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Abstract

We propose a new method for causal inference based on homological descrip-
tion of the shape constructed from a sample from the joint distribution.

1 Introduction

The fundamental difference between correlation and causation is hard to identify given
only a finite sample. Although performing an intervention (controlled randomised
experiment) can explain the difference, usually it is expensive, time and labour con-
suming. Therefore there is a need for context agnostic methods that will allow to
draw conclusions on the causal link.

In the literature there can be found several algorithms for detection of the under-
lying causal link using statistical analysis of the data ??. Usually it is assumed thatmissing refsmissing refs

the underlying causal structure takes a form of a directed acyclic graph (dag), where
arrows are interpreted as dependencies. The value of a node (variable) Xi depends on
all nodes (parents) Xik such that there exists a directed edge from Xik to Xi.
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Such dags are classified up to Markov equivalence which, however, does not include
the directional information on the dependence between variables. Also addition of
noise variables to the system which jointly independently influence all the nodes is a
common assumption which brings the model closer to applications, where noise is a
prevailing.

As dag formalism provides only qualitative description of the system of dependen-
cies, one may try to asses the systems quantitative properties in the form of partially
ordered set of equations (variable assignments). These equations may be used to
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model functional relationships between variables. The structural equation model (sem)
is a poset of equations and encodes more information than the dag. Usually sem is
denoted as {

Xi = fi(pa(Xi),Ni)
}
i

where i runs over all possible nodes, pa(Xi) = {Xik} denote the set of parents of the
vertex Xi in the dag and Ni are jointly independent noise variables with possibly
different distributions for each i.

The standard functional approach is to limit the function class of possible functions
orientating the edges. Then a hypothesis on the direction can be statistically tested
and, if certain confidence level is obtained, a decision on the direction of the arrow is
drawn. The addition of the noise variables Ni to each node is natural from the point
of view of applications (e.g. measurement noise) and significantly helps in the step.

Examples of such methods include additive noise model (anm), in which onerefref

assumes that nodes are sums of functions of their parentsxi =
ik∑
j=1

fj(xij)+ni


and linear non-gaussian additive model (lingam) which assumes that all the functionsrefref

fk are linear and ni is not drawn from from a Gaussian distribution. Other methods
rely on the postulate of independence of cause and mechanism and use independence
of residuals , information contained in the residuals or other quantities that may berefref

refref
explained by the asymmetry between causes and effects.

In this paper we propose a not-standard way of estimating the causal graph
structure without relying on regressing the functional dependence. We use the
Delaunay or, in higher dimensions, the Vietoris-Rips simplicial complex to approximate
the graph of the function. Then we create different filtrations by projecting the
complex on different axes and obtain persistence homology diagrams of each. We
combine these diagrams into a single confidence score which is used to infer the
orientation of the arrows.

1.1 Motivation

Suppose that a sample drawn form the joint distribution following density p(X1, . . . , Xk)
of the random variables {Xi}ki=1 is given. The task is to recover a dag G consistent
with p(X1, . . . , Xk), i.e. a graph such that repeated sampling from each node Xi con-
verges to the initial joint distribution. We make use of the usual assumptions in causal
inference, i.e. the underlying causal stucture in the form of a dag, jointly independent
noise and continuity of variables. Moreover we introduce the following unimodality
assumption as it is fundamental for the method described.

Each probability density pXi and p(Xi|pa(Xi)) has one
maximum, i.e. Xi and the "visible noise" are uni-modally
distributed random variables.
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In the discussion of the assumption we will restrict to a simple case of two variables
X and Y and the task of inferring the causal relationship between them.

Bivariate case The motivation for this method is based on the following simple
observation. Assume for now that pX is uniform over an interval and X and Y are
1-dimensional. Suppose that Y is a stochastic function of X, and the trend function is
regular in some sense (e.g. smooth). Under the unimodality assumption, a sufficiently
dense sample from the joint distribution would have the large scale geometry (e.g.
its shape observed from very far away) of the graph of the trend function. This is
especially visible in the case of data generated by lingam or anm models: a scatter
plot of sampled points {(x, f (x)+n)} will approximate the graph of the function f ,
with error determined by the noise.

In particular, if we can learn that the shape of the empirical density {(xi, yi)} is
close to the graph of a non-injective function yi = f(xi), this excludes the causal
direction Y → X. We stress again that the unimodality assumption is crucial here: the
simple case of binomial noise (or a continuous version of it) invalidates the whole
reasoning. Moreover, if we assume that there is always a causal relationship between
X and Y this allows us to conclude that the remaining possibility one is the true causal
structure. Note that this assumption is limiting and even may be misleading, since a
true causal connection between X and Y can be a non-direct one, i.e., there may be an
unobserved confounding variable(s) Z , driving patterns of X an Y simultaneously.

T

X Y

To asses the non-injectivity of a function without regressing the function itself we
develop Topological Injectivity Test (tit) using computational geometry and algebraic
topology tool. We will use simplicial complexes to approximate the graph of a function
and introduce filtrations and compute the complex’s persistence homology to produce
a non-injectivity score.

Multivariate case In high-dimensional setting we provide a similar framework. Given
X = (X1, . . . , Xn) and Y = (Y1, . . . , Yk) we can embedd the empirical distribution into
Rn+k and ponder the question of non-injectivity. Note however that in this setting it
is possible that some directions are injective, whereas others are not.

