The Maximum Size of Weak (k, l)-Sum-Free Sets

Peter Francis
Department of Mathematics, Gettysburg College
Gettysburg, PA 17325-1486 USA
E-mail: franpe02@gettysburg.edu

May 22, 2019

Abstract

A subset A of a given finite abelian group G is called weakly (k, l)-sum-free if the set of all sums of k distinct elements of A is disjoint with set of all sums of l distinct elements of A. We are interested in finding the size $\mu^{\wedge}(G,\{k, l\})$ of the largest weak (k, l)-sum-free subset in G. Here, we provide a new upper bound for $\mu^{\wedge}(G,\{k, l\})$ as well as present new constructions for weak (2,1)-sum-free sets in some noncyclic groups.

1 Introduction

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h A$ for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A. More formally,

$$
h A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}_{0}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

For positive integers $k>l$, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$
k A \cap l A=\emptyset .
$$

We denote the maximum size of a (k, l)-sum-free subset of G as $\mu(G,\{k, l\})$. That is,

$$
\mu(G,\{k, l\})=\max \left\{|A| \mid A \subseteq G,\left(k^{\wedge} A\right) \cap\left(l^{\wedge} A\right)=\emptyset\right\} .
$$

Similarly, we will write $h \wedge A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

$$
h \wedge=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

For positive integers $k>l$, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if and only if

$$
k^{\wedge} A \cap l^{\wedge} A=\emptyset .
$$

We denote the maximum size of a weak (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, l\})$. That is,

$$
\mu^{\wedge}(G,\{k, l\})=\max \left\{|A| \mid A \subseteq G,\left(k^{\wedge} A\right) \cap\left(l^{\wedge} A\right)=\emptyset\right\} .
$$

In this paper, we will be mainly interested in $\hat{\mu}$. The following have been established.

Theorem 1 (Bajnok; [2] (G.63)) Suppose that G is an abelian group of order n and exponent κ. Then, for all positive integers k and l with $k>l$ we have

$$
\hat{\mu}(G,\{k, l\}) \geq \mu(G,\{k, l\}) \geq v_{k-l}(\kappa, k+l) \cdot \frac{n}{\kappa} .
$$

Theorem 2 (Green and Ruzsa; [2] (G.18)) Let κ be the exponent of G. Then

$$
\mu(G,\{2,1\})=\mu\left(\mathbb{Z}_{\kappa},\{2,1\}\right) \cdot \frac{n}{\kappa}=v_{1}(\kappa, 3) \cdot \frac{n}{\kappa} .
$$

Theorem 3 (Zannier; [2] (G.67)) For all positive integers we have

$$
\mu^{\wedge}\left(\mathbb{Z}_{n},\{2,1\}\right)= \begin{cases}\left(1+\frac{1}{p}\right) \frac{n}{3} & \text { if } n \text { has prime divisors congruent to 2 mod 3, } \\ & \text { and } p \text { is the smallest such divisor; } \\ \left\lfloor\frac{n}{3}\right\rfloor+1 & \text { otherwise. }\end{cases}
$$

Theorem 4 (Bajnok; [2] (G.21)) For all positive integers r, k, and l with $k>l$, we have

$$
\mu\left(\mathbb{Z}_{2}^{r},\{k, l\}\right)= \begin{cases}0 & \text { if } k \equiv l \bmod 2 \\ 2^{r-1} & \text { otherwise }\end{cases}
$$

The following lemma will be useful in Section 3. We denote the sum of all of the elements of a group G to be $s(G)$.

Lemma 5 (Bajnok and Edwards; [3]) Suppose that G is a finite abelian group with L as the subgroup of involutions; let $|L|=l$.

1. If $l=2$ with $L=\{0, e\}$, then the sum $s(G)$ of the elements of G equals e.
2. If $l \neq 2$, then $s(G)=0$.

2 A New Upper Bound

Lemma 6 For any set A and positive integer $h \leq|A|,\left|h^{\wedge} A\right| \geq|A|-h+1$.

