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1 Introduction

The term ‘Explicit Formula’ as in our title refers to the genre of formula that expresses arithmetically
interesting quantities in terms of the zeroes of a related zeta-function or L-function. The first such
formula appears towards the end of Bernhard Riemann’s short and great paper “Uber die Anzahl der
Primzahlen unter einer gegebenen Grosse,” published in the Monatsberichte der Berliner Akademie,
November 1859. For real numbers X > 1 not equal to a power of a prime number (and with some
minor changes in notation and ordering of terms) Riemann’s formula is:

Li(X) + {/Oo L —|—log(£(0))} Z(L1X2+’9+L1(X%—i9)>.

x 22—=1 zlog(z) -

Here, the Riemann Hypothesis is assumed, the +60 are the imaginary parts of the nontrivial zeroes,
and £(0) is—it seems—a scribe’s error for ((0) = 1/2. The three terms on the right correspond to,
respectively: the pole of ((s) at s = 1, the trivial zeroes of ((s), and the nontrivial zeroes of ((s).

[[William: we need to address the fact that the above formula is somehow nonsense, right? See
worksheets/2016-06-08-150036-very-explicit-zeta-formula.sagews]]

Subsequently, there have been many versions of Explicit Formulas, one such notable variant proved
by Hans von Mangoldt, in his 1895 article “Zu Riemann’s Abhandlung ‘Uber die Anzahl der
Primzahlen unter einer gegebenen Grosse”, Journal fiir die reine und angewandte Mathematik.

In celebration of Riemann’s formula we will discuss some computations and open questions re-
lated to the application of the Explicit Formula to the arithmetic of elliptic curves. This follows
constructions in a letter of Peter Sarnak to one of the authors ([?]).



A cartoon version of the genre of ‘Explicit Formula’ might be described as follows:
(**)  Sum of local data = Global datum + Easy error term + Oscillatory term,

where each term of the formula is taken as a function of a ‘cutoff’ real value X, and the ordering of
the terms is in accord with (*) above. The Sum of local data that appears in most of the ‘Explicit
Formulas’ of analytic number theory is often given, i.e., by a partial sum v(X) - > _ G(p) of
locally defined arithmetically interesting quantities G(p) attached to prime numbers p, summed to
up to some cutoff value p < X (and normalized for convenience by an elementary (continuous)
multiplicative factor v(X)).

Usually the Global datum is computed by knowing the order of specific zeroes (or poles) at specified
values of the complex variable s of relevant (global) L-functions. For example, the formula (*) gives
the contribution of the pole at s =1 of {(s). Often (perhaps only conjecturally) the Global datum
is the ‘dominant term’ on the right-hand-side of the equation. Sometimes, as will be the case of the
examples to be described below, the roles are reversed and one takes the Global datum as the object
being studied. That is, we view it as Global datum = Sum of local data — FEasy error term —
Oscillatory term.

In some instances, the sought-for Global datum is (conjecturally) constant, independent of the cutoff
X—in fact, the mean of Sum of local data—and also an integer, in which case a close approximation
to each of the other three terms (for some specific value of X') would give a decisive answer for the
value of the Global datum.

1.1 An example:

Consider a non-CM elliptic curve E over Q of conductor N uniformized by a newform fg (of
conductor IV and of weight two) with Fourier expansion fg(q) = >_, 51 an(E)q". Form the following
Sum of local data:

log X a
De(x) = 2y D)
p<X

where (assuming the Riemann Hypothesis for the L-function attached to fg) the explicit formula
gives us:

X

Dp(X) = 1—2rg + Easy error term + Z I

ly|<T 2

[[TODO: explain T, e.g., take limit as T'— oo or make error term depend on T'.]]

Here, the ‘global datum’ is 1 —2rg where rg is the analytic rank of F (i.e., the order of vanishing of



L(E,s) at the central point; conjecturally this will be the Mordell-Weil rank of ). The summation
is taken for v ranging over the imaginary parts of the nontrivial zeroes of the L-function attached
to E.