Example. Consider set of points in R4 generated according to sem
X1 = U(−1,1),
X2 = N(0,1),
X3 = X3

2 +N(0,1),
X4 = X2

1X2 +N(0,1).
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We may evaluate “non-injectivity” by looking at different projections. It is clear that
when looking at triples (X1, X2, X3) we will not be able to apply the argument above,
however triple (X1, X2, X4) reveals that there is a cause of X4 in the set {X1, X2}.
Further projections on (X2, X4) and (X1, X4) reveal that it is X1 responsible for the
non-injvectivness of X4.

The paper is organised as follows. In the next section we provide a very quick
informal introduction to computational algebraic topology. We recall basic concepts
and provide related examples to ease the effort of the reader. A still informal, yetpain?pain?

more rigorous overview of the topic can be found in Appendix A. Next we prove basic
facts about expected behaviour of topology of simplicial complexes which serve as a
backbone for further experiments with data in Section 4. We use both simulated and
real world data from . Other existing methods are quoted and comparisons are made@@@REF@@@ Cause-Effect-Pairs, CE-

Benchmarks
@@@REF@@@ Cause-Effect-Pairs, CE-
Benchmarks in Section 4.3.

2 Algebraic topology

2.1 Informal exposition

We will only treat triangulated shapes, i.e. objects given in the form of a triangular
mesh in Rd. Usually it is enough to specify a set S ⊂ Rd of vertices of the mesh
and a list of maximal simplices (set of subsets of S). E.g., to specify a triangulated
surface in R3 it is enough to specify vertices of the mesh and list of triples (which
correspond to triangles) of vertices. The union of all vertices, edges and triangles we
call a triangulation. Triangulations and graphs (or their generalisation – simplicial
complexes, see Appendix A) will be objects of primary interest throughout the paper
(we denote them by X).

Commonly used in computational geometry is the Delaunay triangulation on a set
of points in the plane. It may be constructed by first finding the Voronoi tessellation
corresponding to the points, and placing an edge between points whose Voronoi
cells share an edge, see Figure 1 for an example. These triangulations exists in any
dimension, however they are computationally feasible only for d = 2,3.

Given such regularly structured objects one can try to assign some well behaved
fingerprint, or signature in the terms of an algebraic object. Homology of a trian-
gulated shape X is a set of descriptors meant to capture qualitative information
about topology of the object. To keep close to the geometric intuition we note that
0-homology encodes information on connected components of X. Similarly if X is
a graph, 1-homology of X is spanned by linearly independent cycles of X. The void
in the 2-sphere (approximated e.g. as triangulated icosahedron) results in non-zero
2-homology and similarly higher homology captures higher-dimensional features.
These descriptors do not depend on the particular choice of triangulation (or even
tessellation into non-triangular objects) as long as certain regularity conditions are
satisfied.

While homology gives some information about the topology of an object, this is
usually very hard to interpret without additional information. Typically one resolves
to look at persistent homology which contains information on the evolution of a
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Figure 1: Voronoi tesselation of the plane and the associated Delaunay Triangulation.

geometric shape. Imagine a situation where the geometric shape undergoes a change
over time. We would like to capture information about geometrical features that
persists for a long periods of time as this brings some robustness. We might be
interested in the time needed for two components to merge, or the time required to
close a cycle. The underlying intuitive notion of time-based evolution is made rigorous
by the concept of filtration.

A filtration on X, is a stratification of X into increasing sequence of sets with well
defined “steps”:

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞ = X.

A convenient way to describe a filtration is by specifying a non-negative, continuous
function f : X → R and setting

Xt = {x ∈ X : f(x) à t}.

For example, the length of edges can be considered as a filtering function on a
graph. This filtration arises in the construction of ε-neighbouring graphs for an
increasing sequence of thresholds. Instead of choosing an arbitrary threshold for the
distance it might be more useful to observe how geometry of the graph changes as we
incorporate more and more edges. Persistent homology is the rigorous way to capture
these changes. We postpone the definition till the next paragraph, and analyse the
following example.

Example. Consider a sample {Xi = Zi +N}, where Zi is drawn from uniform distri-
bution on a circle in R2 and N follows a bivariate normal distribution (see Figure 2,
top-left). We build the full Delaunay traingulation X on the set {Xi} and filter edges
(and triangles) by distance. The filtration comes from limiting the length of edges we
accept. That is we have a function f : X → R which assigns to every vertex 0, to every
edge its length and to every triangle the maximal length of its sides, see Figure 2 for
a few stages of the filtration. A notable feature of the filtration is that the centre of
the circle is surrounded by an empty cycle very early and persists for a relatively long
time, until it is finally filled by triangles. While reconstruction of the original density
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edges: 0, triangles: 0 edges: 21, triangles: 2 edges: 74, triangles: 27

edges: 114, triangles: 64 edges: 126, triangles: 76 edges: 131, triangles: 82

Figure 2: The length-filtered Delaunay triangulation on n = 50 of points sampled
uniformly from a circle of radius R = 1000 with the bivariate Gaussian noise (µ = (0,0),
σ = (300,300)). For d = 2,3 there exist fast algorithms generating the triangulation.
In higher dimensions, however, it becomes computationally expensive (complexity
scales as O(ndd/2e +n logn) [? , Corollary 17.3.2].

would be impossible based purely on this homological information, the existence of
the cycle indicates that the underlying density is of “circular shape”, i.e. that there is
a low density region surrounded by high density one(s).

Persistence The changes in topology of a space are best spoken of using the language
of filtering functions which we describe in vusual terms in Section 2.2. Below, we
provide some motivation behind the idea of persistence.

