of Document

Name of Author

June 17, 2021

1 Terminology

$1.1 \quad \mathrm{~T} 1$

a divides b, or $a \mid b$, means $a \equiv 0(\bmod b) . a / b$ has a remainder of 0

$1.2 \quad \mathrm{~T} 2$

a is congruent to b modulo m, or $a \equiv b(\bmod m)$, means when a is divided by m there is a remainder of b.

2 Exploration

2.1 E1

- a. The base seven equivalent of 97 is 166 . The base seven equivalent of 512 is 1331 .
- b. $(365+104=502)_{7}$
- c. The integer is divisible by 7 if a_{0} is 0 . The integer is divisible by 6 if the sum of the base- 7 digits, $a_{n}+a_{(n-1)}+\ldots a_{1}+1_{0}$ is divisible by 6 . This is because $7^{n}-1$ is always divisible by 6 .

The integer is divisible by 8 if alternating adding and subtracting the digits, $a_{n}-a_{(n-1)}+a_{(n-2)} \ldots a_{0}$, is divisible by 8 .

$2.2 \quad \mathrm{E} 2$

$1,2,4,8,16,31 \ldots$ kinda 2^{n} regions?

3 Numerical Problems

3.1 N1

- a. $519=163 \times 3+30$
$163=30 \times 5+13$
1
- b. $\mathrm{x}=121 \mathrm{y}=-38$

3.2 N 2

$221=65 \times 3+26$
$65=26 \times 2+13$
$26=13 \times 2$
$\operatorname{gcd}(221,65)=13$
$13=65-26^{*} 2$
$26=221-65^{*} 3$
$13=65-\left(221-65^{*} 3\right) * 2=65-221^{*} 2+65^{*} 6=65^{*} 7+221^{*}(-2)$
this means all multiples of 13 can be expressed this way

3.3 N3

$\mathrm{x}=1016 \mathrm{y}=-3081,4388$

4 Additional Topics

4.1 A1
$1+3\left(5+1 \frac{1}{\left.2+\frac{1}{3+\frac{1}{4}}\right)^{5+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}}\right.$

