The Maximum Size of Weak (k, l)-Sum-Free Sets

Peter Francis

Department of Mathematics, Gettysburg College Gettysburg, PA 17325-1486 USA E-mail: franpe02@gettysburg.edu

May 22, 2019

Abstract

A subset A of a given finite abelian group G is called weakly (k, l)-sum-free if the set of all sums of k distinct elements of A is disjoint with set of all sums of l distinct elements of A. We are interested in finding the size $\mu^{(G, \{k, l\})}$ of the largest weak (k, l)-sum-free subset in G. Here, we provide a new upper bound for $\mu^{(G, \{k, l\})}$ as well as present new constructions for weak (2, 1)-sum-free sets in some noncyclic groups.

1 Introduction

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write hA for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A. More formally,

$$hA = \left\{ \sum_{i=1}^{m} \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^{m} \lambda_i = h \right\}$$

For positive integers k > l, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$kA \cap lA = \emptyset.$$

We denote the maximum size of a (k, l)-sum-free subset of G as $\mu(G, \{k, l\})$. That is,

$$\mu(G, \{k, l\}) = \max\{|A| \mid A \subseteq G, (k^{\hat{A}}) \cap (l^{\hat{A}}) = \emptyset\}.$$

Similarly, we will write h^A for the *restricted* h-fold sumset of A, which consists of sums of exactly h distinct terms of A:

$$h^{\hat{}}A = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \dots, \lambda_{m} \in \{0, 1\}, \sum_{i=1}^{m} \lambda_{i} = h \right\}.$$

For positive integers k > l, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if and only if

$$k^{\hat{}}A \cap l^{\hat{}}A = \emptyset.$$

We denote the maximum size of a weak (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{\hat{}}(G, \{k, l\}) = \max\{|A| \mid A \subseteq G, (k^{\hat{}}A) \cap (l^{\hat{}}A) = \emptyset\}.$$

In this paper, we will be mainly interested in $\mu^{\hat{}}$. The following have been established.

Theorem 1 (Bajnok; [2] (G.63)) Suppose that G is an abelian group of order n and exponent κ . Then, for all positive integers k and l with k > l we have

$$\mu(G, \{k, l\}) \ge \mu(G, \{k, l\}) \ge v_{k-l}(\kappa, k+l) \cdot \frac{n}{\kappa}.$$

Theorem 2 (Green and Ruzsa; [2] (G.18)) Let κ be the exponent of G. Then

$$\mu(G, \{2, 1\}) = \mu(\mathbb{Z}_{\kappa}, \{2, 1\}) \cdot \frac{n}{\kappa} = v_1(\kappa, 3) \cdot \frac{n}{\kappa}.$$

Theorem 3 (Zannier; [2] (G.67)) For all positive integers we have

$$\mu^{\hat{}}(\mathbb{Z}_n, \{2, 1\}) = \begin{cases} \left(1 + \frac{1}{p}\right) \frac{n}{3} & \text{if } n \text{ has prime divisors congruent to } 2 \mod 3, \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor \frac{n}{3} \right\rfloor + 1 & \text{otherwise.} \end{cases}$$

Theorem 4 (Bajnok; [2] (G.21)) For all positive integers r, k, and l with k > l, we have

$$\mu(\mathbb{Z}_2^r, \{k, l\}) = \begin{cases} 0 & \text{if } k \equiv l \mod 2; \\ 2^{r-1} & \text{otherwise.} \end{cases}$$

The following lemma will be useful in Section 3. We denote the sum of all of the elements of a group G to be s(G).

Lemma 5 (Bajnok and Edwards; [3]) Suppose that G is a finite abelian group with L as the subgroup of involutions; let |L| = l.

- 1. If l = 2 with $L = \{0, e\}$, then the sum s(G) of the elements of G equals e.
- 2. If $l \neq 2$, then s(G) = 0.

2 A New Upper Bound

Lemma 6 For any set A and positive integer $h \leq |A|$, $|h^{\hat{A}}| \geq |A| - h + 1$.