The values of Dg(X) achieve a limiting distribution p g (with respect to multiplicative Haar measure
dx/x) with mean M equal to 1 — 2rg and variance V equal to

1
lim E —_
1 2
THOOIWISTA‘%“Y

Under further conjectures ([?]) the measure g is symmetric about its mean 1 — 2rg, it is smooth,
and has support all of (—o0, +00). It is natural to view this in the context of Chebyshev biases; i.e.,
to interpret—when rg is positive—the minus sign in —rg as a measure of the bias that the values
a,(E) have to being negative. This type of bias in the arithmetic statistics of elliptic curves hearkens
back to the early work of Birch and Swinnerton-Dyer [?], and in the context we are considering
was first written down by Peter Sarnak in the spirit of the classical Chebyschev bias, and ’prime
races.” An ‘Explicit Formula’ account of this in the context of prime numbers in different arithmetic
progressions can be found in [?]. See also [?], [?] which fits into this Explicit Formula format, as
does work of Martin-Watkins, Fiorilli, Bober-Mestre-Odlyzko, Conrey-Snaith, Spicer, and others.

For this volume in honor of Bernhard Riemann, we will offer computations related to this, and
one other interesting case that does depend on these ‘finer conjectures’, advertise the conjectures
themselves, and the need for computational projects regarding such problems. We restrict ourselves
to applications to elliptic curves, but we take this only as a basic (important) example of a fuller
story for general motives. We have future plans for a web-accessible resourceﬂ a repository of some
of the numerics for the cases related to elliptic curves that interest us.

One problem we consider is related to the question—given an elliptic curve over the rational numbers
and letting p range through prime numbers—of how often p+ 1 is an over-count or an under-count
for the number of rational points on the curve modulo p? The rough answer is 50/50, but there
can be a ‘bias’.

We offer no new theoretical results but, as mentioned, we use this occasion to exhibit computations
and recall some interesting recent work and conjectures (of other people) that might warrant more
such computations and that raise a host of questions, both theoretical and computational. For
example, to do some systematic numerical computations related to an elliptic curve F attached to
a newform fp (along the lines of what has already been done in this paper) it would be very useful
to have a much larger data set of the arithmetic function

n— rg(n)

where rg(n) is the order of vanishing at s = 1 of the L-function of the automorphic forms symm” fp
for odd values of n. Regarding this arithmetic function, aside from having control of the parity of
rg(n) (e.g., see [?]) hardly anything else is known. Nor do we (at least, the authors of this paper)
yet have enough experience—when E has no complex multiplication—even to formulate a proper
conjecture.

!See http://wstein.org/papers/2016-explicit/


http://wstein.org/papers/2016-explicit/

We might also mention that when making these numerical experiments one seems to be in a situation
that is not entirely dissimilar from the type of slightly annoying mismatch between conjecture and
data that one encounters in more traditional studies of Mordell-Weil statistics that was the subject
of the survey article [?], and the more recent [?]. But this may be unavoidable, given that even the
so-called ‘easy error term’ in the explicit formula may tend to zero rather slowly.

We should say at the outset that for simplicity, and sometimes for necessity, we’ll be assuming GRH
throughout—without any further mention. In fact, at times we’ll also be assuming (with explicit
warning) some further conjectures. Given our current state of knowledge, it would be interesting
enough to work conditionally on some reasonable conjectures that include or extend the Grand
Riemann Hypothesis. In fact, the search for an answer to such questions might give motivation
for the refinement of conjectures—interesting in their own right—that complement the Riemann
Hypothesis.

2 Sarnak distributions for the elliptic curve FE relative to the
weighting function V

In a letter [?] to one of us (to B.M.) Peter Sarnak considered a broad array of statistics related to
local arithmetic data associated to modular forms, and, in particular, to elliptic curves over Q.

For p a prime, write

ag(p)
\/]3 P P ( )
with o = ef» and Bp = e~ and
6, € [0, 7]. (2.2)
Our basic data consists of the function
p — b (2.3)

To have some vocabulary to deal with its statistics, consider

sin((n +1)8)

Un(0) := sin(f) 7

so we have:
ag(p)

/P

Note that the set {U,} for n =0,1,2,... forms an orthonormal basis of the Hilbert space L?[0,7]
with the inner product

=Ui1(0g,p).



(f,9) = i/oﬁf(ﬂ)g(O) sin?(0)d6.

For V(#) a smooth function on [0, 7], write V = Y">° ¢, U, with ¢, := (V,U,).

Let us define the “V-weighted average of the data”

Dy(X) =22 3 V(D) (2.4)
p<X

so that
Dg(X) = Dy, (X).