Suppose that we have a space X filtered by the sub-level sets

Xt = {x ∈ X : f(x) à t}.

A 0-dimensional feature emerges at time tb (birth time) when a new cluster of points
is added to Xtb that was not present for t < tb. Similarly when the cluster merges
(i.e. becomes connected by an edge) with an older cluster (because the shape has
grown) we say that the 0-feature has died and record the minimal time td (death time)
with this property. Obviously td á tb and we add point (tb, td) to the 0-diagram of X.
0-dimensional features of X at time t are (in this case) the connected components of
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sub-level set. The longer the feature lives, the more prominent it seems to us, and the
further is the corresponding point from the diagonal. If the feature persists to the last
stage of the filtration we say that it is of infinite life. Note that the 0-th persistence
diagram will contain an infinite life point for every connected component of the final
shape X∞ = X.

Clusters merging

Missing

figure

Formally speaking, a k-persistence diagram, denoted by Dk(X, f ) is a multiset of
pairs {(tb, td) ∈ R2 : tb à td} recording the evolution of k-dimensional features. For
technical reasons we also include points on the diagonal with infinite multiplicity.
These diagrams provide a natural way of comparing two filtered triangulations (or
simplicial complexes). We have a natural notion of distance between the diagrams
and, in certain cases, robustness to small alterations (see Theorem 5).

Definition 1 (Bottleneck distance). Let D and D′ be two persistence diagrams. The
bottleneck distance (or matching distance) between them is defined as

d∞(D,D′) = inf
f

sup
p∈D

‖p − f(p)‖∞,

where supremum is taken over all bijections f : D → D′ and ‖ · ‖∞ denotes the
standard supremum norm. Note that since we included all points along the diagonal
with infinite multiplicity, matching points to the diagonal is still a bijection.

2.2 Theory behind the method

Suppose that F = (f1, . . . , f`) : M → R` is a smooth (at least C2) function defined on a
manifold (possibly with boundary) M ⊂ Rk. Set d = k+ ` and consider the graph of F ,
i.e. the manifold defined as

G(F) =
{
(x, F(x)) ∈ Rd : x ∈ M

}
,

filtered by the projection on the j-th coordinate (j > k), that is the filtering function
πj ◦ F = fj . It will follow that if fj is an injective function, then all points in a
persistence diagram (of any dimension) of G(F) (filtered by fj) belong to the diagonal.

In practice we usually do not have access to the whole manifold G(F), hence we will
approximate it by a simplicial complex of identical homology properties (is homotopy
equivalent). Will show that one can reconstruct the approximating complex and its
presistence diagrams from a finite, noisy sample drawn from G(F). Therefore, later on,
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Figure 3: A graph of the probability density of a mixture of Gaussians. In this case
M = R2, k = 1 and F(x,y) = p(x,y). The filtering function f is defined as the
projection to the z-axis, i.e. f(x,y,p(x,y)) = p(x,y). The sub-level sets are given
as Xt = {(x,y,p(x,y)) : p(x,y) à t}. Critical points of f are points where tangent
plane to the surface is parallel to the XY -plane. As we increase t the qualitative
changes of the sub-level sets Xt are captured by presistent homology.

we can conclude that if a persistence diagram of the approximating complex contains
points far from the diagonal this can be attributed to non-injectivity of the function
fj rather than the noise or the manifold M itself.Watch out: homology of M may be non-trivial!Watch out: homology of M may be non-trivial!

But I believe it doesn’t matter as we filter by
function which collapses all cycles in M
But I believe it doesn’t matter as we filter by
function which collapses all cycles in M Morse functions and filtrations In the case where M is a manifold, the geometric

features that took part in the definition of persistence homology can be characterised
using notion of Morse functions. An example is presented in Figure 3.

We say that a C2 function on a manifold f : M → R is Morse if the gradient Df
has only isolated zeros (so called critical points of f ) and at those points the Hessian
matrix D2f is non-degenerate. We note that Morse functions are dense in the set of all
functions on M in Cm-topology for all m ≥ 2. It is a standard fact that critical points
of a Morse function correspond bijectively to changes of the topology of the sub-level
sets and those in turn are reflected by changes in homology.

Recall that we would like to find the “non-injective parts” of G(F) to exclude
possible cause-effect relations. In the bivariate case we have to find out if the relation
between X and Y follows an injective function F : R→ R. Obviously it requires only
on a part of the domain of Y to have multiple corresponding values of X, to claim that
X is not the value of a continuous function of Y . Note that we use the continuity of X
and Y as well as the unimodality assumption here. This obvious statement, however,
does not generalise so easily to multivariate setting.

Consider an example of M = {(x1, x2)} ⊂ R2 and y = F(x1, x2) = x1x2. Whenxi denotes i-th coordinate of a vector. Is it an
acceptable notation??
xi denotes i-th coordinate of a vector. Is it an
acceptable notation?? restricting to x1 = a, F|x1=a = ax2 is injective for any a. An analogous statement

holds also for restriction to x2 = a. Nevertheless, inspection of y ’s along line
x1 + x2 = 0 reveals that y is a function of both x1 and x2. See also Section 1.1 for a
different example.
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In the general case we consider a manifold M = {(x1, . . . , xk)} ⊂ Rk and

(y1, . . . , y`) =
(
f1(x1, . . . , xk), . . . , f`(x1, . . . , xk)

)
= F(x1, . . . , xk) ∈ R`.