PROOF. Write $A = \{a_0, a_1, \ldots, a_m\}$. Then observe that

$$b_{h} = a_{0} + \dots + a_{h-1} + a_{h},$$

$$b_{h+1} = a_{0} + \dots + a_{h-1} + a_{h+1},$$

$$\vdots$$

$$b_{m-1} = a_{0} + \dots + a_{h-1} + a_{m-1},$$

$$b_{m} = a_{0} + \dots + a_{h-1} + a_{m}$$

are all distinct since a_h, \ldots, a_m are all distinct. Since,

$$\{b_h, b_{h+1}, \dots, b_{m-1}, b_m\} \subseteq h^{\hat{A}},$$
$$|h^{\hat{A}}| \ge m - (h-1) = |A| - h + 1.$$

Proposition 7 For all groups G with order n, and for all positive integers k > l,

$$\mu^{}(G, \{k, l\}) \leq \left\lfloor \frac{n-2+l+k}{2} \right\rfloor.$$

PROOF. Write A for a (k, l)-sum-free subset of G where $|A| = m = \mu(G, \{k, l\})$ and n = |G|. Using Lemma 6,

$$n \ge |k^{\hat{A}}| + |l^{\hat{A}}|$$
$$\ge m - k + 1 + m - l + 1$$
$$\ge 2m - (k + l) + 2.$$

Therefore,

$$m \le \frac{n-2+k+l}{2},$$

and so

$$\hat{\mu}(G, \{k, l\}) \leq \left\lfloor \frac{n-2+k+l}{2} \right\rfloor.$$

		п.
_	_	а.

3 Some *n*-dependent values of *k*

Here we will explore where k is dependent on n and l = 1. The following useful corollary follows immediately from Lemma 5.

Corollary 8 For any $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ (written invariantly), with |G| = n, the sum of the elements of G is,

$$s(G) = \begin{cases} (0, \dots, 0, \frac{n_r}{2}) & \text{if } n_r \equiv 0 \mod 2, \text{ with } n_{r-1} \equiv 1 \mod 2 \text{ or } r = 1; \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 9 For all $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ (written invariantly) with |G| = n > 2,

$$\mu^{\hat{}}(G, \{n-1, 1\}) = \begin{cases} n-2 & \text{if } s(G) \neq 0 \text{ and } n_r \equiv 2 \mod 4\\ n-1 & \text{otherwise.} \end{cases}$$

PROOF. First note that trivially, $\mu^{\hat{}} \ge n-2$. By Proposition 7,

$$\mu(G, \{n-1, 1\}) \le \left\lfloor \frac{n-2+n-1+1}{2} \right\rfloor = \left\lfloor \frac{2n-2}{2} \right\rfloor = n-1.$$

Let $A = G \setminus \{\xi\}$ for some $\xi \in G$, so |A| = n - 1. Then $(n - 1)^{\hat{A}} \cap 1^{\hat{A}} = \emptyset$ is only satisfied if the sum of the elements of A is ξ . Thus, $\mu^{\hat{A}}(G, \{n - 1, 1\}) = n - 1$ if only if there exists some $\xi \in G$ such that $s(G) - \xi = \xi$. In other words, there must be some $\xi \in G$ such that

$$s(G) = 2\xi.$$

- 1. s(G) = 0. Then $0 = s(G) = 2\xi$ is satisfied with $\xi = 0$, so $\mu(G, \{n-1, 1\}) = n-1$.
- 2. $s(G) \neq 0$.
 - i $\underline{n_r \equiv 0 \mod 4}$. Then $\underline{n_r} = s(G) = 2\xi$ is satisfied with $\xi = \frac{n_r}{4}$. Thus, $\mu^{\hat{}}(G, \{n-1,1\}) = n-1$.
 - ii $n_r \equiv 2 \mod 4$. Since 2 does not divide $\frac{n_r}{2} \equiv 1 \mod 2$, there is no such $\xi \in G$. For all $A \subseteq G$ such that |A| = n - 2, we have

$$(n-1)^{\hat{}}A \cap 1^{\hat{}}A = \emptyset \cap A = \emptyset,$$

so $\mu^{\hat{}}(G, \{n-1,1\}) = n-2.$

Proposition 10 For all $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ (written invariantly) with |G| = n > 3,

$$\hat{\mu}(G, \{n-2, 1\}) = \begin{cases} n-3 & \text{if } n_r = 3; \\ n-2 & \text{otherwise.} \end{cases}$$

PROOF. By Proposition 7,

$$\mu^{(\mathbb{Z}_n, \{n-2, 1\})} \leq \left\lfloor \frac{n-2+n-2+1}{2} \right\rfloor = \left\lfloor n - \frac{3}{2} \right\rfloor = n-2.$$

Let $A = G \setminus \{\xi_1, \xi_2\}$ for some distinct $\xi_1, \xi_2 \in G$. So, |A| = n - 2. Then

 $(n-2)^{\hat{}}A \cap 1^{\hat{}}A = \emptyset$

is only satisfied if the sum of the elements of A is ξ_1 , WLOG. Then,

$$\mu(G, \{n-2, 1\}) = n-2$$

if only if there exists some distinct $\xi_1, \xi_2 \in G$ such that $s(G) - \xi_1 - \xi_2 = \xi_1$. That is, there must be some distinct $\xi_1, \xi_2 \in G$ such that

$$s(G) = 2\xi_1 + \xi_2.$$

1. s(G) = 0.

