\qquad

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 3 questions for a total of 55 points.

1. For each of the following, find the derivative as indicated.
(a) (5 points) $\frac{d}{d x}\left[\left(\frac{\sqrt{x}}{2}-1\right)^{-10}\right]$

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left[\left(\frac{\sqrt{x}}{2}-1\right)^{-10}\right] & =-10\left(\frac{1}{\sqrt{x}}-1\right)^{-11}\left(\frac{\frac{1}{2} x^{-\frac{1}{2}}}{2}\right) \\
& =-10\left(\frac{1}{\sqrt{x}}-1\right)^{-11}\left(\frac{1}{4 \sqrt{x}}\right)
\end{aligned}
$$

(b) (5 points) $\frac{d}{d r}\left(\sqrt[3]{2 r-r^{3}}\right)$

Solution:

$$
\begin{aligned}
\frac{d}{d r}\left(\sqrt[3]{2 r-r^{3}}\right) & =\frac{1}{3}\left(2 r-r^{3}\right)^{-\frac{2}{3}}\left(2-3 r^{2}\right) \\
& =\frac{2-3 r^{2}}{3 \sqrt[3]{\left(2 r-r^{3}\right)^{2}}}
\end{aligned}
$$

(c) (5 points) Find y^{\prime} if $y=\frac{1}{2 x^{7}+3 x}$

Solution:

$$
\begin{aligned}
y & =\left(2 x^{7}+3 x\right)^{-1} \\
y^{\prime} & =-\left(2 x^{7}+3 x\right)^{-2}\left(14 x^{6}+3\right) \\
& =-\frac{14 x^{6}+3}{\sqrt{2 x^{7}+3 x}}
\end{aligned}
$$

(d) $\left(5\right.$ points) $\frac{d}{d x}\left(\log \left(3 x^{2}-4 x+1\right)\right)$

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(\log \left(3 x^{2}-4 x+1\right)\right)=\frac{d}{d x}\left(\frac{\ln \left(3 x^{2}-4 x+1\right)}{\ln (10)}\right) & = \\
& =\frac{1}{\left(3 x^{2}-4 x+1\right) \ln (10)}(6 x-4) \\
& =\frac{6 x-4}{\left(3 x^{2}-4 x+1\right) \ln (10)}
\end{aligned}
$$

(e) $\left(5\right.$ points) $\frac{d}{d \theta}\left(\left(\theta^{4}-\sqrt{3-4 \theta}\right)^{8}+5 \theta\right)$

Solution:

$$
\begin{aligned}
\frac{d}{d \theta}\left(\left(\theta^{4}-\sqrt{3-4 \theta}\right)^{8}+5 \theta\right) & =8\left(\theta^{4}-\sqrt{3-4 \theta}\right)^{7}\left(4 \theta^{3}-\frac{1}{2}(3-4 \theta)^{-\frac{1}{2}}(-4)\right)+5 \\
& =8\left(\theta^{4}-\sqrt{3-4 \theta}\right)^{7}\left(4 \theta^{3}+2(3-4 \theta)^{-\frac{1}{2}}\right)+5
\end{aligned}
$$

(f) (5 points) Find \dot{x}, if $x(t)=e^{t^{2}+3 t}-\log (2 t)+t^{2}$

Solution:

$$
\begin{aligned}
x(t) & =e^{t^{2}+3 t}-\log (2 t)+t^{2} \\
\dot{x}(t) & =e^{t^{2}+3 t}(2 t+3)-\frac{1}{\ln (10) t} \cdot 2+2 t \\
& =e^{t^{2}+3 t}(2 t+3)-\frac{1}{\ln (10) t}+2 t
\end{aligned}
$$

2. Consider the implicitly defined curve: $y^{4}-4 y^{2}=x^{4}-9 x^{2}$.
(a) (5 points) Find $\frac{d y}{d x}$.

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{4}-4 y^{2}\right. & \left.=x^{4}-9 x^{2}\right) \\
4 y^{3} \frac{d y}{d x}-8 y \frac{d y}{d x} & =4 x^{3}-18 x \\
\frac{d y}{d x}\left(4 y^{3}-8 y\right) & =4 x^{3}-18 x \\
\frac{d y}{d x} & =\frac{4 x^{3}-18 x}{4 y^{3}-8 y}
\end{aligned}
$$

(b) (2 points) What is the value of $\left.\frac{d y}{d x}\right|_{(4,2)}$?

Solution:

$$
\left.\frac{d y}{d x}\right|_{(4,2)}=\frac{4(4)^{3}-18(4)}{4(2)^{3}-8(2)}=\frac{23}{2}
$$

(c) (2 points) What is the value of $\left.\frac{d y}{d x}\right|_{(2,4)}$?

Solution:

$$
\left.\frac{d y}{d x}\right|_{(4,2)}=\frac{4(2)^{3}-18(2)}{4(4)^{3}-8(4)}=-\frac{1}{56}
$$

(d) (8 points) Find the equation of the lines tangent to the implicit curve when $x=-3$. You will have exactly three lines for this problem.

Solution: To begin solving this problem, first the points where $x=-3$ must be found. By substituting $x=-3$ into the implicit function, the equation becomes $y^{4}-4 y^{2}=0$. Solving this equation, we get the solutions $y=-2,0,2$. This means the function has the following points when $x=-3:(-3,-2),(-3,0),(-3,2)$. Now the slopes at each of the points must be found using $\frac{d y}{d x}$.

$$
\left.\frac{d y}{d x}\right|_{(-3,-2)}=\left.\frac{27}{8} \quad \frac{d y}{d x}\right|_{(-3,0)}=\text { undefined }\left.\quad \frac{d y}{d x}\right|_{(-3,2)}=-\frac{27}{8}
$$

Using these three slopes and the given points, we have the following lines

$$
\left.\begin{array}{rlrl}
y+2 & =\frac{27}{8}(x+3) & x=-3 & y-2
\end{array}\right)=-\frac{27}{8}(x+3)
$$

3. If you drop a pebble into a large lake, you will cause a circle of ripples to expand outward. The area $A=A(t)$ and radius $r=r(t)$ are both function of t (they change over time) and are related by the formula $A=\pi r^{2}$.
(a) (4 points) If r is measured in inches and t is measured in seconds, what are the units of $\frac{d A}{d t}$? What are the units of $\frac{d A}{d r}$?

Solution:

$$
\frac{d A}{d t}=\frac{\mathrm{in}^{2}}{\mathrm{sec}} \quad \frac{d A}{d t}=\frac{\mathrm{in}^{2}}{\mathrm{in}}=\mathrm{in}
$$

(b) (4 points) Find $\frac{d A}{d t}$ and explain in pratical terms the meaning of $\left.\frac{d A}{d t}\right|_{t=2}$.

Solution: Using implicit differentiation, we can find that $\left.\frac{d A}{d t}\right|_{t=2}=\left.2 \pi r \frac{d r}{d t}\right|_{t=2}$. This means that at $t=2$, the change in the area, with respect to time, is increasing at a rate of $\left.2 \pi r(2) \frac{d r}{d t}\right|_{t=2}$.

Additionally, we can interpret $\left.\frac{d A}{d t}\right|_{t=2}$ as the direct proportional relationship between the radius and change in the radius with respect to time 2 seconds after the pebble was dropped into the water.