PROOF. Write $A=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$. Then observe that

$$
\begin{aligned}
& b_{h}=a_{0}+\cdots+a_{h-1}+a_{h}, \\
& b_{h+1}=a_{0}+\cdots+a_{h-1}+a_{h+1}, \\
& \vdots \\
& b_{m-1}=a_{0}+\cdots+a_{h-1}+a_{m-1}, \\
& b_{m}=a_{0}+\cdots+a_{h-1}+a_{m}
\end{aligned}
$$

are all distinct since a_{h}, \ldots, a_{m} are all distinct. Since,

$$
\left\{b_{h}, b_{h+1}, \ldots, b_{m-1}, b_{m}\right\} \subseteq h \wedge,
$$

$\left|h^{\wedge} A\right| \geq m-(h-1)=|A|-h+1$.

Proposition 7 For all groups G with order n, and for all positive integers $k>l$,

$$
\hat{\mu^{\prime}}(G,\{k, l\}) \leq\left\lfloor\frac{n-2+l+k}{2}\right\rfloor .
$$

PROOF. Write A for a (k, l)-sum-free subset of G where $|A|=m=\mu^{\wedge}(G,\{k, l\})$ and $n=|G|$. Using Lemma 6,

$$
\begin{aligned}
n & \geq\left|k^{\wedge} A\right|+\left|l^{\wedge} A\right| \\
& \geq m-k+1+m-l+1 \\
& \geq 2 m-(k+l)+2 .
\end{aligned}
$$

Therefore,

$$
m \leq \frac{n-2+k+l}{2}
$$

and so

$$
\mu^{\wedge}(G,\{k, l\}) \leq\left\lfloor\frac{n-2+k+l}{2}\right\rfloor .
$$

3 Some n-dependent values of k

Here we will explore where k is dependent on n and $l=1$. The following useful corollary follows immediately from Lemma 5.

Corollary 8 For any $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$ (written invariently), with $|G|=n$, the sum of the elements of G is,

$$
s(G)= \begin{cases}\left(0, \ldots, 0, \frac{n_{r}}{2}\right) & \text { if } n_{r} \equiv 0 \bmod 2, \text { with } n_{r-1} \equiv 1 \bmod 2 \text { or } r=1 \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 9 For all $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$ (written invariently) with $|G|=$ $n>2$,

$$
\mu \hat{\mu}(G,\{n-1,1\})= \begin{cases}n-2 & \text { if } s(G) \neq 0 \text { and } n_{r} \equiv 2 \bmod 4 \\ n-1 & \text { otherwise } .\end{cases}
$$

PROOF. First note that trivially, $\mu^{\wedge} \geq n-2$. By Proposition 7,

$$
\mu^{\wedge}(G,\{n-1,1\}) \leq\left\lfloor\frac{n-2+n-1+1}{2}\right\rfloor=\left\lfloor\frac{2 n-2}{2}\right\rfloor=n-1 .
$$

Let $A=G \backslash\{\xi\}$ for some $\xi \in G$, so $|A|=n-1$. Then $(n-1)^{\wedge} A \cap 1^{\wedge} A=\emptyset$ is only satisfied if the sum of the elements of A is ξ. Thus, $\mu^{\wedge}(G,\{n-1,1\})=n-1$ if only if there exists some $\xi \in G$ such that $s(G)-\xi=\xi$. In other words, there must be some $\xi \in G$ such that

$$
s(G)=2 \xi .
$$

1. $s(G)=0$. Then $0=s(G)=2 \xi$ is satisfied with $\xi=0$, so $\mu^{\wedge}(G,\{n-1,1\})=n-1$.
2. $s(G) \neq 0$.
i $\frac{n_{r} \equiv 0 \bmod 4}{}$. Then $\frac{n_{r}}{2}=s(G)=2 \xi$ is satisfied with $\xi=\frac{n_{r}}{4}$. Thus, $\hat{\mu}(G,\{n-1,1\})=n-1$.
ii $\frac{n_{r} \equiv 2 \bmod 4}{}$. Since 2 does not divide $\frac{n_{r}}{2} \equiv 1 \bmod 2$, there is no such $\xi \in G$. For all $A \subseteq G$ such that $|A|=n-2$, we have

$$
(n-1)^{\wedge} A \cap 1^{\wedge} A=\emptyset \cap A=\emptyset,
$$

so $\mu^{\wedge}(G,\{n-1,1\})=n-2$.

