Open Problems in Combinatorial Representation Theory

Mike Zabrocki York University

joint work with Rosa Orellana

Combinatorial representation theory

Basic outline of this talk

Representation theory 101, characters and how they relate to symmetric functions and algebraic combinatorics

List 3-4 of the 'first question' open problems in combinatorial representation theory Kronecker, restriction, inner/outer plethysm

Show how to compute examples in Sage

Lessons learned

A representation refers to a **homomorphism** from a group or algebra into the ring of matrices. Equivalently, we can think of a representation as an **action** of the group or algebra on a vector space.

A representation refers to a **homomorphism** from a group or algebra into the ring of matrices. Equivalently, we can think of a representation as an **action** of the group or algebra on a vector space.

$$C_2 = \{id, a\}$$
 with $a^2 = id$

A representation refers to a **homomorphism** from a group or algebra into the ring of matrices. Equivalently, we can think of a representation as an **action** of the group or algebra on a vector space.

$$C_2 = \{id, a\}$$
 with $a^2 = id$

$$\phi_i(id) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\phi_1(a) = \begin{bmatrix} 3 & 0 & 4 \\ 0 & 1 & 0 \\ -2 & 0 & -3 \end{bmatrix} \qquad \phi_2(a) = \begin{bmatrix} -5 & 4 & -4 \\ -4 & 3 & -4 \\ 2 & -2 & 1 \end{bmatrix} \qquad \phi_3(a) = \begin{bmatrix} -3 & 0 & -4 \\ -2 & -1 & -4 \\ 2 & 0 & 3 \end{bmatrix}$$

Two representations $\psi(g), \rho(g)$ are equivalent if there is a matrix A such that $A\psi(g)A^{-1}=\rho(g)$

$$C_2 = \{id, a\}$$
 with $a^2 = id$

$$\phi_i(id) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\phi_1(a) = \begin{bmatrix} 3 & 0 & 4 \\ 0 & 1 & 0 \\ -2 & 0 & -3 \end{bmatrix} \qquad \phi_2(a) = \begin{bmatrix} -5 & 4 & -4 \\ -4 & 3 & -4 \\ 2 & -2 & 1 \end{bmatrix} \qquad \phi_3(a) = \begin{bmatrix} -3 & 0 & -4 \\ -2 & -1 & -4 \\ 2 & 0 & 3 \end{bmatrix}$$

Two representations $\psi(g), \rho(g)$ are equivalent if there is a matrix A such that $A\psi(g)A^{-1}=\rho(g)$

character of a representation = trace of the matrix

$$C_2 = \{id, a\}$$
 with $a^2 = id$

$$\phi_i(id) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\phi_1(a) = \begin{bmatrix} 3 & 0 & 4 \\ 0 & 1 & 0 \\ -2 & 0 & -3 \end{bmatrix} \qquad \phi_2(a) = \begin{bmatrix} -5 & 4 & -4 \\ -4 & 3 & -4 \\ 2 & -2 & 1 \end{bmatrix} \qquad \phi_3(a) = \begin{bmatrix} -3 & 0 & -4 \\ -2 & -1 & -4 \\ 2 & 0 & 3 \end{bmatrix}$$

Two representations $\ \psi(g), \rho(g)$ are equivalent if there is a matrix A such that $A\psi(g)A^{-1}=\rho(g)$

character of a representation = trace of the matrix

Fun fact: the character *characterizes* the representation

$$C_2 = \{id, a\}$$
 with $a^2 = id$

$$\phi_i(id) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\phi_1(a) = \begin{bmatrix} 3 & 0 & 4 \\ 0 & 1 & 0 \\ -2 & 0 & -3 \end{bmatrix} \qquad \phi_2(a) = \begin{bmatrix} -5 & 4 & -4 \\ -4 & 3 & -4 \\ 2 & -2 & 1 \end{bmatrix} \qquad \phi_3(a) = \begin{bmatrix} -3 & 0 & -4 \\ -2 & -1 & -4 \\ 2 & 0 & 3 \end{bmatrix}$$

Ring of symmetric functions

polynomials in variables x_1, x_2, \ldots, x_n such that

$$f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = f(x_1, x_2, \dots, x_n)$$

OR

polynomials in generators p_1, p_2, p_3, \ldots

$$p_k$$
 represents $x_1^k + x_2^k + \dots + x_n^k$

```
sage: Sym = SymmetricFunctions(QQ); Sym
Symmetric Functions over Rational Field
sage: p = Sym.powersum(); p
Symmetric Functions over Rational Field in the powersum basis
```