- i. $\underline{n_r > 3}$. Then $0 = s(G) = 2\xi_1 + \xi_2$ is satisfied with $\xi_1 = (0, ..., 0, 1)$ and $\xi_2 = (0, ..., 0, n_r 2)$ (if $G \cong \mathbb{Z}_n$, $\xi_1 = 1$ and $\xi_2 = n 2$) which are distinct since $n_r 2 \not\equiv 1 \mod n_r$ for all $n_r > 3$. Thus, $\mu(G, \{n 2, 1\}) = n 2$.
- ii. $\underline{n_r = 3}$. (This is the case where $G \cong \mathbb{Z}_3^r$ with $r \ge 2$). Imagine there exists such ξ_1 and ξ_2 . Then, since $\xi_2 \equiv -2\xi_2 \mod 3$, we have that $0 = \xi_1 + 2\xi_2 = \xi_1 - \xi_2$, which implies that $\xi_1 = \xi_2$, a contradiction. Thus, there are no such $\xi_1, \xi_2 \in G$. For all $A \subseteq G$ such that |A| = n - 3, we have

$$(n-2)^{\hat{}}A \cap 1^{\hat{}}A = \emptyset \cap A = \emptyset,$$

so $\mu(G, \{n-2, 1\}) = n - 3.$

- iii. $\underline{n_r = 2}$. (This is the case where $G \cong \mathbb{Z}_2^r$ with $r \ge 2$). $0 = s(G) = 2\xi_1 + \xi_2$ is satisfied with $\xi_1 = (0, \ldots, 0, 1)$ and $\xi_2 = (0, \ldots, 0)$
- 2. $s(G) \neq 0$.
 - i. $n_r \neq 6$.

$$\left(0, \dots, 0, \frac{n_r}{2}\right) = s(G) = 2\xi_1 + \xi_2$$

is satisfied with $\xi_1 = (0, \ldots, 0, 1)$ and $\xi_2 = (0, \ldots, 0, \frac{n_r}{2} - 2)$ (if $G \cong \mathbb{Z}_n$, $\xi_1 = 1$ and $\xi_2 = \frac{n}{2} - 2$) which are distinct since $\frac{n_r}{2} - 2 \neq 1$ for all $n_r \neq 6$.

ii. $\underline{n_r = 6}$. Take $\xi_1 = (0, \dots, 0, 5)$ and $\xi_2 = (0, \dots, 0, 2)$ (if $G \cong \mathbb{Z}_n$, $\xi_1 = 5$ and $\overline{\xi_2 = 2}$). Thus, $\mu(G, \{n - 2, 1\}) = n - 2$.

4 Weak (2,1)-sum-fee sets in general finite abelian groups

Proposition 11 For any G with $|G| = n \equiv 0 \mod 2$,

$$\mu^{\hat{}}(G, \{2, 1\}) = \frac{n}{2}$$

PROOF. Write $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$. By Proposition 7,

$$\mu(G, \{2, 1\}) \le \left\lfloor \frac{n-2+2+1}{2} \right\rfloor = \frac{n}{2}.$$

If $n \equiv 0 \mod 2$, $n_r \equiv 0 \mod 2$, so we can take $A \subseteq G$ to be the set with all the elements of G whose rth element is congruent to 1 mod 2. The rth entry of the sum of any two elements in A will be congruent to 0 mod 2, so $2^{\hat{A}} \cap 1^{\hat{A}} = \emptyset$. Thus,

$$\mu(G, \{2, 1\}) \ge |A| = n_1 \cdots n_{r-1} \cdot \frac{n_r}{2} = \frac{n}{2}.$$

NOTE: This means that by Proposition 4, $\mu^{(\mathbb{Z}_{2}^{r}, \{2, 1\})} = 2^{r-1} = \mu(\mathbb{Z}_{2}^{r}, \{2, 1\}).$

Conjecture 12 (Bajnok [1]) For all positive integers $n_1 \leq n_2$ $(n = n_1 n_2)$,

$$\mu^{(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\})} = \begin{cases} \mu & \text{if } n \text{ has prime divisors congruent to } 2 \mod 3; \\ \mu + 1 & \text{otherwise.} \end{cases}$$