Proposition 10 For all $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$ (written invariently) with $|G|=$ $n>3$,

$$
\mu^{\wedge}(G,\{n-2,1\})= \begin{cases}n-3 & \text { if } n_{r}=3 \\ n-2 & \text { otherwise } .\end{cases}
$$

PROOF. By Proposition 7,

$$
\mu^{\wedge}\left(\mathbb{Z}_{n},\{n-2,1\}\right) \leq\left\lfloor\frac{n-2+n-2+1}{2}\right\rfloor=\left\lfloor n-\frac{3}{2}\right\rfloor=n-2 .
$$

Let $A=G \backslash\left\{\xi_{1}, \xi_{2}\right\}$ for some distinct $\xi_{1}, \xi_{2} \in G$. So, $|A|=n-2$. Then

$$
(n-2)^{\wedge} A \cap 1^{\wedge} A=\emptyset
$$

is only satisfied if the sum of the elements of A is ξ_{1}, WLOG. Then,

$$
\mu^{\wedge}(G,\{n-2,1\})=n-2
$$

if only if there exists some distinct $\xi_{1}, \xi_{2} \in G$ such that $s(G)-\xi_{1}-\xi_{2}=\xi_{1}$. That is, there must be some distinct $\xi_{1}, \xi_{2} \in G$ such that

$$
s(G)=2 \xi_{1}+\xi_{2} .
$$

1. $s(G)=0$.
i. $n_{r}>3$. Then $0=s(G)=2 \xi_{1}+\xi_{2}$ is satisfied with $\xi_{1}=(0, \ldots, 0,1)$ and $\xi_{2}=\left(0, \ldots, 0, n_{r}-2\right)\left(\right.$ if $G \cong \mathbb{Z}_{n}, \xi_{1}=1$ and $\left.\xi_{2}=n-2\right)$ which are distinct since $n_{r}-2 \not \equiv 1 \bmod n_{r}$ for all $n_{r}>3$. Thus, $\mu^{\wedge}(G,\{n-2,1\})=n-2$.
ii. $n_{r}=3$. (This is the case where $G \cong \mathbb{Z}_{3}^{r}$ with $r \geq 2$). Imagine there exists such ξ_{1} and ξ_{2}. Then, since $\xi_{2} \equiv-2 \xi_{2} \bmod 3$, we have that $0=\xi_{1}+2 \xi_{2}=$ $\xi_{1}-\xi_{2}$, which implies that $\xi_{1}=\xi_{2}$, a contradiction. Thus, there are no such $\xi_{1}, \xi_{2} \in G$. For all $A \subseteq G$ such that $|A|=n-3$, we have

$$
(n-2)^{\wedge} A \cap 1^{\wedge} A=\emptyset \cap A=\emptyset,
$$

so $\hat{\mu^{\prime}(G,\{n-2,1\})=n-3 .}$
iii. $\underline{n}_{r}=2$. (This is the case where $G \cong \mathbb{Z}_{2}^{r}$ with $r \geq 2$). $0=s(G)=2 \xi_{1}+\xi_{2}$ is satisfied with $\xi_{1}=(0, \ldots, 0,1)$ and $\xi_{2}=(0, \ldots, 0)$
2. $s(G) \neq 0$.
i. $n_{r} \neq 6$.