Just to cut down to the essence as rapidly as possible, and just for the present paper:

Definition 2.1. Say that our data (2.3 has ‘Explicit Formula’ statistics if there is a sequence
of non-negative integers {r,}, for n =1,2,3,... such that for all smooth functions V'(#) as above
with cg = 0,

e possesses a limiting distributiorﬂ wuy with respect to the multiplicative measure dX/X,
e Ly has support on all of R, is continuous and symmetric about its mean, £(Sy ), and

E(Sy) = = cn2rn + (-1)7). (2.6)

n=1

We will refer to py as the Sarnak Distribution (for the elliptic curve E relative to the
weighting function V). One can also compute—given some plausible conjectures—the behavior
of the variance (i.e., the measure of fluctuation of the values of Sy (X) about the mean) as well;
the variance is defined by the formula

V(Sy) = E([Sv — E(Sv)]?).

Remark 2.2. If some standard conjectureg’| and some non-standard conjectured’] hold, then our

2 Recall that, as in subsection ?? above, Sy (z) possesses a limiting distribution py with respect to the
multiplicative measure dx/z if for continuous bounded functions f on R we have:
i 1
1m
X—oo log X

X

[ ssv@ndess = [ s, (2.5)
0 R

3that (for n = 1,2,...) the L-functions of the symmetric n-th powers of the elliptic curve,

n
L(s, Bysym™) == [[TI(1 = a3 8,7 p™) 7", (2.7)
p j=0
have analytic continuation to the entire complex plane satisfying a standard function equation (and one can relax
analyticity and require merely an appropriate meromorphicity hypothesis) and that they be holomorphic and non-
vanishing up to Re(s) = 1/2 (i.e., GRH). The integer r, (for n = 1,2,...) is then the multiplicity of the zero of
L(s,E,sym™) as s = 1/2.

“LI(E); see 77, ?? [[TODO:expand on this mysterious note — addressed later ” Fiorilli calls his...”]]



data would indeed have ‘Explicit Formula’ statistics; for details, see [?]. The integers r,,
which by footnote are (conjecturally) the orders of vanishing of specific L-functions at their central
points, are expected to have the large preponderance of their values equal to 0 or 1, depending on
the sign of the functional equation satisfied by the L-function to which they are associated, so the
mean for a given V' as computed by equation stands a good chance of being finite.

3 The Letter of Peter Sarnak

In a letter [?] to one of us (to B.M.) Peter Sarnak sketched reasons for the statements made about
the two formats for sums of local data that we introduced above, and indeed, for large class of
such formats. As we understand it, the computations in that letter was, at least in part, the fruit
of conversations with Andrew Granville and also an outgrowth of [?]. We are grateful for that
letter, and for illuminating discussions with Granville, Rubinstein, and Sarnak. Assuming a list
of standard conjectures about the behavior of L-functions, together with some very plausible but
less standard conjectures, Sarnak begins by showing—as we mentioned above—that (conditional
on standard conjectures) the following ’Sum of local data’

log X a
De(x) = 5 Y 2
p<X

has a limiting distribution with mean equal to 1 — 2rg; the variance of this limiting distribution
is the sum of the squares of the reciprocals of the absolute values of the nonreal zeroes of the
L-function of E. The argument for these (and related) facts follows Mike Rubenstein’s and Peter
Sarnak’s line of reasoning in the article Chebyshev’s Bias [??]. For another expository account
of number theoretic issues related to biases, see [??]. Similar reasoning works for other formats,
including the raw sum of local data as will be depicted in our graphs below; i.e.,

105; (#{p < X; ap(p) >0} — #{p < X; ap(p) <0}),

which (given reasonable conjectures, and guesses) one discovers to have infinite variance so whatever
bias we will be seeing in our finite stretch of data will eventually wash outP}

Ap(X):=

[never use (*) for formulas; let latex do its thing)]]
The bias of undercounts versus overcounts ([?]):

Regarding ‘biases,” thanks to the recent resolution [] [[todo: in https://webusers.imj-prg.fr/ michael.harris/SatoTate
of the Sato-Tate Conjecture in this context, one knows that—roughly—half the Fourier coefficients
ap(p) are positive and half negative (for non-CM curves). That is, the ratio

#{p <X [ Ne(p) <p+1} _ #{p<X|axlp) >0}
#{p<X|Neglp)>p+1}  #Hp<X[aplp) <0}

5 All this is specific to elliptic curves E with no complex multiplication, as our examples below all are. The
non-finiteness of the variance is related to the fact that the (expected) number of zeroes—in intervals (1/2,4/2 + T")
(T > 0)—of the L function of the n-th symmetric power of the newform fg attached to E grows at least linearly
with n.




tends to 1 as X goes to infinity. Moreover, the numbers of positive values and negative values look
very close to each other:

