{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introdução à Evolução\n", "## Seleção natural\n", "Seleção natural é o fenômeno relacionado com a diferença na capacidade de diferentes indivíduos de formar descendentes, ou seja, crescer. Esta diferença decorre do efeito do ambiente sobre os indivíduos, cada qual com seu grau de adaptação. Esta capacidade de reprodução também representada pela taxa de reprodução, em modelos evolutivos, Corresponde ao grau de adaptação do indívíduo ao seu ambiente e é chamada de **Fitness**.\n", "\n", "Para modelar os efeitos da seleção natural, precisamos de pelo menos dois \"tipos\" de indivíduos. Vamos chamá-los de A e B. Denotaremos o fitness de A por $a$ e o de B por $b$. Seja $x(t)$ o número de indivúduos do tipo A no tempo $t$ e $y(t)$ o número de indivíduos do tipo B no tempo $t$. Sejam ainda $x_0$ e $y_0$ os números de A e B no tempo $t=0$.\n", "\n", "Cujas soluções são:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:44:53.812522Z", "start_time": "2021-10-04T12:44:53.802794Z" } }, "outputs": [], "source": [ "%display typeset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-09-29T12:18:56.221188Z", "start_time": "2021-09-29T12:18:54.497055Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{\\partial}{\\partial t}x\\left(t\\right) = a x\\left(t\\right)$$" ], "text/plain": [ "diff(x(t), t) == a*x(t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{\\partial}{\\partial t}y\\left(t\\right) = b y\\left(t\\right)$$" ], "text/plain": [ "diff(y(t), t) == b*y(t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}x_{0} e^{\\left(a t\\right)}$$" ], "text/plain": [ "x_0*e^(a*t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}y_{0} e^{\\left(b t\\right)}$$" ], "text/plain": [ "y_0*e^(b*t)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{\\frac{\\partial}{\\partial t}x\\left(t\\right)}{\\frac{\\partial}{\\partial t}y\\left(t\\right)} = \\frac{a x\\left(t\\right)}{b y\\left(t\\right)}$$" ], "text/plain": [ "diff(x(t), t)/diff(y(t), t) == a*x(t)/(b*y(t))" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var(\"x x_0 y_0 a b y t\")\n", "x = function('x')(t)\n", "y = function('y')(t)\n", "xdot = diff(x,t)==a*x\n", "ydot = diff(y,t)==b*y\n", "show(xdot)\n", "show(ydot)\n", "solx = desolve(xdot,x, ics=[x_0], ivar=t)\n", "soly = desolve(ydot,y, ics=[y_0], ivar=t)\n", "show(solx.subs(_C=x_0))\n", "show(soly.subs(_C=y_0))\n", "xdot/ydot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Seja $t=τ$ o tempo até que a população A dobre de tamanho, é fácil encontrar que $τ=log_2 /a$. De maneira similar, B leva $log_2 /b$ para dobrar de tamanho." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2021-09-29T12:42:02.388570Z", "start_time": "2021-09-29T12:42:02.373923Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\tau = \\frac{\\log\\left(2\\right)}{a}\\right]$$" ], "text/plain": [ "[tau == log(2)/a]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('tau')\n", "f = x_0*exp(a*tau)==2*x_0\n", "solve(f,tau)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Seja a razão entre as duas populações: $ρ(t)=x(t)/y(t)$. Logo temos a seguinte equação diferencial\n", "\n", "$$\\dot{ρ}=\\frac{\\dot{x}y−x\\dot{y}}{y^2}=(a−b)ρ,$$\n", "onde $\\dot{\\rho}=\\frac{d\\rho}{dt}$. Abaixo temos a derivação de $\\dot{ρ}$ usando o sage:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2021-09-29T12:44:06.805958Z", "start_time": "2021-09-29T12:44:06.703634Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{\\partial}{\\partial t}\\rho\\left(t\\right) = \\frac{y\\left(t\\right) \\frac{\\partial}{\\partial t}x\\left(t\\right) - x\\left(t\\right) \\frac{\\partial}{\\partial t}y\\left(t\\right)}{y\\left(t\\right)^{2}}$$" ], "text/plain": [ "diff(rho(t), t) == (y(t)*diff(x(t), t) - x(t)*diff(y(t), t))/y(t)^2" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('rho x y t')\n", "x = function('x')(t)\n", "y = function('y')(t)\n", "rho = function('rho')(t) == x/y\n", "drho = diff(rho,t)\n", "drho.simplify_full()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "cuja solução é $ρ(t)=ρ_0e^{(a−b)t}$. Se $a>b,$ $ρ$ tende a infinito, em cujo caso A vencerá a competição com B, e se $a" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\left(b {\\left(x - 1\\right)} - a x + a\\right)} x$$" ], "text/plain": [ "(b*(x - 1) - a*x + a)*x" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var(\"a b x y\")\n", "c=(a-(a*x+b*y))*x\n", "s=x*(1-x)*(a-b)\n", "show(c.subs(y=1-x))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sobrevivência do mais Apto\n", "Este modelo pode ser extendido para descrever a seleção entre $n$ tipos diferentes: Seja $x_i(t)$ a frequência do tipo $i$, $(i=1…n)$. Seja $f_i$ o fitness do tipo $i$. Assim o fitness médio da população é dado por \n", "\n", "$$ϕ=\\sum_{i=1}^n x_if_i$$\n", "A dinâmica da seleção continua como antes:\n", "\n", "$$\\dot{x}_i=x_i(f_i−ϕ)$$\n", "Da mesma forma a frequencia de um dado tipo aumenta apenas se a sua fitness (aptidão) for maior que a da média da população, caso contrário diminuirá. A população total continua constante: $\\sum_{i=1}^n x_i=1$ e $\\sum^n_{i=1} \\dot{x}_i=0$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exercício:\n", "Implementar uma simulação de competição com 10 tipos para visualizar o efeito das extinções sobre o fitness médio da população e a dinâmica dos outros tipos" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:29:25.407486Z", "start_time": "2021-10-04T12:29:25.254455Z" } }, "outputs": [], "source": [ "import numpy as np\n", "n = 10\n", "fis = np.array([random() for i in range(n)])\n", "def evolucao(t,y):\n", " phi = sum(np.array(y)*fis)\n", " d = y*(fis-phi)\n", " return d" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:29:27.163204Z", "start_time": "2021-10-04T12:29:26.892761Z" } }, "outputs": [], "source": [ "T = ode_solver()\n", "T.algorithm = \"rk8pd\"\n", "T.function = evolucao\n", "T.ode_solve(y_0=[1/n]*n,t_span=[0,50], num_points=500)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:30:21.334490Z", "start_time": "2021-10-04T12:30:21.314773Z" } }, "outputs": [], "source": [ "from itertools import cycle\n", "\n", "def plot_sol(sol):\n", " #fitness medio\n", " c = cycle(['red','blue','green', 'black', 'yellow', 'orange', 'magenta', 'gray', 'pink', 'brown'])\n", " plots = list_plot([(j[0],sum(fis*np.array(j[1]))) for j in sol], plotjoined=True, linestyle='-.', legend_label=r\"$\\phi$\")\n", " for i in range(len(sol[0][1])):\n", " co = c.__next__()\n", " plots += list_plot([(j[0],j[1][i]) for j in sol],color=co, plotjoined=True, legend_label='$x_{%s}$'%i, alpha=.8, gridlines=true)\n", " show(plots)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:30:22.288596Z", "start_time": "2021-10-04T12:30:22.273707Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|Initial|\\verb| |\\verb|conditions:| \\verb|[0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1|\\verb| |\\verb|0.1]|$$" ], "text/plain": [ "'Initial conditions: ' array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|fi|\\verb| |\\verb|=| \\begin{array}{l}\n", "\\verb|[0.89603651|\\verb| |\\verb|0.15176991|\\verb| |\\verb|0.10013761|\\verb| |\\verb|0.83357806|\\verb| |\\verb|0.81809195|\\verb| |\\verb|0.63081744|\\\\\n", "\\verb| |\\verb|0.3875324|\\verb| |\\verb|0.96596628|\\verb| |\\verb|0.75777258|\\verb| |\\verb|0.01459507]|\n", "\\end{array}$$" ], "text/plain": [ "'fi = ' array([0.89603651, 0.15176991, 0.10013761, 0.83357806, 0.81809195,\n", " 0.63081744, 0.3875324 , 0.96596628, 0.75777258, 0.01459507])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|Fitness|\\verb| |\\verb|medio:| 0.5556297821898809$$" ], "text/plain": [ "'Fitness medio: ' 0.5556297821898809" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(\"Initial conditions: \", np.array(T.solution[0][1]))\n", "show(\"fi = \",fis)\n", "show(\"Fitness medio: \",sum(fis*np.array(T.solution[0][1])))" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:30:26.533078Z", "start_time": "2021-10-04T12:30:24.300230Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGFCAYAAAAPa6wiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgqklEQVR4nOydeVxU1/n/38MOgiDivuG+4R63LMZEk2gSo7HZjGlam2/btGnSdEmXNO332/5MTWKNqYYYNYmJS9QkrrghosRdCCguiI4IAiLIvq8z9/fHYYBRkMVh7r3Meb9e53VnOXfugx/v8OE55zzHoCgKEolEIpFIJJKGcVI7AIlEIpFIJBKtIw2TRCKRSCQSSSNIwySRSCQSiUTSCNIwSSQSiUQikTSCNEwSiUQikUgkjSANk0QikUgkEkkjSMMkkUgkEolE0gjSMEkkEolEIpE0gi4Mk0HQ3mAwGNSORSKRSCQSieOhtmFSmtLy8/PNQH71sUnnyGb/tnHjRtVjkE1qpPcmNdJHkzppvzVDoyZhUHlrlCZdvKCgAF9fX/Lz82nfvn1rxyRpIWazGScntT245E5IjbSP1EgfSJ20TzM0atLolVRbYjP+/e9/qx2CpBGkRtpHaqQPpE7ax9YayQyTxGbIv7i0j9RI+0iN9IHUSfvIDJNEsyxatEjtECSNIDXSPlIjfSB10j621khmmCQ2Izk5md69e6sdhuQOSI20j9RIH0idtIuiKFRVVZGSkkK/fv2ackqTMkwudxeWRFJLREQEL7/8stphSO6A1Ej7SI30gdTJfiiKQllZWU0rLS21OtZ9XF5eTllZGSaTifLycl5//XWbxSENk8Rm9O/fX+0QJI0gNdI+UiN9IHUCywCVwQCVlVBVBWZzbTOZrJ936ADu7pCbq5CTU4afXwllZWUkJpZSXFxGeXkp5eVlVFSUUVFRSkVFGZWVZVRVlePlJS5WWgpOTuDhYcDV1YPiYk9cXDxwdvbA2bkDzs4euLm54+3tgbd3ok1/XmmYJDajvLxc7RAkjSA10j5SI9uhKOKXOUBBgfilbvnFfusRYORIcTx9Gnx9oV8/yMuDyEjxy7+qShxNJoiN9SU5WTzu1QsefBCKimDdOnjiCejdG44fh6NHa8+pe76lPfssTJwIx46Jcz/9VMTwr3/BpUsNn2cywddfQ6dO8L//K669ZIk4PvywtVG51cD06wd794rrBAXBb38LP/857NwpjvWZHUt7/XVYvBhOnIB774Xz52H4cPjVrxTWravE07MEL69SvLxKah5bjo8/XoKfXylXrpSSlaXU/HufPQtlZc6UlXlQWupZffSmrKxT9WMP9uzxxNPTgxde8GTAAA9Wr3YjLs5AUFD92g8aBCtWJNv0/5M0TBKbkZmZqXYIkkaQGmkfLWhkNgsjUVEB3t7CdGRkiNe7dROvnz4tjg21Dh1gzhxhWt57D2bMgDFjICoKNm4UJqA+41JVBT/6EcybB9HR8NZbon+XLvCXv8C+fQ2bnspKCA0VBuSPf4Tdu+HiRfEz9eolTFNDeHtDYaF4/OMfw/Tp8NFHEB8Pjz1W3xm1v6l/9CNhmPLz4Y03oG9fYZiOHBE/u7OzaC4utY8tbcIEEW9WFvzwg/g3dnKC9HRIS7u9v5ubODo51ZrBzp1F/CCuMXq0eL++5uws/i0tzJsnDA/AwIEi/rp9DQYFJ6dyoBgoITCwmOjoYvLySvjPf0o4f76Us2dLGTGihH/+0wTUxuXk5IyLixcuLl64unoSGNiFTp086dHDi8JCTyZO9MTLy4sRIzwwmVxwdjZYxWowWGKAwEBx/PJLkaUyGES8V67U9q17nqsrHDpk23tJTvqW2Ayj0cjAgQPVDkNyB6RG2kRRxC/78nKIi7tK9+79KCsTz8vKROvYEYYOFb/0Q0LEL/QuXeD770V24tb+dZ//7nfiF/o338Dy5eIXOcDjj8O5c7ebHUvGBSA7G/z9RV8PD9i6FW7cgO7d7/wzjR8vMjMgTNb778PLL8O2bfD22+IXmotL/ccXXxSm5fx5WLRIGJdOneDzz4VRs/St7/x586BnTzh5ElJSRAYHYPt28e9c3zkWIzJ2rOibkCAMSJcu4t8wI+N2w5OUlMCgQf1rXnfRYfrBZDJRUlJCcXExxcXFVo/rPjeZTDXnGAwGPD2F0WnoaHns6uqKmjuaNeP7Tk76ltiXnTt38oc//EHtMCR3QGrUdCwmpqREtNLS2sfDh4tfqNHRIhPwxBPinEWLxJCIpd+t53l4iAwJwOTJwoT8/e8QESGGUQT1r+qZPx/Wr4fMTHjpJTh4sNYwffyx+GxLc3e3fm75u7hTp9phJxDXnzBBmIWGmpeX6PvvfwujYPmcc+caPsfVtbYvCINl4emnRWsKQUGwYUPt81deadp5AJMmiWZhzpymn1t3epK7u8gW3coXX2xnzBjt3kuKolBSUkJRUZFVKywsrDFDpaWlVue4uLjQrl07vLy88Pb2pkuXLrRr167mNctRL/WnbP19JzNMEptRWlqKp6en2mFI7kBb1UhRRObFzQ08PeHmTTEUU1R0eyssFMfHHoNZs+DUKfjDH0QGIiAAFiyALVuEwanzh7UVJ0+KYZQ334QDB0QmBMQvWrNZmIy6zdNTHP39Ydky0feTT2DIEGGU0tPFUJKHBxgM5bRv736bAfL3FwbJbBZZD3d3MfwgUQe176XKykqKi4spLCy8zRQVFRVRXFyM2Wyu6e/q6oqPjw/e3t41JqiuEWrXrh1ubm6qZoRsTTM00n+GKTg4mODgYKt0oES7LFmyhHfeeUftMCR3QGsaVVaKeR/+/uKXf2ysGA4aN06YmmXLhBHKzxfN8rigQBifQYNqMzYdOsCKFfDLX8KePcL41MXLS2SFLM0yWbRdO+uMwuzZIgtjMTn1GR9L//feszYtCQlN/9l//evax127wk9+Ih4vXLj4jho5OYk4JOrS2veS2WyuyQgVFBRYHQsLCykrK6vpazAYarJC3t7edO7cGW9v7xqD5O3tjZubW6vFqlVsrZHMMEkkkhZTVSVWEeXmijk2/v5iZU9EhDAuAP/3f2L4pq7hsTy2jAjcuCFMw9NPi+zJnj3icwcOFKuV2rcXR8tjS+vbV6zqAZEVGjOmdmVTZmatOfLysh4ikkjURlEUysvL6zVEBQUFFBUVYfn9bDAYagxQ+/btrYyQJWOkl2EyjdKkDJM0TBKbsXDhQk1lLyS305BGVVWQkyOO3buL4agNG8TE4r59xXLjdetEn9xc0XJyrFcdrVgBr74KX30lTExRkRgie+01kXmpa3huNUGPPSZMTUaGmP/i72/HfxSNIe8jfdBUncrKysjPz7+tFRYWUlFRUdPP3d29xgxZjFFdcyQNUfNpxr0kDZPEvmRkZNCl7npViSrUrT1z7pwYwhk+XMzr+X//r5jS0nZkZYkMTFaWaLm54rwZM0R9lvx8McT13Xcwdy5s2gRffCFe8/e3PloeDx0q5tiYTNZLniXNQ95H+qCuTpWVlfWaovz8fKu6Wu3atcPX1xdfX98aM2Q5uru7q/WjtFmacS9JwySxL6tWreIXv/iF2mG0SeqaoJMn4do1MVE4I0Mc6z7OzBSZHw8PeOghMdS1caNYYj12bAH9+7cnIEBMcO7UiZrHAQGi1smoUeJ6iiInFauBvI+0iaIoFBcXk5eXR25uLvv372fQoEEUFBRQXFxc08/Dw6PGFNVt7du3x9XVVcWfwPFoxr2k/0nfEn0xbtw4tUPQHVVVwuRcvy7ajRu15ufll+H+++Gzz+BPfxL1cAwGMewVGysMUdeuIqvTtSvcc4943Llz7ed/+WXtsvBevWDfPmOTdDIYZIZILeR9pC6KolBYWEhubm6NObIcKysrAXB2dqZ9+/Z4eXnRrVs3K2MkM0Xawdb3kjRMEpuRkZGhdgiawbLMvaREFO2zrPiaO1csJf/0U7H1gaV6sgVX11oTNGuWeG3CBNHXbBYTl3fvBh8f0RozNX36WD+XGmkfqZF9sBijnJwccnJyrMyRZWW2q6srHTp0wM/Pj759+9Y89vHxYe/evUybNk3ln0JyJ2x9L0nDJLEZdScwOgKlpaLC8rVrkJwsjikpkJoqskXFxTBtmqjT4+wMH34II0YIwzRsGPziF9Cjh3Xr2PF2EzRypHWxwR49Wh6zo2mkR6RGtqeiooKcnByys7NrDFJOTk5Nxsjd3Z0OHTrQuXNnBg0aRIcOHejQoQNeXl4N1iWSOmkfW2skDZPEZrSV3bsVRSxLt5iga9fEqi8PD/jNb8Sk5hUrxETpRx4R53TrJrI5vXoJc9OzpzA2lqr8np5icrWFKVNEszdtRaO2jNSo5ZjNZgoKCm4zRoXVm8Q5OTnRoUMH/P39CQwMxN/fn44dO+Lp6dnsgo1SJ+1ja42kYZLYjO+//54RI0aoHUaTqKqq3dTxu+9EteerV8Xy98RE6+Xybm7w5JNief24cbVDaF27io0fe/YUVZf1gJ40clSkRk3DZDKRm5tLVlYWmZmZZGdnk52dXTOc1q5dO/z9/enXr1+NMfL19cXZRgW5pE7ax9YayVVyEpuRl5eHn5+f2mHUUFgoDJCl3XOP2IZi925RzTkjQwyBPfssxMSIgof9+4tjYKDYP6pPHzGfqK2sFtOaRpLbkRrdjslkIicnh8zMTLKyssjKyiInJwez2YzBYMDPz4+AgAACAgLo2LEj/v7+eHh4tGpMUift0wyN5Co5iX35+OOPVSu4l5QkdlG/dEm0y5etN/z08YG//U0YppEjxWallhW+33zjOCvC1NRI0jQcXSOLObp582aNOcrNzcVsNtcMqQUEBDB48OAag+TiYv9fZY6ukx6wtUYywyTRBdnZYjPV9HR45hnx2gMPiJVkf/oThIWJrNGgQTB4sGiDBok5RP36iRpDjmKKJBK9oCgKRUVF3Lx5s6ZlZWVhMplwcnLC39+/JnPUqVMn/P39bTakJpHUQWaYJPbFFls65OfDhQuinT9f+zg9Xbzv4SH2G3N2FkfL6rGHHxZL99vK0FlrIbfd0D5tWaOKigoyMzOtDFJp9YaCPj4+dO7cmX79+tG5c2cCAgI0bY7ask5tBVtrJDNMEpuRn5+Pr69vs86JjoaQELFBK8CAAWK+kZOTeBwUJLb1GD5cLMUfMEDu1H43tEQjiX1pKxpZ6hylp6eTnp5ORkYGeXl5KIqCm5sbnTp1onPnzjXNU2c3dlvRqS3TDI1khkliX9auXcvrr79+2+tZWXDmjGinT4vjH/8ICxaA0Qjr18Of/yyM0Oefi81YhwwR2SSJbWlII4l20KtGZrOZnJycGoOUnp5OSUkJBoOBDh060LVrV0aOHEnnzp3x8/Nr9jJ+raFXnRwJW2skDZPEZjz00EOAmHS9fn2tSUpNFe+3ayf2KZs6VcwvAnjhBdEsPPigPSN2PCwaSbSLXjSqrKwkMzOTGzdukJ6ezs2bN6msrMTZ2ZlOnToxaNAgunbtSpcuXdrkdiF60cmRsbVG0jBJWkxREXh7i8cvvAB+fpV8+qlYsfbZZzB6NPz4x+I4erQYTpNzjNTFaDQSFBSkdhiSO6BVjaqqqsjIyCAtLY20tDQyMzMxm824u7vTpUsXxowZQ9euXenUqZOm5x7ZCq3qJKnF1hpp2jAFBwcTHBxcU4hMoh7l5aJWUWRkbUtLExWxXV1FhWsXF5Fif/RR6yX9Eu2gt3kijohWNDKZTNy8ebPGIN28eROTyYSHhwfdunVj8uTJdOvWjQ4dOuh+eK0laEUnScPYWiNNG6bXXnuN1157rWbSt8S+fP+9WK5/5IgwSGVloqL12LHwxBNiU1hL1evFiyEqSuzL5IDfnbqhY8eOaocgaQS1NDKbzWRlZZGWlsb169fJyMigqqoKNzc3unXrxoQJE+jevTv+/v4OaZBuRd5L2sfWGmnaMEnsy9Wr8N//wsKFotDj0qVw/Djcfz/8+9/iOGqU2CqkPs6cOcP48ePtG7SkWUiNtI89NSosLCQ1NZWUlBTS0tKoqKjA1dWVrl27Mm7cOLp3705AQIA0SPUg7yXtY2uNZFkBB6WkBI4ehQMHxF5ob7whCkM++STs3CmW8RcUCOPU1O/K9PR0unbt2rqBS+4KqZH2aU2NKisrSUtLIzU1ldTUVPLz8zEYDHTp0oWePXvSo0cPOnXqhJOcbNgo8l7SPs3QqEm/5eRd4SAoipiDtGgRTJsGHTrAY4+J1Ww5OaLP0KGiBtLw4eJ5+/bNG1777LPPbB+4xKZIjbSPLTVSFIWsrCxOnz5NSEgIX331FaGhoSQnJ9O9e3ceffRRfvKTn/DUU08xduxYunTpIs1SE5H3kvaxtUYyw9TGKS+H3/5WFIdMSxOr2qZOhUcegenThUmS2XaJpO1QWVnJ9evXSU5OJjk5mZKSElxdXenevTs9e/akZ8+etG/fXg6zSSS1yAyTo3LkCLz2mnjs7g7JyfD883DwoMgmhYSIIbhhw2xrlhYuXGi7D5O0ClIj7dMSjQoLC7lw4QJ79+5l7dq17N+/n/T0dAYMGMCTTz7Jyy+/zGOPPcbw4cPx9fWVZskGyHtJ+9haI5lhagPk58P27dCnj8gehYTA++/Dvn21dZLsQVlZGR6yPLemkRppn6ZopCgKN2/e5Nq1ayQnJ5OTk4OTkxPdunWjd+/e9O7dW64sbmXkvaR9mqGRzDC1ZSoq4LvvYPZs6NxZbDOyf794b9YsMaHbnmYJYPny5fa9oKTZSI20T0MamUwmUlJSOHz4MOvXr2fHjh3Ex8fTsWNHpk+fzssvv8wTTzzBiBEjpFmyA/Je0j621kiWFdAZFy6I/dbWrRN7tE2YILJJzz4LPXqoG9ucOXPUDUDSKFIj7VNXo8rKSlJTU0lMTCQ5OZmKigp8fX0ZNGgQgYGBdO7cWQ6vqYS8l7SPrTWShkknmM3w0ENw+DAEBMDLL8Mrr4h5SFohOjqagQMHqh2G5A5IjbRPZGQkAImJiaSkpGAymejYsSMjRoygb9++DltZW2vIe0n72FojaZg0TGYmrFwJf/wjeHiI6tpvvCGG3BoqHqkmsiaJ9pEaaZPy8nISExO5evUqGRkZHDp0iC5dunDPPffQt29fOXdTg8h7SfvYWiNpmDRIaSl4ekJuLnzwgVj+P2kS/OlPakd2Z1xc5H8nrSM10g4VFRVcu3aNhIQEUlNTURSFbt260adPH2bMmEG7du3UDlFyB+S9pH1srZGc9K0h4uNh/nyx/UhlJQwaBOnpwizpgcTERLVDkDSC1EhdqqqquHr1KmFhYaxbt45Dhw5RXl7O5MmTmT9/Pk8++SQlJSXSLOkAeS9pH1trJC2yBrh6Fd55BzZtEhO3//KX2ve8vNSLq7lMmTJF7RAkjSA1sj9ms5mUlBQSEhK4du0alZWVdOrUifHjx9OvXz+8b1nOKjXSB1In7WNrjWSGSUUKCuDPfxbVtr//HoKD4coVUXTS1VXt6JrP119/rXYIkkaQGtkHRVHIzMzk+PHjbNiwgdDQULKzsxk9ejTPP/88Tz/9NCNHjrzNLIHUSC9InbSPrTWShStVwGSCL74QWaXCQjE36a23QO9ZeJPJhLOzs9phSO6A1Kh1KS4uxmg0YjQayc3NxcvLiwEDBjBw4EA6duzYpM+QGukDqZP2aYZG+i9cGRwczLBhwxg/frzaodiUtDT4/e/h0Ufh8mX4v//Tv1kCWLRokdohSBpBamR7KisrMRqN7N69m6+//pro6Gj8/f2ZOXMmL774IpMmTWqyWQKpkV6QOmkfW2skM0x2orwcli2DX/1KVODOzIROndSOSiKRtATL1iTx8fFcvXqVyspKunXrxqBBg+jbty9uWqz7IZFIGkL/Gaa2REoKLFokCk9C2zRLcjNK7SM1ujvKyso4d+4c3333HTt27CAtLY2RI0cyb948Zs2axeDBg+/aLEmN9IHUSfvIzXd1lGFSFNi4Uez31q6dmK/k46N2VK1HSkoKvXr1UjsMyR2QGjUfRVG4fv068fHxJCUlARAYGMiQIUPo0aOHzatuS430gdRJ+zRDI5lhUpOSElFTaf582LpVvNaWzRJAeHi42iFIGkFq1HSKi4uJiYlh06ZN7Nmzh9zcXCZOnMj8+fOZPn06PXv2bJUtSqRG+kDqpH1srZGsw9QKJCfDnDlw6ZKorfT882pHZB8GDRqkdgiSRpAa3RlFUUhLSyMuLo6kpCScnZ3p378/Q4YMsdtGt1IjfSB10j621kgaJhtz9Cj86Edia5Pjx0XVbkehtLRU7RAkjSA1qp+KigqMRiNxcXHk5ubSoUMH7r33XgYOHGj3CdxSI30gddI+ttZIGiYbsn07vPACTJwI333XNid234ns7Gy1Q5A0gtTImtzcXC5cuIDRaKSqqorAwEDuu+8+unXrZpdsUn1IjfSB1En72FojaZhsxJdfwiuviOzSunXg7q52RPZnlCOl03SK1EhsVZKUlMSFCxe4ceMGXl5ejBgxgqFDh2piDzepkT6QOmkfW2skJ33bAEWBzZvh5z8Xq+Ic0SwB7Nq1S+0QJI3gyBpVVFRw9uxZNm3axIEDBwCYNm0a8+bN45577tGEWQLH1khPSJ20j601kmUF7pLcXOjQAcrKhFFSKYuvCUpKSvDS027BDogjalRYWMi5c+e4dOkSJpOJAQMGMGLEiGZV37YnjqiRHpE6aZ9maCTLCrQ2334LgwaJopQeHo5tlgA+/PBDtUOQNIKjaKQoChkZGYSFhbFp0yauXLlCUFAQL774IlOnTtWsWQLH0UjvSJ20j601khmmuyA3V8xdevNNaZYkEi1gNptJTEzk3Llz3Lx5Ez8/P0aMGMHAgQNxcZFTNiUSSb20XobJYDC8ZjAYkgwGQ5nBYDhlMBgmNNL/TYPBcMlgMJQaDIYUg8Gw1GAweLTk2lrgyBG4dk0Mxf3ud9IsWZBbBWiftqpRVVUVFy5cYPPmzYSHh+Pi4sKMGTN49tlnGTp0qK7MUlvVqK0hddI+qm+NYjAYngfWAq8Cp4A3gWeBwYqi3Kyn/4vAF8DPgOPAIOBLYJOiKL9ryjW1lGGKj4dJk+Cpp2DtWlVD0RyZmZl0crRaCjqjrWlUUVHBhQsXOH/+PGVlZfTr149Ro0YREBCgdmgtpq1p1FaROmmfZmjUahmm3wOrFUVZoyhKHMI4lSAMUX3cCxxTFOVrRVGSFEXZD2wE7piV0iI5OTBrFvToAcuXqx2N9thq2QNGolnaikalpaVERkby9ddfExMTQ2BgIM899xzTpk3TtVmCtqNRW0fqpH1srVGz8tQGg8ENGAcssrymKIrZYDAcACY3cNpx4CWDwTBBUZRIg8HQD3gcWAfc17Kw7U9lJTz7rJi3FBkJvr5qR6Q9xo8fr3YIkkbQu0aFhYXExsZy6dIlnJycGDp0KCNGjNBMSQBboHeNHAWpk/axtUbNHdgPAJyBjFtezwCG1HeCoihfGwyGAOCoQZTOdQE+VRTl38C79Z1TXl5OeXl5zfOCgoJmhml7/vY3OHwYwsOhXz+1o9EmN27cUDsESSPoVaOCggJOnz7N5cuXcXd3Z8yYMQwfPhz3Nlj0TK8aORpSJ+1ja41avayAwWCYCrwN/BoYC8wFnjAYDH/fuHEjCQkJfPDBB5SXl9dM0Jo5cya+vr41rVevXgDEx8ezbNkyCgoKavouXLiQnJwcgoODOXv2LDt37mT37t3ExMSwcuVKMjMzrfqWlJSwZMkSLl26xDfffEN4eDjHjx/nyy+/JCUlxaqvyWRi0aJFrF2bweLF8ItfJGI2R7Bp0yaMRiOLFy+mrKzM6pz09HRWr15NVFQU+/btY9u2bZw/f57ly5eTn59v1TcvL4+PP/6Yc+fOsX37dvbs2UN0dDSrVq0iIyPDqm9paSlLlizBaDSyefNmDh48yLFjx1i7di3Jycm8++67mM1mFi5ciNls5t133yU5OZm1a9dy7NgxDh48yObNmzEajSxZsoTS0lKrz8/IyGDVqlVER0ezZ88etm/fzrlz5/j444/Jy8uz6pufn8/y5cs5f/4827ZtY9++fURFRbF3717S09Ot+paVlbF48WKMRiObNm0iIiKCo0ePsm7dOq5du8aiRYswmUxW56SkpPDll19y/PhxwsPD+eabb7h06RJLliyhpKTEqm9mZiYrV64kJiaG3bt3s3PnTs6ePUtwcDA5OTlWfQsKCli2bBlxcXFs3bqV0NBQoqKi+Pzzz0lLS7PqW15ezgcffEBCQgIbN24kIiKCI0eOsH79epKSknjvvfeoqqqyOic1NZU1a9Zw8uRJwsLC+Pbbb4mPj2fp0qUUFRVZ9c3KyuLTTz/lzJkz7Nq1i5CQEM6cOcOKFSvIzs626ltYWMhHH31EXFwcW7ZsYf/+/Zw6dYovvvjitrgrKyt5//33uXr1Khs2bODw4cMcPnyYDRs2cPXqVb755hsqKyutzklLS+OLL77g1KlT7N+/ny1bthAXF8dHH31EYWGhVd/s7GxWrFjBmTNnCAkJYdeuXZw5c4ZPP/2UrKwsq75FRUUsXbqU+Ph4vv32W8LCwjh58iRr1qwhNTXVqm9VVRXvvfceSUlJrF+/niNHjhAREcHatWvZtm0bH330EUlJSdy4cYN58+axZ88esrOz+fzzz4mKiiI0NJStW7cSFxenynfEtWvXWLduHUePHiUi4u6+IzZu3NhmvyNWr17dZr4jysrK2uR3xPvvv6+r74iGfMTChQu5efNmk74jmkqzJn1XD8mVAM8oirK9zutfAX6Kosyu55wjwElFUd6q89pLwCqTyeTp5HS7Z6svw9SrVy9VJn2np4sNdMeOhd27oZ5wJdWcPXuWkSNHqh2G5A7oRaO6GSUPDw9Gjx6tu9VuLUUvGjk6Uift0wyNbD/pW1GUCiAamFZzFYPBqfr5iQZO8wLMt7xmqv68ek9wd3enffv2Vk0tduwQJumrr6RZaowjR46oHYKkEbSuUX5+PhEREWzevJnk5GQmTZrEvHnzGDFihEOYJdC+RhKB1En72FqjlpYV+Ar4JRCJKCvwHDBEUZQMg8GwFriuKMpfq/v/H2Jl3S8QZQgGACuAaEVRnmvKNdUuK5CTA/7+dr+s7sjJycFf/kNpGq1qVFRURHR0NJcvX8bT05NRo0Y5TEbpVrSqkcQaqZP2aYZGrVNWQFGUzcAfgX8BZ4DRwAxFUSwTwXsD3eqcshBYUn2MAz4HQhGGS7MYjbBqldhYV94TTeOTTz5ROwRJI2hNo9LSUk6cOMHmzZu5du0akyZN4oUXXnCojNKtaE0jSf1InbSPrTWSW6M0wNKl8MknEBsLcn9FicS2VFRUcPbsWc6dO4fBYGDkyJGMGDECV1dXtUOTSCSOh9x892743e8gJkaapeYgtwrQPmprVFVVxdmzZ9m0aROxsbEMHTqUF154gbFjx0qzVI3aGkmahtRJ+6i+NYqN0VyGKSNDrIb76U/lJO/mUlBQoPrWNZI7o5ZGZrOZy5cvEx0dTUlJCUOGDGHs2LFtquCkrZD3kT6QOmmfZmgkM0wt4c9/hj/9CfLy1I5Ef3z55ZdqhyBpBHtrpCgKKSkpbNmyhcOHD9O1a1eee+45HnjgAWmWGkDeR/pA6qR9bK2RY86qbICjR0X5gFWr5ETvljB9+nS1Q5A0gj01ys7O5uTJk1y/fp1u3brx9NNPy81Km4C8j/SB1En72FojmWGqxmyGN96A8ePhlVfUjkafxMfHqx2CpBHsoVFxcTHff/89W7dupaioiMcee4wnn3xSmqUmIu8jfSB10j621khmmKrZsAFOnxZZJjl3qWXIIRbt05oaVVZWEhsby9mzZ3FxceHee+9l6NCh1FfNX9Iw8j7SB1In7WNrjaRhAkpLxea6c+fCffepHY1+kUXctE9raKQoCpcvXyYyMpKKigqCgoIYM2YMbm5uNr+WIyDvI30gddI+ttZI/ukHLFsGN27Ae++pHYm+OXv2rNohSBrB1hrdvHmT7du38/3339O9e3eee+45Jk6cKM3SXSDvI30gddI+ttbI4csK5OdDYCC8+CIEB9v0ox2OtLQ0unfvrnYYkjtgK41KSkqIjIzk8uXLdOzYkXvvvZdu3bo1fqKkUeR9pA+kTrdTUVFBVVWV2mHUkJmZWTN30sXF5U5/yDWprIDDD8mZzfCzn8Ef/qB2JPrniy++4J133lE7DMkduFuNTCYTFy5cIDo6GmdnZx544AGGDBmCwdCk7xtJE5D3kT6QOllTUVHBhQsXMJvNaodiRVZWFgBOTk4MHz78rrLfDp9hkkgkTSMlJYUTJ06Qn5/PsGHDuOeee3B3d1c7LIlEogFKSkq4ePEigYGBeHp6qh2OFaWlpSQlJTF06FC86t++Q/+FK4ODgxk2bBjjx49vlc//8EMxf0liG+RWAdqnJRoVFRURGhrK3r178fT0ZO7cudx3333SLLUS8j7SB1Kn+vH09MTLy0tTzWLg8vPzycnJobi4uEU/m0NnmN56C9zc4N13bfaRDk15ebn8JapxmqOR2Wzm3LlzREdH4+7uzqRJk+jXr58cfmtl5H2kD6RO1lgyTHfI4qiGJbaYmBiKi4tp3749zz//fN2yA/rPMLU2ixdLs2RL/vvf/6odgqQRmqpReno6W7duJTIykqFDh/Lss8/Sv39/aZbsgLyP9IHUSX+0a9cONzc3CgoKKC8vb/b5Djnpu6wM1q6Fl14CjRlhXfOjH/1I7RAkjdCYRmVlZURGRhIfH0+nTp14+umnCQgIsFN0EpD3kV6QOukPd3d33N3dqaioaNH5DplhWrcOXn0VUlPVjqRtERkZqXYIkkZoSCNL8clvvvmGq1evcv/99zNnzhxpllRA3kf6QOrkeDhchslsFkNxc+fCoEFqR9O2kHV4tE99GuXl5XHkyBFu3LjBgAEDmDRpkubmIDgS8j7SB1Inx8PhDNO+fWA0wldfqR1J28PZ2VntECSNUFcjs9nM2bNniY6Opl27djzxxBP06NFDxegkIO8jvSB1cjwcbkju449h3DiYNEntSNoe165dUzsESSNYNMrKymL79u1ERUURFBTEM888I82SRpD3kT6QOjkeDpVhunIF9u6FNWtALvaxPffff7/aIUgaYfLkyURGRhIbG4u/vz9z5syp2TpAog3kfaQPpE6Oh0NlmD75BDp2hOefVzuStsmmTZvUDkFyB9LT0/n66685d+4c48aN4+mnn5ZmSYPI+0gfSJ3sx4YNGygtLVU7DMfJMBUVwRdfiNVxGqva3mb44x//qHYIknqorKwkMjKSCxcuEBQUxNSpU+nQoYPaYUkaQN5H+kDqZD+Ki4s1sd2Kw2SYzp0DFxdhmCStw3vvvad2CJJbSEtL47vvvuPSpUvce++9nD9/XpoljSPvI30gdbIPJpPprjbMtSUOtTVKRYXYCkUiaetUVVURGRnJ+fPn6datG1OnTsXHx0ftsCQSSRuloa1RbtwQrSG6dRPtVo4ePcrhw4fJzc2lU6dOZGZm8tvf/paePXu2OLakpCTy8vIoLCzk5Zdfxt/f39JFbo1i4fp1yMmRZqm1kZtRaoOMjAy2bNnCxYsXmTx5Mk8++WSNWZIaaR+pkT6QOjWNlSvFyvSG2sqVt5/z2Wef8e233/L2228zYMAA/vSnP7FgwQJefvll+/8AdXCIOUz/939w+DDEx8vVca3JT3/6U7VDcGhMJhMxMTGcOXOGTp068dhjj+Hn52fVR2qkfaRG+kDq1DR++Ut46qmG3781u5SSksI///lPrly5AohdCAB69+7NqVOnWivMJuEQGaZ335WlBOxBWFiY2iE4LNnZ2Wzfvp3Y2FjuuecennrqqdvMEkiN9IDUSB9InZpGt24wdmzD7VbDdOLECSZMmIC7uztFRUU12fF9+/bx4IMPqvAT1OIQhqlzZ7j3XrWjaPsMHTpU7RAcDkVROH36NNu2bQPg6aefZsyYMTg51X9rS420j9RIH0idWodRo0aRnp4OwOHDh5kyZQrXr19n6dKlrFixQtXY2vyQ3AsvwIMPwq9+pXYkbZ/CwkK1Q3AoCgsLOXToEBkZGYwaNYpx48Y1ul2D1Ej7SI30gdSpdRg8eDB///vfefvtt0lNTeX69evk5eURGhqKt7e3qrFp2jAFBwcTHByMyWRq0flJSbB5M8ycadu4JPWTl5endggOw5UrVzh69Cju7u7MmjWLrl27Nuk8qZH2kRrpA6lT6zFjxgxmzJjBypUr+fnPf652ODVo2jC99tprvPbaazVlBZrL2rXQrh386EetEJzkNkaMGKF2CG2eiooKjh07htFopH///tx///24u7s3+XypkfaRGukDqVPrUlZWpolilXVps3OYzGb48kt47jlQOYvnMOzdu1ftENo0lnIBSUlJPPTQQ0ybNq1ZZgmkRnpAaqQPpE6tS2xsLGPHjlU7DCs0nWG6G44ehcREYZok9kFLqdO2hNls5vTp08TExNC5c2erukrNRWqkfaRG+kDq1LpMnDhR7RBuo81mmDZuhN694YEH1I7Ecfjoo4/UDqHNUVhYSEhICDExMYwdO5ZZs2bdVcVuqZH2kRrpA6mT49Emt0apqoLu3eEnP4HFi+86RolEFRITEzl8+DBubm48/PDDdOnSRe2QJBKJpF4a2hpFC8itUe7AoUOQmSlKCkjsh9wqwDaYTCaOHTtGWFgY3bt3Z+7cuTYzS1Ij7SM10gdSJ8ejTc5hUhSYO1dUEZXYj1dffVXtEHRPQUEB4eHh5OTkcN999zFs2DAMNixRLzXSPlIjfSB1cjzaZIbp0Udhyxa5FYq9+e6779QOQddcvXqVrVu3Ul5ezuzZsxk+fLhNzRJIjfSA1EgfSJ0cjzaXYYqLg5ISsQuyNEz2ZdKkSWqHoEtMJhMnTpwgLi6Ofv36MWXKFNzc3FrlWlIj7SM10gdSJ8ejzRmmjz8Wc5ji4tSOxPFITU1l9OjRaoehK/Lz8zlw4AB5eXncf//9DB061OZZpbpIjbSP1EgfSJ2aQFmZ2HKjMQIDwcOj5umJEyeIj4/n9OnTTJs2jYyMDEJCQli9enWTdzVoDdqcYVq2DFJTZXZJDVRecak7EhMTiYiIwMvLizlz5tCxY8dWv6bUSPtIjfSB1KkJJCXBSy813m/9ehgyBBB/RBqNRhYsWIC3tzdLly4lPDyc8PBwPOqYKjVoU4ZJUcDFRZhVif3p1auX2iHoArPZTFRUFLGxsfTt25epU6fi6upql2tLjbSP1EgfSJ2aQGCgMENN6VeNq6sr8+bNAyAyMpI5c+bg7OzM5s2bKSkp4e9//ztTp07l2LFj/OMf/2iduBugTU36/p//gV/+Uu0oHJcTJ06oHYLmKS0tZc+ePZw9e5ZJkyYxffp0u5klkBrpAamRPpA6NQEPD5E5aqzVyRx5eXnVfCeGhYUxbdo0QGSe1q5dy9ChQ5k2bRqVlZUcPnzYrj9OmzFMVVWwfTsEBKgdiePy3HPPqR2CpsnIyGDr1q3k5uby5JNPMnLkyFadr1QfUiPtIzXSB1Kn1iEkJIQPP/yQhIQEjEYjQUFBmM1m1q5dS1xcHL179wagd+/exMbG2jW2NmOYjh6FnByYM0ftSByXFStWqB2CJlEUhQsXLhASEoK3tzdz586lW7duqsQiNdI+UiN9IHVqHbKyskhMTCQ0NJS3336bZcuWsWLFCubPn4/ZbMbFRcwkMplMODs72zW2NjOHaccOsR3KuHFqR+K4vPPOO2qHoDkqKys5cuQIV65cISgoiIkTJ9r9Jq+L1Ej7SI30gdSpdViwYAELFiyo970RI0aQlpYGQEJCAjNnzrRnaNrOMAUHBzNs2DDGjx9/x36KIobjnnoKnDT9E7Vt5FYB1uTn57Njxw6SkpJ4+OGHuffee1U1SyA10gNSI30gdbI/8+fP5/Tp0xw6dAiAqVOn2vX6bWLz3bNnYdQo2LcPHnvM5jFKmkhhYSE+Pj5qh6EJUlNTa5bBPvLII3U3eVQVqZH2kRrpA6mTNXLzXZ2wYwf4+ICdzabkFj7//HO1Q1AdRVE4d+4ce/fupXPnzsyZM0czZgmkRnpAaqQPpE6OR5uYw7R9Ozz+OLi7qx2JY/Poo4+qHYKqVFVVceTIEYxGI6NGjWLChAl2XwXXGI6ukR6QGukDqZPjofsMU1UVDBsGL7ygdiSSixcvqh2CahQXFxMSEsLVq1d5+OGHmThxoubMEji2RnpBaqQPpE6Oh+4zTC4usG6d2lFIAIcdz8/IyCAsLAyDwcBTTz1Fp06d1A6pQRxVIz0hNdIHUifHQ/eG6fvvYeRI6NBB7Ugkvr6+aodgd+Lj4zl27BidOnXikUcewdPTU+2Q7ogjaqQ3pEb6QOrkeOh6SK6sDGbMgDVr1I5EAnDhwgW1Q7AbZrOZY8eOcfjwYQYNGsQTTzyhebMEjqWRXpEa6QOpk+Oh6wyThwdcugQaW8HosMyYMUPtEOxCRUUF4eHhpKamct999zF8+HC1Q2oyjqKRnpEa6QOpU+tx4sQJ4uPjOX36NNOmTSMjI4OQkBBWr15N165dVYtL1xkmgN695f5xWuGLL75QO4RWp7CwkB07dpCRkcHMmTN1ZZbAMTTSO1IjfSB1apyyMoiPb7yVldWek5+fj9FoZMGCBTzwwAMsXbqUV155BS8vLzzqbNKrBrotXKkoMH06/OIX8PzzrRqjRAKIyd379+/H1dWVGTNm4Ofnp3ZIEolEognqK1wZHw8vvdT4uevXw5AhtZ/j6uqKq6srb731Fj169ODNN98ExGrkiIgIPvroI8LCwpodm8MWrrx8GQ4ehHbt1I5EYqEtbxVgNBrZtWsXvr6+zJkzR7dmqS1r1FaQGukDqVPjBAYKM9RYCwysPcfLywtXV1cAwsLCmDZtGiAyT+3ateOJJ56gsrLS/j8MOp7DtHcvuLnBQw+pHYnEwp///Ge1Q7A5iqIQHR1NTEwMgwYN4oEHHlB9P7i7oS1q1NaQGukDqVPjeHjUZo6aSkhICEajkdmzZ2M0GgkKCsJsNrN27Vpef/311gm0ibQow2QwGF4zGAxJBoOhzGAwnDIYDBMa6e9nMBiCDQbDDYPBUG4wGC4bDIbHWxayYM8esRWKzDBphw8//FDtEGxKVVUV4eHhxMTEMGHCBB588EFdmyVoexq1RaRG+kDq1DpkZWWRmJhIaGgob7/9NsuWLWPFihXMnz9f7dCan2EyGAzPAx8CrwKngDeBUIPBMFhRlJv19HcDwoCbwDPAdaAPkNfSoIuLRf2l999v6SdIWoNnn31W7RBsRmlpKaGhoeTk5PDII4/Qt29ftUOyCW1Jo7aK1EgfSJ1ahwULFrBgwQK1w6iXlmSYfg+sVhRljaIocQjjVAL8rIH+PwP8gTmKohxTFCVJUZTvFUWJbVnIcOgQVFTAzJkt/QRJa3DixAm1Q7AJeXl5bN++naKiImbNmtVmzBK0HY3aMlIjfSB1sj/l5eV8/fXXJCUlsXHjRsrLy+16/WYZpups0TjggOU1RVHM1c8nN3DaU8AJINhgMGQYDIbzBoPhbYPB0OKxjb17oV8/GDSopZ8gaQ169eqldgh3TXp6Ojt27MDFxYXZs2drepuTltAWNGrrSI30gdTJ/ri7u/Piiy+SlJTEvHnzcHd3t+v1mzskFwA4Axm3vJ4BNDS1qx/wMLABeBwYAHwCuDZ0kfLycivnWFBQYPV+aKio8K3BvU0lOubq1ascOnSIzp078+ijj9r9ZpRIJBKJdrFHWQEnxPylXyiKEq0oymbgXeDVjRs3kpCQwAcffEB5eXnNMs2ZM2fi6+tb0yxOPj4+ng8++BQvLxN5ed8AYmlnTk4OwcHBnD17lp07d7J7925iYmJYuXIlmZmZNZ+7cOFCSkpKWLJkCZcuXeKbb74hPDyc48eP8+WXX5KSkmLV12QysWjRIq5du8a6des4evQoERERbNq0CaPRyOLFiykrK7M6Jz09ndWrVxMVFcW+ffvYtm0b58+fZ/ny5eTn51v1zcvL4+OPP+bcuXNs376dPXv2EB0dzapVq8jIyLDqW1paypIlSzAajWzevJmDBw9y7Ngx1q5dS3JyMu+++y5ms5mFCxdiNpt59913SU5OZu3atRw7doyDBw+yefNmjEYjS5YsobS01OrzMzIyWLVqFdHR0ezZs4ft27dz7tw5Pv74Y/Ly8qz65ufns3z5cs6fP8+2bdvYt28fUVFRrF27lvT0dKu+ZWVlLF68GKPRyKZNm4iIiODo0aOsW7eOa9eusWjRIkwmk9U5KSkpfPnllxw/fpzw8HC++eYbLl26xJIlSygpKbHqm5mZycqVK4mJiWH37t3s3LmTs2fPEhwcTE5OjlXfgoICli1bRlxcHFu3biU0NJSoqCg+++wzvv/+e9atW0dgYCBnzpwB4IMPPiAhIYGNGzcSERHBkSNHWL9+PUlJSbz33ntUVVVZfX5qaipr1qzh5MmThIWF8e233xIfH8/SpUspKiqy6puVlcWnn37KmTNn2LVrFyEhIZw5c4YVK1aQnZ1t1bewsJCPPvqIuLg4tmzZwv79+zl16hRffPEFaWlpVn0rKyt5//33uXr1Khs2bODw4cMcPnyYDRs2cPXqVT755BMqKyutzklLS+OLL77g1KlT7N+/ny1bthAXF8dHH31EYWGhVd/s7GxWrFjBmTNnCAkJYdeuXZw5c4ZPP/2UrKwsq75FRUUsXbqU+Ph4vv32W8LCwjh58iRr1qwhNTXVqm9VVRXvvfceSUlJrF+/niNHjhAREUFD3xGWuD///HOioqIIDQ1l69atxMXFsWzZMgoKCqz66uk7Yvny5W32O2L16tW6/I74/PPPb7vXrl692ia/I95///0Wf0doncTERLKzs4mLi2tR3M0qXFk9JFcCPKMoyvY6r38F+CmKMruec74HKhVFmV7ntZnAnvLyctzc3G67Tn0Zpl69elkVrpRoj6tXr9KvXz+1w2gWiqJw/PhxLly4wOjRoxk/fjyGNpy61KNGjobUSB9Inaypr3ClVlClcKWiKBVANDCt5ioGg1P184ZmwB0DBlT3szAIuFGfWQIxTtm+fXurZuHGDVHlW6I9vv32W7VDaBZVVVWEhYURFxfH/fffz4QJE9q0WQL9aeSISI30gdTJ8WjJkNyHwM8NBsNPDAbDUGAF0A5YA2AwGNYaDIZFdfqvQKyS+6/BYBhkMBieAN4Ggpt7YbMZRo6ERYsa7yuxP7///e/VDqHJlJaWsnv3blJTU3n00UcZNmyY2iHZBT1p5KhIjfSB1MnxaLZhqp6D9EfgX8AZYDQwQ1EUy0Tw3kC3Ov1TgMeA8cBZYBnwX+C95l8b1q0DWf5Cm7yvk8JY+fn57Ny5k4KCAmbNmkWfPn3UDslu6EUjR0ZqpA+kTo6HbjfflUhaQlZWFnv37sXNzY2ZM2fK/08SiURiA+QcJo2xaBHs2qV2FJKG0PpKievXrxMSEoKPjw+zZ892SLOkdY0kUiO9IHVqnLKqMuKz4httZVVlVuedOHGCNWvW8MYbb7Bjxw5WrVrFrFmzSE9PV+knEehq892lS6GN1RFsU/zsZw0Ve1cfS42lbt268cgjj9Tshu1oaFkjiUBqpA+kTo2TlJfES1tfarTf+rnrGRIgSjnm5+djNBpZsGAB3t7eLF26lPDwcMLDw/Hw8GjtkO+IrgxTeTlMn954P4k67Nu3T5NfInFxcRw7dox+/foxdepU3W+gezdoVSNJLVIjfSB1apxAv0DWz13fpH4WXF1dmTdvHgCRkZHMmTMHZ2dnNm/ezM2bN1m/fj1OTk5ER0fz/vvv4+JiPxujK8MUEABBQWpHIWmI4cOHqx2CFYqiEBMTQ3R0NEFBQUyePLnNlw1oDK1pJLkdqZE+kDo1joeLR03mqKnUnf8UFhbGunXrAJF5OnjwIHl5efzmN7/h5MmTHDhwgBkzZtg05juhK8M0dSo46WrWlWORn5+vdgg1KIrCsWPHiIuLY/z48YwePdrhzRJoSyNJ/UiN9IHUqXUICQnBaDQye/ZsjEYjQUFBmM1m1q5dy+uvv17TLz09nSFDmmfG7hZdGKbcXHGcOlXVMCSNUFhYqHYIAJhMJg4dOkRiYiJTpkyx+02lZbSikaRhpEb6QOrUOmRlZZGYmEhoaChvv/02y5Ytw8XFhfnz59f02b17N88++yyBgYF2jU0XhunwYXGUhknbDB06VO0QqKysZP/+/aSnp/PII4/Y/YbSOlrQSHJnpEb6QOrUOixYsIAFCxY0+H5UVBRdunThnnvuIS4uzq5Fh3UxwBURIY7Ve/BKNMr+/ftVvX5paSm7du0iMzOTxx9/XJqlelBbI0njSI30gdTJ/pw4cYJXXnmFv/zlL0yZMgV715HUReHKoKACLlyQhSu1TmFhIT4+Pqpcu7i4mN27d1NeXs7jjz9Ox44dVYlD66ipkaRpSI30gdTJGlm4UiMcOqR2BJKm8N///leV6xYUFLBz506qqqp46qmnpFm6A2ppJGk6UiN9IHVyPHSRYZJbo0gaIjc3l927d+Pq6soTTzyBt7e32iFJJBKJwyEzTCoTHBzMsGHDGD9+vNqhSJqAvbcKyMzMJCQkBA8PD5566ilplpqA3M5B+0iN9IHUyfGQGSaJzcjOzrbbcNiNGzfYt28fHTp0YObMmbi7u9vlunrHnhpJWobUSB9InayRGSaJpBl88803drlOSkoKe/fupVOnTjzxxBPSLDUDe2kkaTlSI30gdXI8dFGHSaIPJk+e3OrXSExMJDw8nJ49e/LII4849L5wLcEeGknuDqmRPpA6OR4ywySxGSkpKa36+ZcuXeLAgQP07duXRx99VJqlFtDaGknuHqmRPpA6tR4nTpxgzZo1vPHGG+zYsYNVq1Yxa9Ys0tPTVY1LZpgkNqM192q7cOECx44dY8iQITzwwANyX7gWIv/dtI/USB9InRqnrKyMpKSkRvsFBgbi4eEBiD36jEYjCxYswNvbm6VLlxIeHk54eHhNH7WQhkliM3r27Nkqn3v27FlOnjzJiBEjmDRpkvyiugtaSyOJ7ZAa6QOpU+MkJSXx0ksvNdpv/fr1NXt+urq6Mm/ePAAiIyOZM2cOzs7ObN68mcLCQr744gt69uzJ5s2bWb16NU5O9hsok4ZJYjNOnjzJ6NGjbfqZZ86cITIyktGjRzN+/Hhplu6S1tBIYlukRvpA6tQ4gYGBrF+/vkn9LNRdYRcWFsa6desAkXm6dOkSCQkJLFiwgHfeeYfy8nI8PT1tHndDSMMksRnPPPOMTT8vOjqa6Ohoxo0bx9ixY6VZsgG21khie6RG+kDq1DgeHh41maOmEhISgtFoZPbs2RiNRoKCgjCbzaxdu5bXX3+dvn37EhwczBtvvGFXswRy0rfEhnz66ac2+RxFUYiKiiI6Oprx48czbtw4aZZshK00krQeUiN9IHVqHbKyskhMTCQ0NJS3336bZcuWsWLFCubPnw9Ap06d+M1vfsOGDRuIj4+3a2yycKVEUyiKQmRkJLGxsUycOJFRo0apHZJEIpFIGsEehSuDg4NxcXHhl7/8JbNmzeLVV1/liSeeaHJssnClRDPc7VYBiqJw4sQJYmNjuffee6VZagXkdg7aR2qkD6RO9uehhx7Cx8eHHTt2MGLECGbMmGHX68sMk8RmFBUVtXg/N0VROHbsGHFxcdx///0MGzbMxtFJ4O40ktgHqZE+kDpZI7dGkUiawerVq1t0nqIoHD58mIsXL/Lggw9Ks9SKtFQjif2QGukDqZPjIVfJSWzGzJkzm32OoihERERw5coVpk6dysCBA1shMomFlmgksS9SI30gdXI8ZIZJYjPOnTvXrP5ms5mDBw9y5coVHn74YWmW7EBzNZLYH6mRPpA6OR4ywySxGX5+fk3uazabOXToEImJiUyfPp2+ffu2XmCSGpqjkUQdpEb6QOrkeGg6wxQcHMywYcMYP3682qFImoCPj0+T+tU1S9OmTZNmyY40VSOJekiN9IHUyfHQtGF67bXXiIuLIyoqSu1QJE3g4sWLjfYxm81ERERw9epVaZZUoCkaSdRFaqQPpE6Oh6YNk0RfPPLII3d83zLBOyEhQZollWhMI4n6SI30gdTJ8ZCGSWIzvvzyywbfq2uWHn74Yfr162e/wCQ13EkjiTaQGukDqVPrceLECdasWcMbb7zBjh07WLVqFbNmzSI9PV3VuOSkb4nNeOedd+p9vW7pgIcffpj+/fvbOTKJhYY0kmgHqZE+kDo1hTIgqQn9AgEPAPLz8zEajSxYsABvb2+WLl1KeHg44eHheHh4tF6oTUBmmCQ2o76tAhRF4fvvv5dmSSPI7Ry0j9RIH0idmkIS8FITWlLNGa6ursybNw+AyMhI5syZg7OzM5s3b65ZmZiamsof/vAHe/0QNcgMk8Rm/OUvf7F6bqngbTQaeeihh6RZ0gC3aiTRHlIjfSB1agqBwPom9hPU3VYlLCyMdevWASLz5Ovri6Io7Nixg+zsbJtG2hRkhkliM/7zn//UPLaYpcuXLzN16lQGDBigYmQSC3U1kmgTqZE+kDo1BQ9gSBNa7VBbSEgIH374IQkJCRiNRoKCgjCbzaxduxaAAwcO8PDDD9v3x6hGZpgkNuOFF14AbjdLsoK3drBoJNEuUiN9IHVqHbKyskhMTCQ0NJS3336bZcuW4eLiwvz587l69SpdunTB09NTldikYZLYjKNHj9KnTx+OHj0qzZJGOXr0KIGBgWqHIbkDUiN9IHVqHRYsWMCCBQvqfe/QoUM4Oztz8+ZNkpOTOXv2LCNHjrRbbHJITmIzevfuzYkTJ7h48SJTpkyRZkmD9OnTR+0QJI0gNdIHUif786Mf/YgnnniC0tJSysvLURTFrteXGSaJTVAUheTkZEpKSnjggQcYPHiw2iFJ6sFkMqkdgqQRpEb6QOqkDq6urvz2t7/lt7/9rd2vLTNMEpsQExNDamoqkydPZujQoWqHI2mAGzduqB2CpBGkRvpA6uR4SMMkuWvOnDlDdHQ0Y8eOZcSIEWqHI7kDEyZMUDsESSNIjfSB1MnxkIZJclecO3eOyMhIxo0bx5kzZ9QOR9IIW7ZsUTsESSNIjfSB1MnxkHOYJC0mLi6OEydOMGrUKMaOHUtQUJDaIUkaQY1xf0nzkBrpA6mT4yEzTJIWcenSJY4ePUpQUBATJkzAYDCwePFitcOSNILUSPtIjfSB1MnxMNh7Wd4tNOniBQUF+Pr6kp+fT/v27Vs7JkkjXLlyhUOHDjFkyBDuv/9+DAaD2iFJJBKJREVKSkq4ePEiQ4cOtdreRAtYYktKSiIvL4/CwkJefvll/P39LV2a9EtM0xmm4OBghg0bxvjx49UORVJNYmIihw4dYuDAgbeZJbkZpfaRGmkfqZE+kDo5HjLDJGkyycnJ7N+/n759+/Lwww/flllKS0uje/fuKkUnaQpSI+0jNdIHUidr6s0wmcqgKKnxk70Dwbl2P7kTJ04QHx/P6dOnmTZtGhkZGYSEhLB69Wq6du3a4tjadIZJoh1SU1MJCwujd+/ePPTQQ/UOw+3du1eFyCTNQWqkfaRG+kDq1ASKkuDES423OqYqPz8fo9HIggULeOCBB1i6dCmvvPIKXl5eeHh4UFBQAEBhYaHdfxy5Sk7SKDdu3GD//v10796dadOm4eRUv8+2554+kpYhNdI+UiN9IHVqAt6BMHl90/pV4+rqyrx58wCIjIxkzpw5ODs7s3nzZgD69+9PUFAQc+bMaXDPudZCGibJHcnKyiI0NJTOnTvzyCOP4Ozs3GDfnJwcO0YmaQlSI+0jNdIHUqcm4OwBvkOadUrdCeNhYWGsW7cOEJknX19f/vnPf/LSSy/ZNMymIofkJA2Sm5vLnj178PPz47HHHsPF5c7+uri42E6RSVqK1Ej7SI30gdSpdQgJCeHDDz8kISEBo9FIUFAQZrOZtWvXAhAbG8vBgwdZvHix3HxXog0KCwvZs2cPXl5ezJw5E1dX10bPGTKkeX9JSOyP1Ej7SI30gdSpdcjKyiIxMZHQ0FDefvttli1bhouLC/Pnzwfggw8+wGAwcOLECSIiInjooYfsFps0TJLbKC4uZvfu3bi4uPD444/j7u7epPMOHDjAsGHDWjk6yd0gNdI+UiN9IHVqHRYsWNDg3KS1a9fi5ubGCy+8QH5+vt0zTHJITmJFWVkZe/bswWQy8fjjjzerANlPf/rT1gtMYhOkRtpHaqQPpE7255FHHsHT05Nt27bRu3dvHn74YbteXxomSQ0VFRXs3buXsrIynnjiCXx8fJp1/rJly1opMomtkBppH6mRPpA62Z9u3boxe/Zsnn76aX7zm9/Y/fqycKUEgKqqKvbu3Ut2djZPPvkkAQEBaockkUgkEp0gt0aROAQmk4mwsDAyMzOZMWNGi82S3CpA+0iNtI/USB9InRwPaZgcHEVROHToEGlpaTz66KMtKjtv4de//rUNI5O0BlIj7SM10gdSJ8ejRYbJYDC8ZjAYkgwGQ5nBYDhlMBgmNPG8FwwGg2IwGLa35LoS26IoCkeOHCExMZGHH36Ynj173tXnbdy40UaRSVoLqZH2kRrpA6mT49Fsw2QwGJ4HPgT+CYwFYoFQg8HQuZHzAoH/AEeaH6bE1iiKwsmTJ4mPj+fBBx+kb9++d/2ZDzzwgA0ik7QmUiPtIzXSB1Inx6MlGabfA6sVRVmjKEoc8CpQAvysoRMMBoMzsAH4X+BqSwKV2JaYmBjOnTvHfffdx6BBg2zymUlJSTb5HEnrITXSPlIjfSB1cjyaVbjSYDC4AeOARZbXFEUxGwyGA8DkO5z6D+CmoiifGwyGRm15eXk55eXlNc8tuxNLbMO5c+eIjo5m/PjxDB8+3Gafe6d95iTaQGqkfaRG+kDq1HqcOHGC+Ph4Tp8+zbRp08jIyCAkJITVq1ff1Tzbu6W5GaYAwBnIuOX1DKDen8JgMNwPvAL8/Nb3Nm7cSEJCAh988AHl5eU1qw5mzpyJr69vTevVqxcA8fHxLFu2jIKCgpq+CxcuJCcnh+DgYM6ePcvOnTvZvXs3MTExrFy5kszMTKu+JSUlLFmyhEuXLvHNN98QHh7O8ePH+fLLL0lJSbHqazKZWLRoEdeuXWPdunUcPXqUiIgINm3ahNFoZPHixZSVlVmdk56ezurVq4mKimLfvn1s27aN8+fPs3z5cvLz86365uXl8fHHH3Pu3Dm2b9/Onj17iI6OZtWqVWRkZFj1LS0tZcmSJRiNRjZv3szBgwc5duwYa9euJTk5mXfffRez2czChQsxm828++67JCcns3btWo4dO8bBgwfZvHkzERERbN++naFDh7Jr166az8/IyGDVqlVER0ezZ88etm/fzrlz5/j444/Jy8uziiU/P5/ly5dz/vx5tm3bxr59+4iKiuLEiROkp6db9S0rK2Px4sUYjUY2bdpEREQER48eZd26dVy7do1FixZhMpmszklJSeHLL7/k+PHjhIeH880333Dp0iWWLFlCSUmJVd/MzExWrlxJTEwMu3fvZufOnZw9e5bg4GBycnKs+hYUFLBs2TLi4uLYunUroaGhREVF8fnnn5OWlmbVt7y8nA8++ICEhAQ2btxIREQER44cYf369SQlJfHee+9RVVVldU5qaipr1qzh5MmThIWF8e233xIfH8/SpUspKiqy6puVlcWnn37KmTNn2LVrFyEhIZw5c4YVK1aQnZ1t1bewsJCPPvqIuLg4tmzZwv79+zl16hRffPHFbXFXVlby/vvvc/XqVTZs2MDhw4c5fPgwGzZs4OrVq4SGhlJZWWl1TlpaGl988QWnTp1i//79bNmyhbi4OD766CMKCwut+mZnZ7NixQrOnDlDSEgIu3bt4syZM3z66adkZWVZ9S0qKmLp0qXEx8fz7bffEhYWxsmTJ1mzZg2pqalWfauqqnjvvfdISkpi/fr1HDlyhIiIiAa/Iyxxf/7550RFRREaGsrWrVuJi4vT/XfE7t27Vf2OMBqNLFmyhNLSUqvPt8V3xOrVq9vMd0THjh3b5HfE+++/3+LviNsoA+Kb0MpqT8nPz8doNLJgwQIeeOABli5dyiuvvIKXlxceHh71X6eJJCYmkp2dTVxc3J3jboBm1WEyGAzdgevAvYqinKjz+gfAg4qiTLylvw9wFvi1oih7q1/7EvBTFGUODdRhqi/D1KtXL1mH6S5JTk4mNDSUQYMGMWXKFAyGJpWeaDIrV67kl7/8pU0/U2JbpEbaR2qkD6RO1tRbhykeeKkJJ68HhtR+jqurK66urrz11lv06NGDN998s6brxo0b6dChA/v27eOf//wnvr6+TY7tbuswNXcvuSzABHS55fUuQHo9/fsDgUBInV/OTgAGg6HqypUr9O/f/7aT3N3dm7x/maRppKenc+DAAfr06cMDDzxgc7MEMHfuXJt/psS2SI20j9RIH0idmkAgwgw1pV81dYtehoWFsW7dOkBknmJjYyksLGTevHnMmDHDlpE2iWYNySmKUgFEA9MsrxkMBqfq5yfqOSUeGAGMrtN2AoeA0ZahNknrkpOTQ2hoKJ06dWLatGk4ObVO+a2VK1e2yudKbIfUSPtIjfSB1KkJeCAyR421OiNtISEhfPjhhyQkJGA0GgkKCsJsNrN27Vq2bt1KXl4ekZGRfPDBB3bffLfZW6NUlxX4CvglEAm8CTwHDFEUJcNgMKwFriuK8tcGzv+SRobkbkVujdJyCgsL2bFjB56ensyaNQs3Nze1Q5JIJBJJG8NWW6OsWbOGmJgYhg4dSm5uLt7e3ri4uDBv3jzeeecdZsyYwVNPPcU//vEPpkyZwvTp05scm72H5FAUZbPBYOgE/Asx0fsMMENRFMtE8N6AubmfK7E9paWl7N69G1dXVx5//PFWN0sLFy7knXfeadVrSO4OqZH2kRrpA6lT67BgwQIWLFhQ73v33HOP1XOz2b5WQ26+20apqKggJCSE0tJSZs+ejY+PT6tfs6SkRHObLkqskRppH6mRPpA6WWOPzXctq5eHDx/OtWvXePPNN5s0H1duvitpEJPJRGhoKEVFRTz++ON2MUsAK1assMt1JC1HaqR9pEb6QOpkf9zd3fn73//O3Llz+d3vftcqi5fuhDRMbQyz2cyBAwfIzMzkscceq+ugW50nn3zSbteStAypkfaRGukDqZPjIQ1TG8KymW5ycjLTp0+3e0XU2NhYu15P0nykRtpHaqQPpE6OhzRMbYjIyEguXbrE1KlT6d27t92v37FjR7tfU9I8pEbaR2qkD6ROjoc0TG2E2NhYYmNjmTx5MgMHDlQlBk9PT1WuK2k6UiPtIzXSB1Inx0MapjbA5cuXOXXqFGPGjGHEiBGqxiHRNlIj7SM10gdSJ8dDGiadk5KSwvfff8+QIUNuq1Fhb6ZNm9Z4J4mqSI20j9RIH0idHA9pmHRMZmYmBw4coHfv3tx///12X2J5K1999ZWq15c0jtRI+0iN9IHUyfGQhSt1Sn5+Pjt37qR9+/Y88cQTuLg0u2i7RCKRSCQ2wZaFK0+cOEF8fDynT59m2rRpZGRkEBISwurVq1u0+lsWrnRgSktL2bt3L+7u7jz22GOaMUsLFy5UOwRJI0iNtI/USB9InRqnqqqKrKysRltVVVXNOfn5+RiNRhYsWMADDzzA0qVLeeWVV/Dy8sLDw+MOV2t9ZIZJZ1RWVrJr1y6Ki4vttuVJUzGZTDg7O6sdhuQOSI20j9RIH0idrKkvw5SVlcXWrVsbPXfu3LkEBATUfI6rqyuurq689dZb9OjRgzfffBOACxcu8OMf/5hOnTphNpuZPn06f/7zn5scm90337UnwcHBBAcHYzKZ1A5FE5hMJsLCwsjPz2fWrFmaMksAH3zwAX/961/VDkNyB6RG2kdqpA+kTo3j5+fH3Llzm9TPQt3hvLCwMNatWweIzFNZWRnR0dEYDAY2b97M7NmzbR7zndC0YXrttdd47bXXajJMjoyiKBw+fJgbN24wc+ZMTRZNe/HFF9UOQdIIUiPtIzXSB1KnxnFxcanJHDWVkJAQjEYjs2fPxmg0EhQUhNlsZu3atbz++usAHD58mLFjx9p9iE7OYdIJkZGRGI1Gpk6dSvfu3dUOp14OHz6sdgiSRpAaaR+pkT6QOrUOWVlZJCYmEhoayttvv82yZctYsWIF8+fPr+mzZcsWVQo0azrDJBGcP3++pop3//791Q6nQfr27at2CJJGkBppH6mRPpA6tQ4LFixgwYIFDb5//fp10tPT7RhRLTLDpHESEhI4ceIEo0aNUrWKd1Oou9JBok2kRtpHaqQPpE7qkJWVZfeN5S1Iw6Rh0tLSiIiIoH///kyYMEHtcBpFLdcvaTpSI+0jNdIHUid1GDVqFP/9739VubY0TBolNzeX/fv307VrVx588EHVq3g3hXHjxqkdgqQRpEbaR2qkD6ROjoc0TBqkpKSEvXv34uPjw6OPPqqbWh/bt29XOwRJI0iNtI/USB9InRwPaZg0RmVlJfv27UNRFGbMmIGrq6vaITUZy5JPiXaRGmkfqZE+kDo5HtIwaQiz2cyBAwfIz89nxowZtGvXTu2QmsV//vMftUOQNILUSPtIjfSB1MnxkFujaARFUTh69Cjx8fHMnDmTnj17qh2SRCKRSCRNwpab79oaufluG+Ps2bNcvHiRKVOm6NYsyc0otY/USPtIjfSB1MnxkIZJAyQkJHDq1CnGjBnD4MGD1Q6nxfzP//yP2iFIGkFqpH2kRvpA6uR4SMOkMunp6URERDBw4EDuuecetcO5K0JCQtQOQdIIUiPtIzXSB1KnJmA2Q0lp481stjrtxIkTrFmzhjfeeIMdO3awatUqZs2apXrtK7k1iork5eURGhpK586dmTJlii5qLd2J0aNHqx2CpBGkRtpHaqQPpE5NoKwcLiY23m9oX/DyBCA/Px+j0ciCBQvw9vZm6dKlhIeHEx4ebvfNdm9FGiaVKC0tZd++fXh5eemq1tKdyM7OVjsESSNIjbSP1EgfSJ2agIe7MENN6VeNq6sr8+bNA8Sm83PmzMHZ2ZnNmzeTn5/PN998Q+fOnblw4QK//vWv7ZpokENyKlBVVUVoaCiVlZXMmDEDd3f3xk/SAaWlpWqHIGkEqZH2kRrpA6lTE3ByEpmjxppTrRXx8vKqqT8YFhbGtGnTAJF5OnLkCCaTialTp1JRUUFhYaF9fxy7Xq2ZBAcHM2zYMMaPH692KDZDURQOHTpETk4OM2bMwMfHR+2QbMbAgQPVDkHSCFIj7SM10gdSp9YhJCSEDz/8kISEBIxGI0FBQZjNZtauXctDDz3EV199xdNPP03Xrl3tXmZI04bptddeIy4ujqioKLVDsRk//PADSUlJPPzww3Tq1EntcGzKoUOH1A5B0ghSI+0jNdIHUqfWISsri8TEREJDQ3n77bdZtmwZK1asYP78+cTHx/PGG2/w8ssvs3z5cm7cuGHX2GThSjtiNBo5dOgQEydOZNSoUWqHY3Py8/Px9fVVOwzJHZAaaR+pkT6QOlljj8KVf/vb33j33XcBiIqK4vr168yZM6fJscnClTohPT2dw4cPM3jwYEaOHKl2OK3C8uXL1Q5B0ghSI+0jNdIHUif789JLL7F69Wr27dtHYmIiM2fOtOv1ZYbJDhQWFrJ9+3b8/Px4/PHH28SKOIlEIpFILMitUSR3TUVFBfv27cPV1ZVHHnmkTZsluVWA9pEaaR+pkT6QOjke0jC1ImazmfDwcIqLi5kxY4bqRbdam9/85jdqhyBpBKmR9pEa6QOpk+MhDVMrcvLkSVJTU3nkkUfw8/NTO5xWZ/369WqHIGkEqZH2kRrpA6mT4yENUysRFxfH+fPnue++++jRo4fa4diFBx98UO0QJI0gNdI+UiN9IHVyPKRhagVSU1M5duwYQUFBDBs2TO1w7EZCQoLaIUgaQWqkfaRG+kDq5HhIw2Rj8vPzCQ8Pp2fPnkyePFntcOyKm5ub2iFIGkFqpH2kRvpA6uR4yM13bUhFRQX79+/H09OTadOm2XVTQC3QpUsXtUOQNILUSPtIjfSB1Kn1OHHiBPHx8Zw+fZpp06aRkZFBSEgIq1evpmvXrqrFJQ2TjbDsEVdcXMycOXMc8q+P6Ohoxo0bp3YYkjsgNdI+UiN9IHVqHFN5OUXXrzfaz7tHD5yrN6HPz8/HaDSyYMECvL29Wbp0KeHh4YSHh6u+0lwaJhsRHR1NcnIyjz32mEOsiKuP2bNnqx2CpBGkRtpHaqQPpE6NU3T9Oif+8pdG+01+7z18+/UDwNXVlXnz5gEQGRnJnDlzcHZ2ZvPmzWRkZLB48WJGjRpFSkoKr7zySqvGfyvSMNmAxMREYmJimDBhAr1791Y7HNVYvXo177zzjtphSO6A1Ej7SI30gdSpcbx79GDye+81qZ+FulXCw8LCWLduHSAyTx988AFPPfUUDz74IH/+858xGo0MHDjQ9oE3gDRMd0lOTg4RERH079+/TW6o2xzkl4f2kRppH6mRPpA6NY6zu3tN5qiphISEYDQamT17NkajkaCgIMxmM2vXrmXgwIHk5eUBkJeXx+nTp+1qmOQqubugrKyM0NBQ2rdvz5QpUxxukvetyK0CtI/USPtIjfSB1Kl1yMrKIjExkdDQUN5++22WLVvGihUrmD9/Pq+++ipubm4cP34cFxcX3KvnPdkLufluCzGbzezZs4ecnByefvppfHx81A5JdUpLS/H09FQ7DMkdkBppH6mRPpA6WWOPzXf37NlDVVUVTz31FD/+8Y/5+OOP8fX1bXJsbXrz3eDgYIYNG8b48ePVDuU2Tp06xY0bN5g+fbo0S9V88sknaocgaQSpkfaRGukDqZP9GTBgAImJiaxcuZIXXnihSWbJlmh6DtNrr73Ga6+9VpNh0gpGo5Fz585x33330b17d7XD0QxPPfWU2iFIGkFqpH2kRvpA6mR/Bg0axKBBg1S7vqYzTFokJyeHI0eOMHDgQIfa9qQpxMTEqB2CpBGkRtpHaqQPpE6OhzRMzaCiooKwsDB8fX154IEHHH6S96106tRJ7RAkjSA10j5SI30gdXI8pGFqIoqiEBERQWlpKY888gguLpoezVQFe69YkDQfqZH2kRrpA6mT4yENUxOJjY0lKSmJhx56SDMr9VoVRYHycigpgYICyM2F7Gy4eRPS0iAjQzzPy4OiIigt5eqlS+I8iWaRO6xrH6mRPpA6OR4yTdIErl+/TlRUFGPGjKFPnz5qh9N8Cgvhxg3IyREtL08YoJwccSwqguJiKC0VBqmkRDxupvl5rqICPvkEXF3B0xPatQMvr9rWrp1ovr7QoQP4+YlW97GPD8ihzlZj6tSpaocgaQSpkT6QOjke0jA1QnFxMQcPHqR79+7cc889aodTP2azMESJiXDtmsgA3bghWlqaMEN18fAAf/9as9KlS62psRgdT0/Rz8UFnJ1vb2YzVFWByVRz3L5hA88/8wyUldUaL0srLhbHrCxh2PLyRObqVtzcoFMn6Ny5/talCwQEgJNMjraEdevW8be//U3tMCR3QGqkD6ROjocsXHkHTCYTu3btori4mLlz56q+UzIgTEZ8PMTFweXLkJQkWkWFeN/DA7p3h27dROveHbp2FY8DAoRBaqWfw2w249QcI2MyQX5+rYHKzRWGKiMDMjOtj5afD4Sp6t4devaEHj1uP8q5BQ3SbI0kdkdqpA+kTtbYo3BlS7FV4UqZYboDp06dIisri1mzZqljlkwmuHQJYmLg/Hm4eBGuXxfveXnBoEEQFARPPgl9+0K/fiILo9KQ1r///e/m7a/k7CwyXbX/aetHUcSwYkZGbdYsNVX8W0RGwrZt1oaqa1fx79G3LwQG1j7282vJj9WmaLZGErsjNdIHUifHQ2aYGiAxMZGwsDDuu+8+hg8fbpdrYjYLYxQdLUxSbKwYxnJ3h2HDYOjQ2mOvXpobllLtLy6zWUxAT00VLSlJDE8mJYnnZrPo5+tba5769ROGc+BAcIRJ/NXIv4q1j9RIH0idrJEZJgelsLCQ77//nr59+7Z+ccqCAjh+HI4eFceCApE9Gj0afvYzGDtWGCRX19aNwwYsWrRInTF9Jycx76lTJxgzxvq9igpISREGytIuXIDdu2uzUl261JqnQYNE69lTc4bUFqimkaTJSI30gdSpfkpLS9UO4TZsFZM0TLdgMpk4cOAA7u7uTJkypXWKU968CQcOQHg4nDsnMiCDB8Ozz8L994sskrOz7a/byvz4xz9WO4TbcXOD/v1Fq4vJJCbIX74smtEIO3aITBWIeV4DBgjzNHQoDB8uslI6r7+lSY0kVkiN9IHUyRoXFxecnJxISkpSO5R6URQFk8l0V5/Rom9/g8HwGvAW0BWIBV5XFCWygb4/B14Ggqpfigbebqi/2kRGRpKdnc3s2bNtW5gsLw/CwmD/fjhzRvzinTwZ3n4b7rtPZEd0TkREBC+//LLaYTQNZ2dhgPr1gxkzal/PyRHmyWKiYmNh+3Zhat3chLEdNqy29emjq0yUrjRyUKRG+kDqZI2bmxvDhw+nqqqK/Px8du3aRbt27VQt8Hn58uWavedMJhNVVVV39XnNNkwGg+F54EPgVeAU8CYQajAYBiuKcrOeU6YCG4HjQBnwZ2C/wWAYrvL8qdu4du0a586dY/LkybYpe282ww8/iEnJEREiqzFpEvzv/8KDD4qaQ22I/rdmcfSIvz9MnCiahdJSYaAuXBCrE0+cgM2bxXteXjBkiMhADR0qJuF366bZWlJtQqM2jtRIH0idbsfNzQ03NzfKysooLi6msrJSVcNUVVVFXl6e1Wvl5eUt/ryWZJh+D6xWFGUNgMFgeBV4AvgZ8N6tnRVFmV/3ucFg+B/gR8C0Fly71SgsLCQiIoI+ffoQFBTU+Al3oqAAtmwRRiktTUwy/s1v4PHHxbL+Nsrd/EfUNJ6eMGqUaBYKC8WqxYsXhZEKC4N168R7/v6i74gRMHKkMFIaKXXQZjVqQ0iN9IHUqWHc3d1p3749BQUFVNRdwWxnioqKKCwsvO319u3bt8jINcswGQwGN2AcsMjymqIoZoPBcACY3MSP8QJcgZyGOpSXl1v9Zyyor8ChDTGbzRw8eBBXV1emTp3a8nlLKSmwcSPs3CmyS489BgsXil+cGs042JLMzEy1Q7AfPj4wYYJoFnJyhHk6d04M5a1aJYp4uriIobyRI2tbly6qhO1QGukUqZE+kDo1TLt27Xj++edVN5U7d+7kqaeeuu11d3d32rVr1+zPa+7kiwDAGci45fUMxHympvA+kAYc2LhxIwkJCXzwwQeUl5ezcOFCAGbOnImvr29N69WrFwDx8fEsW7aMgoKCmr4LFy4kJyeH4OBgzp49y86dO9m9ezcxMTGsXLmSzMxMq74lJSUsWbKES5cu8c033xAeHs4333xDXFwcw4cPZ/HixTV9TSYTixYt4tq1a6xbt46jR48SERHBpk2bMBqNLF68mLKyMj5580146y3SJk+mfPdujvTtS8y//sW+iRPZlpDA+QsXWL58Ofn5+Vax5OXl8fHHH3Pu3Dm2b9/Onj17iI6OZtWqVWRkZFj1LS0tZcmSJRiNRjZv3szBgwc5duwYa9euJTk5mXfffRez2czChQsxm828++67JCcns3btWo4dO8bBgwfZvHkzRqORJUuWUFpaavX5GRkZrFq1iujoaPbs2cP27ds5d+4cH3/8MXl5eVZ98/PzWb58OefPn2fbtm3s27ePqKgojEYj6enpVn3LyspYvHgxRqORTZs2ERERwdGjR1m3bh3Xrl1j0aJFmEwmq3NSUlL48ssvOX78eI0+ly5dYsmSJZSUlFj1zczMZOXKlcTExLB792527tzJ2bNnCQ4OJicnx6pvQUEBy5YtIy4ujq1btxIaGkpUVBSff/45aWlpVn3Ly8v54IMPSEhIYOPGjURERHDkyBHWr19PUlIS7733HlVVVVbnpJaUsObKFU6OHUvYM8/w7euvc/Vf/2L34MFUdOnC5dWr4a9/JW3sWCqmT+f0Y4+RtGgREZ98Qsj27Zw5c4YVK1aQnZ1t9bmFhYV89NFHxMXFsWXLFvbv38+pU6f44osvbou7srKS999/n6tXr7JhwwYOHz7M4cOH2bBhA1evXuWHH36gsrLS6py0tDS++OILTp06xf79+9myZQtxcXF89NFHFBYWWvXNzs5mxYoVnDlzhpCQEHbt2sWZM2f49NNPycrKsupbVFTE0qVLiY+P59tvvyUsLIyTJ0+yZs0aUlNTrfpWVVXx3nvvkZSUxPr16zly5AgRERE09B1hifvzzz8nKiqK0NBQtm7dSlxcXKt8Rxw/fpwvv/ySlJQUq75N/Y6oe056ejqrV68mKiqKffv2sW3bNs6fP1/zHXHy5Mk2+x2xevXqNvMdERQU1PzviNRU1qxZw8mTJwkLC+Pbb78lPj6epUuXUlRUZNU3KyuLTz/9lDNnzrBr1y5CQkLs8h3x/vvv2+Q7wmg0cuzYMY4fP05ycjLffPMNZrOZTz75BH9/fz755BPc3Nz46quvuHnzJuHh4URHR3P58mV27NhBSUmJVd/27duzatUqCgoK2LNnDxcuXODs2bOEhoaSm5vLZ599Rrt27azOGTBgANu2bSMhIYGoqCgiIiJIT0/n888/t/qOaCrNqsNkMBi6A9eBexVFOVHn9Q+ABxVFmdjgyaLfX4A/AVMVRTlLA3WY6ssw9erVq1XqMF2/fp09e/YwYcIERtUdcmkKCQmwciUcPCiWof/kJ2LYTSPDL/ZmyZIl/OEPf1A7DG2TnQ1nz9ZmoS5eFOUNPD1F5mnMGFFKYvjwVvl/JDXSPlIjfSB10j7N0KhJQ0DNNUxuQAnwjKIo2+u8/hXgpyjK7Duc+0fgHWC6oig/VL+sauHK8vJyvvvuO3x9fXniiSeaPhR3/ToEB4t5K926wf/8DzzxhC5LAdiS0tJSPD091Q5DX1RWCtN0+rRoZ86IzZBdXMQqvLFjhYkaNQq8ve/6clIj7SM10gdSJ+3TDI2a9Mu/WUNyiqJUIMoC1EzYNhgMTtXPTzR0nsFg+BPwd2BGHbOkKoqicPToUSorK5s+b6mkRBilZ54Rv9jefltM7n7qKYc3SyDcvKSZuLqKzNJPfgIffSSylV9/Db//vdjmJiQEfvtbeOghePFF+M9/RP2unAanAN4RqZH2kRrpA6mT9rG1Rs3eGqW6rMBXwC+BSERZgeeAIYqiZBgMhrXAdUVR/lrd/8/Av4AXgWN1PqpIUZTbp6/XQ2tkmIxGI4cOHWLatGmNLw81m2HPHli+XKyO+slP4OWXxTCKRNKaKIrY3sWSgYqJqd1PsHdvkX0aNw7uuUcYLIlEIpE0F9tnmAAURdkM/BFhgs4AoxGZI8tE8N5Atzqn/ApwA74DbtRpf2zutW1FYWEhx44dY8CAAY2bpeRk+OUv4f/+T/xi2rpVPJdm6TaaO4FO0gQMBrFv4FNPifpdO3bA3r3w73+LWlHnz8M//iHmzj39tFiVuXevqCZfD1Ij7SM10gdSJ+1ja40cbvNdRVEICQmhqKiIZ555Bjc3t/o7mkywfr2Y1N25M7zzjvgrXtIgGRkZdFFpubxDk5cnMk8//CA2bk5IEK/37i1MvqV16iQ10gFSI30gddI+zdCodTJMeic2NpaMjAweeuihhs3SlSti2C04GJ5/HjZtkmapCezYsUPtEBwTPz94+GH4059EBfL9++H990VV+dhYYfZnzoS5c7n2y19CaChkZakdtaQB5H2kD6RO2sfWGul7J9FmkpWVxQ8//MCoUaPo1q3b7R0UBb79Vky+7dkT1qwRy7slTWLcuHFqhyABUWl82jTRQEwQj4mB6GgGHDgAlh3W+/Spnf80diwEBKgXs6QGeR/pA6mT9rG1Rg5jmKqqqjh48CD+/v71/yMWFMC//iX2fHvuOXjzTbHZqqTJZGTcWs9Uogn8/WH6dJg+nZMjRvD4pEli6C46Wgzjbd0q+gUGWg/hdeyoatiOiryP9IHUSfvYWiOHMUynTp2isLCQuXPn4nxrCYAzZ8Rf3aWlYtn21KlqhKh71NwzSNI0KioqhIF65BHRQBTTtJinH34QpTJA7IFY10D5+6sXuAMh7yN9IHXSPrbWyCEMU3JyMhcuXOC+++6jw62b327ZAh98IPZ7e/dd1fb4agvI3bu1T70adewIjz4qGoj5TZZJ5JGR8N134vV+/ayH8NrwRtJqIu8jfSB10j621qjNG6bS0lK+//57evXqxbBhw2rfqKyExYvFcMRzz4lCgS5t/p+jVfn+++8ZMWKE2mFI7kCTNAoIsDZQN2/WzIHi1Ckxzw+gf39rA+Xn16qxOwryPtIHUiftY2uN2nRZAUVR2L9/