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Abstract

A subset A of a given finite abelian group G is called weakly (k, l)-sum-free
if the set of all sums of k distinct elements of A is disjoint with set of all sums of
l distinct elements of A. We are interested in finding the size µ̂ (G, {k, l}) of the
largest weak (k, l)-sum-free subset in G. Here, we provide a new upper bound
for µ̂ (G, {k, l}) as well as present new constructions for weak (2, 1)-sum-free
sets in some noncyclic groups.

1 Introduction

Suppose that A = {a1, a2, . . . , am} is a subset of an abelian group G, with m ∈ N.
Let h be a non-negative integer.

We will write hA for the (ordinary) h-fold sumset of A, which consists of sums
of exactly h (not necessarily distinct) terms of A. More formally,

hA =

{
m∑
i=1

λiai

∣∣∣∣ λ1, . . . , λm ∈ N0,

m∑
i=1

λi = h

}
.
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For positive integers k > l, a subset A of a given finite abelian group G is
(k, l)-sum-free if and only if

kA ∩ lA = ∅.

We denote the maximum size of a (k, l)-sum-free subset of G as µ(G, {k, l}). That
is,

µ(G, {k, l}) = max{|A| | A ⊆ G, (k̂ A) ∩ (l̂ A) = ∅}.

Similarly, we will write ĥ A for the restricted h-fold sumset of A, which consists of
sums of exactly h distinct terms of A:

ĥ A =

{
m∑
i=1

λiai

∣∣∣∣ λ1, . . . , λm ∈ {0, 1}, m∑
i=1

λi = h

}
.

For positive integers k > l, a subset A of a given finite abelian group G is weakly
(k, l)-sum-free if and only if

k̂ A ∩ l̂ A = ∅.

We denote the maximum size of a weak (k, l)-sum-free subset of G as µ̂ (G, {k, l}).
That is,

µ̂ (G, {k, l}) = max{|A| | A ⊆ G, (k̂ A) ∩ (l̂ A) = ∅}.

In this paper, we will be mainly interested in µ̂ . The following have been
established.

Theorem 1 (Bajnok; [2] (G.63)) Suppose that G is an abelian group of order n
and exponent κ. Then, for all positive integers k and l with k > l we have

µ̂ (G, {k, l}) ≥ µ(G, {k, l}) ≥ vk−l(κ, k + l) · n
κ
.

Theorem 2 (Green and Ruzsa; [2] (G.18)) Let κ be the exponent of G. Then

µ(G, {2, 1}) = µ(Zκ, {2, 1}) ·
n

κ
= v1(κ, 3) · n

κ
.

Theorem 3 (Zannier; [2] (G.67)) For all positive integers we have

µ̂ (Zn, {2, 1}) =


(

1 + 1
p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor;⌊
n
3

⌋
+ 1 otherwise.
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Theorem 4 (Bajnok; [2] (G.21)) For all positive integers r, k, and l with k > l,
we have

µ(Zr2, {k, l}) =

{
0 if k ≡ l mod 2;

2r−1 otherwise.

The following lemma will be useful in Section 3. We denote the sum of all of the
elements of a group G to be s(G).

Lemma 5 (Bajnok and Edwards; [3]) Suppose that G is a finite abelian group
with L as the subgroup of involutions; let |L| = l.

1. If l = 2 with L = {0, e}, then the sum s(G) of the elements of G equals e.

2. If l 6= 2, then s(G) = 0.

2 A New Upper Bound

Lemma 6 For any set A and positive integer h ≤ |A|, |ĥ A| ≥ |A| − h+ 1.

PROOF. Write A = {a0, a1, . . . , am}. Then observe that

bh = a0 + · · ·+ ah−1 + ah,

bh+1 = a0 + · · ·+ ah−1 + ah+1,

...

bm−1 = a0 + · · ·+ ah−1 + am−1,

bm = a0 + · · ·+ ah−1 + am

are all distinct since ah, . . . , am are all distinct. Since,

{bh, bh+1, . . . , bm−1, bm} ⊆ ĥ A,

|ĥ A| ≥ m− (h− 1) = |A| − h+ 1. �

Proposition 7 For all groups G with order n, and for all positive integers k > l,

µ̂ (G, {k, l}) ≤
⌊
n− 2 + l + k

2

⌋
.
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PROOF. Write A for a (k, l)-sum-free subset of G where |A| = m = µ̂ (G, {k, l})
and n = |G|. Using Lemma 6,

n ≥ |k̂ A|+ |l̂ A|
≥ m− k + 1 +m− l + 1

≥ 2m− (k + l) + 2.