Examples of symmetric functions in Sage

```
sage: Sym = SymmetricFunctions(QQ); Sym
Symmetric Functions over Rational Field
sage: p = Sym.p(); p
Symmetric Functions over Rational Field in the powersum basis
sage: s = Sym.s(); s
Symmetric Functions over Rational Field in the Schur basis
sage: (p[1,1]/2+p[2]/2)*p[3]
1/2*p[3, 1, 1] + 1/2*p[3, 2]
sage: p(s[2,2])
1/12*p[1, 1, 1, 1] + 1/4*p[2, 2] - 1/3*p[3, 1]
sage: s[2]*s[2]
s[2, 2] + s[3, 1] + s[4]
sage: s(p[2,2])
-s[1, 1, 1, 1] - s[2, 1, 1] + s[3, 1] + s[4]
```

Characters are symmetric functions

representations

compose/decompose direct sum of matrices

product/inverse of matrices

tensor product of matrices

restrict/induct

composition

symmetric functions

sum

product

Kronecker product

composition (plethysm)

coproduct

Representations¹ can be broken down into irreducible components

irreducible representations of certain groups the characters are known and forms a basis for the space of symmetric functions

general linear Gl_n	Schur functions	s_{λ}
orthogonal \mathcal{O}_n	"universal characters"	o_{λ}
symplectic Sp_n		sp_{λ}

1. certain restrictions apply

Representations¹ can be broken down into irreducible components

irreducible representations of certain groups the characters are known and forms a basis for the space of symmetric functions

general linear	Gl_n	Schur functions	s_{λ}
orthogonal	O_n	"universal characters"	o_{λ}
symplectic	Sp_n		sp_{λ}

Fun fact: a symmetric function is a positive linear combination of irreducibles iff it is a character of a representation

1. certain restrictions apply

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

Q: if you take tensor of two irreducible Gln reps, how do they decompose?

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

Q: if you take tensor of two irreducible Gln reps, how do they decompose?

A: $c_{\lambda\mu}^{\nu} \quad \text{Littlewood-Richardson rule} \\ \quad - \text{combinatorial description}$

$$s_{\lambda}s_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} s_{\nu}$$

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

Q: if you take tensor of two irreducible Gln reps, how do they decompose?

A: $c^{\nu}_{\lambda\mu}$ Littlewood-Richardson rule - combinatorial description

$$s_{\lambda}s_{\mu} = \sum c_{\lambda\mu}^{\nu} s_{\nu}$$

Note: rule for "universal characters" similar ν

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

Q: if you take tensor of two irreducible Sn reps, how do they decompose?

$$tr(A \otimes B) = tr(A)tr(B)$$

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix}$$

Q: if you take tensor of two irreducible Sn reps, how do they decompose?

A:

Open problem #1:

this is called the Kronecker product problem no satisfying rule seems to exist for this decomposition except in special cases

Representations can be broken down into irreducible components

irreducible representations of certain groups the characters are known and forms a basis for the space of symmetric functions

general linea	r Gl_n	Schur functions	s_{λ}
orthogonal	O_n	"universal characters"	O_{λ}
symplectic	Sp_n		sp_{λ}
symmetric	S_n	"irreducible symmetric group character"	\widetilde{s}_{λ}

the irreducible character basis encodes combinatorics of multi-set valued tableaux

the structure coefficients of this basis are the (reduced) Kronecker coefficients

$$S_n \subseteq Gl_n$$

The symmetric group realized as permutation matrices sits inside of the general linear group

$$S_n \subseteq Gl_n$$

The symmetric group realized as permutation matrices sits inside of the general linear group

Q: How does an irreducible Gln representation decompose as an Sn irreducible representation?

Open problem #2:

$$S_n \subseteq Gl_n$$

The symmetric group realized as permutation matrices sits inside of the general linear group

Q: How does an irreducible Gln representation decompose as an Sn irreducible representation?

A: translated in terms of characters: expand a Schur function terms of the irreducible character basis

column strict tableaux × ? ← → multiset tableaux

```
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: st = Sym.irreducible_symmetric_group_character()
sage: st[1]*st[2,1]
st[1, 1] + st[1, 1, 1] + st[2] + 2*st[2, 1] + st[2, 1, 1] + st[2, 2] +
st[3] + st[3, 1]
sage: st(s[2,1])
st[] + 3*st[1] + 2*st[1, 1] + 2*st[2] + st[2, 1]
```

```
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: st = Sym.irreducible_symmetric_group_character()
sage: st[1]*st[2,1]
st[1, 1] + st[1, 1, 1] + st[2] + 2*st[2, 1] + st[2, 1, 1] + st[2, 2] +
st[3] + st[3, 1]
sage: st(s[2,1])
st[] + 3*st[1] + 2*st[1, 1] + 2*st[2] + st[2, 1]
```

