg6qIB3EA5jjQvnRAfn4+t912m84uSEiAnBy1QGSLFvDMM+pWmp2xY+HVV9VebcXF6r1x42DWLK3DclATDqyOOBAHsnSAwtXjwI54EAdgjgPtlaWPP/5Y6/e/+y4MHQqjRqlk6Px5tcXI1Vy6BP7+sGsX/P3vMH8+REVpHZYTuh2YgDgQB4JC4kAhHsQBmOPAqO1O0tIgPBzc3NSj+507q3lGV+/FtmCBmsT9m99AQYGqNH31lbodJwhC7SGVJUEQTMXS251UVFS+LixUCdDSpbBokXp9+TK0bu38O61bq4Ukjx5VW40cPlz7iZIpy7nrRByIA0EhcaAQD+IAzHGgvbJUXFz8q/8XWV6ubqstXw6+vmr9oytXICjIud2pU6qq9Oc/qzlLY8eqypPVuBEHdQ1xIA6ksqRw9TiwIx7EAZjjQHtlacGCBb/YJj1dJUanT6vjRYtUBam8XCVEzz+vNq/18an8nc6doU0b6NNHVY8KC62ZKMH1OajriANxICgkDhTiQRyAOQ60r7N0//33X/Pz+HgYOVJVjpo2he3b1VyjqykoUI/0b9um9m1r2BDeegtuuUXfuKuTX3LgCogDcSAoJA4U4kEcgDkOtFeWDh8+7Hj93XcwZgz8/vewZYt6LzpaJUoAJSUQEwNPPAHt2qn36tWDV15Rr++8Ez79FObMUbfnTOFqB66KOBAHgkLiQCEexAGY40BrZamkBBo2rNwbZORISEpSr+Pj4V//Uk+zXY23t7q9tn8/JCaqzWv79NE5Sv00+bX7o9RBxIE4EBQSBwrxIA7AHAfaKktvvgmenvDoo7c5Foi8egHfsjKVLEVEQL9+ajmAYcPgjTfU5y1awKOPmp8oAUYsuKUbceC6DqKjowkMDDRmd3HduGocVEU8iAMwx4GWZOnAgcrJ1uXlB3j+eSgthXvuqWzTpIl6uu3222H3bnUrbuNGNW+prnHgwIHaHkKtIw5c14Fsd+KMq8ZBVcSDOABzHGhZOmDXLhg40H6UDbShqAhsNggNhbw8NXepf//q7tmaZGdn06ZNm9oeRq0iDsSBLB2gcPU4sCMexAGY40BLZalfP7UxrWI+r72mnma79VZ12y0mxnUSJYD58+fX9hBqHXEgDgSFxIFCPIgDMMeBtkUpKypUhcnDQ62oLQiCayOVJUEQTEXbBO/69SEkBDZsMGMpc52Yspy7TsSBOBAUEgcK8SAOwBwH2rc7KSsrw93dXWcXlkcciAMQB1JZUrh6HNgRD+IAzHGgfVHKGTNm6O7C8ogDcQDiQFBIHCjEgzgAcxxoryydOHGCzp076+zC8ogDcQDiQCpLClePAzviQRyAOQ60J0uCIAggyZIgCOYiyZIgCDWCzWbjwoULeHp6Uq9evdoejiAIwnUjyZIgCIIgCMI10D7BWxAEQRAEwWQkWRIEQRAEQbgGkiwJgiAIgiBcA0mWBEEQBEEQroEkS4IgCIIgCNdAkiVBEARBEIRrIMmSIAiCIAjCNZBkSRAEQRAE4RpIsiQIgiAIgnANJFkSBEEQBEG4Bv8PbO4Ez9a/IcIAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f(x) = r*x + x^3\n", "drawbif(f,-2,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bifurcação de Hopf\n", "\n", "A [bifurcação de Hopf](https://en.wikipedia.org/wiki/Hopf_bifurcation) é importante por dar orígem a equilíbrios periódicos denominados limit cycles. Bifurcações de Hopf ocorrem em sistemas com autovalores complexos e se dá quando o sinal da parte real destes, muda. Numa bifurcação de Hopf, não surgem novos equilíbrios, mas surge uma solução periódica em torno do equilíbrio original.\n", "\n", "Um exemplo simples de sistema apresentando uma bifurcação de Hopf é o modelo de Selkov.\n", "Modelo de Selkov\n", "\n", "Este modelo representa uma reação bioquímica importtante: a glicólise. Nesta reação a glicose é quebrada, dentro da célula, em piruvato.\n", "\n", "$$\\frac{dx}{dt} = -x + ay + x^2 y, $$\n", "\n", "$$\\frac{dy}{dt} = b - a y - x^2 y$$\n", "\n", "[Selkov, E., Model of glycolytic oscillations, (1968) Eur. J. Biochem. 4, 79-86](http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1968.tb00175.x/full).\n", "\n", "Vamos começar com uma simples simulação deste sistema:\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGGCAYAAACJ/96MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACT+ElEQVR4nO2dd3gUVRfG30lCGiGh9957RwXpUkUUARUQkSKKoiBYqAKiFJX2ARGkKEXpRUCq0gSkS6+h9w4J6e1+fxzW2dndJJtkd+/M7vk9zz7ZO7s7czI7O3Pm3HPeowghwDAMwzAMw6SMl2wDGIZhGIZh9A47TAzDMAzDMGnADhPDMAzDMEwasMPEMAzDMAyTBuwwMQzDMAzDpAE7TAzDMAzDMGnADhPDMAzDMEwasMPEMAzDMAyTBoZwmBQiWFEURbYtDMMwDMN4Hj6St2+XzHh4eDhCQkIQHh7ubHsYhmEYhvEs7ArGGCLCxDAMwzAMIxN2mBiGYRiGYdKAHSaGYRiGYZg0YIfJXbl2DRg6FKhRA8iRgx41agAjRgD378u2jmEYhmEMhSKEXXnXzsKujUdERPyX9B0cHOxsm4xNVBQwcCAwdy6QlGT7PT4+wLffAl9+CXDhIcMwDOPZ2HUhlF0llyLx8fFITEwEAMTGxqJcuXKIjY2Fj49rTfbx8YGvr69Lt5lhzp0DWrUCrlxJ/X2JicDgwcChQ8Dy5S4xjWEYhmGMjC4jTPHx8Th16hSSk5NdbY8VXl5eqFSpkv6dpsOHgcaNgcjI9H2udWtg7VqKOjEMwzCM52HcCFNiYiKSk5NRvHhxBAQESLMjJiYGV65cQWJior4dpsOHgQYNgJgY69dy5gReeIGm3vbuBR490r6+cSMwfjwwfLhrbGUYhmEYA6JLh8lEQEAAAgMDZZuB8PBwxMbGws/PD1mzZpVtjpbr14H27a2dpaxZgTlzgE6d1GVJSZS79PXXgHlkceRIoGJFWg/DMAzDMFbo2mHSC3/88QeioqIQHByMt956S19O02uvUUWcOUWLAjt2ACVKaJd7e5NzVKgQ0Lu3ujw5GRg7lh0mhmEYhkmBdMkKKIoyRFGUg4qiPFUU5Z6iKL8rilLOjs81UhTlsKIosYqiXFIUpU/GTXY9WbNmha+vLyIiIhAXFyfbHJVhw4AjR7TLChcG9u2zdpbMee89YMAA7bLDh4HvvnO8jQzDMAzjBqRXh6kRgFAALwBoDopQbVEUJcWQi6IoJQBsALALQA0AYwFMVRSlQ4YsloCfnx/8/Pxkm6Hln38oKmROtmzAnj1AgQJpf37MGODFF7XLhgwBHj92nI0MwzAM4yaka0pOCNHKfKwoSg8A9wDUAvB3Ch/rA+CaEOLTZ+MziqLUBvB5+kxl/uPBA+Ddd7XLFAXYuZOm4+whIAD48UegWjV1mRDA2bNA3bqOs5VhGIZh3IDMKn2HPPv7KJX31AWwxWLZZgC1ExISMrl5D2XsWODCBe2ygQNJyTs9VK0K9OqlXdayJRAWljn7GIZhGMbNyLDDpCiKAmASgN1CiJOpvDU/gLsWy+4C8Hnw4IHND8THx2fULPfnzBng11+1yxo0ACZMyNj65swB8uRRx0+fAlss/VuGYRiG8WwyE2GaDqAqgM52vNdSoFIBACWFthy//PJLJsxyczp10vaC8/cHxo3L3DorVNCO9ZavxTAMwzCSyZDDpCjKNACvAmgihLiRxtvvgKJM5uQFkJgrVy6bH+jRo0dGzHJ/btwAzp/XLrOVvJ1efv0VqF8f8Hp2OHz0EbBuXebWyTAMwzBuRHplBRRFUaYDaA+gqRDish0f2wuqqDOnBYBDWbJksfkBXatqy+LJE6BePSA2Vl2WLx/Q2Z4AXxoUKUL5T6ZWNAkJQGho5tfLMAzDMG5CeiNMoQC6AugC4KmiKPmfPf7rX6IoyjhFURaYfWYmgGKKokxSFKWCoig9AfQCkMGkGw/lyBFS9TZn61b7JATswTLalzOnY9bL6J+nTymXrXlzoHhx0vKqWpW0uiyLCxiGYTyU9Cp9f/js7w6L5T0AzHv2vACA/2rbhRCXFUV5GcBkAH0B3ALQTwixMr3GZoS9e/fi7NmzOHDgAFq1aoW7d+9i3bp1mD17NvLnt5wp1CnR0cDo0dplhQpZ5x5lhs8/J8HLP/8EcuQAgoJIviB3bsdtg9EXycnUJmfSJOumzTdvAidOAFOmUIPmuXMd55wzDMMYkPTqMKXZ0VcI0d3Gsp0AaqZnW6kREQH07Ent0mbPBlKawQsPD0dYWBh69OiBoKAgTJ48GVu3bsW2bdvg7+/vKHOcz6RJ1OrERL581DTXK7OqEGZkzQrMm0dO2IMHtGP//Rc4dMhx22D0w7lzwCuv2BdB2rgRKFeOqidfeMH5tjEMw+gQB15xXceWLcDKlcCCBcCBAym/L0uWLOj8LMfnwIEDaNeuHby9vbFkyRJkz57dNcY6AsuLWqVKQJUqjt/O8eNape/Dh60jD4zx2boVqF07fdNtT58CDRsCmzY5zy6GYRgdY0iH6aWXgFatgA4d6LyfEoGBgTAllv/555946aWXAFDkyTD8/DN5hiZ8fIB+/ZyzrQoVKNJkonx5mppj3IdNm2iKzZYj7OsL1KoFNGtGeUyWJCQAXbpQdIphAHKkWYCY8RAM6TDlyEGzBCtWkAxRSmzcuBGTJ0/GxYsXERYWhsqVKyM5ORkLzB0QvTNmDLUsMTFoEPDaa87ZVuHCwObNwOuvk0f62Wd0QmTcg127gLZtrS9wfn7A998DcXE0Bfvnn1RgsG2bdQ7b48dAkyYcefRUkpOpQKBaNSAwEAgOpuMnSxbgueeAZctkW8gwTsOQDpO93LlzB5cuXcLmzZsxdOhQTJ06FTNmzMDbb78t2zT7iImxvriVLevcbb74IlCzJkUievcGnn8eMFJEjrFNWBjw5ptAYqJ2edGipB7/xRfWn2nSBLh8mSrmzLl927oIgXF/1qyhxP/evWn6PiaGlgtBx9XBg8BbbwElSgCnTsm1ldEf164Bf/9NDeIfpdZNTb8oQliKcLsUmxuPjo7GmTNnUKFCBQQGBrraJis7rly5gidPnuDp06fo1q0bcrqi5D4hgS5Ye/aoy9q3B5YupWk5ZxISQpn1JhYtcozeEyOPqlWp6s2c6tWB7duBtPL5nj6lpO/bt7XLV68G2rVzoJGMLomPp9//qlX2fyZLFmDmTKrOYTyX06eBb74hIeSoKO1r2bNTL9MhQ6xlbVxPmgVtgJtHmAzNyZNaZwmgEm9nO0sAzXmmNmaMxQcfWDtLlSpR8rc9xQ/ZstF0nuV7ly51lIWMXrl7F6hTJ33OEkA3fL16AbNmOccuRt9ERQHdulFx0pIl1s4SQGLMEycCpUpp83R1DDtMeiUpCfD2VscBAfZd3BzBggVA/vzknH3yCeUzMcZkxw7ri1auXJQEmJ5IaalSNBVjzpIlwA8/ZNpERqeEhwONGtH0myV+fhRdnDED+PFHOkfY6tzwwQd0rDGew/HjVEC0cKHaPSI1wsOBd9+1nRagM9hh0iMXLtAJKCmJxjlz0sUpWzbXbL9hQ5p+OXSIpnKOHHHNdhnHcu0a5ZRYsnMntcNJL+PHU4WdOZzk657ExAANGtiuiOzUiXJQVq8G+vQBPvyQnKIrV2ia15JevYCLF51tMaMHtm4F6ta17kphDxMmUFGTjmGHSY/8+ivw8KE6LlkSePVV19qwfTuF4nv3puqXDRtcu30m80yeDNy7p102ZgxNx2UELy/gjTe0y27eBI4dy9j6GH2SmEgFApbTuFmyAPPnA4sXU4WcJQULUuJ3c4vWobdvk9PEuDd//w20bEmdKSwpWRKYNo0c5zNnqMNASIj1+yZMAH75xfm2ZhB2mPSIpfaRjPYkv/yiVuglJpIeFGMctmyxbqDcpAkwdGjm1tu9O03TmlTmb9+mk6R5U2jG2IwbB/zxh3aZry9dELt1S/2zPj5UTdewoXb53r0seurO7NlD5wHTrIiJoCCKRF68CHz8MTlO5csDI0bQzVzHjtr3JycD772n2x6W7DDpjb//Vku2FYWiAdOmud6OggW1Y+4jZiwGDtRKUmTPDkydmvn1Kgrwzjva3IS7d4H79zO/bkY+a9fS3b85gYGkz2ZvW5yAALrhMs+5jI8npeEHDxxmKqMTHj2iiKTlTVPp0lQll1Ilra8vsHw58OWX2uXJyXSs6FADkB0mvfHFF+qBIgTQowcdeK5m+HASyMyZk/JWvvnG9TYwGWPNGtJdMuebb4DKlR2z/goVgOLF1XGuXMClS45ZNyOPpCTqImAZJZg6FWjcOH3rKlkS+P137bLoaJqyY9yHuDgqDLh1S7u8ShVg/377ciW/+87aqTp+nKrCdQY7THrDsqrAnioDZxAURCe8hw8pf8lIvfc8mbt3KdE7Pl5dVqMGTaU5iqAgkhkwOWAPHwItWgBHjzpuG4xrEYJ03q5e1S4fMCDj+Uf165PwrTmdO3NrHXfim29IAsecUqWoOjc9VbjLlwMVK2qXLVhgrf0mGWM6TEIAs2eToGIqJCUlYfr06ejevTsOPruzuXbt2n895XTH3r10oTPlh1SpQvO5Mlm0iE56rVpZRy0Y/bF7N931mbNkieN7AhYurG3UHB9P08mMMTl0iKbjzKlTB/j224yv09sb+Osv7fR+eDhdHBnjs3YtFZGYkzUrnYPSK+7s40OaTOY6gxcu0AyLjjCmw7RhA/D++8DbbwOHD6f4ttWrV6NTp06IiYnB5cuXAVAT3vz587vKUvt5+hRo04ZCkcnJat6ATNHI48cpX+XAAbLFWT3sGMdg+r7MadDAeVO65iXkimK7pJzRP3fvWiffenlR4ndmOy0EBdGNnzkXL2r7YzLG49Ej6wKSgABK7M/o9bVVK2tZAcvolWSM6TCVKkWaRHnzAoUKpfi2Zs2awdfXF9u2bUObNm0AADt27EDj9M7Hu4K7d7V37NHR8hMkw8K0U4Lnz/OJTs+sWqX29wLUZspeTvqZL1hAgnN581IX7OHDgTt3nLMtxnn8/DNpdplQFOCnn+h7dQQ//aTNn5s3Dxg50jHrZuTw8cfW/QI//JCmYTNDly5aJ/3mTVqvTjCmw1S+PCWZXbmSqjebPXt2bNiwAQ0bNkTWrFkBADt37kSjRo1cZGg6CA6mppUmKlQAypSRZw9AjXjz5FHHr75KJ1NGf9y+DaxYoV1Wqxbd9TmLnDmpGfS9e+So7doFfP6587bHOJ7Tp0n7xpy6dR2bClCsmHVS77p1jls/41pOn7ZWb2/RwjGq/xUrWk8Nz5ypm7w3FzQmcxJ25mTcunULpZ9NSZw6dQqJiYkoW7asMy1LP3fuUJ7QtWvkkLz6KjBnDt21yyR/fsqrWriQpgZ15OkzFvTpo73jq1yZ2lY4m7t3tWOOMBmLfv20neODgoD//c/x27FM6GWZEmMSF0fCpE+eqMuyZCEpHEdFsm1V88oqfrLAmBGmdNCuXTtcvnwZixYtwpAhQ/QZXVq8WA2JCwGcPStHrNIWpUoBo0YB/fuTbgajTywT8jt2dM1FqVs3NYTu5UW5hYwxuHrVuk/cwIFA7dqO31bnziSIaepKv3Ej0Lev47fDOJfdu60lBGbPtq6GzAz58lnL2HTtSgUDknF7h6lkyZJYtmwZunTpgsjIyP9ymXSFpUS83kr44+JIE2PUKOBZ8jyjI0aOpHYDJgIDgddfd822a9UiOYF+/SiK8NNPtpu1MvoiPh5o2lQrOJo/v3NbmLRpo2359OOPuisbZ1IhLMx6arVIEZKjcDTDh9O5xcS//9K5RTLGnZKzg1OnTqFly5a4fv06du/ejaioKHTq1Em2WVri40n0r1Ah8twLF3bNVEp6eOMNNedg5ky6IDoqIZTJHHfuqMrwJlasoKbJrsLHh44Lk/ZT69bAjRuc76ZnbtywFhv99VegaFHnbdMyn87Li6PWRmL9eiAyUh0HBZGUiLOawvtYuCc6KDhy6whT7ty50atXLyxcuBDr16/Hhg0b4GP5Jchm8GDSsrh5kw6ISZNIaFAvJCZq+0rdvUt5TYw+sBWmLlXKtTZcvqwVyrx1S5dtDZhnxMZa69vkyeOcqThzSpdW264oCpWRc4TJGJw9a625VLu2VvHf0Ywdq+YqBwfTtUdyz0qdeQ+OJV++fPjasi+S3ti3z3psqYkiEx8fOtGZcmS8veW0amGsuX8fePll7bJPPqHKNVdSsyaF5q9fp3HjxnSCY/TJwoVakdGQEGDbNtvd4x2NqelqaCjp6e3cSaKZ5cs7f9tMxhk8WCtzU7IkyYo4k6ZNqfipUycgIgKYPBmIipI6NefWDpMhaNBAG7Fp0ECeLSmxdi0lfT9+DHz2GTUEZuSzeLF2WqVYMcc02E0v2bPTMTxnDkUO2renqhZn6T8xmePYMe04Xz7H9Rm0B3NJgago0gpjh0m/PH1KUgLmtGtnX5+4zGK5XcmzG3xGk8mWLdQmIFs26gS+aJE+1bTLl6eT2oED1KeM0QfmIpWA3MrKQoVIO2zMGFJ2btMGSEiQZw9jm5kzKbpjwtcXGD/etTZYRkD1JvPCaGndWluFW6AACVe6AkshTMkBBXaYZBEbC3ToQPkfT59SF29HlmYy7s369cBXX6njvHnlFwv066fmMm3aZN2tnpHPkiXa8bvvuq6i0sT8+UDbtlRV2asXR5f0zJMnwJ492mUzZ2pFlp1J8+ZUxNK8OeVmXrwIHDnimm3bgB0mWTx9qq04SEqyFgHUG3/8QSXsW7fKtoSZMEEbwXn3XWqWKhPLKhYdVLUwZly/bq2hY9nnzRUULEiNVu/fB+bOJcdpyxbX28GkzezZ2mo1f3+gWjXX2tCkCc1uXLxIMx0tW1LrMAmwwySLPHnoLstEzZr00Cvz5pG9o0eTt79mjWyLPJssWbRjVyTspsXEiapdTZtaa7Yw8hCC2leYpla8vCi689FHcuz56SdVAyo2Fvj+ezl2MCmzcyfw5ZdUKQ0AWbMCq1dTrqQruXZNWw18/760jgLsMMkgOZmUS9eto7LJwYOpasXPT7ZlKbN6tfpcCJ5ukcn48cCff6rjJk0oKV82XbvSye3UKYoYsMaOfnj8mErDTSQnA2+/TVWvMrDU7uGqSv1hKVLs7U1SEK6mbFntFGDFiq5JOLcBO0wyWLkS+O03eh4ZSV3mnzUH1i2WjYA5UVMOkZHA0KHaZd9/b3dvRaeTNSvwxRcU8XrpJa2yMyOPTZu055gcOeRWuw4YoCbwli7NESa9cfWqtSDu22/LsSUwkBp7f/kl3ZR9+KFW4sCFsMMkA0tRPyOI/I0eTSH8qlVJ64e70svDUkFbT4raY8aQvk5UFGn7DB8u2yLmwAG60ERF0ThfPmD7drlq/cHBFFU/cYKm+ufNoygYow9GjNBGmFq21FZXuppCheh4/fVXuv7UqKHqvrkQXeswxViWTbvL9jt0oKTdM2foYjdsmHO240gCA0lnh5HL999TiwnTxa9XL23PJdlYFi7ovZDBEzh5UpuAHxfn+sRdWzx6RPmQpnyULVvIuWPkY+m8Fi4s/8bsxx/V53fv0kzNp5+61ARdOkw+Pj7w8vLClStXZJsCIQSSkpIct8KrV0nX4swZKqedMwd48UXHrZ9xXzZt0nbxNh0/eqJXLypdj42lBPD335dtkWeTmEhl2N7eVIkLyMlDscWxY9rk3YMH6UKdI4c8mxjg558pSmwiVy6XOyY2yZdPK9SbL5/LTdClw+Tr64tKlSohMTER4eHh+P3337F27Vq8++67yGJZHeRkkpKSkGiqEnAEQ4eqneXPnqXEb3aYGHu4eVM7ljSPnyr169MF+sABCpvLKFtnVMaMAaZPV8evvUbTX3qgTBmKXJtKxIsX10e1pycjBE15mQcJZsxwrRJ8SsydS8LJV67QFHOnTi43QZcOE0BOk6+vL2JjY/H06VPcvHkTjx8/hq+kypu4uDjHrCgiIvWx3lm2DJg1C8ifn6YV8+eXbZHnEBdHibvm03F6pHx5uhgeP053hCVLyrbIczl0SDvOkUM/1biFC5MA67hxdFyPH8/tdPSApX6aZUWjLCpUoHPK7t2kx7R8OfDmmy41QbcOkwk/Pz8EBwfD29sbT58+leYwAUBwcDD8Mnuy+ewzEn6MiaGTV9++jjHOFRw8CHTuTCXJACXd7dwp1yZPITRU245g6FDr7uF6ITGRWqNs2UJ5D5Mm6SOk72lERam/VRNNmsixJSUaN6bHn38C+/cDOXPKbfHjyQgBdO+ubbnUti3lmemFHTuAZs3UCNiNG8DAgS7bvCLkqvHatfE7d+6gePHiOHfuHLJJ9Hb9/PyQNTPl/7t3A++9R8mOHTtSJYKRIjQ//6yNaoSEkHQ+43zatNHmFfTqpb/8JRMbNpC9Jvz86CQsO2nU02jZUlXQ9vMDfviBplv0xldfAd9+S8+LFqWoWJ48cm3yRP76S+scZc1KFdx6+t0OHAhMnqyOGzSgasvMY9c/qfsIEwAEBgYiLi4OOXLkQLBRBc6EoJ5NpryTmTOBPn2M5TA1aKDNOWjRQq49nkT58lqHSQ85BSlhmWeYJYu+TrqeQEKCtt1IXJzrFZrtxbz66do1Os7ffVeePZ6KZdqJI4udHEW5cqmPnYwhHCa3ID5em6QrBHD7NukaGYUyZcibX7CAHL0BA2Rb5BksWaIm7ubPT1HKfv3k2pQazZqRyN1vv5Hat+ymwJ5IUhKpIZu0arJkcfnFxW7y5aOou/mYcS1Pn9K0v6maUlGAsWP1d6Pz/vtUab5xIxWUTJzo0s0bYkouIiICISEhCA8PN26ECQDeeYeEtwCKGBw8qB+FZkafJCeTyJ8p0Rsgp9Wkkqxnbt+msL6Rf7NGJCYGaNSIzi8AVZ/973/Aq69KNStF/v0X6NKFJAb69KHkb8a1DBqkVVvv0kXtRqFXLl6kZsCFCjlibXZ5hlyS4Cr++osues2bA1OmAHv3srPEpE1ysnWoXLKgq90UKMDOkgy2bFGdJYAcV/NG33qjZk2SWHnyhJ0lWVgKzMbGyrHDXnr0oJY6RYq4tK0OO0yu4OxZSoJdvZqqQVauBLJnl20VYwSuX6dogYmmTfVX6ZQSBw/SlHORIsDUqbKt8RwsC2OyZdPf1IotfvyRysQnTLCu7mOcx8OH5KyaJB18fGjaX68cOqRqiQlBzesjI12yac5hcgVHjlAOk4n9++XZ4ihOn6bk75o1WTvFWdy+DTz/PHD/Po2bNaO5ex+D/Gw7dFBzaPr3B+rVA2rXlmuTuxMZSbkoAQEUiQwOBubPl21V2syerUqsLF9O0hSDB8u1yVN4803q+whQDtOSJdSNwii48GaAr3SuoE4dOoGZaNhQni2OYMQI6nRepw7Qvj3fDTqLXbtUZwkgzSujOEvJycCtW9plN27IscWT+PZbYNUqddq2e3fg5ZelmmQXe/akPmach3n/vqQkl0VrMkzt2jQlB5Cz9N13LktvYYfJFSQlUVJd+/bA558DK1bItijjREVp+5mtWQPs2yfPHnemdGnt3VOZMvJsSS9eXkC3buq4RAnt1CLjHCzb51g6rXrFsj1U/fpy7PA0YmO11ZN+fsBzz8mzx15+/pmSvq9fp2uqi9D17WpoaChCQ0Md2/zW1ezcSQJycXGU0b95s7H7JXl7U4lyQoK6TC+tFtyJ+HjqnVS4ME19VqlC2l1GYs4cavT6+DHdLHBTVeciBOWLmUrDvb2No2fUuzdNw+3cSZFrlixxPvHxwEsvAYcP07hsWfrNVqgg1y57KVmS0lsOHKDcTldcV4UQMh92ER4eLgCI8PBwez+iHzp1EoJOZfTo0kW2RZln9mwhfHzo/+nfX7Y17snIkdrjZvhw2RYxeqdPH/V4CQ4WYtMm2RYxemb7du05BhAiMlK2Vfbz3Xeq3WXKCPHwYWbWZpfPwlNyzsZS4t8d+iS99x5FDR4+JIkExvGcO5f62GgYRQrByCxcqD6PiNAK5RqFe/eAadPofzHyzIIRsIz4Zs1qrNmCCRPU52FhwNq1Tt8kO0zOZtQoai7p60vl4CNHyrbIMQQFUaNMxjm89pp2/PrrcuzILDdvkrRAYCBNtRjxIm4UihZNfax3Hj+mqtB+/Sj/zTwHjnEsCQmkwJ8jB+UbZs9OQpVGKSoBrB0+F0z5s8PkTP79l+ZWw8KoemXbNnYymLT580/gww/pec2a1Furc2e5NmWUESOAEyfo+aFDwJgxcu1xV+bPp4KMwEASDJ0wwRhq8Obs3g1cuaKOlyyhvCbG8UydCvz0EzmpyckkAWJ5k6Z35s0jlW8fH1KId4GSvYHcSQPyxhvApUv0/MsvSYfGshqEYSzp3p2E5AByuo2scxURkfqYyTxnzwI9e6ryHkFB1NXdaBQpQlWhpnZdBQsaK+JhJMwdU1tjI1C3LkmVJCe77Bxp4DOxAbAs8bUcM4wt3MnJ+PRTyo0AqIrl44+lmuOWXL+u1UK7d48qK41G9eqk9l2yJEVWf/9dtkXuS7VqWme0Sxd5tmQWLy/VyXb2plyyFU+le3f1edGiND3nLty6RRGzrFkpnKv33kNGok8f9XmNGsYQHkyJF18kVfgNG+hvjRqyLXI/KlQg+QkTr72mOqlGo08f0tc5fBioVUu2Ne7JtGmqjEOOHMCyZRShNCLh4SSN4ONDOZK3bzt1c+wwOYvISEr2HjqU9HMOHHCPCjkTAwdSA+HoaFIW5mq5zCME5SpNmEBTEx99RHkdRr34mShalFotFCwo2xL34/JldWrCz4/ON8uXy7aK0TPm1WWPHxu7EGPcOMoNTk6mHMmhQ526OXaYnEF0NCnVdu4MjB1LveTy5ZNtlWO5d087tux2zaSfXbso0RUg52n2bBIJZZiUmDpVbTkTFwccO2b8Y+bWLRLcbNuWhH4ZxyKhusxpPH6sHT965NTNscPkDP7+m05cJmbN0jbfdQc+/FBNtAsKMo6iMCOHvXuB998HvvqKqrkYx2DpHPn6yrHDkbz2GrBgAfDHH1T5ZHQNMj1x9CiQNy9Frb29KW3kzTdlW5Vx3n9f7SPn56c2cHYSXILgDCzFKrNnN/5dnyVvvAGUKgWcOkV5KiVLyrbI+FSvDjRvTrICXl7ApEnucdycO0f5e6Y8t+PHqQchkzmEoN9d/vzAnTtUYm102QYhqDLURHw8yVKY9ztjMsajR5TvY4rCFC1KN/NGrsKtVQs4eZKm46pUofYuToQdJmdQqxbNrY4dS5VB8+Zpm6i6CzVr0oPJPFeuAA0bUsVTcDCwdCn1YXMH9u3TFgVs3y7PFnfis8+AyZPpeXAwsHWr8R0LRaHcz23baJwtGyXzMpnnwgXtlNW1a5RKYV4wYESKFaOHCzCwa6lThAC+/x7YsYMUay9dIq+eYVJj8mRylgCSEZgxQ649jqR6dW0Jc+3a0kxxK0z5bgAdMyYnw+isXk3Ju3360HnURRdDt6dcOW0ubdmyFJ10B4Sg2Y5r15y6GY4wOZqZM4FBg+j55s10x/TNN3JtYvSP5dSbOwn2VatGlZSzZtEJe9w42Ra5ByVKaMuo3WVaPDjY+FOLeiM+nqQEHj2ibhMvv0y/Q3c4zyQnU+uotWvpejtlCgUrnABHmByN+fw7QHoiDJMWPXuqF7yCBd3PyW7bFli3DpgzxzrHj0k/Z85QzlKhQpRLOH480LKlbKsYvTJjBslNJCSQ0/T4sfGn4kxs26Y23hUC+OILpzVuZofJ0ViKU7qTWCXjHFavpry3S5eAF16gi2HFirKtYvTK48eU57N8OXUP8PamfCZ3Y9Mm4Ouvgb/+km2J8bHUWjKy9pIl3t7asZeX03KGde0whYaGomLFiqhjpKS/zp2BxYsp/DlzJvD557Itch5CUBlntmxApUo0h8ykn4ED1aToffu4JQSTOufOaXXQzp+31kUzOosWkdjpqFFAixY0pctknDZtaKoTIIfCnVoUNW6stnbx8QGmT3da5Z+uHaa+ffvi9OnTOHjwoGxT7OPgQaB4cdIkypKFNCLcmWXLqPdTZCS1vTCqvL5sLPsguagvksu5c4fUy999l8RcmYxRtiyQK5c6LlmStHXciZUr1edCsMOUGbZsocKjiAiSEti2DejaVbZVjkNRgN9+A65epXNMr15O25SuHSbD0b07fWnx8eRImOZV3RVW+3YM331HomsASQu89ZZce5xFixaUS7FgAU1V37kj2yJjMn8+OUllygBvv01TVu6QvGtOmTLasZP1ddyawYPVZszXrrlvXm3RotobCSfADpMjefgw9bG70b49UKCAOnanMK+rGDuWLnqKQo7Ttm2Av79sqxxPeDgJEJp48oQE55j0sXgxTeEePAiEhQGBgVQt526MGgW89x5QuTJ1FRg8WLZFxsVyesrIQpWS4T3nSAYMUJ+XKEGy/u5MoUI0tbJwIbBzp3vnazmDs2eBYcOooiM2ltqGmAs8uhMhIdpE9uBgyntj0sfRo9qxeQsmd8Lfn3opnjhB0Xp3aPkig+RkilgHBtL4ueecOmUllQMH6ByTLx9VjToBRcjNl7Br4xEREQgJCUF4eDiCTYlreuTyZWr7kJBAc8ZGbmrIOJ+DB+kEZs6DB04PK0vj5k2qeoqMpCgJC1imn61bqX2O6bw9fLj7SVAwjkEIoGNHNf+reXNg/Xr3aLdki+LFKSXGxJ49QL169n7arrI6N5v4lkjv3qQxY5paYWeJSYuaNUk7x9SR/YMP3NdZAigiOWuWbCuMy6NHlL9UoQKQOzfQqROpYTOMLS5e1CbL//kn3dS7az6YuYgrANy65fBN8JScI/j3X3KWAPLqBw0Cnj6VaxOjb5KTqf3DtWuU6L1hA8lQMExK9O5N09+nTwN//03Cg+7Yo9KcuXPpxqJVK9IpY+wnWzatRpG3Ny1zV3r3Vp+XLOmUlmQcYXIE7loGzjiPOXOo5yBAQpXFipHuDMOkhGWS/KlTpKDuruzfTxdB0/m1Y0frTgpMysTHA++8Q4UCXl7UMsS8SMfdmD6dph0fPgRee80pszzsMDmCWrWAHj2AX36hO76xY93bk2cyz4ULqY/dmUePKNegbFkga1bZ1hiHNm1IpBKgPJRmzeTa42zCwrQ3o6b/nUmbS5coP9JUqT1pkvvrAgLkKDkRnpJzBOHhpMG0axddCDyxBHbPHuosnpws2xJj0K6dNvmyY0dppriU/fup91nNmlQld/26bIuMwZEj5FRXqUJRgx073D9pvnFjahRr4vXXpZliOFas0MracO6gQ+AIU2a5dg148UXgxg0gIIAajBYpItsq19KzJ0XXAPLwV692/9yKzJCUBBw6BHToAAQFUedwT7kYjB5NGkwA3Vz873/AhAlSTdI9T5+S6Kep/9ft21Rq7+4ULkytghYtolLx996TbZFxyJ8/9bE78+ABSbZUqODwIhp2mDLLjBnkLAFATAwwZoxTks10y61bqrMEAGvWkHZK1arybNI7n35K8+0ARZk8qdLJslGmuylUO4Pr17XNUh88oGUVKsizyVWUKQOMHCnbCuNRsiTQqBFFJkuX9pwI09Gj1EXg8WNylrZvp6isg0j3lJyiKA0VRVmnKMotRVGEoijt0nh/42fvs3yUz7DVeiIgIPWxuxMQoL0IKgpFTZiU2bhRfZ6QQNo6nsK331K0ACCRuYED5dpjBEqWpGlME6VKuae6N+MYfvmFKm937qQUiXnzrFvNuCs//EDOEkBTkhMnOnT1GclhygrgGID09sEoB6CA2SMsA9vWH/37q+KDhQqplU+eQo4cFGXz9SXHafx4OsEzKVOtmnbsSdG4qlVJC+bSJbobdLemsc5g61agRg0S4evfny6E7tg+h3EMs2apyfKRkTSl6SlY/i4c/DtJdzxcCLERwEYAUNKXp3JPCPEkvdvTPQ8fkpNUogQ5TJZTDp5A795UJZiczC0M7KFfPyAxkYoFOncmjRlPIiCAIyT28vff1GLJVExRpQqdZzyJq1dJsywyktovNWgg2yJ9Yykd4M5SApaMHEnFV2FhQPny1G7KgbgygeCIoij+AE4D+FYIsd2F23YOS5ZQxUpiIn05e/Zoqzo8Cc5FsQ/zBPkPPqAHw6TE7t3aytOdO+XZIouWLYFz5+j51q2kW+ZphTX2IgQ1RT97Frhzh3S6PvxQtlWuo2hR+t/v3wfy5HF4o2FXyArcBvA+gA4A2gM4B2CroigNU/pAXFwcIiIiNA9dMmoUOUsAfUm//irVHEbnhIVpE+R/+knb+4hhLKlTRzu27D3o7kRGqs4SAERF0bmWsc0779DjzBma+p871317x6WElxflSTrYWQJcEGESQpwDOUkm9iqKUgRAiq3tx40bh6+//trZpmUeT0/4ZtKH5XSlonjuFGZEBLB3L00vVa4s2xr9EhMDvPkmcO8eaVeNHi3bItcSFER6U4cO0ThnTuscQIa4dw/47Td1vGMHVclZOt1MhpElXLkPQIpp+0OGDEF4ePh/j+t6FbcLDVWn4Fq1At59V649jL4pVow6yysKPcaP96z8AhOPHtFFsFUrSgKfPVu2Rfpk8mTSNVu2jJzLTp08Uxl90ybKXerTh3K6uFDANlmzapOcFcVzU0SSkykyefeuQ1cry2GqAZqqs4mfnx+Cg4M1D11SoABw4AAlfm/c6LnRAsY+vv6a8t5at6bpuS+/lG2RHJYto/8foJyLMWPk2qNXFi9Wn8fFkSCsJ5IrF5WLz5hB6vCMbby9geHDgZAQcp7+9z+tHIWnkJhIbYTKlyfx04ULHbbqjOgwBSmKUl1RlOrPFpV4Ni767PVxiqIsMHv/p4qitFMUpYyiKJUURRkHymea7oh/QBr9+1P5fOnSrFRsjimni9GydCnlvJ06BWzYAHz2mWyL5GHZZ1GvN0SysZTnYLkOJiWePiXZieHDKe/rxx+BTz6RbZUc1q2jqCRA16P+/R226oxEmGoDOPLsAQCTnj03Ta4XAFDU7P2+ACYAOA5gF4D6ANoIIVZlxGBdcOECMHWqOh43jhSvPZmzZ6mZqq8vlUHHxcm2SF+EWciOeVKzXUs6dQLeeoue581Lye+MNe+9RyX0ZcqQg92rl2yLGL2ybBnlKwHUesnB5fSGwlLuyIFtutLtMAkhdgghFBuP7s9e7y6EaGz2/u+FEKWFEAFCiJxCiAZCiA0O+w/0gqf3TuvXT+0uvm4dMHOmbIv0xSuvaPMLPKXZri28vWlqMiaGSp/r1pVtkf745BOgeXPSlKlalaakPP0cc+cOySyYlJwZFUuBRj8/OXbogVdeobQHgCoE//c/h61aVg6TsSldGhgwQB1/9ZVnJu+aY3kSMzVYZYiYGGDIEGoFsngxTc95Ov7+7ATY4t49tdcgAKxcSaronszu3RRpa9CA8pguXpRtkb7o2JEaNAM0xe0JzZlTwscH+OMP4Px56vPatavDVq0Ik4S6HOzaeEREBEJCQhAeHq6fBPCkJPoyvLxYRA2giEHXrrRf8uWjLuPFi8u2Sh/MnUtq6EJQQua+fZSQyDC2CA+nROekJHXZ2bNAuXLybJJNmzaU+2eif39gyhRp5uiKsDBylq5cISX4jRs9Tw0+89h158YRpvQSHw906EC5Oi+9RMl2DOWlHDsGrFkDHD/OzpI5M2eqvZ3Cwz2rtxOTfkJCKMLk40MRuFGjPNtZApzeI8zQDB1KzhIAnDgBTJsm1Rx3hh2m9DJnDrBqFek8XLwIfJzeHsRuTKVKlPDNOila8udPfezpyI1y64vkZEr2/uQToGBBymEaOVK2VfIZO5baXgBA9erAF19INUdXREenPmYcBjtM6cUyV4cTEJm0mD6dWloEBwPdugHvvy/bIn2weLGqGcN3xcTy5TSFm5gIXLvGN2QmypUDLl0iIcJ//6UpS4YYPFgVNM2Xz3PlBFwAO0zp5Z131AiBl5dn6+kwabNtGzXAfPoUmDcPmD+fGxUD1Bqle3f6GxNDOSmXLsm2Sj6PHmnHDx/KsUOPeHtT9JoLBVT27aMK5Tx5gEGDgNOnKTmecQqc9J0R7t8H/vmHhOSqVJFtDaNXoqJoWsXUPNrXF7h8mZZ5OrdvW++Hf/8FatSQY49euHePopGmpsyTJwOffirVJEanCEE37/fu0djLCzh5EqhQQa5dxoSTvh1OeDjQowf1dzp/np0lJnUePVKdJYAKBm6n2BHIsyhQAOjSRR03a0Z6Q55MYqLa/uO994D9+9lZYlImJkZ1lgDKf7txQ549HgDPDaSHvn3VbtB791Iz1TfflGsTo18KFQIaN6au4QB1Wa9cWaZF+uLXX6lhdXw80LIlTbl4MiNGUNcAEw0aULSJUblwgXrqFS5MlbmePD0XGAi8/rraY7B0aeD55+Xa5Oaww5QeTp60HrPDpCU8HDh0iJzJ0qVlWyOX8HBysuvVo4hKt26ercBriaKoYnsMRZQsx926ybFFj1y6BNSpo4riHjoETJwo1SSp7N5Nyd4tWwJNmwI9e3JfRifDU3Lp4ZVX1Ofe3nSgMip37lDJb7NmNI++YoVsi+Rx/z5QqxbwxhsUNfDy4pMZkzoNG6Y+9nQ2bdJ2EFiyRJop0jl3jlrn/PorsHkzsHUrkDu3bKvcHl1HmEJDQxEaGookc8VbmXzzDQkynjtHlU8vvijbIn0xb54qoJaYCIwZ47k905YtowRvgJIzf/gB+OgjuTYx+ub556lyMD4eaNVKbVDMECVKpD72JA4eBGJj1fGuXfJs8SB07TD17dsXffv2/a9KTipRUcAvv1C7guHDST+G0WLSAjERFCTHDj2QI4d2nD27FDMYg/DBB8CsWfT8+ed5qt8WrVtTtPbnn6kd1Zw5si2SR82aVHUbH09jzl1yCSwrYA/JyRQe37OHxlWrAgcOcD6KJbGxVEG4ZQuVu27Y4Lll4snJFC347Tcqn1+9GqhdW7ZV+mTbNuqV9tJLntkCJCrK+uZi2zagSRM59jD65+RJYMECakdVqhTNfrCYZ2awq3qAHSZ7uHrVujfakSOUr8NY8/QpXQA8tYIlPp7aWRw7RnkGAwbItki/zJihTlVmzUr6Zp4mL5CYSBHJyEh12bFjnrcfGPv4809qRpyQQDftmzZRNS6TGViHyWHkyqVN2PX3p6onxjbZsnmuswRQM8zx46lr+MCBpO7N2OaXX9TnUVGU++Vp+PhQAnOePFQqPn48O0tMysyeTc4SAMTFUSsdxiWww2QPQUHAmjU0vVSlCvV7ypdPtlWMXjl8WDs+dEiOHUagUCHtuHBhOXbIZPBg0hTKlo2m4gYNkm0Ro2csm5vztchl6DrpW1dUrEhilZy3xKRFkyaqWCVAGimMbUJDSa/q7Fng1VeB3r1lW+RatmwBvvuOnkdGAl27AmFhcm3SO9HRlPgdH095gjlzyrbItXz1FXDqFFXKNWhAY8YlsMOUFvHxdCLfvJkq437/neeLmdT5/HMgIIDkJ1q0IDVexjYFC1JUxVO5f187Nm91wVgjBFXL/f03jefMoYhuQIBcu1zFmjXUUig6moQq58zx7PQHF8NTcmlhEgYD6E74k0/k2sPom/nzKYH3yy9JSoDLw5nUaN2aqpxMfPyxPFuMwO3bqrMEAGfOAMePy7PH1fTsSc4SQFG2v/6Sa4+HwRGmtDAXBwMoyY5hbBEfD7z/vqqNMnEi3Q3WrCnXLka//PUXRSEDAoCXXyZpBSZlcuakG5LHj2ns5+dZeW8xMdqxyXliXAJHmNLi7bcp0RugapbRo+XaYxTOnKEpKU8iIUF1lkxERcmxhdE/c+aQmveMGcCkSTwdZw/+/sC6daRpVrUqVVVaFg64M19/rT6vV48U4RmXwQ5TWoSEUBPMvXupU3anTrIt0j8ffkhJ8uXLU1m9p5A1KzBkiDp++WU6qTGMLdav1443bJBjh9F48UVKeD52jPJLPYUNGyg9pHlzkqHYvp2LkFwMO0ypkZREmig9ewLnzwPFism2SP+EhQEzZ6rjyZOB69fl2eNK7t6lfJSpU0kVfu1aatLMpM3KlUDnztR2yHIa3F0xRa5NVK4sxw5G/4SFUfHI1q0kXDl6NLVGYVwK5zClxldfUe8igDz6gADqPs+kjI+NQ8rWMnfj3j2aJrhxg8ZffMHRJXvZto1+V6auA3fvkjifu/Pxx/S/njpF5eGffy7bIkavnDmjne4/fZpSALJkkWeTB8IRptTYvTv1MWNNiRLaaanRoz1DFX3TJtVZAjzjgu8o/vlHdZYAz/id/forJSvPmkWNZMeO5WgkkzJ16mj1ppo2ZWdJAuwwpUbdutoxRwzsY+xY4M4dunv2FFG1ggVTHzMpU6+eVkvmxRfl2eIqPvpIbW+xZAlNszDpY98+YN484PJl2ZY4n3v3gL59KYd21CjSY2JcjgfMlWSCMWOoLcrx41SN8NZbsi0yDp4m19+sGTBiBOVv5csHLFwo2yLj0LQpVTutWEE5YO7uZAtBDXfNsRwzqTN/PtCjB+3L4GCKUlaqJNsq57BjB0lPJCQAXl7UmisoSLZVHokizEPhrifVjYeGhiI0NBRJSUk4f/48wsPDEWzeBNfZ3L1LCaic7M2kRlIS5bodOAA0bAh89hmr7zKpM3060L8/kJwMtGwJ/PGHZ+T6OYq6dSnCZGLoULrBdUfee0/bYPfVVznC5HjsOmHrekqub9++OH36NA4ePOj6jU+aRLk3xYsDvXq5fvuMcRg/nqIi69ZRsndoqGyLGD2zaxepVb/1FiW8b9jAzlJ6sYxgu3NE21JnypN0p3SGriNMJiIiIhASEuK6CFN0NHUOT05Wlx04QIl3DGPJa6+RhICJbt1oyoBhLLl8maaOTIrNderQuYVJH9evU9uh06eBtm2BX35x3yTop0+pyfDu3cBzz9F0f/bssq1yN+yKMPFtjS2E0FbtAFrniWHMadxY6zA1aiTNFEbnHDumbW9x6BBN6XKFXPooUoTEhN2dv/4COnQAIiIo4fu33yiPiZEC73lbZM1KOSmmPJSuXYHnn5drE6NfPv0U+PFHugv8+WcSOmUYW9SooU3YrVuXnSUmZXr3JmcJoGrK1avl2uPhsMOUEoMGAVeuAGfPcsUTkzLbt9Pd7uefU75bjx6yLTIuf/0F1KpFAqDbtsm2xjkEBwNTplD+0qefaiOTDGOJZXNdbrYrFc5hssXBg+Qk5c9PvdD8/Z2/TXfj5EmgfXtyOjt3psiLO95J580L3L+vjv/5x1q/i0mbR4+AokXVZsVBQZSn4k65GmfP0nTtvXtAjhykvVSrlmyrGD0zYwbpLwkBVK9OBQMsKeAMjF8lJ4Vz5+ikNm0aMGwY8O67si0yJu+/T/2PEhKABQtI2djdSEoCHj/WLnvwQI4tRufOHdVZAoDISHIs3IlJk9T/6fFjqq5kMkd4ODme58/LtsTx/PMPdRBo3RpYtIjG7CxJhR0mS3bv1iZlbtkizxYj8/Bh6mN3wNub7v5MVKkCNGkizx4jU6YM5feYqFULKFlSnj3OwLKzPEeuM8fduxR1adECqFgRWLxYtkWO4/Zt0udau5ZkJ4YPtz5+GJfDDpMlVatqqxCqV5dmiqH59FP1ecGC7qmSnpioTjcuWwbs2cN3gBklSxbKB5s4kSIx27a5nzbRkCFA+fL0vEQJanHBZJyFC2nKH6BorzsJV547R1FWE5cuAU+eSDOHIdzsjOQA6tShO5XZsymHacIE2RYZkw8/pOTdK1doijNvXtkWOZb4eGqXs307VVNOmEDaXUzGCQmhnEF35NYtYMAAIE8e4OOPgQ8+cD+H0NVY3py40++vShU6Vkz5kdWra5vvMlLgpG+GyQjr1wOvvKKO/f2pgoVbojC2qF+fIpAARbD37iURQibjxMWRRtH69XRz+8cf7pNEf+kSRa0PH6bWXIMHA7lzy7bKnWHhynRz/z7wxhtUJde4MbB0KU+xMLaxzCfw82NniUmZEyfU58nJpFDNDlPm8PMjJykqCggMdJ/f37Fj5GBHRpJzvWgRO0s6gXOYzBk6FNi5kyIFGzaQeCXD2OKll9QKSn9/msJlmJRo3Vp9HhQENGggzxZ3I2tW93GWAGqrZMpfSk4GZs6Uaw/zHxxhMseyjPnuXTl2MPpn1y6gbFlg5UrKZQoMlG2R+xAfTwmuefK4x4UwPh7o0oW0l7JmBd55ByhVSrZVjF6xzPd0t/xPA8MRJnPMEzEDAoBeveTaw+iTdetIPmDYMMqhYLVmx7FnD+Wj5MsHNGsGxMbKtihzJCQAzZtTg+aZM0mypFo12VYxeubTT4HXXyfn+oUXqGqU0QXsMJnz8svAv/+S0OLRo6zYzNhm+XJtM+Zly+TZ4m7076+KgW7bRl3ojczevcDff6vjH3/UloszmUcISqXYudO6abrROHiQ9MdWr6br0a5dQKFCsq1inqFrhyk0NBQVK1ZEnTp1XLPBQ4doGu6tt2i6hWFsYTmdwtMrjiMuTjs2eoTJsrVLQAALEDqazp2pSKdxY3puZD74gEQrAboxW7RIrj2MBl07TH379sXp06dx8OBB529sxAjSYGrenKZbLE/cTPpJTga+/BKoVAl4803rNiJGZfBg6iJerhzQrRvw9deyLXIfvv4a8PWl5xUqGL81UdWqwDffkDBntmwktpgli2yr3IcLF6ia2cTSpdSSyahERGjH4eFy7GBswjpMAKnE+vuTcrOJDRu0lS1M+vnpJ6BPH3XcrRtVgBiZe/fIYbp7l+4GX31VtkXux7VrwM2blOtj5GT6xESaYty8mYQI585l8UFHc/s2ULiwOkXu5QXcuAEUKCDXrowydy714UxOpqm5ffuo+IFxNqzDZDdeXnRiNvfu3Uk1VhYXLqQ+NiJvvKHmpGzZQtO4nMTrWIoWpYfRmT6dcpYA4OJFcpbmzpVrk7tRoAAwdSqpqAOUIG1UZ+nIEbpRb9aMikneeovU7xndoOspOZehKJToHRREzz/9lITDmMzRrp22/UPHjtJMcRiHD6vPExNJZI5hbHH5cupjxjH07UvaedHR1HbGiDx5Qo7SqlV0IzZ6NOe66RCOMJl47TU6aBMSuIu4o3jxRWD3bjoBVK5MpbJG56WXVBmBgAAq+2UYW3TsCMyYQecUwPgJyXrG6H35Ll8GHj1SxzdvAnfuAMWLSzOJsYZzmADgzBkqX86Zk3IOAgIcvw3GPYiKAr7/nnKZuncHnn9etkWMXlmzhm4YvL2pkKRlS9kWMXolMpKKHG7coHHZssDJk1wg4Do4h8kubt6kSIipgmvPHhImZBhLJk2iKq6sWYGff2ZnyZn89Rc1Va1UiQRkjab4PWIEVccBpPD9wQdy7WH0ze3bVHn7778UVfryS3aWdAg7TP/8oy1337iRxM+MdoJmnMuJE8Bnn9HziAhVJsHbW65d7si2bRSNMVU+3bwJjBwp16b0Yl4N+vgxNYn95BN59rg7QgBz5gCXLlHupJFuZk6doql9k6Dp1KlAwYJybWJswknfFSpoL3qVKrGzxFjz4IF2/PSp8UUV9cqmTVol9Y0b5dmSUSyr/Nyh6k/PDBpE5fjjxwMNG2qLM/TO8uVa9Xejq9u7MewwVa5MYmcNG1JS8po1si1i9EjdukDt2uq4e3eammMcT5UqqY+NwJw5QL16QJEi1HPwtddkW+TemPdzjI+nQhOjULhw6mNGN/CUHECaFx06yLaC0TPx8cAPP5CKcMGC1OeJcQ7vvEM5HevWUcR3wgTZFqWPCROAIUMocv3jj0DPnrItcn8qVgTOnVPHFSrIsyW9tG9P09Dbt1P3AJN2F6M7PLtKLjGRTmy7d9Mc8nffqW0ZGMbElStAgwZUwRIcTFNE9erJtorRI5cuAaVLq01gfXyA+/ete8oxjuXhQ6BfPxIIffNNYOBA2RbZx44d1C3g6VOgenVymvhYkYFdeTiePSX3/fd0N7hvHzBlCvDtt7Itck9+/JEqhQoUMGYF4rRparlvRAQfJ0zKPH2qOksA3ZRFR8uzx1PIlQv47Tc6lxvFWQKozdLTp/T86FFg9myp5jCp49kO06lTqY+ZzBMWRuq7T56QEFunTsZLlraMOnIUkkmJKlWAtm3VcffuXPHEpIzlDI/cGR8mDTzbYWrTRjt+5RU5drgzDx9qTwLR0dqKECPw2WfUdR4AChUCxo6Vaw+jX5YsoZYWXbuSlhRXPDGpMX682re0WjWq9GN0i2cnfXfpQpVOphwmTvx2PDVrUoXZ3r007tQJyJ1brk3pQQgSUOzQgfRR6tVjQTlXERND1U++vpTnoXfNq/XrgbffVsfZs1MrHcZ1JCbS9HnevNRQXc+sWEHaXH5+wNChdGPG5xZdo+uk79DQUISGhiIpKQnnz593XmsUxrnExtKFLyCAonpeBgpsfvop8L//0fNs2UjfpUwZqSZ5BPHxQOPGqqPdoQNdYPTMsGHa6GONGqTczLiGx4/JQT1yhHKaNm4E6tSRbZVtHj+mnM64OBr7+ABXr/L0rTyMn/Tdt29fnD59GgcPHnT8yvftA0qWpIvgkCGOXz+j4u9PlStt2xrLWQK0F+mnT42l72JkjhxRnSUAWLmS+vfpmRdf1I7r15djh6fy44903ACUCjBokFx7UuPJE9VZAigyZt58l9ElBrt6OZAuXahDdGQkzSP/9Zdsixg9Urp06mPGOeTOrXWuAwOBoCB59thDvnxU2v7aa9TKxWj6UUYnMTH1sZ4oXhxo3VodN2oElC8vzRzGPjzXYbp/XzvW+90rI4eFC+nEVqUKXQC547xrKFWKIgY5c9I0xeLF+s5J+flnmv6ZOpUiY927czWlq+nTR50uDwoCRo+Wa09qhIZSu6V69YCffgI2b6ZpOUbX6DqHyYRThCuHDKHIEkAn54MHSSuIYUxs3QqMGkWJmD/8ANSqJdsiRq9UqwYcP66Ox47lqX4ZREeT4neRIvotLtm4Udsp4JVXjKlP517YlcPkuS7tuHGUIHj/PtCqFTtLjJa7d2lqJSqKxq1bA9euUT4Ww1iSK1fqY8Y1BAZSsr2eYf0/w+K5U3L37lEIvXNndpYYa65eVZ0lgBzrhw/l2cPom4kTKQclSxY6p3D/OCYlWrQgKQET5kKnjK7xTIepTx9K0Mydm3IPGOcTF0dToP36Afv3y7YmbSpVoqlaE7VrUxkww1gyZQodH+fPA998AyxaxPkosrlwgW569EZ8PLB8OfD88zSzMWMGMHmybKsYO/G8HKa9e7WNU319qVKOBcOcS9eu1OsJoGmtw4epw7heSUoiDZ3ffydx0759gZAQ2VZ5HpGR5ITcuAF066a/pPs7dygp3XQeVRS6UBcpItcuT+aDD4BZs+j5qFFUsagXBg7UOkhLl5LkCiMb4+swOYX4eO04MRFITpZjiyexebP6PDYW2LVLni1p8eQJ8Nxz9PjpJ6BZM3aWZPHuu9Qke9EiSo7VmxBkbKy29Y8Q3GxXJidOqM4SQA6TnqbSDxzQjo0QbWf+w/McpgYNtHPG33yjnU9mnEP16upzRVF7s+mRH39UL8x6F8Bzd3bvVp8nJpLgrJ4oXlybr9S1K1CunDRzPB5FsR5bLpNJgwbaccOGcuxgMoTnOUxeXjTNcvgwlZ8OHSrbIs9g0SKaUmnWjKbm6taVbVHKJCRox3oWwHN3zI8Tb2+K+umJESOAnTupgGTNGtLtYuRRuTJNnwPkKH37LWl56YEbN6jYqEYNahG1eDFV4jKGwfNymCIigDNnqC1KnjyZWxeTIR4+pKbux4/T19C5M1C0qGyrzLh3j9pahIWRAN7atUCTJrKt8kyePqUclJs3yeFu00a2RSrLl2vzT5o359Y5euHqVcpL1UtvtuRkytk8d47GOXLQc74G6QXn6DApitIQwBcAagEoAOB1IcTvaXymEYBJACoBuAXgeyHEzPRuO9Ncvkwh0Zs3geBgYNMmfUc63JDDh+mad/euumz0aGDmTOCdd+TZpWHzZuCNN6hSrnlzPqnJJFs2YNIk2VbY5soV7fjyZSlmMDYoVky2BVoePlSdJYCa7549y+cWg5GRKbmsAI4B+NieNyuKUgLABgC7ANQAMBbAVEVROmRg25lj6lRylgCKNI0Z43ITPJl9+6hA0dxZAihHtls3tYhOKsOHkzFjxwK9eqnHC8NY0rattr9dly7ybGH0Ta5c2l5xOXNy7zgDku4IkxBiI4CNAKDYl0zXB8A1IcSnz8ZnFEWpDeDz9G4701j2duJeTy7lu++sixTNGTWKpEmkiiSvWqU+j40FNmzQJqwzDADExFBYtHJlIG9ecrI7uP4ekEmB+/ephP/6derr1727XHtWriTtv+RkOp8MHcrRJQPiCnW1ugAsJ/Y3A+iVkJCALDb0j+Li4hAXF/ffOCIiwjGWfP459fE5cQIoXJgjTC7khx8o194cLy+tosOFC0D79pRDK40yZSjHzUTZsvJsYVS2b6fefjVr0kEim88+I9FBE2+9Jc8Wxpp33lGlTHbuBEqUABo1kmPLgQNAp07qya5YMeo9yBgOV1TJ5QdgMQmDuwB8Hjx4YPMD48aNQ0hIyH+PIo4SgcuTBzhyhKoVLl0CKlRwzHqZNLFMQylXjlqztWqlXf7PP66zySazZ9MFuVo1cqg7dpRsEIONG6nv45gxFMUxd1RkceSIdqw3fShPx7wRMgCcPCnHDgA4elR7Z8jHimFxlayAZTWcAqQ8pTdkyBCEh4f/97h+/bpjrDh6lO46smVjZW8XEhtLnSJ8EYef0QNXUAzbQl5HoaxPMHWqtp9tUhLw9deSDF2+nEp+9+4FBg9myQm9sHatVhzSMlQpg+bN1eeKQnIZjH4wvxPz95cXXQKo4tb8JPfSS/JsYTKFK6bk7oCiTObkBZCYK1cum9v38/ODn6PFJENDgU8+oRNvmTKUgawXfQ43JiGBriU3bgBDMBE9MI9eOHANGJIfZWbMwObN9J6EBPp6Ro0CXn6ZpG1cxoMHJDpoSrJ6912gaVPKT2HkYpkcK1sY8vJletSoQf0G333XOlTKyOWnnyi/7Pp10i2pXFmOHU+eAMOG0U160aJky+DBcmxhMo0rHKa9ACzbMbcAcChLliwvuGD7xPjx6l1qWBiwYgXw/vsu27yncvgwsGcPPS8Gi2aYz5pjvvCCtTbko0cuMM6cx4+1Genx8WQEO0zy+fhjqlb86y9yUsaNk2dLUhJ595cu0fjyZVKGZ/RFliyU9C2bIUPUiOj9+xRqN482MYYi3VNyiqIEKYpSXVGU6s8WlXg2Lvrs9XGKoiww+8hMAMUURZmkKEoFRVF6AugFYEJmjU8XloKX3BvMJeTMqXYmWIzOSDD56IpCER1QsaJJnBegKrl791xsaKlS2mmVpk0pEsnIx9ub+sn9+y8wdy41Q5bFgweqswRQBCEsTJo5jM65di31MWMoMpLDVBvAkWcPgAQpjwAY/WxcAMB/us1CiMsAXgbQGMBRAF8B6CeEWJkhizPK3LlA/vx0oX7nHRImZJzOzZvke/j7A6fzNMbuCfuoW/f27RrdmmnTqMk4QBpv3bqRGrjLuHiRplW++ILauGzcSBdqhjEnd25tsUjevKyno1diYoDXXycHu3594M4d19vwyivqHaOPD03JMYYlIzpMO5CKjLgQoruNZTsB1EzvthzKCy8At29TogwnfLuE7dspaGMqEBkxAmjyWS2QSLw1Vy1m7LZupWpcp3PuHCVMPX1K4zFjWKNLr8TF0YVHljO7ZAmFTcuVA2rXpvwUzoXUJxMmqNNhe/bQzZAre/39+KOaN1u9OjBnDlDL9rmPMQae0Xw3Lo5yltat46iBC1m/XltNu25d6u+3PJfUdJWL/fvvqrMEAAsWpPhWRiKDBgEBATS9vmKF67f/zz8Und6zh5zsu3dZmkTPWM7rW7YYcCZJScCAAeoJ8OhR6i7BGBr3d5hMZVpvvAG8+iq3L3AhlSqlPrZk5Eiq5K9Th27eb9wAoqKcZ99/WHb+1VUnYAYAif99/z3drUdHU2VaUpJrbTh+XCtvcOyYa7fPpI/u3dV8N29voE8fqeYwxscVVXJyOXoU2L1bHS9dSj3luPrJ6fToQf1JN2+mqt60eqhmyUJTcBMmUJHaoUPUn3Kls7PdOnemcr7ly4GSJSl0zuiLyEjtOCaGSitdGTFu1IgiXDExNG7Z0nXbZtJPrVrk1P7zD1ClimtbHJ09S43et20jJ/uNN4DGjV23fcYpuL/DlDOntgdHQIDcKhsP4fBhCujdukXC2TNnUurJf5gudhbipXv3aqv7nd4mJSyMmqieP09J3ytX0jHC6Iq/RQPkL9AIZW/TARH98ZcIdLRWW2o8fEhTLL6+QJEiVJXwxReu2z6TMUqVoocruX4dePFFIDycxk2b0o26fb1XGR3j/lNypUoB06eTjEDevMBvv7HD5AI+/JCcJYD62WrSgoYOpbK5kBBgzRrN52rV0gYNnC5e+emnlI8iBFXGTZ/u5A0y6eHJE3K8GzXLgkq3/0RTbEUdHEDWaePRr58LDRk0iEKl4eHkXCcnc2GAUVi1iub4Gzd2zTTqP/+ozhIA7NrFzpKb4P4RJoCu3h9+KNsKj8Iyv/G/88eBA6rw4NOnlET75AlFAUEO06pVwM8/A0FBVGTiVJ48SX3MSOX114EdO+h5IrJgO5r+99q0aRT4mT/fInrpDG7e1I5NdwOMvrl4keb5ExJo/PLLlBzpTAembFm66zPl2FWp4rxtMS7F/SNMFy5QQ1WT3DTjEgYP/s8HQvHiZrn25ndeAGV1W8h8v/oq3RD+9hupQXTr5kRDP/tMvdrmyUOJV4wu6N5ddZbMqY2DaI0NCEQUFi0CvvvOBca0aqUe0H5+/4muMjrn8mXVWQLI0XVmJcn168Bbb5Gz5O8PtG4NrF7tvO0xrkUIIfNhF+Hh4QKACA8Pt/cjxPHjQgQFCQEIoShCzJ2bvs8zmeLkSSE2bBDi8WOzhbGxQtSrR98JIMTnn1t9LiKCvi7TWwAhDh50goGXLgnx7rtCtG4txKRJQty544SNMBnh33+137/pMTLLmP8GR1FVBCFC5MkjxJkzTjRm7FjVgMqVhTh2zIkbYxxFcrIQMbcfC1G0qPr9NW/u3I327q09YHv1cu72GEdhl8/i3hGmRYvU6hohKNLEOJ25cyk9qX59mjLJnt3sRT8/qhzZuJGifj/8YHMdlhFzhxdDJSaS3MT8+WTLt9+6YF6HsYfoaG2rHBNr1gCj/Mf/N66G43gZG3D/Pk3dOYWEBOCrr9TxyZPUHoXRLXfvUpvQoCAgoEB2FLu1FzMKf4trA6cAa9c6d+NxcamPGUPj3g5TwYLacYECcuzwIG7dohYnERGUDtSzJzlNGvz8aIqjXj2b68iWjfwok9PUpw/1XHUo9+5pe4I9ekTJvIx0pk+naklzfviBpmote0CGg8ZhYdazvQ5BUawdaU721i1nzgDVqtG9cXQ0LbuWWBAf3RiG3pPK4493l9s4ITmIy5dJR8V0vOTKxZWUboZ7O0wffkgCdzlzUrhj2jTZFrk9T55o9QQTEjImcDtwILV+WrOGKuUuXnSYiUS+fJScaYJ7gumGy5e14zp1gM8/fzaYPx/IlQvCywvzAj7EZrQCQMdc3bpawXaHsGcPeeum/KXevelcwuiOM2foWLEl6D0Og7EZrfDKsm54UraOc5ym9u2Bv/+m6LWiAMuWAVWrOn47jDzsnbtz0iNVpk+fLipUqCDKli2bsRwmxuUkJQnRqpU6hd+uHeUSZISFC9VcpqAgIY4edaChFy8KMWKEEC1aCNGjhxCnTjlw5UxGWbRICC8v9fjJkkWI1attvDE+XoSFWee6rV/vQGPOnhXCz09def36Dlw540ji4oRo1Mh23hsgRDiyaRac/epXxxvh66vd6KJFjt8G4yyMn8PUt29fnD59GgcPHszYCjZtogaI5lMvjFPx8qKecWvW0N8VK1Kp4A0PpxLfFJg1S+1EERkJ/Pqrg4y8coVuRUePBrZsoQ70FSs6aOVMZvj2W23/wc8+A9q1s/HGGzdQ+thK1M6hDT06NHBw+LA2ByWj5yHG6fTrZy1yGxICDBlClbZ3kU/z2pg5+axazWWK/fuB/PnVcY4cpPTNuBW6dpgyxXffUUln377UxZXzU1zCnj10krpzB2jTJpVk7WXLaFqsSBGgY0ftVfIZ5ucfW+MMs3Ej5SyZcJgnxmQWS03Z4sVtvGnvXuq107Ej9kZVwavZ//7vpZ49ga1bHWRM0aLUr8dECjl3jFySkqjRtzmFCpFG5dixdLgsbLUI51AWj5Ed32IYFt5upsnlzxQ3blABybVrNM6XjzZauLCDNsDoBntDUU562EWGZAXKldOGR8ePt/+zTIbYt08IHx91l3/5ZSpvzpVL+/2sW2f1lps3aRYke3YhOnemsLtDWL9eu+26dR20YiYzzJ4thL+/Os328sspfOfvvKP5/nYWfMvxldyHDgkREqLOC3bqJMTDhw5YMeNIkpOFePVV6ym4LVu070tKEqJBAyF64yexEG+LvpgmypROFo8eOcAIy/MJIER0tANWzLgQ40/JZQpL775IETl2eBCbN2s1KC3v+jSYi8nZGoOKHHftouBg+/YO7GpQvDjw5pt0TDRsCCxc6KAVMxnl9m2qhoyNpSuOtzfwyy8pFKTlyKEZKhZjy+LYDDFpklp2l5BAkaacOR2wYsaRXLhgrRTw/fdA8+baZV5ewLwXZ2EWPkBX/Ibp+ARtLkyxPd2bHoSgsLp5KL1GDe5H6aa4r8M0Zw41QCxQgPqFde4s2yK3p3Ll1McafvhBrTxq0oTm72xw6xadf954A3juOUpJyxTr11PX8mXLqKTvf/9zfXNOxoqICG11ZVJSKhVvI0ZQpZqXF/DCC6i2ZjTatVOvUZMnU/pipggM1I65/6QuOXdOPY0AVNGfUmeAktf/1owbYBd271bzJDPErFk072c6eGvUoCl/xi1xX4epeHFg92664k6ezM0PXUD79nRjXq8enbRmzEjlze+/T8n4R45Q4nUK2jbLlmnbeE2Zkkkjp09Xo1lPn5LKJiOdXLnIITbRrh1QsmQqb961i77HZcsQnCsLunQBYmLo5chIilZlmE2bqLu8icqVyUljdMWhQ3TOMaU/ZskC/PQTpRDZ5IUXNMP9eB5+fhaNwdPL4cPacd68qRjAGB33lDaOjqZEXkUB3n7b+m6RcRoDBtDDLooVo0cq5MqlHWd6VsThK2Qyy82bwPPP019Focq4775L4x4nOZl6dq1YAfj6In/PXwB0+e/l2NhMGNS9uza8NWkSi97qkD//1M7klyxJSf8p0rcvkJCAxwvWIex4NHIkP0aWmHD07BmCmjUz0CN3/35g5UrtspdeSudKGCPhfhEmU8uLDz6gKEbz5lbNXRnHc/s20LIl+T/9+9ssessQb79N2qNZsgClS2eyu40QZGTJkpRz0LIlK/HqgIUL1SiiEJQL55XWmWnzZnKWACA+HvUXf4RatWioKNSU3tQVKd1YzgU6XA2TcQT+/tpxqikAAB0Y7dsj+8VDeC55PwbjO6xCeyQnW4ul2kWPHtpq2w8+4POJm+N+DlNYmLavwj//sA6TC/joI5pZu3YNmDqVEnbt4t49ElBJQRTFywuYN4/kcPbsoYh3hnn/fZorvHSJFHhXr6aGU4xUNL0GYdX9xDYWN0FKYiL27AGaNiWn65dfKJ8/3ZGmoUO1H6pVi9r4MLrit99U9Xdvb2qbM2uWHR88dAiKmQPcGDvg7ydw4kQ6Dbh7F7h+XbusTp10roQxGu7nMOXNq731CAggYULGqZgkSExcvWrHh44epXYkjRvT36NHU3zrmDGUGpA/PzBsWAYMjImhQgATR46QM81Ip0EDyntTFIpQ2pXY36oV0KIFPffyAiZMQHQ09XU2ceRIOrUm9+0Dxo1Tw6OBgdTqgqf0dcf06erXlJRE0SW7ZtcrV9bkS15AaSTFJWD4cGDmTDs3HhlJB6x5CLNUqRQUVhl3wv0cply5gOXLgXLl6LFsGeepuIB33lGfBwYCHTrY8aFJk4DHj+n548fAhAk233bnjrZh/NixGQga+voCwcHaZexIS2f1aios+ucfcoZ37rQzlyRLFmDDBgprtmsHbNiAbAe3ab5iL6905t/euqUdx8ZqhSsZ3ZAnT+rjFClXjloQlCtHQ5zHVrwEX8Rh3z4717Frl/UJaONG6/xIxu1wz6TvV16hB+MyPv2UgkRnz9KNv12dRiy1SlK4k7eVgpbutLSwMEps2biRbk2/+oramjNS+f57NXH39m3g55+Br7+288Pe3jQvc/w4AMDnzz+x/qdTePfrknj8mPJvTZVzaXLhAvDxx9plAweyw6RD9u+nnLfAQDoPvPYapQTYzUsvaRyeBtiNl7AV5cu/nPZnL1+mpEpz8uRJQZKecTvsVbh00sMu0qX0ffq0ED/8kELHTsZZ3L8vxJ076fzQjRtCVKhAyrjlywtx/XqKbx0wQBXR/eCDdG7n6lWSCzetoFOndK6AcRbNm2sFkn/4IR0fjo+3Vlheu1bMmqUOfX2F+OcfO9b10Ufa9TRsmNF/iXEiMTHaJgH+/tQRIF0kJwsRHKz5vkdipPDyEmLOnDQ+26OH9jgJDhbi4MGM/juMfrDLZ3Evh+nkSSGyZlUP5m++sXcTTCYYP15tZ/HFF+n8cHIyeVvJyWm+9exZ8ofTzcKF2pNcYGAGVsI4g+PHhShWjL6W5s0z0FGifn3txevGDdGwofbrHjAgjXVERAhRq5b2Q2+9lcH/iHEmN29a+8j79mVgRatXU8sbsxV1wa8iT55UPmPuiZseL7+cwf+E0Rl2+SzulcO0Zg0QFaWOFy2SZ4uH8OABNdsVz9Ryf/iB1HftRlEol8gOYdEcOaiIqVKldOoIliunXX/58un4MOMs5s0jscqbNympf8uWDHSUWLeOyrmzZye58NdeQ6X8DzVvSUPqixLwzAUI8+cHRo9OpyGMKyhQQKs/WbZsBvSTAMp7a9lSs6g//ocgP+sWTQCAM2fUsjwTOXIAEydmYOOMUXEvh6lEidTHjMNJSrJuLZDu/KI7d4DQUFJXtlyZGX36AL//Dpw+DXzzjZ3+cFQUyYPnzk2P1q2txeYYlxMeDvTuTXnViYnA8OGURpRusmen7/jJExofPoyJucehbVtqFdi6NVXhpUhsLLB1q3bZiBF0JWZ0RVISdbjat4861XzwAUmNZLiIsWZNzfA5HMRv6GKlFoCzZ4G6dckhN2fiRL758jB07TCFhoaiYsWKqGOvvkXnzhTuKFWKMo/tEuZgMkO+fFqttp49KQJkNw8eUJjh44+BTp1S7WlheUG16wI7ahR5Vvfv07Zq1eIETR0QE6N1rIXIhD6khUJlQMwjzJlDOeEbNwK1a6dwKoiPpwRg88/7+Fi10GD0wdKlaseaqCgqVstUoevw4VY9LOveWIFD5d7Gk1vRtOCXX6iM09SI2UTbtik3rWPcF3vn7pz0sIt0JX0zUjh7llLI0s3SpdqcAD+/FN86erT2bf/+a8f6O3TQrv/ttzNgJOMMevZUv5ZXXhEiKSmDK9q1i/LSTCsLCBBre6/VfO2lStn43KpV1jkpS5dm5l9inMhPP2m/qiJFHLDSvXtFsuUxAIgkL2+rHKf/HkWLUvY54054YA7TqlWUDGHZEJFxGrdvA/Pnk4RNuiJLJooUSX1sxldf0R3mN99QWL5GDTvWX7q0mr/k5UX9xxjpbNlCEaZ33gH++IOmWtNsh5IS9etT8pyJmBg0XdlX8xYr9fDTp60jBIGBVKPO6JL27YEyZei5omRQwNaSF16AmGkdfvRKTtI2qjNRsCCwY4d1XxbGM7DXs3LSwy7sijB9/716B+DrK8T+/faunskg168LkS+futvHj8/giiZOpLu2mjWFOHIkzbfv3i3E4MFC/PJLGm/s21c1LlcuITZuzKCBjCM5eFAIHx/1q+nc2QErtaiETPb2FlPrLhKKIkTBghaVVFFRQjz/vDZqkCWLEL//7gBDGGdw9iydIgAhSpakc4Ajufv+cNvRJMvI0oULjt0woxfs8lncx2GqU0d7cA8dau/qmQwydap2lxcr5vxt/vOP9mI7YkQKb0xOtg6pr1zpfAOZNLE8bgoVcsBKo6OFeOEF7Yq9vMTyIYeEnx8dMxMnCiESEoRo3Nj6Yti+vQOMYJxF+/bar2vQIMdv49f2K8RjBFsfG76+Qnz4YSbmjBkDYJfP4j5TcqVKpT5mHI5l24n8+TOxsrt3Sa63a1eS8k2BjRu1ycJr16bwRkWx7pdQoEAmDGQcRe3a2um35593wEoDAmhez5zkZDQf1wQvxm1FYiIw7bPLiK9ck6ZUzClUiNr0MLrFsolyupsq28Hshx1QAHfwMtZjHL7E3go9gJ9+Ah49ogaHGZ4zZmRw545VPUjmsdezctLDLuyKMD14QLchFSrQfI0dQohM5khOFuKTT0hEu2pVIU6dysTKatZU7+iCgoS4ds3m2xYt0t78demSgmFvv62+KVs2IcaOzYRxjCN58kSIyZOFePVVIfr3F8KhtRytW1tFCJIBEQV/kWRrmsXLi5LGGV2zcyedFgAhChRwzszY0KHaQ2PxYsdvg3E+SUlCdOxI36G/vxArVtj1Mbt8FkWIlHVvXIBdG4+IiEBISAjCw8MRbNlAlTE+sbHWioV//GFV8mti3Dhq2lquHDBtGknxaNi2jcrFTQQEUB2yHeKYjHM5dIj0Ah89AkqWBP7+mwI8DiM+nmQqjh1L+72KQhUL5p2jGd2xciXQvTsQHU0B6ClTSDPS0SQmUm/DDRvoMGrUCBg5EggKcvy2GOexdq22diNPHuDevTQ/ZtfFwT1ijBERdBUdPZqmdhinExNDDXebNgW++y6TK/P314rIBQUBVaum+PYhQ2jWrk+fFFTF4+O1Y1vqmowURo4kZwmg/qdTpjh4A76+VEqZVud4b2+SGmdnSdckJlIxY2Qk9cxesID63zoDHx+gSRNg717g4EFgwgTgvfecsy3GeVgWN1peDjKDj+NWJYnkZKBZMzrCAfpFHTtGUrCM0xg8GJg6lZ5v305efM+emVjhhg3Upj48HOjXL1V5ASGAN98EVqyg8XvvAbNnP3vxzh1gwAD1zYpCt42cf6ALLL8Gp3wt5cqRzsWrrwKbN2teEgAii1REtp1/cCcAA5CQQJElcyw1JB3J/v10STGxZ4/ztsU4h6ZNSZ/48GE6v4wf77h1G/8qcvu26iwBwMWLpLHCOBXLGQ97ZkBSJV8+0tAKD6c+T126pJjZeeqU6iwBwJw51I8MAEUaz55VX3z1VaB//0waxziKb75Rc/HLldP6tg7F1xfYtAm4dg3/yz8WC/E2RmEkquAEJvQ4xc6SQQgIoEi2iYYNSXbLWbzwgtaJd+a2GMdz/jxQuTI5S3nzUtejVJpHpBvjO0y5cmn18QMDgaJF5dnjIbRokfo4QwweDKxfT1GixYu1YoRmWPaO8vY205G7ds36RUYXXLpEd3u1agG//QYcP57Jykp7KFIEFzoOQTf8iq8xCqeVynwRNBCjR9OxUqIEMH068OefQJYsztveCy9QD/d27YA6dShXyllTgIzjGTOGgssA5S39+qtj12/8KTl/f6o1/+ILmqz8+mvrenfG4QwZQpGC48cpiTeF/Oz0ceOGdmzVBZMoWZICScOG0d3g1KnPUlbGjdOWloeEkKGMdISg48TU/2/XLooWFC7s/G1PmkSnhGPHSPi9YEHnb5PJPNu3U84bQK0gp04F+vZN/TOOoFUrupycPUuTF+vW0aRFtmzO3zbjWByduspVckyG2LePcgsaNqRkSYewfDk14E1OptvIP/5INXQVE0P53PHxQM6cIA/uwQP1DVOnAp984iDjmMwQHm5dzfjXX9piRmdy/TpFD27doqDjwoXUq5vRL7/9RlVxJoKCMtGgOR1cvWrdn/vQIYqMMvpm+3bqfnX/Pt2Mbd9ON0l24CFVcnv2UKf7775zbDo8kyIDBgB169LFrnVrrZBkpnjjDRIVrFKFsj3bt6foYQocOkSzr7lyAWNrroCIiNC+wfKsx0gjJIQEK03kzp1qIaTDMfU7BMjJTmG2l9ERLVtqsyt693bNdvPn10Yhc+TglDcj8NNPVP91/z5dn06etNtZshtjT8kdP04p8SZH6cwZKhVmnEZkpLYU/K+/KNrksLyQmzeBEyfoeVQUqX+nkETQty/w+DFQHJfx+ZEuUGBWT/rhh0Dbtg4yisksERFU/Lh5M0WaPv7YWojdmVhGt6y0uxhdER1N02K+vkCDBnST9vrrrtm2nx+d1776ik49tWrRVPJzz7lm+0zG+PxztcJx715g506q+XEkxo4w7dypjSr9+ac8WzwEX186oZjj0Ll9yyhhVFSKb42Job99EQpfWIhvjBnjQKOYzPDkCV1sunWjaZYCBYDy5V1rQ+/edPJUFIoWTJvm2u0z6ePrr+ne98IFynfLdBVuOqlQAahRA/j3X5IsqV8/1Y5NjA6wTA1xWKqIGbp2mEJDQ1GxYkXUqVPH9huqV9eqN1ev7gqzPBpfX+CXX6jc18sLGD4cqFbNgRvo2FF7K3f/PvD22zaz977+GnjbazE+x0TtC82aOUcKmMkQ69drBUYnTkz5vc7Cz4+qn37+maIXLVoAq1a53g7GPkzFASYuXnS9DebHR0ICpVQy+iQhgaLWpgrKjh0ped/RGD/p+9dfSayycGFKTEhL4ZfJNHFxlDiblGQdbXIIDx5Yz9fs328dE79yBYl168Pnzk11WenSNKX3n84AI5sNG7RVlCVLyrkA3roFFCum5tz5+5OMG0/P6Y+lS6n+A6B74tWrte0uXEGnTmSHiQULWBhej8TH0w3Qzp00HjAgQ720PSTpu2tXYMsWunVkZ8mpCEFq3gEBVKa9d6+TNuTvby0B3b07JSyZCA8HmjfXOksAnrR8i50lnfHyyyQe5+ND03Hz58ux4+FDbYFCbCxNFzL64tw5EqMtXZoiBdu3u95ZAoAff6SOAuXK0TFcoIDrbWDSZvt21VkCqDjaYYVIFhjXYUpMJFWz9u2BmTNlW+MRrF1L03FCUD+wTLVCSY2gIOtbhDNnSMPgyhVKaihf3ipuvwavovetr51kFJMRbt+mXJCZM6ld4IkT8tSTK1SghqomWremiBOjL9q1o6TrCxdoWkxWBDBnTpr2v32boqTNmzuh9yGTaSy7oAUEOE+v2LgO08iR9Fi9miqiFi6UbZHbY1m1bzl2KP37U3mMOSdPUsZuw4akBm5GOLLhM0zEo3BW9tYTX30FHD1Kzw8cAL79Vp4tPj5UpTd/PilY5M1LwWlGPwgBhIWp4+Rk63wmV7JihfY89/PP8mxhbJMjBxXLA+Qs/fKLNrXZkRjXYdq3L/Ux43Bee4369JgYNszJG/zmG8oyT4NY+KEBduFaltKavlOMfCwbpTqzcao9+PlRCH/5cnKc2rTh6ic9oSgUYTKRNy/w4ovSzLFSoi9USI4djG127SLZh23bKItj/nyaxnUWxnWYLOP6ltEIxuEEB9PFZtMm4MgRJzZONdGoEZVYpVYfmj07opZvxDe/V8OePeqdBqMP+vVTe/8FB7umtUVa7NihPk9KAnbvlmYKY8HMmVTKX7gw8MEHdB/s9H6DqdCtG1Vf5ctHWQDt2jkvP4ZJPwsWUBESQNHIBQucuz3jOkwjR1JV3Ntvk2CHqaSCcQo3bpAAd548wIgRQJEiLtpws2aU0Velina5jw8loVy4gFwdm2DXLiqiy56dEkYZ+Rw/DgwaRBe8jz8GTp3SR3sJc5USRdEqkDPyOHpU1am9cYPulWQrbHt5Ud5SlSrUW65PH4q0yy0uZ0xYJuI7OzHf+LICjEvo3l1b3TRwoAQ9nSNHKMEhIIC073Pn/m9xzZrq23x8KO8gIMDF9jEaSpZURdoVhSIHepBKe/qUppNPnQLKlKHiBVZxls+6dVplZi8vih44Q4AwPZw+DVSqpF128SId34w8oqIoKX/ZMiqgfuEFYNGiDBfLu7GswPHjQJMmdJYz707POA3LppdOTfhOiRo1qM63bdv/nCWAysPNSUzksLlskpOpiakJIajAUQ9kywb06kVJ6D/9RCfa336TbRVTv762d1ynTvKdJYCSis3t8PWl3oiMXN55hyaZrl6la8DEic5XFjKewyQEiWLs2AEcPEgX0EuXZFvl9nz6qZqLEhJCUyx64fnntXemQ4Y4uF0Lk268vOinaaJQIXlyArb49VfqiwjQKWXWLLn2eDr37tE98LVrNO0/ebLz81HspUABYO5cuhiHhJCzbcqbYeRhnosYH++aui/jOUyRkdSg1URCAjtMLsDXF5gxgwJ6p087uB1KJvHyInWJ/ftJXaJOHfnVWJ7OvHkUCC5dmppiHjigCQpKJ1++1MeMaxk3Tu0Xd/8+Td86S0snI3TrRm2gwsPpPFi9ujaCyrge82l0b29tWoazMJ7DlC0b8NJL6rhIEc7adDLDhtG0xbvvAmPHkqCb3vDyArZupTBt+/bkND16JNsqz+TYMcoLOn1aFR8sWFC2VVr69aMpn+BgoGpV4P33ZVvk2Vj22E6l57Y0fvxRfX7/Pmk0MXKYMoWqW/39aYZh1Sp2mFJm3TpSgh49mvpzcDMop5GUBHz/vTo+cIAcEz1iLg4eFkaHCeN6Ll/WVhFduUI5TXrC15fyll56iSJhzZvTVC4jh1q1SOAfoHviL76Qa48tOCqpD86epaKjqCjKXTpxAmjZ0jXbNqbD5O9PIkBffcVKYk7G21s9kZnQa8JjjhzasR4jYZ7Aiy9qI0odOli3BtQDBw/SVK6J8eN5KlcGw4ZRuX5kJOUv7d5NEW29MWcOpSJkzUpRDS7YlsPDh9obsuhoICbGNdvW4WksDfr3J7neQoWAPXtkW+MR/PorOUleXsBnn+kredec+fPpsMiShfRc2raVbZHn8fgxKe3evk2z5RMmUKmvHrHs0ezjQ8cO41rMW4Hev08yIXqkXDnKX4qPp3zJ116jRq+Ma8mSRdsDsls3100yGcth+vNPOkITEoBbtyhhhXEqCxZQsmPNmiQsN2GCbItSpm5dqrIZNox69X75JR0qjOv49lvg77/pDvD6dQqf66E03BbVqlFCOkCR1EGD2GGSgaWSt0xl77RYtUp7Tlm6VJ4tnsjevdTUw5Rw37cvFZi4Cp2eyojQ0FCEhoYiKSmJFlhm8XJWr1M5dgzo0UPNP3njDboA6plp04BRo+j59u2UqyKz4aun8fhx6mO98cMPQKlSwCefAGPGUH7etm0seuoqli2jEv2AAHJW+/Z1XT5KRrAUq2TxSteyfDlF+EwcP+68Rru20HWEqW/fvjh9+jQOHjxIC1q2pLioic8+k2OYh3DxojZZ98IF/bcEOHpUOzaVKjOuoV49darL318fvePS4ptvVKHTffu4+slVXLpEna0uXqQcFD8/+i70zAcfUPps0aI05SwEywu4EnNhU8D1rXN07TBZkT07TR6vWkWZgV99Jdsit+bFF7WVIK+/7lpvPiNY3p22aCHHDk/k22+B3r2pcqVgQUoxbNJEtlVpYzkNx9NyruHaNa0i//37kjoIpAMvL2DoUOp8cP06VVo2a0bVxIxz2b2bCuMBiki2bautjHYFup6Ss+LhQ8pdatSIS6BcwKZNtKvj4sjx6N1btkVp06kTXfA2b6a/5gFJxrmYn7xu3SIdJldoo2SW6dOBt96iaptatfTR785TyJWLTusAnWMsK131yLlz2qnmCxeABw9YZsDZ9O2r7veYGEq6d3YrFEuMFWGqWZNKtMqXp7Mx4zR+/pka7i5bBqxZQ3dQRrnzbtWKApE//kgRp08+kW2RZ2BUWYdXXqF6kmzZgMOHqWXhtm2yrXJvdu0i7SuTs9S5M7B2rVyb7KV8ee2FumxZfanYuyuW0gGukhIwx1gO05Mn9Pf+fdfH4jwMywvG9u1y7MgIO3ZQMqCJGTO4Ga+zWbGCpit8fakq7pNPqOWjUViwQG0wHRsL/O9/cu1xd1au1P4mb9+mHCYjkCsXnQ/btCGNusuXqbem3vM7jcyGDdom6xUqUP6bqzGWw2SOUX5dBsWy24yRus/kyaMdZ8+u39J2d+DiRYoQXLhAFSw5c1LrAiNhKcbKzQOci2VzbKNVm1WpQgr2kZEkMzBzJvXZZBzPvXuk7Xb9Oo0DA+mGXsb0rbEcJlNKfPnyJLbDOIUnT+hkUK0aKdp+/TVp1BiF556japusWUnTZdIkvvtzJlevaqMF9+7RhcRIDBlC+i4AkDcvHTd67GfmDvz2G/WkBCgi+eqr+tZ3SwnTdGJKY8Yx3L6tnX5zpbK3JcZymA4fBu7cAU6d0l83TzfizTdpSuLYMSrTf+MNfXUOt4fhw0mT6cEDahr8+utcyeIsoqO1EZnmzY3XNiJ7dppWzJOHHL7vv6ekUsbxjBypypXEx1OeoRGSvS0ZMEB9njMnJ307i82bKapk4oUXrOUFXIUxHCbT5OWYMVR3qsfGVG6EeceZuDjquWVE+vdXIx9r1tAPj3EsW7aQY2FKL+zQwTjJu5YcOEDpkSa2bqXjn3EsljdfRhUJ/fJLIDSUpvsfPaLfgV7bABmVFStodiM6msa1agF//SXvBt4Ynse779LfiROp/8Xt23LtcXPq1VOf+/oaK3/JHMtpOJ6Wczzr1mnFTR89su7RZhTKldNWgpYpw6mSjuajj4Dz59VxmzZA167y7Mksx4+rN2VCUN9NxnGcOKEdJyRQqoUs9O8wJSdrQwMPH1JDGcYpTJtGzS+zZQMaN6bqhIoVZVuVMaZMUe9EGjcGGjaUaY17YilkWqGCHDscQZkypIlbvTpNAdy9S/l7jGM4c4YqVs2ZO9c4ciW2sJwaKlJEjh3uyP371tXZsitvFSH3ttuujUeUL4+Qc+cQDiDY25uSaypVcrJpnsfJk0DVqmokJnt28k+NPAO6ezdNE927Ryez7dupdxiTecaNI9VjgKYlOnQA5syhUmsjU6wYqVCb+PtvNSGcyTgHDlARiTn37llXtRqJuDhql7JqFRU6ZMsGLFxIiexM5ujYkeQnTPTsSecXJ3WbsGutGboUKorykaIolxVFiVUU5bCiKCmeThRFaawoirDxKG/3Bhcvpr/PPUfP2VlyCnfvaqetnjzRal8YkVmz6KQMUFnq+PFy7XEnzKMFiYnkVBjdWQLod5DamEk/N29S8Yg5o0cb21kCaMr2o49Iw0sISrHt2lU7Tc1kjLAw7bhoUfmtudLtMCmK8haAKQDGAKgBYBeAjYqipJW3Xg5AAbNHWOpvN8MUEvjzT+tfHeMw/P2BAgXUcdeu2uoEI8J5TM4hOtpa28pdqoQ++kh9njOn8SpE9cjcudqoXfXq7tMKNDxcO46KYqHczDJzJs14mPDzo95xsslIhGkggLlCiDlCiDNCiE8BXAfwYRqfuyeEuGP2sKvIe0e7ybibvSwA4PSCQxkwl7GHv/+mRqmmfPq+fYH58+Xa5AiGDVMVKHLm5KkVRxAfT8fK5cs0Nil7d+gg1y5HMWkSMHgwPX/0CGjfHli+XK5NRsc80RswpoxASjRsSKXuJooUodxPJmM8fEjK6eZRupUr9dGXMl0Ok6IovgBqAdhi8dIWAPWsP6HhiKIotxVF2aooSqo9zOPi4hAREYEDP+1AzTUDESAoJp6zn4HLKXTO0qVUgWDi3Dlj5y6ZKF8e2LePTmKPHlF/PNPFkMkYJ05QPoqJxEQq/ZUdLnckly5px6tWybHDHfj6axKrNJEnDzB5sjx7HI2fH7VjKkv39bh6lSZCLCu8GPu4cMFaM694cSmmWJHeS2JuAN4ALGf17wLIn8JnbgN4H0AHAO0BnAOwVVGUFGuWxo0bh5CQEDzfpwlCAJgKD3KLu0iKZ/VBZ2CZS6CXA9QR7NqlyuoDpJ3CZJxTp7TOdNas1q1FjE6ZMtpx3rxy7HAHVqzQjvv2pS4C7oSfH3VHMJGYqJ1SYuzjyhVqhm1Ohw76qdTOaAzBMhNEsbGM3ijEOSHEbCHEv0KIvUKIjwCsB/B5SisfMmQIwsPDce3kNRz3KQnTte5Aqbfh7csJBY5m5UqqeALoh//qq8APP8i1yZFYXuz44pdxtm2jKJ0pXB4SAixb5h7J3uYMHw68956q+TJ9OvDTT3JtMiJbtmhzlwA1EuNutGihPs+Sxfr/ZtJm9WrqzmCiQAE6v+glep1eh+kBgCRYR5PywjrqlBr7AJRJ6UU/Pz8EBwejSKUiKHT6AE52mgoAqHtoWjrNZezhiy8oLwWgMtlXX3Wv5qPNmlH5e9aslMQeEsI5Bhll61Zt4nypUvK1UZyBvz/QurXaTy45mZSdGfsJD6f8r4gIGisK8Pnn1KjZHVm6VJUTSEigqX9L3SkmZR48ABYs0C4rVUpfqSHpMkUIEQ/gMIDmFi81B/BPOlZVAzRVlyY5y+RCtUmk9D38KwWnT6djK4xdWFaOuWNV0JgxNO0YHU3CnO3bq0nLjH1cvkx3e+boIRHTWVgKKrrj78KZnDypbWAshNq0wR0JDLRu82IpvMikzIAB1LvURJEiwM8/SzPHJhnx3SYBeE9RlJ6KolRQFGUygKIAZgKAoijjFEX5z09UFOVTRVHaKYpSRlGUSoqijAPlM023d4PdutHf6dOB+vVJ04NxDF9+qZ17b9zYPe8AIyO1/2dcnLXOB5M6H3xACZkmXnqJ1NTdlTZtSDzPxOPHVA3IpM3Vq0C7dtpltWtT+xl3xrKN1N271rIDjDXR0cA/FiGXN96wziWUTbodJiHEUgCfAhgB4CiAhgBeFkJcffaWAiAHyoQvgAkAjoM0m+oDaCOEsKvuJDmZpgFMPH4M7N+fXqsZW5w+rc1VUhTKZ3LH/llBQUCjRuo4ONj9EpWdSWwsrKK7TZvK7evkbLy8gCVLtL3xpk+3PrEz1qxcqc1FyZOHoi1GboNiDwMHUqTEFI38+2+t083Ypk0bbWWqnx/w5pvy7EmJDM0OCiF+FEIUF0L4CSFqCSH+NnutuxCisdn4eyFEaSFEgBAipxCigRDC7gwSLy9tfyofH2P3q9ITpg7zJoRwb4XaP/4AunQhxzAigrSEzMvjGdskJVE+j3lkN3t2z9CQTUpS8/tMREbKscUohIUB33+vXVa+vPsVBtjCy4vav5iXxe/cKc8eI3DzJskymDNzpnUbHT2go3SqlFmyhP42aEAlquwwZZ7bt627hH/5JZA7txx7XEFQEImimXK2YmKskwwZay5dsj6hLV+uv3C5M/D1BUaM0C4bOJDbpaSG5f4pWJB6gHkK1arRcWPCz0/bE41RiYy0VvD29aXotR4xhMNUrBj9bdOGnCeuPMg8M2dqk55r1gS++06ePa7Csn2HO08pOYKEBJpiMMfPz/10dFJj5EiguVmZy6lT7iW74UiOHKGG1+a88477SgnYonx5imab2kpFRgKdOpEYMKNl+XI6Zkz4+NCyomk1WpOEIRwmE4MHk8P00UesiZIZhLDOR3EnGYHU+OEHKhwwlar+739895ca8+YB69erY19fUm02etPU9GJZ/cSFJ9YkJNDUrflUf65cpGflaTRsSInMJhIT2WGyJCzMWqqjSBFVmkGPGMphMsfyLoaxn2HDtOq7uXIBEybIs8eV5M0L9Oyp5mrFxZE2DGPN06fWUymlSrlPz7j0MGwYFQqYWLIEmDpVnj16ZOlS66nKefOA0qWlmCMVPz+gVSvtss8+U3t1MvSbMi8M8PWlmQ89Y1iHqW5d2RYYl9WrteP+/YEaNeTYIgNLITTLvkUMMWCANileUTy3D99zz1FPNHPGj5djix45fNhaY6l4cW1lqqexapV26vrCBetkeE9l2TLryH737lq1dD1iKIfpm2/o7varr2hOmEk/ixdbNxatVEmOLbLo1Ikq5Excv+6Z0wapcf06sG6ddln37qommidSuLB2HBXF/cIAuuEYPVpbYRsQAOzZA2TLJs8u2QQEACVLapft3UsSHZ5MUhLQo4f2eMmZ0xiRfkM5TB99RJVN33xDlReWqsNM6ty/T3eB5mXSw4eT6rUn4edHiYXmzJ0LHDsmxx69kZRE7WTu3VOXeXlR8q4n0769dh+YpCkePpRnkx749ltg7Vrtslat6Bzt6VhO5e7fTzcenkpSEvD669r8LgCYNcsYVbeGcpjWr1d7gMXFAf36ybXHaGzbRomZ5njqRdDLy7qh4507cmzRGytXAufPa5dNmaKNynkiXl7W1XEPHgDHj8uxRw+cO0dinuZUq8ZyHSZq1QJGjdIu27hRiim64JdfrCPXTZroO9HbHEM5TJaiiu4ssuhoDh+21l1q3twzEzIBIEcOYOxY7bK33rKuHvQ0jhwB3n5buyxnThL8ZEinzPI306cPRW89kZdf1ibuApTc7AkilfZSr542bzIigtpPWfbwdHf27gX69tUuCwgAtmwxjgK8oRymNm1UQStvb9ZCSQ+LF1Npq4mCBSlip6dO0K5m8GC6AzQRHg78+qs8e2QTHw8MGqQ9Tvz8KDKZK5c8u/SEtze1aipQQF12/jwwbZo8m2QxcKB1PmT//p4btU6J55+3rjZdsgQ4dEiOPTKIiqJelObpIIpCvxsfH3l2pRddXy5DQ0NRsWJF1KlTBwCVHW7ZQtMDgYFA796UbMikzh9/kN6QOS+8YByv3pkUKqQd//033QF6IiNGAH/+qV3WooVniVTaQ9Gi1t0Gli71rCndpUuByZO1y/Llo5wdxpo331T7y5kYMoRSSzyBt94CTpzQLnvnHaBXLzn2ZBghhMyHXYSHhwsAIjw8XCQkCBEYKAQFNOlx5Ii9a/JM6tTR7q/KlYV4+FC2VfrgyhUhypTR7p9OnWRb5Xp27rT+XVWuLMSTJ7It0yd79wqRNat2f7VuLdsq17B/vxD+/tr/3cdHiEuXZFumb6ZO1e4zQIjvv5dtlfP57jvr/7tMGSHu3ZNtmQa7fBZdR5hsER9vnWFv2USWUZk4ETh4ULusa1fKS2Go7U7Pntple/Z4Vn5BQgIlXVr+rkaOBEJC5Nikd154gaYvzdmzh7R23JmHDykyYFkaP2gQUKKEHJuMwiefUD6TOdOnA9euybHHFSxbZv078famwhIjdgswnMMUGAh8/LE6rlrV83SE7OXJE2vp+Tp1tPuPIXE983D59euek4cRF0d5geHh2uXDhwMdO8qxySi8/jrg76+OTTIDUVHybHI2L79sXUH52mskLcCkTb9+2urca9esb9jchd27rQtIAJrOrVLF9fY4AsM5TAAlik2bRhn2x4+TSrV5I1mGogZvvmldSThrFjectaRuXSp3Nee336jXkbvz+efWbYYqVvRcRe/0ULkynfzNuXHDPQsHhKCLn7nyO0ARWu7raT9vvUWJ8ebs3GmtC2d0jh+nqLV5AQlAAsFGbq1kSIcJID2mmBh6fvOmZ1appMYvv1gn8HbrBlSvLsUc3dOsmXXF4KBB7t025ccfrTV0smUD/vmHnWp7ad7cunDgo4+AXbvk2OMsPvkEWLRIu8zPj84x+fLJscmofPihVgE9MZGcUXfpM3f9Ov0uHj/WLm/Rgm7YjYxhHSY/v9THnsy//1LJrzkFCgDz58uxxwgUKABMmqRdtnq1deTJXfjjD2vhV29v+n85b8l+AgJIZsB8nyUnUwWU6YbO6AwZAoSGapcpCrBpkzHUmfVG2bLW/TwTEoC2ba3zCI3G9etA7draLgEARWMXLbIWCzYahnWYxo5VeztlzUrTJ5ZfkiciBN3hmudReHlx00d76N+fpqPMmTTJ/UQJT5wA3njDOno2apSxw+WyKFfOWql4zx5qXmx0xo+33WR4yhSgcWNXW+M+NGmiagqaOHwY+OILOfY4gpScpQIFKBLpFlpu9pbTOelhF+ayAub89Ze2VLFlS7tLCN2W3r2tSzh795ZtlXGYNct6/735pmyrHMfp00Jky2b9P771lhCJibKtMy5PnwpRu7Z1qf2qVbItyzijR1sfJ4AQgwfLtsw9iI0Vonhx6/0bGirbsvRz7JgQ2bNb/y8hIUJcvy7bOrtwT1kBcyzbWFgKY3ka27cDs2drlxUqZN3LiEmZ3r2tm2OuXUuCqUbn/Hkqa376VLv8ueeAefOshfUY+wkKsm61k5hISb5Xr8qxKaMIQe1eRoywfu2996z/TyZj+PkBU6da/+6++MJYOXBbt9J5xVLeJ3du+j9MM0HugKEdpqZNtWW92bMDFy9KM0cq589Tya8lq1dz1/D00rcvqcqbiI2lTvVGzi84edL2Sa14cVI3N/8dMRmjeXPrPLiEBKB+feDuXTk2pZeYGOCVV2xXvnXvTkm7Rs9D0RNt21pLMkRHAy1bWss36JGpU8lWSymN4GBqqWRU+YCUMLTDVKkSRVVMc6OnTwMNG3pea4uHD0kLxVJMbvx40l1i0kft2tbJ3lFRlKeSkCDHpsxw+DBdtB8+1C4vVoycJS6YcByffEL72pwbN6gPpt7PS7duUbRxwwbr1z78kH4T7Cw5ni++oBsyc2JiqAedZa8+vRAXB3TqRHmflrmQefLQbI+7OUuAwR0mgMJ95heCW7eAs2fl2eNqTPoolv9zo0bWCquM/XTooG3MC1DoeeRIOfZklDVrgBdftBamzJUL+OsvoEgROXa5Kz4+lOBavLh2+eHD5DSZNx/VEzt20A3oyZPWr/XtSxIUjHPw9ibdt8qVtcufPKFz0JkzUsxKkbAwcoYsNcgAoGRJ0mAqWtT1drkCwztMefNq50h9fOjH7yn06QNs3qxdVrq0+wmhuRo/PzqOLCs7xo8HFi6UYlK6+f57UqO2bPCZOzdw5AgdJ4zj8fen1g/mWjsACYQ2aaKvKGVyMt1YNW1qu8XUyJHWWl2M4/H3p2hvsWLa5U+eUBuePXukmGVFaCg5drZEfevVI0mb/Pldb5fLsDc73EkPu0ipSs7E2bNClCihzc5fvtzetRuXSZOsqxJ8fYXYtUu2Ze7DwoVCKIp2HwcGCrFjh2zLUiYuTojOnW1XOBUoIMTNm7It9Ay2bRPCy8v6O6hZU4jISNnWCXH5shBVq9o+Tnx9hfjtN9kWeh7nzgmRL5/19+HtLcTs2XLtqlLF9rECCNGzpxAJCfLscwDuXyVnolw560iApYS/uzFjhrU4JUBtGSxzKJiM07WrdT++6GigVSvb0xeyuXQJqFYNWLzY+rWKFWlqiIsAXEOTJvQ9WCrI//svTV3IbL0zbhydN48ft34tf35g716gSxfX2+XplC0L7NtnfT1LSqIK3nbtXCuI+uAB0KMHHSu2qtD9/Sm3be5cmt1xe+z1rJz0sIu0IkxCCDFokNbjzZZNiD177N2CsVi40LaX/913si1zT+LiSOPLcn8HBgqxb59s61R+/FEIPz/bx0bDhkKk8vNhnMiiRaTJZPmdeHnRd5ac7Dpbli0TInfulCMFDRoI8fCh6+xhbHPjhhBFi9r+jrJnF2LFCuceN7GxQnzxhRABASkfKxUqCHH+vPNscDF2+Sxu4zAlJgrx+uvaL/S55+zdgnFYtsx2mL9HD9mWuTeRkUJUqmS93319hdi0Sa5tt27RhS6lE1vfvnLtY4RYs4amVWx9P889J0RYmHO3v2uXEBUrpnyMZMkixNixzrWBSR8PHwpRp07K31nlyo5Pv7h2TYiuXVM+Vk2O/uefu53QrfEdpunTp4sKFSqIsmXLpukwCSHEDz9ov9jgYFIgdRdSulNt29a1d6meypMntpV5Aconk8GECUL4+9u2ydeXHGxGHxw8KERQUMoXoXfeoWPMUSQmCjF9OuWtpXTxM0UKTp1y3HYZxxEfL0SvXql/f0WK0PknKipj27hxg1TdU4pomT9q1HDbY8X4DpMJeyJMQgjx4IEQZcpov+A8eahtgdGZONE6+RgQokkTIaKjZVvnOVy5Yl1gYHo0a+aa6YzkZCF++UWInDlTPrGVKEFJvYy+uHkz9eRZRaHjaMeOjN0ExcQI8fvvQrRoQVGj1C5+fn5CjBkjRFKS4/9PxrGsWpX6793kdBcvTo73woVCnDghRESEuo7YWCGuXhViyxYhhg2ja0euXGk7SQC9b9Eit74x9zyHSQghDh2y/rIXLrR3S/rk009tH8QNG1J+DeNa7t4VomRJ299JQIAQkyc758SSkCDEr7+mfifo5SXEJ5+49YnN8MTFCTFwoO0bIPNHlixC1KolxJdf0gUzLIxu/mJjKZpw65YQu3cLMWWKEF260MXS1nS9rUfnzkLcvi17TzDp4dEjcobs+X4d9ciTh/LsPADPdJiio60vZj4+Qhw4YO/W9ENcnBDt2tk+kBs0cLs5ZEORkCBE8+Ypn2gKFxZi3jy6uGWWq1cpDylr1tRPbsWL0w0DYwyOHxeifHnXXfy8vYV47TV2lIzOuXNCNG2atsOdmUeZMhTF9qAbcs90mISgxDXLzsmtWhlLJ+LuXSGqVbN9MLds6VEHsm5JShJi6NDUTzxBQUK8+Wb6pliSk4XYv1+I3r0pPyGtk5ufnxCjRvHUilH544+Uc+Mc8cialY4lnqJ1L65epfymwEDHHCd589Jxcvq07P9MCnb5LIoQQqKoAezaeEREBEJCQhAeHo7g4GC7VvzGG8CKFdplX3xB6sd6Z+dO6g1n2c4CoP49CxYAWbK43i7GNrt2US+oBw9Sf5+PD1CgALXNKFaMnmfJQj3Gbt6ktj5Xr1KjVnt+lopCDVHHjQPy5XPEf8LI5I8/gDFjgEOHgMTEzK3Lzw+oWRP49FM6F3IPOPfm4EFgzhy6dly8mPbxoyhAzpzUDqdFC+DNN4EyZVxjq06x6xfitg7TkyfUiNdcbCsgAFi/ngTl9EhyMrUiGDPG+oKpKMDQodadrRl9kJhI392ECc7vF+bnB3TrBkycaN1+gzE+T59SD8ClS0mA99GjtC+AWbNSX8BGjYCOHenc5+vrGnsZ/fH4MfWgu3sXuHePri25ctGjdGkSr+Wbbg2e7TABwKpV1ETVnMBA4MIFurvXE9evU5Ti0CHr17JkIQXvN990vV1M+njyBPjsM/q+HO04lSgBfPQR8N57QPbsjl03o1+Skyn6eOUK/U1KImcoMJAUwwsXJoeJYZgMww4TQFGZceO0y4oWpRYRuXOna1VOY8oUYPBg6yapAIVN//6bQqeMcQgPpya9c+YAx45lfD0lSwJt21KT5fLlHWcfwzAM8x/sMAFAbCzw/PPWPZPKlSNHJG/edK3OoVy8SOHzo0dtv96gAfDnnzQFwxiXqCg61taupePw0iUgMpK61gsBeHtTxCBXLooiVa5MOWz163PYnGEYxgWww6R+HqhQgcLZ5pQsCWzfThEnV/LkCTXOnT+fwu2WKArlpwwY4Fq7GIZhGMYDscth8kr7LcYnOBj4/XcgKEi7/NIloGpV4J9/XGNHXBx1vs+Xjzo823KWihUDzp5lZ4lhGIZh9IRHOEwAUKcO8Ndf1pUj4eE09fX557YdGEdw5w7Qrx/lI/3wg+1kYB8fkj24fBkoW9Y5djAMwzAMkzE8xmECKJdp61aqLjEnOZmmwAoVAlaudIzjlJxM+UdNm1IVy7RpQHS07fdWr07yB99/z3opDMMwDKNHPMphAiiRdv9+27ICd+5QEnaxYhQJevQofetOTga2bQNef50SeFu0oByppCTb78+Vi0QojxzhCiiGYRiG0TMekfRtiwcPyLHZvTvl9ygKRZ3q1QNq1aKpsnz5qGotOppUmU+coMfJk6SlZM/uzJkTGDUK+OADFpdjGIZhGMlwlZw9TJoEDB8OxMQ4dLU2yZ0bGDaM8pm8PC62xzAMwzC6xPhVcqGhoahYsSLq1KnjtG0MHEh6SJ07Oyd/SFGAxo1pqu7+fertxM4SwzAMwxgLj48wmXP3LvVqW7Qo/flL5nh5kVzBe+8B77xDsgYMwzAMw+gSnpLLKElJ1NNt8WJgyxbqJB8RYfu9Xl7U16tECZIueOMNqoxjGIZhGMYQsMPkSBITqQP048fkUPn5AfnzAwEBLAXAMAzDMAbGrqu4j7OtcBd8fIA8eejBMAzDMIxnwenHDMMwDMMwacAOE8MwDMMwTBrIzmGyC0VRggGEAwgRQqSQfs0wDMMwDOMcjOIwKQCyAXgqjGAwwzAMwzBuhSEcJoZhGIZhGJlwDhPDMAzDMEwasMPEMAzDMAyTBuwwMQzDMAzDpAE7TAzDMAzDMGnADhPDMAzDMEwasMPEMAzDMAyTBuwwMQzDMAzDpAE7TAzDMAzDMGnADhPDMAzDMEwasMPEMAzDMAyTBj6yNmzWH45hGIZhGEYmafaqleYwgZylcInbZxiGYRiGAYAQABGpvUFa8910RpiyAbgBoDCAp+nYzAEAz6XTND1/hveDa/dBRj/nbvtBz/tO7/uBzw2u+wyfGwi9Hwuu2lZ694N+I0zPDEvVmzNBvhUA+ofs+syzzyWn5/0G+IzpqcfuB1fug4x+zt32g573nd73A58bXPcZPjf8937TU10eC67aVkb3Q2q4e9J3qJt9JqPo+X9y1X7I6HZ4P+h/32UEPX+vfG7I+Gcygt6Pbz3vB73vO4cibUouPSiKEgzKdwpxlKdoRHg/8D4wwfuB4P1A8H7gfWCC9wPhjP1glAhTHICvn/31ZHg/8D4wwfuB4P1A8H7gfWCC9wPh8P1giAgTwzAMwzCMTIwSYWIYhmEYhpEGO0wMwzAMwzBpwA4TwzAMwzBMGrDDxDAMwzAMkwa6d5gURflIUZTLiqLEKopyWFGUBrJtciWKooxSFEVYPO7ItsvZKIrSUFGUdYqi3Hr2P7ezeF15tm9uKYoSoyjKDkVRKkky12nYsR/m2Tg+9kky1ykoijJEUZSDiqI8VRTlnqIovyuKUs7iPW5/PNi5HzzhePhQUZTjiqJEPHvsVRSltdnrnnAspLUP3P44sMWz34hQFGWK2TKHHQ+6dpgURXkLwBQAYwDUALALwEZFUYrKtEsCpwAUMHtUkWuOS8gK4BiAj1N4/UsAA5+9XgfAHQB/Koribg2d09oPALAJ2uPjZRfY5UoagUTrXgDQHNShYIuiKFnN3uMJx4M9+wFw/+PhBoDBAGo/e2wDsMbsIugJx0Ja+wBw/+NAg6IodQC8D+C4xUuOOx6EELp9ANgPYIbFsjMAxsm2zYX7YBSAo7LtkLwPBIB2ZmMFwG0Ag8yW+QF4AuAD2fa6aj88WzYPwO+ybXPxfsjzbF809PDjQbMfPPV4ePZ/PwLQy1OPBfN94InHAYAgAOcBNAOwA8CUZ8sdejzoNsKkKIovgFoAtli8tAVAPddbJJUyz8KJlxVFWaIoSknZBkmmBID8MDs2hBBxAHbC844NAGj8bIrmvKIosxVFySvbICcT8uzvo2d/PfV4sNwPJjzmeFAUxVtRlE6gSOxeeOCxYGMfmPCY4wAUeV0vhPjLYrlDjwdpzXftIDcAbwB3LZbfBe0AT2E/gG4g7zkfgOEA/lEUpZIQ4qFUy+Rh+v5tHRvFXGyLbDYCWA7gKujk8A2AbYqi1Hp2YnArFEVRAEwCsFsIcfLZYo87HlLYD4CHHA+KolQBOQf+ACIBvC6EOK0oiuki6PbHQkr74NnLHnEcAMAzZ7EmaLrNEoeeG/TsMJmwlCJXbCxzW4QQG82GJxRF2QvgIoB3QSdMT8ajjw0AEEIsNRueVBTlEOgk2QbAKjlWOZXpAKoCqG/jNU86HmzuBw86Hs4BqA4gO4AOAOYritLI7HVPOBZs7gMhxGlPOQ4URSkC4H8AWgghYlN5q0OOB91OyQF4ACAJ1tGkvLD2Fj0GIUQUgBMAysi2RSKmKkE+NiwQQtwGnRjd7vhQFGUagFcBNBFC3DB7yaOOh1T2gxXuejwIIeKFEBeEEIeEEENAhRH94UHHQir7wNZ73fI4AKXt5AVwWFGUREVREkHFEf2ePTd95w45HnTrMAkh4gEcBlWDmNMcwD+ut0gfKIriB6ACKJHNU7kMOjH+d2w8y3lrBA8+NgBAUZRcAIrAjY6PZ2XB0wG0B9BUCHHZ4i0ecTzYsR9sfcbtjocUUEDJvB5xLKSAaR9Yv+C+x8FWUNV4dbPHIQC/PXt+CQ48HvQ+JTcJwMJn4cS9oJLBogBmSrXKhSiKMgHAOgDXQF7xcADBAObLtMvZKIoSBKC02aISiqJUB/BICHHtmc7GUEVRwgCEARgKIBrAIlfb6kxS2w/PHqMArASdCIsDGAuKzq52pZ1OJhRAFwCvAXiqKIrpbjFcCBEjhBAecjykuh+eHSuj4ObHg6IoY0E5OtcBZAPQCUBjAK085VhIbR94ynEAAEKIpwDMc/igKEoUgIem3D6HHg+yywHtKBf8CMAVAHGgiFND2Ta5+P9fAuAWgHgAN0E/goqy7XLB/90YNMds+Zj37HUFdFK4DSAWVPVQWbbdrtwPAAIAbAZw79nxcfXZ8iKy7XbwPrD1/wsA3c3e4/bHQ1r7wYOOh7lm14R7AP4C0NzDjoUU94GnHAep7JsdeCYr4OjjQXm2QoZhGIZhGCYFdJvDxDAMwzAMoxfYYWIYhmEYhkkDdpgYhmEYhmHSgB0mhmEYhmGYNGCHiWEYhmEYJg3YYWIYhmEYhkkDdpgYhmEYhmHSgB0mhmEYhmGYNGCHiWEYhmEYJg3YYWIYhmEYhkkDdpgYhmEYhmHSgB0mhmEYhmGYNPg/puZkLXAQyCIAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('x