Motivated by the example above we ask if there exists an injective functional combina-
tion γ of xi’s such that yj = fj(γ(x1, . . . , xk)) is not injective. By injective functional
combination of xi’s we mean a smooth, injective function γ : (−1,1) → M ⊂ Rk.
In the example above γ : (−1,1) → R2 is given as γ(t) = (t,−t). We will say that
f : G(F) → R is injective with respect to γ : (−1,1) → M if f ◦ F(γ) : (−1,1) → R is
injective.

Note that knowledge about some of the non-injectivities (eg. when restricted to a
subset of variables or injective functional combination of them) is enough to identify
a set of variables containing potential causes. The following lemma states that the
existence of non-trivial points in a persistence diagram of G(F) implies non-injectivity
of some of fj with the respect to some combination of its arguments. We believe that
the result is not new, yet we were unable to find a specific reference hence we provide
a proof.

Lemma 1. Fix j and suppose that fj is injective with the respect to any injective curve
γ : (−1,1) → M . Moreover assume that πj : G(F) → R for some j is a Morse function.
Then πj(x, F(x)) = fj(x) has no critical points and hence all persistence diagrams
in any dimension of G(F) filtered by πj are empty (contain no points away from the
diagonal).

Proof. Suppose the contrary that fj is injective with respect to all injective γ’s, but
there is a point (tb, td), tb < td inm-th persistence diagram of (G(F),πj). This means
that a cycle in homology of G(F)tb is present that did not exist for t < tb. By Morse
theory this means that there is a critical point yb = (xb, f (xb)) of indexm in π−1

j (tb).
Again Morse theory tells us that there exists a local chart (in particualr a continuous
bijection) ψ : Rk → M around xb such that πj(x, F(x)) = fj(x) can be expressed as

πj
(
ψ(z1, . . . , zk), F (ψ(z1, . . . , zk))

)
= fj(xb)−

m∑
i=1

z2
i +

d∑
i=m+1

z2
i .

If we set γ(t) = (t,0, . . . ,0) ∈ Rk for t ∈ (−1,1), then the composition fj ◦
ψ ◦ γ(t) = fj(xb) − t2 is clearly non-injective. As the curve ψ ◦ γ is injective this
contradicts the initial assumption and finishes the proof.
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Even if πj(x, F(x)) = fj(x) does not satisfy Morse conditions, one can find a

Morse function f̂j : G(F)→ R such that f̂j and fj are close in the Ck-norm. Note that

we can estimate the persistence diagram of fj by using f̂j instead, with precision
related to ε by Theorem 5.

Lemma 2. Adjust fj to be a Morse function f̂j such that ‖f̂j−fj‖Cm < ε. If F is injective
with the respect to any (injective) curve γ, all points in persistence diagrams of G(F)
filtered by f̂j have lifespan shorter than 2ε.

Proof. Suppose that an m-th persistence diagram of the function f̂j : G(F) → R
contains a non-trivial point (tb, td). Let yb and yd be the critical points responsible
for the point. By Morse theory there exists a flowline γ : [−1,1] → G(f) of negative
gradient flow (of f̂j) connecting yd and yb. Moreover, while f̂j is strictly decreasing
when restricted to the image of γ, fj ◦ γ is increasing. Thereforethere seem to be unexplained assumptionsthere seem to be unexplained assumptions

0 < td − tb = f̂j(xd)− f̂j(xb) à

f̂j(xb)− fj(xd)+ (fj(xb)− f̂j(xd))+ (fj(xd)− fj(xb)) à
2ε + fj(γ(−1))− fj(γ(1))︸ ︷︷ ︸

<0

à 2ε

as required.

Approximation of manifolds by simplicial complexes It was shown by de Rham
in [] that the homology of a manifold can be approximated by the homology of the@@@REF: grab the reference from JANKO

LATSCHEV, Vietoris-Rips complexes of met-
ric spaces near a closed Riemannian manifold
@@@

@@@REF: grab the reference from JANKO
LATSCHEV, Vietoris-Rips complexes of met-
ric spaces near a closed Riemannian manifold
@@@

Čech complex (the nerve) of a sufficiently fine, well behaved1 cover of the manifold.
Suppose that a sample S ⊂ Rn of points sampled with noise from G(F) is given. Of
course points in S will not necessarily belong to M , but their expected distance is
bounded by the noise. We investigate under which conditions we can use Vietoris-Rips
complex build on S to approximate the homology of G(F).

Definition 2 (ε-approximation). A finite set K ⊂ Rn is a uniform ε-approximation of
M if the Hausdorff distance dH(K,M) is smaller than ε < r(M), where r(M) is reach
of M .

For a proper definition of reach (using distance to medial axis) please refer to .@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation...

@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation... Intuitively reach of M can be described as the maximal radius r such that (r − ε)-

thickening of M in the normal direction has the same topology as M itself.

Theorem 3. Fix ε < 1/8. Let M be a manifold and let K be a uniform ε-approximation@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation...
also: Niyogi, Smale, Weinberger: Finding the ho-
mology of submanifolds with high confidence...

@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation...
also: Niyogi, Smale, Weinberger: Finding the ho-
mology of submanifolds with high confidence...

of M . For a radius α ∈ [7
2εr(M),1−

9
2εr(M)], the union of balls

⋃
x∈K B(x,α) defor-

mation retracts on M , hence the Čech complex of
⋃
x∈K B(x,α) is homotopy equivalent

to M .
1i.e. all sets in the cover have small diameter, their pairwise intersections are contractible
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Assume that the variance of the sampling noise is not too large, e.g. locally
always smaller than the one eight of the reach of M . Given a finite sample F from a
manifold M , we can approximate the homology of the manifold thickened by noise
by performing Čech construction (the nerve of the cover of F by open balls). This is
however unsuitable for computation, so we ’sandwich’ the complex with Vietoris-Rips
complexes by the virtue of the following theorem.