Therefore,

m ≤ n− 2 + k + l

2
,

and so

µ̂ (G, {k, l}) ≤
⌊
n− 2 + k + l

2

⌋
.

�

3 Some n-dependent values of k

Here we will explore where k is dependent on n and l = 1. The following useful
corollary follows immediately from Lemma 5.

Corollary 8 For any G ∼= Zn1×Zn2×· · ·×Znr (written invariently), with |G| = n,
the sum of the elements of G is,

s(G) =

{
(0, . . . , 0, nr

2 ) if nr ≡ 0 mod 2, with nr−1 ≡ 1 mod 2 or r = 1;

0 otherwise.

Proposition 9 For all G ∼= Zn1 × Zn2 × · · · × Znr (written invariently) with |G| =
n > 2,

µ̂ (G, {n− 1, 1}) =

{
n− 2 if s(G) 6= 0 and nr ≡ 2 mod 4

n− 1 otherwise.

PROOF. First note that trivially, µ̂ ≥ n− 2. By Proposition 7,

µ̂ (G, {n− 1, 1}) ≤
⌊
n− 2 + n− 1 + 1

2

⌋
=

⌊
2n− 2

2

⌋
= n− 1.
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Let A = G \ {ξ} for some ξ ∈ G, so |A| = n − 1. Then (n − 1)̂ A ∩ 1̂ A = ∅ is
only satisfied if the sum of the elements of A is ξ. Thus, µ̂ (G, {n− 1, 1}) = n− 1 if
only if there exists some ξ ∈ G such that s(G)− ξ = ξ. In other words, there must
be some ξ ∈ G such that

s(G) = 2ξ.

1. s(G) = 0. Then 0 = s(G) = 2ξ is satisfied with ξ = 0, so µ̂ (G, {n−1, 1}) = n−1.

2. s(G) 6= 0.

i nr ≡ 0 mod 4. Then nr
2 = s(G) = 2ξ is satisfied with ξ = nr

4 . Thus,
µ̂ (G, {n− 1, 1}) = n− 1.

ii nr ≡ 2 mod 4. Since 2 does not divide nr
2 ≡ 1 mod 2, there is no such ξ ∈ G.

For all A ⊆ G such that |A| = n− 2, we have

(n− 1)̂ A ∩ 1̂ A = ∅ ∩A = ∅,

so µ̂ (G, {n− 1, 1}) = n− 2. �

Proposition 10 For all G ∼= Zn1×Zn2×· · ·×Znr (written invariently) with |G| =
n > 3,

µ̂ (G, {n− 2, 1}) =

{
n− 3 if nr = 3;

n− 2 otherwise.

PROOF. By Proposition 7,

µ̂ (Zn, {n− 2, 1}) ≤
⌊
n− 2 + n− 2 + 1

2

⌋
=

⌊
n− 3

2

⌋
= n− 2.

Let A = G \ {ξ1, ξ2} for some distinct ξ1, ξ2 ∈ G. So, |A| = n− 2. Then

(n− 2)̂ A ∩ 1̂ A = ∅

is only satisfied if the sum of the elements of A is ξ1, WLOG. Then,

µ̂ (G, {n− 2, 1}) = n− 2

if only if there exists some distinct ξ1, ξ2 ∈ G such that s(G) − ξ1 − ξ2 = ξ1. That
is, there must be some distinct ξ1, ξ2 ∈ G such that

s(G) = 2ξ1 + ξ2.
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1. s(G) = 0.

i. nr > 3. Then 0 = s(G) = 2ξ1 + ξ2 is satisfied with ξ1 = (0, . . . , 0, 1) and
ξ2 = (0, . . . , 0, nr − 2) (if G ∼= Zn, ξ1 = 1 and ξ2 = n− 2) which are distinct
since nr − 2 6≡ 1 mod nr for all nr > 3. Thus, µ̂ (G, {n− 2, 1}) = n− 2.