"Sage is the best thing out there for doing symmetric functions"

Open problem #3:

A: translated in terms of characters: expand the plethysm of two Schur functions in terms of Schur functions

Open problem #3:

A: translated in terms of characters: expand the plethysm of two Schur functions in terms of Schur functions

$$(f+g)[h] = f[h] + g[h]$$

$$(f \cdot g)[h] = f[h]g[h]$$

$$p_k[f+g] = p_k[f] + p_k[g]$$

$$p_k[p_r] = p_{kr}$$

Open problem #3:

A: translated in terms of characters: expand the plethysm of two Schur functions in terms of Schur functions

$$(f+g)[h]=f[h]+g[h]$$
 "outer" plethysm
$$(f\cdot g)[h]=f[h]g[h]$$
 $p_k[f+g]=p_k[f]+p_k[g]$
$$s_{\lambda}[s_{\mu}]=\sum_{\nu}g_{\lambda\mu}^{\nu}s_{\nu}$$
 $p_k[p_r]=p_{kr}$

```
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
```

sage: s[2,1](s[2,2])

```
s[3, 2, 2, 2, 2, 1] + s[3, 3, 2, 2, 1, 1] + s[3, 3, 3, 2, 1] + s[4, 2, 2, 2, 2] + s[4, 3, 2, 1, 1, 1] + 2*s[4, 3, 2, 2, 1] + s[4, 3, 3, 1, 1] + s[4, 3, 3, 2] + s[4, 4, 2, 1, 1] + 2*s[4, 4, 2, 2, 2] + s[4, 4, 3, 1] + s[5, 2, 2, 2, 1] + s[5, 3, 2, 1, 1] + s[5, 3, 2, 2] + s[5, 3, 3, 1] + s[5, 4, 1, 1, 1] + 2*s[5, 4, 2, 1] + s[5, 4, 3] + s[5, 5, 1, 1] + s[6, 3, 2, 1] + s[6, 4, 2] + s[6, 5, 1]
```

Lesson learned in preparing this talk

```
sage: st[1,1](s[2])
```

AttributeError: 'sage.rings.integer' object has no attribute '_monomial_coefficients'

Lesson learned in preparing this talk

```
sage: st[1,1](s[2])
AttributeError: 'sage.rings.integer.Integer' object has no attribute '_monomial_coefficients'
sage: (p[2]+p[[]])(s[2])
AttributeError: 'sage.rings.integer.Integer' object has no attribute '_monomial_coefficients'
```

Lesson learned in preparing this talk

```
sage: st[1,1](s[2])
AttributeError: 'sage.rings.integer.Integer' object has no attribute '_monomial_coefficients'
sage: (p[2]+p[[]])(s[2])
AttributeError: 'sage.rings.integer.Integer' object has no attribute '_monomial_coefficients'
```

what to do?

```
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()

sage: s[2,1](s[2,2])

s[3, 2, 2, 2, 2, 1] + s[3, 3, 2, 2, 1, 1] + s[3, 3, 3, 2, 1] + s[4, 2, 2, 2, 2] + s[4, 3, 2, 1, 1, 1] + 2*s[4, 3, 2, 2, 1] + s[4, 3, 3, 1, 1] + s[4, 3, 3, 2] + s[4, 4, 2, 1, 1] + 2*s[4, 4, 2, 2] + s[4, 4, 3, 1] + s[5, 2, 2, 2, 1] + s[5, 3, 2, 1, 1] + s[5, 3, 2, 2] + s[5, 3, 3, 1] + s[5, 4, 1, 1, 1] + 2*s[5, 4, 2, 1] + s[5, 4, 3] + s[5, 5, 1, 1] + s[6, 3, 2, 1] + s[6, 4, 2] + s[6, 5, 1]
```

Q: How does the composition of GIn and Sn representation decompose as Sn representations?

```
sage: st = Sym.irreducible_symmetric_group_character()
sage: st(s[2,1](st[2]))

2*st[1] + 4*st[1, 1] + 3*st[1, 1, 1] + st[1, 1, 1, 1] + 5*st[2] + 9*st[2, 1] + 5*st[2, 1, 1] +
st[2, 1, 1, 1] + 5*st[2, 2] + 2*st[2, 2, 1] + 4*st[3] + 7*st[3, 1] + 3*st[3, 1, 1] + 3*st[3, 2]
+ st[3, 2, 1] + 3*st[4] + 3*st[4, 1] + st[4, 2] + st[5] + st[5, 1]
```

"inner" plethysm
$$s_{\lambda}[ilde{s}_{\mu}] = \sum_{
u} d_{\lambda\mu}^{
u} ilde{s}_{
u}$$