$$
\left(0, \ldots, 0, \frac{n_{r}}{2}\right)=s(G)=2 \xi_{1}+\xi_{2}
$$

is satisfied with $\xi_{1}=(0, \ldots, 0,1)$ and $\xi_{2}=\left(0, \ldots, 0, \frac{n_{r}}{2}-2\right)$ (if $G \cong \mathbb{Z}_{n}$, $\xi_{1}=1$ and $\left.\xi_{2}=\frac{n}{2}-2\right)$ which are distinct since $\frac{n_{r}}{2}-2 \neq 1$ for all $n_{r} \neq 6$.
ii. $n_{r}=6$. Take $\xi_{1}=(0, \ldots, 0,5)$ and $\xi_{2}=(0, \ldots, 0,2)$ (if $G \cong \mathbb{Z}_{n}, \xi_{1}=5$ and $\left.\overline{\xi_{2}=2}\right)$. Thus, $\mu^{\wedge}(G,\{n-2,1\})=n-2$.

4 Weak (2, 1)-sum-fee sets in general finite abelian groups

Proposition 11 For any G with $|G|=n \equiv 0 \bmod 2$,

$$
\mu^{\wedge}(G,\{2,1\})=\frac{n}{2} .
$$

PROOF. Write $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$. By Proposition 7 ,

$$
\mu^{\wedge}(G,\{2,1\}) \leq\left\lfloor\frac{n-2+2+1}{2}\right\rfloor=\frac{n}{2} .
$$

If $n \equiv 0 \bmod 2, n_{r} \equiv 0 \bmod 2$, so we can take $A \subseteq G$ to be the set with all the elements of G whose r th element is congruent to $1 \bmod 2$. The r th entry of the sum of any two elements in A will be congruent to $0 \bmod 2$, so $2^{\wedge} A \cap 1^{\wedge} A=\emptyset$. Thus,

$$
\hat{\mu^{\wedge}}(G,\{2,1\}) \geq|A|=n_{1} \cdots \cdot n_{r-1} \cdot \frac{n_{r}}{2}=\frac{n}{2} .
$$

NOTE: This means that by Proposition $4, \mu^{\wedge}\left(\mathbb{Z}_{2}^{r},\{2,1\}\right)=2^{r-1}=\mu\left(\mathbb{Z}_{2}^{r},\{2,1\}\right)$.

Conjecture 12 (Bajnok [1]) For all positive integers $n_{1} \leq n_{2}\left(n=n_{1} n_{2}\right)$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)= \begin{cases}\mu & \text { if } n \text { has prime divisors congruent to } 2 \bmod 3 ; \\ \mu+1 & \text { otherwise } .\end{cases}
$$

Note that when $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1, \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \cong \mathbb{Z}_{n}$, so by Theorem G.67, and Theorem G.18,

$$
\begin{aligned}
\mu^{\wedge}\left(\mathbb{Z}_{n},\{2,1\}\right) & = \begin{cases}\left(1+\frac{1}{p}\right) \frac{n}{3} & \text { if } n \text { has prime divisors congruent to } 2 \bmod 3, \\
\left\lfloor\frac{n}{3}\right\rfloor+1 & \text { and } p \text { is the smallest such divisor; }\end{cases} \\
& = \begin{cases}v_{1}(n, 3) \cdot \frac{n}{n} & \text { if } n \text { has prime divisors congruent to } 2 \bmod 3, \\
v_{1}(n, 3) \cdot \frac{n}{n}+1 & \text { otherwise. }\end{cases} \\
& \stackrel{2}{=} \begin{cases}\mu\left(\mathbb{Z}_{n},\{2,1\}\right) & \text { if } n \text { has prime divisors congruent to } 2 \bmod 3 ; \\
\mu\left(\mathbb{Z}_{n},\{2,1\}\right)+1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

When $\operatorname{gcd}\left(n_{1}, n_{2}\right)>1$ and $n \equiv 0 \bmod 2$, clearly the smallest prime divisor of n congruent to $2 \bmod 3$ is 2 , so by Proposition 11 and Theorem 2,

$$
\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right) \stackrel{11}{=} \frac{n}{2}=\left(1+\frac{1}{2}\right) \frac{n}{3}=v_{1}(n, 3) \cdot \frac{n}{n} \stackrel{2}{=} \mu\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)
$$

Now we should consider when $\operatorname{gcd}\left(n_{1}, n_{2}\right)>1$ and $n \equiv 1 \bmod 2$.