PxkZGTzzzDN4eXmJN3Jy4M9/Fvt5/eUvMGdOS2KX3EJeXh5+8pemprGJRjdv1g7hRUeLwpoAAwZYGyhf37uO1xGR95E+kDppn2ZoJMsKxMfHc+3aNaZMmVJrlhITRcmAa9dg1SpplmzIxx9/rHYIkkawiUadO4syBX//O2zfDrt3iwUTw4bB0aPw1ltikvmLL8KSJWIhRUHB3V/XQZD3kT6QOmkfW2vUZjNM+fn5bNmyhQEDBjBlyhTx4tmzYvVbQIDY5qSZ85XMZjPp6emkpqaSmppKbm5uTcvLy6OsrIzKykqqqqqorKzEYDDg6uqKm5sbrq6ueHp64uvra9X8/Pzo0qULXbt2JSAgACenNu1hJY7AjRvWhTTT0kTF8oEDRfbpnntg9Giw4UbaEolEchc0KcPUJg2T2Wxm586dlJeXM3fuXFxdXeHIETH8NmyY+Ku3kc9RFIWrV69y5swZLl68SHx8PAkJCVRWVgLg5OSEn58ffn5+dOjQAT8/Pzw9PXF1dcXV1RUXFxcURaGiooLKykoqKyspKSkhPz/fqplMppprOjs715innj17EhgYWNN69Ohx++o+jbFw4ULeeecdtcOQ3AFVNEpLsy5jkJ4uDNSgQcI8jRsn9sTz8bFvXBpF3kf6QOqkfZqhkeMaph9++IHTp08ze/ZsOnfuDDt3ij22HnxQHN3d6z2vsLCQI0eOcPToUX744QdycnJwcnKif//+DB06lEGDBtGnTx969epF165dcbnLSeKKolBYWMjNmzdJT0+vaTdu3CAlJYWkpCRKSkoAcHFxoWfPnvTr148hQ4YwaNAgBg8eTEBAAAZDk7RudfLz8/GV81Y0jSY0SkurzT798ANkZICTEwweXDsHavRo8PZWN06V0IRGkkaROmmfZmikf8MUHBxMcHAwJpOJy5cvN8kwZWRksHPnTsaOHSsKVH79NXz4IcydKzJMtwx5lZeXEx4eTmhoKKdOnaKqqophw4YxceJExo8fz8iRg/DwyEHsF5wH5AMFQCVQBZiqmyvgAXhWH9sD/kBHoEP14+ZliBRFITMzk6SkJK5du0ZiYiIJCQlcvnyZwsJCAPz9/WvM0+DBgxkxYgRdu3ZVxUQtX76c119/3e7XlTQdzWmkKLcbqJs3xX06ZEhtBmr0aGjXTu1o7YLmNJLUi9RJ+zRDI/0bJgtNzTBVVlayZcsWPD09mTVrFk7r18OyZfDyy/D662IYoJrk5GS+++47du3aRUFBAaNHj+aJJ+7hoYf88fNLB+KBBCD7lqt4IsyQG8IAWVolUAqUVR/LbznPCegG9AB6Vh97Af2rj02fu6QoCjdu3ODSpUtcvnyZS5cucenSpZqqph07dmTEiBGMHDmSoKAghg4diqenZ5M/v6WcP3+eoKCgVr+OpOVoXiNFEavu6g7hZWYKAzV0qHUGyrKQo42heY0kgNRJDzRDoyYZpjZVeOj48eOUlpby+OOP4/Tll/DJJ/Czn8GvflVjli5fvsznn39evU2KD7/61QimT29Hhw7xwGfVn9QFGArMpdbcdENkipq6XUo5kFOnZQBpQCpwHtgHlFT3dQP6AQOBAdVtKMKY3Y7BYKB79+50796dhx56qOb13Nxczp07x/nz5zl37hyfffYZJSUlODk5MWjQIEaMGMGoUaMYO3asGKq0MUajUX6BaBzNa2QwQK9eos2ZIwxUSkqtedqzB9aurc1AjRkj2ujRbaYOlOY1kgBSJz1ga43ajGFKTEzk0qVLPPjgg7TfvBlWroRf/AJ+/nMwGLh69Soff/wxhw9/z5Qp3nz11SCGDEnDyekY0B2YBLwGjEEMn90t7giTVc8mv4BIruUCV25p+6nNTvUChtdpg6s/t346dOjAlClTalYFms1mEhISakxUZGQk31YXHezZsydjx46tad26dbvrYTx7ZLEkd4fuNDIYoHdv0Z5+utZA/fADnD4NBw7Ahg2ib79+wjhZTFTXrqqG3lJ0p5GDInXSPrbWqE0YpuLiYg4fPkzfvn0ZdOSIMEu//jX87Gfk5uby6aefsmfPdzz5pDMhIV507VqMwVAIPAM8hhgWs/ecHwPCmE2obhbMiCxUHHABkY06CFQghv4GA2Or22gaykKBWMk3cOBABg4cyNy5cwHIycnh9OnTxMTEEBMTw86dOwHo0qUL48aNqzFQvXr1araB6ig3a9U8uteoroGq/j/NjRvCPJ05I46WzYS7davNPo0ZIzYX1sgCiTuhe40cBKmT9rG1Rro3TIqiEBERgbOzMw+kp2P49FN49VXMP/0pW7/7jtWrP2L69Ey+/daZzp3b4eQ0CXgeGIf9TVJTcAJ6V7cZ1a9VIrJP54GziCzU+ur3BiCyYmMQJirgjp/u7+/PtGnTmDZtGiDmh505c4bo6GhiYmLYt28fZrOZgIAAxo8fz4QJE5gwYQJdmlCz6syZM4wfP76ZP6/EnrRJjbp1E+3xx8Xz3Nxa83TmDOzbB2az2PvOYp5Gjxar8jRYqqNNatQGkTppH1trpPtJ3+fPn+f48ePM9PKi10cfwU9+QvJTT7HovX/SufMhFiww0LNnAC4uzwMv0vAQmZ5QEKv2Tle3GCC5+r1eiIzVROAe7pSBqo+ioiLOnj3LDz/8QGRkJJcuXUJRFHr37l2zcvCee+6pd/J9eno6XXU6DOIoOKRGJSViG6SYGGGizp+HigoxaXzECLGNy5gxokabh4fa0TqmRjpE6qR9mqFR218ll5uby9atWxnq5MS9n3yC8swzbOzZg6PHFvHTn+YwbFgA3t7zgZ8Btp/krC2yEeYpGogEriH+DwyldthvNE2ftC7Iz8/nhx9+4NSpU0RFRZGSkoKTkxNDhgypyT6NHj0aNzc3WchNB0iNEGYpPl6Yp5gYiI2FoiKRbRo8GEaNgpEjxbEVFkc0htRIH0idtI8sXFltmEwmE9u3b8eckcHTa9dS+OCDfOiaybDhu3noITcCAp7ExeWviKGtuldUwGSGqiqoMolUvVIdisEgvjSdncDFWTzWwZyH+slAGKdI4BRipZ4bwjRNRBiowTR3O8EbN24QFRVVY6BycnJwc3Nj9OjRjB8/nokTJzJkyBC5xYtEP5jNcOWK2DrJ0iwbCnfpUmugRo4U1cnvsmCtRCLRHG3bMJ08eZLzkZE8vXMnSd27sbv/WZ6ee40ePYbh7/8uMFV8enEpFJVAaTmUVTdzE39mJydwcwV3V3H09ABPd3F01pMhUICrCOMUichClQJ+iNWB91Yfm7c6UFEUEhISiIyMJDIyku3btxMQEED79u1rzNPEiRPp0aOHLX8YyV0g/ypuIjk5teYpNhYuXhSZKXd3GD681kSNGGHzcgZSI30gddI+MsPUvj3Xr19n99atTDh2jGuVaZQ9e4lJk80EBPycdh5vQ24V5BVCUbHIJjk5VRsdd/BwF+bHxVn8pehkqM0iWbJPlgxURaVo5ZXiy7KsXERsANzdoJ0XeHuBt6d4rptsVCViAvlJ4Dhwsfr1ocBkhIEaQXMrkxcVFXHlyhUiIyOFoT1/HrPZTI8ePWrM0/jx45u8gbLE9pSVleGhgXk6uqOiAi5dqjVQsbGQXV3Utndv62G8wMDbdhRoDlIjfSB10j7N0KhtGiY3Nze++/pr2kdFcTN/PyN+e5MunXvQq8NnOOcEQn6hMD7tvKC9N/h4QTtP25gZs1lkqkrLoaRUZK9Ky8RP4eoizJNPO2jfThgo3ZCDME8nqlse4I0Ytru3ujU+l2Px4sW89dZbNc+LioqIiYnh5MmTnDp1imvXrmEwGBg6dGiNgRo5ciRubnr6t9I3t2okaSGKIsoZ1M1CGY3iO8LLS2Shhg+HoCDRAu68erUuUiN9IHXSPs3QqO0Zpry8PE4ePkzq9xEYnDcy6cdF+Du9Qld+CaVmkUHy9xXNzbW1YxdUmaC4BIpKRUaruFT8VB7u4NtOmDZvr7v6i9O+mBHbwhyvbuerX+uPME6TaWjyuNFoZODAgQ1+ckZGBqdOneLUqVNERkaSm5uLu7s7Y8eOrTFQAwYM0Mxmwm2RxjSS3AUlJXDhgmjnz4uWlSXe69y51jwFBYkq5Q1s7SI10gdSJ+3TDI3anmGKPH6cUyHb8e+xjQfu60VA5e/xdOoLvt7QuaPIJqn9y7bKBIXFkF8EBUVQWSXMUvt24OcDvj5iOFA3FCDmPp1AGKgsxH5646kdvhNzlDZt2sQLL7zQpE81m81cuXKlxkDFxMRQUVGBv78/EyZMqDFQrbGFiyPTHI0kNuDmzVrzdOECxMVBaan4TujXzzoL1a8fODtLjXSC1En7NEOjtreXXMS2TQwNyuL+Aa/gXTEFl449oXtnkVnSCi7O0KG9aIoihu8KisRQ4bU00cennTBOfj72y4S1mPbAI9VNAYzUmqf/ACbESsTJDBrkgdh8uPExY8v+doMGDeLHP/4xFRUVxMbG1hio0NBQFEWhb9++NQbqnnvuwauNbrhqL2TdGDvTuTM8/LBoIIbsrl6tzUJduAAhIeJ1Dw8YNoxxbm7g7y+yUD176ig77VjIe0n72FojXWSYcnNy8O/YkYgv3+eewN64dRiAa1c/cC0BpQoMLuDkAi7twKMLOGt0Il5lJeQVQV4BFJZUz7XyFMapQ3udzXsCKAZ+wDJ8V1hoxMfHH1F13DJ815eWVFTPz8+vKV9w6tQp0tLScHZ2JigoiIkTJzJp0iSGDRuGi1zi3SyOHj3K/fffr3YYkrqUloq6UNUGKufwYfwrKsR77doJ4zR0aG2TJkoTyHtJ+zRDo7YxJGeqKGfHb97kR6s/JW1LMF3an8Wp6oc7n+TqB149oP0Q8B0GvsPBux8YNPQlU2USWae8QpGBMlebJ0t2SvOZp1tR2Lr1I+bO7YrIQP2A2P+uC7XmaQJiMnkzP1lRuH79eo15ioqKorCwEC8vL+655x4mTZrExIkT6d27t5z/1Ajr1q3jxz/+sdphSO7AunXr+PGsWaKUwcWLwkxdvCgmmYMwUYMHW5uoXr2kibIz8l7SPs3QSP+GKTg4mPB1m3jR15dn9+8m9/99ht9zTuDTA9w7gWt7cHIVWSZzJVQVQWk6lKVDcTIUXISiRHEZN3/oOBECJkPn+8W5WsFkEnOecgtqzZO3J/jpyzxdu3aNPn36VD8rR2zZYhm+S0IUyRyFME+TaUnhTBDzny5evFhjoGJjY6mqqqJLly5W5Qv8/ZtXV8oRsNZIokUa1Cgvr9Y8WYxUWvUwv5eXyETVzUb17i1NVCsi7yXt0wyN9G+YLKz83Ru8+tFyTvU6xIT7psLbiDJBTaGqBPLjIOskZJ+EgngxhBcwGbo9Cp0fBBcNzYsxmcSwncU8KYpYZWfJPLlqdwhq0aJF/PWvf23g3TRq6z5FAiVAB2rN06Tq582ntLSU06dPc/LkSSIjI7ly5QoAgwYNqjFQo0ePljVTaEwjiRZolkb5+dYm6uLFWhPl7g79+4ts1MCBtUc5D9AmyHtJ+zRDo7ZjmPLz8vDr0IE/TpzEGz4H6JXfDl4CXqW5W6NBWRZkHIQboZAXC05u0OUh6PUj6DBG/VV2dbEM2+UWQEExYDFPvmLek8bMk8lkwrlJu79XAueoLV1wmdp97ywr74JobuFMC9nZ2VblCzIzM3Fzc2PUqFFMnDiRCRMmOOz2LU3XSKIWd61RQYEwUUajKLZpNIqJ5iaTeL9nT7HFi6UNHAhdu2rru08HyHtJ+zRDo7ZjmCxlBf45YQTHew5l45SNdNjkBD2BfwLDWnj10nS4sR9St0NJMrQLhF5zoceT2hqyA2Ge8gqEeSosFq/5tBNZJz8fTexv1fKtArKozT6dRJQy8EbseTep+ti9RTEpikJiYmKNeYqOjqakpIT27dtblS/o3r1ln6835HYO2qdVNKqogKQkuHzZuhUUiPd9fKyzUIMGiTIHsqhsg8h7Sfs49NYoG/78JhdPHODEkLfY+/uXcV0IXAIWAD+n5UUSFAVyoiFlq8g+GZyg66MQ+CK0H9TCD21FKqu3fsktEMUyMYgaVBoyTy3HDMRRO/fpQvVrPRCTxicgakD5tejTKysrOX/+PJGRkZw6dapm+5aePXsyYcIExo0bx9ixY+nUqZMtfhiJRLsoiqgTdauJSkkR7zs5iXlQ/ftbt169xMbkEknboe0ZpozERLb9egH73fIJnLCJJX8aBF8Cq4DhwLu0NBFRS3kOXA+B5G/F5HH/8RA4Hzrdq61VdhYqq6ozT9V754HIPPm1t/uwXev8xVWImDx+CogCEqtfH4TIPE1AVB73bNGnFxUVER0dXZOBSkpKAqBXr16MHTuWcePGMWbMGLp163ZXP4VWkH8Vax/VNSopgStXatvVq+KYlyfed3WFvn1vN1JduzrUJHPVdZI0ikNnmPLz87kZcYhdS/4fn/fqzNtzvmPeM15iOszfgPzq46M2iMxsEtmmpPWQfwHa9RHGqfvjGq7zVJ15yqszbOfdDjr4CAPVyuYpJSWFXr16teo14CbCOEVWt0xEanEktQZqGC2d/5STk0NMTAwxMTFER0eTkJAAQLdu3WoM1NixY+nRo4cuSxjYRyPJ3aBZjXJyICHh9lZc/V3j6SmG8fr3hwEDxLFvX+jUqU3Oj9KsTpIamqFR2zRMPt7ehP/l9xyKjWBdxyfY9od3GTcOKAL+DewHngLeoqVJh1siVCDvnDBOGRHg6iMmiPd5Htw72uACrURlVe2E8Rrz5FWbeWqFUgVffvklP/3pT23+uQ2jIMoVRCEyUD8gimm2A8YB9wBjEdmolv3lm5+fz+nTp2sM1OXLl1EUhc6dOzNmzBjGjRvH6NGjCQwM1MUkcvtrJGkuutLIMqyXkFCbjUpIEMfyctHHywsCA2tb377i2LOnyFbpFF3p5KA0Q6O2aZjat29P0fXr7Hr953znnoax6v+x97+z6N69+tNCgA+AzsAiRKkfW1FyHa5tgtQdou5T9xki6+QzwIYXaQWqqmorjFtW27XzEsbJz8dmFcaPHz/Ovffea5PPahkm4CK12aeziOKZ3ojq42MRRmowLc1AFRYWEhsbW2OgLl68iNlspn379owYMYJRo0YxatQohg8frskyBuprJGmMNqGR2QzXr0NiophsbmmJiVBYKPo4OYn5ULcaqcBA8G5+gVt70yZ0auM0Q6O2t5ecBe8ePZjw8i8o+nQJcYEL+dmf+/NN8DDat0dkl0YBfwV+CrwOvEBLEwzWePWAoX+AAb+AlG3CPF0PEQUxA+eL2k5aTD27uECAn2h1SxWk3YTUDLEXn2VvOy+PFv8MpaWlNg27+TgjyhEEAT9DmKULiDlQ0cCniIKaXoh5T2Or2zCaeiv4+Phw//3315TbLykp4fz588TGxnL27Fm++uoriouLcXZ2ZvDgwYwaNYqRI0cyatQoTWwkrL5GksZoExpZzFCvXjBlSu3rigK5udYGKikJ9u+vrWQOEBBQa556965t3btrZlFLm9CpjWNrjbTxP68FBM6axZATx1lgPMaSbr/nN3/awGfLOopVsH0Qk8E/Bj5ELLj6XyDARhd39YF+L4tVdOnhYrgu+g2x/UrgfOg2E5w1uhzXxRk6+olmMomMU34hZOVCepaY5+TrA37eYvJ4M4aZsrOzWy3sluGGyCyNAV5B1H+6iDBPMcAXiP8kHog5UOMQbns4TR3P9fLyYsKECUyYMAEQVcivXr1KbGwssbGxHD58mI0bNwJiI8iRI0cyevRoRo4cycCBA+1ex0V7GklupU1rZDCIjYX9/WHsWOv3SkshOdnaSJ0+DTt3irIIIL6PuncX5qlXL+tjt252Xb3XpnVqI9haI10OyVkoTkvj+z/+jlD3ZDa6DOVl/0/5YJGb9e/448D/IVam/wOYgu1RFMg9DYnrIfMIuHWA3s9C72fEYz2gKFBUUr2/XRGUV4gvp/btROapvXejk8YvXbrE4MG2HANtbUxAPLUG6gxiMpwTYthuJMJAjQRavut1dnY2Z8+erclCxcXFUVVVhbu7O0OGDGH48OEEBQUxfPhwunfv3qqTyfWnkeMhNboFsxkyM4WZSkkRR8vj1FSxqTmIzJPFTN1qqFphBZ/USfs0Q6O2O4epLqkHDxK1fClf9Evn9I2neGP0O7z1lsF6VCkX+H/AYeBHwO8QSYXWoDgZrm2E1J2AIopg9pkH3n1b6YKtgKJAWUXt5sDF1WlNLw/w9RbmqZ3nbUN3S5Ys4Q9/+IMKAdsKM6JsQSxi/lMsUF2Ths7UmqdRiInkLUvQVlRUcPHiRS5cuMD58+e5cOEC169fB8DX15fhw4dbtQ4dbGe69a9R20dq1AzMZkhPrzVSdQ3V9eu11c2dnUUGqkcP69a9u5h87uPT7KkIUift0wyNHMMwKYrC2WXLiD8axn+GpHHzwqv88aFf8Jvf3PL/XwG2IobouiFqNrXmHwcV+ZCyBa5thopsCLhXZJw63a/Nek53orJK7GtXUCSG8KpMYmjPp50wT74i+1RSUoJXm9unKgdRtyK2ul1EzI1yRwzdjag+DkeYqpZlh/Ly8oiLi6sxUBcuXCCvuu5N9+7dGT58OMOGDWPIkCEMHjz4tvugqbRNjdoWUiMbYTKJeVHJyWJ/vevXrVtRUW1fb+9a82QxUj16iOddu9Zb8VzqpH2aoZFjGCaAqtJSTr7zDklZV3i3fyoVUX/hDzOf5Ve/quePhkTgHSAB+AXwE1q6YKppmCogfT9c+wYK4sCji9h+peccbZclaAhFERmngmJhoEpKhYpeHuw7cZQZz8wV5Qt0sMS+ZVQgystbMlDnEbWhADpSa56GVR9bZmwUReHGjRs15unChQtcvHiRsrIyQJiowYMH1xiowYMHExAQ0Ohwniy2p32kRnaioOB2E2VpN27UZqcMBlFLqkcPkaXq2hW6dmXNvn0s+OtfxXNPW9Swkdgahy9c2dBf1iXp6Rz/619J9C7ivW6JOB9exB/nPsIvflFP50pgJbAWMbLyv8DAFv4EzSE/DpK3wI19oFRVb/r7DPiP0+bquqZQWVVrngqLxXODAbw9RQbKp129w3dti0zEdi4XqlscokI5iA0PhyFW7g1D/Idr2V+lZrOZ5ORkLl26RHx8fM2xoHo/MH9//xoDZTnqtcCmRKIqJpOoL3X9ushOpaaKx+npomVmiuFAC76+wjhZDNWtxw4d2vh3oO5xLMMEkHX2LD/8+9/E9zGx3DcZl+/f41czH+KNNxpIeMQhNu9NQiyiWgDYo45aZSFc3w0p30Fxkqgi3uMp6D4TPNRfet5SFi5cyDt/eEsYJ0szmcU/vo9XtYHyAs+Wly7QBwpi7lNdExWPyE4ZgF6I8eC6zb9lV1IU0tPTrUzUpUuXuHlTZL28vLzo378/AwYMYMCAAURERPDee+/h6+t7lz+jpLWQGSYdUFXFR3/7G28+/3ytiUpPF5kpy7E6GwyIIb3qzBRdu0KXLiJr1blzbfP1bePfi/ZHZpgambtxPSKCs8HBnB/hykr3KzhFLOSF8Y/yj380UL6jArG6fA2iHMGfEAWi7YGiQG5M9aa/h8BcBQETofuT0GUqOLvbKRDbkJmZab1praJASVmteSoqAbMCzk6icKa3pxi+a+fZhofwLFQBVxHG6RJwufpYUv1+J0T2aTAwpPrYnZbOicrJyeHSpUsYjUauXLnClStXSExMpLS0FBcXFwICAmpMlMVQ9evXD3d3ff2fa4vcdh9JNMkddVIUMeR3q4mqm6HKyrLOUrm5CRNlMVP1HTt2lBsfN4Nm3Ev6N0zBwcEEBwdjMpm4fPlykwwTQMLWrVzeuJEL4735zPkCyvd/59E+s3j/fVGlv14uA+8jpqU8CryJmMNrLyqLIP2AKISZFwsu7aDrIyLr1GGMLiaKr1y5kl/+8pcNdzCbobgMikuEeSoqERkogwHaeVSbqGojpZHidK2LGbhOrYGymClL7RAvYADQ/5bWsmyUyWTivffeY8KECTUm6sqVKzUr9JycnOjZsyf9+vUjMDCQwMBA+vbtS58+ffDWQeXltkKj95FEE9y1TiYTZGeLob87NUsNKhB/WHbsaJ2dCggQrWPH2qO/vwP8Edo4zdBI/4bJQnMyTCCGKS5//TVXt2/n8uQOfGqIwXTyNUYpP2XJfwz07n2HaPYA/wXKgP9BVAm3dw3K4hRI2y2G7cpugJs/dJ0uWofRmjVPMTExjL21GN2dUBQoLa81T8UlUFEl3vNwE5knL09x9HR3oC+AbIRxMiJWJyQgVitYvjj9qDVPFkPVD/Bp9JPr06ikpITExMQaA5WUlERiYiLp6ek1fTp16mRloiyPO3XqJOdI2Zhm30cSVbCLTpZM1Z0MVXY2VK+orcHJCfz8as3UrYaq7rENT1hvhkZtd2uUxjAYDAx68UVQFAw7dvDHyffy3/s/5vzFRF76yTssWujGfffVdyLwBKK45UpEEejNwC+BJ7HN9ipNoV0vGPgqDPgl5F+A9DC4EQbJ34B7AHR5WJgnv1HgpJ307I26Wxs0BYNB1Hby8oDO/uLLoaKy2jyViuG8nALxuqVvO8/ao7tbGx3z7wjcW90smBDZqCvUmqgo4DtEpgpESrQvYmw5sM6xE5b/vPVp5OXlVVPzqS6lpaVcu3atxkAlJSURHR3Ntm3bqKqqqjk3MDCQnj170qtXL3r16kXv3r3p2bMnHTp0kGaqBTT7PpKogl10MhjE3CZfXxh4h5VJVVWQkyOG+bKyhImqe0xMhKgo8dhS6NOCl1etgbJkpzp0qD3WfdyCelVqYmuN2qRhgmrTNH8+zu7u8O23/Oue6SwaFUZOh1Ree+sDfj4/gF/8ooHNsn2APwLPAZ8A/wLWA68hzJS9/r8YDOAXJNrg30LeeTFsl35AmCfX9qK+U6cHoNNk8VxFTJZluC3FYBAmyN1NbN0CYhivtFwYqOJSsRrvZo54z9kZvNzFJHKL8fJw19UN3XScgd7V7eE6r1cA16g1UUkII7UVMW8KRJXW3kAgPXvmVX9WYPVrDa/Y8/T0ZMiQIQwZMsTqdZPJxPXr10lKSqppqampnD59mszMzJp+Xl5eNSbq1taxY0dpphrgru8jiV3QlE4uLrVDdHdCUcTmx7caqrrHa9eE+crNtZ5jBeI712KiGjJVdR97ean6fWxrjdrkkNytpBw4wIXVqzEM7Mnyvue4mmmGiP9lTMcH+H//D/r1a+QD4oBlwA+I8gM/BabTuvWb7oRihoJ4uHkYbh6BwkuAkxiu6/wAdJwEPv3tPnR39uxZRo4c2foXqjKJ+k/FZeJYWi62cgFwMgjT5OVRa6Q83R1woqQJSEOYqWsII3WNwsJz+PjU/QuzM6L0QY/qY93HvjT3r4PS0lKuX79OSkrKbS0jI6Omn6enJ927d6d79+5069at5mh57Ovr67CGym73keSuaPM6mc2iuGdOTq2Bys2t/3FOjhg6vNVPuLmJoUE/v9pMmaU19Lq3t82mXzRDI8edw1QfWbGxxH70EXi5EzbJzK7cGJwuPofX2d/yq1+48+KLDWSb6kYag1hNdxLxO+UnwOO03jYrTaXsJmQeFQYqOxLMFWIPO//x0HGCaF7dWz2M4OBgXnvttVa/Tr2YTFBSDqVlYiivtEwYKcv/bzcX8PAATzdhqDzcHdJICY1eBpKpNVOp1e06kFendztuN1M9Eav3utDcGhzl5eVcv36d1NRUkpOTSUtLq2k3btyw2lnc09Ozxjzdaqq6dOlChw4dcGqjc9pUvY8kTUbqdAsmE+Tn12+o8vNrW15e7eO6pRcsODlB+/bWxqo+s+XrK/pZmsft5WqaoZE0TLdSkp7O6f/8h6K0NHIf7M9/nQ5QdLMLVYf/xHCfe/nTn6B60/k7cxH4CggHvIFZiD3q+rQ4NNthqhCr7LIjRcu/CJjBs4cokOk3EjqMgnaBNk+V5uTk4O/fshVcrYLZLPbEKy2rPpZDWblYdWL5n2cxUh5uwkC5u4nHLi5tcmivcY2KEMbpOrVGytLSqZ0vZUDMteqK2Guoaz2PfWhqhkpRFAoKCmrMU10jZXlc11A5OzvTuXNnOnfuTJcuXWoe130tICAAZx0aYs3dR5J6kTrZgIoKawNVn6m69bX6MlkgvrPrGigfHwonTcJn3rymRCINU32YKiq4/PXXXNuzB5e+Pdg9NJcDhecxXHsYw4nf88jkrrz6KgwY0IQPS0VMFdkB5APjgdnAg4BWFh5UFkBONGRHQe4ZKDQCipjv5DdKmCe/UeA77K7rPumm4F5TjJSzU+18KouJsjx2cdatmbo7jaqAG9Ut/ZZmea3ucJ8XteapK2L4r1N1C6g++tGU76q6hurmzZs1LSMjw+pxeXl5zTlOTk507NixxkB16tSJjh07EhAQQMeOHWuav7+/poyVbu4jB0fqpBKWocK8PDEfKz9fHAsKalv169+kp/Pchg1N+VRpmO5E9vnzxH32GcU3blA2oR+r/X7gal4RTvFzcb2wgJkPBvDznzdhfhOIebcHgC2IOk4ewFRgJjARbU2tryqGvHOQd1YYqLzzYCoBnMC7H7QfIprvEPAZBC4OtLmk2QzllVBeLoxUeZ1mKXcAtWbKzVU0q8euDjfMV4sZMaRX11DdqHPMBHKxvu1dqTVPlmPnOs8DEJksHxpbpqooCoWFhVYGKjMzs8ZUZWRkkJOTU7OpsQWDwYCfn5+VibrVVFmMVfv27dvsUKBE4sBIw9QY5spKknbvJuG771BcnLkx2p91XqdJza/AKf5HuFx6ngfH9GTePJg0qYnz0K4DocBeROkcH2AyIus0mZbuxdp6mE1QdEWULyiIh/x48dxcvY1Hu97gMxh8BghD5d0PvHrWO6G8Tf/FZTJbG6jySpGRqqgUzVznv7KzszBObrc0V5faptIvXfU1qgJyEBsWZ1a3rHqeF9xynjPQAVG0s6HWAWGu/LhT8bSqqipycnLIzs62allZWbe9VlJSYnWuk5MT7du3p0OHDvj5+eHn52f1+NbnHTp0wMOjeZMc1ddI0hSkTtpHbo1iQ8NkoSw7m6vbt5MSHg6uLv+/vXONkaS67vjvVPVznju77IN9oV2eXkBehV0wthUcLw6JQxQbJSjyJ+dT4iCR5EMiW7IUJ/kQKXEchxhFihQpjmI5km1EjGxkIMHGGwEmYAdvFoi9DMsO7It5dU9Pd09V18mHW91d3dO7PbPMTHcz5ycd3XvPvXW7ak5X9X9u3brFWzeP8Y3hE5xaLOG//SH0xP3cNHIH9/6az8c/DrtXMn9acesOPg08g1uH0AMO4169chtwKxu/KOZKiEJYeN0JqMKrUHjNlcP4hbJexr3/ri6ghq+B/F4KtTHGtq7/5PK+Q9Wtg1INmgKqkV9aLqigVTyl024uVbpNVK3Drb9CobAu59DaU6UpoGZxIutSttBh+1GcgBrDPe03jhNS4222JdEmR/t1c3FxsUVczc3NLbPZ2dlGPjnPqk42m2ViYoKxsbGGjY6OtqTJPMDevXsZHR210aw+ZnDOpc3LKmJkgmm1VKanmfz2t5l6+mnCSoWFg1v4wfZz/EDeYrGwDf35L5N/6x7uOHgzH7nL48MfhgMHVvibdgH4IfAs7mm7Ak4s3YITTzfjXmbfr3MIVaE67YRTaRIWTsFCnAZuNOD8+Qvs3HuDG4Ea2hene2FoD+R2QnY7eP10f3KDUHUjVEHgbu0FAQRhWz5wyyUkEdxoVTrlJjSmEvm0H6exP+W7UasuX8aHHnqIBx98cP2OtScs0VlUzeJOtDncJMOkRR36ydAqpsZwT3WMxulIW7ndn6JarS4TUbOzs8zOzlIoFCgUChSLxZa0UCgQJda7uXDhAjvi9XSGh4eXCauRkRGGh4db7FK+oaEhUpviNUMbz3vzXHpvsYoYmWC6UsJymbPHj/Pmk09SnJykmlbO78tyfOQtXkoVKZa2Eb35QfIXP8jB3BE+eudWjhyB97/fLZTalQi3YPOLsdUFFLjpG+/DiafrcAs376F3az6thKAAi1OcfuU412z33atdylOwOAXVdxINxa1UntvhBFRuVyK/09Vlt4Lf63UaekQUOfEUhE48hSEE9TTpC90jvO1nj4gTTr7fmqY88J2wOv3WFNccPNCs9303J2tAJ7FfGQqUaIqnOdwJmCzPA0Xc6FXdisDyEaQmOTqLqWHcUyDt6RAwhGqeSsWjWKxRKIT8+MevsW3bzo7CqlgsUiqVWFhYoFQqNexy1/FsNntJUTU0NEQ+nyefz5PL5ZaV8/l8w1cv5/N5E2HAyZMnOXToUK93w7gMq4iRCaZ3i6qycOYM5597jnM/+hHF06cp1yrMb03x2niRn8g0b2Q85hb34F08TH7+MPuHbuLOmw5y6/tyXH+9e9puy5ZuH4SbE/sKbpHMV2KL74CRxi3KfDBOd+Oe3r6y5XDWjUceeYT77ruv1RmW3fvwyufcelGV88ut1vYj5Ofd+/Oy29x6UvU0E6fpsYSNQmqkb9+vt26oOgEVhE5EhTUnosJaa77NNzs7y8SWieX9eZ4TTr7XFFFeIt9I2/xevSzN/HtafIU4sVUXUJ3ShbZyCViMrRyXO41wOWZn55iY2E5dULWKrDyQxYkzZ1GUIQh8qlUol5VKRVlcjCiVapRKIaVSjWIxYGEhYH6+SqGwxPx8lWKxRLlcXmYrWR05nU5fUlTlcjmy2eyKLJPJtLTvVE6n0325iGnH653RV6wiRpv3XXJrhYgwun8/o/v3c93997N44QLTP/0pMydOcM2JE3xoZpRyWKaULjM18gw/2/EYF1Lw+EWPf317N0vfuZFM5QBb07s5uH03127fzQ17dnHN3jR79sDVVzsx5Xk48bMbOBZ/uOLmvk4m7HXcU3gXaUpND/dA0S6aDxR1snHcdXYdrzvDw8PLnal8c65TJ1QhXHBiqjoNS9NQnYGl2KrTMH+y6dOwQyfihFN6DFJjrYIqNezMz8f5IfCHEmnC5w3Qu+lEmnOdVooqLz7xBHffcrQppmpRbHE+avMF4XJ/N7yEeKoLsXafJ03BJZJIpVn2xAlhr81fb1ef37OhMUvRvGV3pShu+YUSTkAtttjk5HEmJm5a5ndWwd1qrODmeVXwvArZrLOxsaVln3Zp0riLQiZOtwIZoihFGHqxCUHgubvJS7C0pFSr9VQplyMqlRqVSkilMkepFMbliHI5ZGamRrkcUi4HVCouXVxcIgyhVpOGhaEzp9Va4ykiDfGUzWZJp9Ok0+mGmGrP18upVIpMJtOSb29zqe3T6TSpVIpUKoXv+x3z4Oa41cs236z/6Pib9C4wwbQKhnbsYOjYMfYdO4aqUp2ZoTA5yfzrr1M4dYrC1Bnmz01RCSpUwgKl8Dhz/veZTgUUKvDGWXj5hEdFxwh0nEC3EOpWUrmryOd3sGX0KibGxrlqfJSJkSEmRobZNjrMtl3DbLshz9iox8gIDKUgOweZaZCzuDdgnMO95P50nM6xfPwujbtTULexRH6E5j+w9X9e821W92fjvlKxxdeJK1rETepiZ9S9zuVyqLplEYJC08JCazkoQjAPS7NQesO1r5VdGlUv3z9eLK6yTjz5OfCycTk2P9cst6deBry0M0m15iXl5m95aZD08ny9fSNdh7WeRBjfujVeT+oK+6jPx4piQRUlyg3TuL6Tr+bmbdW0Wafq6jVa4Zhz8phYLqo6Wb0Ocdtcrq2090UzT7Ic70BLnmbcpFvdqLO2ulo4CnrkCuMf4eZ0VUiKquX5pAVxXQAs4XlLZDJLZDKt/s4WtOW7o5pBVWOLiKIoTp3PfS2EWs1LCKqQWq2UKEMQOIEVxoOsQVC3iFpNCQIlDCPCMCIImlatRiwtRQRBjTCk8XnNzwVVl7qyuK99rbXN4mKF734332jjgphCxEekmXqej+elGub7l8/7vtvW+f0473f0eZ6P7zsh53leI03mfd9/1/XJVEQabep5EWnJX0l9sl3d3i1rvbBoz27JiYjMz893/He1Wq22LEBXLBY5dOgQZ86c6funEqIgYPHiRcrnzlGenqY6M0N5dpb5d96m8M55ynOzLBVLLIUhQa1GWKtRi0JqWiPSGhEQeEIosCQQehD6QuBBTXwUH1WfCA8VH5UUiI+QAvEQPwWejyc+uVqWfJghH+XIhmmytQyZWopMLU02SpEOM2RrKbJhilQtRSryY/MQ9Yiv4o3rPVq/KDS8AKgHkRdRCauksxkiT4lEUU+JfEVFiTxFPQB13TS6c2WNUwQi0bhfRWnWNds0v7MqoO2/ssn+W1A8ifCI8AjjfIgf+0RCVycRQt1Xi8uKRw2J6+p+D3XtGukKRmBWiNL8eysSl0mUATz3N4oPvOlPtm/my5UlcrlcvE2z/2a/JLZpp9mPLvO3b3+p42hu01qf8HognufusoqHFwsPLy6LgHiJC6snTlt48bfSE4TYV7/wCs2LcJxv+prtmvlmG68uijaIWhThe15jMeOW77e2ebThanE4X2s72rdBmwsmJ34HGv1pcrNEodN+JZDEN9I5og7R1nrjxDadtm/7poq2bquKiLb10UyTnyWJ/ppoh/rEttJywC1EqnjSsaqDsz2GzRh0Ry9RTESnwy5q4lC1rbJjue0zOp/Ll9mtDhu0f07Ho+70520pSItbOu3vJT7/bCbg3r/+hw6tWxkfHx8HitpFEPVSMI3hZlYahmEYhmH0knFVbV8AroWBGGE6e/Yst99+OydPnmTPnj1rtg9Hjx7lhRdeWLP+NnOfhUKBffv2rfko4CAc+6D0aTHq/z43e4zWq1+L0+brczUxWukIU8/mMHXbsU4kF3ZbC3zfX/NbfJu5T6CxVsxaMSjHPih9gsWo3/uEzRuj9erX4rQ5+4SVxajbyFKdTT2t/4EHHrA++5xBOfZB6XM9GJRjH5Q+14NBOvZB2te1ZlCOfVD6XGsGYh2mqampxtDa3r1713ufjCugV2tlGSvHYtT/WIwGA4tT/7PKGK3oqY6BGGHKZrMtqdF/ZLNZ7r77botRH2Mx6n8sRoOBxan/WY8YDcQIk6n5weDUqVNce22XtZSMnmIx6n8sRoOBxan/WUWMVjTC1GvBtCISSxB0fezPMAzDMAxjrRkUwSS49ai7PvZnGIZhGIax1gyEYDIMwzAMw+glAzHp2zAMwzAMo5eYYDJWhYj8oog8JiJvi4iKyCfa6kVE/lxEzopIWUSeEpHre7S7mw4R+ZyIvCAiRRG5ICKPisiNbW1yIvKwiEyLyIKIfEtEdvZqnzcjIvIZEXlZRAqxPSsiv5qotxj1GSLy2fia9+WEz+LUQ0TkC3FMkvZqon5N42OCyVgtw8D/AJdaZexPgAeB3wPuAErA90QktzG7t+m5C3gY+ADwMSANPCEiw4k2fwv8OvBbcfvdwCMbvJ+bnSngs8BtwBHgP4F/F5Gb43qLUR8hIkeB3wVebquyOPWe/wWuTtiHE3VrGh+bw2RcMeJeE/5JVX00LgvwNvA3qvrF2DcOnAc+rar/1qt93ayIyHbgAnCXqj4Tx+Mi8ClV/Wbc5ibgFeBOVX2ud3u7uRGRGeCPgW9iMeobRGQEeAn4feDzwE9U9Q/tXOo9IvIF4BOqerhD3ZrHx0aYjLXkALALeKruUNV54Hngzl7t1CZnPE5n4vQ23KhTMkavAm9iMeoJIuKLyG/jRm+fxWLUbzwMfEdVn2rzW5z6g+vjKSKvi8jXRGR/7F/z+PTs5bvGe5JdcXq+zX8+UWdsECLiAV8G/ktVT8TuXcCSqs61NbcYbTAicitOIOWABdxo7UkROYzFqC+IhewvAEc7VNu51HueBz4NvIa7HfenwA9F5BbWIT4mmAzjvcvDwC203tM3+ofXgMO4UcDfBL4qInf1dI+MBiKyD/g74GOqWun1/hjLUdXHE8WXReR54DRwP1Be68+zW3LGWnIuTtufQtiZqDM2ABH5CnAv8EuqOpWoOgdkRGRL2yYWow1GVZdU9eeq+qKqfg73MMUfYDHqF24DdgAviUgoIiFu4vCDcf48Fqe+Ih5N+j/gOtbhPDLBZKwlk7gv4rG6I36tzR24Ww/GOhMv6/AV4JPAR1V1sq3Ji0BAa4xuBPZjMeo1HpDFYtQv/AdwK24UsG7/DXwtkbc49RHxBP1rgbOsw3lkt+SMVRF/Ia9LuA7Ecy5mVPXNeI2Sz4vIz3AC6i9wT849usG7ull5GPgU8BtAUUTq9+rnVbWsqvMi8k/Al+KnsgrA3wPP2lM9G4eI/CXwOG4C6iguZh8B7rEY9QeqWgROJH0iUgKm63MCLU69RUS+CDyGuw23G/gzoAZ8fT3OIxNMxmo5AjydKH8pTr+Km3z3V7inff4R2AIcB37F5gBsGJ+J0++3+X8H+Oc4/0dABHwLN6LxPdwj08bGsQP4F9xE1Xnc+j73qOqTcb3FaDCwOPWWvcDXgW24JQSOAx9Q1Ytx/ZrGx9ZhMgzDMAzD6ILNYTIMwzAMw+iCCSbDMAzDMIwumGAyDMMwDMPoggkmwzAMwzCMLphgMgzDMAzD6IIJJsMwDMMwjC6YYDIMwzAMw+iCCSbDMAzDMIwumGAyDMMwDMPoggkmwzAMwzCMLphgMgzDMAzD6IIJJsMwDMMwjC78P1PU4PT5sUSDAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 11 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_sol(T.solution)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## O Simplex\n", "o conjunto de pontos com a propriedade $\\sum_{i=1}^n x_i=1$ é chamado simplex $S_n$. Em modelos Evolutivos como os que estamos estudando, as população evoluem no simplex. O Simplex $S_n$ é uma estrutura $(n−1)$-dimensional embutida em um espaço Euclidiano $n$-dimensional. Então para dois tipos, temos um segmento de reta, $S_2$, para três , um triângulo, $S_3$ para 4 um tetraedro, $S_4$ e assim por diante. o simplex $S_n$ tem $n$ faces e cada uma delas é um simplex $S_{n−1}$. Os vértices de um simplex no contexto de nosso modelo evolutivo, são os pontos onde a penas um tipo está presente, e os demais foram extintos. Os pontos do simplex, que não pertencem a nenhuma das faces ou são vértices, são pontos internos, que representam estados onde há co-existência entre todos os $n$ tipos.\n", "\n", "### Relaxando a premissa de taxas de crescimento lineares\n", "No modelo de dois tipos apresentado acima, assumimos que a taxas de crescimento eram funções lineares da frequência dos tipos. Podemos relaxar esta premissa re-escrevendo as equações da seguinte forma:\n", "\\begin{align}\n", "\\dot{x}&=ax^c−ϕx\\\\\n", "\\dot{y}&=by^c−ϕy\n", "\\end{align}\n", "\n", "Neste novo modelo se $c=1$ temos nosso modelo antigo, mas se $c<1$ temos um crescimento sub-exponencial, ou seja na ausência da limitação por densidade, $ϕ$, a curva de crescimento seria mais lenta do que uma exponencial. Quando $c>1$, o crescimento torna-se super-exponencial e a curva de crescimento hiperbólica.\n", "\n" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "ExecuteTime": { "end_time": "2021-09-29T13:19:50.920714Z", "start_time": "2021-09-29T13:19:50.454096Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{\\log\\left(a x\\left(t\\right) - \\phi\\right) - \\log\\left(x\\left(t\\right)\\right)}{\\phi} = C + t$$" ], "text/plain": [ "(log(a*x(t) - phi) - log(x(t)))/phi == _C + t" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{10 \\, \\log\\left(\\phi x\\left(t\\right)^{\\frac{1}{10}} - a\\right)}{\\phi} = C + t$$" ], "text/plain": [ "-10*log(phi*x(t)^(1/10) - a)/phi == _C + t" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}C e^{\\left({\\left(a - \\phi\\right)} t\\right)}$$" ], "text/plain": [ "_C*e^((a - phi)*t)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var('x y a b c phi t')\n", "x = function('x')(t)\n", "f = diff(x,t) == a*x^c -phi*x\n", "pretty_print(html('$c>1$'))\n", "show(desolve(f(c=2),x, ics=[0], ivar=t, contrib_ode=True))\n", "pretty_print(html('$c<1$'))\n", "show(desolve(f(c=0.9),x, ics=[0], ivar=t, contrib_ode=True))\n", "pretty_print(html('$c=1$'))\n", "show(desolve(f(c=1),x, ics=[0], ivar=t, contrib_ode=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para manter a população constante agora, $x+y=1$, fazemos $ϕ=ax^c+by^c$. Então, de forma similar a como fizemos anteriormente, podemos simplificar o sistema acima a\n", "\n", "$$\\dot{x}=x(1−x)f(x)$$\n", "onde\n", "\n", "$$f(x)=ax^{c−1}−b(1−x)^{c−1}$$\n" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "ExecuteTime": { "end_time": "2021-09-29T13:22:12.057492Z", "start_time": "2021-09-29T13:22:11.371476Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f2a02fbd701f49f185fbf82838f83f40", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Interactive function with 1 widget\n", " c: FloatSlider(value=1.0, min=0.2…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a=.5\n", "b=.6\n", "\n", "@interact\n", "def variando_c(c=(0.2,1.8,.2)):\n", " phi(x) = a*x^(c-1)-b*(1-x)^(c-1)\n", " P = plot((x*(1-x)*phi).subs(a=.5, b=.6, c=c),(x,0,1))\n", " show(P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exercício 1:\n", "Encontrar o equilíbrio interno ao simplex acima, $x^∗$, como uma expresão dos parâmetros do modelo, decrevendo a sua estabilidade, quando $c>1$ e quando $c<1$." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2021-09-29T13:25:48.752670Z", "start_time": "2021-09-29T13:25:48.740791Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[x = 0, x = 1\\right]$$" ], "text/plain": [ "[x == 0, x == 1]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = solve(x*(1-x)*phi,x)\n", "s" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Então para $c≠1$, existe apenas um outro ponto fixo entre 0 e 1:\n", "\n", "$$x^∗=\\frac{1}{1+\\sqrt[c-1]{a/b}}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Invasibilidade\n", "Invasão significa que uma quantidade infinitesimal de um dos tipos consegue crescer em uma população quase que completamente constituída pelo outro tipo.\n", "\n", "#### Exercício 2:\n", "Simule a dinâmica de um modelo com dois tipos e mostre o efeito do valor de c sobre a invasibilidade de um dos tipos." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exercício 3:\n", "Construa o diagrama de bifurcação do sistema $\\dot{x}=x(1−x)f(x)$, onde $f(x)=ax^{c−1}−b(1−x)^{c−1}$. Encontre o ponto de bifurcação e identifique o tipo de bifurcação." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mutação\n", "O processo natural de mutação, é a principal fonte de geração de variabilidade, que é a matéria prima sobre a qual a seleção natural atua. Mutações são erros que ocorrem durante a replicação do material genético de um indivíduo durante a reprodução. \n", "\n", "Vamos explorar a forma mais simples de inserir o conceito de mutação no modelo evolutivo que estamos desenvolvendo. Chamemos de $u_1$ a taxa de mutação de A para B, ou seja, $u_1$ é a probabilidade de que a reprodução de um indivíduo do tipo A gere um indivíduo do tipo B. De maneira similar, vamos chamar de $u_2$ a taxa de mutação de B para A. Isto nos leva às seguintes equações:\n", "\\begin{align}\n", "\\dot{x}&=x(1−u_1)+yu_2−ϕx\\\\\n", "\\dot{y}&=xu_1+y(1−u_2)−ϕy\n", "\\end{align}\n", "Se assumirmos que A e B têm o mesmo fitness, ou seja, ($a=b=1$), o fitness médio da população, é constante e dado por $ϕ=ax+by=1$, dado que $x+y=1$. Com isso, o sistema acima se reduz à seguinte equação diferencial:\n", "\n", "$$\\dot{x}=u_2−x(u_1+u_2).$$\n", "Que apresenta o seguinte equilíbrio para a frequência do tipo A:\n", "\n" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "ExecuteTime": { "end_time": "2021-10-04T12:45:06.728460Z", "start_time": "2021-10-04T12:45:06.716569Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[x = \\frac{u_{2}}{u_{1} + u_{2}}\\right]$$" ], "text/plain": [ "[x == u_2/(u_1 + u_2)]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('x u_1 u_2')\n", "solve(u_2-x*(u_1+u_2),x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Concluímos que neste caso de igual fitness a mutação leva à co-existência dos tipos, e as suas frequências no equilíbrio dependerá das taxas de mutação.\n", "\n", "#### Exercício 4:\n", "Encontre a razão entre as frequências de A e B no equilíbrio." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Matriz de Mutação\n", "Podemos extender a dinâmica de mutação para $n$ tipos. Para isso precisamos introduzir a matriz de mutação, $Q=[q_{ij}]$. A probabilidade e do tipo $i$ mutar para o tipo $j$ é dada por $q_{ij}$. Como cada tipo gera, na reprodução, um outro indivíduo do seu tipo ou de outro tipo, temos que $\\sum^n_{j=1}q_{ij}=1$. Logo $Q$ é uma matriz estocástica $n\\times n$.\n", "\n", "Matrizes estocásticas têm as seguintes propriedades:\n", "\n", "1. Todos os elementos são números no intervalo [0,1] (probabilidades)\n", "1. São quadradas\n", "1. A soma de cada linha é 1\n", "\n", "Matrizes estocásticas têm sempre um autovalor igual a 1 , e nenhum autovalor pode ter um valor absoluto maior do que 1.\n", "\n", "O dinâmica de mutação fica então:\n", "\n", "$$\\dot{x}_i=\\sum_{j=1}^n x_jq_{ji}−ϕx_i$$\n", "para $i=1,\\ldots,n.$ \n", "\n", "Ou, em notação vetorial:\n", "\n", "$$\\dot{\\overrightarrow{x}}=\\overrightarrow{x} Q−\\phi\\overrightarrow{x}$$\n", "Novamente o fitness médio é $ϕ=1$. O equilíbrio é dado pelo autovetor à esquerda, associado com o autovalor 1:\n", "\n", "$$\\overrightarrow{x^∗}Q=\\overrightarrow{x^∗}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exercício 5:\n", "Simule um modelo de seleção com mutação, com matrizes de mutação simétricas e assimétricas." ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n" ] } ], "source": [ "import numpy as np\n", "n = 10\n", "# fis = np.ones(n)/n#\n", "fis = np.array([random() for i in range(n)])\n", "Q =np.random.random((n,n))\n", "qs = Q.sum(axis=1)\n", "for i,r in enumerate(Q):\n", " Q[i,:] = r/qs[i]\n", "print(Q.sum(axis=1))\n", "def evolucaoQ(t,y):\n", " y = np.array(y).reshape((1,n))\n", " phi = sum(y*fis)\n", " d = y@Q - phi*y\n", " return d[0]" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "T = ode_solver()\n", "T.algorithm = \"rk8pd\"\n", "T.function = evolucaoQ\n", "T.ode_solve(y_0=[1/n]*n,t_span=[0,20], num_points=500)" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGGCAYAAACJ/96MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDJElEQVR4nO3dd3wUZf7A8c+kNxJ6lS4iiKAo9g4WLCeedzY8T87TU7GdnuU89X6eIE2KQI4mRYq0owaUYhDpEOkQAjEkJJSEFLLpm2T3+f0xmbCJqZDNTJLv+/UaZ3f2mZnvhq+bb56ZfR5NKYUQQgghhCifh9kBCCGEEEJYnRRMQgghhBCVkIJJCCGEEKISUjAJIYQQQlRCCiYhhBBCiEpIwSSEEEIIUQkpmIQQQgghKiEFkxBCCCFEJepEwaTpgjVN08yORQghhBANj9kFk6rKYrPZnICtaF2lfWSpv8vKlStNj0EW6yySD7IYi+SCLK5LNfKhSswumISotq5du5odgrAQyQdhkFwQrmo6H6pdMGmadpemaWGapp3VNE1pmjaoCvvco2naPk3T7Jqm/app2ouXEqwQAD///LPZIQgLkXwQBskF4aqm80Gr7uS7mqYNBG4H9gLLgSeUUisraN8ZOAJMBb4B+gMTgEeUUuuqcs6MjAxCQkKw2WwEBwdXK15R/6Snp9O4cWOzwxAWIfkgDJILwlU18qFK90dXu4dJKfWDUuoTpdSKKu7yKhCrlHpPKXVMKTUZ+B/w9+qeWwiAyZMnmx2CsBDJB2GQXBCuajofqt3DVGJnTVNU3sO0BdinlHrHZdsQYIJSqszuIrvdjt1uL36ekZFB+/btpYdJCBdKgcMBhYUX1wAhIfr6zBkICtKfZ2XB6dPgdOr7lbVu3hw6doTsbDh0CK69Vt//11/h7NmK9+3bF1q1guhovf3AgXoM69bp5zbidY3d8OST4OkJP/0Efn5w6636PmvWVLxfy5YwYID+3hcuhNtugy5d4Phx2LOn4n2vvx5694b4eAgPh2eeAX9/+PFHfVtF+w4apP+stm+HpCT4/e/17d98o8dSHj8/+POf9ccLF+qx3nyz/rMNCyt/P4Arr4T+/SEjQ9/30UehXTv9fe7fX/G+994LV10FR4/Cjh3w8sv69mXLICWl4n3/9CcICND/HZXS/11zc2Hu3Ir3a9YM/vAH/fE338Att0CvXnp+hIdXvO911+ntz56F1av1f5vGjWHTJjhxouJ9H3tM/7ns3q3n4eDB+vZvv9XjLo+HB7zyiv74f//Tc+uuu/Sfz//+V/E5O3a8+HP59lt48EHo3Fn/d9m9u+J977ij5M/lr38FLy/9fZ89W/G+rj+XzEx4/HE9/6ZPr3i/Ro3g+ef1x3Pm6P+f33ADxMXBDz9UvO811+g/l+Rk/efyhz9AixawdSscOVLxvg89pP9c9u2DgwdhyBB9+3ffgc1W8b4vv6z/XFatgsBA/f/7jAxYsKD8fUJC4LnnKj6ui6p9A18pdckL+t3lgyppcwL4Z6ltDwNqzpw56tdff1WjRo1SeXl56osvvlBKKXXvvfeWeSf77t271ddff61sNltx2y+++EKlpqaqyZMnq4MHD6pVq1apNWvWqL1796qpU6eq8+fPl2ibnZ2tvvrqKxUVFaUWL16sfvzxR7V9+3Y1e/ZsFR8fX6JtYWGh+vLLL1VcXJyaO3eu2rp1q/rpp5/UwoUL1YkTJ9To0aNVbm5uiX3OnTunpk+frvbs2aN++OEHtXz5cnX48GE1ceJElZ6eXqLthQsX1KRJk9ShQ4fUihUr1Nq1a9Uvv/yipk2bphITE0u0zcnJUV999ZU6ceKEWrRokQoPD1fbtm1T3377rTp16pQaNmyYcjgc6osvvlAOh0MNGzZMnTp1Sn377bdq27ZtKjw8XC1atEidOHFCffXVVyonJ6fE8RMTE9W0adPUL7/8otauXatWrFihDh06pCZNmqQuXLhQom16erqaOHGiOnz4sFq+fLn64Ycf1J49e9T06dPVuXPnSrTNzc1Vo0ePVidOnFALFy5UP/30k9q6dauaO3euiouLU19++aUqLCwssU98fLyaPXu22r59u/rxxx/V4sWLVVRUlPrqq69Udna26t+/f3Hb8+fPq6lTp6q9e/eqNWvWqFWrVqmDBw+qyZMnq9TU1BLHtdls6uuvv1ZHjx5Vy5YtU+vWrVN79uxR33zzjTpz5kyJtnl5eWrUqFHq119/Vd9995366aef1M8/b1HffjtPxcbGqs8+G6cOHSpQr776jdq8Wak//ek7NXVqinrppS3q/fdPqpdfPq5GjNiojh07pv7+9/nqtdfs6v/+b7hSSqn77vtJPfponrr22lh1yy021atXiurePVVdfXW2atMmVXXuXKjefXeiUkqpm2/eox55JF+NHz9e7d8fqXx8CpS3t0N5eDiV/ius5NKli1ONHDlSxcTEqEaNctVf/3pS/fzzz+rvf/+pzPauyxNPJKr169er0aM3KlDq3XcXqIyMDHXTTRGV7vvqqz+o5ORkNWBAuGrWTP8ZZmZmqmbNLlS672effakKCgpUly5x6vHHM9W8efPUwoV7Kt3vllvy1DfffKP++tfXFSj15pt71NGjR9Uf/rCp0n1feOGY2rt3r3r99R8UKPXhh2OVUkpdfXVUFd7rjOJ/m+uvdxZ/Rvj4FCgPD6fy8HAqTXP8Zt2ixcXPiFatLqg///ms+uGHH9QXX/xcxj6qxPNHHklTK1asUN98s0l5eDjVu++uVomJiequu7YqT0+lPDwcytPTWWJtPH7lla3q1KlT6ne/+175+TmLPyPatTtT7j7G+sMPxymllOrR45h68MFcNW3aNPXjj/vLbKuv9Viuu66g+DPC17dAvf76UbVnzx710kvhv2lb+hjPPRentm7dqj7+eJ3y9HSqd9+dogoLC9X11x+o9L326/e+ys7OVnffvVVdeeXFz4iQkKxy36OHh0P5+V38jOjQ4Zx65plUtWzZMjV58nbl6elQnp4O5eXlVB4ehcrLSxWt9ecDBmSp7777Tq1cuU15ejrU3//+k4qNjVUPPbSpzH2M43l6OtRLL+1Vx44dU4MHr1VeXk712WdfKqWU6tLlpMu+zjJicKp33pmslFLq+usPqLvuKij6jDha4vhlxX3llRc/I5o0yVavvKJ/Rrz33k8ljl9W3E8+efEzwsvLWfwZccstu5WXl1Jt2uSoa67JUj16ZKhrrslSPXtmqp49M9U112Spf/1rgzp9+rR68cWf1G23Zauvv/5aJScnq1tvPVPc9ppr9KVnT2P/DHXNNdlq7NhJymazqQEDTqjXXktWS5cuVStW7Cmj7cV9br01QX355ZdqwYIFas+ePWrDhg1q2bJl6ujRo7+pI6pa89RGD9MJYLZSaoTLtoeBtTk5Ofj7+/9mH+lhEhWx2WyEGN0ol8Dp1P+izMqCbdv0v5ZSUiA9XV9stovrPn1gwgRIS9P/6lyyRO9RGDMGPvig7ON7eup/BY0Zo//V+v338NFHsGuX/tf6++/D4cPg6ws+Pvra9bGPj96mRQv9L02bTf9L3+mESZP0v7Q8PfW162NPTwgO1v+SA73HpmNHvScjNRWOHdPft6aVvW7eHNq31/9SjomBrl31XpekJP2vufL20zRo2lRvm52t79+8ufFvVbJ3xnUkNeNxo0b645wcfe3vr79X1x6Bsvbz8NB/XunpNvz8QvD21n8GDkfJnp7y9vXwuNhDZrwPp7Ps9qJuuNzPBnHp8vPzOXr0KE6n0+xQyuTh4cE111yDj49PWS9X6f90S16SK01u+hauJk2axJtvvvmb7Xa7fhnq9Gl9SUi4+Ph//9N/md5/v95lP2eO3r3fvbu+b2Cg3r3duLHelWs8vuEGePdd/XLXN99c7G5PSNAv3QQG6kWQ69rbW37R1qby8kE0PJIL5snJyeHYsWN06tSpzI4QM+Xm5hIXF0ePHj0ICAgoq0mVPrG9ajasMu1EvwTn6v6i7Q/WwvlFPdOjx/0sX37x3pFnnoHNm/WeEFeNG8MVV+hLbq5+P84bb+hr0Auf+Hi9J8fPr+JzennBq69efN6+vb4I8917771mhyAsQnLBfP7+/uUVJaaz2Wzk5eXh6+tLYGBgtfevdsGkaVoQcKXLps6apl0HpCml4jVNGwG0U0q9UPT6VOANTdNGA7OA+4CngEeQgkmUw27XLyEdOqRfvjp0SL8h8o9/hLCwLCZO1C+pBQbqvUA9ekCHDnpx1L693ovUqNFvj/v44xcfe3tL0VMfREdH06tXL7PDEBYguSAqsmbNGrKzswkODubpp5+udtF0KT1MNwI/uTwfV7T+FngRaAN0MF5USsVqmvYIMB54GzgN/FUptf4Szi3qqXPn9Ht9du3Sv1kSGXnxPpROnfRvNBm5fe+9F/j884vP33/flJCFRVit+1+YR3JBVCQwMJCCggIyMjKw2+3uL5iUUpup4HqfUurFcva5vrrnEvXb2LH6150fe0z/qunLL+tfsb3lFnj9db1I6tVLv5HZVbt2jZGx6YShWbNmZocgLEJyQVTE19cXX19f8vPzL2n/2riHSQhiY/UepO3bYd48/QbsTZsgL08vmAYM0L9RVdZltNIOHDhAv3793B+0qBMkH4RBckG4kxRMwi2U0gduW7lSH2zs0CH9nqFbbtG/xt+6Naxde7G98dX6qnjsscfcErOomyQfhEFyQbhTtadGEaIiMTHw2Wf6yMQ33KCPG3TttbB0qT4W0JYterF0Ob755puaCVbUC5IPwiC5INxJepjEZbPZID9f/3r+ypUwcaI+ZP706fow+t7eNXu+Tz75pGYPKOo0yQdhkFwQ7iQ9TOKyOJ363E/Dh+vPX30VEhP1QR7796/5Yglg2LBhNX9QUWdJPgiD5EL9tGDBAnIrmgywlkjBJKpFKf3eo/vu0weK9PCAGTMuThMSGFj5IJCX6x//+Id7TyDqFMkHYZBcqJ+ys7MtMWSEFEyiShwOWLxYn+X90Uf1b7elpuqvDRgAbdvWXiyTJk2qvZMJy5N8EAbJhfrH4XCUN/9brZN7mESFlNLnYfvkE33utfvv1yd1vftu8+ZLGzRokDknFpYk+SAMkgvWc+6cvpSnTRt9KW3btm1s2bKFCxcu0KJFC95//33efvttrrjiCvcFWwnpYRLl2rEDbr8dnnpKn7l+zx7YsAHuucfcyWX37t1r3smF5Ug+CIPkgvVMm6Z/Y7q8Zdq03+7zzTffsHTpUj7++GOuvPJKPvjgA4YMGcILL7zw28a1SHqYRJkKC2HwYGjSBH78Ub+B2ypaX+64BKJekXwQBskF6/nb3+B3vyv/9dK9SwkJCXz++ef8+uuvACilAOjQoQO7d+92V5hVIgWTKFZQAOPG6RPcdukCmzfrk9N6WKwf0stL0lZcJPkgDJIL1lPeJbfy7Ny5k5tuuglfX1+ysrJoVDT9w7p167j77rvdFGXVWOxXYUmhoaH07NlThrqvJfn5+thJP/+sP+/Y0XrFEkBsbKzZIQgLkXwQBsmFuq9Pnz4kJiYCsGXLFu666y7OnDnD+PHjmTJliqmxWbocHzp0KEOHDiUjI4OQkBCzw6mX8vPhyy/hxRehUyc4cgQs8O3NCt11111mhyAsRPJBGCQX6r7u3bvz6aef8vHHH3P69GnOnDlDeno669evJygoyNTYLNh/IGpLZKQ+t9vw4fqkuGD9Ygngu+++MzsEYSGSD8IguVA/PPTQQ3z55ZfcfvvtvPzyy7z//vumF0sgBVODNW8e3HijPp7Srl36Dd51xQfGKJlCIPkgLpJcqD/y8vIsMVilKymYGpi8PHjlFXjhBX24gF9+0b/aWZeMGDHC7BCEhUg+CIPkQv1x8OBB+vbta3YYJWjGV/ZMUqWTG/cw2Ww2goOD3R1TvXXmDDz+uH6fUmgo/OUv5o6nJIQQon7Iycnh2LFj9OjRg4CAALPDKcGILS4ujvT0dDIzM3nhhRdo2rSp0aRKvwmlh6mBuHABbr5Zn/9t50546aW6WyzJBJvCleSDMEguCHeSgqmBaNJEn95kzx59Pri67M9//rPZIQgLkXwQBskF4U5SMNVz06dfHHr+1VerN4CYVYWHh5sdgrAQyQdhkFwQ7mTpcZjE5YuM1CfQrU+uuuoqs0MQFiL5IAySC8KdpGCqh5SCQ4egTx99qpO6eq9SeXJzc80OQViI5IMwSC4Id5JLcvWMUvDBB9CvH5w6pU9tUt8KptTUVLNDEBYi+SAMkgvCnaSHqZ759FP46iuYOFGfC64+6tOnj9khCAuRfBAGyYX6YefOnURFRbF//3769+9PUlISYWFhzJgxg9atW5sWlxRM9cgXX+jTnIwZA2++aXY07rNmzRq6d+9udhjCIiQfhEFywWLy8iAurvJ2nTqBnx8ANpuN6OhohgwZQlBQEOPHjyc8PJzw8HD8itqYRQqmemLiRPjsM71o+sc/zI7GvV577TWzQxAWIvkgDJILFhMXB88/X3m7+fPh6qsB8Pb25tlnnwVgz549DBo0CE9PTxYvXkxOTg6ffvop99xzD9u3b+ezzz5zY/C/Jfcw1QPLlsE778B77+ljLdV348aNMzsEYSGSD8IguWAxnTrpxVBlS6dOxbsEBATg7e0NwMaNG+nfvz+g9zzNnTuXHj160L9/fwoKCtiyZUutvh3pYarjtm3TJ859+mkYPdrsaGrHJw2hKhRVJvkgDJILFuPnV9xzVFVhYWFER0fz+OOPEx0dTa9evXA6ncydO5fo6GieeuopADp06MDBgwe566673BF5maSHqY5LS4P77oM5c/RvxDUEMv2BcCX5IAySC3VfSkoKsbGxrF+/no8//piJEycyZcoUBg8ejNPpxMtL7+dxOBx4enrWamyW7mEKDQ0lNDQUh8NhdiiWk5cHvr7wu9/BY4/Vv6EDKvK3v/3N7BCEhUg+CIPkQt03ZMgQhgwZUuZr1157LWfPngUgJiaGgQMH1mZo1u5hGjp0KJGRkURERJgdiqUoBX/4A7z9tv68IRVLAMuXLzc7BGEhkg/CILlQvw0ePJj9+/fz008/AXDPPffU6vkt3cMkyqZp8Nxz0KyZ2ZGYo1+/fmaHICxE8kEYJBfqt6CgIL744gsA7r333lo/vxRMdUxsrP6FgueeMzsS85w7d87sEISFSD4Ig+SCcCdLX5ITJcXE6PPDzZxpdiTmknvahCvJB2GQXBDuJAVTHZGfD888Ay1bQtG3KhusTi5jdggh+SAMkgvCnaRgqiP++U84eBAWLYLgYLOjMdfWrVvNDkFYiOSDMEguCHeSe5jqgLVrYdw4GD8ebrzR7GjMZwybLwRIPoiLJBeEO0kPk8UlJ8OQIfDooxeHEWjo/vvf/5odgrAQyQdhkFwQ7iQFk4UpBa+9Bk4nfPNNwxtvqTwy/YFwJfkgDJILwp2kYLKwJUv0iXWnTIFWrcyOxjpk+gPhSvJBGCQXrCUvD6KiKl/y8krut3PnTmbPns1bb73FqlWrmD59Oo899hiJiYnmvJEicg+Thd19t37v0h//aHYk1vLWW2+ZHYKwEMkHYZBcsJa4OHj++crbzZ9/cY5em81GdHQ0Q4YMISgoiPHjxxMeHk54eDh+fn5ujbcyUjBZkFKQlQWtW8Pf/252NNYzZ84c+WAUxSQfhEFywVo6ddKLoaq0M3h7exffvL9nzx4GDRqEp6cnixcvJjs7m7Vr1zJhwgQ2btzolpgrIgWTBS1bBm+8Afv3Q5s2ZkdjPQMGDDA7BGEhkg/CILlgLX5+F3uOqiogIKD48caNG5k3bx6g9zyFhITwyCOPMGbMmJoMs8rkHiYLuvVW+Mc/pFgqT1RUlNkhCAuRfBAGyYW6LywsjHHjxhETE0N0dDS9evXC6XQyd+5cs0OTHiaryc+Hdu30gkmULTAw0OwQhIVIPgiD5ELdl5KSQmxsLOvXr+fjjz9m4sSJeHl5MXjwYLNDk4LJSiIi4Ikn4Mcfq9+N2ZA0bdrU7BCEhUg+CIPkQt03ZMgQhgwZYnYYZZJLchbhcMDf/gYtWsCVV5odjbUdOnTI7BCEhUg+CIPkQv1mt9v57rvviIuLY+HChdjt9lo9v6V7mEJDQwkNDW0QM1B/841+k/euXeBl6X8V8w0cONDsEISFSD4Ig+RC/ebr68tzzz3Hc889Z8r5Ld3DNHToUCIjI4mIiDA7FLdKT4dPPoE//xluvtnsaKxv1qxZZocgLETyQRgkF4Q7Wbpgaii++AJyc+HLL82OpG6Q6Q+EK8kHYZBcEO4kBZPJTpyAiRPhn/+Etm3NjqZukOkPhCvJB2GQXBDuJAWTyf7xD30YgXffNTuSuuP99983OwRhIZIPwiC5INxJCiYTnTkDW7fCmDHg7292NHXH119/bXYIwkIkH4RBckG4k3wfy0Tt2kFsLISEmB1J3fLkk0+aHYKwEMkHYZBcEO4kPUwmOXgQUlKgcWPQNLOjqVv27NljdgjCQiQfhEFyoX7YuXMns2fP5q233mLVqlVMnz6dxx57jMTERFPjkh4mk7zyit7DtHy52ZHUPW1kkj3hQvJBGCQXrCWvMI+49LhK23Vq3Ak/Lz9An2Q3OjqaIUOGEBQUxPjx4wkPDyc8PBw/Pz83R1wxKZhMsmYNZGWZHUXd5OnpaXYIwkIkH4RBcsFa4tLjeH7585W2m//7+VzdXJ8PzNvbm2effRbQewwHDRqEp6cnixcv5vz588yfPx8PDw/27t3LqFGj8KrFkZ6lYKpleXn60qKFvojqO3XqFHfeeafZYQiLkHwQBskFa+nUuBPzfz+/Su0MAQEBxY83btzIvHnzAL3nadOmTaSnp/PGG2+wa9cufvzxRx566KEaj7s8UjDVsqlT9QEqT56EoCCzo6mb7rjjDrNDEBYi+SAMkgvW4uflV9xzVFVhYWFER0fz+OOPEx0dTa9evXA6ncydO5c333yzuF1iYiJX1/Is9XLTdy3KzYVRo+CRR6RYuhyLFi0yOwRhIZIPwiC5UPelpKQQGxvL+vXr+fjjj5k4cSJTpkxh8ODBxW3Wrl3LH//4Rzp16lSrsWlKqervpGlDgfeB1sBB4E2lVLlfT9A07R3gNaADkAL8D/inUiq3KufLyMggJCQEm81GcHBwteO1ikmT4J134PhxuPJKs6OpuwoLC2v1urWwNskHYZBcME9OTg7Hjh2jR48eJS6r1bSIiAg0TePGG28kMjKSnj17Vjm2uLg40tPTyczM5IUXXqBp06ZGkyp9V73aPUyapj0NjAM+B/qiF0zrNU1rWU7754CRRe17AC8BTwMNaua0vDwYORIGD5Zi6XKNHDnS7BCEhUg+CIPkQv22c+dOXnrpJT766CPuuusuLqXD53JUu4dJ07TdQIRS6o2i5x5AAjBJKfWbbNU0bTLQQynV32XbWOBmpdTtVTlnfehhmjIFhg6FY8ege3ezoxFCCCFqTm31MF0KU3qYNE3zAW4AfjS2KaWcRc9vLWe3HcANmqbdVHSMLsDDwPflncdut5ORkVFiqcvy82HECHjmGSmWaoJMsClcST4Ig+SCcKfqXpJrDngCSaW2J6Hfz/QbSqnvgM+AbZqmFQAxwGal1JcLFy4kJiaG0aNHY7fbi5N94MCBhISEFC/t27cHICoqiokTJ5KRkVHcdtiwYaSlpREaGsqhQ4dYvXo1a9euZd++fUybNo3k5OQSbXNychg7dizHjx9nyZIlhIeHs2PHDubMmUNCQkKJtg6HgxEjRnDq1CnmzZvHtm3b2Lx5M4sWLSI6OpoxY8aQl5dXYp/ExERmzJhBREQE69atY8WKFXz55RlOn1a8/XZmibbp6elMnjyZw4cPs3LlSr7//nv27t3L9OnTSUpKKtE2NzeXsWPHEh0dzeLFi9m0aRPbt29n7ty5xMfHM3z4cJxOJ8OGDcPpdDJ8+HDi4+OZO3cu27dvZ9OmTSxevJjo6GjGjh1Lbm5uieMnJSUxffp09u7dy/fff8/KlSs5fPgwkydPJj09vURbm83GpEmTOHLkCCtWrGDdunVEREQwY8YMEhMTS7TNy8tjzJgxREdHs2jRIjZv3sy2bduYN28ep06dYsSIETgcjhL7JCQkMGfOHHbs2EF4eDhLlizh+PHjjB07lpycHGw2W3Hb5ORkpk2bxr59+1i7di2rV6/m0KFDhIaGkpaWVuK4GRkZTJw4kcjISJYvX8769euJiIhg5syZnD17tkRbu93O6NGjiYmJYeHChWzevJmtW7cyf/584uLiGDlyJIWFhSX2OX36NLNnz2bXrl1s3LiRpUuXEhUVxfjx48nKyirRNiUlhalTp3LgwAHWrFlDWFgYBw4cYMqUKaSmppZom5mZyYQJE4iMjGTZsmVs2LCB3bt3M2vWrN/EXVBQwKhRozh58iQLFixgy5YtbNmyhQULFnDy5ElGjRpFQUFBiX3Onj3LrFmz2L17Nxs2bGDZsmVERkYyYcIEMjNL5mxqaipTpkzhwIEDhIWFsWbNGg4cOMDUqVNJSUkp0TYrK4vx48cTFRXF0qVL2bhxI7t27WL27NmcPn26RNvCwkJGjhxJXFwc8+fPZ+vWrWzevJnyPiOMuGfOnMl1113H+vXrWb58OZGRkXXyM+LIkSNMmjQJm80mnxGX8Rlht9vJyckp0VY+I2rvM8LqYmNjSU1NJTIy8pLirtYlOU3T2gJngNuUUjtdto8G7lZK3VzGPvcAi4BPgN3AlcDXwAyl1H/KOo/dbsdutxc/z8jIoH379nX2ktxtt+mjei9danYk9cPs2bMZMmSI2WEIi5B8EAbJBfM0hEty1f06QQrgAFqV2t4KKG+Sly+AeUqpb4qeH9Y0LRCY7nQ68fD4bSeXr68vvr6+1QzNun78EYo6RUQN6NGjh9khCAuRfBAGyQXhTtW6JKeUygf2Aq43cHsUPd9Zzm4BgLPUNkfR8apz+jpHKX2C3YAAkCmOak5mZqbZIQgLkXwQBskF4U6XMnDlOOBlTdP+rGlaD2AKEAjMBtA0ba6maSNc2ocBr2ma9oymaZ01TbsfvdcprL7P+7NlC1xxBRw9anYk9Ut6errZIQgLkXwQBskF4U7VHuFLKbVY07QWwH/Qb/Q+ADyklDJuBO9AyR6lYYAqWrcDktGLqH8BT11y5HVAnz4wYQJUYVwtUQ3XXnut2SEIC5F8EAbJBeFOlzQkqlJqMjC5nNfuKfW8EH3Qys8v5Vx1WePG8OqrZkdR//zwww+1PoeQsC7JB2GQXKgfdu7cSVRUFPv376d///4kJSURFhbGjBkzaN26zC/k1woZQ95N3nwT2reHDz4wO5L65+WXXzY7BGEhkg/CILlgLXl5ecTFxVXarlOnTvj5+QFgs9mIjo5myJAhBAUFMX78eMLDwwkPDy9uYxYpmNwgMRGmTdMHqxQ1b8KECXzyySdmhyEsQvJBGCQXrCUuLo7nn3++0nbz588v7hn09vbm2WefBWDPnj0MGjQIT09PFi9eTGZmJrNmzeKKK65g8eLFzJgxo8xv2ruLFExuMG0aeHvDSy+ZHUn9JB+IwpXkgzBILlhLp06dmD9/fpXaGVzHcNq4cSPz5s0D9J6n48ePExMTw5AhQ/jkk0+w2+34+/vXeNzlkYKphuXn6/PG/fnP+j1MouYNGzZMPhhFMckHYZBcsBY/P79q31MWFhZGdHQ0jz/+ONHR0fTq1Qun08ncuXN588036dy5M6Ghobz11lu1WiyBFEw1bskSSErS72ES7vGq3EkvXEg+CIPkQt2XkpJCbGws69ev5+OPP2bixIl4eXkxePBgAFq0aMEbb7zBwIEDufHGG2v1Jn8pmGqQUvD11/DAAyADzrrP//73P/lgFMUkH4RBcqHuGzJkSLnT24SGhuLl5cXf/vY3vLy8iImJqdWCqfbulmoAdu2CX36Bt982O5L67ZZbbjE7BGEhkg/CILlQv9177700atSIVatWce211/LQQw/V6vmlh6kGff01dOsGtfxv2OCcPn2a6667zuwwhEVIPgiD5EL91rNnT3oWjQT9+OOP1/r5pWCqQQMGwBNPQC1+y7FBqu9zEIrqkXwQBskF4U5SMNWgv/7V7Agahvbt25sdgrAQyQdhkFwQ7iR9ITXA6dRH9P71V7MjaRh27txpdgjCQiQfhEFyQbiTpQum0NBQevbsSb9+/cwOpUJxcbBwIaSkmB1Jw/DUU/V6zmZRTZIPwiC5INzJ0gXT0KFDiYyMJCIiwuxQKtSlC8TGws03mx1JwzBlyhSzQxAWIvkgDJILwp0sXTDVBampcOoUeHmBppkdTcMgI/kKV5IPwiC5INxJCqbL9N//wrXXQm6u2ZE0HMOGDTM7BGEhkg/CILlQP+zcuZPZs2fz1ltvsWrVKqZPn85jjz1GYmKiqXHJt+Qug8MBM2bA009DLU9p06C9LSODCheSD8IguWA1eUBcFdp1AvwAfZLd6OhohgwZQlBQEOPHjyc8PJzw8HD8/PzcF2oVSA/TZfjhB0hIgL/9zexIGpaZM2eaHYKwEMkHYZBcsJo44PkqLHHFe3h7e/Pss88CsGfPHgYNGoSnpyeLFy+mcdGM9qdPn+a9996rrTdRTHqYLsO0adC3L9x4o9mRNCwPPPCA2SEIC5F8EAbJBavpBMyvYjtdQEBA8eONGzcyb948QO95CgkJQSnFqlWrSE1NrdFIq0J6mC7R6dPw/ffSu2SGY8eOmR2CsBDJB2GQXLAaP+DqKiwXL7WFhYUxbtw4YmJiiI6OplevXjidTubOnQvAjz/+yH333Ve7b6OI9DBdorlzwc8PinoORS1q1KiR2SEIC5F8EAbJhbovJSWF2NhY1q9fz8cff8zEiRPx8vJi8ODBnDx5klatWuFv0k3DUjBdAqVgzhx48kmQ/z9rX0hIiNkhCAuRfBAGyYW6b8iQIQwZMqTM13766Sc8PT05f/488fHxHDp0iN69e9dabHJJ7hLs3g3R0fDii2ZH0jAdPXrU7BCEhUg+CIPkQv325JNP8sgjj5Cbm4vdbq/1yZalYLoEN90EP/0E99xjdiQN00MPPWR2CMJCJB+EQXKh/vP29ubtt99m+/bt9OnTp1bPLQXTJfDw0IslD/npmWLWrFlmhyAsRPJBGCQXhDvJr/xqWrgQ+vcHu93sSBoumf5AuJJ8EAbJBeFOUjBVU4sW0KcP+PqaHUnDJdMfCFeSD8IguSDcSavtm6ZKqdLJMzIyCAkJwWazERwc7O6YhMUVFBTg7e1tdhjCIiQfhEFywTw5OTkcO3aMHj16lBh80gqM2OLi4khPTyczM5MXXniBpk2bGk20qhxHepiqYfVq+Plns6MQ48aNMzsEYSGSD8IguSDcSQqmKlIK3n1XH39JmOuPf/yj2SEIC5F8EAbJBeFOli6YQkND6dmzJ/369TM7FLZvh5gYGXvJCnbu3Gl2CMJCJB+EQXJBuJOlR/oeOnQoQ4cOLb6HyUzz50OHDnDnnaaGIYD27dubHYKwEMkHYZBcqB927txJVFQU+/fvp3///iQlJREWFsaMGTNo3bq1aXFZumCyivx8WLoUXnlFxl4SQgghqsSRB1lxlbcL6gSe+gS8NpuN6OhohgwZQlBQEOPHjyc8PJzw8HD8/PzIyMggODiYzMzMWp87UAqmKli/HtLS4LnnzI5EACQkJJgdgrAQyQdhkFywmKw42Pl85e1unQ8hVwP6SN7PFs1qv2fPHgYNGoSnpyeLFy8GoGvXrvTq1YtBgwaVO+ecu0jBVAULFsC11+qLMN+tt95qdgjCQiQfhEFywWKCOunFUFXaFXEdkmDjxo3MmzcP0HueQkJC+Pzzz3n++SoUYW4gF5gqkZmpDycweLDZkQjD0qVLzQ5BWIjkgzBILliMp5/ec1TZUnQ5DiAsLIxx48YRExNDdHQ0vXr1wul0MnfuXAAOHjzIpk2bGDNmTK1PvisDV1Zi3Tp45BE4eRI6dqzVU4tyyOB0wpXkgzBILpinpgaunD17Nvv27aNHjx5cuHCBoKAgvLy8ePbZZ2natClKKTRNY/jw4dx2223ce++9VY7tcgeulEtylXjoIUhM1KdEEdYwatQomTNKFJN8EAbJhbpvyJAh5d6bNHfuXHx8fHjmmWew2WzSw1QWs3qY7Hbw8gJPz1o7pRBCCFHn1MbUKOfOnWPPnj04nU7OnDnDG2+8Ua3YZGoUN5o+Hbp104cVENYhE2wKV5IPwiC5UL+1adOGxx9/nCeeeKLKxVJNkktyFbjrLvD2Bh8fsyMRrv7yl7+YHYKwEMkHYZBcEO4kPUwV6NMHXn3V7ChEaevWrTM7BGEhkg/CILkg3EkKpnLMnQuzZpkdhSjLNddcY3YIwkIkH4RBckG4kxRM5RgzBsLDzY5ClMVms5kdgrAQyQdhkFwQ7iQFUxkiI+HIEXjqKbMjEWXJzMw0OwRhIZIPwiC5INxJCqYyLF0KjRrBgw+aHYkoS48ePcwOQViI5IMwSC4Id5KCqQxLl8Ljj4OfX+VtRe3bsGGD2SEIC5F8EAbJBeFOMqxAKUeP6suIEWZHIsrz0ksvmR2CsBDJB2GQXLCYPCCuCu06AS4dFDt37iQqKor9+/fTv39/kpKSCAsLY8aMGbRu3dotoVaFpXuYQkND6dmzJ/369au1cy5dCsHB8MADtXZKUU1ff/212SEIC5F8EAbJBYuJA56vwhJ3cRebzUZ0dDRDhgzhzjvvZPz48bz00ksEBATgZ/JlH5kaxTUYBddcA/36wbffuu00QgghRL1S5tQol9DDlJOTg7e3N97e3rz//vu0a9eOd955p7jpwoULadKkCevWrePzzz8nJCSkyrHJ1Cg1KClJn2j3j380OxJREZn+QLiSfBAGyQWL8QOursLi0nEUEBCAt7c3ABs3bqR///6A3vO0ZcsWMjMzeeihh5gwYUKViqWaJPcwuWjdWi+atCrVmsIsr732mtkhCAuRfBAGyYW6LywsjOjoaB5//HGio6Pp1asXTqeTuXPnEhMTQ9u2bdmzZw+bN2/m/fffR6vFX9jSw1REKbhwQZ87zkvKSEtbsmSJ2SEIC5F8EAbJhbovJSWF2NhY1q9fz8cff8zEiROZMmUKgwcPJj8/n6uvvpqbbrqJrKwswmt5dGkpDYocPgw33ADbtsHNN5sdjajIrbfeanYIwkIkH4RBcqHuGzJkCEOGDCnztRtvvLHEc6fTWRshFZMepiJXXAETJ8L115sdiahMQkKC2SEIC5F8EAbJhfpt8ODBHDx4kOXLl9OkSRPuv//+Wj2/9DAVadoU5PJ33VCb16yF9Uk+CIPkQv3m6+vLp59+atr5pYcJfd64N97Q72ES1nfFFVeYHYKwEMkHYZBcEO4kBROwcCF89x0EBZkdiaiKXbt2mR2CsBDJB2GQXBDu1OALJqX00b2feEL/hpywvj/84Q9mhyAsRPJBGCQXhDs1+ILp2DGIjtYLJlE3TJ061ewQhIVIPgiD5IJwpwZfMK1cCYGBMGCA2ZGIqvrkk0/MDkFYiOSDMEguCHe6pIJJ07ShmqbFaZqWp2nabk3TbqqkfWNN00I1TTunaZpd07QTmqY9fGkh16wVK2DgQDB5Tj9RDTL9gXAl+SAMkgvCnao9rICmaU8D44BXgd3AO8B6TdO6K6XOl9HeB9gInAf+AJwBOgLplxx1DUlIgF9+gb//3exIRHW4TsQohOSDMEgu1A87d+4kKiqK/fv3079/f5KSkggLC2PGjBm0bt3atLgupYfpXWCGUmq2UioSvXDKAf5STvu/AE2BQUqp7UqpOKXUz0qpg5cWcs1ZtUqfBuVhS/R1iaqaMWOG2SEIC5F8EAbJBWspLCwkJSWl0qWwsLB4H5vNRnR0NEOGDOHOO+9k/PjxvPTSSwQEBOBn8qWgavUwFfUW3QCMMLYppZyapv0IlDcm/e+AnUCopmmPA8nAd8AopVSZO9jtdux2e/HzjIyM6oRZZZGRcN990LixWw4v3GTgwIFmhyAsRPJBGCQXrCU9PZ3ly5dX2u73v/89zZs3B8Db25tnn30WgD179jBo0CA8PT1ZvHgxR48e5b777qNFixY4nU4GDBjAhx9+6Nb34Kq6PUzNAU8gqdT2JKC8frIu6JfiPIGHgS+A94BPFi5cSExMDKNHj8Zutxdffx44cCAhISHFS/v27QGIiopi4sSJZGRkFLcdNmwYaWlphIaGcujQIVavXs3atWvZt28f06ZNIzk5uUTbnJwcxo4dy/Hjx7nnniW8884mduzYwZw5c0hISCjR1uFwMGLECE6dOsW8efPYtm0bmzdvZtGiRURHRzNmzBjy8vJK7JOYmMiMGTOIiIhg3bp1rFixgiNHjjBp0iRsNluJtunp6UyePJnDhw+zcuVKvv/+e/bu3cv06dNJSkoq0TY3N5exY8cSHR3N4sWL2bRpE9u3b2fu3LnEx8czfPhwnE4nw4YNw+l0Mnz4cOLj45k7dy7bt29n06ZNLF68mOjoaMaOHUtubm6J4yclJTF9+nT27t3L999/z8qVKzl8+DCTJ08mPT29RFubzcakSZM4cuQIK1asYN26dURERDBjxgwSExNLtM3Ly2PMmDFER0ezaNEiNm/ezLZt25g3bx6nTp1ixIgROByOEvskJCQwZ84cduzYQXh4OEuWLOH48eOMHTuWnJwc/u///q+4bXJyMtOmTWPfvn2sXbuW1atXc+jQIUJDQ0lLSytx3IyMDCZOnEhkZCTLly9n/fr1REREMHPmTM6ePVuird1uZ/To0cTExLBw4UI2b97M1q1bmT9/PnFxcYwcOZLCwsIS+5w+fZrZs2eza9cuNm7cyNKlS4mKimL8+PFkZWWVaJuSksLUqVM5cOAAa9asISwsjAMHDjBlyhRSU1NLtM3MzGTChAlERkaybNkyNmzYwO7du5k1a9Zv4i4oKGDUqFGcPHmSBQsWsGXLFrZs2cKCBQs4efIko0aNoqCgoMQ+Z8+eZdasWezevZsNGzawbNkyIiMjmTBhApmZmSXapqamMmXKFA4cOEBYWBhr1qzhwIEDTJ06lZSUlBJts7KyGD9+PFFRUSxdupSNGzeya9cuZs+ezenTp0u0LSwsZOTIkcTFxTF//ny2bt3K5s2bKe8zwoh75syZrFixgvXr17N8+XIiIyNr9DNiyZIlhIeHy2dEHfmM+PLLL8nJySnRVj4jau8zorTGjRvz+9//vtKlsUuvRUBAAN5FY/xs3LiR/v37A3rPU15eHnv37mX9+vX89a9/5e233y7zvOWJjY0lNTWVyMjICuMuj1ZeL0+ZjTWtLfo9SLcppXa6bB8N3K2U+s20tZqmnQD8gM5KKUfRtneB95VSZRZZZfUwtW/fHpvNRnBwcJXjrUhGBjRqBDKSft2zcePGWp9DSFiX5IMwSC6YJycnh2PHjtGjRw8CAgIu+ThhYWFER0fz+OOP07t3b7KyslBKERoayptvvgnAli1baNOmDd26datWbHFxcaSnp5OZmckLL7xA06ZNjSZVqgSqe9N3CuAAWpXa3gpILGefc0CBUSwVOQa0zs/Px8fH5zc7+Pr64uvrW83QqufFF/Viadkyt55GuEGjRo3MDkFYiOSDMEgu1H0pKSnExsayfv16Pv74YyZOnIiXlxeDBw8ubrNs2TK+/vrrWo+tWgWTUipf07S9QH9gJYCmaR5FzyeXs9t24DlN0zyUUs6ibVcB53x8fNpcUtQ14M03oaDArLOLy3Hs2DFuueUWs8MQFiH5IAySC3XfkCFDGDJkSLmvnzlzhsTE8vpn3OtSviU3DnhZ07Q/a5rWA5gCBAKzATRNm6tp2giX9lPQvyX3taZpV2ma9gjwMRB6eaFfnnvvhQceMDMCcamky124knwQBsmF+i8lJcW0oQWqXTAppRYD/wD+AxwArgMeUkoZN4J3ANq4tE8AHgT6AYeAicDXwMjLiPuyTJggl+Lqsjlz5pgdgrAQyQdhkFyo//r06WPK5Tio5k3fblClk2dkZBASElIjN30XFkLr1vDKK/Dll5d1KCGEEEJQczd9u0NN3fTd4OaS27YNUlNlst26TKY/EK4kH4RBckG4U4MrmFasgHbt4IYbzI5EXKqPPvrI7BCEhUg+CIPkgnCnBlUwKQUrV8KgQeDRoN55/fLVV1+ZHYKwEMkHYZBcEO7UoMqG/fshPl4vmETd9cwzz5gdgrAQyQdhkFwQ7tSgCqaVK/V54+6+2+xIxOXYtm2b2SEIC5F8EAbJBeFODapgWrECHn0UiqapEXVUx44dzQ5BWIjkgzBILgh3qu7UKHVWcjLExUHRvK2iDnM4HJU3Eg2G5IMwSC7UDzt37iQqKor9+/fTv39/kpKSCAsLY8aMGaYNWgkNqGBq0UIvmuRm77rv3LlzZocgLETyQRgkFyzG6YQ8e+Xt/HyLfznbbDaio6MZMmQIQUFBjB8/nvDwcMLDw/Hz83NzwBVrMAVTXh6Y/LMWNeSmm24yOwRhIZIPwiC5YDF5djgWW3m7Hp0hwB8Ab29vnn32WQD27NnDoEGD8PT0ZPHixdhsNpYsWULLli05evQor7/+OppWpTEna0SD6G9JSoJmzWDjRrMjETVhmcxrI1xIPgiD5ILF+PnqxVBli59v8S4BAQF4F91ovHHjRvr37w/oPU9bt27F4XBwzz33kJ+fT2ZmZq2+nQZRMPn4wBdfwPXXmx2JqAlvv/222SEIC5F8EAbJBYvx8NB7jipbXO6VCQsLY9y4ccTExBAdHU2vXr1wOp3MnTuXe++9l2+//ZYnnniC1q1bX/ZUadV+O7V6tmoKDQ2lZ8+e9OvX77KO06QJvPsuNG9eQ4EJU40ZM8bsEISFSD4Ig+RC3ZeSkkJsbCzr16/n448/ZuLEiUyZMoXBgwcTFRXFW2+9xQsvvMCkSZNq/Z61ej/5bmYmDBsGb74JV1xxSTEKIYQQogK1Mfnuv/71L4YPHw5AREQEZ86cYVAVRqKWyXer6IcfYPRoKCw0OxJRU2SCTeFK8kEYJBfqt+eff54ZM2awbt06YmNjGThwYK2ev95/S27lSrjuOujUyeRARI35y1/+YnYIwkIkH4RBcqF+69GjBz169DDt/PW6hyk/H9auhSeeMDsSUZN++OEHs0MQFiL5IAySC8Kd6nXBtGkTZGRIwVTf9O7d2+wQhIVIPgiD5IJwp3pdMK1cCV26QK9eZkcialJaWprZIQgLkXwQBskF4U71tmByOmHVKr13qRYHAhW1IDs72+wQhIVIPgiD5IJwp3pbMO3eDYmJUIVvHIo65uqrrzY7BGEhkg/CILkg3KneFkxbtkDLlnDrrWZHImrajz/+aHYIwkIkH4RBckG4U70tmD78EI4cAU9PsyMRNe3FF180OwRhIZIPwiC5INypXhZMDoe+btHC3DiEe0ycONHsEISFSD4Ig+SCtTjsdmwnT1a6OOz2Evvt3LmT2bNn89Zbb7Fq1SqmT5/OY489RmJioknvRFcvB64cORJWr4Zdu+SG7/rok08+MTsEYSGSD8IguWAtWWfOsPOjjyptd+vIkYR06QKAzWYjOjqaIUOGEBQUxPjx4wkPDyc8PBw/Pz93h1yhelkw3XGHPuGuFEv107Bhw+SDURSTfBAGyQVrCWrXjltHjqxSO4O3tzfPPvssAHv27GHQoEF4enqyePFikpKSGDNmDH369CEhIYGXXnrJbbGXpV4WTHffrS+ifnr99dfNDkFYiOSDMEguWIunr29xz1FVuU7cu3HjRubNmwfoPU+jR4/md7/7HXfffTcffvgh0dHRdOvWrUZjrki9u4fphx9g0SKzoxDutHDhQrNDEBYi+SAMkgt1X1hYGOPGjSMmJobo6Gh69eqF0+lk7ty5dOvWjfT0dADS09PZv39/rcZW73qYvvoKvLzgmWfMjkS4y5133ml2CMJCJB+EQXKh7ktJSSE2Npb169fz8ccfM3HiRLy8vBg8eDBNmzblhx9+YMeOHXh5eeHr61ursdWrgik1FX7+GSZPNjsS4U5xcXEyZ5QoJvkgDJILdd+QIUMYMmRIma99//33FBYWcttttzFlyhTuueeeWo3N0pfkQkND6dmzJ/369atS+7Vr9SEFfvc7NwcmTOUpg2sJF5IPwiC5UL9deeWVxMbGMm3aNJ555hlCQkJq9fyW7mEaOnQoQ4cOJSMjo0o/mJUr4ZZboG1b98cmzNOmTRuzQxAWIvkgDJIL9dtVV13FVVddZdr5Ld3DVB05ObBuncwd1xBERESYHYKwEMkHYZBcEO5UbwqmjRshNxeeeMLsSIS7/f73vzc7BGEhkg/CILkg3KneFEwrVkDPnmBib52oJdOmTTM7BGEhkg/CILkg3KleFExKwY8/yuW4hkJG8hWuJB+EQXJBuFO9KJg0DaKi4L33zI5E1IZhw4aZHYKwEMkHYZBcEO5k6W/JVZVSEBRkdhSitrz77rtmhyAsRPJBGCQXhDvV+R4mpeDaa2HWLLMjEbVlypQpZocgLETyQRgkF4Q71fmCKT9fnwalVy+zIxG15dFHHzU7BGEhkg/CILkg3KnOF0y+vvDJJ3DTTWZHImrLwYMHzQ5BWIjkgzBILgh3qvP3ME2cCI88Al27mh2JqC3NmjUzOwRhIZIPwiC5YL7c3FyzQ/iNmoqpThdMv/4Kb78N7dtLwdSQ+Pv7mx2CsBDJB2GQXDCPl5cXHh4exMXFmR1KmZRSOByOyzpGnS6YVq4EPz944AGzIxG16cSJE9x2221mhyEsQvJBGCQXzOPj48M111xDYWEhNpuNNWvWEBgYiK+vr2kxnThxonjuOYfDQWFh4WUdr04XTCtW6MVSYKDZkYja1L9/f7NDEBYi+SAMkgvm8vHxwcfHh7y8PLKzsykoKDC1YPL39yc9Pb3ENrvdfsnHq7MF07lzsHOnDCfQEH377bcyoq8oJvkgDJIL1uDr60twcDAZGRnk5+ebFsfBgwfp06fPb7YHBwdfUiGnKaVqIq5LVaWTZ2RkEBISgs1mIzg4GICpU+GNNyApCeQ+PyGEEMI6srOzL6s3x518fX0JLHlpSqvKfnW2h2nFCrj7bimWGqJhw4bJX5GimOSDMEguWEdgYGDpoqTW1XQ+WLqHKTQ0lNDQUBwOBydOnCjuYUpPhxYtYMIEGDq0dgIV1uFwOPD09DQ7DGERkg/CILkgXFUjH6rUw2TpgSuHDh1KZGQkERERJbZv3AiFhTBokDlxCXONHj3a7BCEhUg+CIPkgnBV0/lg6R4mQ+l7mJSC48fh6qvdHZ6wolOnTtGxY0ezwxAWIfkgDJILwlU18qHu9zCVRSnQNCmWGrItW7aYHYKwEMkHYZBcEK5qOh/qXMG0ahXccANkZpodiTBL586dzQ5BWIjkgzBILghXNZ0Pda5gat1a/3Zco0ZmRyLMcrmjtYr6RfJBGCQXhKuazoc6N6zALbfoi2i4EhMTzQ5BWIjkgzBILghXNZ0PdaqH6cgR+N//4DLnzxN13A033GB2CMJCJB+EQXJBuKrpfKhTBdOsWfCPf4BHnYpa1LSVK1eaHYKwEMkHYZBcEK5qOh/q1LACrVrZeO65YMaNc3dYwsry8vLw8/MzOwxhEZIPwiC5IFxVIx/q37ACSUnwxBNmRyHM9tVXX5kdgrAQyQdhkFwQrmo6H+pUD1Pz5jYSE4ORke+FEEIIUUPqTw+TUdM98ghSLAmGDRtmdgjCQiQfhEFyQbiq6Xy4pIJJ07ShmqbFaZqWp2nabk3Tbqrifs9omqY0TVtZnfMdPaqvH3us2qGKeuivf/2r2SEIC5F8EAbJBeGqpvOh2gWTpmlPA+OAz4G+wEFgvaZpLSvZrxPwFbC1uucMC9PXd99d3T1FfRRmJIQQSD6IiyQXhKuazodL6WF6F5ihlJqtlIoEXgVygL+Ut4OmaZ7AAuDfwMnqnvCHH/S1j88lRCvqneuuu87sEISFSD4Ig+SCcFXT+VCtgknTNB/gBuBHY5tSyln0/NYKdv0MOK+UmlmV89jtdjIyMoqXefMyqhOmqOdSU1PNDkFYiOSDMEguCFc1nQ/V7WFqDngCSaW2JwGty9pB07Q7gJeAl0u/tnDhQmJiYhg9ejR2u734Bq2BAwcSEhJSvPTu3R6AqKgoJk6cSEZGRnHbYcOGkZaWRmhoKIcOHWL16tWsXbuWffv2MW3aNJKTk0u0zcnJYezYsRw/fpwlS5YQHh7Ojh07mDNnDgkJCSXaOhwORowYwalTp5g3bx7btm1j8+bNLFq0iOjoaMaMGUNeXl6JfRITE5kxYwYRERGsW7eOFStWcOTIESZNmoTNZivRNj09ncmTJ3P48GFWrlzJ999/z969e5k+fTpJSUkl2ubm5jJ27Fiio6NZvHgxmzZtYvv27cydO5f4+HiGDx+O0+lk2LBhOJ1Ohg8fTnx8PHPnzmX79u1s2rSJxYsXEx0dzdixY8nNzS1x/KSkJKZPn87evXv5/vvvWblyJYcPH2by5Mmkp6eXaGuz2Zg0aRJHjhxhxYoVrFu3joiICGbMmEFiYmKJtnl5eYwZM4bo6GgWLVrE5s2b2bZtG/PmzePUqVOMGDECh8NRYp+EhATmzJnDjh07CA8PZ8mSJRw/fpyxY8eSk5PD3Llzi9smJyczbdo09u3bx9q1a1m9ejWHDh0iNDSUtLS0EsfNyMhg4sSJREZGsnz5ctavX09ERAQzZ87k7NmzJdra7XZGjx5NTEwMCxcuZPPmzWzdupX58+cTFxfHyJEjKSwsLLHP6dOnmT17Nrt27WLjxo0sXbqUqKgoxo8fT1ZWVom2KSkpTJ06lQMHDrBmzRrCwsI4cOAAU6ZMITU1tUTbzMxMJkyYQGRkJMuWLWPDhg3s3r2bWbNm/SbugoICRo0axcmTJ1mwYAFbtmxhy5YtLFiwgJMnTzJq1CgKCgpK7HP27FlmzZrF7t272bBhA8uWLSMyMpIJEyaQmZlZom1qaipTpkzhwIEDhIWFsWbNGg4cOMDUqVNJSUkp0TYrK4vx48cTFRXF0qVL2bhxI7t27WL27NmcPn26RNvCwkJGjhxJXFwc8+fPZ+vWrWzevLnczwgj7pkzZ3Lo0CHWr1/P8uXLiYyMlM+IBvwZsWjRInJyckq0lc+IhvsZcebMGWbOnElERESFnxFVVa1hBTRNawucAW5TSu102T4auFspdXOp9o2AQ8DrSqkfirbNARorpQZRzrACdrsdu91e/DwjI4P27dtjs9kIDg6ucryifjpy5Ai9evUyOwxhEZIPwiC5IFxVIx/cMqxACuAAWpXa3gooa5a7rkAnIEzTtEJN0wqBF4DfaZpWGBMTU+ZJfH19CQ4OLrEIYfjpp5/MDkFYiOSDMEguCFc1nQ/VHrhS07TdwB6l1JtFzz2AeGCyUmpkqbZ+wJWlDjEMaAS8bbfbD/tU4U5uY+BK6WESADabjZCQELPDEBYh+SAMkgvCVTXywW0DV44DXtY07c+apvUApgCBwGwATdPmapo2AkAplaeUOuK6AOlAplLqSFWKJSFKmzRpktkhCAuRfBAGyQXhqqbz4ZKmRtE07Q3gffQbvQ8Abymldhe9thmIU0q9WM6+c6jkHqbSpIdJCCGEEG7ivqlRlFKTlVIdlVK+SqmbjWKp6LV7yiuWil5/sahYEuKSyPQHwpXkgzBILghXNZ0PdWryXelhEgDp6ek0btzY7DCERUg+CIPkgnBVjXyoP5PvCuFq/vz5ZocgLETyQRgkF4Srms4HKZhEnXO3TCooXEg+CIPkgnBV0/kgBZOoc8obv0s0TJIPwiC5IFzVdD5IwSTqHBmOQriSfBAGyQXhqqbzQQomUee0alV6oHnRkEk+CIPkgnBV0/kgBZOoc/bu3Wt2CMJCJB+EQXJBuKrpfJBhBUSdk5SUJH9JimKSD8IguSBcVSMfZFgBUT/NmDHD7BCEhUg+CIPkgnBV0/kgPUxCCCGEaMikh0nUTzL9gXAl+SAMkgvCVYOaGiU0NJTQ0FAcDgcnTpyQHiYBQG5uLv7+/maHISxC8kEYJBeEq2rkQ93vYRo6dCiRkZFERESYHYqwkP/+979mhyAsRPJBGCQXhKuazgdLF0xClOV3v/ud2SEIC5F8EAbJBeGqpvNBCiZR5+zbt8/sEISFSD4Ig+SCcFXT+SAFk6hzWrRoYXYIwkIkH4RBckG4qul8kIJJ1Dm+vr5mhyAsRPJBGCQXhKuazgevGj2aELUgJiaG22+/3ewwapgCnIDD5fnlLBQdr6LnymVbWc8ri7eybVVpU5VjV3yc1NTNQLBbjl1+G2FFFy6EA/ItOaE7dy4CqLnfFZYeVsAgA1cKV/Hx8XTo0KGCFk4gr4pLIVBQanHdll9Bm0L0AsfpsnYWbXeW2u66dpTxuvxSvlR2ez6+vjJLvZBcECVduPAoTZr8X1WaVmlYAelhEhajgEzgQtGSAWSVWGJiwujQoV9RO2N7NpCLXgQVVPFcGuBdxuJVybaAoude6Fe1PYvWHi7bXLdX53VPLv6/qxVtc31ubKvo+aUuuJyvKp8fZbUpva0qbapy7PKP8803oQwdOtQtx664jbCa6dMn8eabb5odhrCIWbOm8957NXc86WEStSQfSAaSgPNFSxIXCyNjSefiZSlX3kAQ0AilAtG0RkXPjSUQvSver5ylrNe8kF+EdZ/T6cTDQ27HFJILoqRq5IP0MIna5AQSgdMuSwJwFr04ulCqfSOgBdAUaAJ0LlqXXkLQC6KL3ezDhw/jk08+cd9bERVSSqFc/tYxnht/fKlLuLx4KX+4GecZMWIE//znP91ynkt5L9V1Oe/dneeoi0aPHs0HH3xgdhjCIsaOHsv/ffp/NXY86WES1eREL4Z+BWJclgT0e3dAv6zTBrgCaAe0Alq6rFuiX9a6xAiq+VekUopCZyH5jnzsDjv2Qjt2h518Rz55hXn6dpdtBY4CCp2FxYtDOUo8r2xxOB04lAOlVPHaqZy/WRQVv17uPs6LPXBGoeJasJTebvwMjO3G8+rs01B+4Qoh6o/nr32ed259pypNpYdJXC4HcBKIBI4WrU+iX14DvffnSqAf8Ef0Aqk9erF0+alV4Cggw56BzW7DlmfDZreRac9k/pL5PPjog2TnZ5NTkEN2gb52fZydn11cDOU78nEqZ7XP7+nhiZeHV5UWT61kWw/NAw/NAx8Pn+LHrouGhqeHZ4l1me00DU/Ns8Ta2F/TLv4/bjyvaDtQ/Jpru9KPjXaXco7S26vDdd8q74PGwoULefbZZ916nuqqrffu7nPUNfPnz+f55583OwxhEWELwuDWmjue9DAJFznAQWAfcAA4hn4TtQfQBegJdAO6ohdKTajOPUBKKbILsknOTiYlJ4WUnBSScy4+Ts9Lx2a36UVSno2cgpyyj1OoaBLUhADvAAJ9Agn0DtQfG2ufQPy9/PH39sfH0wc/Lz98PH3w9fTF18u3eF3Waz6ePsUFUEP4BVMfVP6tSdFQSC4IV9XIB+lhEpUpAPYDe4C96L1ITvT7ivoCrwLXAN2pyiU0pRQX8i5wJuMMZzLPcDbzLGcy9PW5rHMk5yRjL7SX2CfAO4DmAc1pHtCcJn5NuCL4Chr7NSbYN5gQ3xBC/EKK18G+wQT7BvPd/O944YUXavQnIequzZs3Sz4IQHJBlFTT+SAFU4OTBmwrWnah9yo1A24AHitad6CigrvQWUiCLYHY9FhOXjjJyQsniU2PJcGWQF5hXnG7YN9g2gW3o12jdlzd/GpaBLYoLo6MJcC7+vcyde3atdr7iPpL8kEYJBeEq5rOBymYGoTzwI/ARuAwejHUC3gRuAP9MlvZBVJeYR4nUk9wLPkYkcmRHEs5xinbqeIbj0P8QujapCu9W/bm0W6P0rZR2+IiKdAn0C3vxm63V95INBiSD8IguSBc1XQ+SMFUb2WiF0jr0C+7eQG3Af+HPlR8k9/soZTidMZp9p3bx8Gkg0QmR3Lywkmcyom3pzfdmnbj+tbX89Q1T9GlSRc6N+5ME//fHsfdkpOTa/2cwrokH4RBckG4qul8sHTBFBoaSmhoKA5HWQMZit9S6Ddrr0DvUSoEbgY+A+5BH/uopHhbPHvO7GHfuX3sO7ePlJwUPDQPrmx6Jb1b9ebpa56mZ4uedGnSBW9P71p7JxXp27ev2SEIC5F8EAbJBeGqpvNBviVXL+QAYcBiIB796/2D0O9JalaiZb4jn71n97I9YTvbE7aTYEvAQ/OgZ4ue9G3Tlxva3ECf1n0I8gmq5fdQdWPHjuW9mhzvXtRpkg/CILkgXFUjH6r0LTkpmOq0JPQiaTl60TQAeBK4novzi0FOQQ4/x/3MxpMb2X1mN/ZCO62DWnN7+9u5vcPt3Nj2xku6+dosubm5+Pu7YUZypxMKCyE/HwoKwOGofDH2MR5X1Fapi4vT+dvnRgw12c74/9v1//PyHlf2emX7Xer5LnO/goICvL0s3Vle99WRgUsLCgrw9rZGT3iV1ZGfbV1k79cP38ceq0pTKZjqr3hgJvAD+hxqTwBPo4+krcstyGVb/DY2ntzItvht5Dvy6d2qN/d0uoc7OtxB58ad68Y4Q0qB3Q6ZmZCVBVlZzAwN5aXnnoO8PMjNLbnk5ZXcnp9/cTGKIaMgKii4+Dg/Xy9qapOmlVw8PEo+hpLbSrepajvX81X2uHR8Vty31H4HDh7kuj59yj+eqBl14Oe7/8ABrr/uOrPDqL468LOti5ZlZvLkokVVaSoFU/3jWig1A/4M/A5jjCSlFEfOH2FF1Ao2ntxIbkEuPVr04IEuDzCgywDaNGpjWuSAXrCkp8OFC/qSllbycUZGcVFUXCBlZur7VcTHB/z99cXPr+RjX1/w9tYXH5+Lax8f8PK6+Nj1dWPx8gJPz5KLh4e+3cPjt6+V19bTU/9ANNalCxkhhBBmkoEr649kYAqwBr1Q+gf6PUr6hLSZ9kzWRq9lRdQKYtJiaB3Umj/1/hMDrxxI+5D2tRNibi4kJsL585CUpC+uj5OT9YKoNF9faNoUmjSB4GB9adcOGjWCoCB9adTo4hIYyNfTp/P2Rx/pBZGf38VeFtEgDRsmkzELneSCcFXT+SA9TJaWB8wDvgX8gJfQ71HSC6UzGWdYdGQRq46vwu6wc3fHu3ni6ie4+Yqb8dDcUETY7RAXB/HxkJAAp0/r64QESEkp2bZpU2jVSl9attQXozAy1k2a6D1B1ZSUlESrVq0qbygaBMkHYZBcEK6qkQ/Sw1R3KfTLbpOBC8CzwBCMYQGOnj/Ktwe/ZXPcZhr5NuLZXs/yx2v+SPOA5jVzeqdTL4Z+/bXkcvr0xZuJg4OhfXu44gq44Qb9cZs20Lo1NG+uX95yk1WrVvHKK6+47fiibpF8EAbJBeGqpvNBCibLiQdGABFAf+AtoB0AR84fYfre6exI2EHHxh356I6PeLjbw/h5+V366ZTSL5cdOQJHj+pLZCTkFE1826QJXHkl3Habvu7aFTp21Asmk9xwww2mnVtYj+SDMEguCFc1nQ9SMFlGATAX/abu5ui9S7cAEJkcydRfprIjYQddmnThy/5fMqDLgEu77KYUnDkD+/bBL7/A3r36PUagXza75hr4y1+gZ0+9QGratGbeXg1KMuIVAskHcZHkgnBV0/kgBZMlHAP+DcQBfwJeBvw4m3mWyXsmsyFmw+UVSpmZsHMnbN8OERH6zdgeHtC9O9x/P1x3nV4otWhRw+/LPfLz880OQViI5IMwSC4IVzWdD1IwmcoJzAGmAVcC84GryMrPYvb+SSw8spBg32A+u/szHr3q0eoVSnFxsHWrvhw4oN971K0bPPgg9O2rF0mNfjtVSl0gM5ILV5IPwiC5IFzVdD5IwWSas8CnwGH08ZReQSkvfvj1eybsmkB2QTZ/7vNn/tTnT1Ufhfv0adiwAdavh5gY/cbrm2+GDz+E22/Xb8iuB37++Weuvfba6u+oFDgLQBWAM7/osaPk4iyseBvOstsoB6BAOfUFitYuj5VTb2O0K7FWeltV+vXytjuNN1VqXer9ur5W+nnJxuW0qcJxf7NvGcetTgzVVLBvPxRef0n71pp6PZqzdd5b4f79UFCDuVCv/93qv1O/ZHPttdNq7HgyrIAp1gPDgcbAf4DriLfFM3LbSPac2cMDXR/gnVveoWVgy8oPlZYG69bpRdLRo/q4RHffDQ88oBdLfpdxQ3htUk4oyISCDHDkgCMXCovWxY/zwJFDblYa/j5AYdFrzvwylgJw2EsWR053d9d7gOYBGINTFj2m6HFxD6HLY82j6LlLuxJrrezXcR380vUbsaW+HVtWmzL3K7X/b9qU0bai8/9mYM6K2lzeIJ52ux1fX9/LOkbtqMeDlVpkIFb35II13puovqygfgR1f64qTWVYAespAMYDS4CBwEcUOHz49uA3zNo/i+YBzZk4cCK3tb+t4sM4nbBnDyxfDj//rN+PdNtt8OWXcOedlzS2UY1yFkJ+GtjTitap+jo/7WJRVJh58bFRJFVE8wKvAPD0J+5EHD163QCefuDpr6+9G4GHD3h4g4dv0dqnnG0ua80LNM+Li0ep55pnyTYeZWwrUQyJ2jZGBisURSQXhKsJw4ZRk+kgPUy1Jgn4EIhCH6n7SU5eiOXTnz7l17RfeaH3C7zU96WKhwjIyIAVK2DZMjh7Frp0gd//Hh5+uPa+5u/Ih7xEyE3U1yUeJ0N+ql4AlebVCHyagHdw0dJIX3s1KvU4GLwC9ULIK+BiUeRRxybUFEIIUVdID5N1RAD/BHyBmThVDxYe/o7QiFCuCL6Cbwd9y9XNry5/99OnYeFCWL1an1ftwQdh2DC49lr3dIU78iH3NGTHFy1xkFP0OD+tZFufZuDfGvzbQFBX8GkKvs2K1k31132agGfNDWRZpeHunUAheqee61JYal16e0HRvo4y1sbjsl6vyjYovoUJZ6nnxmLE7vr8cvYpb6mKqt5mdLm3I13meQ4dOkTv3r3dd46KtgtLOXLkCL169TI7DGERKwpW8MTSJ2rseNLD5HbLgZHAjcCXJGbl8dlPn7Hv3D6eu/Y53rjpDXzKKyaio+Gbb2DTJggJgT/+UV9qamwkpSDvPGSegMzoouUEZCdQ/NvZKxACOkJgB33xa6MXR/6twbfl5RVCTiAXyCpasl0eG0su+gwx9qJ1HthtdnyVb/Fz19fI42LRU5M0wBPwKGNdlW1FtyIZtx+VWHB57FHqeXlLVfah1DlLtynrPVb1Z1GT2y7zPHn2PPxK36tX0++lOscUpsnNy8Xfz+RbEoRlZPXMIuixoKo0rfs9TKGhoYSGhuJwOCpvbDlO4GtgAfBH4B9sj9/Fpz99ir+3P1MfncqNbW8se9foaJgxQy+U2raFf/4THnlEn6j2cuTbwHYE0g9B+mHIiLp4+cwrCBpdBc1ugU7PQ2AnCOyo9w5VtRcrBzgPpKHP6JJetFwotbYBmUXtyyuZNSAQCECfRs9liTwWyfW3XA+tSr3m67J4FS3e+uL0dOL0dFJIob7WCnFoDn3t4aCQQgq1QgpUAQ4cFDoLcSgHBc4C/bHTgcOhL0opnE4nTqcTpVSJbaVfK72totdKbzP+mHH9o0YpVWJ76T94Knq99PEqer28c5f7uuI3sVyuqh4vIiKCfv361egxq8rkPzirpCG9571798po36JY+tp0pj42tcaOJz1MbpEDfAJsA97D4fwDU3+ZyuwDs7mjwx38597/EOxbxvuIj4f//hd+/FEvlP76V/3+JK9LrGvzkiE1AtIi4MJB/bIa6EVQyLUQ0hOCr4JG3cCvdcWFUT5wDjgNnEG/JSu5aDlftC5937YH+hcBXZcmQAj6tHiB4PB3kOedR55nHjkeOeR45JCtZZPlyCInN4ecnItLbm4uubm5JCQk0LhxY/Lz84sXu91e4rnrNrvdjtNZ011OFfPw8EDTtBJr47Gnp2e5rxlr1wUoXrs+ro3XS7eryus1qSrHTUtLo2k1el1rOlZ3vHd3/TxrilXjS01NpVmzZmaHISziqquu4u23365K07rfw1Q3paHP/xYPjCclpzsfh7/GgcQDvHXzWzzf+/nfDkBps+k9SkuX6hPXfvbZpRVKhTmQulsvklL36PcegV4QNb8FQv4KTXqDf7uyiyMHkACcRB90/LTLkszF8tYLaIk+g0tLoBvQAgqaFGDzsZGmpZFcmExybjIZWRlkZOiLzWYjMyET2xFb8bbs7OwK35Kmafj7+xMQEEBAQAB+fn4kJibSrVs3fH198fHxITAwsPixsS5r8fT0xMvLCy8vr+LHpdcVvW48LqvYcS16rPrLpL5asWIFTzxRc/cpiLpLckG4WrFiRY0eTwqmGnUWeAP9ZpyZHD2fz3sbnkfTNKY9Oo3r25QaUK2gABYvhpkzweGA116DZ5+t3qW3vPNwfiuc/1kvlFQBBFwBzW6CK/8GTW/Qb74uLRU4CkQDMehF0in0+38AgoEripbrILdpLsk+yZzRzhCfF8+5pHMkJyeTmppKakwqqampZGT89ttxjRo1Ijg4uHhp3Lgx7du3JyQkpHhbYGBgiaLIWPz9/fHz8/tNAbJu3Toeeuihqv+MymD0rBqXvkpfGivr8pjT6SQ/P7/CS2cVXbZyV7vy3ltl26raprJ9L3W/8tpUt9c7IyODiIiIau0j6hcjZ2w2G3v27DE5GmEVhYWFNXo8KZhqzElgKPoNNLNY9+th/vPzf+jevDtf3f8VzQJKdRPv2wcjRsCpU/rQAK+8UvWbuXOT4Nx6SPwRMiIBD70w6v4WtLwLAtqVbJ+BPl3dUSCyaDlf9Fow0BXoAzkP5XDa+zQxxBCdEk18Qjxn485ybuc5MjMziw/n7e1N69atadGiBc2bN6dbt240b96cZs2aFS/NmzencePGeHhUPD6RcQ+Q3W6nsLCweMnJySEjI6P4eUFBQfFjm83G1q1bi+8pcjqdJR6Xfm48dn29ti/RXaqyLn8Z64p6ssp7rSq9X3Vt35ycHH799ddKjy/qv9zcXGJiYswOo0qkJ9r9anoQUymYasQh4B2gNU71NVMiljD7wGwe6fYI/7rrXyW/BXfhAkycCGFh0Ls3LFigz/FWmYJMSNoEZ7+HtH36uEQt7oROz0KL2/Xxi4rPAewH9gL7gF/RL6cFAj2hYEABCcEJRBLJoaRDxJyM4VT4KdLT0wH9f+Q2bdrQsWNHrr32Wh544AHatm1L69atadu2LU2bNv1NIaSUwm63k5eXR25uLunp6SQmJpKXl1fm/UWu9xhVpXgxLpV5e3sTHx+Pj48PHh4eeHp6Fq99fX2LH7tuL/24vPuGXC+plfdaRfcaVVTUVPS4on1E5WbMmMGzzz5rdhjCAiQXhKsZM2bU6PHkpu/Lthd4G+hBXuGXfLJpFD+f+pm3btLvVyr+pacUfP89jB2rP3/zTXj8cX2U7vIoBWm/QMJy/ZKbsxCa3QhtH4ZW9+pf+Qf9Mtp+YDuwE72zC6AdFF5XSELzBPYV7mN/8n6iTkQRHx+P0+nE09OTLl260LVrVzp37kzHjh3p1KkT7du3L67MlVLk5+eTnZ1NdnY2WVlZJR7n5uYWF0mlc8nDwwNfX9/f3FdU0X1GrvcRGQWSUeQYEhMTaV1P5sUTl0/yQRgkF4SrauSD3PTtfhHoPUt9sOX9m7+v/5ATqScY98A47ux458VmaWkwfLg+jclDD8G771Z8+a0gA86sgYRlkH0KAjtDt9ehzYPg10JvkwpsQS+S9qB/Q60F5N2Qx/G+x9lVsIvdsbs5tuEYBQUF+Pn50b17d2666Sb+9Kc/0b17d7p06YKPjw9KKbKzs4tvzD5w4EDxTdkZGRkUFBQUh6ZpGgEBAQQFBREQEEDjxo2L7zVyXfv7++Pj4+OWXpJvvvmm/k5/4Fp0lnhc/B+X52UeoMKn5bav8mCWVWyofvPAbZbOW8Cbb75RMwez7jfmRRUsm7+AoUOHmh2GsIgFc77lvY8+rLHjSQ/TJdsD/B24nrOZ7/HmD/8gw57B1w99Tc8WPS82+/FH/V4lDw/4+GO4997yD5lzBuIWwOlVoBzQ6j7o8Adocr3+rbY0YBOwAb1HSQNHLwfxV8Szne1siN3AsahjKKVo3bo1vXv3pk+fPvTp04du3brh4eFBTk4OaWlpJZb09PTisa40TSMoKKjETdlBQUEEBgYSFBSEv79/pfcluY1S4HDqc+k5nfpzpyq1Ltpe2TalLhYhxmNju3GuSl9XJQsD5bp2ibnMx6XbVrNwEUIIUbFWzeCKVlVpWaW/7KVguiS70YulGzme8jJvrfsH/l7+TBo4ifYh7fUmOTl6ofTDD3Dfffrgk02alH04WyTEzoXETfq9SB2fgvZ/0L/dloNeIK1Hv/oH5PXO40DLA6xKX8WWg1uw2+00adKEm266iZtvvpmbbrqJ1q1bk52dzfnz54uXtLQ07HY7oN+43bRpU5o2bUrjxo0JCQkhJCSEoKAgPD09a+5HZRQsDqf+TcDCorXD4bLNUbIQMtoXPy8qlIpy9ey5c7Rt06byc2vohabmAR6a/thYGz1fxmOjLa6Py3i99HZc2xb/x+V/P63k/4rltr2EY1Tl/Zd8UEm7StpXetrScV9uu6qZMWMGL7/8cs0cTNRp06dP55VXXjE7DGERE0JDeefD96vSVAom9/gFfZylfuw/9xxvr3ufTo07MeGhCTT1L7rMFhWlF0ipqfr6oYfK/iWXfhR+nQYpOyCgvT7CdrtHwcMXDgMrgY1Anj7E+y+Nf+F/qf9j9/HdaJpGnz59uPPOO7nlllvo2rUraWlpnD17trhAMsY4CgwMpGXLlsXfYGvatClBQUGXfrlMKb3IyS/Q57YrcBStC/XtrtsKHeVfxvHQwNOzaPHQFw+XxVMDD0+9XfE2D+yFhfj6+erPjcKldEFk9ILJjdP1Xl5eGVOjiAZJckG4qkY+SMFU844ArwF92H36ad7d8BG9W/Zm7INjCfAO0AuDxYvh66/hyivhyy+hffvfHsYWpRdKyVv1+5OufAVa94csDwgDVgCxUNC8gEOdDjEvfR7bft2Gj48Pt9xyC/fccw933HEHSinOnj3L2bNnOXfuHPn5+Xh5edGiRQtatmxZvAQGBlbvbSqlF0P2fH3JL9SfFxRcfFw6b7w89cXbSx9w08tTX3t7liyKvFweV3Jpz+mEvDyw2/UlP19/PnXqbAYPHqLXY4V6WMbj0kt5rxUU6J1bSl1cO501uxg/ytJX8Vwfuz4vvb301bya3F5V1f14cOfHSXnHPn36NFdcccVlx1IX3quo2NmzZ2nbtq3ZYQiLaNXqR1auHFCVplIw1axfgVeAzmyLf4b3N37Gze1uZtSAUfh6+UJWFvzf/8HmzfDcc/DGG+BTamLanLNwYhIkboSADvrAkm3uh9MesBAIA5WvONX1FKtYxaKYRTiUg1tvvZWHH36Y2267jbS0NE6dOkV8fDw5OTl4enrSqlUr2rZtS7t27WjRokXV7zEqKITcPMjLv1gc2fPB7lIQaZpeBPl4X1z7eIOPF3gXbfPyBA8PnE7IyNAHLrfZIDMTsrP1q5PZ2Rcfl36enX2xKLLbLxZJ5U0haLfn4etb8V8NnkX1WunF2/viY6OO07SaXxudX8aPsMIreWVcJazO9tLbqrq9KqrTQeeOY1ZFYmIibdpU/ZtRZr534V7nzp2jTVUu14sGwc/vFL/7XceqNHXft+Q0TRsKvA+0Bg4CbyqlyhxeVdO0l4EXgF5Fm/YCH5fX3poSgNeB1oSffIx/hv+Lezvdy7D7huHt6Q1xcfDee/oluHHj4K67Su5ekAkxs+DUIvBpDL0+g7aPwBFP+ArYCvn++ezusJuJ5yYSeyKWnj178vbf3+aee+4hPT2duLg4lixZgsPhICQkhK5du9KhQwdatWqFV2VTqDidkGsvWvIgr+hxQdEoqJoGvt7g6wPBQfrazwfl40NOoTfJKRopKZCcrC8pKZCefrEwci2Qyqu/AwIuLoGB+hIQAK1a6Ws/P32Acz8/vc709b343Nf34jY/P9i48Ud+//tHyy2GjKJFNAyLFm3mmWeeMTsMYQGLFv3MU09JLgjdokU7gSoVTFVS7YJJ07SngXHAq+h3P78DrNc0rbtS6nwZu9yD3n+yA8gDPgQ2aJp2jZVnvb7oPHqx1IiNMY/z8abhDLxyIP+++994enjqPUqffQatW8PcudChw8VdlRMSVkD0f8Fph65/gY7PwyF/GA4qQnEh5AKrr1jN9ITpeCV48fDDD/PFoC/w9PQkJiaGNWvWFH/rrV+/fnTo0IHGjRuXH65xOS079+KSm6ffOK2hVx7+vtC8CU5fX9LyfElI8uFsnMaZM3D6NCQmUlwg5eaWPHxgoD7dXZMmEBICXbpA48b64+BgfW08b9RIb+/vX+nVt+r9i5wPKvNKp2iYZNwdYZBcEK5qOh8upYfpXWCGUmo2gKZprwKPAH8BRpZurJQa7Ppc07S/Ak8C/S/h3LXsAnqxpNgc9xT/2jSWx656jE/u+gQPBUybpk+ae999+uW4gICLu9qi4OiX+tQl7R7Tx1E60gJGgjqgSAxOZFbILFamr6Rzs86888E79O3bl1OnTrFjxw4KCwtp1aoVt9xyC126dCHA9diulNJ7i7KyITMHsnL0G61B7ykK9CcvIJiENH9OJPgRE+vByZOQkADnzun3BRmaNYN27aBNG7jmGmjRQi+Omje/+Njf3z0/6eqotEdNNCiSD8IguSBc1XQ+VOtomqb5ADcAI4xtSimnpmk/ArdW8TABgDf6qEJlstvtxV9/B8qc1NX9ctFH8M5g26kX+WDjWAZeOVAvlvIL4N//hvBweP11GDLk4jWggiyIngLxSyGoC9w8E873gffBucPJ6UanmeY/jfW29dx0802Mf248gYGBHD9+nE2bNtGkSRP69u1L165dadSoUdmh2fMhIwsysi8WSB4aKsAfm09Tfk31Z/9xPw5FehETA+dd+v3atoXOneG22+CKK/Tn7drp67ry5ZLY2FjuuOMOs8MQFiH5IAySC8JVTedDdS+UNAc8gaRS25PQ72eqilHAWeDHhQsXEhMTw+jRo7Hb7QwbNgyAgQMHFo8LFBISQvui6y9RUVFMnDiRjIyM4rbDhg0jLS2N0NBQDh06xOrVq1m7di379u1j2rRpJCcnl2ibk5PD2LFjOX78OEuWLCE8PJwdO3YwZ84cEhISito62LVrAEqd5NOpIbyxZjRtctrQ36s/O9as5eSDD5K7cSOL+vYl77nnGDZ8OADfjnkZe/jvSNw7nZPej7I57q8cf9mPnCdy+GX1L3ygPuC26NsouLWAO++6k4cffpiff/6Zbdu2kZ6eTtOmTencuTN79uwhJyenOO4vhw8nLzmNTfMWkbn7IGlb92A7Gs3pU+dYsf0sM7Y04Y43shnwekeuGVDAqx8EMmb8KXJzM2jefDfPPBPJG2/s4u23/8fYsdF06DCW11/PJTp6GHfeCd99NwybLYnp06ezd+9evv/+e1auXMnhw4eZPHky6enpJX6GNpuNSZMmceTIEVasWMG6deuIiIhgxowZJCYmlmibl5fHmDFjiI6OZtGiRWzevJlt27Yxb948Tp06xYgRI3A4HCX2SUhIYM6cOezYsYPw8HCWLFnC8ePHGTt2LDk5ORw8eLC4bXJyMtOmTWPfvn2sXbuW1atXc+jQIUJDQ0lLSytx3IyMDCZOnEhkZCTLly9n/fr1REREMHPmTM6ePVuird1uZ/To0cTExLBw4UI2b97M1q1bmT9/PnFxcYwcOZLCwsIS+5w+fZrZs2eza9cuNm7cyNKlS4mKimL8+PFkZWWVaJuSksLUqVM5cOAAa9asISwsjAMHDjBlyhRSU1NLtM3MzGTChAlERkaybNkyNmzYwO7du5k1a9Zv4i4oKGDUqFGcPHmSBQsWsGXLFrZs2cKCBQs4efIko0aNoqCgoMQ+Z8+eZdasWezevZsNGzawbNkyIiMjmTBhApmZmSXapqamMmXKFA4cOEBYWBhr1qzhwIEDTJ06lZSUlBJts7KyGD9+PFFRUSxdupSNGzeya9cuZs+ezenTp0u0LSwsZOTIkcTFxTF//ny2bt3K5s2bKe8zwoh75syZhISEsH79epYvX05kZGQtfUbobR0OByNGjODUqVPMmzePbdu2sXnzZhYtWkR0dDRjxowhLy+vxD6JiYnMmDGDiIgI1q1bx4oVKzhy5AiTJk3CZrOVaJuens7kyZM5fPgwK1eu5Pvvv2fv3r1Mnz6dpKSkEm1zc3MZO3Ys0dHRLF68mE2bNrF9+3bmzp1LfHw8w4cPx+l0MmzYMJxOJ8OHDyc+Pp65c+eyfft2Nm3axOLFi4mOjmbs2LHk5uaWOH5SkvU/I44fP17is1M+Ixr2Z0T37t2ZOXMmERERFX5GVFW1viWnaVpb4Axwm1Jqp8v20cDdSqmbK9n/I+AD4B6l1CHK+ZZcWT1M7du3r6VvySn0mm45BxJf5NU1c4tv8PaMT4C339Zv7Bk/Xr9uBfpUJsfGwdk10Pw26PovWNwKNVeRbE/mG+0bVmureeiRh7j//vs5f/48ycnJNGnShJ49e3LllVf+dlZlpxMys+FCBqRngcNBvvLiVHoQEceDWLcjkMjj+gCTzZtDz55w9dXQo4e+NG/u5h9TLVNOJ87CQpTDwVejR/P3t98ufq4cDpwFBTgdDlRh4cV10evF7ZzO4gWl9G1Klf3c6Szzcbn7uo4jgD4HH0oVr4vfRxljCbhuU66vlbH/b47t2tblmCVer/AHW0NtKjtElRpV0qqc1/fv38/1119f1KQG7ousE/dWirIcOHCA6667zuwwhEXsOn+et6dOrUrTmh9WoOiSXA7wB6XUSpft3wKNlVKPV7DvP4BPgAFKqV+KNltwWIE5wGSOpzzFi6tWcGeHO/my/5d47T8I//iHfjPPhAn6NSyA89vg6HBw5EL3d+H4Y6gJkBmbyRLfJcxmNrcPuJ0HH3yQ8+fPk5mZSbt27ejduzdXXHFFycEjldIvtV3IgPRMnIVO0nN92R/XiDXbGrFtnx9KaXTsCNdff3Fp08b8b4UppXDY7Tjy8ijMyaEwN1d/nJtbYnHk5lKYl4czP19vn5+vPy4o0NfG8/x8nAUFOOx2nPn5FwuSonPV2Bx1mobm4VG8lPm8aPLfMp97eOixaFrx2vjH0Izjl/Gd/uL4jbZl7Wu8XvoYmvab112PoZU6V8Vvv7JRwC/z9Upc9r+jplWYD5d1fDe/d1HzlNOp/38pBNCsd2/a3Xln5Q3dMayAUipf07S96DdsrwTQNM2j6PnkciPRtA+AfwEPuhRLFvQDMJlzmY/y17Awbm53M8PvG47XxnD9nqW+fWHUKP3rXw47RI2HhP/pvUqBn8GI5uRuyWUrW5ngOYFOt3TiX4/+i5SUFGJjY+natSsPPPAAzZo1K3na3DxItUGajcK8QpJsvmw72oxl4Y04ec6X5s01br0Vhv0e+vWreN7emuLIz8eeno79wgXsFy5QkJVFQWYm+UXrgqwsCrKyyDceZ2aWKGp+Q9Pw8vfHy98fTz8/PH198fTxwcPbGw8fH3yCg4ufe/r44OHjg6evr7729sbD2xvNywsPT08WLFzICy++WPy8zLWXF5qnJx4uj7WiKV80T0+9IJJfePXCsGHD6u9kzKJaJBeEq2HDhvFJ1QqmKqn2wJVFwwp8C/wNfQbad4CngKuVUkmaps0Fziil/lnU/kPgP8BzwHaXQ2UppTKrcs7a6WGKAN4kI+92/rD0EG0btWPKI1PwXxEGY8bAww/Dp5/qA/1k/goHP4ac09D1H/DjExR+4yAmO4bRztFkX5fN008/TVZWFna7ne7du3P99dcTFBR08XQOR3GRVJCeS2qGJ1uPhLD4x8bEp/hx3XVw551w663QtWvN/jHrsNvJPX+e3ORkcs6fJy81VS+M0tKKi6SComlVXHkHBuLdqBHeQUF4N2qET9HaOygIn0aN8AoI0IuigAA8/fzw8vMr3ubh4yMFihBCCCtyz8CVSqnFmqa1QC+CWgMHgIeUUsaN4B0A166G1wAf4H+lDvV5dc/tPvHAB+QV9uIvq2MI8mnE+AfG4T97Hkyfro/c/c47etVyagkcn6CP1N1kMc6P2nHhQBpzPebyfZvveWrwU/j5+ZGamspVV13F9ddfX/Lbbrl2SE6j8LyNDJuTX040YtnmKzh6OogbbvTgT3/Tx70sb57eqirMzSX7zBmyzp4l+8wZcpKSyCsqkPJttuJ2mocHfs2a4dukCb6NGxPYrh2+TZvi27gxfkVr38aN8W7UyDJd3fJXpHAl+SAMkgvCVU3ng0yNQhbwIg5nIa9/H0DshRRmPzaTdtMXwpIlMHQovPiifmP34c8heQu0ehZ+epvc2QX8kvUL44PGc/1T19O5c2dyc3Pp1q0bffv2vRirUmDLxJl0gezEbM4le7FiaxN+PNiYq6/1ZuBAuPtufZDH6nLk55N1+jSZcXFknjpF1unTZJ05gz3t4qgNvk2bEtCqFf4tWxLQogX+LVsWL35Nm1qmEKqqhISE4m9OCiH5IAySC8JVNfLBfVOj1B9O4F8olcywLVdyLDmaaQ9Npt2YqbBhA3z8Mfz+92A7Bvs/AEc2+E7D8dl1JB1OYrrHdOLviueJAU+Qm5tLkyZNGDhw4MV7lJxOSLVhj08lIzmffSf8CdvdDpvWiAcf8mDhp9X7NpsjP5+M2FhsMTFkxsWRERtL1unTqKJJ1wLbtCGofXva3XUXgVdcQVDbtgS2a4eXFUabrEHh4eG8+OKLZochLELyQRgkF4Srms6HBl4wTUapnXx74Hq+//UAX/f/ih5j5sDOnTByJPTvD6dXQ+RI8LsKDs4na7onuzJ/Ymrbqdz57J209W+Lr68vd999N+3bt9fv03E4cJ6/QOavaWSkFRK+L5jww+3o2c+ft/4NV11VtejybTbSo6O5EBXFhePHyTh5EmdBAZqXF406dCCka1faDxhAo06daNSxI151ZeTJy3RVVX+AokGQfBAGyQXhqqbzoQEXTN8Dc/kp9jomR+zl8zs+4ZZJK2DXLhg7Fm6+EY4Mh9MrwOtFCv77Mue3pTDTayZpj6fxwLUP4Ovry4033kiPHj3w8PCAQgeFZ1NJj04jNVkRvj+EIynNuPchX6Z+UPklt8KcHNIiI0k5eJDUw4fJPnsWAN8mTWjSvTutn3uOJt2706hTJzwa8BQAuaUnuBMNmuSDMEguCFc1nQ8N9LfuUWAYUcnd+ODH/Qzt+yqPfLNFL5a++gqu7wy7X4LMGEiYQubkqzmctJdZ3WfR+8netPZrzVVXXcXNN9+Mv78/OBzkxSaTfiKV1GRYt7cJGf5Nefxpb167vvxvuCmnk/ToaFIPHiTl8GFs0dEopxP/Fi1o3qcPXZ98kiZXX41f8+byDTMXqampZocgLETyQRgkF4Srms6HBlgwJQPvkZTVhL+sjuaPVz/Ji99Fwq7derHUIxB2vgD2Jji+X0nySifLtXnEPhNL36v60qJFC+644w7atGkDTidZMalcOJaC7YKTTYebkN+0OX9424tOnco+uyM/n9TDh0nas4fkvXvJz8jAKyCAZr160eMvf6F5794EyIzbFerTp4/ZIQgLkXwQBskF4aqm86GBFUx24D0y7dm8uMrObe3u4v2VyWhGsdQxDfa8B+n3kzX978QfOsf0q6bTblA7rm56NTfccAPXXnstnh4eZJ26QOqhZLJtDrZFNcajXXOe+8C7zJu4C/PySN67l8SdO0k5cABHfj4BbdrQ7p57aHnjjYR064ZH0aCKonJr1qyhe/fuZochLELyQRgkF4Srms6HBjSsgAL+jb1wLa+t9QFnd6ZsDcZ3ZwR8NQaa74OTc3Ee+4DUKfewJzOCzY9vpkOvDnTq1Im7776b4OBgss5mcTbiPM7sPCJ+DcbZuiVPPOND6bCcBQWkHDrEuW3bOB8RgSM/n5CuXWl10020vOkmgtq1u8T3IXJycggICDA7DGERkg/CILkgXFUjH2RYgZLmUehczZfb/MnIbcPMPYF6sTRmOPgtg2O/kP/9DBJXNWNZ2wXk/jmXq9tczS233ELPnj3Jt+VzdFU8ntlZxCT6Y2vUmcfe8qdx44tnUEqRcfIkpzdtInHHDgqyswlq354uTz5Jm9tvJ6BlS9PefX0ybtw4GZxOFJN8EAbJBeGqpvOhgfQwbcPhfJt5hzxZdLgJsw92os32QzDqI/D4Dk56kDlrBDFH01l671Ka3dKMq666irvvvptAX3+ifkrGM+0C59O9SfJqxX2/b0TTZhcL0oLsbM5u3crp8HAyT53Ct2lT2t55J23vuINGHTteQrxCCCGEqCVV6mGqW0M8X5JYlPonP59yMnufDxMPtdOLpS9fh8LJqN3dSf5iNOGnD7D8z8vp0L8DDz74II88/DBnDjs4ujSG3DM2Dqa0ovOjXfnDy8E0babPkJ527BiHJk3ip1de4djs2fi3bEnfDz/knv/+l+6DB0ux5CbDhg0zOwRhIZIPwiC5IFzVdD7U8x6mDJT6M5HJJ3h9jT9jorpz09aTMOx5KFhIwYa/cG7+vazquYbM+zPpfnV3+vfvj+28PwnbE2nqnc3JC8F0vrM111ynX7105Odzbts2Tv3wA5mnThHQqhVX3Hcf7e69F1/X63PCbZKTk2nRooXZYQiLkHwQBskF4aoa+VD3e5hCQ0Pp2bMn/fr1u4S9HcBHnM2M5B/rPfjoeEe9WPr8YchcTPb0Tzi6qC9zBy7A8biDAfcPYED/x9mzqgDbzpP4qHxy2nbgkTeu4JrrvMhLS+PEwoVsfu01jkydil/Tptz4ySfc+fXXdHniCSmWatHy5cvNDkFYiOSDMEguCFc1nQ/1uIdpLGm5U3n7e0/u/6ULL2xOg89uRSWfID303+zKTSXigQg6XtuR++9/gJiDIahT52gelE+GfzP6PtIcHz8PMmJjiV29msSdO/Hw8aHdPffQ8aGHCGzb9jLetrgc+/bto2/fvmaHISxC8kEYJBeEq2rkQ0P+ltwqMu3TGbPNyXV72/GnLSnwr6txHk0ncfpw1nfZz7mB57jtjtto1+p2di+5QPfmceQG+9Pqrs70aOfLhWPHOLliBSkHD+LfogXdn3+edvfei3dl85sItzt37pzZIQgLkXwQBskF4aqm86EeFkwHyc7/lAWHclGbW/P3rVlo77elYFNnYsIe5ftbN6H11nhkwO85sbsNjWLjuaqlwqdzG3rcHELyvn3snrqS9BMnCOrQgd5vvUXrW2+VgSUtxOFwmB2CsBDJB2GQXBCuajof6lnBlEhuwRv8FJvCwbDmfL2rAI83W5I7/zEiYjuzbeBG2lzXho5tHiV+Uw7Xtj6Do1Ew3e5tTsr+CLZ/sIqs+HgaX3UVfT/8kBZ9+8ocbhbUqbx5Z0SDJPkgDJILwlVN50M9KphyySscyuGkEyz7XzCT9jrxfrYdFya+xsZG2UQP2E2vW28iL643zTxTaNXOi+Y3tMN+9iC7Ph5NTmIiza+7jp5/+QtNevSQQsnCtm7dSu/evc0OQ1iE5IMwSC4IVzWdD/Xkpm9FvuMfnLwwl6/m+TFqeyAhN/Xi9NJX+OHqaDKvzObKzo/RONOHdk3t0LIJjbxjiFm2lOxz52h54410/cMfCOnSpYbfnnCHtLQ0mjZtanYYwiIkH4RBckG4qkY+1P1hBaqq0DmDc5lzmRam8Z8D3gS1v4/9q4fwvxsPoa7zpWvwH7naQ9G8Ofg0SSF57RgOTZ5IQOvW3DpiBH0/+ECKpTrkv//9r9khCAuRfBAGyQXhqqbzoc73MDlVOOcyn2fuphyeXdeYpql/42d7Z452OcUVnW+gW0AHggKdFDrOknVoHZmnTtGsd2+6PfUUja+6yi1vSgghhBB1RkPoYfqVxMyXCT9g44/hLfCM/YxlAc2I7ZXE9d0eom+ztjhz4riwbzbnwqbhHRTETZ9/Tr9PPpFiqQ6T6Q+EK8kHYZBcEK5kapTiHqYLnMnoz9GTkXT65hqyot9jZ9ckWnVqy1WtepJzPp7c+J+xJ8XRuHt3uj39NM169XLjWxG1JSMj4xInYRb1keSDMEguCFfVyIf63MOUz2nbM5w7c4ROkx/g13Nvc+TGdPr17UsXzwDO/jyX9D1z8GvkxY2ffMLN//mPFEv1yJw5c8wOQViI5IMwSC4IVzWdD3VwWAHF6fTXyTq3mYD/vMneoO60vcuXto5Azv68GmfWKZp2v5Jub/yT5tdfL8MD1EMDBgwwOwRhIZIPwiC5IFzVdD7UuR6msxdGUnhiGen/HkFsj95c09OXvF92EbdxASGtNPp9/CG3jhghg07WY1FRUWaHICxE8kEYJBeEq5rOhzrVw3Q+fTlevyzg5MYxBN+oCDgWQXTCaZr37ESfoR/Q6qab0DzqXA0oqilQ5vMTLiQfhEFyQbiq6XyoUwXThfkrsGe/jlf+fuLXxRLYqSu3ff4+rW+9VQqlBkQGphOuJB+EQXJBuKrpfKgTVYYt9QQA5yNbcmH3alIv5HHzvz/igW++ps3tt0ux1MAcOnTI7BCEhUg+CIPkgnBV0/lg+R6m2B17OfL1ZACyk8/T85X36PnkfXh4epocmTDLwIEDzQ5BWIjkgzBILghXNZ0Plu6aCQ0N5fk3BmMM13T/d7Pp9dT9Uiw1cLNmzTI7BGEhkg/CILkgXNV0PtThgSuFEEIIIS5bfR64UjRkMv2BcCX5IAySC8KVTI0iPUwNnt1ux9fX1+wwhEVIPgiD5IJwVY18kB4mUT99/fXXZocgLETyQRgkF4Srms4HKZhEnfPkk0+aHYKwEMkHYZBcEK5qOh/MviRXJZqmBQM2IEQplWF2PEIIIYRoWOpKwaQBjYBMVRcCFkIIIUS9UicKJiGEEEIIM8k9TEIIIYQQlZCCSQghhBCiElIwCSGEEEJUQgomIYQQQohKSMEkhBBCCFEJKZiEEEIIISohBZMQQgghRCWkYBJCCCGEqIQUTEIIIYQQlZCCSQghhBCiEl5mndhlfjghhBBCCDNVOletaQUTerFkM/H8QgghhBAAIUBGRQ1Mm3y3mj1MjYDTwBVAptuC0u0BbnLzOWrzPLV5rto4T23mAtSvn119PI98NtSNc8lng5ynts9V3Xywbg9TUWAVVnMGvbYC9DdUpX0ulaZpTnefozbPU5vnqo3z1GYuFJ2v3vzs6ul5jIfy2WDhc8lng5ynts/ljnyQm75/K7Senac2z1Wb76m21LefXX07T22qjz+7+vieakt9+9nVx7yrUaZdkqsOTdOC0e93CqmtClhYk+SCcCX5IAySC8KVO/KhrvQw2YHPi9aiYZNcEK4kH4RBckG4qvF8qBM9TEIIIYQQZqorPUxCCCGEEKaRgkkIIYQQohJSMAkhhBBCVEIKJiGEEEKISli+YNI0baimaXGapuVpmrZb07TaGolUWIimaf+naZoqtUSZHZeoHZqm3aVpWpimaWeL/u0HlXpd0zTtP5qmndM0LVfTtB81TetmUrjCjaqQC3PK+KxYZ1K4wo00TfunpmkRmqZlapp2XtO0lZqmdS/Vxk/TtFBN01I1TcvSNG2ZpmmtLuV8li6YNE17GhiH/tXAvsBBYL2maS1NDUyY5SjQxmW5w9xwRC0KRP//f2g5r38AvAW8CtwMZKN/VvjVTniiFlWWCwDrKPlZ8WwtxCVq393og2DeAtwPeAMbNE0LdGkzHngM+GNR+7bA8ks5maWHFdA0bTcQoZR6o+i5B5AATFJKjTQ1OFGrNE37P2CQUuo6k0MRJtM0TQFPKKVWFj3XgLPAWKXUV0XbQoAk4EWl1CKzYhXuVToXirbNARorpQaZFJYwiaZpLYDzwN1KqS1FnwPJwHNKqf8VtbkaOAbcqpTaVZ3jW7aHSdM0H+AG4Edjm1LKWfT8VrPiEqbqVtQNf1LTtAWapnUwOyBhCZ2B1pT8rLABu5HPiobqnqJLNMc1TZuiaVozswMStSKkaJ1WtL4BvdfJ9bMhCojnEj4bLFswAc0BT/S/El0loX84ioZlN/Ai8BDwGvovya2apjUyMyhhCcbngXxWCNAvx70A9Ac+RL8M84OmaZ6mRiXcqugK1ARgu1LqSNHm1kC+Uiq9VPNL+mzwupwAhagtSqkfXJ4eKrpcewp4CphpTlRCCKspdQn2sKZph4AY4B4g3JSgRG0IBXrhxntbrdzDlAI4gNJ3s7cCEms/HGElRX8xnACuNDkUYT7j80A+K8RvKKVOov8+kc+KekrTtMnAo8C9SqnTLi8lAj6apjUutcslfTZYtmBSSuUDe9G7VYHiLrf+wE6z4hLWoGlaENAVOGd2LMJ0segffq6fFcHo35aTz4oGTtO0K4BmyGdFvVM0nMhk4AngPqVUbKkme4ECSn42dAc6cAmfDVa/JDcO+FbTtF+APcA76F8pnW1mUKL2aZr2FRCGfhmuLfpQEw5goZlxidpRVCC79hB01jTtOiBNKRWvadoE4BNN06LRC6gv0L85t7KWQxVuVlEuFC3/BpahF9FdgdHAr8D62o1U1IJQ4DngcSBT0zTjviSbUipXKWXTNG0mME7TtDQgA5gE7KzuN+TA4sMKAGia9gbwPvoNWgeAt5RSu00NStQ6TdMWAXeh/6WYDGwD/qWUijE1MFErNE27B/ipjJe+VUq9WDS0wOfAK0Bj9Px4XSl1orZiFLWjolxA/0LISuB69Dw4C2wAPlVKlf5SgKjjioaVKMsQpdScojZ+wFj0sbh80Qvn15VS1b4kZ/mCSQghhBDCbJa9h0kIIYQQwiqkYBJCCCGEqIQUTEIIIYQQlZCCSQghhBCiElIwCSGEEEJUQgomIYQQQohKSMEkhBBCCFEJKZiEEEIIISohBZMQQgghRCWkYBJCCCGEqIQUTEIIIYQQlZCCSQghhBCiEv8PFJ279IgpGgsAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 11 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_sol(T.solution)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{l}\n", "\\verb|[1.10908426|\\verb| |\\verb|0.90846055|\\verb| |\\verb|0.96265006|\\verb| |\\verb|1.10370426|\\verb| |\\verb|1.14345312|\\verb| |\\verb|1.04049078|\\\\\n", "\\verb| |\\verb|1.10628897|\\verb| |\\verb|0.70135343|\\verb| |\\verb|0.86568679|\\verb| |\\verb|1.05882779]|\n", "\\end{array}$$" ], "text/plain": [ "array([1.10908426, 0.90846055, 0.96265006, 1.10370426, 1.14345312,\n", " 1.04049078, 1.10628897, 0.70135343, 0.86568679, 1.05882779])" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Q.sum(axis=0)/Q.sum(axis=1)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{l}\n", "\\verb|[0.35442058|\\verb| |\\verb|0.56695803|\\verb| |\\verb|0.09375394|\\verb| |\\verb|0.20363271|\\verb| |\\verb|0.45522536|\\verb| |\\verb|0.31394509|\\\\\n", "\\verb| |\\verb|0.59047749|\\verb| |\\verb|0.57565622|\\verb| |\\verb|0.10331312|\\verb| |\\verb|0.77935505]|\n", "\\end{array}$$" ], "text/plain": [ "array([0.35442058, 0.56695803, 0.09375394, 0.20363271, 0.45522536,\n", " 0.31394509, 0.59047749, 0.57565622, 0.10331312, 0.77935505])" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fis" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}4.036737577547483$$" ], "text/plain": [ "4.036737577547483" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(fis)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }