
R-analysis (Brown)

f ∈ C0{a} short for f continuous at a
intervals (x− r, x+ r) sometimes notated (x± r) or Brx
subsets proper unless ⊆

1.1.

1.1.1 Show equivalance of the following:

• (a) N ∈ Op(x) (a neighborhood of x)
• (b) [x± δ] ⊂ N
• (c) [x± n−1] ⊂ N

Proof. ∃δ′ : (x− δ′, x+ δ′) ⊂ N .
Defining δ = 1

3δ
′, [x− δ, x+ δ] ⊂ x− δ′, x+ δ′) ⊂ N

(a) =⇒ (b)

Fixing δ < 1,∃n : 1 < nδ =⇒ n−1 < δ and [x± n−1] ⊂ [x± δ] ⊂ N
(b) =⇒ (c)
(c) =⇒ (a)

�

1.1.2 Prove Int(FinSet) = ∅.

Proof. let x, y be distinct points and fix ε = 1
3 infx,y∈S d(x, y) > 0.

d(x, x+ ε) < infS d(x, y) =⇒ x± ε /∈ S. �

1.1.3 Prove Int(A ∩B) = IntA ∩ IntB.

Proof. Holds trivially for empty sets. elements satifying x+ ε2 ≤ x+ ε′ ∈ IntA, x+
ε′′ ∈ IntB are exactly IntA ∩ IntB. The interior of the intersection are elements
x+ ε1 : ε1 = inf{ε′, ε′′} ie simultaneously interior A ∩B
Clearly x + ε2 ≤ x + ε1 =⇒ IntA ∩ IntB ⊂ Int(A ∩ B) and for nonempty
A,B, Int(A ∩B) ⊂ IntA ∩ IntB. Therefore, Int(A ∩B) = IntA ∩ IntB �

1.1.4 Does the converse, Int(A ∪B) = IntA ∪ IntB hold? No.
Consider A = [0, 1), B = [1, 2] : Int(A ∪B) = (0, 2) 6= IntA ∪ IntB = (0, 2)− {1}

1.1.5 Does Int
⋂
Ai =

⋂
IntAi?

Proof. Use induction. from 1.1.3, Int(A ∩B) = IntA ∩ IntB.
Int (Ai ∩ (

⋂
Ai−1)) = Int(

⋂
Ai). Conversely, IntAi ∩ Int

⋂
Ai−1 =

⋂
IntAi. �

1.1.6-8. Show neighborhoods preserve addition, multiplication and inverse opera-
tions.

Proof. 1.1.6 (addition) Setting

ε1 = ε2 =
ε

3

(a+ ε1) + (b+ ε2) = (a+ b) + 2
3ε < (a+ b) + ε �

1.1.7 (multiplication) [works for ε ≤ 1] Setting

ε1 = ε2 = inf

{
????,

ε

2
inf

{
1,

1

a+ b

}}
1



2

(a+ ε1)(b+ ε2) =

{
ab+ 1

2ε+ 1
4ε

2 < ab+ 3
4ε

1
a+b ≤ 1

ab+ ε
2 (a+ b) + 1

4ε
2 < ab+ ε

2 + 1
4ε

2 1
a+b > 1

�

1.1.8 (multiplicative inverses) �

1.1.9 Prove Int(IntA) = IntA.

Proof. asdf �

1.1.10 Show there are exactly 14 subsets generated by the complementation and Int
operators from base sets A1, A2, A3.

1.2. f continuous at a: ∀Vf(a)∃Ua : f [Ua] ⊂ V ⇐⇒ limx→a f(x) = f(a)

1.2.1 For f, g ∈ C0{a},∃?h, h′|a ∈ C0 : h = f + g, h′ = f ∗ g ∈ C0, fg .

Proof. Fix δ := min{δ′, δ′′}, h(x) := f(x) + g(x).
Then h(x+ δ) = f(x+ δ) + g(x+ δ) ≤ f(x) + g(x) + ε′ + ε′′ �

1.2.2 Prove squeeze, demonstrate with x sin 1
x .

Proof. asdf �

1.2.3 Prove f |A∩N ∈ C0{a} =⇒ f ∈ C0{a}.

Proof. asdf �

1.2.4 Show f(x) := x, x ∈ [0, 1); f(x) := x − 1, x ∈ [2, 3] continuous and injective
but f−1 6∈ C0{1}.

Proof. asdf �

1.2.5 Prove monotone bij function f : [a, b]→ [c, d] continuous.

Proof. asdf �

1.2.6 f ∈ End(R), show f ∈ C0R ⇐⇒ f−1IntA ⊂ Intf−1[A].

Proof. asdf �

1.2.7 Show equivalance of the following:

• (a) f ∈ C0{0}
• (b) ∀ε > 0,∃δ : f(a− δ, a+ δ) ⊂ (f(a)− ε, f(a) + ε)
• (c) ∀n ∈ N,∃m : f(a−m−1, a+m−1) ⊂ (f(a)− n−1, f(a) + n−1)

Proof. asdf �

1.2.8 (Gluing theorem) Suppose there exists a function.

f : A→ R : f |A1,A2
∈ C0{0}, A =

⋃
Ai, a ∈

⋂
Ai

Proof. poof �

1.2.9 Prove
∣∣homC0 [I,R]

∣∣ 6∈ ℵ0.
Proof. Try iso from R to I to R then compound map is an R-automorphism, the
constant functions should be uncountable and continuous. �

1.3 More Int, Ext and Fr.