ii. nr = 3. (This is the case where G ∼= Zr3 with r ≥ 2). Imagine there exists
such ξ1 and ξ2. Then, since ξ2 ≡ −2ξ2 mod 3, we have that 0 = ξ1 + 2ξ2 =
ξ1 − ξ2, which implies that ξ1 = ξ2, a contradiction. Thus, there are no such
ξ1, ξ2 ∈ G. For all A ⊆ G such that |A| = n− 3, we have

(n− 2)̂ A ∩ 1̂ A = ∅ ∩A = ∅,

so µ̂ (G, {n− 2, 1}) = n− 3.

iii. nr = 2. (This is the case where G ∼= Zr2 with r ≥ 2). 0 = s(G) = 2ξ1 + ξ2 is
satisfied with ξ1 = (0, . . . , 0, 1) and ξ2 = (0, . . . , 0)

2. s(G) 6= 0.

i. nr 6= 6. (
0, . . . , 0,

nr
2

)
= s(G) = 2ξ1 + ξ2

is satisfied with ξ1 = (0, . . . , 0, 1) and ξ2 = (0, . . . , 0, nr
2 − 2) (if G ∼= Zn,

ξ1 = 1 and ξ2 = n
2 − 2) which are distinct since nr

2 − 2 6= 1 for all nr 6= 6.

ii. nr = 6. Take ξ1 = (0, . . . , 0, 5) and ξ2 = (0, . . . , 0, 2) (if G ∼= Zn, ξ1 = 5 and
ξ2 = 2). Thus, µ̂ (G, {n− 2, 1}) = n− 2. �

4 Weak (2, 1)-sum-fee sets in general finite abelian groups

Proposition 11 For any G with |G| = n ≡ 0 mod 2,

µ̂ (G, {2, 1}) =
n

2
.

PROOF. Write G ∼= Zn1 × Zn2 × · · · × Znr . By Proposition 7,

µ̂ (G, {2, 1}) ≤
⌊
n− 2 + 2 + 1

2

⌋
=
n

2
.
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If n ≡ 0 mod 2, nr ≡ 0 mod 2, so we can take A ⊆ G to be the set with all the
elements of G whose rth element is congruent to 1 mod 2. The rth entry of the sum
of any two elements in A will be congruent to 0 mod 2, so 2̂ A ∩ 1̂ A = ∅. Thus,

µ̂ (G, {2, 1}) ≥ |A| = n1 · · · · · nr−1 ·
nr
2

=
n

2
.

�

NOTE: This means that by Proposition 4, µ̂ (Zr2, {2, 1}) = 2r−1 = µ(Zr2, {2, 1}).

Conjecture 12 (Bajnok [1]) For all positive integers n1 ≤ n2 (n = n1n2),

µ̂ (Zn1 × Zn2 , {2, 1}) =

{
µ if n has prime divisors congruent to 2 mod 3;

µ+ 1 otherwise.

Note that when gcd(n1, n2) = 1, Zn1 × Zn2
∼= Zn, so by Theorem G.67, and

Theorem G.18,

µ̂ (Zn, {2, 1}) =


(

1 + 1
p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor;⌊
n
3

⌋
+ 1 otherwise

=

{
v1(n, 3) · nn if n has prime divisors congruent to 2 mod 3,

v1(n, 3) · nn + 1 otherwise.

2
=

{
µ(Zn, {2, 1}) if n has prime divisors congruent to 2 mod 3;

µ(Zn, {2, 1}) + 1 otherwise.

When gcd(n1, n2) > 1 and n ≡ 0 mod 2, clearly the smallest prime divisor of n
congruent to 2 mod 3 is 2, so by Proposition 11 and Theorem 2,

µ̂ (Zn1 × Zn2 , {2, 1})
11
=
n

2
=

(
1 +

1

2

)
n

3
= v1(n, 3) · n

n

2
= µ(Zn1 × Zn2 , {2, 1}).

Now we should consider when gcd(n1, n2) > 1 and n ≡ 1 mod 2.