Curve ‘ Rank ‘ Negative ag(p) for p < 109 | Positive ag(p) for p < 10° | Difference

11a 0 25422268 25423101 -833
14a 0 25422229 25421074 1155
128b 0 25420641 25425608 -4967
816b 0 25424848 25421229 3619
2379b 0 25417900 25427007 -9107
5423a 0 25420479 25425242 -4763
29862s 0 25420525 25425197 -4672
37a 1 25423396 25422448 948
43a 1 25421536 25424196 -2660
160a 1 25424446 25421488 2958
192a 1 25418843 25426859 -8016
23401 1 25425512 25419660 5852
10336d 1 25421245 25423628 -2383
389a 2 25427014 25418738 8276
433a 2 25425902 25419896 6006
2432d 2 25423818 25421900 1918
3776h 2 25422350 25422750 -400
5077a 3 25426985 25418831 8154
11197a 3 25429098 25416702 12396

To deal with the more delicate structure of these statistics, consider the following ‘Sum of local

data’ log X
=D
ve(p)
VX p<X

where yg(p) = 0 if p is a bad or supersingular prime for E and is otherwise is +1 if F has less that
p+1 rational points over Fy,; and vg(p) = —1 if E has more that p+1 points. Then this sum, which
will be denoted Ag(X), measures exactly the difference between over-count and under—coumﬂ

The mean of Ag(X) is (conjecturally)

o0

2 16 4 kil 1 1
T 37rrE + T ;(_1) (2k+ 1 T 2k+3)rE(2k+ 1.

where
re(n) = rf,(n) = the order of vanishing of L(symm" fg,s) at s =1/2,

with fg := the newform of weight two corresponding to the elliptic curve E; and where we have
normalized things so that s = 1/2 is the central point. NOTE: For a discussion of the numerics
of the values rg(2k + 1), see Section ?? below.

5 Ralph Greenberg has raised the following question: if E and F are elliptic curves such that vz (p) = v#(p) for
all (or almost all?) p, are E and F necessarily isogenous? TODO: I asked Ralph and he said that there is now a
paper by some Koreans about this, with a nice conditional answer, evidently following approach that I suggested.



3.1 The bias between under-counts and over-counts

We will assume that our data has ‘Explicit Formula’ statistics, and—copying Sarnak ([?])— apply
this to the question we began with, i.e., what is the “bias” in the race between under-counts and
over-counts?

_log X

(#{p <X | Ne(p) <p+1} — #{p <X | Ng(p) >p+1}).

Let H(0) be the Heaviside function, i.e., the function with value

log X
Ap(X) = > H(b,) (3.2)
\/‘Y p<X
For n > 0, set
9 /2 T
cn(H) = (HU,) = =] / U, sin® 0df — / U, sin® 0d9] (3.3)
T Jo w/2

which is 0 if n is even and

2.1 1
=122 72
( ) w[n+n+2

]

if n is odd.

For N > 1 let

N
Hy(0) := ) cn(H)Un(0) (3.4)
n=1

So Hy is a smoothed out version of H(#) and Hy(0) — H () as N tends to infinity. Thus

5L S Hy(6,) (3.5)

S (X) 1= Sy (X) = =2
p<X

is a smoothed out version of



S(X) = Sp(x) = 08X S H(b,) (3.6)

\/)? p<X
Therefore, by formula (2.6)), we would have:
8 2 1
E(SN) = —(1—2r)4 = L 22k +1) —1). 3.7
(Sv) = 32 T*w; 2k+1+2k+3](TE( +1)-1) (3.7)

Now one does have parity information concerning the arithmetic function n — rg(n). For a detailed
study of the root numbers of L-functions of symmetric powers of an elliptic curve, consult [?]. For
n > 1 let vg(n) € {0,1} be (zero or one) such that vg(n) = rg(n) modulo 2. Let sg(n) be the
non-negative integer such that:

rg(n) =vg(n) +2sg(n)

(for n > 3, odd). Thus if the multiplicity of order of vanishing at the central point s = 1/2 of the
odd symmetric n-th power L-functions attached to E (for n > 3) were never greater than 1, and
hence entirely dictated by parity, then the conjectured mean, £(Sy), would be equal to

N
N 8 ey 2Nk L ovm@k+1)—1 3.8
Tp = g rE)+7T;( ) [2k+1+2k+3](VE( +1) - 1), (3.8)
Now consider the limit:
Tg = lim T{N}
N—oo
Note: in the semistable case,
T — 8+2 1—6r
E= T3r 30 &

where the sign depends on whether vg(2k + 1) is 1 or 0.