y a b')\n", "a = 0.1\n", "b=0.5\n", "P = desolve_system_rk4([-x+a*y+x**2*y, b-a*y-x**2*y], [x,y],ics=[0,.5,.5],ivar='t', end_points=[0,40])\n", "X=[ [i,j] for i,j,k in P]\n", "Y=[ [i,k] for i,j,k in P]\n", "XP=list_plot(X, legend_label='$x$')\n", "YP=list_plot(Y, legend_label='$y$', color='red')\n", "XP+YP" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGICAYAAABYwgT/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7/0lEQVR4nOxdZXgUVxt9V+KuREkCwR2KFymuxYs7bXGX4u7u7i7Fg7u7u4VAgCSEENfdOd+PYS8bSrDcm4/SOc8zT2kye9/Z7OzMmVfOUQEgBQoUKFCgQIECBV8G9f/7ABQoUKBAgQIFCv5NUMiTAgUKFChQoEDBV0AhTwoUKFCgQIECBV8BhTwpUKBAgQIFChR8BRTypECBAgUKFChQ8BVQyJMCBQoUKFCgQMFXQCFPChQoUKBAgQIFXwGFPClQoECBAgUKFHwFtP/vA/geoVKpVETkQUQx/+9jUaBAgQIFChRkCGyI6CW+QD1cIU8fhwcRBf+/D0KBAgUKFChQkKHwIqIXn9tJIU8fRwwR0fPnz8nW1jbNnaKjo8nb2/uz+ylQoECBAgUKvl8Y7uf0hRWn7548qVSqTkTUiYh83/3oNhGNArD3E68pR0TTiCgPEb0kokkAFnxtbFtb2y8iRV+6nwIFChQoUKDg349/Q8N4MBH9RUQ/vduOENEOlUqV52M7q1QqPyLaQ0QniagQEY0jolkqlapBxhyuAgUKFChQoOBHxndPngDsArAHwIN322AiiiWiEmm8pCMRPQPQE8BdAEuIaBkR9c2oY1bw38ObN28yJM7+/ftJkqQMiaVAgQIFCj6O7548GUOlUmlUKlUTIrIiorNp7FaSiA588LP9RPSTSqUySWNdM5VKZWvYSO64/yz279//hUeePkyYMIGmTJkiPE6zZs0y5D3dv3+foqKihMfZv38/nTx5UnictWvXUpMmTYSSmqSkJBo1ahSNGjWKZs2aJSxOcHAwTZs2TThBO3r0KG3fvl1oDCKipUuX0rVr14TGAEBjx46lkJAQoXFiYmJoxIgRlJCQIDTO3bt3ac6cOfQFA0fpwo4dO2jfvn1CYxARzZo1i+7cuSM0hl6vp2HDhlF4eLjQOGFhYTRy5EhKTk4WGufcuXO0bNky4efA6tWr6cSJE0JjEBGNHz+eHj9+zHdRAN/9RkT5SM426YgokohqfGLfB0Q06IOflSIiEJF7Gq8Z8e73qbaoqCh8CqdPn/6i/dKL7du3Y9++fUJjAMCcOXNw+/Zt4XFOnz6NlStXQpIkYTGSkpJQvHhxuLu7IyQkRFicoKAgmJmZgYgwYcIEYXF27tzJzktTU1NcuXJFSJwhQ4aAiFCrVi28efMGR44cQWBgIPc4lStXBhGhV69eSEpK4r4+AMTGxsLDwwNmZmaYN2+esPPtxo0bMDU1haurKw4cOCAkBgCsXr0aRIR8+fLhzp07wuJ07dqVnQNhYWFCYkiShOLFi4OI0LNnTyQmJgqJEx4eDkdHR5ibm2Pu3LnCzoFTp05Bo9HA3d1d6Dkwa9YsEBEKFiwo9FrdvHlzEBHq1q3L7RxISkpCXFwc26KiolCtWjXkzJkT48aNw9u3b1P9ntf26NEjFCpUCAULFsSqVavSPNeioqIM11hbfAkv+ZKd/t8bEZkSkT/JPU/jieg1EeVOY98HRDTwg5+VfvdHcUvjNWZEZGu0eX4JKTL8sUWTJwXfhpSUFBw8eBBr1qwRFuPkyZNo1qwZzM3NodVqce7cOe4x4uPjMXDgQJibmzMClSNHDsTGxnKPJUkSJk+eDI1Gg8yZM6NBgwYoWbIkkpOTucaJi4tD+/btQUQoXrw4nj59ynV9A16+fIlffvkFRIRGjRohMjJSSJzLly/D398fKpUKAwcO5P73MmDr1q1wcHCAhYUFFi9eLIQM6PV6TJgwAVqtFu7u7jh06BD3GIBMbjt06AAiQoECBYSRgWfPnqFcuXIgItSuXVsYITx37hz8/f0ZIUxISBASZ8OGDbC3t4e5uTlmz54t5BxISUnB6NGjodFokClTJgQEBKRrvaSkJFy5cgWXLl36v2/nzp3D8+fP/3GMPyR5+sdBEx0iooVp/O4EEc384Gf1iCiFiEy+cH1bhTwp+BpERkZi0aJFaN68uZAb9N27dzFgwAC4u7szAtW+fXvucQw4efIkPDw8WKzBgwcLibNq1SpYWlrCwcEBO3fuBAAcOXKEawydTofhw4dDpVIhS5YsuHjxItf1DYiOjmZP7KVKlRJGCIOCgvDzzz+DiPDbb7/h7du3QuKcP38eWbNmhUqlwoABA4QRwi1btsDBwQHm5uaYP3++EDKg0+kwfvx4aLVaZMqUCXv37uUeAwBiYmLYQ0G+fPlw48YNIXGeP3+OChUqgIhQrVo1vHz5UkicCxcuIHv27CAidOrUCXFxcd+0TlxcHC5duoTw8HAh2aUv3cLDw3Hp0iWULl0aq1evTvUA+l8hT4eJaEUav5tIRHc++Nl8Ijr7Fesr5EnBN0On0wlbOyUlBQEBAWjYsCFMTU2xadMm7jEkScLs2bNha2vLyJNKpeJOagy4c+cO8uTJAyJC3759UaRIEaxatYp7nMOHD8PNzQ0mJiaYOXOmkJu0JElYtmwZLC0tYW9vj61bt3KPAcjnwbBhw6BWq+Hr64szZ84IiRMVFYUWLVqAiFC0aFE8evRISBzj7FCdOnXw+vVrIXEuXryIbNmygYjQo0cPYdmhrVu3wtHREWZmZpg+fTr0ej33GHq9HlOnToWpqSmcnJyEnWuxsbHo1KkTiAjZs2fHhQsXvnoNA3n6VvLFC4bjaN68OQoWLIiGDRsy4vnDkSeSpQbKkKzzlI+IxhKRnogqv/v9eCJaZbS/HxHFkazzlIuI2hFRMhE1+IqYCnlS8N0jPDwcq1evFpIRSEpKwrZt21CnTh1otVoQETw8PITd1GJjY9GmTRtG1qysrHD//n3ucUJCQli/Vb169RAREcHi88SdO3eQL18+EBG6dOki7CZ97NgxeHp6QqPRYNy4cUJu0oDcb2VtbQ0bGxusXr1aSAydToexY8dCo9HAw8NDWLkwJiaGlQvz5cuHmzdvConz4sULdq5VrlwZL168EBLn+vXryJs3L8tGx8TECIkTEBCATJkyQavVYtSoUUhJSfni135v5GnVqlVo0aIFChYsiCxZsuDo0aM/JHlaSkRPiSiJiMLelewqG/1+BREd++A15YjoyrvXBBJRx6+MqZAnBQreITQ0FNOnT0f+/PlRu3ZtIRmb2NhYjBkzBqampoxAFSpUSEgjsV6vx5gxY6BWq+Hj44Nz586hT58+3Jvw4+Pj2RN7wYIFhZBBQCbRv/76K4gIFStWFFbCefToEYoVKwYiQosWLYRd986dO4csWbJApVKhf//+wgYK/v77b5YdmjVrlrD+senTpwvPDiUkJKBXr14gImTNmhVnz54VEicsLAx169YFEaFkyZJfnIn83sjTli1bsGTJEgwYMICVpg2DEj8Mefp/bAp5UqDg47h69SqCg4O5rytJEs6cOYOOHTvC3t6eEagePXpwj2XA8ePH4eHhAa1WCxcXF/j7+yM6Opp7nM2bN8POzg5WVlZCypHA+1KrqakpXFxcsGfPHiFxkpOT8ddff7H+sfPnzwuJExUVhVatWoGIUKRIEWHEMzg4GBUrVgQRoXr16sImc42zQx06dBCWHTp48CA8PDyg0WgwfPjwr8oOfSkkScLSpUthbW0NKyurLxpc+F7J0/Tp0/H06dNUWW+FPCnkSYGCfyUSEhKwadMm1KxZE1qtFjt27BAWKzAwEE5OTuzC2bRpUyEZiCdPnrDR/FatWrGb5927d7nGuXbtGnLkyAEiQu/evYVlbQ4dOgR3d3dotVqMHz9eWLlw7dq1sLW1hZWVFZYuXSosOzR58mSYmJjAxcUFu3fv5h4DkM/rHj16gIjg7+8vjHi+efMGDRs2ZJOsDx8+FBLn8ePHKFWqFOtT+9QU4/dMnt68eQMAWLNmjUKe0rsp5EmBgu8DISEhWLlypZAn6JSUFPTv3x/W1tap9N0WL17MPRYgZ2369evHpCaOHz8OHx8fdvHmhdjYWLRr145lbR48eMB1fQPCwsJQq1YtVi4U1dPz5MkTdpNu1KgR61PjjcuXLzPi2aVLF8THxwuJs3//fri5uUGj0WD06NFCBkwkScLKlSthY2Pzxdmhb0FKSgrGjBnDphjTIp7/BvL0w/U8/T82hTwpUPDfQVxcHNatW4dq1apBrVbD3NxcWBMxAOzZswfOzs5QqVRMe0jEjW3dunWwsbGBtbW18HKhmZkZnJycmNwEb6SkpGD48OFQq9Xw9vbGiRMnhMSJi4tDx44dQUTInTs3rl27JiTO69evWe9Q6dKl8eTJEyFxnjx5gtKlS39Rdig9uHjxIiOeHTt2/McAhkKefvCNiLoQ0R0iuqeQJwUK/nt49eoVpk2bhubNmwsRIQXkC3ifPn1SZbumTJkiJNbjx49Zk3fLli1ZTxdvQcrr168jV65cICJ069ZN2HThyZMnkTlzZqjVagwZMkSY9tT27dvh5OQEU1NTTJs2TUhZUpIkLF68GJaWlrCxscGqVasyJDskqh8uLi4OXbp0AREhW7ZsqcqSCnn6j2xK5kmBAgWi9LqePXuGESNGMDVqIoJWqxWm1ZScnIz+/fuzm9rRo0fh5eXFPQsRFxeHP//8E0SE/PnzC1MMf/v2LRo3bgwiQokSJfD48WMhcV6+fMmkBqpUqSJsivHBgwcoWrQoiAiNGzcWVpY0Frzs0qWLMCKzd+9eVpYcOXIkUlJSFPL0X9kU8qRAgQLRkCQJ58+fR7du3eDi4gJvb2/u/U/G2L9/PzJlysQIW9WqVYVkVP7++29mIbNgwQJhYqQrVqyAlZUVbGxshFkw6fV6TJs2DaampnB2dhY2vJCcnIzBgwezsuTRo0eFxImNjWVlyVy5cuHy5ctC4rx+/Rr169dnBPfevXsKefovbAp5UqBAQUYiOTkZe/bswbp164TFiI+Px4ABA1KVC8eMGSMk1rNnz1C2bFkQEerXr5/qBsUTDx48wE8//SRce+ratWvInTs36+kRRQJOnjwJHx8fZokjalpy165dcHFxgYmJCSZMmCCsaX358uWwtrZGwYIFFfL0X9gU8qTgayFqVPtDiBpvVvDj4/nz5xg9ejRy5szJyJNarRZmu6PT6TBq1ChoNBp4eXnh2LFj6NevH44fP841TlJSEtOe8vPzE1b+jI+PZ0KKOXPm5C6qakBkZCSzxClcuDB3OQsDQkJC2LRk2bJlhXkxPn78GI0bN/4HeYqLAy5f/vz2Id86c+YMli1bho4dO2L79u1YuHAhatWqhVevXn32WBTy9J2Qp6NHj2YIedq4cSM2b94sNAYAjB8/HlevXhUaIz4+Hr179xZm82GMBw8eIDQ0VHicixcvCmv4NUCSJOzduxcuLi7CBAMB2brC+GYqihQ+ePAAd+7cEbK2MU6ePInw8HDhcQICAoQ1Lxug0+mwc+fOdJfBJEnClStX0KdPH3h4eCBTpkypbjxhYWFcp9lOnTrFmrydnZ3h7u6OkJAQXL16lWu/0pEjR5hVjbEEwIEDB7iade/evZtlbSZPnsy+I9u2beOawVm/fj3s7OxgYWGBefPmQZIkJCQkcJ1olCQJCxYsgIWFBWxtbbFmzRpIkoTAwMBv8rBLC9HR0f8gT5cvywzkc5txZTEyMhIrV64EAGzatAnlypWDTqdD48aNv8ggWyFP3wl52rZtW4aQp2nTpmH+/PlCYwDAH3/8gcOHDwuNER0djTp16uD58+dC46SkpKBIkSKoUqWK0KxQVFQULC0tYWJiIqx/AAB27NjBsgU//fSTsBt1//79oVKpMHz4cOh0OnTr1k1InHLlysHKykpomSo2NhbOzs7w9vYWZlcByJNmBkHCwMBAYXGWLFkCIkKzZs24XXN0Oh2OHj2a6nP4/fffoVaruSpUv3jxAu7u7uwcLl++PAoUKAAbGxusXbuWSwxAtqqpV68eiAhlypTB1atXYWlpyT0jFRISgurVqzONqy1btoCI8PPPP3M9B4KCgphhcq1atTBs2DA2OcnzvnPv3j1W/mzSpAlq164NrVaLMWPGcCGEH2sY/5bMU1xcHLv29e3bF9OnT/+m41DI0/+ZPCllu+8bb9++xZIlS4Q1XwKyMWulSpWgUqmQPXt2IePtISEhaNasWapelUGDBnGPA8jk9rfffgO9864iIiFGsIGBgexi3alTJ+Zhx7u5+PTp0/Dy8oJWq8XUqVOFNC8DwMqVK2FpaQl7e3ts27ZNSIyUlBQMGjQIKpUK/v7+uHTpkpA4b9++ZQrVZcqUwbNnz9K1nl6vx8iRI1MpuRs+d8M50KpVK27WOJIkYeHChbCwsIC9vT2GDRsGT09PqNVqjBw5klt2SJIkzJo1C2ZmZnBwcECnTp1gaWkJW1tbrg8FOp0OEyZMYDZCDRo0YCXK06dPc4uTnJyMIUOGQK1Ww93dnelD8dChEjFtV6BAAdy4cQMAvjizaDiOzZs3K+RJxKaQJwVfi8DAQIwYMQJjx44Vsv61a9fQrVs3ODg4gIigUqlw7NgxIbEkSWJPuEQEGxsbIePgiYmJTBfmp59+QmBgIFatWsW9x+P169csS1CnTh1ho+B3795Fvnz5QCR78okwNQZk/7JMmTLBxMQE06dPFzbNtnDhQpibm8PBwQHbt29P95rJyckICAhAixYtmKr7tm3bmIyCv78/Ll68yOHoZdy9excFCxYEkWy74+joyAhhUFAQtzg3b95kvnWNGjVCoUKFWAM7z3LhpUuXmBBlnTp14OHhAbVajWHDhnFV4D916hT8/PzYRKZhonHFihXffK7xIk979uzBtGnT8OjRI1haWkKSJOj1esyaNeurjqNFixaYPHmyQp54bwp5UvCt0Ov1wrIbgOyPtX79elSqVAk+Pj5CiMCdO3fYxdOwlShRQlipcP369bCysoK9vT2KFSuGggULciceer0e48ePh0ajga+vL9d+DmPEx8fj999/B5FsjSJKgygkJARVqlQBvVMoF9XXdevWLUYMunTpwk38Mi4uDps2bUKHDh0QEhKCAwcOwM3NDSYmJpg0aRK3UntiYiJ69+7NzmOVSgVzc3PY2dlh48aNXGIAqX3rsmXLhtatW0OlUsHX15drdshYAT179uxMh4q3h11UVBQzy82RIwd7KGjUqNE3yWnwIk/Lli1D165dMXfuXIwZMwYzZszAnDlzvviYDMdRs2ZN5M+fHx07dmTfHYU8pY80KQrjCv41CAwM5PqkboykpCRs27YNtWvXhkajARFh6NChQmIBcpbAx8eH3eR69uwpJM7x48fh7u4OExMTzJw5E5Ik4eTJk9yJ4bp162BtbQ1bW1thwx56vR4TJkxg02yiLEvi4+PRqVMnJn7Ju9Hf8LARGhqKGjVqgIhQuXJlLqKUycnJmDZtGmxsbNi55eDggDx58oCI0LZtW2bSzAN79+5FpkyZoNVq8fvvv8PLy4t7/xgA7Ny5Ey4uLtBqtfjtt99gbW0NKysrLFu2jOvD2+bNm+Hg4ABTU1NUrVoVarUaHh4eOHjw4Fet872JZNaqVQulS5dGwYIFUaNGDbx69UohTzw2JfOkQMF7vHz5EhMnTkTu3Lm5j5kD/ywTGjZR7vahoaHsib1+/fpo1KgRBgwYwD3OgwcPWNmoc+fOwixLzpw5Ax8fH6jVamFGs4Asfmlvbw9LS0ssWbJEWLlwxowZMDU1hYuLCwICAtK95s2bNzFkyJBUiu4lSpRAr169WKaI50NIaGgokwAoXbo0I4T58uXj6mH36tUrVo4uUaIEChcuDCJCgwYNuGYig4ODUalSJRARihYtyh5yevXq9cXn9PdGnpo3b45cuXLhl19+gbW1NZycnLBmzRqFPKV3U8iTAgX/hGGEWRSuX7+OXr16wcXFBUQEZ2dnYZYYer0eo0ePhlqtZjfU/fv3c4+TkJCAzp07g4hQsGBBPHjwAIDcBMxzCjQiIoIpOleoUEHY3y0oKIg1Ejdu3JhrT48xrl69yvSoePWPSZKES5cuoW/fvvD29kbPnj2Z6rpWq8XEiRO5fSaSJGHevHmsRFiwYEGoVCpYW1tzHcCQJAlz5sxhcRo2bAiNRgMPDw8cOnSIWxy9Xo8ZM2aw5vgKFSowQmho2v4UvjfytHnzZrRt2xYFCxaEh4dHqqy3Qp4U8qRAwb8SycnJ2L59O+rWrYvq1asLkZrQ6XRYsGBBqgkwV1fXLxLa+xZs3rwZtra2sLa2xrp163Dnzh1MnjyZawxJkjB37lyYmZnBxcUFe/fu5bq+ASkpKRg6dCjr6RElAxEbG8v6xwoUKMC1XKjX63Hq1ClERkYiNDQUNWvWZMQzODiYW5zbt28jf/787ByztbVlchNfokv0NXEKFCgAIkL16tXh6+sLIkKfPn249g/evHmTvZ9ffvmFlfQ+Z578vZEng1TBoEGDGEk39HUp5EkhTwoU/OsRFhYmzO/t7t27GDhwILy8vNjNrVKlSsJ0wR4/fsxG84sUKQKtViuEeFy7do1NZfXv319Yo//Ro0fh4eEBrVaL8ePHC/u7bd68Gfb29rCwsMDixYuFlQvnzJkDMzMzODo6cpOb+Pvvv/8h0VC6dGmoVCr4+Pjg5MmTXOIAcnN83759QUTw8fFh5cICBQrg1q1bQuJ4e3ujWLFi7LuTFvH8XsnT9OnT8ezZM2ZorZAnhTwpUKDgC6HT6XDw4EG0aNEClpaWGD9+vLBYiYmJTEPJcJMTMTEZExOD1q1bs0ksQ7mVl5aSAa9fv0bt2rXZzVNkufDnn38GEaFhw4bC5CaMZQd4eNhJkoQLFy6gT58+8Pb2Zp/7+PHjmer6kCFDuBLcw4cPM12rhg0bwsHBgamh8ySehjgqlQpVqlRhJb2PDUh8z+TJ8HC2adMmhTyld1PIkwIF/01ER0djzZo1wnp5Dh48yLS6DFu9evWEyVusWrUKVlZWsLOzw5YtWzBz5kysX7+eawxJkjBz5kzW5C2yXDhixAio1WpkzpyZa9bGGMYedrly5cK1a9e4rKvX63H69Gl0794duXPnxtWrV9G4cWNGcB89esQlDgC8efMGjRo1Yr129vb2rKTHszQdERHBRHXz5s3LSmCtW7dOdV/8N5AnZdpOIU8KFCj4jhEfH48NGzagRo0aTAZi9uzZwuLdv3+fTf1lypQJ1tbWrHGdJ65cuYLs2bOzXpukpCTuMQDZr9CQtRkxYgRXCQBj7Nq1C87OzjA1NcX06dO5liV1Oh1evnwJSZKwcuVKWFtbw9raOl1ClB9CkiSsWLGCCZISETQaDVxcXLj7461evRq2trawsLBAlSpVmAL6qVOnACjk6T+zKeRJgQIFGYGQkBDMmDEDJUuWFOqNGB0djVy5crGbaIECBYRIJ8TExKBt27asr8sg3JiUlMQ1uxYREcHKnz///DNXxXBjvHz5komRVqtWDSEhIULiPHr0CCVKlGBTjDzKkpIkYdq0abCzs2Ofu6HXildZ0hiBgYEoU6YMiGRrJ4MC+pAhQxAZGamQp//CppAnBQoUZDR4Tl99iLlz58LDwyNVufDPP/8UFm/dunWwsbFho/mnT5/GlClTuMaQJAmLFy9mHnYixUinTp0KExMTuLq6ctGe+hiSk5MxdOhQqNVqeHt7c9FUe/v2LVauXImaNWvCxMSESYAY+uFy5MjB1SNRp9Nh/Pjx0Gq1cHZ2ZmSqVq1aCnn6L2wKeVLwvUI51xR8K3Q6HQ4fPoy2bdsyxW2eBrYf4tGjRyhatCi7SWs0GlbG4Yk7d+6wMf3ff/9diDk3IJclDT093bt3FyZ6evLkSfj4+EClUmHQoEHcmskjIiKwfPlyVK9eHWXKlMH27dvh6uoKrVaLCRMmcBVXvXz5MvtbVaxYEfnz58elS5cQHh6OuLi4/9sWHh7OjTypIJMFBUSkUqm6kGzRoiaiHFFRUWRra5vm/rdv36a8efPS5/ZLLy5cuEBarZYKFy4sLAYR0Z49e6hAgQLk6ekpLIZOp6NNmzZRvXr1yMLCQlgcIqLIyEiytbUltVotNE5wcDCFhoZSkSJFhMZ58eIFtWnThvbt20cajUZIDEmS6MWLF+Tt7U3R0dHCzuu3b9+SWq0mOzs7Iesb8Pz5c/Lw8BD29zLg6dOn5OvrKzQGEVFgYCD5+fmle52EhATavXs37dixg8aMGZPq2JOSkig8PJzLdSA5OZkaNWpEO3fuJCIiT09Punr1Krm4uFBISAjZ2NiQlZVVuuMkJibSX3/9RTNnzqScOXPShg0bqECBAkQk/818fHy4XAfi4uKod+/etGjRIsqXLx+tX7+e8uTJQ0REjx8/pqxZs6Y7BhFRVFQUde7cmdatW0dFixaltWvXUrZs2QgABQYGUpYsWdK1fkREBKWkpJBKpaJ27dpRQEAAlStXjlatWkWZM2em6OhoSkxMJFdX12+OER8fT/3796e5c+eSu7s7bdmyhczMzNJ13DwAgJ48eUIxMTEUExNDrVq1IkdHR4qOjjZcj+wARH9uHYU8fQQqlcqWiKI+R4oWL15Mf/zxh3Dy1KNHDzI3N6eJEycKi0FEVLJkSerRowc1adJEWIyIiAgqVKgQHThwgHLkyCEsjl6vp1q1alHZsmVp4MCBwuIkJSVRtmzZyMrKii5fvkyWlpZC4hw7doyqVKlCKSkpNHHiROrfv7+QOOPGjaNJkybRmjVr6OTJk1SrVi0qU6YM9zh16tShO3fu0N9//0358+fnvj6RfKPLnz8/+fr60rp16yhTpkxC4ty9e5eKFClCrVq1ohkzZpC5ubmQOJs2baLmzZvTxIkTqVevXqRSqbisCyDVWn379qXly5fTihUrqHbt2ulae+/evdS6dWt6/fo1+1nVqlUpICCAypcvT+Hh4bRx40Zu58CePXuoTZs2FBUVRZMmTaLmzZuTv78/FStWjFatWkVubm5c4mzbto06dOhA8fHxNG3aNCpcuDCVLl2aOnXqRJMnT+Z2Dqxdu5Y6depEkiTRrFmzKCkpiXr16kWTJ0+mrl27cjkHANCCBQuoT58+ZGpqSgsXLqR9+/bR3r17afny5VS9evVvXjsqKooaNGhAhw8fpkyZMpGjoyOZmZmRv78/FS1alK5du0ZERBUqVCAHB4d0vY8XL17QsWPHKD4+nlxdXSksLIysra2pePHidOLECXJ3d6dy5cqRiYkJ6XQ6SkhIUMgTb3wpeTL8sUWTJwXfhvv379OGDRuoTZs25OPjIyTG2bNnqVOnTnT9+nXq0qULzZkzh3uMqKgoGjZsGM2aNYuIiExMTOjChQtUsGBB7rEePHhA9evXp9u3b5OjoyPZ2NjQ9evXuWeIDh06RE2bNqW4uDhatGgRtWjRghITE0mSJG4EFAAtXLiQevToQU5OTrRhwwYqW7Ysl7WNkZSURP3796dZs2ZRwYIFafPmzeTv7889zuvXr6lVq1a0b98+ql27Nq1YsYIcHR25x7l9+zb99ttvdOfOHerZsydNmDAhXRmDlJQUOnToEK1du5a2b99OcXFxNGbMGCpYsCC1adOGYmJiaOrUqdS5c2cuZODVq1fUunVrOnjwIFWvXp1u3bpFL168IGdnZ1qxYkW6yIAxgoODqVWrVnT06FGqUaMGubq60ooVKyhv3ry0fv16yps3L5c4gYGB1KJFCzpz5gzVrFmTYmJi6MSJE1S9enVavnw5t4eCu3fvUvPmzenq1atUo0YNevDgAT169Ii6detGEydO/KZKwdGjR2nhwoW0e/duiouLIyIiDw8Pypo1K0VGRpKXlxeFhISQTqejsmXLUqFChdL1HhITE+nQoUN0//59cnR0pOTkZIqNjSUvLy96+fIlWVhYUNWqVcnPz4+SkpIoOTlZIU88oZAnBV8DAHT58mVasmQJtWjRgn7++Wfu61+8eJEWLVpE69evp/j4eMqdOzddunRJSOnz0aNHVLx4cYqIiCAiohYtWtDq1au5x3n+/Dn99ttvdO7cOerUqRM1btyY1q9fTwsWLOAa59KlS9SoUSN6/vw5jRs3jvr27SuklPv3339Tu3btCAAtXbqUGjVqxD2GJEk0efJkGjx4MHl4eNCGDRuoVKlS3OPEx8dTjx49aMmSJVSkSBHasGEDF0IYFxdHu3btog0bNlC/fv3Iz8+PWrRoQUePHqW6devS0qVLuRBCSZJo2rRpNGjQIEpJSSEiuWT44sUL6tWrF40fP55LCUmv19PkyZNp6NCh5OLiQn/++SfNmjWL4uLiuBJCnU5HY8eOpVGjRpG7uzvVrl2bli5dSg4ODrR8+XKqUaNGumMQyWXWoUOH0uTJk8nb25sKFSpEO3bsoDx58tDatWtZKfRrER8fT/v27aPNmzfTnj17qHjx4uTg4EAPHjwga2trMjc3p/DwcPLw8KDSpUun6wHKUJY7f/48SZJEDg4OFB4eTubm5qTVaik2NpayZ89ORYsWJUdHR2rcuDFZWVl9NXn6vzdnf48bKQ3jCr4RosQODYiKisKCBQtQuHBh9OjRg/v6ycnJGDJkCDPnNWy8hRUNSEpKQrdu3VL5fvGyxjBGREQEU8KuXbs2GwXnbV3y6NEj5m7fpUsXrr5ixjh16hS8vLyg0Wi4Gtp+iPXr18PGxgY2Njbcm8sNf3udTocxY8ZAo9HAy8sLJ06c4LL2kCFDYGFhwc5hGxsbJhxZqFAh3Lt3L91xDLhw4QL8/f2ZBED58uVBRKhRowbCwsK4xTl9+jT8/PygUqnQunVrpqvVrVs3xMfHc4tz5MgReHl5Qa1W47fffmN6V5/zsPsSGHTO9u7di02bNsHT0xOWlpaoUaMGrK2t4ebmhrVr1+LNmzfp2q5fv47y5cvDzMwMhQsXhqWlJSwsLFCmTBmYmZkhV65cqYRWlWk7hTwp+I/gypUrXC+YxkhKSsKWLVtQrVo1qFQq2NnZCdPSiY+PZ8asRAQnJye8ePGCexy9Xo+JEydCo9HA19cXly5dwvTp03Hx4kWucRISEtC5c2emdfT48WOu6xsQHh6OWrVqMeVonjdpYzx8+BBFihQBEaF9+/bCxs1Pnz6dSvwyvdNfr169wsyZM5l+Er1T2169ejXs7OxgaWmJpUuXcnvgiY6ORps2bRg569OnD9RqNVxcXHDgwAEuMQD5vtOyZUv2fgwq5Xnz5sWNGze4xTFWDy9YsCCTHahUqRLX72doaCh7sClUqBDzZezQoQNiYmLStbZOp8OkSZOYTIPxeeDi4gKtVosxY8YgJSVFIU88NoU8KVDwHkFBQRgxYgRat27NdZzZgL1796Js2bKpLm4VK1YUlk05fvw43NzcYGpqCn9/f/j7+3P3fAOADRs2wMbGBnZ2dti6dSv39QE50zl16lRotVp4eHhw0Qb6GJKSktCrVy8QEXLnzo2bN28KiRMREYEGDRqAiFC2bFk8f/6cy7pPnjzBuHHjkDdvXnTo0AGBgYEoWbIkE6XkqbG1fv16Rs4cHR1hamoKIkLfvn25qq6vW7cOtra2sLS0ROfOneHk5AQzMzPMnDmTq0r5ypUrYWNjA0tLSzRp0oSZJ/M8pyVJwsKFC2FpaQlra2tUrVoVRAR/f3+cO3fum9dNSUnBkCFDYG5uzq4tJiYmMDU1hZ2dHTPqLlWqFK5du6aQp/RuCnlSoOCf0Ol03Mtcxnjw4AEGDRrExBwnT54sLNaLFy/g5eXFLqitW7cWEufBgwdMg6hHjx5ISkrC9evXuWeJzp07Bx8fH6jVaowePVoIyQVkyxJHR0eYm5tj0aJFQsrUkiRhwYIFMDc3h6OjI3bs2MF1/Zs3byIyMhIpKSlMlNLHxwenT5/mFuPBgwdwdHRk51eWLFlARChcuDDXcmFgYCAzTK5WrRrKlSsnRA39yZMnKFWqFHuwyZ07N7fskDHu37/PtMHKli0LNzc3aDQajBw58ptteMLCwrBw4UJUqlSJ2SF5enoiT548ICKUKFECVlZWsLKyUshTejeFPClQ8P9DSkoKAgIC0KRJE65lCAP0ej0GDRoErVabKtu1du1a7rEAuSz5xx9/gIhQrFgx9OzZEzVq1OBOPCIiIlC3bl1WWhFlJfL8+XNWwmncuLEwE+WbN2+yG1zXrl2FiVIeO3aM9Y/xIJ46nQ49e/b8R6moXbt2LCO1ZMkSbp+/TqfD6NGjodFo4O7ujj///BMmJiZwcXHBli1buMQA5O/lqFGjWJz69euz7NCFCxe4xTFWWnd3d09l+ZJe8+TXr19j8eLFqFq1KqpXr44+ffpApVLBw8ODiXoq5EkhTwoU/OshKoMCyE+k06dPR/78+VlDsaj+JABYs2aN8dMtpk2bxj2GJEmYOXMmTExM4ObmhsOHD6f6HS8YsjYqlQpZsmThevM0RlxcHP78808QyX58d+/eFRLnzZs3qFevHogI5cqV41IujIiIwLJly1ClShVoNBqYmppi27ZtKF26NIgIDRs25OJhZ8C5c+eQJUsWqFQqtGrVinnYde7cmWtv5NmzZ5E1a1YQEerXrw83NzfWO8Tz+2pojiciVK1alZknL1u2jMu5HB4ejoiICBw7dgyZM2c2JroKefrajWR18TtEdE8hTwoU/Hdw5coVdO/eHTVr1hRWmty+fTubyDL0XvBuVjfg4sWL7EY6bNgw6HQ6DB48mHsf2ZEjR+Du7g6tVospU6YI61PbsmUL7O3tuTd5G+PDciHPqc/Q0FDMmzcPLVu2RFhYGEaMGMHVw86A6Oho5ltnb2/PzrU8efLg+vXrXOO0a9eO9cBVqFABRIQyZcrg6dOn3OJERUUxo+kcOXKwB50GDRogPDycW5y3b9+y5niFPKWPRCmZJwUK/oNITEzk2sNhjBcvXmDSpEmsFEVEyJo1q7DrR2RkJBvNL1++PMzNzTFhwgTucUJDQ1GtWjU2mv/69WvuMQDg6dOnrO+mSZMmwsqFt27dQr58+UBE6NSpE/eJVgPxO3XqFOtTGzJkCDfSLkkS2rdvz84xjUYDOzs7mJmZYcaMGVwJ7pYtW+Dg4ABTU1M0adIElpaWsLW15V4C37x5M4tTrVo1aDQaeHh4cJ9iVMiTQp4UKFDwnUKSJFy6dAndu3eHs7MzmjZtKkwfTJIkzJ49O9WNlGdjtAF6vR6TJ09mU3/Hjh1L9TteMExPqVQq+Pn54fz589zWNkZ8fDy6dOnCsjaipgvfvn2LJk2asMZlHmXjM2fOsCZyw+bu7s6ayatWrYpXr15xOHoZwcHBqFixIss8GbJDvPvhgoODUalSJRARihYtCl9fXxARevbsyaUfTiFPCnlSoEDBvwRJSUnYvn27sF6r0NDQVDpHRARvb2/mJM8b586dg6+vbyqtpi5dunAnh0eOHIGHhwe0Wq1QkdAdO3bAyckJ5ubmmDt3rrBy4cqVK2FtbQ0bGxusWbOGy7rPnz/HtGnTULx4cTYlN3nyZJiamsLFxQW7du3iEgeQCfKUKVNgamoKJycnNGzYECqVCk5OTlxET43jzJgxA2ZmZnBwcGCkLV++fOkeLlHIk0KeFChQoIAhMTERf//9N+rWrcsmwH799Vdh2a63b9+iYcOGTD+HiDBjxgzucV6/fs1EQqtUqcI1m2KM4OBg/PLLLyAi1KlTh2uvjTEePnzIxvRbtGjB9b4SGBiIiRMnYsuWLbh69Spy5coFIlkFn2dZ8tq1a0zGwNPTE0QEtVqNwYMHc+0lvHHjBiutVqhQgelppUcBXSFPCnlS8ANDtP2Lgh8b4eHhmDdvHkqUKCGE0BggSRKmTJmSqjleRIlNkiTMmDEDpqamcHV1xf79+7nHAOSpz3HjxkGj0cDT0xNHjx4VEic5ORkDBw5kZcmzZ88KiRMXF4dOnTqxhu9r165xWzs+Pp6V14gIlpaWrNT24MEDbnESEhLQp08fEBEyZ86MYsWKMZmO4ODgr17vhyNPRDSQiC4SUQwRhRHRdiLK8ZnXlDdOUxttOb8w5heRp9DQ0AwhT6GhocKedozx+PFjYdYLxhA1bvwhRKXyP0R4eLiwJmNjxMbGYvbs2cLjJCcnQ6/Xc73QfYiUlJQM+Xx4Kjp/D3F4euUFBQV9lIxLkpTu9/Ps2TOWGTBsPj4+qUbzExMTuT0MXL58GdmyZQMRoV+/fkhKSsKSJUsQFxfH9W929uxZ5i03aNCgVNkUnnGOHDkCT09PaDSaf0gA8IyzY8eOj/rWpaSkfHOmaOvWrakEQolk6xgbGxtYWVml0rji0at06NAheHp6QqVSoWrVqkwB3Vjj6kvi/IjkaR8RtSGiPERUgIh2E1EQEVl94jUG8pSdiNyMNs0Xxvwi8jRhwoQMIU9NmzZFu3bthMYAgOzZs2PJkiVCY4SGhkKtVuPq1atC40iShG7duqVqXBWB5ORklCtXDh07dhQa58aNG8iaNSvMzc2Fks9169Yhb9682LVrF4oUKSJsbL9nz56oVasWV1uMD5GcnIwyZcqgT58+QpXRX716BT8/PyxevFhoZvD06dPw9vbGkSNHhMUAgNmzZ6NQoULpJs8pKSnYu3cvmjdvzrIPderUgSRJkCQJLVq0QL169bhpHcXExLAx/WLFiqFgwYJo2bIlChQogIEDB3I7ByIjI9G0aVPW5P3kyRM8efIEHh4eWL58ObdzIDw8nImeli1bFs+ePUNAQAB8fHxSGdqmFy9fvkSVKlVY+fPly5cYMWJEuhrYk5OTsXfvXrRt25ZJJnTp0oVpXNWrVw+vX79G9erV0bx583Q3lr9584ZJDeTNm5f545UrVw7Pnj2Dv78/Ro0a9UmV8h+OPP3jgIlc3r3Bsp/Yx0Ce7L8xxheRp7dv32YIeYqLi0NsbKzQGID8ZRV5kzEgNDRUeAy9Xo9Dhw5h4MCBQrNp165dY0Jue/bsERIjPj4ew4YNY09xP/30k7DPKSAgAHZ2dizW0KFDhcSZMmUK1Go1smbNyvRneDaWAvLTpkGLpkyZMnj58iXX9Q14+fIlU0Fu3bq1sPPt8uXL8PPzYxYsIjWVbG1tYWNjg/Xr13NZMyYmBmvWrEG1atUwa9YsSJKEUaNGMWuUM2fOcIkDyGKk1tbW7Bw2NMyXKFECgYGBXGJIkoQVK1bAysoKtra2qQyImzZtym3KzOD5ZmFhAXt7e4wZM4aZJw8bNuybLUs+hF6vx/Tp02FqagpnZ2f06NEDVlZWsLGxwapVq9JFCJOSkhAQEIA2bdrgyJEjqVTKmzRpApVKxYUQSpKEVatWwcbGBhYWFsy70HjSsFSpUmkSwv8CefJ/9wbzfmIfA3kKJKJXRHSYiH75xP5m7wiTYfNUep4UfCl0Oh127dqF33//XUgmRZIkHD9+HE2bNmUNvyNHjuQeBwAePXrEHM7p3Wi7qL6Lw4cPw9nZGRYWFli0aBHs7OyETJ0tWbIEZmZmcHNz407QDEhJSUH//v3Zky9P/zJjvH37lilhV6lShbtHngGPHj1CkSJFQET4888/uTYVR0REsJvx8ePHWXlqwoQJ6SaEKSkp6NmzJ/MwIyKYmZlh9OjRsLKygp2dHTZt2sTjbQCQvdgKFy4MIkKrVq3Qr18/qFQqeHt7c/3e3Llzh3kktmzZklmjlCpVihshBFI3fDdt2pSdA7wIoeFzP3fuHFMpb9SoETw9PaFWqzF06NB0Pxga+/0ZrmEqlQq1a9dmhHDFihX/IIQ/NHkiIhUR7SSik5/ZLwcR/U5EhYmoJBHNIyIprWwVEY0wrs8aNoU8KfhaiG7oDg0NxYQJE5A9e3ZcunSJ+/qPHz/GX3/9BVdXV/Y98Pf3F5b5fPbsGZswMtwMeD1NG+PSpUvw9fWFRqPB1KlTIUkSbt++zbV/BJB7SOzs7GBtbY2NGzdyXdsAQ5O0iYkJPDw8hBHCxMREdO/eHUSE/PnzCyOExlNzVatWTXdmOjY2FuvXr0ft2rWZf2H27Nlx+fJlFCxYEESEP/74g1uGMCkpiTUuZ8uWDQsWLIBGo4FGo8G4ceO4WZYkJiaiV69eLM7w4cNZ5otXhhBIrXGVM2dOtGvXjmWHTp06xS3OhyrlVatWBRGhePHi6fKwe/z4MX799ddU93J3d3d2HhtIaKNGjVJJdvzo5GkuET0lIq9veO0uItqZxu+UzJOCfxX0en26TTI/haSkJGzatInpqHTq1ElInAcPHqBBgwapLnSjR48WEuvNmzeoUaMGiGR7h759+6JXr17c4zx+/JhlI7p16yasmfz8+fPw8fHhlrVJC1u3boW9vT2srKywevVqITEkScK0adM+6smXHoSHh2PBggUoU6YMmjZtioSEBEYIeYtf7tu3D5kyZWJZL0PTdIUKFfDixQtucfbu3QtXV1eYmJigf//+LDvUpk0bREdHc4uza9cu1kzeuXNneHl5cS8XAu9Vys3MzNCiRQvmYfet/WM6nQ7Hjh1Dly5dkClTJnZdqVu3LmxsbGBpaYlatWpBrVbD09OTnWs/LHkiotlE9JyI/L7x9YOJ6O4X7qtIFShQ8A4PHjxA//79hWS6kpOTsXXrVlSvXh0qlYql2UUpR+v1eowaNYrFIiIh4+0JCQnM0LZ48eIICgoCAO7Xijdv3rAya40aNYRN5QYGBrJR8Hbt2gnr6zL25BsyZAjXm3RQUBArPe3cuZOJXy5YsIBLxliv12Pu3LmpHgQqVqwIMzMzODk5YefOnemOYUBISAiqV6/OYhhkB/z9/bmaNL969YplhH755ReWISxZsiSePHnCLc7z58+ZP17ZsmUZIfwwO/S1MBCpzp07w93dHUuXLmUlvbJlyzKV8j59+iAsLOzHIk/vSnVziOgFEWVLxzpbiOjIF+6rkCcFCjIYQUFBGD58OLy8vJAtWzYhpUJJkrBr1y7mOE9EcHNzE9Y7tHr1alhaWsLR0RF79+7FwIEDuU+ASpKEyZMnQ6PRwNvbm2vztTGSkpLQu3dvlrW5ffu2kDiRkZFo3Lgxa/R//vy5kDjBwcGskbhBgwbpnvp79eoVBg8ejCxZsqQiUNOnT2eilN26deMyng/In/vMmTNZk/eoUaPg5uYGjUbDVXXdoOptamoKR0dHdOvWjfUO8cxEGlTKTUxMmG2RWq2Gl5cXlwlTnU6Ha9euISUlBWPHjoVWq4WrqysqV67MehV/NPI0j4giiagcpZYdsDDaZzwRrTL6/55EVJeIspEscTD+3R+l/hfGVMiTAgX/J+h0OgQEBHC1jzDA4CvXqVOnVFOFtWrVEtavduvWLeTIkYPZVXh5eQnJEJ0+fRpeXl7QarWYMmWKsPezc+dOODg4wNLSEsuXLxcSQ5IkLFq0CObm5nB0dOSatTGGTqfDyJEjoVarkTlzZi6+f5Ik4dy5c+jRowfc3NxgZ2eHmzdv4o8//mB9N3fu3OFw9DKuX7/OmrzbtWsHU1NTIeXC69evM1PrJk2asNJ0s2bNuHrYGSug161bFz4+PlCpVBgwYADXEviFCxeQPXt2EBGqV6/OJBV+JPL0j0bud1sbo31WENExo//vT0SPiCiBiCKI6CQR1fiKmAp5UqDgB0d8fDzWrFnDrDfmzp0rLFZQUBBcXFxS9V+IIDcG7Rwi2YIlIiICjx494nqzBuT3YxgFb9WqlbCBgps3bzJi0LNnT2H9YydOnICXlxc0Gg3Gjh3Lrclbp9Ph8OHDmDdvHiRJwpYtW2Bvb88mTHmdA8aK4UQErVbLfOZ27NjBJQYgf2e6du3Kmsnbtm0LlUoFX19frobTcXFxrGk9W7ZsqFmzJogIhQsX5qpzFxsby8rrRhnDH4M8/T82hTwpUPDfwuPHjzF27FghGSGdTodhw4alIk9EhPnz53OPBcjlj/Hjx0Oj0cDX1xd9+/ZF/vz5uZWLDEhOTmbyDDlz5uTafG2MuLg4tG/fHkSEIkWKCBuUePPmDROl5J21MUZQUBDru2nYsCEXkdCoqCj88ccfUKvV7Pzy8vJCzpw5QUTo3LkzV7mJ3bt3w8XFBSYmJujYsSOTGhg+fDjXPrXdu3ez5vimTZvCzs4OFhYW3PrUDNixY4exKrpCnr51U8iTAgUKeCMpKQnbtm1DnTp1oNVqYW5ujlu3bgmLd/z4cTaiTSQrPItAQEAAa742tt7gnVlbt24drK2tuYp3fghJkjBnzhyYmZnB2dkZAQEBQuKkpKRgxIgRrFzIQwLg3r17GDlyJCNMRITatWujc+fOoHdyADdu3OBw9DKMm9bLly/PJlnz58/PVXsqJCSErV2yZEk2uPDrr79y7VV88OCBQp7SuynkSYECBSIRGhqKadOmoVmzZlwzAsbYs2cPK3kZtq1btwqJ9fz5c5ZNad68OaKjozFz5kzuorEPHz5kvTYdOnQQNvV37do1RkJ69+4ttFzo7e0NtVqNkSNHcikXSpKE69evY+DAgfDz88OkSZOwY8cOODk5wczMDLNnz+ZGbA1N6wY/uSJFikClUsHGxgZr167lEsMQZ+7cuTA3N4e9vT2aNGkCrVYLNzc3btOyP6xUQUZuCnlSoEBBRkCSJCGioIBsibJixQrW00VEcHBwYLIJvJGSkoJBgwZBpVIhe/bsyJ07Nxo2bMg9A5WYmIgePXqwqT9R2bvY2NhU5cKHDx8KiRMREcG0zgwedrxgGJBITk7GixcvmG5bzZo1uWZtbty4wZrJiQi2trYgIrRo0YLr/fH27dtM6LRWrVpMpbxnz57pLksr5Cl9pKkLEd0honsKeVKgQMGPgqdPn2L06NHIli0bSpcuLYywAcD+/ftTTTLOmzdPSJwdO3bAwcEBFhYWqUyZeZO19evXw8bGBtbW1kJFQg0edg4ODvj777+FxNHr9Zg0aRL3rM22bdtSCVISEUqXLg2VSgU/Pz+u8hmJiYno27cviAi+vr5MTTxfvnzp6rtTyBMfEqVknhQoUPDDQZIknDlzRlhzd3JyMjp06JDqJmpmZoarV68Kiffs2TOULl2ajc9HRUVh1qxZ6RJW/BgeP37Mem1at26NmJgYrusbcPv2beTLlw9EsqegSDFSf39/EBH69u2b7rKkXq/HyZMn0bVrV0aiVCoVJkyYwLwLR44cyZW0Hzp0iK3duHFjODo6wtTUFOPHj/8mAq2Qpx+QPIl8SjSGJEnCvdkApNv48XuDqH6IDxEdHS3MX+xD7N69W5jdh4IfGzqdDgcPHkTLli1hZWUFItlbjqd1iDFSUlIwePBgqFQqZM2aFXnz5hWi25WUlMSmC7Nnz44rV65wXd+AhIQEJgfAu8nbGDExMWjbti2TAOB1bdHpdDhy5Aj++OMP9ncyGBmXLl2aazP5mzdvWMmzSJEibECiatWqePXq1VetpZCnDCRPM2fOzBDy1L59e3Ts2FFoDADImTMnVq1aJTRGWFgYbG1thU4ZGbB48WJhytEGpKSkoF27dti2bZvQOCEhIahTpw5KlizJTYPmYzh79iyaNWuGIkWKCNU9WrBgAYYNG8YImgjSLkkSOnfuLGwyy4D4+Hj8+uuvwixlDHjy5AmqV6/OtSfmY9i7dy9atmzJJbsSGxuL1atXo0qVKmjdunWqz3ns2LEYO3YsN5J+8OBBODg4sIyXQSi0efPm2Lx5M5cYgOxh5+rqClNTU8yYMQOSJCEyMhJVqlThamFk3OQ9Z84cSJKEGzduoEaNGlxlFNavXw9bW1tYWlpi6dKlkCQJq1ev5pL5Sk5OxrNnzyBJEhYvXgxLS0vY2tpi3bp1AIDevXtj2rRp6ToHJEnCsmXLGFEnIqjVari4uGDXrl1ISUlBnTp1sHv37k+uo5CnDCRPT548yRDydO/ePWHNisY4e/asMG8sAyRJwoEDB4RnnwwXgIkTJwrNpt27dw/Ozs7IlCmTsL+dTqfD5MmT2YVh8uTJQuIA7x8IiAiWlpZCNHUkSUKrVq3YKHVkZCTGjh3LvUQRHR2NokWLgojQq1cvYefc3bt34eHhAVNTU8yfP1/Y+bZr1y5YWFjA2dlZiB+fAePHjwcRIVeuXFwfcl68eMHENPV6PcsYVKlSBaGhoelaOyUlhY3kGzatVou9e/eiQIECIJLNrXlpXb169QqVKlVi5/ChQ4fg7OwMrVaL6dOnczsHgoODWcP/r7/+isWLFzOvPJ4K/IGBgShVqhSIZD+5nj17sszX9evXucW5d+8em5Zs3rw5a2D/lkyRMXbt2sXKkIbN29sbRISWLVsiR44cTK4jrelWhTxlIHlSep4UAPLT9cKFCzF+/Hgh6+v1euzfvx+//vorVCoVzMzMuKrsGvD27Vu0aNEildBemTJlhJTvJEnCpEmToFarkSNHDnh6eqJ79+7c4yQkJLAenHLlyiEkJAQAuL+n0NBQdpNr1aqVsF6VGzduIHv27FCpVBg+fLiwLGRAQAAcHR1haWmJFStWCIkhSRJmzJgBExMTuLu7p9vzT6/X48iRI2jfvj2b9vL29saLFy8YsSpQoAC38pRer8eECROg1Wrh4eGB7t27w8LCgk2CvX79mkscnU6HsWPHQqPRwNPTE0uXLmUSFN27d0diYiKXOCkpKRg+fDjUajW8vb0xfvx4lvmaNWsWN0JoKH8amsm7d+8OU1NTuLi4fDY7lBZevnyJWbNmMbkMIoKdnR1atGjByqwNGzZkhPDatWv/WEMhTwp5UvB/Qkb0jD158gT9+/dHzZo1hdw4nz59ikGDBqVSw542bRr3OAYEBARAq9WyWAcPHhQSZ9GiRTA1NYWnpyfOnTuH7du34/jx41xjpKSkYMCAAaB3QoGissVRUVFo1KgRy9qIKk0bW7C0a9dOGCG8cOECfH19oVarMWrUKC7ndXx8PDZv3ow6deqgfv36zBrFzs4OVlZWXNsTzp49C19fX3YO58mThxGqo0ePco9j8HkzPBQULFiQ68PUyZMnkTlzZqjVavTq1QsVKlQQIm9w+PBheHh4QKPRoFOnTkxXK73myc+fP8f06dNRsmRJFCpUCFu2bGFq6G3atIGzszNMTU3/US5UyJNCnhT8BxAfHy9s4geQx4HXrVuHn3/+Gebm5sIyXYYLs2Hz8vLiLqxowPnz5+Hl5QVTU1MULVoUPj4+XA1NDdi2bRtsbW1hZ2fH1VfMGAZxQhMTE3h5eXEdBTdGcnIy+vTpw0bBRQ0svH37ljUVV6pUiWUIeSA8PJxdo588ecJ9au7MmTNsTcPWo0cPRnSGDh3KbegnMjISjRs3BpGstj137lzY29un6lfigYiICEbQS5QogQEDBjB5gwMHDnCJAcifTb169dj7adasGYgIefPm5TIR+vTpUzx48ACvXr1CtWrVQET4+eefUa5cOfbw8fLlSwAKeVLIkwIFnHH9+nUsX75cyNqGkmS9evWg0WhA74T1RCE0NDSV6nbLli2FxHnw4AHy5s0LIsLAgQORkpKCZcuWcZ+cPXv2LLy9vaHValnzsghs27YNdnZ2sLa2Zs2+vCFJEmbPng1TU1O4ubnh8OHDQuIkJSUxnaCcOXOmu6cnLi4OGzZsQO3atVkWVavV4sCBA4yA/Pzzz9wa/Q0N0paWlrCzs8Ps2bPh5+cHIkLjxo25PRAYN2Lb2tpizJgxrK+oX79+3KaMjTWu7Ozs0Lt3bzg6OgpRQ589ezbMzMzg4OCAtm3bwtTUFM7OztixY4dCnnhsCnlSoCDj8eLFC4waNQre3t5cp6MMkCQJEydOhEqlSpUl2LhxI/dYgNwLZ+i5qFChArJnz45Ro0Zxj/P69WtUrVoVRLLRrKjr0ZMnT/DTTz+BiNCxY0fuRsMGXLp0CVmyZIFKpcKIESOE9nUZenp4Gc2Gh4djwYIFKFOmDHx8fPD69WssWrQI5ubmcHBwwPbt2zkcuYx79+6hUKFCICI4OTnBxMQEKpUKvr6+OHv2LLc49+/fZ03ezZo1Y9mhn376CQ8ePOAW5+7du+z9NGzYkGWHatWqxbVcePPmTaalVbduXVYubNeunUKe0rsp5EmBgv8fdDodzp49KyyLEhQUhOHDh8PLywtEsmVJcHCwkFiSJGHevHksI6HRaLje2AzQ6/UYNWoUVCoVsmXLxrSBHj9+zDVOYmIi0yAqVKiQkGlMQC5PGbI2FSpUSNck1qcQHByMsmXLgojw22+/cS3jBgUF4eLFiwCAW7duMfuSrl27ciOe0dHRqTKpPj4+rI9o3Lhx3IhnUlIS+vXrByJC1qxZMWrUKNja2sLKygorVqzg9l01Vg/PkiULunTpwl0NHZAHSXr16sXiGM41hTx9O2lS7FkUKPiPQKfTISAgAHXr1kX16tWFTBVGR0ezkXzDliVLFmHXjAMHDsDZ2RkWFhZYsWIFatasiSNHjnCPs2nTJtjY2MDW1hZbtmzhvj7w3gzW1NQUrq6uwoYJUlJSMGzYMKhUKmTJkgUXLlwQEicuLg5//vkn16m/+fPnI3PmzKnOr4YNG6JOnTqMePLUhDpw4ADc3Nyg1WrRv39/lChRAkSEevXqcSWeBw8ehLu7O2smz5YtG4hkk2Ze04WAbCVkeD+GXjKFPKWPRCmZJwUK/kN4+fKlMJ2uyMhIzJ8/n5W8DM3KovD8+XOm2aNWq+Hp6SnkvT148IBpKPXo0UOY0v6VK1fg7+/Pmq9FlfGOHDkCd3d3mJiYYNq0acIyn5s2bWJTfzyyNnq9HqdOnUKXLl3YlOz8+fMxZ84cIZpQYWFhqFWrFogI5cuXZ0Mfvr6+XAcXXr9+zUhg6dKl8dtvv7Hpwjt37giJo5AnhTwpUKDgO8T169fRvXt3ODo6YsOGDUJiSJKEbdu2wdzcnN0Q6tSpI4QMxMfH448//gARoVixYggMDMTFixdZuYoXoqKiWGagXLlyXLMpxggNDWX9Y7Vq1RJGqJ88eYLixYuzAQle1jUpKSnYt28f/vzzTzx8+BDXr19Hrly5QJw1oYybrw3nmK2tLTQaDUaPHs2N4EqShAULFsDCwgL29vbo2bMn7O3tYWFhwa1PzRBnxowZCnlK76aQJwUKFIhEYmIi9u/fL6RUGBcXhwULFvxjfH7evHncYxmwevVqWFpawt7eHr/99huyZs3K/bpouJGamZnBxcVFmMq6Xq/HxIkTodFo4OXlhRMnTgiJk5ycjL/++gtEBH9/f67WLsaIi4tjBJenJtT9+/dRpkyZVOeYIeNZtmxZrjZCd+7cQcGCBVlZ0mAGXbduXW4EV5m2U8iTAgUKFAAAbt++jb59+yJTpkwwNzfnop2TFu7cuZOqeblZs2ZCsl1Xr15FtmzZoFKpMHjwYCb/wJuInjlzholF8symfIj9+/fD1dUVJiYmXK1dPsTmzZu5akLdunULgwYNQpYsWdhn7ujoiHHjxsHCwgIODg74+++/OR29/MBh0BzLkiULOnbsCI1GAycnJy6yFgp5UsiTAgUKFKRCcnIydu7ciWHDhnHXmjJg7dq1cHR0TJWJEKUPFh0djaZNm4JIthAKDg7GxIkTERQUxDVOREQEE3GsWLGisKm/kJAQVKlShZULeVm7fIinT5+yrA0vTShJknD+/Hn06tULHh4eKF68OK5du4b8+fODiPDHH39wVac/cOAA3N3dodVq8eeff0Kr1TLV9fT03SnkSSFPChQoUJDh0Ov1OH78ONq1awdra2sQyebSItTpAfmmbdBQcnZ2Rvbs2VGqVCnuBtDG4p2urq5cFbaNYSgXirB2MUZKSgqGDh0qRBNKp9Ph2LFjOH/+PBISEtC9e3cQySbTH/OT+1a8fv0av/76KyPpJiYmICIUKVIE9+/f/6Y1FfKkkCcFPyji4uKEZQ2MkZKSgq1btwqPo+DHRWxsLFavXo1KlSqhUKFCwgQ1AbkJ39nZmd1IBw4cKCSO8dSfQTUeAPcy27lz54RYu3yIo0ePwtPTk7sm1IfYvXs385ObOXMml79XfHw8M2U2fO7e3t5Me+pbypIKecpA8rRu3boMIU/Dhw/H+PHjhcYAgPr162PPnj1CY0RGRqJUqVIIDAwUGgeQrStENOQaQ5IkzJkzR5jIogEJCQno378/Jk6cKDROUFAQunTpAkdHR2ElCkA2BTWoLYeHhwvr81i0aFG67Tc+B71ej5EjR3L1Y/sYIiMjMXToUK46Nx/DrVu3uN3kAODZs2cfFdPcsmVLuq83KSkp6NKlS6pSoUqlStVMPmXKFNy+fTtdcQyIjo5G8+bNWXN0UFAQFi1ahNu3b2PgwIHcym1v3779qLXLq1evMGTIEG6yEOHh4R/VhDp16hQWLVrE7Rx4+fIlKleuDCJCjRo1EBoaCgBYtmzZN2XYUlJScOjQIXTo0CFVqbhu3bqsab1Ro0aIiIiAJEkYOXLkZ426FfKUgeTp/PnzGUKe9u/fL0wgzhiLFi365pTnlyIxMRETJkwQYshqDINxqgibD2M8fvwYlpaWwkbBAfm9LF26FEQEc3NzrpYIH2LAgAHsQtSgQQMhMSRJYtowY8aMwYwZM7BkyRLucaKjo+Hu7g5LS0ts2rSJ+/oGXL16FaampvD09MS5c+eExVmxYgWICEWLFuXe22OMzp07s5uPqGubXq9H0aJFQUQYNGhQurMrt2/fxl9//cVU411dXfHq1SuEhYXB0dERlpaWWLFiBZdjN3i+GZqiCxUqhKxZs0Kr1cLT05PbdJ5xWdJg7TJz5kwQydYovNTdDQ+AxppQBguWRo0acTPq1uv1mDx5MkxMTJApUyYEBAQgV65crPH/W8utSUlJCAgIQKtWrWBra4u5c+di+PDhUKvV8Pb2xoYNG2BjYwNra+tP6mop5Cl9pElRGP/BIIrQGOPVq1cYOnQojh07JmR9vV6PnTt3MsJRrlw5IRm1EydOwMnJKdVTvCjSERMTg/r164OIYGVlBRsbGyGE4NmzZyhSpAgr5+h0Orx69Yo7eT937hw8PT1hamqKRYsWcV3bGBs2bICVlRWcnJyEjuqPHDkSKpUK2bNnZ1YvvBETE8OavsuXL8/c7dMDnU6Hw4cPo3Xr1qhbty50Oh2CgoKYEnabNm0QGxvL4ehlwubj48O+K/Xq1YOPjw/UajXGjBnDrQz2obXL8uXLYW1tDRsbG6xfv55LDACpNKG6du2KwYMHQ61Ww8fHh6v45cWLF5lieLdu3Zh+V8mSJdNdkUhISMCePXuQmJiIkydPss+jc+fOTLqjSZMmH/3+K+SJD4lSep4UfDUygqhdu3YNbdq04fYU/SGeP3+OwYMHsx4SFxcXrqacxrhz5w7LFBARKlWqJEzI0WDQW716dcybNw9t27blHickJISZmXbo0EFYee3WrVvIkSMHVCoVRo8eLaw0vX//fjg5OcHCwgKrVq0SEsOg3WRqaopMmTJxtZKJjY1FTEwMAHna0OCZljt37nSX8SRJwogRI1I9aBARFi9ezKbzKlWqxK30/aG1y/79+5mJbvv27bkRwg81oVauXMn6osaOHcuNEMbExKBNmzYgkj0SJ0yYACsrK9ja2nIVj3379i2aNGnCMradO3dmjfKnT59Ota9CnhTypOA/AJ6jvx9DQkICli9fjkKFCqFp06bc19fr9Vi0aBFzNzdsCxYs4B4LkG9206ZNg1qthkqlAhFhx44d3OMkJyejZ8+eIJIVt58/fw4A3Hv8oqKiWOauVq1aiIiI4Lq+Ac+ePWNZmz///FNY4/fly5eRJUsWpqkkihDu3LkTDg4O3Mp4hl4ng7+ctbU17t+/z6bzMmXKxLXlwtjaZdCgQWzKLFeuXFw1vIw1oWbOnMkm2ypWrMhV3X39+vWsyXvcuHEoXLgwiAht27ZlxDe9kCQJK1euZNm6QYMGwcvLCxqNBiNHjmSEUCFPCnlSoIAbJEnCyZMnhWWfJEnCiRMn0LhxY2i1WlhZWeHJkydCYp09ezYVWXN1dRX2vtauXQsLCwu4uLjg2LFjyJs3LyNSvCBJEiZNmgS1Wo0sWbJwHQU3RlJSEnr06MFGwUV9Pm/fvmVZm6pVqwr7bESU8QwyDb///jt++eUXJCQk4PLly8iaNStUKhWGDBnCbWrO2NqFSPaUc3R0hLm5ORYuXMgte2usCfXbb79h0qRJMDMzg7OzMwICArjEAOQHi5IlS4JIVg/v2rUriAjZs2fH5cuXucV5+PAh67Nr0KABateuzXTCgoKCFPLEY1PIkwIFGY+XL19i5MiRaNGihZDMw4ULF9CuXTtYWFiwG0/9+vWFlVuvXbsGPz8/aDQa9tQu4n0dPXoUrq6uMDc3x8qVK9nPeWcnN27cCGtra9jb23M1mjWGJEmYPn06a74+deqUkDi8y3jGSEhIYE3WUVFRrGxUtmxZLlO5t27dQsWKFVNlbJs2bcqsUng2eX+oCbVq1SrkzJkTRLIZNK/StCGOocdq6tSpyJQpEzNp5vW9SU5OxqBBg6BSqeDj44MBAwYw37yVK1cq5Cm9m0KeFCj4/yE5OZnbKPbH8PbtW8yaNYs1x65evVpInISEBIwdOzbVTW769OlCYgUHB7On944dO+LVq1do2rQpd2J49+5d1rxsrHXEG2fPnoW3tzc0Gg2mTJkijODyLuN9DJIkYfHixTA3N4eTk1O6szaGpvh27drB1taWnVsrV67E8OHDGdHhOflprAk1YsQIVKpUCUSEwoULc53+PX78OLy8vKBWq9GvXz9m0ly9enUmb8ADR48eZaW7rl27okCBAsbfU4U8feumkCcFCn58SJKE48ePo1OnTlwvzAaEhoZi7Nix8PX1ZRdmMzMzYf5ySUlJ6NatG4iINeKLIIaxsbGsAf+XX34Rpm8VHh6O6tWrg4hQp04dYX1doqbxPsSNGzcYYe/bty8XJfSEhARs2bIF9erVg6OjI+7cuYOjR4/Cw8MDWq0WkyZN4pa1MVb1dnBwAJGsIG9tbc11oODNmzesn+/nn3/GkCFDmLwBzwnTN2/eoEGDBmzSr2XLlgp5Su+mkCcFCv5bEDkpqdfrsX//fjRs2BBarRYFChQQNoknSRLTaSIi2NjYCOlRMp6Sc3d3Z9pGvHXV9Ho9xo0bB7VaDV9fX1y8eJHr+gaILOMZIzY2lk2ZFS9enOsgQUREBJMUCAsLQ40aNUBEqFatGreHg5SUFObBR0Sws7NjU38tWrRAdHQ0lzgGjStDSW3ixIlM3qBv377cMtOSJGHJkiWwtLQ0zuIp5OlbN4U8KVCgQARCQkIwceJELF68WMj6p0+fRsGCBVOVCkuVKiWsvHbx4kX4+PhAo9Fg2LBhMDU1xZUrV7jHOXbsGNzc3GBqaoo5c+ZkSBnPuH+MN1auXAkrKyvY29sLs0LS6/WYOnUqTExM4O7ujsOHD6d7zZ07d7KJOMNWtGhRRjz9/f1x6dIlDkcv486dO6yk1qZNG5Ydyp07N9dy4b1794xLdwp5+tZNIU8KFCgQCdGaYJcvX0anTp1gZ2cHIsKoUaOExXrz5g1q1qzJbqY5cuQQUvoKCQlhQrGNGzdmWQ7eRsAZVca7e/cu8ufPDyJZLFJUNvLChQvIkiUL16m/u3fvYtiwYfD39wcRoXv37jhw4ABr8p46dSq3cmFCQgKT/8iZMyfatWsHtVoNKyurTyqGfy1ev36tkKdv3UhRGFegQMEPhLi4OKxatQoVK1YUZh1z9+5dJg5q2Dp06CAklk6nw7Bhw5j6+fXr1zF27FjufWQZVcaLj49Hx44dWfP15/zXvhWRkZFMydvYKy+9kCQJFy5cQK9evXDq1CmEhIQIa/IOCAiAi4sLO8cMbgjNmjXjcg9WpAr4kCgl86RAgYIfCrxEBz+EJEk4f/48OnbsyDJdRCTUV3L//v1wdnaGubk5fH19kTt3biHCsRlVxtu4cSNsbW25W64YwzD1Z/DkMxhz84Zer8eUKVNgYmICNzc3HDp0iMu6T58+Rd26dVOR9CpVqkClUsHPzy/dDwcKeVLIkwIFChT8XxAfH4+1a9eiUqVKcHR05Jbh+BiePn0KV1dXdiP9448/hMRJq4zHe/rv0aNHzIfxjz/+QHx8PNf1DTD2yhNZLrx48SITCR04cGC6y6svXrzA9OnTmUcdEUGr1WL27NlsunD8+PHfXC5UyJNCnhT8oMgI7zwASExMxOvXrzMkloIfF0+fPuXSpPwx6HQ69OnTB1qtNlUmQpSR9cfKeLVq1eIiemmMxMRE1t+TN29e3Llzh+v6Bhh72BUqVIhr87UxoqKi0Lx5cxARSpQowW268NGjRxg7dizy5s0LLy8v3Lt3j8koVKhQ4ZssZBTylIHk6eDBgxlCnlavXo2NGzcKjQEAw4cP/8ekxJs3wNatQP/+QJ06wE8/ATlzAtmzA0WKANWqAV27AvPmAVevAp/zjYyLi0PXrl2FWS8Y42PO2SJw6dIlYV5cBkiShGXLluHWrVtC48TExGD27Nlo1aqV0DgPHjzAnTt3kJiYyMbcReDEiRN48+aNsPUN2LVrF/fG5Q+RkpIixI/vQ4SFheH48ePC41y+fBmPHj1K1xphYWGYMWMGmzC0s7P7xw1637593K4FxmU8U1NTlC9fHjqdDpIkYcuWLdyMc7dv3/5R8c74+Hiu5TZDudDa2jqVJtjjx49x9uxZLjEkScKKFStgZWUFOzu7VAT35MmT6c5O3rx5E0eOHIEkSZg7dy7MzMzg5OSEnTt3sn127Njx2cZ/hTxlIHnauXNnhpCnuXPnCjNMNUbXrl1x8uRJ6PXAtm1AjRqARiOfJZkzA1WrAr//DvTuLW+//w7Urg3kygVotfJ+trbAb78B69cDH5P8iImJQePGjbmaS6aFkSNH4saNG0JjvHjxAmZmZsI/n4CAANbsKZKoDR8+nD3FHzhwQEgMSZJQsmRJ2NnZYeTIkciSJYuQiaaoqCg4ODjA39+fPcGLyN5dunQJRITy5csLzdjNnz+fNWOLKrUAQNu2bYUre+v1euTJkwd2dnbcyMC1a9fQq1cv1K1blxHZsLAwWFhYIGvWrLh69SqXOAcOHIBarWbfkxEjRuDw4cPsHHj58iWXOEFBQUw1vmXLloiJicH48ePZOcCrx+vx48fM861169aIiYlB3bp1uYts3r9/n2lCdejQAZGRkcicOTP3/qsbN24gd+7crCx59+5daDQa5MiR45PnwA9HnohoIBFdJKIYIgojou1ElOMLXleOiC4TUSIRPSGijl8R8z9bttuzB8iTRz4ziheXM0pPn37+dfHxwPHjwMiRQOHC8uutrID27YFz54AMqjj9A6IzQoDsrN67d29uflIfQpIk/P333/jpp59ARFiyZImQODdv3oSfnx+7KWTJkkVIEy4gm3TmyJGDxerVq5eQOEeOHIGjoyNsbW2xZ88e3L9/X0gWd+HChTAxMYGPjw+3m/SHSElJQa9evUBEKFasGHejYQMiIiKY9EDDhg25CR9+iPv37yNv3rwgIgwYMICbFlVycnKq8/bw4cNwdXWFmZkZFi1alC5C+PbtW7Rv3x7W1tbs3FWr1Th69CgWLFgAMzMzuLq6cmuSTk5OxoABA5gExKVLl5hKOc+yXlJSEitL5siRA0ePHmXnQPXq1blVCozLkrly5cLWrVtZ/1XXrl2RkJDAJU5cXBybYsyfPz8WLFgAFxcXmJqaYubMmR89B35E8rSPiNoQUR4iKkBEu4koiIisPvEaPyKKI6IZRJSLiDoQUTIRNfjCmP858hQRIWeMiIBffgFOn07fek+fAqNGAT4+8pqlSgE7dwIZwGX+bxDdkyRJEo4ePYrmzZsLK3u+fPkSgwYNYvYL/fr1ExLn77//ZhoxRASVSsWtTPAhHj16hNy5c0OtVqNy5cpwdnYWYsdy6tQpZMqUCRYWFtiwYQP7OW8Cv3btWlhYWMDV1VVYeU2v12PkyJFQqVTImTMn7t69KyRObGwsEz4sX768MKuXFy9eoGzZsiyLk95MZ2xsLNasWYMqVapArVbDw8MDYWFhuHLlCmuSHjFiBLcy3t69e+Hs7AwzMzPY2trCz88P9vb23KcA9+zZw+LMnj0bU6ZMgVarhbu7O44ePcotzq5du1ic6dOn488//wQRoUCBArh37x63OFu3boWDgwMsLCwwadIk5slXq1atf2SJfzjy9I8DJnJ59wbLfmKfiUR094OfLSCis18Y4z9Fnq5ckcty9vbAunV8s0Q6HbBrF1C6tHy25c0L7Njx/8tE/SgQpRhtQGxsLObOnYucOXMKUYxOTk7G+vXr2RST4UlUVDkqKioKpUuXZrEaNGgghOw+f/6cZQj/+usvJCcno2fPntzjXL16Fb6+vtBqtWk+SfPAnj174ODgAGtra2zZskVIjA+tXk6ePCkkTkpKCsvi5MmThxshDA4OxqRJkzBgwADo9XpERUWhUaNGICJUrFiRGyG8evUqLCws2DncqlUrIWKeL168wC+//AIiQv369XHw4EH4+flBrVZj+PDh3AihcZx69eph+fLlsLOz4y5++ezZM0ac69Wrh+HDh0Or1cLDwwNHjhxh+/0XyJP/uzeY9xP7nCCimR/8rB4RpRCRyUf2N3tHmAyb53+FPO3bJ5fXihQBgoLExjp5Us5qEQE//wy8s2FS8B1Dp9MJE+4z4Pz582jWrBm0Wi2GDBkiJMbSpUv/MZllnB3iifj4eJZNMfSSGDev8kJ4eDgqV67MsimG0XbeROrJkyesV6Vfv34ZYvUybdo0YYRw165dcHBwgJWVFdatW8dtXUmS2DFLkoQ5c+bA1NQUbm5u6c7axMfHo1OnTrCysvrHOWw8BchroESn02H06NFQq9XInDkz9u3bx4hOuXLluE0Z6nQ6jBkzBhqNBt7e3ti4cSMjhDy98nQ6HUaNGgW1Wg1vb28sWLAAfn5+UKlUGDx4MJKTk39s8kREKiLaSUQnP7PfAyIa9MHPSr37w7h/ZP8RxiekYfvRydPevYCZmdwYLsiB4B+QJJmwFSggn31t2gACKigK/oUIDg7GiBEjuI9/G/D06VP89ddfTJnYyclJWJlIkiT07t2bXUsyZcokpJlcp9OxbEqhQoUQGBiINWvW4PHjx1zjxMfHM0NbkeW18PBwVK9enfVbibq2BgYGsgxhp06dhGU8L126xLI2o0ePTncJ11AurFatGtRqNezs7PD48WPs3r0bjo6OsLCwwNKlS7kRzxMnTsDLywsajQZly5aFubk5TE1N4ezsjD179nCJAciejJkzZ4ZarcawYcPQv39/qFQq7l55p06dYnEGDBiAJk2agIhQsmRJ3Lhx44cmT3OJ6CkReX1mvwdENPCDn5V+94dx+8j+/7nM07lzgIUFUKsWIHBwJ03o9cDChYCDg1wunD//x+6HUvD9ICEhAStWrMBPP/2EevXqCclwnD9/Hh4eHqkexho1aiQsm7Jp0yZYWVnByckJxYoVQ+nSpbmVVwwwlNdMTEzg6ekprEdNr9dj1KhRzIKFt/WKAYmJiejSpQuICD/99BOePHkiJM7bt29Rr149EMmK2Lz6FV+9eoXp06ejY8eOSEpKwrNnz1hpunnz5twU5cPDw1nWiUj2l8uePTvLRPKS6IiIiECDBg1ARChbtizWrl3LvPKmT5/O7bvz9u1bVlYtVaoUJk+eDEtLS9ja2v6Y5ImIZhPRcyLy+4J9v6ps95HX/9A9T8+fA66uQMmS8pTc/xNhYUC7dvKZWL48IOj6pUDBR3H+/Hm8evVKyNpJSUnYsGFDKt83UdYbgDwt6ebmxmKNHz9eSJxz587By8sLJiYmmDt3LiRJwqFDh7gTwwMHDsDJyQmWlpZYs2YN17WNsWHDBlhbW8Pe3l5IeRWQieeMGTNgYmICDw8P7tpmhoxWcnIy/vrrLxAR8/5LL7Zv356q14qI8Pvvv6N169YgIhQvXpyb+KUkSVi4cCHMzc3h6OiIlStXokqVKiAi1KxZk1v2VpIkLFmyBJaWlrC3t8eMGTOQL1++H4s8vSvVzSGiF0SU7QtfM5GI7nzws/mkNIwjKQkoUQLw9paJy5dCkoDbt4FZs+RSW5kycvN3tmxAwYJAxYpAx47A7NlyA/rXPvQePixP5llZAXPnKlkoBT8Wbt++jW7dusHPz0+IxplOp0OPHj1S3eBMTEyENPsDQGhoKCpUqMAal8uWLYtZs2ZxjxMUFITixYsLL6/du3ePySb0799fWF/X+fPnWV/XuHHjhEmpGE/nLVy4MN3E1pDlMpQ6iQgbN27EqlWrmPglz4ECYwuZLl26oGjRomyqkefU3927d1GgQAHWY/Wjkad5RBRJsm6Tm9FmYbTPeCJaZfT/BqmCaSRLFbQjRaoAADBihCxo+aUeivHxMpkxaD+ZmABFiwLNmgHdugF9+wKdOgENGgD58wOmpvJ+9vZAy5bA9u3Al2Z1o6NlAkYkK5cLaqtQoOD/htjYWK6j2MYwGPS2a9cOlpaWrImYl3bOhzCeXiMimJmZCVHAT0pKQteuXVkD/tN3wnO8hVXj4uJYNqVMmTLChHzfvHnDrESqV68uTFg1ODiYTZk1adKE233q3r17GDp0KAoWLIgHDx7g3r17yJ8/PyO4vM63+Ph4ptVk2Nzc3KBSqTBs2DBuBDchIeHDB48fhjz9o5H73dbGaJ8VRHTsg9eVI6IrRJRERIGkiGTi5k2Z/HzJQJMkARs3Ap6egFoNNGwoSw58WOZLSUmdZUpIAE6cAIYOfU+4XF2BAQO+fJpv3z75NZkyAfv3f/n7U6BAgYzIyEjMmzcPBQoUECKVAMhk46+//oK5uTm7LufPn19YdmjdunWwtLSEo6Mj9u7dizFjxqQaNecBQzmHt9jlx+JMnToVWq0WXl5eOHXqlJA4KSkpGDJkCGu+5pmJlCSJ9W8lJCSgc+fOIOKr1XTkyBF4eXmx88vZ2Rm1a9dmBJen8fSmTZt+LPL0/9h+RPKk0wHFislWKp+7tkVHA02bymdH3bqAYVI9PBxYtgxo3lwu2Vlby/sQyVN7WbPKFi6DBwMBATLRunkT6N5dzkRptXLJ70u+VyEh8lpEQL9+MklToEDB10GSJFy8eFGYUrxBXd/Z2Znd4Pr06SMkliFezpw5oVKp4ObmBk9PT4SHh3OPc/XqVSZ2OWrUKGHltTNnzsDb2xsajYarFcqHOHjwIFxdXWFqasr61ERgy5YtTKtp1apV6VpLkiQcPnwY7du3h52dHTu/ypYti/nz57O+KF5+jz+0VEFGbT8ieZozB1CpPq+tFBwsywjY2Mj+dABw/z7QosX7ktyXbmo18OuvwJYtMvGaOhXw8JB//vvvwOey4no9MHmy7K9XrpxSxlOg4HtFYmIiNm3ahCpVqkCj0QjL2ACyuKK7uzu7mYqamIyMjET9+vVBRKhatSpev34NSZK4js4D8jSbwQqlVq1awoysX758yabmGjZsKMw4/cmTJ6xPzeCVl14kJCRg69ataNiwIczMzDBo0KBUfVHdunVLd7lQIU8KefoHYmLkMlibNp/e78ULOXvk5SVnjBIS5HLbh6TIxgaoUAHo0gUYPRqYMAEYNgz48095Ys7B4eOvGTpULt1Nnw44OclSCaNGfT4TduIE4OYmE6/02sYoUKBALAIDA7Fo0SLuUgmAPFU2fPhwZh9k2BYtWsQ9FiBnP6ZPn87Ka5s2bYK3tzd3gqPX6zFx4kRoNBpkzpxZmAyETqfDiBEjoFKpkCVLFly8eFFInOTkZPTr1w/0TtqAx9SfAZGRkVixYgVevXqFuLg4Zu1SsGDBdJULFfKkkKd/YPRoOWv0KYPfqCi5FOftLcsFPH0KFCqUmgDVri0bByclfTqeXg9cvSqTKoNJsPHWvbuczerXTy7lZcsGHDjw6TVfvpQtXkxMZLNiBeKQEWbK/49YCn4cJCQkYOPGjahatSpUKhUsLCyE+e8BcnnNuPemfv36QrJdJ0+ehKenJ7RarVCV9SNHjsDNzQ0mJibC7X0MU3/z588XqnNmKBd+q9efQp4ykDwZFElFk6ezZ8/iwoUL3/Ta8HDA1hbo0SPtfSQJqFMHsLRMxsGDL3DrFuDu/p7s/PQT8I3hAcgSB127/pNEDRkCXLwoZ6uIZL2nT2WSk5PlCT8ioHPnT0/xvX79Wqg2jDF4idF9DlevXuUmSJcW9Ho9tm3bJrTsAshPj5GRkejdu7eQDIUBz549E7q+AaIEFj8Eb+XwjyExMRHPnz8XHufVq1dcvjtBQUEYPXo0GjZs+NFm9UePHqWbpAcFBaFp06apsl0LFixItc+DBw/SFcOAsLAwVKtWDUSEOnXqICIiArdu3cL9+/chSRI3u6SQkBBm71OvXj1ERESw30VGRnLTPwsODmZaZ40aNUpVLnz69Cm36TzjcuGH1i737t37LHFTyFP6SFMXIrpDRPe+hBQtWrQoQ8hTr1698Ndff33Ta4cNAywtP22BsnixfCbkyfMXZs3aA1fX9wSnb98vlxr4HCIjgUGD4kGkZ+vb2wMbNgBLlsilPS+vz0/YLVwoZ6wqVgSMvu+pcPr0aeTMmVN4ZuP169fw9fUVNn5uwOXLl2FhYYHp06cLjTNlyhSYmJggR44cwqamJElClSpVkCdPHmi1WsyePVtInMjISPj4+KBWrVqIjo6GJEkIEmDgeO3aNZiZmQkngqtXr4aJiQkWL14sLAYAdOvWDc7Ozlz1dD6EXq9H8eLFkSdPHm6kQ6/X/+OcDQ0NhbOzM2rWrJmKHHwtwsLCMHPmTObxR0QwNzdn0gynT5+GRqNB7969uTzg6PV6jBs3Dmq1Gr6+vujcuTMKFSqEqVOnwszMDIsWLeKSxdHr9RgzZgyLc/78eQBAs2bN4Obmxm2aUafTYfjw4VCr1fDz88P58+eRlJSEXLlyoVChQtzOAWORUH9/f1y+fBmBgYGwsrL6B0H8EAp54kOifoiyXUIC4OIi9yalhceP5am59u3l3qgcOd4TJ1HlsagoYNCg93GIgOrVgVOngMqV5f/v0+fT5cEjRwBHR7nkJ5i3fBZHjx7FpEmThMbYsmULcubMCVtbW4QKMgMMCgpKdXMYO3askDgAMHPmTBbHxsZGiJ+dYRxcpVKhQIEC2L9/P3755RfupYOkpCS0b98eRIQaNWoIux6EhYWxJ/iuXbsKy0LevHkTWbNmhUajwYwZM4Qa9NrZ2cHW1laosvfkyZOh0Wjg5+fHZVT/2rVr6NmzJ5ydnZE3b17Ex8cjPj6enQOlS5fmdj4fO3YsVXN8hw4d2DnQokULblnv48ePw8PDA1qtFlOnTsXFixeRJUsWqNVqjBw5kttDwdGjR+Hu7g6tVospU6awcpu1tTVXk+b9+/fD1dUVJiYmmDZtWiqT4zNpTE0p5EkhTwzLlsmf8P37ae9TpYqs7B0VBbRq9Z7MzJwp/viCgoBGjVKTqPnz5ak8ExOgSBHgUw8kDx8COXPKJEqQTMp3BZ1Oh40bN2LGjBnCYoSEhGDgwIGwtbWFhYUFN9sFY9y6dYupORv3kIjCjh07YGlpCbVaDSISkrmRJAnTpk2DWq1G7ty58fjxYyQmJqZ5of5WJCcno1OnTiAi/PLLL8IEFiMiIlC1alUQEVq2bIl4QT5ODx8+ZOfC0KFDhWXujh07hkyZMsHc3BzLli3jsmZSUhK2bduGgIAA9rNly5bB3NwcLi4uXErfW7duRdasWVN9V7Zu3YpBgwaBiJArVy7cvn073XGA1OXC2rVrIzAwkP1/xYoVuZlBh4WFMfPnmjVr4uLFiyhatCiIZNsXXufaq1evWFmyVq1a2LVrFzM5Hj9+/D+qEgp5UsgTALmPKV8+2fg3LRw8KJ8BW7cCq1e/JzAdO2bccQKyJpTxhF6tWsDevYC/v1zK27o17ddGRMgyBmZmsiTCfwGiMgHGiIyMxPjx4/H7778LWV+v1yMgIADly5dnNwVeei0f4urVq6mMTe3s7ISpRwcEBMDGxgZOTk6YMGECsmXLJkRjacGCBdBqtfD19cWNGze4rw/IZH3gwIEgIhQuXFhIyROQlcIN7vbVq1cXNqr/4sULZpz7+++/C1Nev3btGvz9/aFSqTB69Oh0tQ7ExcVhzZo1qFy5MlQqFYgIjo6OeP78OQICAuDo6AhLS8t0ayoZoNfrMWHCBGg0Gnh7e6Nv377IlCkTTE1NuZbx9Ho9Jk2aBK1WC09PTxw6dAi9evUCESFv3ry4c+cOtzgTJ06EVquFh4cHduzYwUQ2q1SpkooQKuRJIU8AgJMn5U/34MGP/16vlzM7JUrIvUj29vL+OXIAgvT0PomYmPfWLIZt82bZ9oUIGDgwbb+8xESgSRNZxyojMmb/JcTHxwvz+TLg4sWLaNKkCXx9fVM1efLCvXv30LlzZ2ZZYmjEFUVCb9++jSxZsrBYvXv3FhLnxIkTcHFxgZWVFfMV27NnD/c4mzdvhpWVldA+KIMkgKG8du3aNSFxkpOT0bNnTxARihQpIiSzCqTWiKpevToXIc/g4GBMmDABuXLlQpkyZZCSkoKgoCCUKFGCe9bm1KlTqaYLa9euDT8/P6jVaowaNYpbhvDs2bPw8fFh627btg0ODg6wtLTEihUruMQwxPH19YVarcawYcMwdepUmJiYwM3NjWUIFfKkkCcAsghl5sxpG+xu2SJ/+sePy5IBBsIiSPbji7F3r0yCDMczdCgwfrwsrFm5ctoN4nr9+/fRp49iLPxvRGBgIK5evSps/Tdv3mDixInsprBp0yYhcXbt2oXcuXOzG49KpcJpQQJlxn1qQ4cOhb29vZBYGdUHdezYMbi6usLCwgKrV68WEgMANmzYACsrK2b1IgKGnjuDdpOhGZvHuhcvXmTSDElJSSxrU6BAAS7N1wcPHkS+fPlSlQvnz5+PBg0agIhQqVIlbmW8iIgIRjQrVKiACxcuoGTJkiCSRTZ5eRi+ffsWjRo1ApGsUh4QEMBU5AcPHow3b94o5Cm927+dPCUkAHZ2sk1KWvj5Z7nc9eTJe6LyqcbyjERo6PvGcSJZkHPjRrm3KXv2T/dwzZolk682bRRLFwUfR3JyMjZs2IBff/1ViLVHQkICVq5cmcqBPnv27ML6huLi4tC4cWMWS1Sp8GN9UEFBQdxG2g14/vw5y6Z069ZNWGO8sdXLiBEjhE3mnjx5Eh4eHjAxMRFqjbJ161bY2trCxsYm3Q8GsbGxWLNmDapWrcp6Ba2srHDnzh3Mnj2bZW14ZSIlScLcuXNhZmYGFxcX7N69GzY2NiCSRTZ5laYlScLChQuZtcuGDRuYBIXhnFPI03+YPG3aJH+yaU2hXb0q/37Llvf6SyrV92V/otfLGScDgTL0PuXMKZcYP9WLuXatLGVQt65MJBUoSAui+l4A+UJ99uxZNGvWDCYmJujbt6+QOI8ePUKVKlVSZQm6d+8uJNaHfVCjR49GzZo1uROCxMREdOzYEUSEn3/+GS9fvuS6vgHR0dFo2LCh8H6r0NBQVKxYEUSEpk2bCtOGe/ToEctEduvWDUmfUzT+Arx8+RJTp05FwYIFkT9/fsTHx+PixYusjJfevi5jXL16FdmzZ2fncZYsWeDs7Axzc3MsXryY23l28+ZNZu3SvXt35pWnkKf/OHmqXVs2AU4L7dvLekphYe/JyZAhGXd8X4PDh98fIxGwfLk8IajRAEuXpv263bsBc3M5ayWgjUaBgq/Cq1evMGbMGGE9NhcvXkS7du2MbwDcmns/BkMflCGWKHuUZcuWwczMDO7u7qwcGR4ezpWsGSYlNRoNfHx8uHvXGaDT6TBkyBA2JcerKfpDJCQkMOJZrFgxrufcjRs3WD/a27dvUa9ePRARKleuzEVCJTExERMnTkz1INCyZUuUKVOGEU9efZFxcXH4448/QEQoVKgQNm3apJCn9G7/ZvIUEyNPnk2d+vHfx8XJopkjRwITJ74nJYKkg7jg6VO5XGc41lGjZB89Ivl9pHUdPX5cVlcvWlRWWleg4EfHmzdvMG3aNGTLlg0+Pj5CGvABYPv27ciZMye7wVlZWeHRo0dCYl26dAk+Pj7QarWYM2cOJk6cKMQ94MSJE3Bzc4OZmZlQIdKAgAA4ODjAysqKq7bRh1i7di2srKzg4OAgVEdr5syZMDExgbu7O44dO5au9d68eYNZs2Yx6QLDtm7dOgwZMgQqlQr+/v5c9LoM2LRpE2xtbY0HShTy9LUbfaXC+PdInrZulT/VtK5jmzfLv3/wAMiSRf538+YZe4zfgri495N3RHJD/MiR7/+dVn/TlSuyUGi+fN83QVSggCf0ej0OHDgg7Kb5/PlzjBgxItVEVunSpYXpNL1+/RqVKlUCkSyqamtri6efMuv8Rrx8+ZJlOdq1ayesT+3p06eMIHTu3FmYmv/du3dZeap///7C+scuXLjAptnGjBnDpYx37949DB06FH5+frCxscHDhw9x8OBBJp3As3/syZMnKFKkiEKe0rv9mzNPbdoAuXOn/ftGjWTD30uX3hMRzjp+wqDXy5IFhuOuXBmYPVvub6pdG0jrOnf7NuDmBuTKJRsMK1CggA9SUlKwY8cO1KhRAyqVCuPHjxcW6+nTp/D29mZkrWzZskLIWnJyMvr06cPKOY8fP8bZs2dx+fJlrnESExPRpUsXEBGKFi0qhAwCcvN3q1atWP+YCDV/IHUZr0qVKtycECRJwunTp1nP06tXr1ChQgUQERo2bIi3b99yiRMeHq6Qp/Ru/1bypNMBzs5AWjZ4sbFyyW78eHmcnwjw80u77PW9wqCcTiQTolWrAAsL2WA4rSrF/fuAp6ds55IBnqcKFPzn8PTpU4waNUpIc7der8esWbOQI0eOVOWciRMnco9lwObNm2FtbQ17e3vUr18fOXLkEDLFaFxeM1Yr5wlJkrB06VKYm5vD2dkZBw4cEBZnxowZMDExgYeHB44fPy4kjk6nw6hRo5hX3oX0ONe/w9atWxXylN7t30qezpzBJzNJAQHy7+/eBTw85H8PGJCxx8gLe/e+J1DOzvKE3ef6mx49krWvsmSR+6gUKFDw74IkSThx4gRatWoFc3NzmJiYcO1/+RB3795N1dv1559/Colz+/Zt5MqVC0SEIUOGsIwa756169evI1u2bFCpVBg2bJiwMuv58+dZGW/s2LHCZCAM3n8mJiaYPn16usp4ikjmf5g8jR4tE4i0+n9695azL7duvScenHTb/i84f/79+yCSCZSLi1y2TMt94+lTOduWObOscaXg/4eUlJQMsZpR8GPi7du3mDNnDpo2bSqsN2nBggWppgqJCNu3bxcSKyYmhmkOVaxYEaGhoahcuTJ3OY2oqCj89ttvLA4vscsPERERgbp164KIULVqVYSFhQmJExoayvTHfv3112+Wm1DIUwaSp+Dg4AwhT8HBwV+UCq9Y8dNedgULyua/M2fKn7y9fWol7tu3bwtJS3+Ia9eucXsSuX9fNhE2EKj162UZBn9/PQ4evPvR1zx/DmTNKhsi87DryigCIGpy6kNcunRJ2M3IAJ1OhyNHjghVkQaQSudG5OfEQ0/nSyCqsdgYkiRlSJzExEQun4kkSZ9shE4P+ZAkCcePH0erVq1gYWEBIoKTk9NHvRF5kByDWKSJiQkyZcoEIkLXrl2FxJkzZw6bkvuwvJaSksLlnDbY7hi85U6cOJHq9/Hx8VzOAb1ej/HjxzNPvg9V9r/keqaQpwwkTwY9CtHkqVWrVmjfvv0n90lMlHWN0pIoeP1a/rRXrgR+/VX+d7NmqffJkSOHML0WA0JDQ6HRaHD9+nVuawYFAU5O7wnUhg2Aq2s8VKpHCAz8eFr62TM5A5UlS/p6oKKjo9G8eXNhUywGPHnyBLlz58bDhw+Fxlm3bh28vLwwZswYYTEkSULHjh3h7u4ONzc3Yd+f+Ph4lCpVCiNHjoRer8eUKVOExAkKCoKfnx82btwoZH0Djhw5gsyZM3Pp7/gUpk6diiJFiuC5wOZASZLQqFEj/Pbbb9zsNz6G6Oho5M2bF8OHD0/3A1tUVBQWLlyIYsWKoXLlyqnWu3fvHtzd3bFhw4b0HjIAOeNlnO3atWsXAGDbtm3w8fHhdg4YT8mNHz8eer0eUVFR6NmzJ0qWLIlnz55xiXPu3Dn4+PhAo9Fg3Lhx0Ov10Ol0qFSpElq0aMFNNNTgyafRaDBx4kTo9Xq8efMGfn5+ny0fKuQpA8lTREREhpCn2NjYzz4FHD8uf5pplf937pR///ix7BNHBMyfn3qfyMjIDMmi8JqOMMbLl4C393sCtXYtkDmzDn5+afc3BQbK5bts2dIu830Oer0ea9euFdaAacDOnTvh7e2NRo0aCYvx5s0blC1blun2fOzpmgfu3buHvHnzshtDr169hMRJSEhg5Ynq1atzJ+0GvHr1ilmxjB8/nmVueJdbLl++DA8PD5ibmwvz5QNk3RsLCwu4ubnh7NmzQmLo9XqMHDkSRLIfmyjx0NjYWGZdU6tWLURGRnJZ9+bNm6mIRVBQEDsHevXqla6HqcDAQNSoUYPZohARnJ2d8fLlS5w+fRoeHh4wNTXF/PnzuVyvIyIi8Ouvv4KIUKNGDfz9998oWLAgLCws4OzsjP3796c7BiBfXwxxqlWrhpcvX+Kvv/6CQTT09u3bXOKEh4ejVq1a7Hv/8OFDVj6sUqVKmuVDhTxlIHn6nnqeRo36ZxnOGCNGyNmZu3ffEwxO5+p3g9evU4tprl4tZ5d8fGSi9DE8fiyX+XLm/L7saT6GhIQETJ8+XZgYIQCEhYWhX79+sLS0RKtWrYTE2Lt3L0qXLs1uDBqNBjdv3hQSS6/XszFtItm/SkTzamxsLLtAd+jQAQcOHMDgT5lLfiOCg4OZHs2oUaOEPexcuXIF3t7eMDMzw6pVq4TEAGSxTWtrazg5OeHw4cNCYkiShMmTJ0OtViNbtmzcbtIfIiEhAR06dAARoUyZMun2/AsODsb48eOZXUmlSpWg1+sRGhqKX375BQb1bR6tFpIkYcqUKdBoNNBoNCAi/PXXX8iePTtUKhWGDx/OpbncoOau1Wrh6emJkydPYvfu3XBwcIClpSW3c81gymwoFx47duyzU4AKefqPkqeaNYGqVdP+fe3asq3JunXvycWP2KsbESETIeMeqCxZ5C0teZMHDwB3dyBPHpmAKQBCQkLQt29fYaRGkiQcO3YMlStXBhGhXLlyQohAQEAAMxg1bAsWLOAeB5D7uHr37g0igp2dHbRarZBMV1xcHHO3b9asGRISEhAdHc3doDckJASlSpUCEaFfv37CJrNu374Nf39/aDQazJgxQxghPHjwIJycnGBtbY0tW7YIiQEAixcvhqmpaSpLmfTAoHPUvn17du6mpKSwrE2+fPnw4MGDdMcJCwtDjRo12PfE1NQUJ0+eRKNGjT6btflanDt3DpkzZ4ZGo8H48eNTiVR26NCBW8+l8dTf6NGjcebMGfj4+ECtVrPyoQEKeUofafpXKoxLEuDq+ml/Ok9PWf+pb1/5U//554w7vozGmzepCdTGjXJJL0eOtLNL9+7Jf8MiRYDvgAt/N8iIMu758+fx66+/Yv369ULWf/36NUaOHAlnZ2cQEezt7YVNGAUFBaFgwYLsBlS0aFEhpEOv12Pw4MEgIhQvXhwrV65E/fr1hRj0tm3blpV0eJW9PkRERASqVasGIkLr1q2FGTYHBgYy49yBAwcKI4QXLlxA5syZodVqMXv2bG6fy4ftG9u3b4ednR1sbW2xdevWdK197tw5tG3bNtV0YY4cORATE8MsWDw9PbkQQuCfZbzly5fDz88PRIT8+fPj/v37XOK8ffsW9evXZ9OFd+/eRZ06df4xBaiQJz4k6l+VeQoKkj/JHTs+/ntDs/jGjfJEHhHQqVPGHmNG480buZfJmEC5uwN586adXbp2DbCzA8qWle1gFGQseCkSp4W4uDjMnTsXfn5+aPbhtAQHSJKEjRs3Gts8gIgwffp07rEMWL16NUxNTVksEb1QhokptVqNnDlzsizHrVu3uMbR6XQYMGAAiGRDW1FK2PHx8WjZsiW7eX7raPvnYGwp06JFC2GTzA8fPkT+/PlZhjAlLa2aL0RsbCxWrVrFVLzbtm0LADh79iy8vb2h1WrTralkgHF5TaVSsXi2trawsbHhdj5LkoTZs2fD1NQUmTJlwsGDB/8xBaiQp/8geTL41aWlZnD2rPz7a9dkmxIiYO7cjD3G/wfCwwFf39QEysVFtqdJq2f99GlZhb16dSCDps8VZDBSUlKwceNGYdNkBiHHunXrQqVSwdLSUlhD9NGjR1kmhYjg4uKC14Jqz/v27YOdnR0cHBywe/dueHl5CSG869evh4WFBTJlysQty/EhJEnCrFmzoNFo4Ofnh2vXrgmJo9PpMHDgQJZNEdWvGBcXh9atW7MSOK8S7tOnTzF69GicfycI+Pr1a6ap1KBBAy73vuDgYFa+JyKYmJhg+/bt7Lzu2rUrN+mMy5cvI2vWrFCpVBg6dChOnTrFpgCHDRumkKf0bv828jRggFyWSwurV8uf9Js374nEkSMZd3z/T4SEyOU4w/veuhVwcADKlEnbC+/AAcDUFGjcWLa8UaDgW/Hw4UN069YNDRo0EFICvX37Njp16mTsCC8kq2bA/fv3WQOz4QYq4n1duXIFmTNnhomJCZNPefHiRbqzKh/i+PHjcHV1hYWFBdauXct1bWNs3boVNjY2sLOzY7IDvCFJEhYtWsT6rU6ePCkkjl6vx6hRo6BSqZAtW7Z09/VduHABf/75J+zt7dl5lTVrVoSGhqJTp04gIvz00094wknVOCoqik1gli1bFlevXoWdnZ1xtlghT9+6/dvIU40acsN4Whg+HMiUSW6MNpAIgQNb3x2CgmTvOyLAygrYskXOLtWuDaQ1Ufz337Kkw++//5iN9QoyFhEREUL1jN6+fYupU6fC19cXRIQdadXw04lHjx6hRYsWqcqSonrVwsLCUL58eRAROnXqhKlTp2LUqFHc4zx//hzFihUDEaF3797cCZoB9+/fR+7cuUFEQq1RLl68yLIp06ZNE9qA7+zsDHNzcyxfvjzd6yUkJGDTpk2oVasWNBoNmjZtCkmSsG7dOlhZWcHe3p7beS1JEhYuXAgzMzPW42WQmlDI03+IPPn6Av36pf37Fi2AUqWAffvekydB/ZjfLR4+fP/evb2BNWsArRZo2TJteYcVK+T90zJaVqDge4NOp8P27dvRokULIXpqUVFRmDNnDvNhIyI4Ojpyn/QzIDk5Gd26dQMRQavVQqvV4vLly9zjJCYmMpmBX375hTUR81Zaj4mJYdpj1apVE9Zv9ebNG1SvXh1EhIYNGwq7Rz1//pxNZLZv357blFxoaChmzJjBxEDv3r3LtOH69u3LRZRYkiSMGzcu1YOAQp7+Q+QpJkb+FFesSHufcuWAJk2AZcvkfe3sMurovi/cuPGeQBUoACxZAqhUQM+eaWeXpk6V9581K0MPVYGCdENUZgOQbzyHDx9G/fr1odFoUKdOHWEZjosXLyJLlizs5pYnTx5h03gLFy6EiYkJvL29cenSJQwaNAh3737c5ulbYdA6MvRbiTI2NgiRqlQq5MiRg3uDvwHJyclMoqNAgQLCXBDi4uLQpk0bEBFKlSqV7p7Fhw8fonnz5qlK3gp5+g+Rp4sX5U/xU2r9uXMDPXoAkye/Jw7/VRiU2ImAatVkUkQETJiQ9mv69JFJlkBRZwUK/rV4/vw5hgwZgoMHD3JfW5Ik7NixA9WrV2fTWIapMlE4c+YM3N3dYWZmBnd3dxQpUkSI/dKxY8fg6uoKc3NzrPjU0286sW/fPjg6OsLS0lJoX9fff/8NW1tbLrIJn8KyZctgYWEBJycn7N27N93rxcTEYOXKlaxErJCn/wh5WrlS/hQ/ZQ3k7AyMGSM3lhMB5ctn3PF9j/j77/cEqkMHWR+LSLZ0+Rj0etkH0NQUOHo0Qw9VgYJ/DURrgj1+/Bh//fUXXFxcoFKphDVEA3KZyFhcdejQoULiBAcHo2TJkqyvKzExEQcOHODm9WbA06dPUbRoUTa9JsrI+uHDhyhQoADrHxPl+Xnjxg3kyJEDKpUKQ4YM4ZJlVaQK/mPkadAg2V4kLeh0ctZk0SKZKBDJjdL/dSxY8J5ADR8OtG4NmJikPYWYlARUqgTY2gICRKMVKFDwhUhMTMT69evRrl07IU34iYmJ6NixYyr9LLVaLcznLykpCV26dIFB8PTXX39Fhw4duMdJTExk02slSpTgZvr7IeLj49G+fXsQEUqXLi1Mrys6OhpNmjRhfWrp7btTyFP6SNO/TmG8WTNZ1DEthIbKn/K2bUD9+vK/mzfPsMP7rjF48HsCNX++TI7s7IC0HEmio2WNKHf3tM2GFShQkHEQ4VNowOvXrzF16lTkyJEDRAR/f3/uGSFjrFq1ChYWFoywiSp9GeI4OzuzUqtOp+OejVq2bBnMzc3h4uIipKQLyNnO+fPnM/HLI+nQ4Pla8qQmBQwA5gLITUTFvmR/SZIEH9H7OCkpKR/93dOnRL6+ab82Nlb+r60tUVLS+39/DImJid98jF+DJMOB/J/jjB5N1LSp/O9OnYg6dyby8SGqUYPoxYt/7m9jQ7RnD5G5OVH16kSRkfyP+XtATExMhsS5dOkSxRpOUMEICgrKkDgKMhZqtbhbmLOzM/Xu3Zvu3r1Lx44do2LFitHgwYOFxNLr9fTo0SPSaDTsZ7///ju9evWKe6yWLVvS+fPnycHBgapUqUJjx46l+/fv07Bhw7jGadu2LZ0/f57s7e2pSpUqNHr0aO73TJVKRR07dqSzZ8+SlZUVVapUicaOHZsx9+YvYVj/tY2+sGw3ffr0DMk8tWzZEp3S8FPx8AA+VY6/fVvOrJw5IxsDE8nTZR9Dzpw5ueh1fAqvX7+Gubk5bty4ITTO3r174eTk9FnNloQEoESJ9xmoQ4fkMmjhwkBaFYH792WhzYoVgbi4ZKxbt07AO0iNkJAQdOvWTeiTNgCcPHkSZcqUwePHj4XGWbBgAYoVK4Zhw4YJi6HX69GxY0fs3r0befPmRXh4uJA40dHRqFOnjrBpJgPu37+P2rVrC1MQN2DXrl1o166dsL4YA0aOHInJkycL7ZXS6XRo0qQJdu/ezWW98PDwj15TwsPDUbly5XQZaYeHh2PmzJlsJJ9Ito8x/s5fuXIFNWrU4GLQGxkZiXr16oGI4OvrC5VKxTI3K1asQMeOHblINURFRaFhw4ZMnsH4/O3evTtmzpzJ5Rx4+/Ytez9Vq1ZlcZKSklCzZk3s27fvs8dJStkuY8hTYGBghpCnR48efdTeITFR7mdaujTt1166JH/KV64Av/wi/7tHj4/ve/HixQwpQR4+fFh4c2lSUhJOnDjxRfu+fv1ehdzJSSZQVlZymTMtrnLsmNwj1batDpMmTRZ2Yzbg4MGDcHR0xLZt24TFiIuLY+aszQXWdp88ecJ0giwsLITZpERERCBv3rxsSqtz585C4ty8eRPOzs6wt7fHyZMncfLkSWZnwRNbt26FiYkJ/P39hY2DA8CIESNAJNt8iDqvdTodateuDSLZy4y3npIBoaGh7ByYMGGCUDkFZ2dnWFlZ4e+//07XWpIk4dy5c+jQoQOsrKwwc+ZM9rs1a9YwKYWLFy+m97AhSRIaNGjAyJqnpyfCw8PRr18/1oPF4/spSRJmzJgBrVYLb29vnDt3DklJSfj5559BRGjSpAmXkqjBh1Gr1cLT0xOnTp1CUFAQay4fPnx4ms3lCnnKQPL0/+55Mgg/Hj6c9j6nTsn73LkD/Pyz/O/u3TPuGP8tMFZfL1VKliVQqeS+qLRgmHT8lMwBT7x58wZLP8WUOSAsLAzdunWDqampsOzg1atXUatWLXbBbt26tZA4V65cYU+i9K7pV5SH2f379+Hr6wtzc3P88ssvKFy4sBCdpSNHjsDOzg5OTk44c+YMAAi5/ixZsgRarRbZsmVjRsC8odPp2E36559/5pJN+Riio6NRt25dEMnWNbyEHD/E06dPmR/bkCFDuGSJo6OjsWbNmlSmwsZSCsuWLUvX+gEBAUyV3rDVr18fkiRh9