Theorem 13 For any positive integer w ≡ 1 mod 2,

µ̂ (Z3 × Z3w, {2, 1}) ≥ 3w + 1.
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PROOF. Consider the sets

A0 = {0} × {−w,−w + 2, . . . , w − 2, w},
A1 = {1} × {0, 2, . . . , 2w − 4, 2w − 2} , and

A2 = {2} × {−2w + 2,−2w + 4, . . . ,−2, 0} ,

and let A = A0 ∪A1 ∪A2. Observe that A0, A1, and A2 are disjoint, so

|A| = |A0|+|A1|+|A2| =
(
w − (−w)

2
+ 1

)
+(w − 1− 0 + 1)+(w−1−0+1) = 3w+1.

We can recognize the elements in A0, A1, and A2 as arithmetic sequences (with a
common difference of 2), so we can easily write

2̂ A0 = {0} × {−2w + 2,−2w + 4, . . . , 2w − 4, 2w − 2},
A1 +A2 = {0} × {−2w + 2,−2w + 4, . . . , 2w − 4, 2w − 2},

2̂ A2 = {1} × {−4w + 6,−4w + 8, . . . ,−4,−2},
A0 +A1 = {1} × {−w,−w + 2, . . . , 3w − 4, 3w − 2},

2̂ A1 = {2} × {2, 4, . . . , 4w − 8, 4w − 6}, and

A0 +A2 = {2} × {−3w + 2,−3w + 4, . . . , w − 2, w}.

Notice that since −4w ≡ −w mod 3w and −3w ≡ 0 mod 3w, 2̂ A0 = A1 + A2,
2̂ A2 ⊂ A0 +A1, and 2̂ A1 ⊂ A0 +A2. Now we only must show that

A0 ∩ (A1 +A2) = ∅, A1 ∩ (A0 +A1) = ∅, and A2 ∩ (A0 +A2) = ∅.

In Z3w, −2w ≡ w, so we can recognize that the elements of A1 + A2 follow as the
next terms of the arithmetic sequence in A0 and since 2w ≡ −w, the elements of
A0 follow as the next terms of the arithmetic sequence in A1 + A2. The same is
true for A0 +A1 with A1, and A0 +A2 with A2. The three sequences are the same,
since they all contain 0 and have a common difference of 2, and repeat in 3w terms
(because 3w ≡ 1 mod 2). Because the sequence has 3w unique terms, our claims
hold. �

NOTE: By Theorem 2, if w has no prime divisor congruent to 2 mod 3,

µ̂ (Z3 × Z3w, {2, 1}) ≥ 3w + 1

=

⌊
3w

3

⌋
· 3 + 1

= v1(3w, 3) · 9w

3w
+ 1

2
= µ(Z3 × Z3w, {2, 1}) + 1.
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Theorem 14 For all positive κ ≡ 1 mod 6,

µ̂ (Z2
κ, {2, 1}) ≥

κ− 1

3
· κ+ 1.

PROOF. Write

B =

{
1− κ− 1

3
, 3− κ− 1

3
, . . . ,

κ− 1

3
− 3,

κ− 1

3
− 1

}
and consider the sets

A0 = {0} ×
(
B ∪

{
κ− 1

3
+ 1

})
,

A1 = {1} ×B,
A2 = {2} ×B,

...

Aκ−2 = {κ− 2} ×B, and

Aκ−1 = {κ− 1} ×B,

and take A =
⋃κ−1
i=0 Ai. We can see that

|A| =
(
κ− 1

3

)
+ 1 + (κ− 1)

(
κ− 1

3

)
= κ

(
κ− 1

3

)
+ 1.

We will show that A is weak (2, 1)-sum-free. Notice that elements of B form an
arithmetic sequence with a common difference of 2, so any two elements of

A∗ = A \
{(

0,
κ− 1

3

)}
= Zκ ×B

will sum to an element whose second coordinate is in

C =

{
2− 2κ− 2

3
, 4− 2κ− 2

3
, . . . ,

2κ− 2

3
− 4,

2κ− 2

3
− 2

}
=

{
2− 2κ− 2

3
, 2− 2κ− 2

3
+ (2), . . . , 2− 2κ− 2

3
+

(
4κ− 4

3
− 4

)}
,

whose elements also form an arithmetic sequence with a common difference of 2.
Observe that the first term in the sequence in C is 2 more than κ−1