Theorem 4. Let VRε denote the ε-Vietoris-Rips complex of K. ε′-Čech complex can bemake this precise, ala [@@@de Silva, Ghrist,
Coverage in sensor networks via persistent ho-
mology]

make this precise, ala [@@@de Silva, Ghrist,
Coverage in sensor networks via persistent ho-
mology] sandwiched between Vietoris-Rips complexes

VR(ε) ⊂ Č(ε′) ⊂ VR(
√

2ε) (1)

for all ε à ε′ à
√

2ε.

Note that the inclusions above need not to be a homotopy equivalence for any
ε′, however if the complexes on the both sides of (1) are homotopy equivalent, they
capture perfectly the homology of the Čech complex sandwiched in the middle. To
achieve this one would have to assume ε < 1/10.

The summary of this section looks as follows. The Vietoris-Rips complex approx-
imates topology of Čech complex which is the nerve of the open-ball covering of a
noisy sample F . If the noise variance is bounded globally by reach of M (or locally by
distance to medial axis), then the Čech complex captures the topological features of
M . Therefore to estimate homology of M it is enough to estimate filtering functions
defined on Vietoris-Rips complexes.

Estimation of persistence diagrams As we do not have access to manifold due to
noise in sampling, from now on we will assume that the approximating Vietoris-Rips
complex X build on the points in F is the ideal object which persistent homology we
would like to analyse. We introduce new filtering functions on the complex that are
suited for detection of non-injectivity. The persistence diagrams of these filtrations
will serve as a description of shape of F despite sampling noise, due to result of
Cohen-Steiner, Edelsbrunner and Harer.

Theorem 5. Let M be a manifold and let f , g : M → R be tame (e.g. smooth) functions.@@@REF Cohen-Steiner, Edelbrunner, Harer:
Stability of persistence diagrams@@@
@@@REF Cohen-Steiner, Edelbrunner, Harer:
Stability of persistence diagrams@@@ Then for any dimension k

d∞
(
Dk(f ),Dk(g)

)
à ‖f − g‖∞,

where ‖ · ‖∞ denotes the sup-norm over functions.

Suppose that X ⊂ R2. We endow it with four different filtrations. Let σ be a
simplex in X. We define the filtering functions as follows.

f↗i (σ) =max
x∈σ

{πi(x)}

f↘i (σ) =max
x∈σ

{−πi(x)},

where πi(x) denote projection of x on i-th axis. Note that it is enough to evaluate πi
on vertices. We will denote filtrations induced by these functions as X↗i and X↘i and
refer as increasing and decreasing, respectively.
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Figure 4: Persistence diagrams for the four filtrations on pair0021.txt from the cep
dataset. Original points (upper-left corner) have been inverted (lower-right corner) to
make identification of the corresponding points in the persistence diagrams easier.
The longest distance of a point in the diagram D to the diagonal is the bottleneck
distance d∞(D,D(∅)).

3 Topological Injectivity Test

In the paragraph below we provide quick overview of Topological Injectivity Test
(tit). Again, we restrict to the bivariate case and we will treat the first coordinate
as values of random variable X and the second as Y . Suppose that a finite sample
S = {(x,y)i} ⊂ R2 is given. We build a geometric simplicial complex X on the sample
and introduce four filtrations (on the same complex) by the filtering functions which
are given by increasing or decreasing projections on different axes.

If S was sampled (without noise) from a graph of an injective function, the ap-
proximating complex would have similar shape. In particular a graph of an injective
function (filtered by projections) has empty persistence diagrams, except one point
of infinite life which corresponds to the fact that plot of a continuous function on a
connected domain is connected itself. We forget the point of infinite life (e.g. using
notion of reduced homology) and measure the distance between persistence diagrams
of different filtrations on X with an empty diagram to produce a non-injectivity score.
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Details of the tit Suppose that a finite sample sample S = {(x,y)i} ⊂ R2 is given.
We create X, the minimal connected subcomplex of the Delaunay complex on the
points in S. We do it by first constructing the full Delaunay triangulation and then
we continue to remove the longest edges (and triangles) as long as the comples is
still connected. A similar construction for Vietoris-Rips complex is possible as well
if F ⊂ Rn for n á 4. Suppose that the multivariate random variables X and Y have
dimension dX and dY respectively. It is worth to limit the construction of X only
to max(dX , dY )-dimensional simplices for computational reasons (we do not expect
interesting homology in dimensions higher than the dimension of the domain).

As the score for non-injectivity hypothesis we propose

hX→Y =max
{
d∞
(
D0(X↗2 ),D0(∅)

)
, d∞

(
D0(X↘2 ),D0(∅)

)}
hY→X =max

{
d∞
(
D0(X↗1 ),D0(∅)

)
, d∞

(
D0(X↘1 ),D0(∅)

)}
.

In the multivariate case we take maximum also over all projections (in the ranges
of X or Y ) as well as over higher dimensional diagrams. Note that this is a simpli-
fied version, since we could be looking at projections on any (injective) functional
combination of variables (see Section 1).