erVsLCwgIuLCw5/6ibzFThz5gy8vLxgYmKCWbNmoWXLlmjUqBGICLly5eKmqWUwMdZoNJg8eTKioqKYOGnlypU/eq4p5Ok/RJ4MmkX37qW9z6FD8j5PngClS8v/7tYt447x3wTD34oIaNNGJkVEsjdgWjDIHGzenHHHmRF4+PAhVq5cKTTG2bNnUalSJahUKiGq0XFxcZg2bRrc3NzYjaFs2bLCsg8vX76El5cXizV79mwhcW7fvg0fHx+Ym5tjy5Yt6Nmzp5C/3+HDh2Fvbw9HR0ccO3aM+/oGLF++HCYmJvD19U1X2etT0Ov1GDp0KIgIRYoUEZbtjIuLQ9OmTUFEqFWrFiIjI4XEefnyJUqXLs0kDtJTYtXr9Th06BCaNWsGMzMzEBEWL14MALh+/TqyZs0KtVqNSZMmcfnuhIWFoUqVKiAiaDQaODg4YMWKFXBwcIC1tTU2btyY7hiAXAatUaMGiAi//vor3rx5g9mzZ8PExASenp7/MJ3OcPJERFuIaB8R9SOin4hIld41/9/bv4U8bd4sf4IREWnvY0yeKlaU/92lS8Yd478NBtFMImDmTFnCwNQUSMvcXZKApk0Bc3NA0CTzD4+jR49i6NChwkhNfHw8Zs2aBQ8PDxCJ8WLT6XTo2rVrqid4W1tbYbYlr169QuHChaFSqWBra4siRYoI8WS7e/cusmbNChMTE9YP+UiAMebJkyfh7OwMa2trYca5ALBp0yZYWloiU6ZMLHPHG5IkYcqUKVCr1ciRIwd3hXIDkpKS2DlXqlQpvHz5Mt1rRkREYO7cuShTpgzuvXsqf/v2LcsU169fn8v97tixY6mMgMuUKYOHDx+icOHCICL07NmTi0aUXq/HhAkToNFo4OvriwsXLuDs2bNwc3ODVqvF9OnT2XXn/0GeJhLRGyKSiEhPRG+JaAcR9SCi/BzWL0tEu4jo5bs3Vvcz+5c3voAZbTm/Iua/gjzNnSv7s33qnmOcnapVCyyrouDjkKT3elhEsh9gmTKysXJaciUJCXJWz9VVkTD4VkiSJLwPLiEhAfPmzUOpUqWEmfRevHgRDRs2ZH1WonrHJElCQEBAKi2i6dOnC4n1+vVr1psyaNAgtGnTBlu2bOEeJzAwkPUniWwkv3r1KjJnzgxTU9N0l70+hQMHDsDBwQE2NjbYuXOnsDgrVqyAubk53N3d/5FNSQ+M72t6vR6jR4+GSqVCzpw5cefOnW9eNzk5GUuXLmXnlGEbOXIkEhIS8Pvvv4PeaUS9ePGCx1vB8ePH4e7uDlNTU8yZMwcFCxZkRsAG77//W9mOiPKRrJO0kYheGZGp10S0gYiqf+O61YloDBHV/0rylJ2I3Iw2zVfE/FeQpxEjZM2hT+HMGflTvnkTaNhQ/ne9ehlzfP9WJCWlnsC7cEGewCteXG7S/xjCwmSD5oIF057SU/B9ICkpSXiD/71799C+fXuYmppy6xcxRmRkJIYNGwYnJyd287GyskJQUBD3WIAssNiiRQsQEVQqFTJlyiTE1DY6OvofjeTBwcHcY4WGhqJMmTIsyyEiawfIquj58uUDEWHUqFHCpmUvXbqEzJkzw8TEBHPnzhVGPPfu3cvKa5s4+FU9ePAAgwYNgpeXF9RqNU6dOgXgvUaUq6srjnKydQgJCUHFihXZ9yVTpkwYMGAAVCoVsmXLhjNnznwfPU/vyEuXd1mp6HdEKoCIbNKx5teQJ/t0xPlXkKfOnT/vU2c8bdeypfzvChUy5PD+1Xj1CjAzk/9eefLI03VmZsDvv6f9muvX5Sm93377dDZQwX8HwcHBWLx4sbCbWVxcHObNm4esWbOyPhsRseLi4jB37txUIo5t27blHgeQS6D9+/dnjeSTJk1Cq1atuMdJSkrCH3/8wZqIRZBBQPZOM4zq169fH9HR0ULihIWFoUKFCiAitGnTRph58pMnT1hjfN++fbkQT51Oh/379+Ovv/5iDf1XrlxBlixZoFarMXHixHSf14mJiZgzZw60Wi07h6tXr459+/bB2dkZ5ubm3wd5YgHkjNQEIqpDRGfebV+cBfpgra8hT4HvMmCHieiXz7zG7B1hMmye/wby1LChrIr9KVy/Ln/K587JvU5EQJEiGXN8/3YYJhWJZFX25cvlfy9cmPZrtmyR9xk7NsMOU4EC6HQ6/P333yhRogQ2C5he0Ol02L59u7F5KogIBw4c4B7LAEMjuSEWL60mY0iShLlz50Kj0SBr1qy4ffs2AP59XZIkYdy4cVCpVMidO7cwqYmUlBT07dsXRISffvpJWCYyPj4ebdu2BRGhfPnyCA0NFRInIiKCZSLr1q2brgb8xMREbN68GbVq1YJGo2Hn1dSpU/H8+XPm/Zdh5ImINERUk4iKfmKf2Ub/nk5Evb8x1peQpxxE9DsRFSaikkQ0710JsewnXjPC+IJg2L538lSpEtCo0af3efxY/pQPHQJGjZL/7eeXMcf3I2DmzPcEasECmYCamMjl0LQwbJgscyCwzUGBgjQhWuD06tWraNOmDUxNTeHr6yvEskSSJGzatIll1IgIHh4eePv2LfdYgCwB4ejoyPqT8uXLJ+TvGBAQADs7O9jb22Pv3r3c1zdgw4YNsLS0hLOzc7osSz4FSZKwcOFCmJqawtPTU5j3n16vx9ixY6FWq+Hv74/rHMxFX716halTpyJfvnwwMTHBxYsXER4enuHkaRO972+6T0R/EVE2o9+riGiv0f+riWjDN8b6LHlK43W7iGjnJ37/r8w8lSz5+ebvt2/lT3njRjljQiQ3mQsWqv5hYJimMxCoc+dkvSx3dyAk5OOv0euBunUBGxtZ4V2Bgh8RISEhGD58OMaPHy9k/fv376N79+6wsbFhBKpdu3ZCYgEy6TQWVS1XrpyQHqUHDx4gV65c/xDu5H0fuXnzJrJmzQqNRoOpU6cKKx2fP3+eaTfNmzdPWJyDBw/C2dkZFhYWWLVqFZc1JUnClStXMGvWLERERGQ4edpKRLnfZXtOGhGpYCI6TUTPiWjZu30t8EEm6itjfSt5GkxEd79i/39Fz1P+/J+XHZAkQKMB5s0Dtm9/TwLSuvEr+CdiYwF/f7Cs3d278vRdpUpAWjqI0dFyr5S//6elJBQo+LeDx0j5pxAdHY05c+YgZ86cICJhGZuIiAgMHjw4VfXBWN2bJ6KiolCnTh0QEX777Tc8fvwYDRs25E48IiIimNZRkyZNhE2ZGvdbtW7dWpgQ6fPnz1GiRAkQETf7GAP+H1IFi4nI1ej/vYmoJxGtIaK9RDSaiMzfbZFEdICIJnxjrG8lT1uI6MhX7P+vIE9ZswL9+39+PxcXYMwYOWtiPEGm4Mvx/LlMmuzt5azSoUNyaW7kyLRf8+gR4OgIVKumZPoUKEgvJEnCgQMH0LlzZyGlwsjISMycORM5cuRg5Mnif+2dd3gUVRfG30knJIHQO9KlV1FBaYIUPxVBBaUJKsWGBUVEEVBRQVFRlF7EAoqAIDWAEOm9hk5ICCEQElIgdXff74/LLgESkk3mJoGc3/PMk2R25r53Zye779577jmFCvHYsWOma5FqOspeCse+avKXX37RomNPENqgQQMtebpIFW81fPhwAmCjRo20TR8nJyfz9ddfJwDed999PGNSfpi8ME/+AL4HMAJAhUyOXQ21+u4RJ9r3AdDo2kYAb137vdK1xz8H8HOa498E0BVADQB1rz1OAN2c0LwjzFOZMrf/8LZz773kW28pA2A3Tzksv1RgWbpUXb+JE1WqCMO4fXmc1avVMWPH5l4fBeFuR2dOMJvNxrVr17Jbt250dXXlgw8+qKXUDqlG7fr06eMwa0WKFNGW/XzJkiX09fV1xFvFxMQ4MombyV9//UVfX1/6+/tzxYoVprdv57fffqO3tzeLFSuWadHfrJCXeZ7uBfCQWe2labdN2mHUNNuca4/PAbAhzfHvATgJIBFA9LWpxC5Oat4R5snHh/z668yPa9VKxe1YrWShQupVnzBBf//uVt55RwWN79qlpu5Kl1apDTLi44+VgQoIyLUuCoJgAmfPnuVHH33Eeber0ZQD/v33X7Zq1eqGz7b27dtrywd19OhRR7zV008/zcKFC2tZ+XfkyBGHzujRo7U9n0OHDjmK/o4ZMyZHOlLbzhzDdkeYJw8PMivls/r2VcHlpMoLBUiW8ZyQlEQ2bqxG9E6fViOAbdtmHP9ksZCPPkqWKKFG/wSFrviLm9m1a9cNhVUFwVl0Z78/fPgw33jjDRYpUoQA+MMPP2jTiouL42OPPeYwaw888ICWJKHx8fGOor9dunRh9LXgz9DQUFN1YmNjHXm0OnfunO0EuM6aJxcI2WbRokW5ojNq1Ch88skn6T5mGJmfX6UKEBysfq9ZU/08ePDW4x5//HEsW7Ysm73MGpcvX0bjxo1x+vRprTpbt25FixYtYLFYTG/b0xP4/XcgNBTo1y8ITZqMx8aNwJdfpn+8qyvw66+Alxfw7LNAaqrzmlevXsW///6bs45ngdDQUIwfP97+JUIbmzdvRr9+/RAWFqZVZ/bs2RgzZgy+++47bRpWqxWfffYZYmNjcerUKcTFxWnRuXz5Mj799FNYrVYt7ds5dOgQpk2bplUDAP766y+sW7dOu85XX32FkydP5qgNI5M32pSUFHzwwQeIiYnJVvt16tTBd999h/DwcMyaNQsLFy7E8ePHbzkuPDwco0ePztH72pYtW7Bp0ybH39u2bcMXX3xxwzGbNm3CzJkzs60BAD4+PliwYAG+/vprrF69Gs2aNcOePXvQqVMnXL58GQAwc+ZM/PfffznS8fPzwx9//IGJEydizZo1aNq0KXbv3u14nCQ+/vhjBNs/BM0iKw6roG3I4sjTrl27cmXkac2aNdy4ceMt+z08yKx8QZkzR402JSSQI0eq3728bh0pmT17tvYcMVarlRMmTNC2GsPOhQsX+OOPP2rVmDZNXcvhw7fzgw9UCoidOzM+futWNd335pvOa23cuJHlypXTOlqTmprKrl27EgADAwO16Zw9e5Z169YlAL7yyivadKKioli4cGECqkhvZGSkFp1NmzbRxcWFTZs25VtvvcX3srKKIxtMnjyZANi9e3fHKiMdsTgvvPACAXDEiBHaRlwsFgvr169PNzc3zpkzR4sGSZ47d45FihRhsWLF0n0PNYu1a9fSxcWF9957r2nTYOllIh8/fjwBlRE9OgfLeE+fPs2RI0eybNmyBEA3NzfuTPPmZR8xeuWVV5icnJxtHTsbNmxgqVKlHNm9n332WSYmJrJGjRp0c3PjDz/8YMq9FhgY6KhhN23aNNpsNh4/fpw+Pj709/e/bWyUTNvlonnK62k7d/esmSd7ceCgIHLePDqCxjUtIikw2Gxkt26kvz8ZHEw2a0bWrHn72naTJqlrn50k0CdOnDAlQdztuHjxIvv168fHHntMm0ZoaCh79epFAHR3dzdttUxaEhIS2K1btxtiSd7MjmvNIn/++acjG7aHh4eWFU32LNUA2K5dO8bGxvKNN94w3eAkJyc7gpj79u1ryodnely6dIktW7YkAI4aNUqbUQsKCmLVqlXp7u7OuXPnatEgydWrV7NIkSL09/fXmpjy+++/p6urK6tXr56jAr2kClhfvHgxO3fuzNq1azumt1NSUvjqq68SAB9++OEcZxBPTEzkqFGjbvh/nDt3Li9dusQOHTqYmuLg/PnzbN26NQFVpubq1aucNm0aa9SoQcMw+Mknn6QbGyXmKWem6VUAQQCO3inmafLkzI+zr7Jbtow8evS6eVqwQH8f73aiolTCzM6d1bX19iYHDsz4eJtN1b7z9VWpDPIrgYGBOSqFkBW2bdvGBx54gC/frmBgDrDZbFy4cKFj6bm7uztPnz5tuk5CQgKHDBlyQ923pzRW354+fTpdXFwco3dmFGi9GZvNxhEjRjhGOeLi4mixWBgWFmaqTmJiInv27EkA7NOnjzajFhkZ6TBqI0eO1BbAfOTIEVavXp1ubm6cMmWKFg2SXLdunSMjullla86cOXOLGZs+fTo9PDxYsWJF7tq1K9tth4SEcPjw4SxdurTjf8TX15enT5+mxWJxpDho2rSpKSVlUlNT+e677xIAGzZsyP/973/s1q0bn3rqKQLgE088ccv7m5gnc0zUHTPylBXzZLORRYqQ48apFXd+fuqVf/117V0sECxbpq7nrFnXs7gvWZLx8XFxKkfX/feTmvML5nvsBkf3dOT06dNZvnx5Pv/881o0zp07x9dff50eHh6ODwedow/2+mUAWKFCBS15j0g1VWgYBhs3bsylS5fyySefNF3DarU6jFqbNm1yNB11O5KSkti7d28C4DPPPKMtdCAqKsqRMPL111/XEoxNqvp7devWvSVTudls2bKFZcuWpZeXV47zUKWkpHDRokXs0qULXVxc2KJFC8f1WbBgAQsXLmxqSRl72gT7/8rs2bP5xRdf0MXFhTVq1ODBgwcdx4p5KkDmydNTTQNlhdat1YgHST7yiHrlGzXS1rUCR79+ypSGhpJPPqlW1t0ufcG2bSrz+8iRudVDISEhgRMmTGBwcLA2jbNnz/KVV16hu7s7GzZsqCUmKTAwkLVr175hCmTEiBGm69hZtGgRvby86OLiQgBccrtvBjlg2rRpdHV1Ze3atRkcHMyoqCju27fPVA2bzcaxY8cSAJs3b87zt/snzQEpKSkcPHgwAfDRRx/VVpMvLi6OTzzxBAHw+eef12YIz507x/vvv58A+Pbbb5tiCENDQzl27Ngb0kCYWVLGarVyzJgx9PHxcfyf+Pj48MSJEwwICGDx4sXp7e3N+fPnkxTzVKDMk78/+cUXWTt26FCyRg31+/vvq1feMEjNMzMFhsuXyXLlyI4dyYsXVVb37t1vf86nn6rXYMOGXOmikIuEhIRw0KBBnD17tpb2rVYrFy5cyEaNGjmmJHVlwl67di2bNGni+ACqVKmStpHCVatW0dfXl6VKleLIkSN53333aTGg8+fPp6enJytVqqQtjjBtfFKtWrV4/PhxLTpWq5UffvghAbBZs2bakmwmJSVxwIABjqncqKgoU9q92SBFR0ezc+fOBMDnnnsuR2lG4uLiOGPGDLZo0cJx/zZv3pwpKSk8c+YMmzZtSgB86623cr8w8N243SnmqUIF8qOPsnbs7Nnqgzoujly8mI64J40JYAscK1aoazp9OvnHH8w0MNxiUQlMK1SQ+nd3K7rfG2w2G//55x8+8MAD7Nixo5apm6NHj/LFF190BMQD0LaikCT37dvH8uXLO7R01ZfbunUrS5UqRR8fHy5fvpxWq1VL/NiaNWscgeTrbleOIIfMnz+fhQoVYpkyZbh161YtGjabjT/88APd3NxYtWpVHjhwQIuOxWJxGMKGDRuaEqsYFBTEYcOGOYw5qWLuXnzxRQJwxMSJeSoA5qlWLfLtt7N27N696tXevFl9ULu4qL81vgcWSPr3V/Fl58+TTz1FlipF3i5nW2ioqpf39NMqNk0QsoPNZuO6detMCbbNiLCwMA4bNoy+vr50c3PT9sE5ZcoUxxJ6ACxcuLC25xUcHMy6devSxcWFr7/+On19fbWM3Bw9epQ1atSgq6ur1hQqu3fvZsWKFenh4aE1BcSGDRtYsmRJFi5cmAsXLtSms3jxYvr6+rJYsWJcvXq1KW2mpKRw6dKlN3xuT5s2Le2XAzFP2d3uFPPUpAk5aFDWjk1OVrmd7OVcHnhAvfp16ujrX0EkKkrFOz33HBkerqZWe/e+/Tn2UaqZM3Onj4KQEy5fvsxx48axe/fuWlatJSYmcsaMGTfEdf3vf//TFhAdGxvLjh07OrQee+wxLVpRUVF85JFHCICvvvoqU1NT+eeff5o+LRkREeEYRTErPik9QkJC2LhxY+0rGIOCglirVi26uLhoDYxft26dmKecbneKeWrViuzVK+vHt2tHPv64+v3jj+mYutNQ2qhAM3euuq5r1lz/fdmy258zYABZuLC8FsKdQ2JiotZkt1arlcuXL2fbtm21pWQgVZxV2iX0APjrr79q0UpJSeErr7xCQNWwa9CgAb/OSoFSJ0lKSnJMRz366KPaVjBevXqVzz//vMN06kpvEhsb6wiMf/rpp7WsLpWA8QJknjp3Viu7ssonn6gpJYtFTd/ZzZOG/90Cjc1GtmlDVq9OJiaq16lcOfJ2t0l8PFmlijLEmr7ACcIdy+7du/nOO+9oS8mwa9cu9unTxzF1U7x4cV68eFGLFqlSQLi6uhIAvby8tAST22w2Tpo0ia6urqxRowaDgoJos9lMz7Rus9n41Vdf0cXFhbVq1eLRo0dNbd+O1Wrl2LFjaRgG69ata/o1E/NUgMxT797kQw9l/fj//lOv+K5dZGqqMlKASmMgmMuRIyoP18cfkyEhKnnmO+/c/px169TrkZXcXYIgmE94eDg/+ugjlihRgs8995wWjejoaD7++OM3jHS1bNlSy6pCUq2W9Pf3p5+fH7/77juWKVPGtJVyaVmzZo1DZ1lmQ+054J9//mGRIkVYpEgR0xKEkmKecmqa7qgM48OGqdGNrJKcTBYqRE6YoP7u3VvdAS4uanm9YC4ffqjqD544QX72map9d+jQ7c8ZNEhN32lMRSQIQiYkJiZy1qxZ2tILXLp0iV988QUrVqzoMFDffvutFi1SJdSsU6eOQ6uXM/EeTurUq1fPUQbFZrMxLi7O9M/I48ePs06dOjQMg2PHjjUl3krMkzkm6o4YefrqK9LHx7lz2rdX00gk+c8/dEzdafy/LbAkJJAVK6r6d0lJKs9Wmza3X1UXG6vOad9eVt8Jwt1Oamoq//rrL7Zp04be3t6mFRW+mcDAQD7wwAM3jHYtWrRIi1Z8fDy7d+9OQBWx/uuvv/jiiy+arhMXF+fQefLJJ3P8OSzmqQCZp19+Ua+gM/nqJk5Umcnj4tRIVLFiqo0GDeTDWgf2QsyBgeSqVer333+//Tn246ZPz50+3u0kJSXlis6VK1e0Tb0Idz8HDhzQFqienJzM33//nQ899JDDPJUsWVJbXJfNZuOnn35KwzAcJYuWLl2qRefzzz+nYRisVasWjxw54tjv7Ko8MU+5aJ5WrlyZK+Zp1qxZN6Swt7N2rXoFT53KelvBweqcaxnpOXAgHaNP/ft/z23btpnT6QxITEzkgAEDGBERoVXn2LFjHDx4sFYNUs2/T5w4McPHrVayWTPyvvvU7089pYLH4+Ju327//qrciz3ljM1myxWTnpiYqC1TdVoiIyO5IBcqUwcFBXHgwIGMy+yC55CAgIAM/0/NIjU1lWvWrNHWvp3IyEhu2bJFu87evXt55swZ7TqrV6/WFmhux2azcdGiRdqW69tJSEjIcZzP/v37OWjQIBYuXJjPPPNMuscEBwdzx44dOdIJDg6+IbN36dKlGRkZecMx//33nynFpletWkV/f3/6+vpy8eLFPHz48A3Z/ZcsWZJppnIxT7lonpYtW5Yr5mnq1Knplnk4dIiOxJfO0LTp9Tp369dfN0+NG2/if//9l/MO34b4+Hj269dPW00pO0eOHGH//v21apDk0qVLOW7cuNses3Gjur6//kqeOaPizt5///bt2su9dOmiRgQ3b96sLU7Bjs1m4wsvvMAaNWpoy6VCqjw09913H11cXHjKGefvJFeuXGHRokUJgF9++aU2nfXr1zuSOVatWpUpmqo9jx8/ngD4ww8/MDY2VtsoxdNPP81ChQpx5cqVWtonlRGsVq0ay5Urx0OZBQLmgLNnz9LDw4PNmjXjhQsXtOksX76cAPjss88yMTFRm86oUaMIgB9//HGO/0djYmI4adIk7tmz55bHOnXqRC8vL0fdt+ywbt06duvWzbGq0J5mwN7vxMRElitXjmXLluX27duzrWPn1KlTbNCgAQHwoYceoq+vL0+fPs1jx47RxcWFTZo0uW2yVTFPuWie8nraLipKvYLOfoH/7DMVlJyQoNIWVKqk2vH3V0vrBfPp2lVd54QEFUju5UVm9oXr77/V6/LXX+rvrVu3ajU1JHn+/Hk++uijDAwM1KYRExPDQYMGEQCHDh2qRcNqtfL99993vGmXKlUqRzWyMsL+AVS4cGGH1pQpU0zXIdWogz2ZY5cuXViuXDktz+ncuXOsU6cO3d3dHdmjzRgduJmdO3eyRIkS9Pf352ZnvwE6wYIFC+jh4cFq1appiymy2WwcM2aMY+XcpduVFcgBCQkJ7NGjBwFVCFiXUQsPD2fz5s0JgKNHj87R+05YWBjHjBnjKLmT1vTv3r2bFSpUoKenJ3/55Zcc9/vKlSuORKQA+PDDD9NisfDPP/+kt7c3S5UqleEAgZinAmSeSGV4PvvMuXOOHlWv/N9/q7+/+IKO0aepU83vo0AeP066upKTJqlizMWLqynTzHjsMbJyZVLDZ2SGWK1WbauM0rJhwwY2adJE6//P5s2bHVmQdaxmstlsXLBgAatUqeJ4wy5fvry25JEJCQmOb9cA+Omnn2rRiYyMZNOmTeni4sI5c+awffv2PHnypOk6x44dY+XKlVmoUCEuX77c9PbtbNiwgUWKFGHJkiVNGeXIiLlz59LNzY01atTQcr1I9f/50UcfOYyarriltEatR48eOb6nU1NTuWTJEvbs2ZPh4eGO/efPn3cEs7///vs5mvr8/fff6enpeUNgvH3Uef/+/bznnnvo7u7OadOm3XKumKcCZp7uv5/s18/58+rWJXv2VL9HRqogckClPpCYVz3066em4hITVWJSV1dlZG/HiRMq3cHHH+dGD3OfhIQEnjt3TquGxWLhTz/9xPr162sLHk9KSuJXX33lmCbUkTXaZrNx1KhRdHFxcXww+Pr6apuOiomJcQQYG4bBrl27atEJCwtj3bp16ebmxnnz5jE1NZW/Z7aqIhscPHiQFSpUoLe3t6n5gW5m3bp1LFKkCEuUKKGtQC+pjJq7uzurVq3qCJQ2G5vNxtGjRxMA77vvvhtMT064eWFFYmIi+/btSwB8/PHHc/SZevHiRU6YMIE1atQgALq7u3Pfvn0k1ZeCNm3aEABfeeWVG6bYxTwVMPPUuzfZooXz5339tfpQtsfv9e9Px+iTxjqPBZpjx1ROrcmTlYGqWFEVBM6MESPUNJ8JhcULNJGRkVqKvqbl0qVLfPPNN1muXDltQepBQUGOJdr2DwEdnDx50jG9at/Wrl2rRSsqKsoRXNyvXz/6+/vfElxsBmfPnmW9evXo6urKGTNmkFQjOWavkjx06BArVapELy8v/mWfd9fAxo0bWaxYMRYtWpTr1q3TpjN//nx6eXmxQoUK6cZImYE9U7k9g3hO4yFtNhvXr1/Pnj17smnTpo4pzpSUFL722msEwFatWjlG7sQ8FTDzNHasKkTrLJGRyjx99ZX6e/fu6+bpvvskbYEuevUiK1RQeZ9mz1bXO7NFLfHxZPnyKm5KuDM4ceJEjlcrZcbOnTv56KOP0tXVVUtJjKSkJP7000+sUKGCwzzVq1dPW6HZq1ev3hCvMjAr89rZ4PLly2zdujUBcMyYMdy1axcnTZpkuk54eDibNGlCwzA4ceJEbfGKx48fZ40aNejm5saZGquLb9++nWXKlKG3t7e2HFGkCr738/NjsWLFuH79elPavHjxIkNDQ2/YN336dLq7u7NSpUrcu3evmKecbHdahnFS5QwCyOzUfXz+ebJmzetG6aGHrhsok+5Z4SaCgkjDULFlFgtZpw7ZqVPm582fr16X1av191G4s/j33385fvx4be0nJSXxxx9/dJioH3/8UYvO7NmzHbXl7FOFO3fu1KKVlJTEZ599lgBYtWpV+vr6apk+jo+P52OPPUYAfO2112ixWJiamsrLly+bqnPp0iW2atWKADh8+HBtKRPOnj3riCEcN26cNkMYFBTEatWq0c3NTdv9RqqYyNKlS7NQoUKcPXu2mKecbnfSyJN9xCg7MZAbNqhz//1X/b1mzXXz9OCDMvqki2efVUWALZbriU7377/9OfZiw7VqqeSmgpAW3aswSWU4fvjhBzZs2JDR2fm2lgX279/PHj160DAMAmDz5s21GYGYmJgbgu+ftedvMZnU1FQOGTKEAPjEE09w/fr1HDRokOk6SUlJjrih7t27a1mJSaoVbU899RQBsE+fPtriCKOiohwjkTfHJ5nJ2bNn2axZs7TT02KesrvdSeYpPl6NZFybvncKm019GNsDx202slWr6wbqzz/N7aug2LZNXd9//iFTUlTsU58+mZ934ICKmdIwwyAIWSYxMVFL6oK0HD16lC+88AJdXV05XUOqfZvNxu+++44lS5a8IaZr1apVpmvZ9ex5ury9vQlAS049e2Zve4C3PZ+e2bF+VquVH3zwAQGwRYsW2hYtpI1Patu2rdYUEPaRSDFPBcQ8kWrlXHa/yHz7rSpYa58Otid0BMiqVWWUQwc2m0pUaq8x+M036jW4Tf42B/36kWXK5G7qAkHIK4KDg/nRRx/xijM1qJwgISGBP/74I6tWrUoArFatmrY0E0ePHnXkTgLAOnXqMFnTG+z8+fPp6enJSpUqcceOHaxfv76W5/Xzzz/Tw8ODlStX5oEDB0xv386UKVPo5ubGqlWr8vDhw1o0YmJixDzldLvTzNMLL5BNmmTv3Ph4lSvqrbeu7+vQ4bqB+uYbU7oo3MSsWWrE8OTJ9F+DjDh1SqU4sAf6C4KQc1JTUzl//nw2atSIo0aN0qKxatUqtm/f/oaRrk8++USLFklu2bKFJUuWpJubmyOHkg42b97MkiVL0sfHh8uWLSNJLfFjGzZsYPHixenr6+vQMRMJGC+A5mnyZDVykd1ksyNHqozj9hFR+7SSl5f6UNcU3lCgSUhQRZnfeUf9bX8NsnKtX3pJrbDUXK5LEAocNpuNGzZs0BZfQ6qafn369KGbmxs9PT211ZIMCQlh7969HUbN1dVVW5qB4OBg1qtXj4Zh8Ouvv+Zrr72mxeCcPn3aofPll1+aGusn5qkAmqcdO9Qrmd2avhcukN7e5AcfXN/37LNqZAQgc6G+boFk2DBlTpOSyIgIZYCzEs905gzp7k5mUlJPEIR8zNmzZ/nuu++ya9euWgL+Q0JCOGzYMBYpUsRhoBo3bqwt1URcXJxjZaG7uzvLlStn+qpCu84TTzzhCFi352/KaV41MU8F0DwlJakP0++/z34bw4erkQ97pv+QEFXA1ttb3SWbNpnTV+E6hw+ra2v/gta1a9anX195RRmvmBh9/RMEQT+xsbHaYrpIlS7h+++/Z/Xq1QmAX3zxhRYdq9XKJUuW0MfHx2HWBgwYoE1rxIgRBMD777+f586dY/v27XM0YuiseXKBcMfj6Qk0bAjs3Jn9Nt59FzAM4Isv1N+VKgEjRgBJSYC3N/Dyy+p3wTzq1AFq1wb+/FP9/cILwJ49wIEDmZ/7wQdAQgLw7bc6eyg4A9UXL0FwCj8/PxQuXFhb+z4+Pnjttddw9OhR/P333wgMDMSJEydM10lJSUFUVBSqVq3q2Ddr1iysWbPGdC0XFxeMGzcOv/76K/bv348GDRpg7dq1GDdunOlaGZIVh1XQNmRx5GnPnj25MvL077//clMmQz+vv65Wx+WEZ545SA8Pm6MMSFISWbu2GpFyc7sen5MTUlNTOXnyZMZrDti5cOECZ8yYoT3/zYEDB7h06dJsnz9qFFmkiLrWKSlkyZLk22/fetyqVau4d+/eG/a9+aY61+xLqWtYPy02m01bQdO0WCwWBgYGateJi4vjhx9+qP1+Cw8P58mTJ7WtOCLV629f4q6TyMhIbbmI0hISEpIrebCCg4O1a9hsNp42oU5TZtc9Pj6eERER2WrbZrNx48aN7NatG11cXFipUqUMp9RCQ0NzlCcqbZFkAHRzc7vlfZJUWdgzuwdk2i4XzdOMGTNyxTyNGDEi0xUgixerVzMn/7/t2j3OYsUSmDZX3JYtKvapXDn1c8OG7LdPktHR0axfvz5PnDiRs4YyYevWrWzYsKH2N80pU6awb9++2T7/wAH1utkLyr/5JlmqlDJSaXnppZc4ceLEG/adOaPyPk2dmm35W/j444/5+eefm9dgOkRHR7N79+7s3r27Vp2kpCTWrVuXpUuX1pbIj1RlUvz9/WkYhtb6Yj/88AN9fX3ZvXt39urVS5tOv379WK1aNYaFhdFisWhZOZWcnMwGDRqwbdu2Wqeszpw5w2LFinHw4MHakm2S5Jo1a+jm5sbJkydr0yDJL774gj4+PgwICNCq89RTT7FKlSo5Lvtz5swZvvfeexw5cuQtjyUkJLBatWp8+OGHs52/6cCBA3zyySdvKJbdoEGDG1JAHDt2jN7e3nzppZduO60n5ilnpumOK89iJzpamZtZs3LWzpw56q5I+2V96FAVU1WihKrLpilPWYHEZlMlcvr3V3/v23ejmcqMJ54gGzQwLxt8cHAwX3rpJXMay4Dk5GS+9tpr9PDwYIzGoK0ZM2bQw8ODADh//nwtGufPn2fHjh0db9xdunTRokOqPEGFCxcmALq4uPD48eNadDZu3MhChQqxVq1a/P3337XFrUybNo0A2Lp1a8dItNlfdqxWK19//XVHcLGuUdX4+Hh26NCBADh27FhtX9rOnDnDWrVq0d3dnb/99psWDZL877//6O/vz2LFinHz5s05bi8xMTHdazJz5ky6ubmxZs2aPHnyZLbbP3PmDN9//30WL16cAG4YbLBYLHznnXcIgO3atcswO76YJ3NM1B0VMG6naVPyuedy1obVSt5/P1mv3vXRj4QEVYOtRAnS15d87DF1nGAOb7xxfcrVZiPvuYd87bWsnbtqlfovNjNZsU5Dk5Z58+Zx4cKFWjUOHDjAhg0bsm3btto0jh07xjZt2jgMVFBQkOkaly9fZtu2bW/IEdTf7rg1EBAQQE9PTxqGoa3wMKk+PA3D4MMPP8y4uDgtOZZsNpsjuLh79+7aElMmJSXxmWeeIQAOHTpU20hXZGQk77//fgK4ZTTaTI4cOcLKlSvTy8uLf/31lzadgIAA+vn5sUSJEtyyZUuO2kpMTOScOXPYokUL7t69+4bHpk6dSldXV9aqVStdoybmqQCbp5EjVe4giyVn7ezZo6aD0tYa3bNHjT7VqqXuGs0zOwWKBQvUNbWHmQwapEajsoLVSlavnnPTnFfo+iBLS1JSEt9///0cfbPNDJvNxpkzZ9Lf31/byJ3FYuG0adMc367d3Ny0xNmkpKRw7NixLFWqlMOo9ejRw3QdO3PmzKFhGGzSpAkBcO3atVp0PvvsMwJg586dmZCQwLCwMNNjriwWCwcOHOgY6dKVL+rKlSvs0qULAfC9997TNtJ1/vx5NmnShIZhcJLGulAHDx5kpUqV6OXlxT9NqgsWGRl5y741a9awSJEiLF68+C3lccQ8FWDztHUrTUsrMHSoSlWQNjTp229V+3XqqCnCrE4tCbcnLExdV/sgzKJFdCp+beJEZWyzGd9ZYMiNQPiIiAj2799fW60vUhVMffXVV+ni4qKlwCyppkF69ep1w0jXvn37tGilpqY6DAcANmnSRNuozbfffksAbNOmDceMGcMxY8aYrpF2pOvxxx/XVu4lJSWF/fr1IwD27dtXm1GLi4tjp06dCIDDhg3T9tqEh4c7DPT48eO1GcLDhw+zSpUq9PDw4Lx58xz7xTwVYPNksaiptREjct5WfDxZpQr58MPXp+hsNrJ7dzV1V7s26edHHjmScy2BrFz5+iq7mBhVgiWrgeDR0croaqz0IDhJboyo7du3j+3btze96GtaduzYwYcffthhBHSwYsUKVqlS5Qaj9uuvv2rRIsnp06fTMAwCqkivruv31VdfEQBbtWrFmJgYTp061XQDb7PZ+P777xMAO3XqpG0Vc0pKCgcMGOAYhdS1ACM+Pp6PP/44AXDw4MHavvBcuHCBDz74IAHwo48+os1mE/NkxnanmidS1bmrVcucAOJ//1V3yLffXt8XE6OmlMqXV8HjVapcn24Sss9zz5EtW17/u2VLZVSzSv/+ZLVq5gWOC3cGNpuNUVFR2jUWLVrEGjVqcOvWrVo0kpOT+cMPP7B06dIEwMqVK2v5gE5ISOAHH3xAPz8/h1Hr06eP6Tp2Zs2aRRcXFzZu3JgVKlTgDz/8oEXnu+++o2EYbN68uWO6yuwRL5vNxtGjRzuC/DMKvM4pFovFEeTfuXPnHGcOz4jExET27NmTANizZ09euHDh7jJPAFoBWAYg/NoT65qFc1oD2A0gCcBpAIOd1LxjzdPy5epVNavA9RtvkJ6e5P791/cdParyC9Wpo5bVN20qddZyykcfKUNqZ9gw5/J2/fOPet01xCoLAkllcHbt2qVVIz4+np9++in9/Pz49ddfa9EICgpijx49bhjp2r59uxYtkvz5558dOv7+/unG4pjB/Pnz6e7uzpo1azI4OJjPPvusFgM6c+ZMurq6sk6dOgwJCTG9fTvffvstDcNgo0aNGBYWpkXDZrNx1KhRBMD77rvvrjNPnQF8CqBbVswTgCoArgL4FkBtAC8BSAHQ3QnNO9Y8JSeTRYuqD2MzSExUS+Fr1ybTpmNZvVoFlbdsqabxOnTIfmFigZw2TV1P+yj1jBkqriyrXx4TElQpHU2VFwQhV7l06RI///xzbfFCpFqJ2b17dwJgixYttMTYnDx5kjVr1rzBqA0cONB0HTtr166lr6+vYwTvs88+06KzcuVKFi5cmGXLlnUkpdSRD2zx4sUsVKgQy5cvry3mjlQrf93d3e8u83RDZ7Nmnr4EcOSmfVMAbHVC5441TyTZr5+aWjPrvSAoSMXU3JzuZdo0dQe1b096eZGPP67Mm+A8K1aoa2n/Ird5s/o77YhfZnTtSrZooad/gnC3snfvXj755JPacoElJibyxx9/ZKVKlQiAhmHcsozeLJKTk/nhhx86jFqhQoW0ZT7fvXs3y5QpQ19fX65Zs4YPPPCAlsz027dvZ6lSpejj48NVq1aZ3r6dVatWFXjzFAjgu5v2PQUgFYB7Bud4XjNM9q38nWye1q5Vr6yZ4QmzZ6s2bw5iHjNG7e/enfTwIJ9++tbs2ELmHDzIG1ZKRkWpv515P581S41WaVzoJQh3LeHh4VrbT05O5vTp01m1alVtI10HDhzgE088ccNI15NPPmm6jp3g4GDee++9dHNzIwA+pylnyunTp1m7dm26urpy6rUPoSMmr1a6qwPGs2iejgP44KZ9La6dWzaDc0anvdns251qnqxWsmJFlS/ITF55RS2JT5vHzGZT+w1DGSd3dzUCJVN4zhEcrP4b16y5vq9UKXL06Ky3ceGCeh1mzza7d4IgmEVqairnzp2rLfieVHmTevXqRVdXVwLgP//8o0Xn3LlzHDp06A2fm6tXr9aiFR0d7UgUO3z4cHbr1i1HdUVvRsyTMk8jbtrX8tq5ZTI4564aeSJVwswiRbIeM5MVkpPJhx4iy5S5Pr1EKrP20ksqZqdvXzWF98gjEkTuDMeOqf/GjRuv76tVy/lizC1aOLdKTxCEu5dTp05x8ODBrF27tpb4sejoaI4bN84RYwWA1apV0xarlpyczL59+zq0KlSoYNrnr7PmyQV3HxEAyty0rxQAC4Co9E4gmUwyzr4BiNfcR+307w/ExgJ//GFemx4ewMKFgJcX8Nhjqn0AcHEBpk4F+vYFfvkF6NkT2LEDaNMGiIgwT/9uJjlZ/fT0vL7PwwNISXGunQcfBPbuNa9fgiDcuVStWhU//fQT1q1bh/DwcNPb9/f3x4gRI3DmzBlMmzYNNWrUwKlTpzBu3DjTtQDg6tWrqFKlCtzc3AAAYWFh+PDDD7VoZcbdaJ62Auhw075HAewimZoH/ckTqlUDOnYEJk82t93SpYEVK4CwMODpp69/uLu4ADNnAgMHAnPmAN26AefPAw88AAQFmduHuxH7dfTwuL7P3R1IdfKOrVsXOH0auHrVvL4JgnBnU7ZsWVSrVk1b+15eXnj55Zdx5MgRLFq0CIGBgThy5IjpOkWLFsWDDz6Itm3bOvb98MMP2LZtm+lamZHvzZNhGD6GYTQyDKPRtV1Vrv1d6drjnxuG8XOaU6YAqGwYxkTDMGobhjEAwIsAvjK7b5cvXza7yXQJCQlBWFiY0+e9+iqwc6fassKBAwcQFxeX6XG1awNLlgCBgWq0yWpV+11cgB9/BEaMAObOBdq2BXx81GjIP/+oY0hi27Zt9ulSbaSkpGDHjh1aNQAgMjISx44dy3E79pe3VKnr+9KOPJ04cQKXLl3KtJ169dRPDe9bdywpzg7fZZPQ0FDtGiSxZMkS7TpWqxWnT5/W+n9qtVq1vw8AgMVi0a4BAKnOftPJJrlxP5PM1vNxdXXFU089hQ0bNqB06dKZHp+cnOzUPWAYBjp27Ig1a9Zg//796NevH9zc3PDyyy/ftr/J9qF9M8nK3F5ebgDaIJ1gbgBzrj0+B8CGm85pDWAPgGQAwdCUJPPrr7/OlZinXr16ZauGlcVC3nMP2bt31o6/9957OXPmzCy3v2iRKiPy4ovXS7jY+fprFbzcqRP56KPq97FjyYiIi/T09NSas4NUeUj8/f211zP7+OOP2b59+xy3M3q0Kq2TdgFOw4bk4MHq986dO/P999/PtJ34eBU7ld2g8Z9//tn0VSw3c+XKFY4ePVrrsmNSBeYOGDCAEyZM0Kpz8uRJdu7cmd01B5stWbKEzZo1Y4kSJbSVxyDVPf3kk0+yR48eXJN2BYOJJCUlsWvXrhw5ciRJdU/o4Pz586xfv762NAR2du7cySpVqmhPIjpv3jzWqVNHS06ltLz55puOAsq6SExMZJs2bfjOO+/kaOXhuXPnOGLECP7000/pPn727FlWrVqVc+fOvW07d3XAeG5tWTVP0dHRuWKeUlNTs/1m+e23pJsbeeZM5sdevXrV6aKPP/+s7qLXX781r9SiRSo/VPPmygQA5GOPkadP504kua435LTYbDZTKrM/+aRKNHq9XbJwYdL+uZ+QkJDl16ZKFZWhPDv8999/t1QbNxubzcb+/ftz7NixWnXWrFlDHx8ftmvXTptGYmIin332WQKgl5eXtlISgYGBbN26tePL44IFC7TokOSXX37p0OnSpYsWDavV6ig8/P333/Ptt9/msWPHTNeJi4tj8+bN6ebmxmXLlpnevp2TJ0+yfPny9Pf35549e7TpBAQEsFChQqxRo4bWmobfffcdca0Mi6572v7lBgAHDBiQ4y+6GRVGjo6OZsuWLQmogsMZIeYpF81Tfl5tZ+fKFbJYMVVmRRdTp6o7afDgW0egduwgy5ZVK/RGjFCjK2XLkuvX6+vPnYbVqkqzvPvu9X3nz6trumSJ8+116UL+73/Z74/u0Tq7xh9//KFdZ/fu3axcubIpBjcjYmNj+fTTTxMAf/nlFy0aycnJHD58uKOg7SOPPKJFZ9u2bbcU6T169KgWreTkZD766KM0DIPe3t588cUXtehERUWxfv369PT05Pr167l69WqePHnSdJ3jx4+zbNmyLFasmNaR9X///Zfe3t6sWrUqz2TlW3E2mTlzJg3D4P3336+tjp3NZuOwYcMIgN26ddM2opqQkODIf/XOO++k+0VUzJOYp1sYNUqV7tBUUokkOXOmmpp74QU1XZiW8+fJVq3UCNh775Ft26pjhw0zN5XCncr69eo/MTDw+r7AQLXv0CHn23v22RtHsQo6wcHBWj4s02Kz2fj111/zqaee0qqzceNGR6ZqXc9p165dbNiwocM8DRkyRIvOoUOHOGjQIIeOu7u7ttGUiIgI1qhRg4ULF2bz5s35wgsvaNE5evQoS5cuzeLFi/PAgQO02Ww8ceKE6TqBgYH08fFh5cqVefr0adPbt/P777/Tzc2NDRs25AVN2XdtNhs///xzx5cCnSNdL774IgGwd+/et4xUiXkS83QLkZFqCigLITM54tdfVQxUt263mqKUFPKtt9Qd16WLyl/k4aFyGaVNulkQef75W8vpfPmlmvLMTrLRnj1Vni0h99m+fTstN397MJmYmBj26dOHI0aM0KaRkpLCzz77jB4eHvT29mZUVJTpGsnJyRw3bhwLFSrkMFBvvfWW6Tp2tmzZ4qhf5urqqsXUkKrwcKlSpViyZEn+8ssvbNu2rZZs4ps3b6afnx8rVKjgeC46dP7++296eHiwVq1aWqcKp0yZQsMw2Lx5c166dEmLhs1m48iRIwmAnTp1uiG0Q8xTzkzTqwCCABy9m8wTSX7wgRp90lB66Ab+/lt96LdsqUqM3MyyZWrqrnRpcuJE8v771SjUq6+SmkaG8zWRkaSnpzJLaWnSRGVszw7PPadG94S7m8C0Q5WaOHLkCFu2bMkvb75BTeTMmTPs2rUrAdDb25uRGobIIyIi2KFDhxumI/v27Wu6jp1Dhw6xRIkSDi1dgffbt29n0aJFWa5cOR49epRffvmllpGbgIAAent785577uGpU6dMb9/O/Pnz6e7uzjp16jAsLEybzqRJkxxGzX6/iXkyx0TdVSNPpDImRYqQQ4fq19q6VRmke+8l0/s/O3+e7NhR3X39+qlpRV9fsmRJVZ/NyZj1O5r+/cmiRcmLF6/vO3FCXZvshgT16kW2bm1K9wSBVquVf//9t5ZRjbQsX76cVatW5ahRo7S0b7PZuHTpUlavXp0A6OLioiVI3Waz8csvv2S5cuUc5qlp06ZOL8bJKrt376a/vz/LlCnDsmXL8qOPPtKis2nTJvr5+bF8+fKOFbkhaUtNmMTKlStZqFAhVq5cmcePHze9fTu///473d3dWatWLZ45c0bMkxnb3WieSPKTT9RUmcYYQwcnTpDVq6tg9YCAWx+32chp00g/PxVM/sMPavoKIJs2VcWN73b+/Vc935uLLY8apaZZsxvj3Ls3+fDDOe6eIOQ6CQkJ/O6775icnKxNIzk5mV999RX9/PzYO6t5XJwkJiaGI0aMoJeXl8NA6VogYbPZOG/ePIeOt7e3tlQGu3btYvHixVmyZEkGBASwcePGWqapN23axKJFi7JUqVLcu3ev6e3bCQgIoI+PD8uXL8+tW7eKecrpdreap/h4tdKtR4/c0YuOViNMLi5qii69L65hYeQTT6g7sVMncsYM8oEH1N8dO5K7d+dOX3ObS5eUuWzZ8saRtrAwZZxyEvrRunX2p/wEoaBw4cIFDhkyRFvsE6lyDPXv35+GYbBmzZpaVrIeP36cDz300A1TkrpWLpJqSrJMmTKOlZ/Tpk3TorN//36WLl2aRYoU4X///cewsDAtaVR27drFkiVLskiRImKecrrdreaJJOfMUa+65lQ+DiwWtcIOIJ95hoyJufUYm41cvFjlJ3JzU8Hks2apIGp7gPnmzbnT39wgLo687z41TXnz+3bv3mr/5cvZa9tmU9Ozn32W014KQsEgN1Jz7N+/n506deL06dO1tG+z2bhixQo2atTIMSV58OBBLVr//PMPmzdv7jBqJUuWZEx6b+wmcPLkSVapUoWFChVir1692KhRIy0jXcePH2flypXFPOV0u5vNk9WqPribNs3d2KKFC9WHepUq5Pbt6R+TmEh++qkKbC9WjBw3jpw+naxTR92pbdqovEeaFzNpJT5eBXP7+ZE359Jbt049z5x8kTt1SrWxYkXO+ikIgvnozt5vtVq5YMEC1qxZk507d9aicenSJX7wwQcsXLiww0C9mzZJncmcO3eONWrUcGhllEk8pxw7dkzMU063u9k8kWoUByA13YMZcvq0Wl3n5kZ+/jmZ0Re+c+fIIUPUceXKkd9/r9Ig3H+/6vc995Djx6uprzuJ/ftVagYfnxtzOpEqn1PRoirFQE7M4V9/qWuke1WlIAj5l9TUVM6YMUOrWbt48SLfe+89ent7093dXcv0p9Vq5fvvv3/DlGSxYsW0pDKQgHExT1ni5ZfV6IfmEkm3kJJCDh+u4qCaNyeDgjI+9uRJtXLMxYUsVUqNRAUEkH37qsB3d3fyqafUlJ/G+NIck5pKTp5MenmpenU3L/A5d46sWJFs0CD9aU1nePttFYAvCIKQG0RERPDtt9/m888/r6V9m83GVatWsUWLFg4D9corr5iuI+ZJzFOWiI5WuZY01zLNkC1bVEyTPcdRBmWJSKq4oIEDlWHy9VXpFv77T9Xta9xY3cXFi5MDBpBLl2YvsaQObDY1EnTvvXSUr7k5eei+fWTVqso85TStydWrarpTY55BQRCEdAkPD9dasNpms3HdunVs3bo1XVxcTC+BI+ZJzFOWWbBA3QGLFuWNfkKCCg53cSHr1bt1KutmwsNVlvQSJVS/27Uj//yT3LVLjWbZA8wLF1YjUpMnk0eOpL/KTyeRkeSkSWSjRqo/jz6q+ngzc+eq0ajGjdWUZk6ZOlUlHNWYw04QBCHP2bhxI8eOHWtq7jFnzZNBZRaENBiG4QcgNjY2Fn5+fhkeFxcXhyJFiiCz43JKUlIS3N3d4erqamq7JPDUU8DmzcDBg0CRIonw9PSEi4uLqTo3c+XKFfj4+Dj+3rMHeOUVYPt2oG9fYPx4oHTpjM9PTgYWLgR+/BHYsgUoWhR49lmgd2+geHHg77+B5cuB7dsJi8VAuXLAww8D990HNG0KNGkCmPVy2Ww2JCYm4cwZb2zcCKxZA6xYoa7tY48Bb7wBtGt34zmnTgEjRgB//gn07w9MngwUKnR7nYSEBHh5eWX42pBA/fpAjRrA4sXZfz43vzZC/sNiscDNzU2rBklERESgbNmyWnUA4NixY6hVq5Z2HeHugyQMwzClLfvnOYAiJOOyJC6bY8TJqfIsX375Za6MPPXr109b3o4LF1Q8UZcuZPXqNThr1iwtOtf1LtDDw+OWZbRWq1plVqyYCqgeO5ZMU3YoQw4fVqVnKldWozwVK6pSL+PG7WbhwhX5zz8WDhum8il5e6tj7EHnHTqowPSJE9Uo3Pr15MGDKtj68mW1Mi4xkUxKUqNJJ0+qEaSVK1UQ++uvk9WrH6e7+2UCKsC9RQvyu+9uzBhu5+JF8o03VKxW+fLkvHlZHxV77LHHOHz48Awf//NP9bz+/Tdr7WWEv78/ly5dmrNGMiElJYV//PGH1kSIJHnlyhVOnTpVS122tFy4cIHjxo3joexUcXaC3bt38+233+Zff/2lVefPP//kiy++yA8//FCbhsVi4SeffMLPP/+cDz30kDadK1eu8MUXX+Tx48eZmpqq7V4IDQ1lz549tS3Zt7NlyxYOGDBAe/3EWbNm8ZNPPtGqYbVaOXToUC5ZskSrTnx8PLt3755p6gaZtjPHRGVp2u7s2bO5Yp5CQkK0FmT85x91J3z0UZj2f37y9sVTo6JU0LOHhwp8njo141V5abFaVRzU669fN1Le3hY+9ZSaQjtwQMVVHTqkcl0NH64KGNevr2rx2U1VVjcPDxXL1LFjEgcPvsSAgPTNnsWi0gY8/bQyTb6+KgeTs9nDT5w4wYiIiHQfO3NGrdTr2jXnU5R79+5lws2BWRr43//+p73cx8GDB+np6cmTJ09q07DZbHzjjTcIgPPnz9emExwc7MjhM1RjjaWFCxeyWrVqBMB69epp04mOjmbZsmUdAcC66qWdPHmSRYsWZZ06dTht2jR+8cUXWnRWrVpFFxcXPvroo0xNTWVqaqqWciz2L+yvvPKKtv8fm83GHj16EAAnTZqkRYMk4+Li2KhRI3p4eHDlypXadI4dO8aSJUuyZMmStzVQYp5y0Tzd6TFPaRk0SJmI/fvzuieK4GC10g5QAdXTp2d9RZ3NpszSJ5+oMiXu7qqdYsVUNvPRo1VgeViYOtZmU6vcTpxQgexLl6qRnN9/J3/5RcUmLVqk8jDt3q3Myu2++IWEKIPWr5/K6A4ok/bNN+anV0hJIR98kKxU6c4qrHzajCCvLPD999/zwIEDWjWSkpLYrl07fvzxx1p1Fi1aRA8PDzZq1EibxvHjx3nvvfdqNTXx8fHs2LHjDcvPdY5yLF++nIZh0DAMVq1aVVuNue+//54AOGTIEP7xxx/8559/TNew2Wx89dVXCYCfacyEm5yczE6dOhEAf/75Z206Fy9eZJ06dejl5cV169Zp0zl06JDDQGU0QizmScxTtrh6VS2Vr1Ej58vlzWTvXrUiEFAGYfJk51fTXb2qjM+oUSqPUrFidIwgFS+u8kc99xz54YfkzJnKPG3eTB49qqbaYmJUVvCrV1WQ+8WLKt3Atm1qVGnyZDUd17Gj6qO97YYN1cq3Xbv0BK3bbCrg3tVVmT7hVmw2G+Pj47XrxMXFcfz48dp11q5dSz8/P0ZrdMoxMTHs0qULAXDixIlaNCwWC8eMGUMXFxcCYM2aNbWMpJw9e5Zt2rRx6ADg6tWrTdex89prrxEAixcvzvbt22vRsFgs7N69OwFw9uzZDAoK4qZNm0zXuXLlClu2bElXV1f+/fffprdv5/z586xRowa9vb21lF+xc/DgQZYsWZKlSpXi4cOHb3lczJOYp2xz4oTK/dStW+6vUMuMQ4eUwXFxUavtPvgg+0v7bTY1OrRkiYqteuEFNUJVrtx14+PM5uampvCefFKVolm4UMVI6cRiUbFdgIrZEvIe3XEodrZv384tmt2yxWLhe++9x9atW2vVWb9+PcuUKUMA3LFjhxaNo0eP8r777nOYp27dumnRCQkJ4ciRI28warpGPRMTE/nwww/T1dWVrVq14uOPP65F5/Lly2zYsCE9PT25fv162mw2Bt0uOV82OXv2LKtUqUJfX19uz6gEhQkcPHiQJUqUSNdAiXkS85QjFi1Sd8WECXndk/Q5cUKN8vj6KtPSs6dKcWCW2UtKUikRDh4kN2xQ1+OPP8j588nfflPTeIsXq8f27ydDQ7MWk2UmV68qo+biomLChIKH7ngxO7/99pv2kbuIiAi2b9+eb7zxhjaNlJQUjh49mq6urnR1deU5DdmBrVYrf/zxR/r6+jrMk84Cvbt27aK3t7dDS1ctu4iICFavXp0+Pj788ccf2apVKy06wcHBrFChAosWLcq9e/eSVK+b2Rw4cCBdAyXmScxTjhk+XOULWrYsr3uSMbGxKklmtWrqLq5RQwVia4yrzxcEBanM7N7eKtBfEO4GLBYLp02bpi0eyc6OHTtYq1YtrTFWoaGhfOyxxwiAnp6evJje0tscEhUVxWeeeeaGuLE+ffqYrmMnODiY5cuXd2ht2LBBi87x48dZpkwZFi9enIcOHeLgwYO1rMrdv38/ixcvztKlSztG0sQ8iXnKMVarWrlVuLDKgJ2fsVpVioE+fVTAu4uLSko5Y4b+qbPcJD5eTQm6uSnDqGmGQxDueq5evcqvv/5aq1Gz2Wz89ddfWbx4ca1GbeXKlY7Vka6urjxz5ozpGhaLhe+++y59fHwc5qldu3am69g5fPgwS5QowdKlS9PV1VVbIeCbDdTRo0fFPOV0K+jmiVTL7ps0IStUUNNYdwKxsWpVXuvWykS5uqoA8Z9+ynnpk7wiOZn8+WeVF8rLS8Vo5ZfyM4Ig3J6LFy/ynXfe0ZrTLCEhgaNGjaKHhwdff/11bRqffPIJCxUq5DBQuoK7w8LCOGTIEIdOuXLltKVP2bdvn8NADRw4UMxTTjcxT4qwMBVE3ahR/lqBlxUiIsgpU8j27ZWJAsi6ddXqt1Wrbq0xl984c4YcMUIlMAVUjFMure4XBMFkdE9Hkiqf0ZNPPslIjUPu9mSgANihQwctGkeOHOHjjz9+w5SkrlWfpDJQxYoVS6sn5VmcxTCMV6GyjLsAqJVfyrPkJQcPAq1aAfXqAatXA97eed0j54mKAtauVaVTVq8Gzp0DPDyAZs2ABx8EWrRQP3OhEsVtOXVK9XHZMmDVKsDXV5WrGTwYqFs3b/smCEL+hySuXr2qvcRSYGAg3njjDfz000948MEHtWisX78e77zzDvbt24eSJUvi9OnTpj+vpKQkDBw4EL/88gvSeKEizEJ5FjFP6ZDfatvlNVu3Au3bA61bA0uWKONxp0ICR44oM7V1q6qNFxqqHqtYUdWHq1dPbXXrAvfeq8cwJiYCR48Chw+r2oJr1gCnTwNubsrM9e4NPPccIGXmBEHIj1gsFhw5cgT169fXpmG1WvHzzz9j5MiReP311zFixAjTNRITEzF58mR89tlniImJAcQ8ZR8xT7cSEAD8739A167Ar7+qD/m7hXPnlJHauVOZmUOHgJCQ64+XKAFUqqTMVaVKQLlyQJEiqriwn5/63dtbGTOb7fqWnAxcugRERl7fwsKUxunT6nhAFfN99FGgY0egTRs14iQIgiAorl69ipkzZ2LQoEHw9PTUohESEoJ77rkHEPOUfcQ8pc/ixcCzzwJPPaUMlLt7XvdIH/HxQFAQcOwYcPasGp2y/zx/HoiNBazWrLXl7g6ULKm2MmWAOnXUqFbduur3AnDrCIIg5Gvsn+cQ85R9xDxlzJIlykA99hiwYMGdPYWXE0g19RYXp4xUQgLg4nJ9c3VVpqlECWWODCOveywIgiBkhLPm6S6afBFyg65d1QhU9+5At27AwoWAl1de9yr3MQw1VeftrUaTBEHIv6SkpMDd3R2GfIsRTMIlrztwJ7Nw4cJc0XnvvfcwatQo7TodOnTA4sWLMz3usceApUuBdeuALl0AFWOXNS5fvoy6devi1KlT2e9oFti2bRsaNWoE3SOrkydPRr9+/bRqAMDAgQPxzTffaNe5//77sXHjRq0aoaGhuPfee3Hx4kWtOrGxsQgLC9OqAah7Ojg4WLvO+fPnsXfvXu06hw8fxsqVK7VqkMSGDRswefJkJCcna9OxWq34448/MHbsWJw4cUKbzpUrVzBr1iyEhIRg+fLl2nTCwsKwYMECbe3b2bFjB9avX69d57ffftP+WWC1WjFx4kRcuXLF3Iazks+goG3IYp6nvXv35kqep8DAQC1Vs29mwYIFPO1EMqHAQNLfn6xXL+tlUVJSUvjTTz8xLi4um73MGhcuXODMmTO1apCqTtKKFSu066xcudJR70knM2bMYEREhFaN5ORkTpo0SXsh3Q0bNvDVV1/VqkGS7733Hjt37qxV48qVK6xXrx5r1aqlVWf16tWOzM66chNZLBZ+8803dHV1JYB0K9ybQWhoKCdOnOjI3zNnzhwtOiT59ddfEwBr1qzJAQMGaNPp3bs33dzcuHv3bv72229aXiOr1cp69eqxZMmSWmoA2rl48SJ9fX3ZoEEDXrlyRZvOpk2bCIBdu3a97fWS8iy5aJ7u9iSZWSEoiKxUSWXA1lRAXBCyRXh4uJZyFTdz5MgRfvzxx9p1Zs2axaZNm2rVsFgsbNeuHQHw8uXL2nRWrFhBNzc3AuDChQu1aERERLB+/foO8zRw4EAtOlu3bnUkjsS1jNi6CjdfuHCBJUuWZK1atVi0aFFu27ZNi86+ffvo6enJ1q1bMzU1lWvXrtWis3jxYgLgc889p7XY9bhx4wiAI0aMyPAYMU9innKdc+dUFnI/PzIgIK97Iwi5T1gu1P+xWq18//33tetERESwbNmyPHXqlFadefPmEQA//fRTbRpRUVFs1qwZAbBevXpaNGw2Gz/66KMbMmIfPHhQi87ff//Njh07OnSGDRtmuo6dqVOnEgB79uzJUqVKMSUlRYvOyJEjb8gibi/UayY2m429e/cmAM6bNy/dY8Q85cw0vQogCMBRMU/OERdHduqkasp9/TWp8UuEIBRYdNX4upnAwMBcmSaeOHEie/XqpVUjJiaGLVu2pGEYWkfTZs2a5RhNmzBhghaNgwcPOgoBA2CVKlW0jNhYLBYGBQWxbt26Dq1ly5aZrmPX6tSpE11dXfnll1+yTZs2WnQSExP5wAMP0MPDg1u2bCFJRkdHOx4X82SOiZKRp2xgsZDDh6u7qlcv8urVvO6RIAjZJTfqsZHkn3/+qV0jPj6e7dq146pVq7TqBAQE0M/Pj4888og2jejoaHbu3Nlhanbv3m26hsVi4ejRo2kYhkPn2WefNV3HTlRUFMuXL+/QOnbsmBadiIgIVqxYkaVKleKGDRtuMO5insQ85Tnz55Pe3mTjxqrArSAIQl6TkJDAzZs3a9c5ePAga9Sowfj4eG0aFouFH374YaZxPDll/fr1LFu2LAHQ09NTy8jd1atX+b///e+GaU+d05F79+6lt7c33dzc6Obm5giKd9Y8SaoCwXR69FA14y5fBpo0Af7+O697JAhCQadQoUJo0aKFdp169eph48aNWlNxuLq64pNPPsGiRYuwZs0a+5d+02nbti327duHTp06ITk5WUt6Hm9vbyxevBhjx46Fq6srAGDOnDlaUlgkJydj9uzZ8PLygsVigcViwdSpU7PVlmQYTwfJMG4O0dHAiy+qrOSvvgpMmAAUKpTXvRIEQbh7OHLkCMqUKQN/f39tGjabDV999RVWr16NdevWadPZuXMnevfujePHj2P+/Pno0aOH6RphYWEYNGgQVqxYAQAoVaoUQkNDkZycLOVZcoqYJ/MggSlTgLfeAmrWBObPV/XcBEEQhDuLbdu2oX79+ihcuLA2jYSEBLz77rs4evSoNqNGEvPmzcPQoUMRExODefPm4Yknnrj7zJNhGK8AeBdAWQCHAbxJ8r8Mjm0D4N90HqpN8mgW9cQ8mczBg0DPnkBwsBqBGjJE1YATBEEQhJtZvXo17r//fhQtWlSbRnh4OIYMGYKIiAgEBAQ4ZZ7y/ceXYRg9AHwL4DMAjQH8B2ClYRiVMjm1FpTZsm/6cvMLmVK/PrBzJ/DCC8BrrwHt2gEnT+Z1rwRBEIT8SMeOHbUaJwAoV64clixZgqFDhzpdJibfmycAbwOYSXIGySMk3wRwFsCQTM67SDIizWbV3lPhtnh7Az/+qGrihYYCDRoA334LWOWVEQRBEPIAwzDw/PPPo1q1ak6dl6/Nk2EYHgCaAlhz00NrAGS2bGKvYRjnDcNYZxhG20x0PA3D8LNvAHyz32shM9q1Aw4cAF56ScVCtWoFHDuW170SBEEQhKyRr80TgBIAXAFcuGn/BQBlMjjnPICBALoD6AbgGIB1hmG0uo3OCACxaTb9pdgLOD4+wKRJQGAgcPEiMGtWXvdIEARBELKGW153IIvcHNVupLNPHUgegzJMdrYahlERwDAAgRm0/zmAiWn+9oUYqFzh4YeB/fsBw8jrngiCIAhC1sjvI0+XAFhx6yhTKdw6GnU7tgGokdGDJJNJxtk3APFZaXTz5s1OdCH7TJkyBXPnztWu8+6772p/TlevXkWfPn1w/vx5xz5vb/PzPx09ehQDBgwwt9F0WLJkCcaPH69dZ8KECfjrr7+06wwaNAgHDx7UqhEZGYk+ffogNjZWq050dLSWRHs3ExkZqS1JYVpiYmK0a6SkpMBisWjXIQmLxZIr1y0lJUX7fUASV65cQUREhFYdi8WC6Oho7Ny5U6tOXFwcIiIi8PPPP2vVOXPmDJKSkmCz2bTq6HhPy9fmiWQKgN0AOtz0UAcAW5xoqjHUdJ6puOTSWvtChQrByIWhGXd3d7i7u2vX8fb21n7tXFxc4O3trf3N2cvLK1deGy8vL7i56R0oJglvb29Hll9dGIYBLy8vrTokMXv2bBw9mqXsJDmiX79+2nVIomrVqtp1du3ahTJlymDbtm1adb788kuULl0aS5cu1aaRmJiIrl27olKlSpg9e7Y2nf/++w9PPPEEatasiR9//FGLhs1mw/Lly/HQQw+hbt262nRiYmIQGhqKypUro3HjxpgxY4YWHQA4dOgQatSogZkzZ+LNN9/U9l49f/58NGjQAOvXrwcAWM1aoZSVGi55uQHoASAFwAAAtQF8A+AKgMrXHv8cwM9pjn8TQFeokaa61x4ngG5OaEptO0EQMiUpKYmnTp3SrhMTE8PRo0dr1zlz5gzr16+vvSjwsmXL6OLiwsjISK06Q4YMIQAGBARo07h8+TJLlixJABw/frw2na+++spR+61nz55aNM6ePcvSpUs7dKpVq6ZFJykpieHh4axTpw69vLwIgBcuXNCideXKFZYpU4ZNmzbl6tWruXDhwnSPu+tq25FcAGWIRgHYB6AVgC4kQ64dUhZA2pxPHgC+AnAAKifUQwAeI7kol7osCEIBwdPTE1WrVtWuU6hQIYwaNUq7TtmyZfHpp59qHxlu27Yt2rdvjxIlSmjVefPNNwEAdTSWNShatCg+//xzANCaLPmtt97CI488AkCNqumgQoUKWLx4MTw8PAAA586d0zYi1K9fPwQFBSEpKQmAKjOjg8KFC2PMmDHYvXs3unbtiu3bt5vSbr43TwBA8keS95D0JNmUZGCax14g2SbN3+NJVidZiGQxkg+TXJEnHRcEQTABDw+PXJke9vDwwOOPP65dp3DhwpgwYYJ2nZo1a6JPnz4oW7asVp3+/fujWbNmWs2Ti4sL5s6dC39/f4fh0MGDDz6IKVOmAACSkpJw+fJl0zU8PT2xaNEiNG/e3LEvKCjIdB0A+PXXXzFkiEoLmZiYWLDMkyAIgpA75IZJA4AGDRrkis6ECRO0PycXFxdMmjRJe5mu8uXLY/r06dpGnuz0798fb731FgBVwkQHPj4+WLFiBWrXrg1An3nq1asXZsyY4bgHdu3aZcqiiDslVYEgCIIgOE3p0qVzRefBBx/UOiJkp3v37rh06ZJ2nfHjx+Pw4cM4d+4c6tWrp0WjePHiWLNmDVq2bKlt2g5QZtDNzQ0vvPACEhISEBQUlGPzLiNPgiAIgmACXl5euaIzcOBA7Rpubm6YP38+ChcurFWnQoUKCAgI0G4I+/Tpg3nz5sHFxQU7duzIcXtingRBEAThDiK3plb9/f3x0EMPadepWbMmZs2apX3k7vnnn8dvv/2G3bt357gtmbZLg2EYrwJ4FWIqBUEQBCHXaNKkSa7o9OjRw5TVl2IS0kByMsk6AJpnerAgCIIgCHcc9evXz3EbYp4EQRAEQRCcQMyTIAiCIAiCE4h5EgRBEARBcAIxT4IgCIIgCE4g5kkQBEEQBMEJxDzlgBMnTuSKzrp16xAYGJj5gTlk7ty5OHXqlFaNlJQUfPPNN4iLi9OqExERge+//16rRkJCAtauXau9VEJERIQpSd0yIzo6GseOHdOuExMTo63kQ1rCw8ORkJCgXSckJCTzg0wgLCxMu0ZqaiouXLigXef8+fPaCs6mJTeeC8lcyfgdGxurXQPQV3Q4LVarVbuGbsQ85QCd6eTT8u+//2LDhg3adRYuXIhDhw5p1UhISMBvv/2m/c0mJCQEv/32m9Y3aG9vb1gsFu0fAt7e3jh8+LBWDZI4fPgwdu3apVUnKSkJ8+bNw4EDB7TqhIaG4tNPP0VwcLBWnYCAAAwaNAhXr17VpmGxWDB69Gi89NJLWu81q9WKfv364e2339amAajn0717d3z88cdada5cuYLGjRtj9uzZWnX27t2LmjVrIiAgQKvO1KlTUb9+fdMK22ZE//790aJFC2zdulWbRnBwMDp06ICuXbtqvW7Tpk1D79690b9/fyxYsMDcxknKdtMGwA8AY2NjeTtiY2OZleMEQRCyi81myxWdiIgIHj16VLteQEAA586dy6tXr2rVmTBhAocMGcLIyEitOh988AGbNGnCkJAQrTp9+vRh8eLFGRQUpFWnUaNGdHV15bZt27RpxMfHEwABcPny5dp0FixY4NCZOXPmbY+1f54D8GMWfIJkGE+DZBgXBCG/kVulOEqXLp0rRXTbt2+vXQMAnnvuOZQvX16rBkn4+Phg06ZNKFSokFat0NBQrFq1CrVr19aqk5SUhFGjRuH+++/XpuHj4wMfHx80atQInTt31qbTvLnKd+3r64sePXqY2rbBXJh3vtMwDMMPQGxsbCz8/PwyPC4uLg5FihRBZscJgiAIdx/2z0/dBpckdu7c6TADOunVqxfmzp0LNze9Yyv2enY6a+eRROnSpdGtWzdMmTLltsfaP88BFCGZaVCujDwJgiAIQjbIrVFBwzByxTgBwHfffafdOAHAyy+/rL3osGEYuO+++/Dyyy+b3rZMTwmCIAiCAAAoUaJErui8+eabuaIzePBgNG3a1PR2xTwJgiAIgpCruLu754rO448/rqVdMU+CIAiCIAhOIOZJEARBEATBCcQ8CYIgCIIgOIGYJ0EQBEEQBCcQ8yQIgiAIguAEYp7SYBjGq4ZhBAHQX4VVEARBEIQ7EjFPaSA5mWQdALmTjUwQBEEQhDsOMU+CIAiCIAhOIOYpB1y+fDlXdE6dOoXg4GDtOjt37kRcXKYlfXIESWzcuBE2m02bhsViwX///Yfo6GhtGgAQEhKCHTt24OrVq9o0bDYb9u7di+3bt0NnHcqYmBjs3bsX+/bt06YBqP+Z7du348SJE1p1oqOjsXbtWly6dEmrTnh4OBYvXqz1fiaJY8eOYfXq1do0AHWvbdmyBTt37tSqk5KSgr/++gvh4eFadWJjYzF9+nSt/zeAeh9YsGCBVg0A2Lp1KwIDA7VqkMTcuXNx/vx5rTqJiYn49ttvtb82YWFh+Pnnn/U0TlK2mzYAfgAYGxvL2zFx4kRm5bic0rdvXw4ePFirBknWqVOHM2bM0Kpx8eJFent7c//+/Vp1/vnnH+7cuVOrRkJCAt98801evnxZq86WLVv4wgsvaNWIj4/n2LFj+d5772nTsNls3LBhAzt16sQ5c+Zo04mJieGYMWNYoUIFBgUFadPZvn07u3TpwjJlyjApKUmLRmpqKr/55htWqFCB7dq106JBkqGhoXzmmWfo4uLC999/X5vOsmXLWKVKFQLgokWLtGhcvXqVI0eOpI+PD93d3Xnq1CktOmfOnOHAgQPp7u7OsmXL0mazadE5efIkn3nmGQLgE088oUWDJIOCgti6dWsC4NixY7Xp7Ny5k/feey9dXFz4zz//aNNZvXo1S5QoQQ8PD4aFhWV6fGxsLAEQgB+z4BMManZ+dyKGYfgBiI2NjYWfn1+Gx9mrMGd2XE6x2Wyw2WzaizUmJyfD09NTqwYAJCUlwcvLS7uO4Dwkc6XYqcVi0X4/WywWkNReBiI6OhrFihXTqkESZ8+eRaVKlbTqxMbG4tKlS6hWrZo2DYvFgqCgIBQtWlTb87HZbAgJCcHhw4fRsmVL+Pv7m66RkJCA0NBQhISEICIiAr169TL9niaJbdu2ITw8HJcuXYKXlxf69etnqgagPstmz56N+Ph4JCUloVGjRnj66adN19m3bx8mTpwIAHBzc0OfPn3Qtm1bUzVIYurUqfj+++9RtGhRFCtWDF988QXq1q172/Psn+cAipDMdApGzFM65DfzJAiCIAiCPpw1TxLzJAiCIAiC4ARingRBEARBEJxAzJMgCIIgCIITiHlKg2QYFwRBEAQhM8Q8pYGSYVwQBEEQhEwQ8yQIgiAIguAEYp4EQRAEQRCcQMyTIAiCIAiCE4h5EgRBEARBcII7wjwZhvGKYRjBhmEkGYax2zCMhzM5vvW145IMwzhtGMbg3OqrIAiCIAh3N/nePBmG0QPAtwA+A9AYwH8AVhqGkW5RJMMwqgBYce24xgDGAZhkGEb3XOmwIAiCIAh3NfnePAF4G8BMkjNIHiH5JoCzAIZkcPxgAKEk37x2/AwAswAMy53uCoIgCPkBkkhNTdWuceHCBaSkpGjVuXz5Mvbs2aNVIyEhATt37sS2bdu0aaSmpuLQoUP49ddfceDAAS0aJBESEoIlS5ZgzJgxuHTpkukaesua5xDDMDwANAXwxU0PrQHQIoPTHrz2eFpWA3jRMAx3kqb9J+VWUeWEhAS4uLjAy8tLq05sbCx8fX3h4qLPUx8/fhxVqlTRWuk+OjoakZGRqFatmulVzu2QxL59+1C4cGFUqlRJ22sTHh6O4OBgeHp6olGjRlqej9VqxaZNm5CcnAwfHx+0aJHRv1bOOH78OI4fP474+HhUr14d9913n+kaCQkJWL9+PaKiohAVFYUnnngC1atXN11nx44dOHbsGM6fP4/o6GiMHDkSvr6+pmpcuHABGzZswNmzZ3H27Fn4+Pjg008/hWEYpmnYbDYEBATg2LFjCA4ORnBwMDp06IBXX33VNA1AvfaBgYE4efKkY5s4cSLatWtnmkZiYiKWLl2KY8eOObbIyEhs374dZcqUMU1n27Zt2LJlC44cOYIjR44gKCgIdevWRWBgoGkaFy9exLJly3D48GEcOnQIhw8fRnh4OD788EM0adLEFA2bzYaVK1di586dOHjwIA4ePIiTJ0+CJNauXWuKBqBe+xUrVmD//v3Yv38/Dh8+jJSUFBQvXhyHDh0yRSMpKQkLFy7Enj17sG/fPuzbtw+XL18GALRt2xbDhw83RSct+do8ASgBwBXAhZv2XwCQ0X9DmQyOd7vW3vmbTzAMwxOAZ5pdvoCqsnw7vvvuO2TluJwyaNAgeHh44Pvvv9eq07hxY7zzzjvo06ePNo3IyEgsWLAAQ4cO1abh4uKCb7/9Fu3atUPHjh216SQnJ6Nv375YuHAhypYtq0XD09MTy5Ytw/Lly7F582YtGnaGDRuGxo0bo169elra9/PzQ2BgIL777jt8/fXXqFWrlhYdFxcXfPPNNzh06BCaNGmCUqVKma5RqlQp/PLLL5g6dSo8PT0xdOhQ079MeXl5wWazYe7cuTh06BCaNm2q5UOgQoUK+OuvvzBnzhykpqaiWLFipr+nFS9eHFarFYsWLcKJEycAAAcPHkSzZs1M1alcuTL+/vtv/PHHH7BarQCAkydPwtvb2zSNSpUqITAwEGvWrEFoaCgAZaZjY2NN++Lp6emJ8uXLY8mSJQgICHDsX7duHd59911TNADg3nvvxZYtW7Bp0yZcvHjRsf/vv/827ctNyZIlUbp0aZw5cwZ79+517I+KikJAQACefPJJU3Tq1q2Lbdu2Yc+ePYiNjXXs//fffxEcHIzy5cvf9nxn73kjt0ZPsoNhGOUAnAPQguTWNPtHAuhD8t50zjkOYDbJz9PsawlgE4CyJCPSOWc0gI/NfwaCIAiCINxBFCGZqZPK7yNPlwBYcesoUyncOrpkJyKD4y0AojI453MAE9P87Qsg7OzZs/Dz88uwc3FxcahYsSIyO04QBEG4DknYbDa4urpq1bly5Qp8fHy0apDE+fPnUa5cOa06sbGxiIqKQtWqVbXq7Nq1CxUrVkTp0qW1acTGxmLx4sXo06ePtnuAJHbu3In9+/fj5ZdfzvR4++d5VsnXI08AYBjGdgC7Sb6SZl8QgL9Jjkjn+C8BPH6tRp19308AGpF8MIuafgBiY2NjMzVPRYoUQWbHCYIgCIKQf7F/niOLI093wmq7iQBeMgxjgGEYtQ3D+AZAJQBTAMAwjM8Nw/g5zfFTAFQ2DGPiteMHAHgRwFe53nNBEARBEO468vu0HUguMAyjOIBRAMoCOASgC8mQa4eUhTJT9uODDcPoAuAbAK8CCAfwBsm/crfngiAIgiDcjeT7abu8wD5tJzFPgiAIgnD3kybmKUvTdmKe0sEwjPIAwvK6H4IgCIIg5CoVSJ7L7CAxT+lgqCx05QDEZ3KoL5TJqpCFY2/HDgDN7+Dzc9qGGdcxr59Dfjg/P1zHvD4/p23kh2toRht5fX5+uI53+usgny/mtOHMdfQFEM4sGKN8H/OUF1y7cJk7z+uZfuOzMsx3m3Zsd/L5OW3DjOuY188hn5xv/zXPrmNen5/TNvLDNTSjjXxwvv3XO/ZezOs+yOeLOW04eR2zrHEnrLYrCEy+w883q4281s/r65jX1xDI++eQH17H/KCf19cxr68hkD+eQ37oQ07J6+eQH14H05FpuxxgDyxHFgPMhPSR62gOch1zjlxDc5DrmHPkGpqDrusoI085IxnAmGs/hewj19Ec5DrmHLmG5iDXMefINTQHLddRRp4EQRAEQRCcQEaeBEEQBEEQnEDMkyAIgiAIghOIeRIEQRAEQXACMU+CIAiCIAhOIOYpEwzDeMUwjGDDMJIMw9htGMbDmRzf+tpxSYZhnDYMY3Bu9TU/48x1NAyjjWEYTGe7Nzf7nJ8wDKOVYRjLDMMIv3YtumbhHLkXb8LZ6yj34q0YhjHCMIydhmHEG4Zx0TCMJYZh1MrCeXI/XiM711DuxVsxDGOIYRgHDMOIu7ZtNQyjcybnmHIfinm6DYZh9ADwLYDPADQG8B+AlYZhVMrg+CoAVlw7rjGAcQAmGYbRPVc6nE9x9jqmoRaAsmm2Exq7md8pDGA/gNeycrDcixni1HVMg9yL12kNlbTwAQAdoCpVrDEMo3BGJ8j9eAtOX8M0yL14nTAA7wNodm1bD+BvwzDqpnewmfehpCq4DYZhbAewh+SQNPuOAFhCckQ6x38J4AmStdPsmwKgIckHc6PP+ZFsXMc2AP4F4E8yJpe6ecdgGAYBPEVyyW2OkXsxE7J4HdtA7sXbYhhGSQAXAbQmGZjBMXI/3oYsXsM2kHsxUwzDiAbwLsmZ6Txm2n0oI08ZYBiGB4CmANbc9NAaAC0yOO3BdI5fDaCZYRju5vbwziCb19HOXsMwzhuGsc4wjLZaOnj3Iveiuci9mDFFrv2Mvs0xcj/enqxcQztyL6aDYRiuhmH0hBpd3prBYabdh2KeMqYEAFcAF27afwFAmQzOKZPB8W7X2iuIZOc6ngcwEEB3AN0AHAOwzjCMVro6eRci96I5yL14GwzDMABMBLCJ5KHbHCr3YwY4cQ3lXkwHwzDqG4ZxBSqD+BSo0eSgDA437T50c7ajBZCb5zWNdPZldnx6+wsaWb6OJI9BvTHY2WoYRkUAwwCkO6QtpIvcizlE7sVM+QFAAwAPZeFYuR/TJ0vXUO7FDDkGoBGAolDGcq5hGK1vY6BMuQ9l5CljLgGw4tbRkVK41bnaicjgeAuAKFN7d+eQneuYHtsA1DCrUwUAuRf1IfciAMMwvgfwBIC2JMMyOVzux3Rw8hqmR4G/F0mmkDxJcte1GNr9AIZmcLhp96GYpwwgmQJgN9RKiLR0ALAlg9O2pnP8owB2kUw1t4d3Btm8junRGGrYWsgaci/qo0Dfi4biB6ipo3Ykg7NwmtyPacjmNUyPAn0vZoABwDODx8y7D0nKlsEGoAeAFAADANQG8A2AKwAqX3v8cwA/pzm+CoCrUPPXta+dlwKge14/lzvsOr4JoCvUN6q61x4ngG55/Vzy8Br6QA1NN7p2Ld669nulDK6h3IvmXEe5F2+9hj8CiIFabl8mzVYozTFyP5p/DeVevPU6jgPwMIB7ANSHSodjBdAhg2to2n2Y508+v28AXgFwBioYbTeAVmkemwNgw03Htwaw59rxwQAG5/VzyA+bM9cRwHsATgJIhFp98h+ALnn9HPL4+rW59kZ58zYnvWt4bZ/cizm8jnIvpnsN07t+BPBCmmPkfjT5Gsq9mO51nJnmc+UigLW4ZpzSu4bX9plyH0qeJ0EQBEEQBCeQmCdBEARBEAQnEPMkCIIgCILgBGKeBEEQBEEQnEDMkyAIgiAIghOIeRIEQRAEQXACMU+CIAiCIAhOIOZJEARBEATBCcQ8CYIgCIIgOIGYJ0EQBEEQBCcQ8yQIgiAIguAEYp4EQRAEQRCcQMyTIAiCIAiCE4h5EgRBEARBcAIxT4IgCIIgCE4g5kkQBEEQBMEJ3PK6A4IgCHmJYRj+AD6Gej+sDuAPAL8BmADAAOAP4DOSQXnWSUEQ8hVingRBKLAYhuEB4EcA75AMNwyjMoBgAE8CeBNADQDLAVwG8Fpe9VMQhPyFTNsJglCQGQxgNsnwa38nQY02nSEZDMAVwAkAv+dR/wRByIfIyJMgCAWZyyTXpPm72bWfqwCA5EoAK3O9V4Ig5Gtk5EkQhAILyXk37WoLwApgUx50RxCEOwSDZF73QRAEIV9gGMYeAKkk78/rvgiCkH+RkSdBEAQ4Vt01BLDhpv0v5UmHBEHIt4h5EgShQGIYRknDMHYYhvHxtV2doN4Td6Q9BkCLvOifIAj5FzFPgiAUVFoDuA+AYRhGIQA9AIQD8IHaWRjAJACj86qDgiDkTyTmSRCEAolhGL4AvgGQAmWYPgfgB2AcgBAAHgDGkzyQZ50UBCFfIuZJEARBEATBCWTaThAEQRAEwQnEPAmCIAiCIDiBmCdBEARBEAQnEPMkCIIgCILgBGKeBEEQBEEQnEDMkyAIgiAIghOIeRIEQRAEQXACMU+CIAiCIAhOIOZJEARBEATBCcQ8CYIgCIIgOIGYJ0EQBEEQBCcQ8yQIgiAIguAEYp4EQRAEQRCcQMyTIAiCIAiCE/wfqyj7RtvbGcYAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vf = plot_vector_field([-x+a*y+x**2*y, b-a*y-x**2*y],(x,0,3),(y,0,3),axes_labels=[r'$x$',r'$y$'])\n", "traj = list_plot([ [j,k] for i,j,k in P], plotjoined=True, legend_label='$x$')\n", "vf+traj" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\n", "2 \\, x y - 1 & x^{2} + a \\\\\n", "-2 \\, x y & -x^{2} - a\n", "\\end{array}\\right)$$" ], "text/plain": [ "[2*x*y - 1 x^2 + a]\n", "[ -2*x*y -x^2 - a]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('x y a b')\n", "J= jacobian([-x+a*y+x**2*y, b-a*y-x**2*y], [x,y])\n", "J" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[-\\frac{1}{2} \\, x^{2} + x y - \\frac{1}{2} \\, a - \\frac{1}{2} \\, \\sqrt{x^{4} + 4 \\, x^{2} y^{2} + 2 \\, {\\left(a - 1\\right)} x^{2} + a^{2} - 4 \\, {\\left(x^{3} + {\\left(a + 1\\right)} x\\right)} y - 2 \\, a + 1} - \\frac{1}{2}, -\\frac{1}{2} \\, x^{2} + x y - \\frac{1}{2} \\, a + \\frac{1}{2} \\, \\sqrt{x^{4} + 4 \\, x^{2} y^{2} + 2 \\, {\\left(a - 1\\right)} x^{2} + a^{2} - 4 \\, {\\left(x^{3} + {\\left(a + 1\\right)} x\\right)} y - 2 \\, a + 1} - \\frac{1}{2}\\right]$$" ], "text/plain": [ "[-1/2*x^2 + x*y - 1/2*a - 1/2*sqrt(x^4 + 4*x^2*y^2 + 2*(a - 1)*x^2 + a^2 - 4*(x^3 + (a + 1)*x)*y - 2*a + 1) - 1/2,\n", " -1/2*x^2 + x*y - 1/2*a + 1/2*sqrt(x^4 + 4*x^2*y^2 + 2*(a - 1)*x^2 + a^2 - 4*(x^3 + (a + 1)*x)*y - 2*a + 1) - 1/2]" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "J.eigenvalues()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[-\\frac{1}{2} \\, x^{2} + x y - \\frac{1}{20} \\, \\sqrt{100 \\, x^{4} + 400 \\, x^{2} y^{2} - 180 \\, x^{2} - 40 \\, {\\left(10 \\, x^{3} + 11 \\, x\\right)} y + 81} - \\frac{11}{20}, -\\frac{1}{2} \\, x^{2} + x y + \\frac{1}{20} \\, \\sqrt{100 \\, x^{4} + 400 \\, x^{2} y^{2} - 180 \\, x^{2} - 40 \\, {\\left(10 \\, x^{3} + 11 \\, x\\right)} y + 81} - \\frac{11}{20}\\right]$$" ], "text/plain": [ "[-1/2*x^2 + x*y - 1/20*sqrt(100*x^4 + 400*x^2*y^2 - 180*x^2 - 40*(10*x^3 + 11*x)*y + 81) - 11/20,\n", " -1/2*x^2 + x*y + 1/20*sqrt(100*x^4 + 400*x^2*y^2 - 180*x^2 - 40*(10*x^3 + 11*x)*y + 81) - 11/20]" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "J(a=0.1,b=0.4).eigenvalues()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1a32d5f996174966a6bab7b9b7a3678c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Interactive function with 14 widgets\n", " a: EvalText(value='0.100000000000000', d…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var('x y a b')\n", "@interact\n", "def _(a=input_box(default=0.1),\n", " b=(.4,(0.1,1)),\n", " fin = input_box(default=-x+a*y+x**2*y), gin=input_box(default=b-a*y-x**2*y),\n", " xmin=input_box(default=0), xmax=input_box(default=1.5),\n", " ymin=input_box(default=0), ymax=input_box(default=2.8),\n", " x_start=(0,(0,3,.1)), y_start=(2,(0,3,.1)), error=(0.5,(0,1)),\n", " t_length=(100,(0, 200)) , num_of_points = (1500,(5,2000)),\n", " algorithm = selector([\n", " (\"rkf45\" , \"runga-kutta-felhberg (4,5)\"),\n", " (\"rk2\" , \"embedded runga-kutta (2,3)\"),\n", " (\"rk4\" , \"4th order classical runga-kutta\"),\n", " (\"rk8pd\" , 'runga-kutta prince-dormand (8,9)'),\n", " (\"rk2imp\" , \"implicit 2nd order runga-kutta at gaussian points\"),\n", " (\"rk4imp\" , \"implicit 4th order runga-kutta at gaussian points\"),\n", " (\"bsimp\" , \"implicit burlisch-stoer (requires jacobian)\"),\n", " (\"gear1\" , \"M=1 implicit gear\"),\n", " (\"gear2\" , \"M=2 implicit gear\")\n", " ])):\n", " f(x,y)=fin(a=a, b=b)\n", " g(x,y)=gin(a=a, b=b)\n", " show(f)\n", " show(g)\n", " ff = f._fast_float_(*f.args())\n", " gg = g._fast_float_(*g.args())\n", " \n", "\n", " #solve\n", " path = []\n", " err = error\n", " xerr = 0\n", " for yerr in [-err, 0, +err]:\n", " T=ode_solver()\n", " T.algorithm=algorithm\n", " T.function = lambda t, yp: [ff(yp[0],yp[1]), gg(yp[0],yp[1])]\n", " T.jacobian = lambda t, yp: [[diff(fun,dval)(yp[0],yp[1]) for dval in [x,y]] for fun in [f,g]]\n", " T.ode_solve(y_0=[x_start + xerr, y_start + yerr],t_span=[0,t_length],num_points=num_of_points)\n", " path.append(line([p[1] for p in T.solution]))\n", " \n", " #plot\n", " xnull = implicit_plot(ff,(x,0.,1.5),(y,0.,2.5), color='green',axes_labels=['$x$','$y$'], legend_label='nuliclina de $x$',show_legend=True)\n", " ynull = implicit_plot(gg,(x,0.,1.5),(y,0.,2.5), color='red',axes_labels=['$x$','$y$'], legend_label='nuliclina de $y$',show_legend=True)\n", " vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax), plot_points=25 )\n", " starting_point = point([x_start, y_start], pointsize=50)\n", " show(vector_field + starting_point + sum(path)+xnull+ynull, aspect_ratio=1, figsize=[8,9],gridlines=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para encontrar o equilíbrio pontual do sistema, basta resolver o sistema:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left[x = b, y = \\frac{b}{b^{2} + a}\\right]\\right]$$" ], "text/plain": [ "[[x == b, y == b/(b^2 + a)]]" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('x y a b')\n", "xdot(x,y) = -x+a*y+x**2*y\n", "ydot(x,y) = -x^2*y - a*y + b\n", "solve([xdot, ydot], [x,y])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Se nós substituirmos o valores de equilíbrio do sistema na matriz jacobiana:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\n", "\\frac{2 \\, b^{2}}{b^{2} + a} - 1 & b^{2} + a \\\\\n", "-\\frac{2 \\, b^{2}}{b^{2} + a} & -b^{2} - a\n", "\\end{array}\\right)$$" ], "text/plain": [ "[2*b^2/(b^2 + a) - 1 b^2 + a]\n", "[ -2*b^2/(b^2 + a) -b^2 - a]" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Jeq = J(x=b, y=b/(b^2+a))\n", "Jeq" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Podemos encontrar os autovalores do sistema:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[-\\frac{100 \\, b^{4} - 80 \\, b^{2} + \\sqrt{10000 \\, b^{8} - 56000 \\, b^{6} - 3400 \\, b^{4} - 2960 \\, b^{2} + 81} + 11}{20 \\, {\\left(10 \\, b^{2} + 1\\right)}}, -\\frac{100 \\, b^{4} - 80 \\, b^{2} - \\sqrt{10000 \\, b^{8} - 56000 \\, b^{6} - 3400 \\, b^{4} - 2960 \\, b^{2} + 81} + 11}{20 \\, {\\left(10 \\, b^{2} + 1\\right)}}\\right]$$" ], "text/plain": [ "[-1/20*(100*b^4 - 80*b^2 + sqrt(10000*b^8 - 56000*b^6 - 3400*b^4 - 2960*b^2 + 81) + 11)/(10*b^2 + 1),\n", " -1/20*(100*b^4 - 80*b^2 - sqrt(10000*b^8 - 56000*b^6 - 3400*b^4 - 2960*b^2 + 81) + 11)/(10*b^2 + 1)]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evs = Jeq(a=0.1).eigenvalues()\n", "evs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Uma vez fixado o parâmetro $a$, os autovalores passam a ser polinômios em $b$:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}b \\ {\\mapsto}\\ -\\frac{100 \\, b^{4} - 80 \\, b^{2} + \\sqrt{10000 \\, b^{8} - 56000 \\, b^{6} - 3400 \\, b^{4} - 2960 \\, b^{2} + 81} + 11}{20 \\, {\\left(10 \\, b^{2} + 1\\right)}}$$" ], "text/plain": [ "b |--> -1/20*(100*b^4 - 80*b^2 + sqrt(10000*b^8 - 56000*b^6 - 3400*b^4 - 2960*b^2 + 81) + 11)/(10*b^2 + 1)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0.41999190736246605$$" ], "text/plain": [ "0.41999190736246605" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pol(b) = evs[0](a=0.1)\n", "show(pol)\n", "find_root(real_part(pol),0.3,0.5)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGDCAYAAADZMk8/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzt3X1cVHX+//8HqY0YyFoWiJnXm5HtZkok5UVb4kXlRZaUhV2appZkplJaahuEuWYGWppZ5hXbqmmlBm6JGlhqaIWl1cerTFL7KVDacHV+f5yvsyIg4MxwZobn/XY7t43jOXNe01nq2fu8z+vtZxiGgYiIiIhU6AKrCxARERHxdApMIiIiIpVQYBIRERGphAKTiIiISCUUmEREREQqocAkIiIiUgkFJhEREZFKKDCJiIiIVEKBSURERKQSCkwiIiIilVBgEhEREamETwcmwzDIy8tDy+WJiIiIM3w6MOXn5xMUFER+fr7VpYiIiIgXc1lgmj17Ni1btqR+/fp07NiRTZs2nfP49PR0OnbsSP369WnVqhVvvPFGhccuW7YMPz8/+vfv76pyRURERKrMJYEpJSWF2NhYnnvuObKysujSpQu9e/fmwIED5R6/d+9e+vTpQ5cuXcjKyuLZZ5/lySefZPny5WWO3b9/P2PHjqVLly6uKFVERESk2vwMF0zwiYiI4LrrrmPOnDmOfVdddRX9+/cnISGhzPHjx49n9erVfPfdd459w4cPZ+fOnWRmZjr2FRcX061bNx566CE2bdrEiRMn+OCDD6pcV15eHkFBQeTm5tKwYcPz/HYiIiJS2zk9wlRQUMD27duJiooqtT8qKoqMjIxyz8nMzCxzfM+ePdm2bRuFhYWOfVOnTuXSSy/lkUcecbZMERERkfNW19kPOHbsGMXFxQQHB5faHxwcTE5OTrnn5OTklHt8UVERx44do0mTJnz++efMnz+fHTt2VLkWu92O3W53/JyXl1eNbyIiIiJSPpdN+vbz8yv1s2EYZfZVdvzp/fn5+dx///3MmzePxo0bV7mGhIQEgoKCHFuzZs2q8Q1ERETEGx0+DAsWQHy8+67h9AhT48aNqVOnTpnRpCNHjpQZRTotJCSk3OPr1q3LJZdcQnZ2Nvv27eOOO+5w/HlJSYlZcN267N69m9atW5f53Li4OMaMGeP4OS8vT6FJRETExxQVwZYtsHYtrFkDO3aAnx907QpxceZfu5rTgenCCy+kY8eOpKWlMWDAAMf+tLQ0+vXrV+45nTt35sMPPyy1LzU1lU6dOlGvXj3atWvHN998U+rPJ06cSH5+Pq+99lqFIchms2Gz2Zz8RiIiIuJpjh41w9HHH0NaGpw4AY0bQ8+eMHYsREXBpZe67/pOByaAMWPGEBMTQ6dOnejcuTNz587lwIEDDB8+HDBHfg4dOsTChQsB8424pKQkxowZw9ChQ8nMzGT+/PksXboUgPr169O+fftS1/jLX/4CUGa/iIiI+B7DgF274MMPze30S/Th4TB6NPTuDZ06QZ06NVOPSwJTdHQ0v/32G1OnTuXw4cO0b9+eNWvW0Lx5cwAOHz5cqidTy5YtWbNmDU899RTJycmEhoYya9YsBg4c6IpyRERExAsVFMDGjf8LSXv3QoMG5ujRW2/BbbdBBbN93M4lfZg8lfowiYiIeLbffjMftX34IXzyCeTlweWXwx13mNvNN0P9+lZX6aIRJhEREZGq+r//g5UrYdUq+PxzKCkxH7WNHWuGpL//3T0Tt52hwCQiIiJudXo+0ooV5rZjhzlq1KMHvPEG3H47NGlidZXnpsAkIiIiLmcYsG3b/0LSnj0QGGiGo+eeg169ICDA6iqrToFJREREXKK4GDZv/l9I+vln89X/fv3g1VfhllvAW7v/+GRgSk5OJjk5meLiYqtLERER8WlFRfDZZ/Dvf5tzko4eNSdt33knDBgAN90EdX0gbegtOREREamW4mLz9f9//xuWLzdDUuvWcNddMHCg2R/J0yZtO8sHMp+IiIi4W0kJZGRASgr85z+QkwPNm8NDD8GgQXDddb4Xks6kwCQiIiLlMgz44gszJL3/Phw6BE2bwr33QnQ0XH+9b4ekMykwiYiIiINhwM6dsGSJGZQOHICQELj7bnMkKTISLrjA6iprngKTiIiIcOCAGZIWLYLsbPPttrvuMkeSunSpuTXbPJUCk4iISC11/Lg5H2nRInMSt78/9O8PiYnm+m316lldoedQYBIREalF/vzTXLtt0SL4+GOzLcCtt8LChWZYCgy0ukLPpMAkIiLi40pKYNMmMyS9/z7k5kLHjuZIUnS05y9L4gkUmERERHzUTz/Bu++a24ED0KIFPPEE3HcftGtndXXeRYFJRETEh+Tnm6NI77xjjio1bAj33AMxMXDjjbWnDYCr+WRg0tIoIiJSm5SUQHq6GZL+8x84dcqcl7R4sTkvqUEDqyv0floaRURExEvt22eGpHffNf+6TRt48EEYMgSaNbO2Nl/jkyNMIiIivspuh9WrYd48WL8eAgLMidsPPmg2ldQjN/dQYBIREfEC330Hb71lvv5/7Jg5H+ntt80O3BddZHV1vk+BSURExEOdPGlO4J43Dz7/HC65xHzc9uijEBZmdXW1iwKTiIiIh8nKMkPS4sWQl2dO4F62zJzAbbNZXV3tpMAkIiLiAU6ehKVLYc4c2L4dQkPNnkkPPwytWlldnSgwiYiIWGj3bjMkvfuu2YG7d29YtQr69IG6+re0x9CtEBERqWGFheabbrNnw6efQuPGMGyYubVsaXV1Uh4FJhERkRpy6JA5N2nuXDh82HzTbdEiuOsuzU3ydApMIiIiblRSYo4izZljPmrz94f774fHH4e//c3q6qSqfDIwaWkUERGxWn6+OS/p9ddhzx5o3x5mzTLDkhaf8D5aGkVERMSFfvoJkpLMppJ//AEDB8KoUXDTTerC7c18coRJRESkJhkG/Pe/5gjSRx/BxRebIenxx+Hyy62uTlxBgUlEROQ8nTxpTtqeNQuys805SfPmweDB5lwl8R0KTCIiItW0f7/ZEmDePLN3Ut++5mO4bt302M1XKTCJiIhUgWFARga8+iqsXAmBgeaabiNHqndSbaDAJCIicg7FxfDBBzB9OmzZAldeaY4mxcRAQIDV1UlNucBVHzR79mxatmxJ/fr16dixI5s2bTrn8enp6XTs2JH69evTqlUr3njjjVJ/Pm/ePLp06UKjRo1o1KgRt956K19++aWryhURETmnP/6A5GT461/NxpL168OHH8KuXeZkboWl2sUlgSklJYXY2Fiee+45srKy6NKlC7179+bAgQPlHr9371769OlDly5dyMrK4tlnn+XJJ59k+fLljmM2bNjAvffey2effUZmZiZXXHEFUVFRHDp0yBUli4iIlOvXX2HSJLjiChg9Gq6/HrZuhc8+g9tvhwtcNtQg3sQlfZgiIiK47rrrmDNnjmPfVVddRf/+/UlISChz/Pjx41m9ejXfffedY9/w4cPZuXMnmZmZ5V6juLiYRo0akZSUxJAhQ6pUl/owiYhIVe3aBTNmwHvvQb16MHSoGZhatLC6MvEETufkgoICtm/fTlRUVKn9UVFRZGRklHtOZmZmmeN79uzJtm3bKCwsLPeckydPUlhYyMUXX1xhLXa7nby8vFKbiIhIRQwDNmwwR46uvhrWrIGpU+HgQXNyt8KSnOZ0YDp27BjFxcUEBweX2h8cHExOTk655+Tk5JR7fFFREceOHSv3nAkTJtC0aVNuvfXWCmtJSEggKCjIsTVr1qya30ZERGqDkhJYvtx83HbzzWabgHfegX37YPx4aNTI6grF07jsSazfWY0nDMMos6+y48vbDzBt2jSWLl3KihUrqF+/foWfGRcXR25urmM7ePBgdb6CiIj4uIICWLAAwsLMidyBgbBuHXz9NTzwAFx4odUViqdyuq1A48aNqVOnTpnRpCNHjpQZRTotJCSk3OPr1q3LJZdcUmr/9OnTiY+PZ/369fytkmWdbTYbNpvtPL6FiIj4spMn4a23zNYABw9Cv37mwrgREVZXJt7C6RGmCy+8kI4dO5KWllZqf1paGpGRkeWe07lz5zLHp6am0qlTJ+rVq+fY98orr/Diiy+ybt06OnXq5GypIiJSy5w4AS+9BM2bw5gxZifub74x+yopLEl1uKRx5ZgxY4iJiaFTp0507tyZuXPncuDAAYYPHw6Yj8oOHTrEwoULAfONuKSkJMaMGcPQoUPJzMxk/vz5LF261PGZ06ZNY9KkSSxZsoQWLVo4RqQCAgIIUPMLERE5h5wcmDnTXL6koAAefhieeUYdueX8uSQwRUdH89tvvzF16lQOHz5M+/btWbNmDc2bNwfg8OHDpXoytWzZkjVr1vDUU0+RnJxMaGgos2bNYuDAgY5jZs+eTUFBAXfddVepa73wwgtMnjzZFWWLiIiP2bsXXnkF3n7bnI80YgTExkJIiNWVibdzSR8mT6U+TCIitcOePeajt8WLzTfcYmPNNd7+8herKxNfobXkRETEa33/Pfzzn7B0qTmKNGOGuSBugwZWVya+RoFJRES8zq5d8OKLkJICTZvCrFnwyCPmem8i7qAVcURExGt88w0MGgTt20NGhjmp+8cfzcdvCkviTgpMIiLi8XbuNBtN/u1v5kK4b74JP/wAw4eD2u9JTfDJwJScnExYWBjh4eFWlyIiIk7IyoIBA+Daa82/nj/fnOA9dKi6ckvN0ltyIiLicbKz4YUXzPXeWreGiRPhvvvgjN7GIjXKJ0eYRETEO+3ZYwaja66B7dvNfkrffw8PPqiwJNZSYBIREcvt22d24w4Lg/R0mDMHdu+Ghx6CunqfWzyA/m8oIiKW+flns+Hk/Plw8cVmH6XHHtMbb+J5FJhERKTG/forJCTAG29AQIAZmkaMgIsusroykfIpMImISI05fhymTTMbTdarZ07mfvJJ0Hs54ukUmERExO1OnYLXXzdHlQoL4amn4OmnzXXfRLyBApOIiLhNURG88w5Mnmw+hhs2DCZNguBgqysTqR69JSciIi5nGLBihbmEydCh0LWr2R4gKUlhSbyTTwYmdfoWEbHOZ5/BDTfAwIHQogV89RUsWWI2oBTxVur0LSIiLrFjB0yYAJ98AtdfDy+/DDffbHVVIq7hkyNMIiJSc376CQYPhg4dYO9e+M9/YMsWhSXxLQpMIiJyXo4ehSeegHbtzO7cc+eaa8ANHAh+flZXJ+JaektORESq5c8/4bXXID7eDEYvvmj2UmrQwOrKRNxHgUlERKqkpASWLoVnn4VffoHHH4fnn4fGja2uTMT9FJhERKRS6ekwdixs2wYDBkBaGvz1r1ZXJVJzNIdJREQqtHs39O8P3bubj982bjT7KyksSW2jwCQiImUcPQqjRsHVV5vtApYsMd9869LF6spErKFHciIi4lBQYHbjnjrV7NYdH29O6K5f3+rKRKylwCQiIgCsWWMuivvjj/DYY2ZouvRSq6sS8Qw++UhOS6OIiFTdd99B795w221w+eWQlQVz5igsiZxJS6OIiNRSx4/D5MmQnAzNm8O//gX9+qnppEh59EhORKSWKSoyu3I//zzY7fDSSxAbCzab1ZWJeC6ffCQnIiLl++9/zTXfRo0yR5N++AHGj1dYEqmMApOISC3w009mw8lbb4WgINi6FebPh5AQqysT8Q4KTCIiPuzkSZg4EcLCYPt2WLYMNm2Cjh2trkzEu2gOk4iIDzIMWLnSbBPw668wYYL56E0L5IqcH48fYZo9ezYtW7akfv36dOzYkU2bNlldkoiIZ/jmGxg82OwFcM01MH06FBayZ4/ZJmDgQHN3djZMmaKwJOIMjw5MKSkpxMbG8txzz5GVlUWXLl3o3bs3Bw4csLo0ERFrbdsGnTvD0qVw6BB8+y1/PPMCz4Wt5JprYM8eWL0aPvoIWre2ulgR7+fRfZgiIiK47rrrmDNnjmPfVVddRf/+/UlISKj0fPVhEhGf1asXfPIJAAawgjt5ilc5wmXEPfAL4+a0wt/f2hJFfInHzmEqKChg+/btTJgwodT+qKgoMjIyyj3Hbrdjt9sdP+fl5VX7uoZhkJ+fX+3zRERqTEkJpKYC8COteIZX+JRb6cUaPmQCLRv2pbDwnxQWWlyniAcLDAzErxpdWj02MB07dozi4mKCg4NL7Q8ODiYnJ6fccxISEpgyZYpT183PzycoKMipzxARqTn/BwwEYN3/23j9dXMTkQpV9+mTxwam085Of4ZhVJgI4+LiGDNmjOPnvLw8mjVrVq3rBQYGkpubW+lxpz/74MGDbn3cFx4eztatW/X5Fn1+Tdxnb/97VBPXcOfne9s9NgxYtQqeffz/49hJf8Ywg1hm0oUCHFfYsgWuusol1zvNm+8xeN99tuLza+IanvS7HBgYWK3P99jA1LhxY+rUqVNmNOnIkSNlRp1Os9ls2JxsV+vn51etX6aGDRu6NTDVqVNHn2/h55/mzvvsC3+PfOE7eMM93rsXRoyAdeugb1Q9Zn7fm5YH0s1rAA3BXO8kIsLpa53NF+4xeMd9turza+Ia3vy77LFvyV144YV07NiRtLS0UvvT0tKIjIy0qKqaN3LkSH2+hZ9fE3zh75EvfAd3crb+wkJ4+WW4+mrYtct8+23VJ/60/GY1zJoFAwcyMjLS7Ejp5LSEiugeV84X/h75wndwF49+Sy4lJYWYmBjeeOMNOnfuzNy5c5k3bx7Z2dk0b9680vPd+Zac3sCrHXSffZ+n3+OMDBg2DL77zlwgd/JkCAiwuirv4+n3WZzn7nvssY/kAKKjo/ntt9+YOnUqhw8fpn379qxZs6ZKYcndbDYbL7zwgtOPAMWz6T77Pk+9x8ePm925586F66832y5de63VVXkvT73P4jruvscePcLkLP0XhYh4G8OAJUtgzBj4809ISDBHmOrUsboykdrNY+cwiYjUNj/8AFFRcP/90L27+RhuxAiFJRFPoMAkImIxux1efNFc9+3HH2HNGkhJgdBQqysTkdM8eg6TiIiv27jRfOT244/w9NNmVwAtkivieTTCJCJigbw8ePxx6NYNGjWCr74yWwcoLIl4Jp8MTMnJyYSFhREeHu7U58yePZuWLVtSv359OnbsyKZNmyo8dvPmzdx4441ccskl+Pv7065dO1599VWnri+u5+p7+s477+Dn51dm+/PPP939VaQaqnPfz/T5559Tt25drnXx62kffghhYbBoESQlwebN5uM4qTpX31P9LnuH6tz3DRs2lHtPv//++/O7uOHDcnNzDcDIzc2t9rnLli0z6tWrZ8ybN8/YtWuXMXr0aOOiiy4y9u/fX+7xX331lbFkyRLj22+/Nfbu3Wu89957RoMGDYw333zT2a8hLuKOe7pgwQKjYcOGxuHDh0tt4jmqe99PO3HihNGqVSsjKirK+Pvf/+6SWn791TCiow0DDKN3b8OopASpgDvuqX6XPV917/tnn31mAMbu3btL3dOioqLzur4CUwWuv/56Y/jw4aX2tWvXzpgwYUKVP2PAgAHG/fffX+1ri3u4454uWLDACAoKclmN4nrne9+jo6ONiRMnGi+88ILTgamkxDAWLjSMiy82jEsuMYxFi8x9cn7ccU/1u+z5qnvfTwem48ePu+T6PvlIzlkFBQVs376dqKioUvujoqLIyMio0mdkZWWRkZFBt27d3FGiVJM77+nvv/9O8+bNufzyy7n99tvJyspyWd3inPO97wsWLOCnn37ihRdecLqG/fuhd28YMgR69TJbBdx3H1SwhrhUwp33VL/LnsuZf4Z36NCBJk2acMstt/DZZ5+ddw0KTOU4duwYxcXFZRb5DQ4OLrMY8Nkuv/xybDYbnTp1YuTIkTz66KPuLFWqyF33tF27drzzzjusXr2apUuXUr9+fW688UZ++OEHt3wPqZ7zue8//PADEyZMYPHixdSte/4vEhcXm8u8XX01ZGfDRx/B4sVw6aXn/ZGC++6pfpc92/nc9yZNmjB37lyWL1/OihUruPLKK7nlllvYuHHjedWgtgLn4HfWfwIahlFm39k2bdrE77//zpYtW5gwYQJt2rTh3nvvdWeZUg2uvqc33HADN9xwg+PYG2+8keuuu47XX3+dWbNmuf4LyHmp6n0vLi5m8ODBTJkyhb/+9a/nfb1du+DRRyEz02w8mZAAWmzAtVx9T/W77B2q88/wK6+8kiuvvNLxc+fOnTl48CDTp0+na9eu1b62AlM5GjduTJ06dcqk1iNHjpRJt2dr2bIlANdccw2//vorkydPVmDyADV1Ty+44ALCw8P1X6Ueorr3PT8/n23btpGVlcWoUaMAKCkpwTAM6tatS2pqKv/4xz8qvF5REbzyirlAbsuWsGkT3HSTS79SrVdT91S/y57FmX+Gn+mGG25g0aJF51WDHsmV48ILL6Rjx46kpaWV2p+WlkZkZGSVP8cwDOx2u6vLk/NQU/fUMAx27NhBkyZNzrtWcZ3q3veGDRvyzTffsGPHDsc2fPhwrrzySnbs2EFERESF18rOhshImDgRnnoKduxQWHKHmrqn+l32LK76Z3hWVtb531OXTB33UK5oKzB//nxj165dRmxsrHHRRRcZ+/btMwzDMCZMmGDExMQ4jk9KSjJWr15t7Nmzx9izZ4/x9ttvGw0bNjSee+45l30fcY477unkyZONdevWGT/99JORlZVlPPTQQ0bdunWNL774osa/n5Svuvf9bJW9JVdYaBjx8YZx4YWG0a6dYWzZ4vKvIGdxxz3V77Lnq+59f/XVV42VK1cae/bsMb799ltjwoQJBmAsX778vK6vR3IViI6O5rfffmPq1KkcPnyY9u3bs2bNGpo3bw7A4cOHOXDggOP4kpIS4uLi2Lt3L3Xr1qV169a8/PLLDBs2zKqvIGdxxz09ceIEjz32GDk5OQQFBdGhQwc2btzI9ddfX+PfT8pX3fteHbt2wYMPwvbtMHYsTJkC9eu7sHgplzvuqX6XPV9173tBQQFjx47l0KFD+Pv7c/XVV/Pxxx/Tp0+f87q+n2EYhku+iQdJTk4mOTmZ4uJi9uzZQ25uLg0141JEXKSoCKZPhxdegFat4J134BxP60TEB/hkYDotLy+PoKAgBSYRcRmNKonUTpr0LSJSBUVF5uK4HTpAfj58/jkkJiosidQWCkwiIpXYtQtuvBGeew5Gj4asLDijZY+I1AIKTCIiFSguNucqdegAubnmqNK0aRpVEqmNFJhERMqxbx/84x8wbhyMGqVRJZHaTm0FRETOYBjw7rvw5JPQqBF8+il07251VSJiNY0wiYj8P0ePwsCB8NBDcOed8PXXCksiYtIIk4gI8NFH8MgjUFICK1bAgAFWVyQinkQjTCJSq+Xnw9ChcMcdcP318M03CksiUpZGmESk1vr8c4iJgSNHYN48c4TJz8/qqkTEE/nkCFNycjJhYWGEh4dbXYqIeKCCAoiLg65dITQUdu6ERx9VWBKRimlpFBGpVb79Fu6/32xGOXUqPPMM1KljdVUi4ul8coRJRORsJSUwcyZ07Gg2pPzyS5gwQWFJRKpGgUlEfF5ODvTpA089BSNHwtatcO21VlclIt5Ek75FxKd9/LHZV+mCC+CTTyAqyuqKRMQbaYRJRHzSqVPwxBNw++1mu4Cvv1ZYEpHzpxEmEfE5334L994LP/wASUkwYoTegBMR5zg9wmQYBpMnTyY0NBR/f3+6d+9OdnZ2pectX76csLAwbDYbYWFhrFy5stSfJyQkEB4eTmBgIJdddhn9+/dn9+7dzpYrIj7MMMyA1KmT+fO2beacJYUlEXGW04Fp2rRpzJgxg6SkJLZu3UpISAg9evQgPz+/wnMyMzOJjo4mJiaGnTt3EhMTw6BBg/jiiy8cx6SnpzNy5Ei2bNlCWloaRUVFREVF8ccffzhbsoj4oCNHzG7dTzwBjz1mvgXXvr3VVYmIr3CqD5NhGISGhhIbG8v48eMBsNvtBAcHk5iYyLBhw8o9Lzo6mry8PNauXevY16tXLxo1asTSpUvLPefo0aNcdtllpKen07Vr1yrVpz5MIrXDunXw4INm64AFC+C226yuSER8jVMjTHv37iUnJ4eoM2ZS2mw2unXrRkZGRoXnZWZmljoHoGfPnuc8Jzc3F4CLL764wmPsdjt5eXmlNhHxXXa72Sqgd2/o0MGc2K2wJCLu4FRgysnJASA4OLjU/uDgYMefVXRedc4xDIMxY8Zw00030f4cY+wJCQkEBQU5tmbNmlX1q4iIl/nhB+jcGWbPhldfNdsHhIRYXZWI+KpqBabFixcTEBDg2AoLCwHwO2tGpWEYZfadrTrnjBo1iq+//rrCx3WnxcXFkZub69gOHjxY2VcSES+0ZAlcdx38/jts2QKxsWafJRERd6lWW4G+ffsSERHh+NlutwPmiFGTJk0c+48cOVJmBOlMISEhZUaTKjrniSeeYPXq1WzcuJHLL7/8nPXZbDZsNluVvouIeJ+TJ+HJJ2H+fLjvPpgzBwIDra5KRGqDav03WWBgIG3atHFsYWFhhISEkJaW5jimoKCA9PR0IiMjK/yczp07lzoHIDU1tdQ5hmEwatQoVqxYwaeffkrLli2rU6qI+JjsbLMB5ZIl8Pbb8N57CksiUnOcalzp5+dHbGws8fHxtG3blrZt2xIfH0+DBg0YPHiw47ghQ4bQtGlTEhISABg9ejRdu3YlMTGRfv36sWrVKtavX8/mzZsd54wcOZIlS5awatUqAgMDHSNSQUFB+Pv7O1O2iHgRwzDffBs1Clq1MteBu/pqq6sSkdrG6U7f48aN49SpU4wYMYLjx48TERFBamoqgWf8p9+BAwe44IwJBpGRkSxbtoyJEycyadIkWrduTUpKSqnHfXPmzAGge/fupa63YMECHnzwQWfLFhEvkJ8Pw4ebo0qPPgqvvQYNGlhdlYjURk71YfJ06sMk4r2ysiA6Gg4fhjffhDMGrUVEapzeKxERj2IYkJwMN9wAAQHw1VcKSyJiPQUmEfEYJ07AXXeZ85WGDYPMTGjb1uqqRERcMIdJRMQVtm6FQYPM0LRiBQwYYHVFIiL/oxEmEbGUYZjdum/sjcVJAAAgAElEQVS6CS67zJy7pLAkIp7GJwNTcnIyYWFhhIeHW12KiJzD77+b85NGjjQfwW3aBC1aWF2ViEhZektORCyRnW3OV/r5Z3jrLfONOBERT+WTI0wi4tkWLza7dtepA9u2KSyJiOdTYBKRGvPnn/D443D//TBwIHzxBVx5pdVViYhUTm/JiUiN2LvXfASXnQ1z55qdu/38rK5KRKRqFJhExO1Wr4YHHoCLLzZ7K3XoYHVFIiLVo0dyIuI2RUUwYQL06wfdusH27QpLIuKdNMIkIm5x9Cjcey9s2ADTpsHYsXoEJyLeS4FJRFxu2za4805zkndaGtx8s9UViYg4R4/kRMSl3n7b7NrdpIn5CE5hSUR8gQKTiLiE3W52637kEXOC98aN0KyZ1VWJiLiGTz6SS05OJjk5meLiYqtLEakVfv7Z7Ku0c6fZtfuRR6yuSETEtbQ0iog4ZcMGGDQI6teHFSugUyerKxIRcT09khOR82IYMGMG3Hor/O1v5nwlhSUR8VUKTCJSbb//brYMePppc1u3Di691OqqRETcxyfnMImI+/zwg9kyYN8+eP99c7kTERFfpxEmEamydesgPBwKCsyFcxWWRKS2UGASkUoZhtmtu08f6NIFvvwSwsKsrkpEpOYoMInIOZ06BfffD+PHw7PPwqpVEBRkdVUiIjVLc5hEpEIHD0L//vD995CSYrYPEBGpjRSYRKRcmzebzSj9/eHzz+Haa62uSETEOj75SC45OZmwsDDCw8OtLkXEK82dC//4B1x1FWzdqrAkIqJO3yLiUFAAsbEwZw6MGmU2pqxXz+qqRESsp0dyIgLAkSNw992QmQnz5sGjj1pdkYiI51BgEhGysszJ3XY7fPYZ3Hij1RWJiHgWn5zDJCJVl5JiBqRLLzXnKyksiYiUpcAkUkuVlMDzz8M995hLnWzaBM2aWV2ViIhn0iM5kVro5El44AFYvhxefhnGjQM/P6urEhHxXE6PMBmGweTJkwkNDcXf35/u3buTnZ1d6XnLly8nLCwMm81GWFgYK1eurPDYhIQE/Pz8iI2NdbZckVrv0CHo2hXWroUVK8wO3gpLIiLn5nRgmjZtGjNmzCApKYmtW7cSEhJCjx49yM/Pr/CczMxMoqOjiYmJYefOncTExDBo0CC++OKLMsdu3bqVuXPn8re//c3ZUkVqvW3bzMVzjxwxG1P27291RSIi3sGpPkyGYRAaGkpsbCzjx48HwG63ExwcTGJiIsOGDSv3vOjoaPLy8li7dq1jX69evWjUqBFLly517Pv999+57rrrmD17Nv/85z+59tprmTlzZpXrUx8mkf/597/Nx3B//zt88AGEhFhdkYiI93BqhGnv3r3k5OQQFRXl2Gez2ejWrRsZGRkVnpeZmVnqHICePXuWOWfkyJHcdttt3HrrrVWqx263k5eXV2oTqe0MA6ZMgehoc6mTDRsUlkREqsupSd85OTkABAcHl9ofHBzM/v37z3leeeec/jyAZcuW8dVXX7F169Yq15OQkMCUKVOqfLyIrzt1Ch56yGwd8NJLEBen+UoiIuejWiNMixcvJiAgwLEVFhYC4HfWP4ENwyiz72znOufgwYOMHj2aRYsWUb9+/SrXFxcXR25urmM7ePBglc8V8TW//ALdusGHH5pvwz37rMKSiMj5qtYIU9++fYmIiHD8bLfbAXPEqEmTJo79R44cKTOCdKaQkJBSo0lnn7N9+3aOHDlCx44dHX9eXFzMxo0bSUpKwm63U6dOnTKfa7PZsNls1flKIj4pKwvuuMMMSJs3Q4cOVlckIuLdqjXCFBgYSJs2bRxbWFgYISEhpKWlOY4pKCggPT2dyMjICj+nc+fOpc4BSE1NdZxzyy238M0337Bjxw7H1qlTJ+677z527NhRblgSEdOHH0KXLtCkCXz5pcKSiIgrODWH6XRvpPj4eNq2bUvbtm2Jj4+nQYMGDB482HHckCFDaNq0KQkJCQCMHj2arl27kpiYSL9+/Vi1ahXr169n8+bNgBnM2rdvX+paF110EZdcckmZ/SLyP7NmwVNPQb9+sGgRNGhgdUUiIr7B6U7f48aN49SpU4wYMYLjx48TERFBamoqgYGBjmMOHDjABRf8bzArMjKSZcuWMXHiRCZNmkTr1q1JSUkp9bhPRKquuNgMSq+/DmPHQmIiXKCFj0REXMapPkyeTn2YpDb4/XdzPbh16yA5GSpofyYiIk7QWnIiXuznn83J3T/9BB9/DD17Wl2RiIhvUmAS8VJZWXD77VC3Lnz+OVxzjdUViYj4Ls1yEPFCH31kvgkXGgpbtigsiYi4mwKTiJd5/XXzLbioKHOZkzNaoImIiJv4ZGBKTk4mLCyM8PBwq0sRcZniYhg9Gp580nwj7v334aKLrK5KRKR20FtyIl7g5Em4915zYndSEgwfbnVFIiK1iyZ9i3i4o0fNN+G+/dbs4t27t9UViYjUPgpMIh7sp5+gVy/Iz4f0dDhjeUUREalBPjmHScQXfPkldO5sduzOzFRYEhGxkgKTiAf66CPo3h3atoWMDGjZ0uqKRERqNwUmEQ/z5ptm24BevWD9erjkEqsrEhERBSYRD2EYMHGi+QbcyJFm2wB/f6urEhER0KRvEY9QUABDh8LChfDKK/D00+DnZ3VVIiJymgKTiMXy8mDgQNi4EZYuhXvusboiERE5mwKTiIV++QX69IF9++CTT8yJ3iIi4nl8cg6TlkYRb5CdDTfcAL/9Bps3KyyJiHgyLY0iYoH0dOjfH664AtasgaZNra5IRETOxSdHmEQ82fvvQ1SU2Yhy40aFJRERb6DAJFKDZs+G6Gi46y5zZCkoyOqKRESkKhSYRGqAYcALL5j9lUaPhvfegwsvtLoqERGpKr0lJ+JmxcVmUHrzTUhIgPHj1WNJRMTbKDCJuNGff8J998GqVfD22/DQQ1ZXJCIi50OBScRNcnPNNeG++AJWroQ77rC6IhEROV8KTCJucPgw9O4N+/dDWhrcdJPVFYmIiDMUmERc7McfzbYBdjts2gTt21tdkYiIOEtvyYm40FdfQWSk+QZcRobCkoiIr/DJwKSlUcQKn31mLm/SsqW51Enz5lZXJCIirqKlUURcYNUqsyFl166wYgUEBFhdkYiIuJJPjjCJ1KSFC2HgQPMtuA8/VFgSEfFFCkwiTpg1Cx54AB58EJYtA5vN6opERMQdFJhEzoNhwJQp5jInY8fCvHlQp47VVYmIiLuorYBINZWUwFNPmaNL8fEwYYKWOhER8XVOjzAZhsHkyZMJDQ3F39+f7t27k52dXel5y5cvJywsDJvNRlhYGCtXrixzzKFDh7j//vu55JJLaNCgAddeey3bt293tmSR81ZUZC5v8vrrMGcOxMUpLImI1AZOB6Zp06YxY8YMkpKS2Lp1KyEhIfTo0YP8/PwKz8nMzCQ6OpqYmBh27txJTEwMgwYN4osvvnAcc/z4cW688Ubq1avH2rVr2bVrF//617/4y1/+4mzJIuflzz/Nyd1Llpjb8OFWVyQiIjXFqbYChmEQGhpKbGws48ePB8ButxMcHExiYiLDhg0r97zo6Gjy8vJYu3atY1+vXr1o1KgRS5cuBWDChAl8/vnnbNq06XzLU1sBcZn8fHNduMxMWL4c+vSxuiIREalJTo0w7d27l5ycHKKiohz7bDYb3bp1IyMjo8LzMjMzS50D0LNnz1LnrF69mk6dOnH33Xdz2WWX0aFDB+bNm3fOeux2O3l5eaU2EWf99hvccgts3w6pqQpLIiK1kVOBKScnB4Dg4OBS+4ODgx1/VtF5lZ3zf//3f8yZM4e2bdvyySefMHz4cJ588kkWLlxY4ecmJCQQFBTk2Jo1a3Y+X0vE4dAhsxnlvn2wYQN06WJ1RSIiYoVqBabFixcTEBDg2AoLCwHwO2vWq2EYZfadrbJzSkpKuO6664iPj6dDhw4MGzaMoUOHMmfOnAo/My4ujtzcXMd28ODB6nw9kVL27jUD0u+/m0uddOhgdUUiImKVarUV6Nu3LxEREY6f7XY7YI4YNWnSxLH/yJEjZUaQzhQSElJmBOrsc5o0aUJYWFipY6666iqWL19e4efabDZs6hwoLrB7N9x6K9Svb44sXXGF1RWJiIiVqjXCFBgYSJs2bRxbWFgYISEhpKWlOY4pKCggPT2dyMjICj+nc+fOpc4BSE1NLXXOjTfeyO7du0sds2fPHpprRVNxs2++MR/DNWwIGzcqLImIiJONK/38/IiNjSU+Pp62bdvStm1b4uPjadCgAYMHD3YcN2TIEJo2bUpCQgIAo0ePpmvXriQmJtKvXz9WrVrF+vXr2bx5s+Ocp556isjISOLj4xk0aBBffvklc+fOZe7cuc6ULHJO27ZBz57QvDl88glceqnVFYmIiCdwutP3uHHjOHXqFCNGjOD48eNERESQmppKYGCg45gDBw5wwQX/G8yKjIxk2bJlTJw4kUmTJtG6dWtSUlJKPe4LDw9n5cqVxMXFMXXqVFq2bMnMmTO57777nC1ZpFybN5tvwF19NaxdC2r5JSIipznVh8nTqQ+TVNX69Wafpeuvh9Wr4Yy8LyIiosV3RT76CG6/3Zy3tGaNwpKIiJSlwCS12vvvw4AB5qO4Dz4Af3+rKxIREU+kwCS11sKFcM89MGgQpKSAOlKIiEhFFJikVnrjDXjgAXj4YTM41atndUUiIuLJfDIwJScnExYWRnh4uNWliAeaMQMefxyefBLefBPq1LG6IhER8XR6S05qDcOAf/4Tnn8e4uLgpZegkhV8REREABf0YRLxBoYBkyaZIenFF2HiRKsrEhERb6LAJD7PMMwRpcREmDYNnnnG6opERMTbKDCJTzMMMyD961/m3KWnnrK6IhER8UYKTOKzDAPGjIGZM2HWLHjiCasrEhERb6XAJD7JMMy34JKSIDkZRoywuiIREfFmCkzic0pKYNQomDPHbBvw2GNWVyQiIt5OgUl8SkkJDB8Ob71lbo88YnVFIiLiCxSYxGcUF8PQofDOO/D22/Dgg1ZXJCIivkKBSXxCcbG5zMmiReZSJ/ffb3VFIiLiS7Q0ini9oiJzXbhFi8xNYUlERFxNS6OIVysqgpgYeP99WLIEBg2yuiIREfFFeiQnXquwEO67D1auhJQUGDjQ6opERMRXKTCJVyoogHvugY8+gv/8B/r1s7oiERHxZQpM4nUKCyE6GtasgRUr4Pbbra5IRER8nQKTeJXCQnNk6eOPzUdxt91mdUUiIlIb+ORbcuKbiorMOUsffgjLlyssiYhIzdEIk3iFoiKzXcDKleacpTvusLoiERGpTTTCJB6vuNjss7R8Ofz735rgLSIiNU8jTOLRiovNJU5SUsxtwACrKxIRkdpII0zisYqLzcVzly41m1Kqz5KIiFjFJwOTlkbxfiUl5kK6771nLneiDt4iImIlLY0iHqekBB57DBYsMBfSve8+qysSEZHaTnOYxKOUlMDjj8Pbb8O77yosiYiIZ/DJR3LinQwDRo2CefPM0aWYGKsrEhERMWmESTyCYUBsLMyZA/Pnm20EREREPIVGmMRyhgETJsCsWfDGG/Dww1ZXJCIiUprTgckwDCZPnkxoaCj+/v50796d7OzsSs9bvnw5YWFh2Gw2wsLCWLlyZak/LyoqYuLEibRs2RJ/f39atWrF1KlTKSkpcbZk8TBTpsC0aTBzJgwbZnU1IiIiZTkdmKZNm8aMGTNISkpi69athISE0KNHD/Lz8ys8JzMzk+joaGJiYti5cycxMTEMGjSIL774wnFMYmIib7zxBklJSXz33XdMmzaNV155hddff93ZksWDJCaagenll2H0aKurERERKZ9TbQUMwyA0NJTY2FjGjx8PgN1uJzg4mMTERIZVMFwQHR1NXl4ea9eudezr1asXjRo1YunSpQDcfvvtBAcHM3/+fMcxAwcOpEGDBrz33ntVqk9tBTzba6+Z85ZeeAEmT7a6GhERkYo5NcK0d+9ecnJyiIqKcuyz2Wx069aNjIyMCs/LzMwsdQ5Az549S51z00038d///pc9e/YAsHPnTjZv3kyfPn0q/Fy73U5eXl6pTTzTm2+aYWncODMwiYiIeDKn3pLLyckBIDg4uNT+4OBg9u/ff87zyjvn9OcBjB8/ntzcXNq1a0edOnUoLi7mpZde4t57763wcxMSEpgyZcr5fBWpQe++C8OHw5NPmo/i/PysrkhEROTcqjXCtHjxYgICAhxbYWEhAH5n/RvPMIwy+85W2TkpKSksWrSIJUuW8NVXX/Huu+8yffp03n333Qo/My4ujtzcXMd28ODB6nw9qQEpKeZbcEOHmpO8FZZERMQbVGuEqW/fvkRERDh+ttvtgDli1KRJE8f+I0eOlBlBOlNISEip0aTyznnmmWeYMGEC99xzDwDXXHMN+/fvJyEhgQcqaNJjs9mw2WzV+UpSgz74wOzcfd99ZvsAhSUREfEW1RphCgwMpE2bNo4tLCyMkJAQ0tLSHMcUFBSQnp5OZGRkhZ/TuXPnUucApKamljrn5MmTXHBB6fLq1KmjtgJeas0acwHdO+80lz25QB3ARETEizg1h8nPz4/Y2Fji4+Np27Ytbdu2JT4+ngYNGjB48GDHcUOGDKFp06YkJCQAMHr0aLp27UpiYiL9+vVj1apVrF+/ns2bNzvOueOOO3jppZe44ooruPrqq8nKymLGjBk8rK6GXue//zWDUp8+sHgx1FV/eRER8TJO/6tr3LhxnDp1ihEjRnD8+HEiIiJITU0lMDDQccyBAwdKjRZFRkaybNkyJk6cyKRJk2jdujUpKSmlHve9/vrrTJo0iREjRnDkyBFCQ0MZNmwYzz//vLMlSw3atAn69oWbbzbnL9WrZ3VFIiIi1edUHyZPpz5M1tq6FW65BTp1go8/Bn9/qysSERE5P5pJIm7x7bfQqxe0bw+rVyssiYiId1NgEpf78Ufo0QOaNTMnewcEWF2RiIiIcxSYxKV+/hluvRUaNoTUVPjLX6yuSERExHkKTOIyR4+aI0uGAevXw2WXWV2RiIiIa/hkYEpOTiYsLIzw8HCrS6k1TpyAnj3h+HEzLDVrZnVFIiIirqO35MRpf/xhhqVduyA9Ha65xuqKREREXEstBMUpdrvZlHLHDrNBpcKSiIj4IgUmOW9FRXDvveao0tq1cEbfUREREZ+iwCTnpaQEHnkEPvwQVqwwO3mLiIj4KgUmqTbDgNGj4b33YMkSuOMOqysSERFxLwUmqbZJkyApCd58E+65x+pqRERE3M8n2wqI+7zyCrz0kvm/jz1mdTUiIiI1Q4FJquztt2HcOJg4EcaOtboaERGRmqPAJFXywQcwdCgMHw5Tp1pdjYiISM1SYJJKbdhgzlW66y5z7pKfn9UViYiI1CyfDExaGsV1srKgb1/o0gUWLoQ6dayuSEREpOZpaRSp0A8/wE03QfPm8OmnEBBgdUUiIiLW8MkRJnHeL79AVBRcfDGsWaOwJCIitZsCk5Rx/Li5mG5REXzyCTRubHVFIiIi1lLjSinl5Emzc/fhw7BpE1xxhdUViYiIWE+BSRwKC+Huu2HHDnPO0lVXWV2RiIiIZ1BgEsBcTPfhhyEtDT7+GK6/3uqKREREPIcCk2AY8PTTsHgxLFsGPXpYXZGIiIhnUWASEhJg5kyYPRsGDbK6GhEREc+jt+Rqublz4bnnYMoUePxxq6sRERHxTApMtdjy5WZIGjUKJk2yuhoRERHP5ZOBSUujVO7TT2HwYIiOhtde0/pwIiIi56KlUWqhHTuga1eIjITVq+HCC62uSERExLP55AiTVGzvXujdG668Ev7zH4UlERGRqlBgqkWOHYNevcx14T7+WOvDiYiIVJXaCtQSp5c8OXECMjLgssusrkhERMR7KDDVAkVF5uTub76BDRugdWurKxIREfEubn8kZxgGkydPJjQ0FH9/f7p37052dvY5z8nOzmbgwIG0aNECPz8/Zs6c6e4yfZZhmK0D1q0z2wh06mR1RSIiIt7H7YFp2rRpzJgxg6SkJLZu3UpISAg9evQgPz+/wnNOnjxJq1atePnllwkJCXF3iT5tyhR46y2YPx969rS6GhEREe/k1sBkGAYzZ87kueee484776R9+/a8++67nDx5kiVLllR4Xnh4OK+88gr33HMPNpvNnSX6tLlzzcAUHw9DhlhdjYiIiPdya2Dau3cvOTk5REVFOfbZbDa6detGRkaGOy9d661ebT6KGzkSJkywuhoRERHv5tZJ3zk5OQAEBweX2h8cHMz+/ftdfj273Y7dbnf8nJeX5/JreIPMTLjnHhgwQF28RUREXMGlI0yLFy8mICDAsRUWFgLgd9a/sQ3DKLPPFRISEggKCnJszZo1c/k1PN3338Ptt5uTuxctgjp1rK5IRETE+7k0MPXt25cdO3Y4tsaNGwP/G2k67ciRI2VGnVwhLi6O3Nxcx3bw4EGXX8OT/fKL2ZiySRNYtQrq17e6IhEREd/g0kdygYGBBAYGOn42DIOQkBDS0tLo0KEDAAUFBaSnp5OYmOjKSwPm/KjaOkk8Nxf69DF7Lq1dC40aWV2RiIiI73DrHCY/Pz9iY2OJj4+nbdu2tG3blvj4eBo0aMDgwYMdxw0ZMoSmTZuSkJAAmKFq165djr8+dOgQO3bsICAggDZt2rizZK9UUAB33gn798OmTVALn0SKiIi4lds7fY8bN45Tp04xYsQIjh8/TkREBKmpqaVGog4cOMAFF/zv6eAvv/ziGJECmD59OtOnT6dbt25s2LDB3SV7FcOARx6BzZshLQ3at7e6IhEREd/jZxiGYXUR7pKXl0dQUBC5ubk0bNjQ6nLcYtIk+Oc/YelS8804ERERcT23d/oW93nrLTMsJSYqLImIiLiTApOXWrcOhg83m1M+84zV1YiIiPg2BSYvlJUFd98NvXvDrFlqTCkiIuJuCkxe5sABuO02aNcOli2Dum6fti8iIiI+GZiSk5MJCwsjPDzc6lJc6sQJs9eSzQYffQQXXWR1RSIiIrWD3pLzEna72cV7507IyDBHmERERKRm6IGOFzjdaykjA9avV1gSERGpaQpMXmDSJFi82Jyz1KWL1dWIiIjUPj45h8mXzJsHL70E06ZBdLTV1YiIiNROCkweLDXV7LP0+OMwdqzV1YiIiNReCkwe6ttvzV5LUVHqtSQiImI1BSYPlJNj9lpq0QJSUtRrSURExGoKTB7m5Eno2xcKC81eS4GBVlckIiIiGrvwICUlEBMD2dmwcSM0a2Z1RSIiIgIKTB5lwgRYuRI++AA6drS6GhERETnNJx/JeePSKHPnwiuvwIwZ5iM5ERER8RxaGsUDpKaaa8QNGwZJSXojTkRExNP45AiTNzmzfcBrryksiYiIeCIFJgupfYCIiIh3UGCyiNoHiIiIeA+NaVhA7QNERES8iwKTBU63D1i5Uu0DREREvIECUw073T7g1VehXz+rqxEREZGq0BymGpSWBiNGmNvo0VZXIyIiIlWlwFRDvv/ebB9w661qHyAiIuJtFJhqwG+/we23Q9Omah8gIiLijXzyX93JyckkJydTXFxsdSkUFMBdd8GJE/DllxAUZHVFIiIiUl1aGsWNDMNc7uSdd2D9eujatcZLEBERERfwyREmT/HaazBvHsyfr7AkIiLizTSHyU3WrIGnn4axY+Hhh62uRkRERJyhwOQG2dlwzz3mOnEvv2x1NSIiIuIsBSYXO3oU7rjDXFB38WKoU8fqikRERMRZmsPkQnY73Hkn/PEHfPaZFtQVERHxFU6PMBmGweTJkwkNDcXf35/u3buTnZ19znOys7MZOHAgLVq0wM/Pj5kzZ5Y5JiEhgfDwcAIDA7nsssvo378/u3fvdrZctzEMGD7cbB3wwQfQvLnVFYmIiIirOB2Ypk2bxowZM0hKSmLr1q2EhITQo0cP8vPzKzzn5MmTtGrVipdffpmQkJByj0lPT2fkyJFs2bKFtLQ0ioqKiIqK4o8//nC2ZLeYPt1sHzB/PnTubHU1IiIi4kpO9WEyDIPQ0FBiY2MZP348AHa7neDgYBITExk2bFiln9GiRQtiY2OJjY0953FHjx7lsssuIz09na5VfEe/pvowrV4N/ftDXBy89JLbLiMiIiIWcWqEae/eveTk5BAVFeXYZ7PZ6NatGxkZGU4Xd6bc3FwALr744gqPsdvt5OXlldrcbedOGDwYBgyAF190++VERETEAk4FppycHACCg4NL7Q8ODnb8mSsYhsGYMWO46aabaN++fYXHJSQkEBQU5NiaNWvmshrKk5NjvhH317/CwoVwgd45FBER8UnV+lf84sWLCQgIcGyFhYUA+Pn5lTrOMIwy+5wxatQovv76a5YuXXrO4+Li4sjNzXVsBw8edFkNZ/vzT3NUqbDQfCR30UVuu5SIiIhYrFptBfr27UtERITjZ7vdDpgjTU2aNHHsP3LkSJlRp/P1xBNPsHr1ajZu3Mjll19+zmNtNhs2m80l163M1KmwYwekp0MlZYmIiIiXq1ZgCgwMJPCM5kKGYRASEkJaWhodOnQAoKCggPT0dBITE50qzDAMnnjiCVauXMmGDRto2bKlU5/nauPHQ48ecP31VlciIiIi7uZU40o/Pz9iY2OJj4+nbdu2tG3blvj4eBo0aMDgwYMdxw0ZMoSmTZuSkJAAmKFq165djr8+dOgQO3bsICAggDZt2gAwcuRIlixZwqpVqwgMDHTMiQoKCsLf39+Zsl0iKAhuvtnqKkRERKQmONVWAMyRoClTpvDmm29y/PhxIiIiSE5OLjU5u3v37rRo0YJ33nkHgH379pU7YtStWzc2bNhgFlbBHKgFCxbw4IMPVqm2mmorICIiIr7N6cDkyRSYRERExBX0IryIiIhIJRSYRERERCqhwCQiIiJSCQUmERERkUr49KRvwzDIz88nMDDQpUNZCk0AAABgSURBVJ3HRUREpHbx6cAkIiIi4gp6JCciIiJSCQUmERERkUooMImIiIhUQoFJREREpBIKTCIiIiKVUGASERERqYQCk4iIiEglFJhEREREKqHAJCIiIlIJBSYRERGRSvz/RtziMZT/2vMAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 2 graphics primitives" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pt = point((find_root(real_part(pol),0.3,0.5),0), color='red', pointsize=30)\n", "P = plot(real_part(pol),(b,0.3,0.5))\n", "P+pt" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGICAYAAABcN9TCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzs3Xl8FOX9wPFPLkMIhCMCAcIpAgEkIIS7CIpVqnhUa9VaPFvbgra2VX+0VqBGjnAfIVxiOCRCUE655QggYBCjSICAIBA5lAg5CAZI8vtjSkI4QsJ3N/NM9vt+vXiV3czOPv28hvTps7MzXvn5+fkopZRSSqlieds9AKWUUkopJ9BJk1JKKaVUCeikSSmllFKqBHTSpJRSSilVAjppUkoppZQqAZ00KaWUUkqVgE6alFJKKaVKQCdNSimllFIloJMmpZRSSqkS0EmTUkoppVQJ6KRJKaWUUqoEdNKklFJKKVUCOmlSSimllCoBnTQppZRSSpWATpqUUkoppUpAJ01KKaWUUiVg5KTpp59+4qWXXuLRRx/lN7/5DRcuXCjy8zfffJPHHnvMptEppZRSyhN55efn59s9iCv179+ft956i7S0NFq1asWSJUvo06cPAPn5+QQHB9O+fXtWr15t80iVUkop5SmMW2nas2cPtWvXJiQkhM8++wyAmjVrFvx8165dnD59mrvvvtuuISqllFLKAxk3afrxxx/5/e9/D8CsWbNo0qQJHTp0KPh5QkICgE6alFJKKVWmfO0ewJW6d+8OwJEjR9i8eTORkZF4eXkV/DwhIYGgoCDatWtn1xCVUkop5YGMW2m65OOPPwbg8ccfL/J8QkIC3bt3x8fHx45hKaWUUspDGTtpSkxMpHbt2jRr1qzguX379nHy5En9aE4ppZRSZc7YSVNaWhoNGjQo8tzatWsB6Nmzpx1DUkoppZQHM3bS1L59e44cOUJubi4AX3/9Nf/5z3+oXr064eHhNo9OKaWUUp7GuBPBL/nXv/5Famoqv/rVr2jSpAmVKlXiwoUL9O7du8iJ4UoppZRSZcHIi1vm5+fz888/ExAQUPDcokWLePTRR1m6dCkPPvigjaNTSimllCcyctJ03333sXXrVo4fP05gYCD5+fl07dqVoKAgVq5caffwlFJKKeWBjDynKTExkQ4dOhAQEEBubi6vvfYaeXl5zJs3z+6hKaWUUspDGbnStGbNGtasWUN2djY//PADHTp04K9//St+fn52D00ppZRSHsrISZNSSimllGmM/HhOKaWUUso0OmlSSimllCoBnTQppZRSSpWATpqUUkoppUpAJ01KKaWUUiWgkyallFJKqRLQSZNSSimlVAnopEkppZRSqgR00qSUUkopVQI6aVJKKaWUKgGdNCmllFJKlYAjJk35+flkZGSgt8lTSimllF0cMWnKzMykSpUqZGZmumX/OTk5btmvJ9GGctpQThvKaUM5bShnakNHTJrc7YsvvrB7CI6nDeW0oZw2lNOGctpQztSGOmkCzp07Z/cQHE8bymlDOW0opw3ltKGcqQ197R6ACdLS0uweguNpQzltKKcN5bShnDYsuVOnYMIEyM2F/v0hJMR63tSGOmkCwsPD7R6C42lDOW0opw3ltKGcNixqyRL4/nvo0wdCQwufv3ABevaEb76xHs+bB199BRUrmttQP54Dli1bZvcQHE8bymlDOW0opw3lPLlhRgbs3Qvnz1uPBwyAhx+Gv/wF2re3Jk+XHD1aOGECOHAAUlKsv5va0CvfAd/jz8jIoEqVKqSnpxMUFOTy/WdnZ1OxYkWX79eTaEM5bSinDeW0oZynNty2DXr3hjNnoGVL2LDB+s8ffijcZupU+MMfrL+fPQsNGsClT+KCguDgQQgONrehrjQBo0ePtnsIjqcN5bShnDaU04ZyntAwKwsefRRq1LA+dktPh3/9y5owAezeDdHRRT+Og6KPAwNh5Uq4917rY7pPPrEmTGBuQ11pUkoppVSpvPEGjBhR+Pivf4Wvv4b16wufGzgQfvtb6NsXjh2Dl16CwYPLfqyupCtNQGRkpN1DcDxtKKcN5bShnDaU84SGx45d/TgyEqpUsR6HhUG/ftZ/JiZa5zKVZsJkakNdaQJ+/PFHatSo4fL9ehJtKKcN5bShnDaU84SGa9fCr35lfQPO1xcWL7Yep6dbE6TbbgN//5vfv6kNjV5pio6OpkWLFkRERLj1fT7++GO37t8TaEM5bSinDeW0oZwnNOzVy1pBmjwZtm+3JkxgrTS1aCGbMIG5DY2+TlO/fv3o169fwUqTu7h7UuYJtKGcNpTThnLaUM5TGoaHW3/cwdSGRq80lZXjx4/bPQTH04Zy2lBOG8ppQzkTGiYlQbt2UL8+GPpFtGKZ0PBadNIE5Obm2j0Ex9OGctpQThvKaUO5sm7488/W1/1/+1uIj7ee+81vYOdO6wKS//gHfPZZmQ5JzNTj0OiP58pKw4YN7R6C42lDOW0opw3ltKGcuxtu325NiLp2hdatrW+pzZhh/Sw+HqpXh9TUoq85etStQ3I5U49DXWkCNm3aZPcQHE8bymlDOW0opw3lXNnw4kU4csRaTQL4+GPo0sW6LUlEBGzcWHQVKT/fujJ3376Fz9WrB/fc47IhlQlTj0O95ADw008/Ub16dZfv15NoQzltKKcN5bShnKsanjpVeEPbWrVg9Wp46y1YurRwm5desiZK771nPfbygk8/hR49rFWnU6fg17+GkBDxcMqUqcehrjQBkyZNsnsIjqcN5bShnDaU04Zy0oa5udZKUsOGhTe0PXkS/v1vqFu36LZ168LEidZk6qmnYMECa6Ll5QVPPGHtx2kTJjD3ONSVJqWUUspGX3wBs2ZZk5vXXrP+/vLLV293330QFwfPPAM7dliTo/ffh4CAsh+zp9KVJsy9XLuTaEM5bSinDeW0oVxxDfPzrdWjb7+1Hu/fD927w/jx1jfg+va99knbQUHw9ttQrZp1Y9uTJ+HDD8vvhMnU41BXmv63f13BktGGctpQThvKaUO56zXMz4enn7YmOwD//a/18dqLLxZuU6UKbNoEnTvD2bPWc6+/Dm++CcHBZTB4Q5h6HOpKExAbG2v3EBxPG8ppQzltKKcN5a7VMCYGKlYsnDABDBxo3aPN+7L/JQ4PhzvusD6ymzjRusdbVJRnTZjA3OOw1JOmhIQE+vTpQ506dfDy8mLRokU3fM0HH3xAeHg4FStWpHbt2jz//POkpaXd1IDdoVevXnYPwfG0oZw2lNOGctpQrnPnXkRGwoAB8N131iUD+vcvvGzAJd7e1mUD5s61Lgnwu9/BvHnWz5o1s66/5LRLBbiKqcdhqSdNZ8+eJTw8nIkTJ5Zo+82bN9O3b19efPFFdu/eTXx8PImJibz00kulHqy77N271+4hOJ42lNOGctpQThvK9e27l//8B4YNs66pdPgw5OUV3cbbG8aMsVaffvtba0VpzhxnftPNHUw9Dkt9RfDevXvTu3fvEm+/bds2GjZsyKuvvgpAo0aNePnll4mKiirtW7tNYGCg3UNwPG0opw3ltKGcNpRJT4e9ewsbHj8O585Z33xbtcp67sEHrW+93XqrTYN0AFOPQ7ef09SlSxdSU1NZvnw5+fn5nDx5kgULFvDAAw9c9zU5OTlkZGQU+eNOJl5Ay2m0oZw2lNOGctqwZL7/Hh54AFq2hCFDCp8PCoJatQobVqhgfdS2bJl1UcoVK2DxYp0w3Yipx6HPoEGDBt3siwcPHsyTTz5J8+bNr7tNvXr1CAsL45lnnmHgwIFERUURHh5ObGwsPj4+13xNZGQk999/P8OGDWPYsGGMGTMGgAEDBuDv71+qMcbFxVGxYkWmT59O+/btGTZsGN27dycyMpImTZowf/58tm3bxoULF/j666/Jz88nLi6OsLAwRowYUbBtq1atmDFjBhUqVGD79u0cOHCArKwslixZQoMGDRgzZkzBtu3bt2f8+PEEBwezbt06Tpw4wYkTJ/j0008JDg5mwoQJBdt27dqV4cOHU79+fZYuXUpmZiYHDx5k27Zt+Pv7M2PGDNq1a1dk3E2bNiUuLo68vDx27drFrl27yM3NZd68eTRv3pyRI0cWbNu6dWumT59OQEAAW7du5eDBg2RkZLBs2TJCQ0MZO3ZswbYRERGMHz+eGjVqsHbtWn744QeOHTvGhg0bqFatGhMnTqRbt268++67dOvWjSFDhtCwYUMWL15MQkIC3t7efP755/j7+xMbG0vbtm0ZPnx4wf6bNWvG3LlzAUhKSmL37t1cuHCB+Ph4mjZtWmTc4eHhTJs2jcDAQLZs2cLhw4c5ffo0y5cvp27dukXG3aFDB8aMGUPNmjVZs2YNp06dIjU1lY0bN1K1alViYmLo0qULQ4YMKXhNo0aNWLhwIdnZ2aSkpLBjxw58fX2ZOXMmbdq0KTLusLAw5syZg7e3Nzt37mTv3r3k5OSwYMECmjRpwqhRowq2bdOmDVOmTKFy5cps2rSJI0eOcPr0aVauXElISAjjxo0r2LZjx46MHj2akJAQVq1axdq1awkICGDTpk0EBQUxefJkOnXqVGTcjRs35qOPPiInJ4c9e/awc+dOfHx8mD17NnfccQdRUVEF27Zo0YJZs2bh6+vLjh072LdvH+fOnWPhwoU0btyY0aNHF2zbtm1bYmJiCAoKIiEhgdTUVE6dOsXq1aupVatWkXF37tyZkSNHUqdOHZYvX86ZM2c4fPgwmzdvplKlSkydOpWOHTsydOjQIv/W4uPjOX/+PMnJySQlJQHW+Y4tW7Ys8m+tZcuWzJw5Ez8/PxITE9m/fz/Z2dksWrSIhg0bFhn3nXfeSXR0NNWqVWP9+vWsWLGCKlWqsGbNGmrUqMH48eMLtu3SpQtRUVGEhoaybNky0tPTOXToEFu3br3h74jc3Fy++eYbj/gdsWTJEmrWrOny3xFZWVkcOHCg3PyO6NhxOJ9/3p0ff4xk3bowfvhhDrVre/Pllzs5e/YjqlYN5ZZbFjBxYhPWrRtFjx7dmT8/kscfb8PUqTf3OyItLY2jR496xO+IDz/8kEaNGl31O8JuoksOeHl5sXDhQh555JHrbpOcnEyvXr147bXXuO+++zh+/Divv/46ERERvHfpuu9XyMnJIScnp+BxRkYG9erVc9slB44dO0adOnVcvl9Pog3ltKGcNpTThlfLzrbOPbpc48Zw6FDh41Gj4O9/t/6uDeVMbej2j+eGDh1K165def3112ndujX33XcfkyZNYsaMGRw/fvyar/H39ycoKKjIH3eacen20OqmaUM5bSinDeW0YaFjx6B1awgMhHbt4McfC3/2xBOFfw8MhMtP9dWGcqY2dPtK02OPPYavry/zLn2PEti6dStdunTh+++/L9FMUm+jopRSqqy99FLhjXABXn0Vxo0rfDx3rnVJgYcfts5tUuVfqVeasrKySEpKKjgn4dChQyQlJXHkyBHAOu+ob9++Bdv36dOHjz/+mJiYGA4ePMiWLVt49dVX6dChgzFLb6Zert1JtKGcNpTThnKe2PDiRThwAK78zlFmZtHHV/786aetW59cOWHyxIauZmrDUq80bdiwgZ49e171/LPPPktsbCzPPfcc3333HRs2bCj42YQJE5g8eTKHDh2iatWq3H333QwfPpy6V96u+TrcvdKUk5NT6hPMVVHaUE4bymlDOU9rmJFhXUByxw7rm29LlsBdd1k/27oV7r3Xup1JlSqwfj20bXvjfXpaQ3cwtWGpV5p69OhBfn7+VX8uXfI8Nja2yIQJ4JVXXmH37t1kZ2dz7Ngx5syZU+IJU1kYd/l6q7op2lBOG8ppQzlPaZifD6+9Zl1McscO67mMDHjjjcJtOneGPXusywQkJ5dswgSe09CdTG2oN+wFvv32W2677TaX79eTaEM5bSinDeXKc8PvvoNKlaxrJMXHFz2Z+5L27SExUfY+5blhWTG1od6wF/j888/tHoLjaUM5bSinDeXKY8P8fHjqKWjUCGrXtk7uvtaXtwMDYehQ+fuVx4ZlzdSGOmkCateubfcQHE8bymlDOW0oV94aTptmrSx9+KH1+OJF6+a5Dz8MNWsWbvfqq9Y94lxxn9jy1tAOpjYs9b3nyqPrXZlclZw2lNOGctpQrjw1TEmBP/3p6pvl5uVBaCjs3GndD65+fddMli4pTw3tYmpDXWkCDh8+bPcQHE8bymlDOW0oV54anjhx9YTJ29u6erePD9StCy+84NoJE5SvhnYxtaFOmoBu3brZPQTH04Zy2lBOG8qVp4YRERAeXvj43nutk8H793fv+5anhnYxtaFOmoAPL33YrW6aNpTThnLaUK48NQwIgE2b4P33Yd4869IB9eq5/33LU0O7mNpQLzkAXLx4EV9fPb1LQhvKaUM5bSinDeW0oZypDXWlCRg2bJjdQ3A8bSinDeW0oZw2lNOGcqY2NHqlKTo6mujoaHJzc0lJSdEb9iqllFLKNkavNPXr14/k5GQSpZdnvQFTbwzoJNpQThvKaUM5bSinDeVMbWj0StMl7j6nKTU1ldDQUJfv15NoQzltKKcN5bShnDaUM7Wh0StNZWXNmjV2D8HxtKGcNpTThnLaUE4bypnaUCdNQFhYmN1DcDxtKKcN5bShnDaU04ZypjbUSROQmZlp9xAcTxvKaUM5bSinDeW0oZypDXXSBJw5c8buITieNpTThnLaUE4bymlDOVMb6qQJuOOOO+weguNpQzltKKcN5bShnDaUM7WhTpqAFStW2D0Ex9OGctpQThvKaUM5bShnakO95ACQlZVFpUqVXL5fT6IN5bShnDaU04Zy2lDO1Ia60gSMHTvW7iE4njaU04Zy2vDmnDkDSUlw9qw2dAVtKGdqQ11pUkopD/bll3DvvZCWBvXqQUICNGxo96iUMpOuNGHu5dqdRBvKaUM5bVgy587B734HoaHw4IPWhAng6FF48kltKKXHoZypDXWlCTh16hS33nqry/frSbShnDaU04bFW7wYli+HI0dg5cprb/PHP55iyhRtKKHHoZypDXWlCViwYIHdQ3A8bSinDeW04dXS0mDJEoiOhkcegalTr54wVahg/eftt0OjRtpQSo9DOVMb+to9ABN06tTJ7iE4njaU04Zy2rDQhQtw+DD07AmpqVf/3MsL8vPB2xtmzICOHa2P65KTtaGUHodypjY0eqUpOjqaFi1aEBER4db3Sb3WbxRVKtpQThvKaUNrIvTCC3DLLdbK0fWSPP44jBsHmzbBU09B48bWa7ShnDaUM7Wh0StN/fr1o1+/fgXnNLmLA07rMp42lNOGcp7ccPlyePNN+O47yMq69jYNG0LTptCqFbz7buHHcpfz5Iauog3lTG1o9KSprNSrV8/uITieNpTThnKe2PDIERg61DpXKS/v+ts1aGCdCN66dfH788SGrqYN5UxtaPTHc2Vl69atdg/B8bShnDaU85SGeXnw6afWJKhLF5g8+foTJi8viImxVqBuNGECz2noTtpQztSGeskBIC0tjeDgYJfv15NoQzltKFfeG547Z52j9Oqr179kwCUdOsDzz8Ndd0FYWMnfo7w3LAvaUM7UhrrSBMTExNg9BMfThnLaUK48N5w2DSpVss5Jut6EqWJF+MUvrI/rEhLgT38q3YQJynfDsqIN5UxtqCtNSillqKQk65ttBw7AxYvX3sbb21pVqloVRo6Eli3LdoxKeRJdacLcy7U7iTaU04Zy5aFhRgb88Y/WidsREbB37/UnTLfcYp2vtHUrrFjhmglTeWhoN20oZ2pDXWkCMjMzqVy5ssv360m0oZw2lHNywwsXrI/VRo6EzMwbb//SSzBlirXS5EpObmgKbShnakNdaQLee+89u4fgeNpQThvKObHhqlXw5JPWtZMGDix+wtSoEcyZA3v2WOc4uXrCBM5saBptKGdqQ71OE/DLX/7S7iE4njaU04ZyTml44ADMnw+ffQaffFL8tn5+8PDD1rfgnn0W3P1/vp3S0GTaUM7UhrrSBOzZs8fuITieNpTThnImN8zIsK6r9Mwz1jfg/v3vG0+YevaExESIj4f+/d0/YQKzGzqFNpQztaGuNIGRn5s6jTaU04ZyJjb86SfrhrgDB0J29o23r1HDumfcwIFgx//ZNrGh02hDOVMb6qQJ3HpfO0+hDeW0oZwpDX/+2boR7s6d1snd6enFb+/nB9Wrwz/+Aa+/XjZjvB5TGjqZNpQztaF+PAfs3r3b7iE4njaU04Zydja8eBG2b7duhFunjrVK9H//V/yEycfHug5TVhacOGH/hAn0OHQFbShnakO95ABw7Ngx6tSp4/L9ehJtKKcN5exomJUFcXHw9tvWxKck/PzggQdg7lwICHDv+EpLj0M5bShnakOjV5qio6Np0aIFERERbn2fGTNmuHX/nkAbymlDubJqmJ0N771nfautZk3rYpQlmTDdcYd149zz52HhQvMmTKDHoStoQzlTG+pKk1JKlUB2tnVtpIULrY/hfv65ZK+rX9/69lv79u65rpJSquzoP2HMvVy7