Theorem 13 For any positive integer $w \equiv 1 \bmod 2$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) \geq 3 w+1
$$

PROOF. Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{-w,-w+2, \ldots, w-2, w\}, \\
& A_{1}=\{1\} \times\{0,2, \ldots, 2 w-4,2 w-2\}, \text { and } \\
& A_{2}=\{2\} \times\{-2 w+2,-2 w+4, \ldots,-2,0\},
\end{aligned}
$$

and let $A=A_{0} \cup A_{1} \cup A_{2}$. Observe that A_{0}, A_{1}, and A_{2} are disjoint, so

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|=\left(\frac{w-(-w)}{2}+1\right)+(w-1-0+1)+(w-1-0+1)=3 w+1
$$

We can recognize the elements in A_{0}, A_{1}, and A_{2} as arithmetic sequences (with a common difference of 2), so we can easily write

$$
\begin{aligned}
2^{\wedge} A_{0} & =\{0\} \times\{-2 w+2,-2 w+4, \ldots, 2 w-4,2 w-2\}, \\
A_{1}+A_{2} & =\{0\} \times\{-2 w+2,-2 w+4, \ldots, 2 w-4,2 w-2\}, \\
2^{\wedge} A_{2} & =\{1\} \times\{-4 w+6,-4 w+8, \ldots,-4,-2\}, \\
A_{0}+A_{1} & =\{1\} \times\{-w,-w+2, \ldots, 3 w-4,3 w-2\}, \\
2^{\wedge} A_{1} & =\{2\} \times\{2,4, \ldots, 4 w-8,4 w-6\}, \text { and } \\
A_{0}+A_{2} & =\{2\} \times\{-3 w+2,-3 w+4, \ldots, w-2, w\} .
\end{aligned}
$$

Notice that since $-4 w \equiv-w \bmod 3 w$ and $-3 w \equiv 0 \bmod 3 w, 2^{\wedge} A_{0}=A_{1}+A_{2}$, $2^{\wedge} A_{2} \subset A_{0}+A_{1}$, and $2^{\wedge} A_{1} \subset A_{0}+A_{2}$. Now we only must show that

$$
A_{0} \cap\left(A_{1}+A_{2}\right)=\emptyset, A_{1} \cap\left(A_{0}+A_{1}\right)=\emptyset, \text { and } A_{2} \cap\left(A_{0}+A_{2}\right)=\emptyset .
$$

In $\mathbb{Z}_{3 w},-2 w \equiv w$, so we can recognize that the elements of $A_{1}+A_{2}$ follow as the next terms of the arithmetic sequence in A_{0} and since $2 w \equiv-w$, the elements of A_{0} follow as the next terms of the arithmetic sequence in $A_{1}+A_{2}$. The same is true for $A_{0}+A_{1}$ with A_{1}, and $A_{0}+A_{2}$ with A_{2}. The three sequences are the same, since they all contain 0 and have a common difference of 2 , and repeat in $3 w$ terms (because $3 w \equiv 1 \bmod 2$). Because the sequence has $3 w$ unique terms, our claims hold.