Dealing with outliers The above method is heavily influenced by outliers in the data.
Indeed, a single outlier can force us to accept very long edges (or triangles) in the
complex X which will engulf the features. To remedy this we propose the following
procedure inspired by persistence.

Instead of choosing a fixed number of points to be removed as outliers we remove
them one-by-one, analysing the geometry of the arising complex each time and
producing non-injectivity scores. We sort the points in S according to distance to
their k-nearest neighbours. We used k = d0.02ne + 5 for the experiments. Then the
complex X(i) is constructed as described above using all point from S except last i
(these are most significant outliers). To add more stability to scores we standardise
(that is apply an affine map which brings mean to 0 and standard deviation to 1) data
prior to each removal.

This produces real-valued functions hX→Y (i), hY→X(i) of non-injectivity scores over
the range of removed outliers. The hope is that while outliers can induce fluctuations
of scores, these should stabilise over time (i.e. number of removed outliers). To
produce final stable non-injectivity score of the sample S we sum the differences of
scores :

Score(S) = 1
0.2n

d(0.2n)e∑
i=0

(hX→Y (i)− hY→X(i))

Causal Inference It is easy to see that when the complex has large non-injectivity
score when filtered along y-axis (in either direction), the (functional) causal direction
Y → X is implausible. Similarly for the x-axis and X → Y direction. If both scores seem
large the most sensible solution would be to opt for the existence of a confounding
variable T such that the observed sample is of the form (X(t), Y(t)). However, we
just compare the two scores and choose the larger to be the driving factor, while the
absolute value of difference between scores serves as confidence of our decision.
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Figure 5: The limited Delaunay triangulation on the points of pair0048.txt from the
cep dataset. The changes in the scores reflect changes in geometry of the occuring
complex. Note that the most prominent feature (arc of higher density of points) when
reflected in the geometry of the complex after removing the 16-th outlier becomes the
dominating factor.

4 Experiments with data

We use python scripts for preprocessing (i.e. standarisation and finding the outliers)
and the Dionysus C++ library for topological constructs and calculation of persistence@@@REF: Dionysus@@@REF: Dionysus

diagrams.
Both simulated and real-world dataset consist of 100 samples, each containing

between 300 and 16000 samples from the joint distribution. For a more concrete
description see paragraphs below. For each sample S and a given threshold t ∈ [0,1]
we perform decisions based on the rule

X → Y , if S(F) á t,
Y → X, if S(F) à −t,
no decision, if |S(F)| ≤ t.

Since prevailing part (over 90% of real-world and 100% of simulated) of the pairs
were 2-dimensional, we implemented only analysis of H0, even for multivariate
datasets. It is highly unlikely that information contained in H0 alone can reveal
much about such pairs, hence it serves as a proof-of-concept. Moreover assessing
accuracy of the method based on such a limited number of pairs is error prone.
We want to stress that in principle, it is possible to examine high-dimensional pairs
using projections on appropriate combinations of dimensions as explained at the
end of section 1. It is, however unclear how to find the most pomising functional
combinations based only on the homological data.
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In the pipeline there is no re-usage of the generated complexes and boundary
matrices which results in simple implementation and allows for easy parallelisation,
at the expense of memory and possibly running time. As the homology computation
algorithm has worst-case complexity of O(n3)it is plausible that the re-usage mightref: complexity of Smith Normal Form??ref: complexity of Smith Normal Form??

prove useful for larger pairs. In our experiments simulated data presented no sig-
nificant computational difficulty. Our naive implementation was able to process all
simulated pairs from every sim dataset in less than 10 minutes on a quad-core mobile
processor.

However the computational complexity and lack of re-usage of generated structures
takes its toll for larger pairs from the cep dataset. In the processing of full size pairs
just three high-dimensional pairs were responsible for 5 hours of computation. The
remaining hour was enough for the rest. When sub-samples of size 2000 were drawn
running time shortened to less than 20 minutes.

4.1 Simulated data

We used the same four sets of data as in [? ]. The sets of data consists of 100 pairs
(samples from joint distributions) in 2-dimensions, generated under different schemes.
Nodes without parents are represented by samples drawn from normal distributions
and mapped to the domain by a Gaussian process function. Functions mapping nodes
are sampled from a Gaussian processes as well. At the end Gaussian (measurement)
noise is added to both coordinates.

sim is generated using simple relation Y = f(X);

sim-g has approximately gaussian distribution of cause and follows (approximately)
Y = f(X)+N , where N is drawn from Gaussian distribution;

sim-ln is similar to sim but the noise is reduced, hence the sample is close to
deterministic relationship;

sim-c is confounded using rule X = f(Z,NX), Y = g(X,Z), where Z and X has similar
influence on Y .

The shapes of the joint distributions and more details can be found in [? , Appendix C].
For all of these datasets the noninjectivity score clearly obtains accuracy signifi-

cantly better than chance. The performance is clearly based on non-injective functions
relating X and Y , as in all pairs where non-injectivity is visible to the human observer
were decided correctly. On the other hand, the other pairs which seem close to an
injective function seem to be decided purely by chance (as expected). Their confidence
is similarly low, hence it should be easy to choose a threshold t for the decision
algorithm.