Put

N
vy _ 2 IPNESTE. 1
Zg = ”;( 1) [2k+1 + 2/<;+3M48E(2k+1))'

Questions: Does the limit,
Zp = lim ZV
g2

exist? Does it converge to a finite value? If so, then the conjectured mean would be:

Ee =T + ZEg.



Is s9r11 bounded? Is the set of positive integers k such that sor1 # 0 of density zero set of positive
integers k7 Is that set finite?

Some data for higher order of vanishing for symmetric powers is given in the article of Martin and
Watkins [?]. The following table is taken from their article:

E |k Sopt
2379b 1 2
9423a 1 2
10336d | 1 2
29862s | 1 2
816b 2 1
23401 2 1
2432d 2 1
3776h | 2 1
128b 3 1
160a 3 1
192a 3 1

4 Recent work and further questions

o The relationship between bias and unbounded rank: the work of Fiorilli

In the work of Sarnak and Fiorilli, another measure for understanding ‘bias behavior’ is given
by what one might call the percentage of positive support (relative to the multiplicative
measure dX/X). Namely [[define 6(x)!]]:

P="Pg ::limian_wOl/ dx/x
IOgX 2<x<X;0(x)<0

1
=1 —_— d
TP X oo log X /2<a:<X;5(x)<0 w/z

It is indeed a conjecture, in specific instances interesting to us, that these limits £ and P
exist.

The standard conjecture (that we have been making all along) is GRH. But here, one includes
the further conjecture (given in Sarnak’s letter, and the article of Fiorilli) that the the set of
nontrivial complex zeroes of the relevant L-function L(F,s) with positive imaginary part is a
set of complex numbers that are linearly independent over Q. Such a conjecture Rubenstein
and Sarnak refer to in [?] as the Grand Simplicity Hypothesis (GSH). Fiorilli calls his ver-
sion of it Hypothesis LI(E). For recent, somewhat related, work on such linear independence
questions, see [?]. Fiorilli, following the work of Sarnak, proves:

10



Theorem 4.1. Assume GRH and LI(E). Then the following two statements are equivalent:

1. The set of (analytic) ranks {rg} g ranging over all elliptic curves over Q is it unbounded.

2. The Lu.b of the set of percentages of positive support {Pg}g is equal to 1.

The relationship between bias and bounding the rank: the work of Bober In [?], Jonathan
Bober builds on work of Odlyzko and Mestre to establish a conditional upper bound on
the ranks of various known elliptic curves of (relatively) high Mordell-Weil rank, notably
Noam Elkies’ elliptic curve Fog for which 28 linearly independent rational points have been
found; Bober shows, conditional on the Birch-Swinnerton-Dyer conjecture and GRH, that
the Mordell-Weil rank of Esg is either 28 or 30 (subsequently, Jamie Weigandt used the same
approach to verify that the rank is indeed 28). He does this by a nice ‘bias’ computation
using the Explicit Formula.

Simon Spicer has further built on Bober’s work to create an algorithm for quickly bounding
the analytic ranks, which is used on hundreds of millions of elliptic curves in [?, §2.3].
to be inserted

Further questions

In summary, given the conjectures discussed, the theory of the means of the weighted sums
of local data we have been examining related to a non-CM elliptic curve F is determined by
the orders of vanishing at the central point of the L-functions of the symmetric powers of
the modular eigenform attached to E: and conversely: knowledge of the means of all such
weighted sums determines (conjecturally, of course) all those orders of vanishing; i.e., the
arithmetic function k — rg(2k + 1) (cf. (2.6) above).

Is rg(2k + 1) > 2 for only a set of values of k of density 07
— Is rg(2k 4+ 1) > 2 for all but finitely many £’s?

Which weighted sums of local data have finite mean?

— Is there an effective version of the conjecture LI(E)? Le., can we find an explicit positive
function ®(H,T) such that for every linear combination of the form

14
Z Ajj
j=1

with the A; ’s rational numbers of height < H and the «y; ’s positive imaginary parts
< T of the complex zeroes of the L function L(E, s), we have an inequality of the form

> Al > ®(H,T)?
j=1

[[idea — instead just define ®(H,T') to be the min of the finitely many possible linear
combinations, and ask about the behavior of ®. Is there some clever algorithm to get
information about this?]]

11
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