k2hDOW0o546Ghw/Do49CUBD87W+wcWPJJkxhYbBrl/X6Dh2cM2HS41BOG8qZ2lBXmoALFy7g5+fn8v16Em0opw3lXNEwL8+aGP3lL8XfKPdaGjeG99+H7t1FQ7CVHody2lDO1IYO+f8+7jV69Gi7h+B42lBOG8rdbMPDh2HAAGs1yccH7r67+BvlXi4wEO67D1JT4dtvnT1hAj0OXUEbypnaUFeagIMHD9K4cWOX79eTaEM5bShXmoZLlsDEifDll3DqVOnex8cHHnoIJkyAunVvYqAG0+NQThvKmdpQV5qArVu32j0Ex9OGctpQ7noN8/Ph4EGYNQuaNbMmPQ8/DGvWlHzCFBAAnTvDiBHWZQY+/rj8TZhAj0NX0IZypjbUK4ID9erVs3sIjqcN5bSh3OUN9+6FceNg3TpISbn5fbZqZV2D6dFHwdcDfmPqcSinDeVMbegBvwKUUuVdTg5s2wYzZ8Lzz1urSjfrllvgscfgzTetVakKFVw3TqWUs+mkCTh69KjdQ3A8bSinDUvu++/h66+tC0yuWHH5jXBvrqGfn3Uy99Ch1sqSJ9PjUE4bypnaUCdNQOfOne0eguNpQzlteG0//GDd+HbePFi0CM6cKW7rkjX08oLbb7cuK9Chg3XhSQO/3WwLPQ7ltKGcqQ1LfSJ4QkICffr0oU6dOnh5ebFo0aIbviYnJ4d///vfNGjQAH9/f2677TajLpEeHx9v9xAcTxvKaUP46ivr/KGuXa2Pxby8oFYt6N0bYmNvNGECuH5DHx+46y5Yv966FtO+ffDXv1ond+uEqZAeh3LaUM7UhqW+5MCKFSvYsmULd955J4899hgLFy7kkUceKfY1Dz/8MCdPniQyMpImTZrwww8/cPHiRbp06VKi99SLW5pPG8p5SsMLF6zrGU2aBJ98AseOlfyWJCXYO2A19PeHHj2sc5NatrTuEaduzFOOQ3fShnKmNiz1SlPv3r2JjIzk17/+dYm2X7lyJRs3bmT58uX06tWLhg0b0qFDhxJPmMrC8OHD7R6C42lDufLU8MIF2L8fBg+2blLr52etGnl5WSdah4VZ1zg6eNB1EyYfH6hVazizZ1sf6f38M6xcCT176oSpNMrTcWgXbShnakPRxS29vLxuuNL0l7/8hZSUFNq3b8/s2bMJDAzkoYce4p133iHgOrf4zsnJIScnp+BxRkYG9erV0xv2KmWItDTrPKMFC6yJycmT1jfYylJAAISHwz/+Ya0o3Xpr2b6/Usrz+AwaNGjQzb548ODBPPnkkzRv3vy620yYMIGEhAQqVapETEwM3bt3Z8SIEezZs4eHH374mq+JjIzk/vvvZ9iwYQwbNowxY8YAMGDAAPz9/Us1xri4OCpWrMj06dNp3749w4YNo3v37gUfFc6fP5+pU6fi5+fH119/TX5+PnFxcYSFhTFixIiCbVu1asWMGTOoUKEC27dv58CBA2RlZbFkyRIaNGjAmDFjCrZt374948ePJzg4mHXr1nHixAlOnDjBp59+SnBwMBMmTCjYtmvXrgwfPpz69euzdOlSMjMzOXjwINu2bcPf358ZM2bQrl27IuNu2rQpcXFx5OXlsWvXLnbt2kVubi7z5s2jefPmjBw5smDb1q1bM336dAICAti6dSsHDx4kIyODZcuWERoaytixYwu2jYiIYPz48dSoUYO1a9fyww8/cOzYMTZs2EC1atWYOHEi3bp1491336Vbt24MGTKEhg0bsnjxYiZOnEilSpX4/PPP8ff3JzY2lrZt2zJ8+PCC/Tdr1oy5c+cCkJSUxO7du7lw4QLx8fE0bdq0yLjDw8OZNm0agYGBbNmyhcOHD3P69GmWL19O3bp1i4y7Q4cOjBkzhpo1a7JmzRpOnTpFamoqGzdupGrVqsTExNClSxeGDBlS8JpGjRqxcOFCsrOzSUlJYceOHfj6+jJz5kzatGlTZNxhYWHMmTMHb29vdu7cyd69e8nJyWHBggU0adKEUaNGFWzbpk0bpkyZQuXKldm0aRNHjhzh9OnTrFy5kpCQEMaNG1ewbceOHRk9ejQhISGsWrWKsWPHUr16dTZt2kRQUBCTJ0+mU6dORcbduHFjPvroI3JyctizZw87d+7Ex8eH2bNnc8cddxAVFVWwbYsWLZg1axa+vr7s2LGDffv2ce7cORYuXEjjxo0ZPXp0wbZt27YlJiaGwMAg4uMTGDkylX/96xSvv76at9+uxeDB4xg8uDuDB0cyeHBnoqJGMnt2Hb74Yjnp6WfIzT0MbAYqAVOBjsBQoDsQCTTBOt/oPJAMJP3vX+gHQEtgxGXbtgRmYn3Mlgjsx98/myZNFjFhQkOaNh3Npk3dyc+PZNKkO1m/Ppq6dauxfv16RowYQUhICGvWrKFGjRqMHz++4L9jly5diIqKIjQ0lGXLlpGens6hQ4fYunXrDX9H5Obm8s0333jE74ghQ4ZQv359l/+OyMrK4sCBAx7xO2Lw4MHcfvvtLv8dkZaWxtGjR239HREUFERCQgKpqamcOnWK1atXU6tWrSLj7ty5MyNHjqROnTosX76cM2cKouzTAAAgAElEQVTOcPjwYTZv3kylSpWYOnUqHTt2ZOjQoUX+rcXHx3P+/HmSk5N56623aNGiBR988AEtW7Ys+LdmN7evNP3yl79k06ZNnDhxgipVqgDw8ccf8/jjj3P27NlrrjaV9UrTsWPHqFOnjsv360m0oZw7G+7aBTExsHq1dT6RyQIDrRO2+/aFxx+3PnYrKT0O5bShnDaUM7Wh22+jUrt2berWrVswYQIICwsjPz+f1NTUa77G39+foKCgIn/caeXKlW7dvyfQhnKlaZiVBa+8AiEhhecKFfendWtr0mTShCkgACIiICoKTpywvtGWn2/9d/vkE/jtb0s3YQI9Dl1BG8ppQzlTG7r9Ok1du3YlPj6erKwsKlWqBEBKSgre3t6Ehoa6++1LpGXLlnYPwfG0oVyFCi1p2RKSk+0eiWtVqQLt2lmrRj17WtdHKu1kqKT0OJTThnLaUM7UhqWeNF36XPqSQ4cOkZSURPXq1alfvz4DBgzg+++/Z9asWQA8/fTTvPPOOzz//PMMHjyYU6dO8frrr/PCCy9c90Twspaenm73EBxPG17fjBnw4osl2dKZDf38rBvXdu1qTYzuv9++W4/ocSinDeW0oZypDUs9adqxYwc9e/YsePz3v/8dgGeffZbY2FiOHz/OkSNHCn5eqVIl1qxZwyuvvEL79u0JDg7miSeeIDIy0gXDd43MzEy7h+B4ntrwuees+525hpkNAwKslaL77oO777Y+UjPw8imA5x6HrqQN5bShnKkNSz1p6tGjB8WdOx4bG3vVc82bN2fNmjWlfasyExYWZvcQHK+8Nqxd2zrfpmyUbUN/f2jeHO65B7p1sz46q1q1TIfgcuX1OCxL2lBOG8qZ2tDtJ4I7werVq+0eguM5uWFxJ1CX3YQJwDUN/f2he3frtiPff2+dXH2tPz//DElJMGoUPPqo8ydM4Ozj0BTaUE4bypnaUHTJgbLi7tuoZGZmUrlyZZfv15OY3rB/f4iOtnsUN5IJ3LhhjRqweTM0ber+ETmN6cehE2hDOW0oZ2pDXWkCxo0bZ/cQHM+Uhm+9de0VI/MnTAAla9iokU6YrseU49DJtKGcNpQztaGuNCnHCghw5Y1encHPD5YutU7KVkopVbZ0pQmM+iafU7m74bVWj5w2YfL1hUqVrAtSNm8OnTtbk58nnrAuSdC5cyRvvglvvw3vvANDhsCwYTB2rHVz24UL4cgRnTAVR/8ty2lDOW0oZ2pDXWkC0tLSCA4Odvl+PYkrGwYGQna2S3blMgEB8MwzMH68+65BpMehnDaU04Zy2lDO1Ia60gTMnz/f7iE43s02XLPm6hWksp4wJSRc/xtml/5kZ8PUqe69aKMehzeWlwd798Lx49f+uTaU04Zy2lDO1IY6aQI6d+5s9xAcr6QNe/QoOkH65S/dOy6wPuoqbkL0i1+4fwwlocdh8S5ehAcfhLAwqFMHvL0hOBj++Efr0gqgDV1BG8ppQzlTG+qkCTh69KjdQ3C86zV89tmik6SNG903hutNit56y33v6Up6HBZv+XJYsaLwcX4+/PQTTJsGoaHW8dWz51F27LBvjOWBHody2lDO1IZGT5qio6Np0aIFERERbn0fLy8vt+7fE1xqePRo0UnS/25B6FIzZ157cuR0ehwWryR5zpzxIiLCOum+f3/r4zxVOnocymlDOVMbGj1p6tevH8nJySQmJrr1fUJDQ926//LOywv69AnFywvq13ftvk+fvnpy1Leva9/DFHocFu9XvyrJx7lWw9xc69pcPj5Qr5515XNVMnocymlDOVMbGj1pKivbtm2zewiOUrly0dUki7zha69dPUEqD7f2KCk9Dovn4wMrV8L27XDXXdfb6uqGqanQtq21+vT225CR4dZhOp4eh3LaUM7UhnrJAeDUqVPceuutLt9veXLjldJTQOkamn/klS09Dktv40Z47jn47rtLz5TsOOzXDyZOdN+4nEyPQzltKGdqQ11pAiZPnmz3EIyTk3Ot1aTi3LhheTsHydX0OCy9u+6CQ4es4/X998HPr2QNo6Ot4/rJJ+H8eTcP0mH0OJTThnKmNtSVJlVg2jTr69uuYv6Rpcqjs2fh6adhyZKSv+a++6wrrgcEuG9cSinn05UmzL1ce1m4667C1STZhCmSHTt0JUnCk49DV4mMjCQwEBYvto7BuXOhevUbv27VKqhYEXr1ct7teVxNj0M5bShnakNdaQKysrKoVKmSy/drqqeegg8/dM2+Lh09ntbQHbSh3PUaXrxo3QYnPr5klyF48EH4+GPrBsmeRo9DOW0oZ2pDXWkCpk2bZvcQ3C4rq3BFSTJh6tXr2qtJntDQ3bSh3PUa+vpax31uLkRGwi23FL+fZcusbf74R89bNdXjUE4bypnaUCdNQO/eve0egttcmihVrnzz+7h8krRmzbW3Kc8Ny4o2lCtJw3//2zpxfPp06+bQxZk2zZpwjRvnogE6gB6HctpQztSGOmkCdu3aZfcQXMrHpzTferu20p6bVN4a2kEbypWm4YsvWiuwc+dCcZ8C5OXB3/4GVarAli0uGKTh9DiU04ZypjbUSRNQtZxcQfHSROlmbx0hOYm7vDS0kzaUu5mGTz0FmZkQG1v8t+cyMqBbN+jQwbpgZnmlx6GcNpQztaFOmoDKks+ubFa6ayldzVXfdnNyQ1NoQzlJw2eftVaeRowA72J+MyYmWrcL+te/yuc1nvQ4lNOGcqY21EkTsGfPHruHUGomTJQu58SGptGGctKG3t7wz39a13r6wx+uv11+PgwdCiEhYOjdHm6aHody2lDO1IZ6yQEgNTXV2JsDXk56jpI7OaWhybShnKsbnjwJjzxy44nRE0/AvHkue1tb6XEopw3lTG2oK01AbGys3UMolitWldzN9IZOoA3lXN2wVi3YuhUuXLDOZ7qe+fOhQgXrXnhOp8ehnDaUM7Wh0StN0dHRREdHk5ubS0pKisfdRkUyUVJKud4XX8A990B6+vW3eeghmDNHdpkPpZSZjF5p6tevH8nJySQmJrr1fUy6XPvNnth999323r7EpIZOpQ3l3N2wXTvrI7s337z+NkuWQGgobNjg1qG4jR6HctpQztSGRq80XeLuc5ouXryIr6+vy/dbGk5fVTKhodNpQ7mybLhnj7WqdODA9bd57TUYPbpMhuMyehzKaUM5UxsavdJUVkaOHGnbe9/s+Uqm3RTXzoblhTaUK8uGYWGwfz8MHnz9f8NjxkDdunDkSJkNS0yPQzltKGdqQ11pAr777jsaNmzo8v0W52YnSqayo2F5ow3l7GqYlgatWsGJE9f+uZ8fTJgAL79ctuO6GXocymlDOVMb6koTsHnz5jJ7r5tZWTJtVelayrJheaUN5exqGBwMR49a97W7lgsX4E9/Kv7aT6bQ41BOG8qZ2lAnTUCDBg3cuv9nnim/k6VL3N3QE2hDOTsb+vpCZKR12YHg4GtvM3269XGdybdh0eNQThvKmdpQJ01Abm6uW/bbqZM1Ufrgg5K/5l//ctZk6RJ3NfQk2lDOhIbdu8Px49Z/XsuxY9C8ubkXwzShodNpQzlTG5p3aroNjh8/7tL9deoE27eX7jVOmyRdydUNPZE2lDOloZ+fteK0b5/1DbuUlKI/P3sWnnzS+kjvn/+0Z4zXY0pDJ9OGcqY21JUmoEOHDi7Zz6WP4UozYXLiqtK1uKqhJ9OGcqY1bNYMvvkGHn/82j9//XXo0gWys8t2XMUxraETaUM5UxvqpAn46KOPRK+fPr30H8OVl8nSJdKGShu6gokN/fwgPh4WLLBuCHylrVuhTRs4eLDsx3YtJjZ0Gm0oZ2pDveQAkJOTg7+//0299mZO7i6PJA2VRRvKmd7wq6/ggQfg+++v/tktt1ir1G3alP24Lmd6QyfQhnKmNtSVJmDEiBGlfk1pvw1X3laWrnQzDVVR2lDO9Ibh4fD119btWK50/jx06ABjx5b9uC5nekMn0IZypjbUlaZS0pUlpZQrvPEGXO9/F0aPtm7BopQyi640UbIbA+rKUvFMvbmik2hDOSc1jIqCmBjrY7kr/f3vcP/9YMe3rp3U0FTaUM7UhrrSBBw7dow6depc82e33Va6EzTNr+kexTVUJaMN5ZzYcPNmuOce6+O5K732GgwaBGW5wO7EhqbRhnKmNjR6pSk6OpoWLVoQERHh1vdZsWLFNZ/38ir5hMnTVpaudL2GquS0oZwTG3brBidPQqNGV/9szBjrum/p6WU3Hic2NI02lDO1odGTpn79+pGcnExiYqJb36d169ZFHpfmozhPnyxdcmVDVXraUM6pDatWhS1brBPFr7Rnj3UNuH37ymYsTm1oEm0oZ2pDoydNZeWnn34CSjdZ+t3vdLJ0uUsN1c3ThnJObli7NiQlQXIy1KpV9GfLlkHXrtbtWdzNyQ1NoQ3lTG2okyZg8eKzpT7Je84c943Hic6ePWv3EBxPG8qVh4ZhYdbFMENCij6flmZd42n9eve+f3loaDdtKGdqQ4+/95w1WWpeom11Zen6mjcvWUN1fdpQrrw0/MUvrFWlFi2sj+cu+fJLePBB66O60FD3vHd5aWgnbShnakOPXmkqXF1aW+x2et7Sja1dW3xDdWPaUK68NVy2DHr3LvpcdjZ07GjdlsUdyltDO2hDOVMbevQlBwonTRnA1fs1v4w5MjIybL/wqNNpQ7ny2rBjR/j886LP+fnBd9+Bq7+VXV4bliVtKGdqQ49eaSo0/qpndMJUOuPHX91QlY42lCuvDVetgldeKfrchQvQoAE88gi48pzZ8tqwLGlDOVMb6krTFcyvoZTyRPn5cO+98OmnV/8sLAx27QIfn7Ifl1KexKNXmi6dq/TOO5F63pKQqZe8dxJtKFeeG3p5wSefwDvvXP2zPXvg7rvhxx/l71OeG5YVbShnakOPXmm65KeffqJ69eou368n0YZy2lDOExrm5Vknh69effXPwsOtaz1JeEJDd9OGcqY29OiVpkvi4uLsHoLjaUM5bSjnCQ29vWH5cujf/+qfffUV/OUv1jWdbpYnNHQ3bShnasNST5oSEhLo06cPderUwcvLi0WLFpX4tVu2bMHX15c2bdqU9m3d6he/+IXdQ3A8bSinDeU8paGPD4wbZ53jdKWYGHjooZvft6c0dCdtKGdqw1JPms6ePUt4eDgTJ04s1evS09Pp27cv99xzT2nf0u2+++47u4fgeNpQThvKeVJDb29YuRImTbIugnm5zz6D//s/yMws/X49qaG7aEM5UxuW+orgvXv3pveVV1srgZdffpmnn34aHx+fUq1OlQUf/cqJmDaU04ZyntbQ2xv+/Ge47z5o1QrOnSv82fDh1jfqPvmkdPv0tIbuoA3lTG1YJuc0vf/++3z77bcMHDiwRNvn5OSQkZFR5I871a5d26379wTaUE4bynlqw8aNYcUKaN++6POrVsGoUdY1nUrKUxu6kjaUM7Whz6BBgwbd7IsHDx7Mk08+Wew9Yvbv38/TTz/NsmXLqFGjBhs2bGDv3r386U9/uu5rIiMjuf/++xk2bBjDhg1jzJgxAAwYMAB/f/9SjTEuLo6KFSsyffp02rdvz7Bhw+jevTuRkZE0adKE+fPns3nzZnJzc/n666/Jz88nLi6OsLAwRowYUbBtq1atmDFjBhUqVGD79u0cOHCArKwslixZQoMGDRgzZkzBtu3bt2f8+PEEBwezbt06Tpw4wYkTJ/j0008JDg5mwoQJBdt27dqV4cOHU79+fZYuXUpmZiYHDx5k27Zt+Pv7M2PGDNq1a1dk3E2bNiUuLo68vDx27drFrl27yM3NZd68eTRv3pyRI0cWbNu6dWumT59OQEAAW7du5eDBg2RkZLBs2TJCQ0MZO3ZswbYRERGMHz+eGjVqsHbtWn744QeOHTvGhg0bqFatGhMnTqRbt268++67dOvWjSFDhtCwYUMWL17Mp59+iq+vL59//jn+/v7ExsbStm1bhg8fXrD/Zs2aMXfuXACSkpLYvXs3Fy5cID4+nqZNmxYZd3h4ONOmTSMwMJAtW7Zw+PBhTp8+zfLly6lbt26RcXfo0IExY8ZQs2ZN1qxZw6lTp0hNTWXjxo1UrVqVmJgYunTpwpAhQwpe06hRIxYuXEh2djYpKSns2LEDX19fZs6cSZs2bYqMOywsjDlz5uDt7c3OnTvZu3cvOTk5LFiwgCZNmjBq1KiCbdu0acOUKVOoXLkymzZt4siRI5w+fZqVK1cSEhLCuHHjCrbt2LEjo0ePJiQkhFWrVrFy5UoqVqzIpk2bCAoKYvLkyXTq1KnIuBs3bsxHH31ETk4Oe/bsYefOnfj4+DB79mzuuOMOoqKiCrZt0aIFs2bNwtfXlx07drBv3z7OnTvHwoULady4MaNHjy7Ytm3btsTExBAUFERCQgKpqamcOnWK1atXU6tWrSLj7ty5MyNHjqROnTosX76cM2fOcPjwYTZv3kylSpWYOnUqHTt2ZOjQoUX+rcXHx3P+/HmSk5NJ+t9XvD744ANatmxZ5N9ay5YtmTlzJn5+fiQmJrJ//36ys7NZtGgRDRs2LDLuO++8k+joaKpVq8b69etZunQp1apVY82aNdSoUYPx48cXbNulSxeioqIIDQ1l2bJlpKenc+jQIbZu3XrD3xG5ubl88803Rv+O+PDDYbz5ZnemTIkkP78pEEd+fh6rV+9i8+ZdtGtXst8RH330EbVq1XL574isrCwOHDjgEb8j5s2bR7169Vz+OyItLY2jR496xO+I2bNnc9ttt131O8JuoksOeHl5sXDhQh555JFr/jw3N5dOnTrx4osvFkySBg0axKJFiwp+aV5LTk4OOTk5BY8zMjKoV6+e2y458OOPP1KjRg2X79eTaEM5bSinDa1v1v3f/1kfzV1SqRK89x488cSNX68N5bShnKkN3frxXGZmJjt27KB///74+vri6+vLf//7X7766it8fX1Zt27dNV/n7+9PUFBQkT/uNGXKFLfu3xNoQzltKKcN4Ve/gujoonc8yMqC3/4WSnKGhDaU04ZypjZ060pTXl4eycnJRZ6bNGkS69atY8GCBTRq1IjAwMAbvo+7L26plFLlzcyZMHgwHDpU+FxIiHVi+J132jcupZys1CtNWVlZJCUlFXy8dujQIZKSkjhy5AhgnXfUt29fa+fe3rRq1arIn5o1a1KhQgVatWpVoglTWTD1cu1Oog3ltKGcNiz07LPWN+gud+IEtGsHzZrBsWPXfp02lNOGcqY2LPVK04YNG+jZs+dVzz/77LPExsby3HPP8d1337Fhw4Zrvr4k5zRdyd0rTdnZ2VSsWNHl+/Uk2lBOG8ppw6sNGgQTJ159lfDf/Abmz796e20opw3lTG1Y6pWmHj16kJ+ff9Wf2NhYAGJjY687YQJr0lSaCVNZiImJsXsIjqcN5bShnDa82qBB8J//XP38ypXWrVh+/rno89pQThvKmdpQ7z0HPPjgg3YPwfG0oZw2lNOG1/bnP199y5XMTOuE8SsnVNpQThvKmdpQJ03AV199ZfcQHE8bymlDOW14bbfcAqtXw/79cOUtvebNgw8+KHysDeW0oZypDXXSBAQHB9s9BMfThnLaUE4bFq9JE/jHP4o+d/QoPPMMTJ9uPdaGctpQztSGOmkCAgIC7B6C42lDOW0opw1v7OGHrcsONGtW9Pnp0+HAAW3oCtpQztSGOmkCUlJS7B6C42lDOW0opw1L5le/si5JcLnt2yE8HFau1IZSehzKmdrQ1+4BmOCee+6xewiOpw3ltKGcNiy5N96Ac+dg0qTCyxFkZ8OuXfeQlwfe+n+pb5oeh3KmNtR/FsDMmTPtHoLjaUM5bSinDUvOxwf++1/o06fo84sWzSQiAk6ftmdc5YEeh3KmNhTdRqWs6G1UlFLKPU6ehMcfh88+g7y8wucHDrSu8aSUKqQrTZh7uXYn0YZy2lBOG5ZerVqwaRP06HHpGavh+fN2jcj59DiUM7Wh0StN0dHRREdHk5ubS0pKittWmnJzc/Hx8XH5fj2JNpTThnLa8OZt2AAPPghnz+bSoIEPmzdDaKjdo3ImPQ7lTG1o9EpTv379SE5OJjEx0a3vExUV5db9ewJtKKcN5bThzevRA779Fv785yh27SqcMKWlwb59kJtr6/AcRY9DOVMbGr3SdIm7z2k6fPgwDRo0cPl+PYk2lNOGctpQ7vKGixfDk09a96f7xS+sq4pXqGDzAB1Aj0M5UxsavdJUVhISEuweguNpQzltKKcN5S5v+I9/FN7Qd9MmiIuzaVAOo8ehnKkNddIENGrUyO4hOJ42lNOGctpQ7vKGV34OMXAgTJtWxgNyID0O5UxtqJMm4OLFi3YPwfG0oZw2lNOGcpc3HDWq6MdxR4/Cyy/Dtm02DMxB9DiUM7WhTpqAEydO2D0Ex9OGctpQThvKXd7wkUesiVLFioU/z8+H8ePh+HEbBucQehzKmdpQJ01Au3bt7B6C42lDOW0opw3lrmx4663WxS8vFxcHHTvCTz+V4cAcRI9DOVMb6qQJWLRokd1DcDxtKKcN5bSh3LUavvcexMSAl1fhc0ePwubNZTgwB9HjUM7UhnrJAeDnn3+mgn6PVkQbymlDOW0oV1zDhg3h8GHr715e8OWXEB5edmNzCj0O5UxtqCtNwMiRI+0eguNpQzltKKcN5YpruGgRdOoEzZrB1Kk6YboePQ7lTG2oK01KKaVuWk4OxMdbN/v9zW8gIMDuESnlPrrShLk3BnQSbSinDeW0oVxpGublwQMPwO9/D88+C7/8JRj6TfEypcehnKkNdaUJ66uNISEhLt+vJ9GGctpQThvKlabht99CkyZFn/vmG2jZ0g0DcxA9DuVMbagrTcDSpUvtHoLjaUM5bSinDeVK07B69avvRde1q95uRY9DOVMb6qQJaNOmjd1DcDxtKKcN5bShXGkaVqtmTZDq1i18Lj0dnnvO+k9PpcehnKkNjZ40RUdH06JFCyIiItz6PmlpaW7dvyfQhnLaUE4bypW24SOPwCefFH3u/HkYMgQyM104MAfR41DO1IZGT5r69etHcnIyiYmJbn2fc+fOuXX/nkAbymlDOW0odzMNW7WCXr2KPhcVBfff76JBOYweh3KmNjR60lRWbr/9druH4HjaUE4bymlDuZtp6OMDy5fDO+8Uff6zz+D0aRcNzEH0OJQztaFOmoD169fbPQTH04Zy2lBOG8rdbEM/P+jbt+iJ4aGhUKWKiwbmIHocypnaUC85AKSnp1PFE/9lu5A2lNOGctpQTtpw1Sp4910IDISRIz3z8gN6HMqZ2lBXmoAJEybYPQTH04Zy2lBOG8pJG953HyQkwIoVnjlhAj0OXcHUhrrSpJRSSilVArrShLmXa3cSbSinDeW0oZw2lNOGcqY21JUm4MyZM1StWtXl+/Uk2lBOG8ppQzl3NczPh/79YfZsqF8f5s+HFi1c/jZG0ONQztSGutIEzJkzx+4hOJ42lNOGctpQzl0N58+HSZOsC17u3g0vvOCWtzGCHodypjbUSRNw11132T0Ex9OGctpQThvKuavhyZNFH6ekwOLFbnkr2+lxKGdqQ500Ad9++63dQ3A8bSinDeW0oZy7Gv7613D5TetPn7ZuwTJsmFvezlZ6HMqZ2lAnTcAtt9xi9xAcTxvKaUM5bSjnroahofDll9bk6XJz57rl7Wylx6GcqQ110gTUqlXL7iE4njaU04Zy2lDOnQ1DQqzVpcs1auS2t7ONHodypjbUSRPwxRdf2D0Ex9OGctpQThvKubvhM8/AG2/AbbdZN/SdPNmtb2cLPQ7lTG1o9CUHoqOjiY6OJjc3l5SUFLddcuDkyZPGzmqdQhvKaUM5bSinDeW0oZypDY1eaerXrx/JyckkJia69X2mTZvm1v17Am0opw3ltKGcNpTThnKmNjR6pekSvY2KUkoppexm9EpTWTH1cu1Oog3ltKGcNpSzs2F2Njz/vHWl8Jdfhpwc24YiosehnKkNdaUJOHfuHAEBAS7fryfRhnLaUE4bytnZ8I03YMSIwseDBsHAgbYMRUSPQzlTG+pKEzBp0iS7h+B42lBOG8ppQzk7Gx44UPTxhg1w/LgtQxHR41DO1IY6aQIeeughu4fgeNpQThvKaUM5Oxv+5jdFH2/YAC1bWveqcxI9DuVMbaiTJmDnzp12D8HxtKGcNpTThnJ2NnzqKVi9Gpo0KXzu9GmYOtW2Id0UPQ7lTG2okyagRo0adg/B8bShnDaU04Zydje89164886iz1WpYs9YbpbdDcsDUxvqpAnw9/e3ewiOpw3ltKGcNpQzoWFUlPWxHECPHvDPf9o6nFIzoaHTmdpQJ02YezdlJ9GGctpQThvKmdCwQQP45hs4fx7Wr4dLX5pOSYFPP4XMTHvHdyMmNHQ6UxvqpAno0aOH3UNwPG0opw3ltKGcSQ39/Ar/Pnu2df2mXr2gfXtIS7NvXDdiUkOnMrVhqSdNCQkJ9OnThzp16uDl5cWiRYuK3f7jjz/m3nvvpUaNGgQFBdG5c2dWrVp10wN2h9mzZ9s9BMfThnLaUE4bypna8J13IDfX+ntKCsyda+94imNqQycxtWGpL265YsUKtmzZwp133sljjz3GwoULeeSRR667/d/+9jfq1KlDz549qVq1Ku+//z4jR45k+/bttG3btkTv6e6LW+bl5eHtrYtuEtpQThvKaUM5Uxu2bQtJSYWP77jDuvDlY4/ZN6brMbWhk5jasNQj6t27N5GRkfz6178u0fZjx47ljTfeICIigttvv50hQ4Zw++23s3Tp0lIP1l2GDBli9xAcTxvKaUM5bShnasNJk+DWWwsf79oFTzwBbr6f+00xtaGTmNpQdBsVLy+vG640XSkvL4+GDRvyxhtv0L9//2tuk5OTQ85lNx3KyMigXr16utJkMG0opw3ltKGcyQ3z8qyJ0/LfmKsAACAASURBVOnThc9NnQp/+IN9Y7oWkxs6hakNfQYNGjToZl88ePBgnnzySZo3b17i14wcOZL169cTExNDYGDgNbeJjIzk/vvvZ9iwYQwbNowxY8YAMGDAgFJ/DTEuLo6KFSsyffp02rdvz7Bhw+jevTuRkZE0adKE+fPnM336dPz8/Pj666/Jz88nLi6OsLAwRowYUbBtq1atmDFjBhUqVGD79u0cOHCArKwslixZQoMGDRgzZkzBtu3bt2f8+PEEBwezbt06Tpw4wYkTJ/j0008JDg5mwoQJBdt27dqV4cOHU79+fZYuXUpmZiYHDx5k27Zt+Pv7M2PGDNq1a1dk3E2bNiUuLo68vDx27drFrl27yM3NZd68eTRv3pyRI0cWbNu6dWumT59OQEAAW7du5eDBg2RkZLBs2TJCQ0MZO3ZswbYRERGMHz+eGjVqsHbtWn744QeOHTvGhg0bqFatGhMnTqRbt268++67dOvWjSFDhtCwYUMWL17MpEmTCAwM5PPPP8ff35/Y2Fjatm3L8OHDC/bfrFkz5v7vRISkpCR2797NhQsXiI+Pp2nTpkXGHR4ezrRp0wgMDGTLli0cPnyY06dPs3z5curWrVtk3B06dGDMmDHUrFmTNWvWcOrUKVJTU9m4cSNVq1YlJiaGLl26MGTIkILXNGrUiIULF5KdnU1KSgo7duzA19eXmTNn0qZNmyLjDgsLY86cOXh7e7Nz50727t1LTk4OCxYsoEmTJowaNapg2zZt2jBlyhQqV67Mpk2bOHLkCKdPn2blypWEhIQwbty4gm07duzI6NGjCQkJYdWqVYwbN47q1auzadMmgoKCmDx5Mp06dSoy7saNG/PRRx+Rk5PDnj172LlzJz4+PsyePZs77riDqKiogm1btGjBrFmz8PX1ZceOHezbt49z586xcOFCGjduzOjRowu2bdu2LTExMQQFBZGQkEBqaiqnTp1i9erV1KpVq8i4O3fuzMiRI6lTpw7Lly/nzJkzHD58mM2bN1OpUiWmTp1Kx44dGTp0aJF/a/Hx8Zw/f57k5GSS/vc5ywcffEDLli2L/Ftr2bIlM2fOxM/Pj8TERPbv3092djaLFi2iYcOGRcZ95513Eh0dTbVq1Vi/fj2jRo0iJCSENWvWUKNGDcaPH1+wbZcuXYiKiiI0NJRly5aRnp7OoUOH2Lp16w1/R+Tm5vLNN994xO+IoUOHUr9+fZf/jsjKyuLAgQOi3xGjRo0kMLA7ycmRQDi+vtN4/vlA9uwx63fEO++8Q5MmTVz+OyItLY2jR496xO+It99+m7CwsKt+R9itTFea4uLieOmll1i8eDG9evW67nZlvdJ05MgR6tev7/L9ehJtKKcN5bShnOkNz52zbup77Bj8/vfQtavdI7qa6Q2dwNSGZbb2NW/ePF588UXmz59f7IQJrItaBQUFFfnjThs2bHDr/j2BNpTThnLaUM70hgEB8PbbMHly4YRpzx548EHo2dO6DYvdTG/oBKY29C2LN4mLi+OFF14gLi6OBx54oCzeslRuu+02u4fgeNpQThvKaUM5pzXMz4f774cjR6zH27bBvn1g5yKF0xqayNSGpV5pysrKIikpqeCchEOHDpGUlMSR/x2xAwYMoG/fvgXbx8XF0bdvX0aNGkWnTp0KPrtPT0930X8Fucs/ClQ3RxvKaUM5bSjntIbp6YUTJoCff4aVK+0bDzivoYlMbVjqSdOOHTto27ZtwTWW/v73v9O2bVvefvttAI4fP14wgQKYMmUKFy9epF+/ftSuXbvgz1//+lcX/VeQ+/HHH+0eguNpQzltKKcN5ZzWsGpV6NKl6HMvvwyX/X/3Mue0hiYytaHoRPCy4u6LW+7fv5/bb7/d5fv1JNpQThvKaUM5JzbMyIB337Vu9Hu5r7+2LoJZ1pzY0DSmNjTvIgg2WLJkid1DcDxtKKcN5bShnBMbBgXBm2/ClZf1ueUWe8bjxIamMbWhrjQB586dIyAgwOX79STaUE4bymlDOSc3HDMG/vlP6yKYAwaAXReVdnJDU5jaUFeagFGjRtk9BMfThnLaUE4byjm54WuvQVoanDpVOGHKzoYPP4TFi63JVFlwckNTmNpQV5qUUkqVSzk50K0b7NhhPX76afjgA3vHpJxNV5qwbtuiZLShnDaU04Zy5anh558XTpgA5s6FM2fc/77lqaFdTG2oK03AyZMnqVWrlsv360m0oZw2lNOGcuWp4d690KKFdQFMsE4Uv+sumDjRet5dylNDu5jaUFeagMWLF9s9BMfThnLaUE4bypWnhs2bw/jx1rfrwDqnaf166NPHve9bnhraxdSGOmkC2rVrZ/cQHE8bymlDOW0oV94a9u8Pc+YUfe7QIbhwwX3vWd4a2sHUhjppwloGVDLaUE4bymlDufLYsHNnqF278PGDD4Kfn/verzw2LGumNiyTG/berOjoaKKjo8nNzXXr+5w/f96t+/cE2lBOG8ppQ7ny2PDWW60b+c6cad125Y9/LPzZTz9B5cqunUSVx4ZlzdSGRq809evXj+TkZBITE936PqbeTdlJtKGcNpTThnLltWH9+vCf/8Arr4C/P5w/b604BQdDzZqQkOC69yqvDcuSqQ2NnjSVlY0bN9o9BMfThnLaUE4bynlKww8+gE8+sf5+5gz06+e6fXtKQ3cytaFecgA4c+YMVatWdfl+PYk2lNOGctpQzlMaTppUdKJUtSqMHg3PPQdeXrJ9e0pDdzK1oa40ARMnTrR7CI6nDeW0oZw2lPOUhk89VfRaTWfOwAsvwFtvyfftKQ3dydSGutKklFLKI509C3/9K7z3XuFzrVrBrl32jUmZTVeaMPdy7U6iDeW0oZw2lPOkhoGBcP/9RZ9r3ly+X09q6C6mNtSVJiA9PZ0qVaq4fL+eRBvKaUM5bSjniQ2jomDBAmjSxLrFSvXqsv15YkNXM7WhrjQBs2bNsnsIjqcN5bShnDaU88SGb7xh3dx37lxrwnTuHPzud1C3Ljz6KGRklG5/ntjQ1UxtqJMmoGfPnnYPwfG0oZw2lNOGctoQhg61JlDHjsGiRaU/OVwbypnaUCdNwP79++0eguNpQzltKKcN5bQhHD1a9PGRI6V7vTaUM7WhTpqAgIAAu4fgeNpQThvKaUM5bWh9NOf7v5uMeXvD739futdrQzlTGxp977myEhwcbPcQHE8bymlDOW0opw2hVy/rXnWffQbt21s3/C0NbShnakNdaQKSkpLsHoLjaUM5bSinDeW0oaVdO+s+daWdMIE2dAVTG+olB4ATJ04QEhLi8v16Em0opw3ltKGcNpTThnKmNtSVJmD69Ol2D8HxtKGcNpTThnLasHhpafDEExAeDoMHX3sbbShnakOjV5qio6OJjo4mNzeXlJQUvY2KUkopWz3xBMTHFz6eM8c6cVx5BqNXmvr160dycjKJiYlufR9TL9fuJNpQThvKaUM5bVi8lJTiH4M2dAVTGxq90nSJu89p+vnnn6lQoYLL9+tJtKGcNpTThnLasHj//S8MHGj9/ZZbYPNmiIgouo02lDO1odErTWVlwoQJdg/B8bShnDaU04Zy2rB4b79tXS180CDYsqVwwrRiBcTGwo8/akNXMLWhrjRhXXn09ttvd/l+PYk2lNOGctpQThuW3htvwIgR1t8bNIB58/bTsaM2lDD1ONSVJuCLL76wewiOpw3ltKGcNpTThqU3ZUrh3w8fhlmztKGUqcehTprAyGtBOI02lNOGctpQThuW3pXJGjfWhlKmHoc6aQJ8ffVuMlLaUE4bymlDOW1YenPnQlgYVK8O//kPdOxoNczNhQsXbB6cQ5l6HOqkCTh06JDdQ3A8bSinDeW0oZw2LL127SA52brw5X//azWcMwcqV4aAADD02/NGM/U41BPBgcOHD9OgQQOX79eTaEM5bSinDeW0odzevYcJD2/A+fOFz+3eDS1a2DcmpzH1ONSVJmDu3Ll2D8HxtKGcNpTThnLaUG7u3LlFJkwAGRn2jMWpTD0OdaUJyM3NxcfHx+X79STaUE4bymlDOW0ol5ubyyuv+BATYz2+7z745BPQrCVn6nGoK03A0KFD7R6C42lDOW0opw3ltKHc0KFDmTTJulr42rX/3969B8d4LnAc/60kIsJqEEQTcUklRBpxDXHQIlOn7Zz2nBmXXkZN+wcnnUP/ONNoOyN6cRJFKgQtDeqSqqIURUpI3KWSQ6qRICIuqSIk6xIVz/ljj+gStevZ932f3f19ZjL1rt13n3w9yTx9d/d9gQ0brAumnTuBYcOA558HjhwxepRqU3Ue8kgTERGRxn79FQgLAywW63ZQEHDqlPVSLOQ6eKQJ6l4Y0JWwoTw2lMeG8thQXn0NS0vvLZgA4Px566ftqH6qzkMeaQJQXl6OkJAQp+/Xk7ChPDaUx4by2FBefQ2rq4Fu3YDTp63bMTFAXh7QgIcu6qXqPFT6nys9PR1du3ZF7/svIe1k27Zt03T/noAN5bGhPDaUx4by6mvYtKn1PU7vvms9AeaPP1oXTIWFwL//DUybBtTUGDBYRak6D9U85eb/JSQkICEhoe5Ik1Y6d+6s2b49BRvKY0N5bCiPDeU9rGFICJCcfG+7rAyIi7t3OoL9+4HVq3UYoAtQdR4qfaRJLzdu3DB6CC6PDeWxoTw2lMeG8uxtuGuX7fmbNm3SaEAuSNV5yEUTgEt8N540NpTHhvLYUB4byrO3Ydeutu9p6tZNowG5IFXnIRdNAKKjo40egstjQ3lsKI8N5bGhPHsbxsRYL/Y7cCDwj38Aa9ZYbz95Epg/H1D0bT26UHUectEEYMOGDUYPweWxoTw2lMeG8thQniMNR460nvTy22+t73kqKrIupsaPB4YOBT77TMOBKkzVechTDgC4fv06Gjdu7PT9ehI2lMeG8thQHhvKk2n4ySfABx/c246KAg4fdtLAXIiq85BHmgDMnDnT6CG4PDaUx4by2FAeG8qTafjkk3++7SlUnYc80kRERKSIO3eAf/3L+nJdWBiwfDkQGmo9KeZPPwFPPw106mT0KD0XjzRB3dO1uxI2lMeG8thQHhvKk2nYoAEwZw5QUWE9JUFoqHWx1K0b8Pe/W/+bne3EwSpK1XnII00AfvvtNwQGBjp9v56EDeWxoTw2lMeG8pzd8K23gC+/vLf98sv3PmnnrlSdhzzSBGCNu88+HbChPDaUx4by2FCesxsGBPz5tjtSdR7qsmjKycnBiy++iLZt28JkMuG7777T42ntpvW17TwBG8pjQ3lsKI8N5Tm74XvvAX/5C2AyAT17AndfuSors17DTtHzQEpRdR7qsmi6du0aoqOjMWfOHD2ezmHnz583eggujw3lsaE8NpTHhvKc3TAgAMjJAW7fBvLygKAgYOtWICICGDbM+j6nkyed+pSGU3Ue6nLB3uHDh2P48OF6PNVjqa2tNXoILo8N5bGhPDaUx4bytGr4x0uupKQAN29a/1xRYT2D+LRpmjytIVSdh7osmhxVU1ODmpqauu2qP17RUAPt27fXdP+egA3lsaE8NpTHhvL0aOjv/+fbrk7VeeiVlJSUpOcTTpkyBaNGjUJERMRD7/Pxxx/jueeeQ3JyMpKTk5GamgoAmDRpEnx9fR16vszMTDRu3BgLFy5Er169kJycjIEDB+Ljjz9GWFgYvvnmG2RnZ+POnTs4fPgwhBDIzMxEly5d8Omnn9bdt1u3bsjIyECjRo2wf/9+HD9+HBaLBevXr0doaChSU1Pr7turVy+kpaWhRYsW2L59OyoqKlBRUYFt27ahRYsWmD17dt194+LikJKSgnbt2uH7779HdXU1Tp48iX379sHX1xcZGRno2bOnzbg7d+6MzMxM3LlzB0eOHMGRI0dQW1uLlStXIiIiAtOnT6+779NPP42FCxfCz88Pe/fuxcmTJ1FVVYUNGzYgODgYn332Wd19e/fujbS0NAQGBuLHH3/EhQsXcO7cOezYsQMBAQGYM2cOBgwYgE8++QQDBgzA1KlT0b59e6xbtw6bN2+Gj48PDhw4AF9fXyxevBgxMTFISUmp2394eDhWrFgBACgoKMDPP/+M33//HatWrULnzp1txh0dHY0FCxbA398fu3fvRllZGSorK7Fp0yY8+eSTNuPu06cPUlNT0apVK2RlZeHixYs4c+YMdu7ciSeeeALz5s1D//79MXXq1LrHdOjQAWvXrsX169dRXFyMvLw8eHt7Y8mSJejevbvNuLt06YJly5ahQYMGOHToEIqKilBTU4Nvv/0WYWFhmDFjRt19u3fvjs8//xxNmzZFbm4uTp8+jcrKSmzevBlt2rTBrFmz6u7bt29fzJw5E23atMGWLVvw/fffo0mTJsjNzYXZbMb8+fMRGxtrM+6OHTti9erVqKmpwS+//IJDhw7By8sLS5cuRVRUFKZNm1Z3365du+Krr76Ct7c38vLycOzYMdy4cQNr165Fx44dMXPmzLr7xsTEYN68eTCbzcjJycGZM2dw8eJFbN26Fa1bt7YZd79+/TB9+nS0bdsWmzZtwpUrV1BWVoZdu3ahSZMm+OKLL9C3b1/85z//sflZW7VqFW7duoWjR4+ioKAAALB8+XJERkba/KxFRkZiyZIl8PHxwcGDB1FSUoLr16/ju+++Q/v27W3G3aNHD6SnpyMgIADZ2dlYs2YNmjdvjqysLAQGBiItLa3uvv3798e0adMQHByMDRs24OrVqygtLcXevXsf+TuitrYWhYWFHvE7YuXKlWjTpo3Tf0dYLBYcP37cI35HLFu2DKGhoU7/HXHp0iWUl5cjNzcXQ4easX79fNy8GYuQkKlYunQgPv3UfX5HZGRkICws7IHfEUbT/ZQDJpMJa9euxUsvvfTQ+9R3pCkkJESzUw5cvnwZzZs3d/p+PQkbymNDeWwojw3l6dVQCKC6GnDHcz6rOg+VPOWAr68vzGazzZeW5s6dq+n+PQEbymNDeWwojw3l6dXQZHr4gqmkBIiPt178d9EiXYbjVKrOQyWPNN2Pl1EhIiKyX1QUUFho/bPJBBw8aD1dAcnR5UiTxWJBQUFB3fsYSktLUVBQgNOnT+vx9I+k6unaXQkbymNDeWwojw3lqdCwpOTen4Ww3XYFKjSsjy5Hmnbs2IFnnnnmgdvHjBmDxYsXP/LxWh9pqqqq4hEsSWwojw3lsaE8NpSnQsNXXgEyM61/btkS+O9/gbZtDR2SQ1RoWB9djjQNHjwYQogHvuxZMOlBlXG4MjaUx4by2FAeG8pToeGSJcDcucBHHwH791sXTDk51pfooqIAxS7M8QAVGtZHyfM06W3o0KFGD8HlsaE8NpTHhvLYUJ4KDX18gPHj723fuAH87W/AlSvW7VGjrGcRV/XokwoN66Pkp+f0VlRUZPQQXB4bymNDeWwojw3lqdjw8uV7CyYAqKkBzp41bjyPomJDgIsmAIC/u51K1QBsKI8N5bGhPDaUp2LDtm2BQYPubUdGWq9ZpyoVGwJ8eQ4AlDyBlqthQ3lsKI8N5bGhPBUbmkzADz9Yz9l06xYwZgzg52f0qB5OxYYAjzQBAA4fPmz0EFweG8pjQ3lsKI8N5ana0M8P+Oc/gYkTgYCAB/++qAh4910gOdn6HigjqdpQ95NbPg6tTzlw7tw5tFX13XAugg3lsaE8NpTHhvJcseHZs9ZP1VVWWrf/+ldg40bjxqNqQx5pApCRkWH0EFweG8pjQ3lsKI8N5bliw3377i2YAGDzZutJMY2iakMeaSIiIvJwP/8MdO8O3L5t3Y6KAhR9hcxQPNIEdU/X7krYUB4bymNDeWwozxUbRkYCK1daP2H30kvAunXGjkfVhkofaUpPT0d6ejpqa2tRXFys2ZGmmpoa+Pr6On2/noQN5bGhPDaUx4by2FCeqg2VPtKUkJCAo0eP4uDBg5o+z6xZszTdvydgQ3lsKI8N5bGhPDaUp2pDpY803aX1e5pOnDiBTp06OX2/noQN5bGhPDaUx4by2FCeqg25aCIiIiK3de7cOYwePRqnTp3CpUuXsGXLFsTFxT3Wvlxi0SSEQHV1NZo2bQqTyWT0cIiIiMjFjBgxAhs3bkRlZSUaNmz4WPtwicuomEwmHmEiIiKix5aXl4fBgwc/9oIJUPyN4ERERESyysrKUFpaivj4eKn9cNFEREREbm3btm0AIL1ocomX54iIiIgeV3Z2NoKDg7F7927MmjULFosFFosFCxYsQGBgoN374ZEmIiIicmvZ2dm4dOkSmjZtivnz52PZsmUAgFdffdWh/XDRRERERG6ruLgYZ8+exYcffoiRI0fW3d6jRw9kZWXhzJkzdu+LiyYiIiJyW9u3bwcAjBo1yub2y5cvAwDKy8vt3hcXTUREROS2srOz0bFjRwQHB9vcnp+fDwBo1aqV3fvioomIiIjcVl5e3gNnAL9+/ToOHDiAkJAQhy7XwkUTERERua2zZ88iOjra5rYffvgBN2/exLhx4xzaFxdNRERE5LbatWsHf3//uu3a2lpMnz4dTz31FN555x2H9uXW52m6e806IiIicg+OXod27Nix2LlzZ91Rpffeew+nTp3Cjh074Ofn59Bzu8QFex9XVVUVmjVrZvQwiIiIyEmuXr3q0PVob926hfHjx8NiseD3339Hy5Yt8dFHH6F169YOP7dbL5rsOdJUVVWFkJAQlJeXS10UuHfv3jh48KBHPt4ZDWXH74x9sCEbsqHxDV3934AN5R//qIaOHmlyJrd+ec5kMtk9ac1ms9SiycvLy6MfD8g1dMbzG92ADY1/PMCGrt7QHf4NADY0uqFW+EZwJ0lISPDox8tyxvMb3YANjX+8LDaUp8L4VRiDkc/Phtpx65fn7HH3fU+OvkZK97ChPDaUx4by2FAeG8pTuaFXUlJSktGDMJqXlxcGDx4Mb2+3frVSU2wojw3lsaE8NpTHhvJUbejxR5qIiIiI7MH3NBERERHZgYsmIiIiIjtw0URERERkBy6aiIiIiOzgEYumuXPnokOHDmjUqBF69uyJ3Nzch953zZo1GDZsGAIDA2E2m9GvXz9s2bJFx9GqwdnNFi9eDJPJ9MDXzZs3tf5WlOFI0127diEuLg4tWrSAn58fIiIikJqaquNo1eDsZpyHjjX9o927d8Pb2xvdu3fXeIRqcXYvzkErR7ru2LGj3mZFRUU6jvj/hJv7+uuvhY+Pj1iwYIE4evSomDBhgvD39xdlZWX13n/ChAkiJSVFHDhwQBQXF4tJkyYJHx8fcejQIZ1Hbhwtmi1atEiYzWZx/vx5my9P4WjTQ4cOiRUrVojCwkJRWloqli5dKho3biw+//xznUduHC2acR461vSuK1euiI4dO4r4+HgRHR2t02iNp0UvT5+DQjjeNTs7WwAQx44ds2l2+/ZtnUcuhNsvmvr06SPGjRtnc1tERIRITEy0ex9du3YVU6ZMcfbQlKVFs0WLFolmzZo5bYyuxhlNX375ZfHaa685e2jK0qIZ5+HjNR05cqT44IMPxOTJkz1q0aRFL0+fg0I43vXuoqmyslKP4f0pt3557tatW/jpp58QHx9vc3t8fDz27Nlj1z7u3LmD6upqNG/eXIshKkfLZhaLBaGhoQgODsYLL7yA/Px8p41bZc5omp+fjz179mDQoEFaDFE5WjbjPHSs6aJFi3DixAlMnjxZ6yEqRctenjoHAbmf7ZiYGAQFBWHIkCHIzs7WcpgP5daLposXL6K2thatW7e2ub1169aoqKiwax8zZszAtWvXMGLECC2GqBytmkVERGDx4sVYv349MjMz0ahRI8TFxaGkpMSp41eRTNPg4GD4+vqiV69eSEhIwFtvvaXlUJWhVTPOQ8ealpSUIDExEcuXL1fuzMxa06qXJ89B4PG6BgUF4YsvvsDq1auxZs0ahIeHY8iQIcjJydFjyDY84qfAZDLZbAshHritPpmZmUhKSsK6devQqlUrrYanJGc3i42NRWxsbN12XFwcevTogdmzZyMtLc15A1fY4zTNzc2FxWLBvn37kJiYiLCwMIwePVrLYSrF2c04D+1vWltbi1deeQVTpkxB586d9Rqecpzdi3PQypGf7fDwcISHh9dt9+vXD+Xl5Zg+fToGDhyo6Tjv59aLppYtW8LLy+uB1euFCxceWOXeb+XKlXjzzTexatUqDB06VMthKkWvZg0aNEDv3r094v+uZJp26NABABAVFYVff/0VSUlJHrFo0qsZ5+HDm1ZXVyMvLw/5+fl4++23AVhfehdCwNvbG1u3bsWzzz6ry9iNoFcvT5qDgNzP9h/FxsZi2bJlzh7eI7n1y3MNGzZEz549kZWVZXN7VlYW+vfv/9DHZWZm4o033sCKFSvw/PPPaz1MpejVTAiBgoICBAUFSY9ZdY/b9H5CCNTU1Dh7eErSqxnn4cObms1mHDlyBAUFBXVf48aNQ3h4OAoKCtC3b1+9hm4IvXp50hwEnPeznZ+fb0wzI959rqe7H2388ssvxdGjR8XEiROFv7+/OHXqlBBCiMTERPH666/X3X/FihXC29tbpKen23y08cqVK0Z9C7rTollSUpLYvHmzOHHihMjPzxdjx44V3t7eYv/+/bp/f0ZwtOmcOXPE+vXrRXFxsSguLhYZGRnCbDaL999/36hvQXdaNOM8dKzp/Tzt03Na9PL0OSiE411TU1PF2rVrRXFxsSgsLBSJiYkCgFi9erXuY3f7RZMQQqSnp4vQ0FDRsGFD0aNHD7Fz5866vxszZowYNGhQ3fagQYMEgAe+xowZo//ADeTsZhMnThTt2rUTDRs2FIGBgSI+Pl7s2bNHx+/IeI40TUtLE5GRkaJx48bCbDaLmJgYMXfuXFFbW2vAyI3j7Gach441vZ+nLZqEcH4vzkErR7qmpKSITp06iUaNGomAgAAxYMAAsXHjRgNGLYRJCCH0P75FRERE5Frc+j1NRERERM7C5lfgiAAAAFlJREFURRMRERGRHbhoIiIiIrIDF01EREREduCiiYiIiMgOXDQRERER2YGLJiIiIiI7cNFEREREZAcumoiIiIjswEUTERERkR24aCIiIiKyAxdNRERERHb4Hy5S8ldtpPJLAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "a=0.1\n", "\n", "def drawbif_selkov(l,u):\n", " def selkov(t,S):\n", " x,y = S\n", " return [xdotf(x,y), ydotf(x,y)]\n", " \n", " T.function = selkov\n", " pts = []\n", " for b in np.linspace(l,u,500):\n", " xdotf=xdot(b=b, a=0.1)._fast_float_(*xdot.args())\n", " ydotf=ydot(b=b, a=0.1)._fast_float_(*ydot.args())\n", " T.ode_solve(y_0=[0,2],t_span=[0,50],num_points=500)\n", " sol = T.solution\n", " pts += [(b,j[1]) for i,j in sol[-100:] if abs(j[0]-b) <1e-3]\n", " \n", " show(points(pts),axes_labels=['$b$','$y$'],gridlines=True)\n", " \n", "T = ode_solver()\n", "T.algorithm=\"rk8pd\"\n", "\n", "\n", "drawbif_selkov(0.2,0.5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.3", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" } }, "nbformat": 4, "nbformat_minor": 2 }