4.2 Real-world data

We used the Tübingen cep dataset (Cause-Effect Pairs, at version 1.0) available at [? ].
The dataset contains 100 weighted pairs where weights are imposed to counter the
dependence existing in the pairs (e.g. some of them were drawn from in the same

15



Causes and Effects of TDA Wednesday 21st June, 2017 08:56

0 20 40 60 80 100
Decisions

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

( 100, 0.67) SIM
( 100, 0.69) SIM­c
( 100, 0.70) SIM­G
( 100, 0.76) SIM­ln

( 048, 0.85) SIM, confidence>=0.05
( 050, 0.84) SIM­c, confidence>=0.05
( 039, 0.79) SIM­G, confidence>=0.05
( 037, 0.97) SIM­ln, confidence>=0.05

Figure 6: The accuracy plot for sim datasets. Decisions on the X-axes are sorted
according to their inverse confidence score. The thickened lines corresponds to the
scenario when we do not resolve the pairs of confidence under threshold t = 0.05. In
the parentheses are number of decisions taken and the final accuracy. We remark that
for the dataset sim-ln accuracy of (51,0.94) is obtained with t = 0.01. The gray area
is the p > 0.05 significance level.
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Figure 7: The accuracy plot for cep datasets: unaltered and quantised. Decisions on
the X-axes are sorted according to their inverse confidence score. The thickened lines
corresponds to the scenario when we do not resolve the pairs of confidence under
threshold t = 0.05. In the parentheses are number of decisions taken and the final
accuracy. to weights associated with pairs the actual significance depends on the
order of decisions taken. Note that seemingly large distances between curves are due
to different ordering. However the cep dataset consists of only about 35 independent
pairs of which 33 were used hence is too small to judge the significance of the results.

experiment or gathered in similar conditions). Note that weights has been introduced
in version 0.8 of the dataset and were severly altered (mostly down-weighted) in
version 0.99, hence it is hard to compare accuracies between different versions of the
dataset.

Out of those pairs we excluded four:

• pairs: 0047, 0070 and 0071 violate the continuity assumption (variables are
binary);

• pair 0095 does not satisfy the unimodality of noise assumption.

It is interesting to note that in the case of pair 0095 uniform subsampling of 2000
points allows the algorithm to pick up the right non-injectivity feature. This suggests
that some of the few arbitrary choices made in the algorithm (e.g. the number of
outliers considered, the number of nearest neighbours in knn, uniform measure in
the score integral) can be better tuned.

We note that in some of the pairs marginal densities were discrete (i.e. not
continuous). If the dataset is sufficiently large this should not be a problem. However
if the variables quantisation is uneven this may lead to the score driven by the
(observed) sudden changes in density itself rather than the “trend” function. To
minimise the potential influence of such cases (i.e. when one of the variables is heavily
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quantised) we also align points to rectangular grid. We do not expect significant
difference in accuracy score: since quantisation introduces small error in estimation
of filtering functions, we expect persistence diagrams (hence non-injectivity scores) to
be close to each other by Theorem 5. distribution of residuals with mean 0.01 andHow to asses this eg. from the residuals??How to asses this eg. from the residuals??

standard deviation 0.1.

4.3 Comparison with other methods

5 Conclusions

We proposed a non-injectivity based method for causal inference. Methods advantages
include relatively short running time, model semi-agnosticism and high accuracy for
high confidence pairs. The running time however depends significantly on the sample
size and our naïve implementation was not able to cope with more than 10000 points
in dimensions greater than 3. There is however room for improvement not only on
the software side.

For better approximation of the geometry of the shape one could use kernel density
estimation and add weights in complex reconstruction ??. The first method should beweighted alpha complexes @@@refweighted alpha complexes @@@ref

usefull when subsampling the data, or choosing witnesses for simplification of the
complex. The second method should be able to (somewhat) tame the combinatorial
explosion of the Vietoris-Rips complex for larger datasets and dimensions, while
capturing the shape accurately. Moreover one could use distance to measure ?? todistance to measure @@@refdistance to measure @@@ref

obtain proper statistical bounds on the diagrams used to produce scores.
As a design feature we anticipate approximately injective relations to have a very

low confidence score, thus rendering the persistence homology-based judgement
prone to error. While this can be seen as methods weakness, we could take advantage
of it. One could chain two (or more) score-based methods and use a blend of the
algorithms when the confidence of the topological method falls below a threshold.
This allows to have the best of the two worlds: cheap answer when causal direction
is evident (i.e. a non-injective relation) and traditional statistical inference when
topological methods do not provide a clear answer.

References
A Language of algebraic topology

We provide some of the necessary language of algebraic topology and facts used in
the paper. This is by no means a rigorous treatment of the theory. The interested
reader may have a look at introductory chapters of standard textbooks on homology
theory or modern books on topology for computation .@@@REF@@@ Munkres, Hatcher@@@REF@@@ Munkres, Hatcher

@@@REF@@@ Mrozek, Zomorodian@@@REF@@@ Mrozek, Zomorodian
Simplicial topology We begin with a definition of a single building block, a simplex.

Definition 3 (Simplex). An n-dimensional (geometric) simplex σ is the convex hull
spanned by the standard basis and 0 in Rn. When we speak about simplex spanned
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by points (p0, . . . , pn) we only mean a (abstract) simplex whose vertices has been only
labeled by the points.

Spaces in simplicial topology are build out of simplices which have to interact in a
regular way. Given a family of simplices we would like to take a union of them, but to
make the forthcoming theory easier we should require that the intersections of every
two simplices is again a (lower dimensional) simplex.

Definition 4 (Simplicial complex). A simplicial complex Σ is a set of simplices {σi}i∈I
such that whenever σi and σj intersect, their intersection is again in the collection.

