R-ANALYSIS (BROWN)

 $f \in C^0{a}$ short for f continuous at aintervals (x - r, x + r) sometimes notated $(x \pm r)$ or B_x^r subsets proper unless \subseteq

1.1.

1.1.1 Show equivalance of the following:

- (a) $N \in Op(x)$ (a neighborhood of x)
- (b) $[x \pm \delta] \subset N$ (c) $[x \pm n^{-1}] \subset N$

Proof. $\exists \delta' : (x - \delta', x + \delta') \subset N.$ Defining $\delta = \frac{1}{3}\delta', [x - \delta, x + \delta] \subset x - \delta', x + \delta') \subset N$ $(a) \implies (b)$

Fixing $\delta < 1, \exists n : 1 < n\delta \implies n^{-1} < \delta$ and $[x \pm n^{-1}] \subset [x \pm \delta] \subset N$ $(b) \implies (c)$ $(c) \implies (a)$

1.1.2 Prove $Int(\mathbf{FinSet}) = \emptyset$.

Proof. let x, y be distinct points and fix $\epsilon = \frac{1}{3} \inf_{x,y \in S} d(x,y) > 0$. $d(x, x + \epsilon) < \inf_S d(x, y) \implies x \pm \epsilon \notin S.$

1.1.3 Prove $Int(A \cap B) = IntA \cap IntB$.

Proof. Holds trivially for empty sets. elements satisfying $x + \epsilon_2 \leq x + \epsilon' \in IntA, x + \epsilon_2$ $\epsilon'' \in IntB$ are exactly $IntA \cap IntB$. The interior of the intersection are elements $x + \epsilon_1 : \epsilon_1 = \inf\{\epsilon', \epsilon''\}$ is simultaneously interior $A \cap B$ Clearly $x + \epsilon_2 \leq x + \epsilon_1 \implies IntA \cap IntB \subset Int(A \cap B)$ and for nonempty $A, B, Int(A \cap B) \subset IntA \cap IntB$. Therefore, $Int(A \cap B) = IntA \cap IntB$

1.1.4 Does the converse, $Int(A \cup B) = IntA \cup IntB$ hold? No. Consider $A = [0, 1), B = [1, 2] : Int(A \cup B) = (0, 2) \neq IntA \cup IntB = (0, 2) - \{1\}$

1.1.5 Does $Int \cap A_i = \bigcap IntA_i$?

Proof. Use induction. from 1.1.3, $Int(A \cap B) = IntA \cap IntB$. $Int(A_i \cap (\bigcap A_{i-1})) = Int(\bigcap A_i)$. Conversely, $IntA_i \cap Int \bigcap A_{i-1} = \bigcap IntA_i$.

1.1.6-8. Show neighborhoods preserve addition, multiplication and inverse operations.

Proof. 1.1.6 (addition) Setting

$$\epsilon_1 = \epsilon_2 = \frac{\epsilon}{3}$$

 $(a+\epsilon_1)+(b+\epsilon_2)=(a+b)+\frac{2}{3}\epsilon<(a+b)+\epsilon\quad \Box$ 1.1.7 (multiplication) [works for $\epsilon \leq 1$] Setting

$$\epsilon_1 = \epsilon_2 = \inf\left\{ ????, \frac{\epsilon}{2} \inf\left\{1, \frac{1}{a+b}\right\} \right\}$$

$$(a+\epsilon_1)(b+\epsilon_2) = \begin{cases} ab+\frac{1}{2}\epsilon+\frac{1}{4}\epsilon^2 < ab+\frac{3}{4}\epsilon & \frac{1}{a+b} \le 1\\ ab+\frac{\epsilon}{2}(a+b)+\frac{1}{4}\epsilon^2 < ab+\frac{\epsilon}{2}+\frac{1}{4}\epsilon^2 & \frac{1}{a+b} > 1 \end{cases}$$

$$1.1.8 \ (multiplicative \ inverses)$$

1.1.9 Prove Int(IntA) = IntA.

Proof. asdf

1.1.10 Show there are exactly 14 subsets generated by the complementation and Int operators from base sets A_1, A_2, A_3 .

1.2. f continuous at $a: \forall V_{f(a)} \exists U_a : f[U_a] \subset V \iff \lim_{x \to a} f(x) = f(a)$

1.2.1 For
$$f, g \in C^0\{a\}, \exists h, h' | a \in C^0 : h = f + g, h' = f * g \in C^0, \frac{f}{g}$$
.

Proof. Fix $\delta := \min\{\delta', \delta''\}, h(x) := f(x) + g(x).$ Then $h(x+\delta) = f(x+\delta) + g(x+\delta) \le f(x) + g(x) + \epsilon' + \epsilon''$

1.2.2 Prove squeeze, demonstrate with $x \sin \frac{1}{x}$.

Proof. asdf

1.2.3 Prove
$$f|_{A\cap N} \in C^0\{a\} \implies f \in C^0\{a\}$$

Proof. asdf

1.2.4 Show $f(x) := x, x \in [0,1); f(x) := x - 1, x \in [2,3]$ continuous and injective but $f^{-1} \notin C^0\{1\}$.

Proof. asdf

1.2.5 Prove monotone bij function $f : [a, b] \rightarrow [c, d]$ continuous.

Proof. asdf

1.2.6
$$f \in End(\mathbf{R})$$
, show $f \in C^0\mathbf{R} \iff f^{-1}IntA \subset Intf^{-1}[A]$

Proof. asdf

1.2.7 Show equivalance of the following:

- (a) $f \in C^0\{0\}$
- (b) $\forall \epsilon > 0, \exists \delta : f(a \delta, a + \delta) \subset (f(a) \epsilon, f(a) + \epsilon)$ (c) $\forall n \in \mathbf{N}, \exists m : f(a m^{-1}, a + m^{-1}) \subset (f(a) n^{-1}, f(a) + n^{-1})$

Proof. asdf

1.2.8 (Gluing theorem) Suppose there exists a function.

$$f: A \to \mathbf{R}: f|_{A_1, A_2} \in C^0\{0\}, A = \bigcup A_i, a \in \bigcap A_i$$

Proof. poof

1.2.9 Prove $|\hom_{C^0}[\mathbf{I}, \mathbf{R}]| \notin \aleph_0$.

Proof. Try iso from R to I to R then compound map is an R-automorphism, the constant functions should be uncountable and continuous.

1.3 More Int, Ext and Fr.

 \Box