Note that when $gcd(n_1, n_2) = 1$, $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \cong \mathbb{Z}_n$, so by Theorem G.67, and Theorem G.18,

$$\begin{split} \mu^{\hat{}}(\mathbb{Z}_n, \{2, 1\}) &= \begin{cases} \left(1 + \frac{1}{p}\right) \frac{n}{3} & \text{if } n \text{ has prime divisors congruent to } 2 \mod 3, \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor \frac{n}{3} \right\rfloor + 1 & \text{otherwise} \end{cases} \\ &= \begin{cases} v_1(n,3) \cdot \frac{n}{n} & \text{if } n \text{ has prime divisors congruent to } 2 \mod 3, \\ v_1(n,3) \cdot \frac{n}{n} + 1 & \text{otherwise.} \end{cases} \\ &= \begin{cases} \mu(\mathbb{Z}_n, \{2, 1\}) & \text{if } n \text{ has prime divisors congruent to } 2 \mod 3; \\ \mu(\mathbb{Z}_n, \{2, 1\}) + 1 & \text{otherwise.} \end{cases} \end{split}$$

When $gcd(n_1, n_2) > 1$ and $n \equiv 0 \mod 2$, clearly the smallest prime divisor of n congruent to 2 mod 3 is 2, so by Proposition 11 and Theorem 2,

$$\mu^{(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\})} \stackrel{\text{li}}{=} \frac{n}{2} = \left(1 + \frac{1}{2}\right) \frac{n}{3} = v_1(n, 3) \cdot \frac{n}{n} \stackrel{\text{l}}{=} \mu(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\}).$$

Now we should consider when $gcd(n_1, n_2) > 1$ and $n \equiv 1 \mod 2$.

Theorem 13 For any positive integer $w \equiv 1 \mod 2$,

$$\mu^{(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2, 1\})} \ge 3w + 1.$$

PROOF. Consider the sets

$$A_{0} = \{0\} \times \{-w, -w + 2, \dots, w - 2, w\},\$$

$$A_{1} = \{1\} \times \{0, 2, \dots, 2w - 4, 2w - 2\}, \text{ and}\$$

$$A_{2} = \{2\} \times \{-2w + 2, -2w + 4, \dots, -2, 0\},\$$

and let $A = A_0 \cup A_1 \cup A_2$. Observe that A_0 , A_1 , and A_2 are disjoint, so

$$|A| = |A_0| + |A_1| + |A_2| = \left(\frac{w - (-w)}{2} + 1\right) + (w - 1 - 0 + 1) + (w - 1 - 0 + 1) = 3w + 1.$$

We can recognize the elements in A_0 , A_1 , and A_2 as arithmetic sequences (with a common difference of 2), so we can easily write

$$\begin{aligned} 2^{\hat{}}A_{0} &= \{0\} \times \{-2w+2, -2w+4, \dots, 2w-4, 2w-2\}, \\ A_{1} + A_{2} &= \{0\} \times \{-2w+2, -2w+4, \dots, 2w-4, 2w-2\}, \\ 2^{\hat{}}A_{2} &= \{1\} \times \{-4w+6, -4w+8, \dots, -4, -2\}, \\ A_{0} + A_{1} &= \{1\} \times \{-w, -w+2, \dots, 3w-4, 3w-2\}, \\ 2^{\hat{}}A_{1} &= \{2\} \times \{2, 4, \dots, 4w-8, 4w-6\}, \text{ and} \\ A_{0} + A_{2} &= \{2\} \times \{-3w+2, -3w+4, \dots, w-2, w\}. \end{aligned}$$

Notice that since $-4w \equiv -w \mod 3w$ and $-3w \equiv 0 \mod 3w$, $2^{\hat{}}A_0 = A_1 + A_2$, $2^{\hat{}}A_2 \subset A_0 + A_1$, and $2^{\hat{}}A_1 \subset A_0 + A_2$. Now we only must show that

$$A_0 \cap (A_1 + A_2) = \emptyset, \ A_1 \cap (A_0 + A_1) = \emptyset, \ \text{and} \ A_2 \cap (A_0 + A_2) = \emptyset.$$

In \mathbb{Z}_{3w} , $-2w \equiv w$, so we can recognize that the elements of $A_1 + A_2$ follow as the next terms of the arithmetic sequence in A_0 and since $2w \equiv -w$, the elements of A_0 follow as the next terms of the arithmetic sequence in $A_1 + A_2$. The same is true for $A_0 + A_1$ with A_1 , and $A_0 + A_2$ with A_2 . The three sequences are the same, since they all contain 0 and have a common difference of 2, and repeat in 3w terms (because $3w \equiv 1 \mod 2$). Because the sequence has 3w unique terms, our claims hold.