3 + 1, which is 2
more than the last term in the sequence in B, and that the sequence in C has

4κ−4
3 − 4

2
+ 1 =

2κ− 2

3
− 1
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terms, while the sequence in B has κ−1
3 terms. The full sequence, (0, 2, . . . , κ−4, κ−

2), repeats in a minimum of κ terms (since κ ≡ 1 mod 2), and because

|B|+ |C| = κ− 1

3
+

2κ− 2

3
− 1 =

3κ− 3

3
− 1 = κ− 2 < κ,

we know that B ∩ C = ∅. This shows that (A∗ + A∗) ∩ A = ∅. Now we just must
show that (

A∗ +

{(
0,
κ− 1

3
+ 1

)})
∩A = ∅,

or equivalently, that for all i ∈ {0, 1, . . . , κ− 2, κ− 1}, for all x ∈ (Ai ∩A∗),

x+

(
0,
κ− 1

3
+ 1

)
/∈ Ai.

Write

D =

{
2, 4, . . . ,

2κ− 2

3
− 2,

2κ− 2

3

}
,

and observe that for all such i, for all x ∈ {i} ×B = (Ai ∩A∗),

x+

(
0,
κ− 1

3
+ 1

)
∈ ({i} ×B) +

{(
0,
κ− 1

3
+ 1

)}
= {i} ×D.

The elements of D also form an arithmetic sequence with a common difference
of 2 and the elements of B follow as the next terms of the sequence in D since
2κ−2
3 + 2 = 1 − κ−1

3 . Again, the full sequence, (0, 2, . . . , κ − 4, κ − 2), repeats in a
minimum of κ terms (since κ ≡ 1 mod 2), and because

|B|+ |D| = κ− 1

3
+
κ− 1

3
=

2κ− 2

3
< κ,

we know that B ∩D = ∅. Lastly, considering i = 0, we must show that
{
κ−1
3 + 1

}
∩

D = ∅: recognize that −1 − κ−1
3 ≡ 2

(
κ−1
3

)
mod κ and since κ ≡ 1 mod 6, κ−1

3 ≡
0 mod 2. This means that

2

(
κ− 1

3

)
− κ− 1

3
=
κ− 1

3
∈ D.

Since |D| = κ−1
3 < κ, κ−1

3 + 1 /∈ D, so we are done. �

NOTE: By Theorem 2, for all κ with no prime divisors congruent to 2 mod 3,

µ̂ (Z2
κ, {2, 1}) ≥ κ

(
κ− 1

3

)
+ 1 = v1(κ, 3) · κ

2

κ
+ 1

2
= µ(Z2

κ, {2, 1}) + 1.
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5 Future work

The upper bound in Proposition 7 has been very useful for {k, l} = {2, 1}. We
should try to find a different construction to establish a new upper bound that
would be useful for different k and l.

The technique of using arithmetic sequences to construct weak (2, 1)-sum-free
sets used in the Proofs of Theorems 13 and 14 should be further developed and used
for other cases of n1n2 ≡ 1 mod 2 for µ̂ (Zn1 × Zn2 , {k, l}) to prove Conjecture 12.

Specifically, µ̂ (Z7 × Z21, {2, 1}) is of interest. The group Z2
7 has 98 weak (2, 1)-

sum-free subsets with arithmetic sequences, so a weak (2, 1)-sum-free subset in Z7×
Z21 could provide insight for generalizing a weak (2, 1)-sum-free subsets of Z7×Z21,
and this prove a new lower bound for µ̂ (Z7 × Z7w, {2, 1}), similarly to Proposition
13. This will most likely involve using a computer to check for all possible subsets
of Z7 × Z21 with arithmetic sequences similar to those for Z2

7.

The same technique could be useful for finding new constructions of weak (k, l)-
sum free subsets of cyclic groups for k > 2, by treating the cyclic group as noncyclic.

Another area of interest is constructing tables of discrepancies between µ and µ̂ .
It is also of interest to construct a table of the maximum of all of the lower bounds
that are established for µ̂ and compare with the computer generated table on page
300 of [2].
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