Note that simplicial complex is abstract in the sense that its vertices need not
to be points in Rn and its edges (or higher dimensional simplices) represent merely
similarities between its vertices. In the following we will use the Delaunay complex in
dimensions 2 and 3 and Vietoris-Rips complex in higher dimensions.

Example (ε-Čech complex). Suppose that a finite set F ⊂ Rn is given. Fix ε > 0 and
consider the following simplicial complex Č(ε):

• we add a vertex vx for every point x ∈ F ;

• for x,y ∈ F we place an edge between the the corresponding vertices vx and
vy whenever d(x,y) < ε/2;

• for every set of (k + 1)-points V ⊂ F : if sphere circumscribed on points of V
has radius smaller than ε/2, we add the k-dimensional simplex spanned by the
corresponding vertices.

The Čech complex, although very useful from theoretical point of view is hard to
compute, as it requires computations of spheres. An variant of a similar complex
which is easier to compute was proposed (independently) by Vietoris and Rips.

Example (ε-Vietoris-Rips complex). Suppose that a finite set F ⊂ Rn is given. Fix ε > 0
and consider the following simplicial complex VR(ε):

• we add a vertex vx for every point x ∈ F ;

• whenever d(x,y) < ε for x,y ∈ F we place an edge between the corresponding
vertices vx and vy .

• for every set of (k + 1)-points V ⊂ F : if all the pairwise distances in V are
smaller than ε, we add the k-dimensional simplex spanned by the corresponding
vertices.

Commonly used for clustering ε-neighbouring graph is a special case of the Vietoris-
Rips complex when we limit construction to k = 1.
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Figure 8: The ε-filtered Vietoris-Rips complex on the same sample as in figure ??,
limited to k ≤ 2. The complex captures the initial shape accurately, however due to
its nature it suffers from the combinatorial explosion for larger epsilonss. Unlike the
Delaunay Triangulation its construction is fast as it depends only on the pairwise
distances.
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Chain complexes and homology

Definition 5 (Chain complex over of X). A chain complex

· · · ∂n+1-----------------------------------------------------------------------→ Cn
∂n----------------------------→ Cn−1

∂n−1-----------------------------------------------------------------------→ ·· · ∂2-----------------------→ C1
∂1-----------------------→ C0 → 0

is a sequence of vector spaces and linear operators, where each Ck is spanned by all
k-dimensional simplices present in X. The linear maps ∂k are the boundary operators
(assign to every simplex its boundary as a linear combination of simplices of lower
dimension).

In more rigorous way we may define ∂k : Ck → Ck−1 as follows. Since this is a map
between vector spaces it suffices to define ∂k on basis of Ck and then extend linearly.
Let σ({x0, . . . , xk}) be a k-simplex in X, i.e. a convex hull of the points x0, . . . , xk. Its
boundary ∂k(σ) is a linear combination of all of its (k− 1)-simplices

∂k(σ) =
k∑
i=0

τ({x0, . . . , xk} − {xi}).

As such chain complexes are not very robust: a small change in the geometry
of shape we approximate with a simplicial complex (e.g. addition a new point to F )
may result in completely different chain complex with no easy way of comparison.
Therefore we define homology which nullifies these changes.

Definition 6 (Homology of X). We define k-th homology of X as

Hk(X) = ker ∂k
/

im ∂k+1

In our setting homology groups of a simplicial complex are vector spaces. As a side-
note we provide connections to other graph-theoretic notions: the graph Laplacian
can also be defined in the terms of boundary operator: L = ∂1∂T1 . Higher homologies
capture more complex information about geometry of simplicial complex, e.g. one
can define higher Laplacians using higher boundary operators.

Filtrations and persistence

Definition 7 (Filtration). A filtration on space X is an increasing family of spaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn = X.

A practical way of describing a filtration is by specifying a (filtering function) f : X → R
and setting Xt = {x ∈ X : f(x) à t}.

If X is a simplicial complex we would like the filtration to preserve its structure,
i.e. we would like each Xt to be a simplicial complex as well. Therefore we require
additionally that filtering function is increasing on every simplex, that is if τ is a face
of σ then f(τ) à f(σ). It is easy to see that for a complex with finite number of
simplices filtering function is equivalent to an increasing sequence of spaces as in
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the definition. Vietoris-Rips complexes come naturally as examples of filtered spaces.
By choosing different values of ε we create an increasing sequence of simplicial
complexes – the function which assigns to every simplex diameter of the set of its
vertices is a properly defined filtering function.

Instead of fixing (e.g. learning in some way) ε and analysing the ε-neighbouring
graph on F , it might be more insightful to look at the whole spectrum of possible ε’s
and observe changes in geometry of the arising complex as we increase the epsilon.
These changes are captured by persistent homology. A very similar concept for
Delaunay complexes is filtration by α-complexes which we will not describe here.

Persistence homology Suppose that a k-cycle z is a generator of Hk(Xtb) and this
cycle is not homologuous to any other generator of Hk(Xt) for any t < tb. Similarly
if td á i is the minimal filtration level in which z becomes homologuous to 0 we say
that z dies at time td.

Definition 8 (Persistent homology). Persistent homology of a filtered complex X is
the bi-gradation on the homology of X given by

Hi,jk (X) = im
(
Hk(Xi)↩ Hk(Xj)

)
.

Technically speaking persistence diagram in dimension k is a multiset of pairs
(tb, td) where every pair corresponds to a generator z in the kernel of the map on
homology induced by inclusion Xtb ↩ Xtd .
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