NOTE: By Theorem 2, if w has no prime divisor congruent to $2 \mod 3$,

$$\mu^{\hat{}}(\mathbb{Z}_{3} \times \mathbb{Z}_{3w}, \{2, 1\}) \geq 3w + 1$$
$$= \left\lfloor \frac{3w}{3} \right\rfloor \cdot 3 + 1$$
$$= v_{1}(3w, 3) \cdot \frac{9w}{3w} + 1$$
$$\stackrel{2}{=} \mu(\mathbb{Z}_{3} \times \mathbb{Z}_{3w}, \{2, 1\}) + 1.$$

Theorem 14 For all positive $\kappa \equiv 1 \mod 6$,

$$\hat{\mu}(\mathbb{Z}^2_{\kappa}, \{2, 1\}) \ge \frac{\kappa - 1}{3} \cdot \kappa + 1.$$

PROOF. Write

$$B = \left\{1 - \frac{\kappa - 1}{3}, 3 - \frac{\kappa - 1}{3}, \dots, \frac{\kappa - 1}{3} - 3, \frac{\kappa - 1}{3} - 1\right\}$$

and consider the sets

$$A_0 = \{0\} \times \left(B \cup \left\{\frac{\kappa - 1}{3} + 1\right\}\right),$$

$$A_1 = \{1\} \times B,$$

$$A_2 = \{2\} \times B,$$

$$\vdots$$

$$A_{\kappa-2} = \{\kappa - 2\} \times B, \text{ and}$$

$$A_{\kappa-1} = \{\kappa - 1\} \times B,$$

and take $A = \bigcup_{i=0}^{\kappa-1} A_i$. We can see that

$$|A| = \left(\frac{\kappa - 1}{3}\right) + 1 + (\kappa - 1)\left(\frac{\kappa - 1}{3}\right) = \kappa\left(\frac{\kappa - 1}{3}\right) + 1.$$

We will show that A is weak (2, 1)-sum-free. Notice that elements of B form an arithmetic sequence with a common difference of 2, so any two elements of

$$A^* = A \setminus \left\{ \left(0, \frac{\kappa - 1}{3}\right) \right\} = \mathbb{Z}_{\kappa} \times B$$

will sum to an element whose second coordinate is in

$$C = \left\{ 2 - \frac{2\kappa - 2}{3}, 4 - \frac{2\kappa - 2}{3}, \dots, \frac{2\kappa - 2}{3} - 4, \frac{2\kappa - 2}{3} - 2 \right\}$$
$$= \left\{ 2 - \frac{2\kappa - 2}{3}, 2 - \frac{2\kappa - 2}{3} + (2), \dots, 2 - \frac{2\kappa - 2}{3} + \left(\frac{4\kappa - 4}{3} - 4\right) \right\},$$

whose elements also form an arithmetic sequence with a common difference of 2. Observe that the first term in the sequence in C is 2 more than $\frac{\kappa-1}{3} + 1$, which is 2 more than the last term in the sequence in B, and that the sequence in C has

$$\frac{\frac{4\kappa-4}{3}-4}{2}+1 = \frac{2\kappa-2}{3}-1$$

terms, while the sequence in B has $\frac{\kappa-1}{3}$ terms. The full sequence, $(0, 2, \ldots, \kappa-4, \kappa-2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \mod 2$), and because

$$|B| + |C| = \frac{\kappa - 1}{3} + \frac{2\kappa - 2}{3} - 1 = \frac{3\kappa - 3}{3} - 1 = \kappa - 2 < \kappa,$$

we know that $B \cap C = \emptyset$. This shows that $(A^* + A^*) \cap A = \emptyset$. Now we just must show that

$$\left(A^* + \left\{\left(0, \frac{\kappa - 1}{3} + 1\right)\right\}\right) \cap A = \emptyset$$

or equivalently, that for all $i \in \{0, 1, \dots, \kappa - 2, \kappa - 1\}$, for all $x \in (A_i \cap A^*)$,

$$x + \left(0, \frac{\kappa - 1}{3} + 1\right) \notin A_i$$

Write

$$D = \left\{2, 4, \dots, \frac{2\kappa - 2}{3} - 2, \frac{2\kappa - 2}{3}\right\},\$$

and observe that for all such *i*, for all $x \in \{i\} \times B = (A_i \cap A^*)$,

$$x + \left(0, \frac{\kappa - 1}{3} + 1\right) \in \left(\{i\} \times B\right) + \left\{\left(0, \frac{\kappa - 1}{3} + 1\right)\right\} = \{i\} \times D.$$