NOTE: By Theorem 2, if w has no prime divisor congruent to $2 \bmod 3$,

$$
\begin{aligned}
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) & \geq 3 w+1 \\
& =\left\lfloor\frac{3 w}{3}\right\rfloor \cdot 3+1 \\
& =v_{1}(3 w, 3) \cdot \frac{9 w}{3 w}+1 \\
& \stackrel{2}{=} \mu\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right)+1 .
\end{aligned}
$$

Theorem 14 For all positive $\kappa \equiv 1 \bmod 6$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right) \geq \frac{\kappa-1}{3} \cdot \kappa+1 .
$$

PROOF. Write

$$
B=\left\{1-\frac{\kappa-1}{3}, 3-\frac{\kappa-1}{3}, \ldots, \frac{\kappa-1}{3}-3, \frac{\kappa-1}{3}-1\right\}
$$

and consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\left(B \cup\left\{\frac{\kappa-1}{3}+1\right\}\right), \\
& A_{1}=\{1\} \times B, \\
& A_{2}=\{2\} \times B, \\
& \vdots \\
& A_{\kappa-2}=\{\kappa-2\} \times B, \text { and } \\
& A_{\kappa-1}=\{\kappa-1\} \times B,
\end{aligned}
$$

and take $A=\bigcup_{i=0}^{\kappa-1} A_{i}$. We can see that

$$
|A|=\left(\frac{\kappa-1}{3}\right)+1+(\kappa-1)\left(\frac{\kappa-1}{3}\right)=\kappa\left(\frac{\kappa-1}{3}\right)+1 .
$$

We will show that A is weak (2,1)-sum-free. Notice that elements of B form an arithmetic sequence with a common difference of 2 , so any two elements of

$$
A^{*}=A \backslash\left\{\left(0, \frac{\kappa-1}{3}\right)\right\}=\mathbb{Z}_{\kappa} \times B
$$

will sum to an element whose second coordinate is in

$$
\begin{aligned}
C & =\left\{2-\frac{2 \kappa-2}{3}, 4-\frac{2 \kappa-2}{3}, \ldots, \frac{2 \kappa-2}{3}-4, \frac{2 \kappa-2}{3}-2\right\} \\
& =\left\{2-\frac{2 \kappa-2}{3}, 2-\frac{2 \kappa-2}{3}+(2), \ldots, 2-\frac{2 \kappa-2}{3}+\left(\frac{4 \kappa-4}{3}-4\right)\right\},
\end{aligned}
$$

whose elements also form an arithmetic sequence with a common difference of 2 . Observe that the first term in the sequence in C is 2 more than $\frac{\kappa-1}{3}+1$, which is 2 more than the last term in the sequence in B, and that the sequence in C has

$$
\frac{\frac{4 \kappa-4}{3}-4}{2}+1=\frac{2 \kappa-2}{3}-1
$$

terms, while the sequence in B has $\frac{\kappa-1}{3}$ terms. The full sequence, $(0,2, \ldots, \kappa-4, \kappa-$ 2), repeats in a minimum of κ terms (since $\kappa \equiv 1 \bmod 2$), and because

$$
|B|+|C|=\frac{\kappa-1}{3}+\frac{2 \kappa-2}{3}-1=\frac{3 \kappa-3}{3}-1=\kappa-2<\kappa,
$$

we know that $B \cap C=\emptyset$. This shows that $\left(A^{*}+A^{*}\right) \cap A=\emptyset$. Now we just must show that

$$
\left(A^{*}+\left\{\left(0, \frac{\kappa-1}{3}+1\right)\right\}\right) \cap A=\emptyset
$$

or equivalently, that for all $i \in\{0,1, \ldots, \kappa-2, \kappa-1\}$, for all $x \in\left(A_{i} \cap A^{*}\right)$,

$$
x+\left(0, \frac{\kappa-1}{3}+1\right) \notin A_{i}
$$

Write

$$
D=\left\{2,4, \ldots, \frac{2 \kappa-2}{3}-2, \frac{2 \kappa-2}{3}\right\},
$$

and observe that for all such i, for all $x \in\{i\} \times B=\left(A_{i} \cap A^{*}\right)$,

$$
x+\left(0, \frac{\kappa-1}{3}+1\right) \in(\{i\} \times B)+\left\{\left(0, \frac{\kappa-1}{3}+1\right)\right\}=\{i\} \times D .
$$

The elements of D also form an arithmetic sequence with a common difference of 2 and the elements of B follow as the next terms of the sequence in D since $\frac{2 \kappa-2}{3}+2=1-\frac{\kappa-1}{3}$. Again, the full sequence, $(0,2, \ldots, \kappa-4, \kappa-2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \bmod 2$), and because

$$
|B|+|D|=\frac{\kappa-1}{3}+\frac{\kappa-1}{3}=\frac{2 \kappa-2}{3}<\kappa,
$$

we know that $B \cap D=\emptyset$. Lastly, considering $i=0$, we must show that $\left\{\frac{\kappa-1}{3}+1\right\} \cap$ $D=\emptyset:$ recognize that $-1-\frac{\kappa-1}{3} \equiv 2\left(\frac{\kappa-1}{3}\right) \bmod \kappa$ and since $\kappa \equiv 1 \bmod 6, \frac{\kappa-1}{3} \equiv$ 0 mod 2. This means that

$$
2\left(\frac{\kappa-1}{3}\right)-\frac{\kappa-1}{3}=\frac{\kappa-1}{3} \in D .
$$

Since $|D|=\frac{\kappa-1}{3}<\kappa, \frac{\kappa-1}{3}+1 \notin D$, so we are done.
NOTE: By Theorem 2, for all κ with no prime divisors congruent to $2 \bmod 3$,

$$
\hat{\mu}\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right) \geq \kappa\left(\frac{\kappa-1}{3}\right)+1=v_{1}(\kappa, 3) \cdot \frac{\kappa^{2}}{\kappa}+1 \stackrel{2}{=} \mu\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right)+1
$$

5 Future work

The upper bound in Proposition 7 has been very useful for $\{k, l\}=\{2,1\}$. We should try to find a different construction to establish a new upper bound that would be useful for different k and l.

The technique of using arithmetic sequences to construct weak $(2,1)$-sum-free sets used in the Proofs of Theorems 13 and 14 should be further developed and used for other cases of $n_{1} n_{2} \equiv 1 \bmod 2$ for $\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{k, l\}\right)$ to prove Conjecture 12.

Specifically, $\mu^{\wedge}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{21},\{2,1\}\right)$ is of interest. The group \mathbb{Z}_{7}^{2} has 98 weak $(2,1)$ -sum-free subsets with arithmetic sequences, so a weak $(2,1)$-sum-free subset in $\mathbb{Z}_{7} \times$ \mathbb{Z}_{21} could provide insight for generalizing a weak (2,1)-sum-free subsets of $\mathbb{Z}_{7} \times \mathbb{Z}_{21}$, and this prove a new lower bound for $\mu^{\wedge}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{7 w},\{2,1\}\right)$, similarly to Proposition 13. This will most likely involve using a computer to check for all possible subsets of $\mathbb{Z}_{7} \times \mathbb{Z}_{21}$ with arithmetic sequences similar to those for \mathbb{Z}_{7}^{2}.

The same technique could be useful for finding new constructions of weak (k, l) sum free subsets of cyclic groups for $k>2$, by treating the cyclic group as noncyclic.

Another area of interest is constructing tables of discrepancies between μ and μ. It is also of interest to construct a table of the maximum of all of the lower bounds that are established for μ^{\wedge} and compare with the computer generated table on page 300 of [2].

Acknowledgments. I would like to thank Professor Bajnok for the continued guidance and encouragement, as well as the opportunity and resources to conduct my own research. I would also like to thank Bailey Heath for his help in finding the first weak $(2,1)$-sum-free subset of \mathbb{Z}_{7}^{2} and for his kind and accessible support, whenever it was needed.

References

[1] B. Bajnok. Personal communication. (2019)
[2] B. Bajnok. Additive Combinatorics: A Menu of Research Problems. CRC Press (2019).
[3] B. Bajnok. and S. Edwards On two questions about restricted sumsets in fintite abelian groups Australian Journal of Combinatorics (2017).