The elements of D also form an arithmetic sequence with a common difference of 2 and the elements of B follow as the next terms of the sequence in D since $\frac{2\kappa-2}{3}+2=1-\frac{\kappa-1}{3}$. Again, the full sequence, $(0, 2, \ldots, \kappa-4, \kappa-2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \mod 2$), and because

$$|B| + |D| = \frac{\kappa - 1}{3} + \frac{\kappa - 1}{3} = \frac{2\kappa - 2}{3} < \kappa,$$

we know that $B \cap D = \emptyset$. Lastly, considering i = 0, we must show that $\left\{\frac{\kappa-1}{3} + 1\right\} \cap D = \emptyset$: recognize that $-1 - \frac{\kappa-1}{3} \equiv 2\left(\frac{\kappa-1}{3}\right) \mod \kappa$ and since $\kappa \equiv 1 \mod 6$, $\frac{\kappa-1}{3} \equiv 0 \mod 2$. This means that

$$2\left(\frac{\kappa-1}{3}\right) - \frac{\kappa-1}{3} = \frac{\kappa-1}{3} \in D.$$

Since $|D| = \frac{\kappa - 1}{3} < \kappa$, $\frac{\kappa - 1}{3} + 1 \notin D$, so we are done.

NOTE: By Theorem 2, for all κ with no prime divisors congruent to 2 mod 3,

$$\mu^{\hat{}}(\mathbb{Z}_{\kappa}^{2}, \{2, 1\}) \ge \kappa \left(\frac{\kappa - 1}{3}\right) + 1 = v_{1}(\kappa, 3) \cdot \frac{\kappa^{2}}{\kappa} + 1 \stackrel{2}{=} \mu(\mathbb{Z}_{\kappa}^{2}, \{2, 1\}) + 1.$$

5 Future work

The upper bound in Proposition 7 has been very useful for $\{k, l\} = \{2, 1\}$. We should try to find a different construction to establish a new upper bound that would be useful for different k and l.

The technique of using arithmetic sequences to construct weak (2, 1)-sum-free sets used in the Proofs of Theorems 13 and 14 should be further developed and used for other cases of $n_1n_2 \equiv 1 \mod 2$ for $\mu(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{k, l\})$ to prove Conjecture 12.

Specifically, $\mu(\mathbb{Z}_7 \times \mathbb{Z}_{21}, \{2, 1\})$ is of interest. The group \mathbb{Z}_7^2 has 98 weak (2, 1)-sum-free subsets with arithmetic sequences, so a weak (2, 1)-sum-free subset in $\mathbb{Z}_7 \times \mathbb{Z}_{21}$ could provide insight for generalizing a weak (2, 1)-sum-free subsets of $\mathbb{Z}_7 \times \mathbb{Z}_{21}$, and this prove a new lower bound for $\mu(\mathbb{Z}_7 \times \mathbb{Z}_{7w}, \{2, 1\})$, similarly to Proposition 13. This will most likely involve using a computer to check for all possible subsets of $\mathbb{Z}_7 \times \mathbb{Z}_{21}$ with arithmetic sequences similar to those for \mathbb{Z}_7^2 .

The same technique could be useful for finding new constructions of weak (k, l)sum free subsets of cyclic groups for k > 2, by treating the cyclic group as noncyclic.

Another area of interest is constructing tables of discrepancies between μ and μ ². It is also of interest to construct a table of the maximum of all of the lower bounds that are established for μ ² and compare with the computer generated table on page 300 of [2].

Acknowledgments. I would like to thank Professor Bajnok for the continued guidance and encouragement, as well as the opportunity and resources to conduct my own research. I would also like to thank Bailey Heath for his help in finding the first weak (2, 1)-sum-free subset of \mathbb{Z}_7^2 and for his kind and accessible support, whenever it was needed.

References

- [1] B. Bajnok. Personal communication. (2019)
- [2] B. Bajnok. Additive Combinatorics: A Menu of Research Problems. CRC Press (2019).
- [3] B. Bajnok. and S. Edwards On two questions about restricted sumsets in finite abelian groups Australian Journal of Combinatorics (2017).