Introduction to research based coding in SageMath

Jessica Striker
 North Dakota State University

June 29, 2016

Why contribute to Sage?

- Benefit to the community

Why contribute to Sage?

- Benefit to the community
- Benefit to you!

Why contribute to Sage?

- Benefit to the community
- Benefit to you!
- Don't lose your code

Why contribute to Sage?

- Benefit to the community
- Benefit to you!
- Don't lose your code
- Advertise your work

Why contribute to Sage?

- Benefit to the community
- Benefit to you!
- Don't lose your code
- Advertise your work
- Enable others to build on your code/research, so then you can build on their code/research

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method
(4) Further alternating sign matrix research/code
(5) Research: Posets and rowmotion
(6) Code: Posets and rowmotion code

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method

44 Further alternating sign matrix research/code
(5) Research: Posets and rowmotion
(6) Code: Posets and rowmotion code

Alternating sign matrix definition

Definition

Alternating sign matrices (ASMs) are square matrices with the following properties:

- entries $\in\{0,1,-1\}$
- each row and each column sums to 1
- nonzero entries alternate in sign along a row/column

$$
\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Examples of alternating sign matrices

- All seven of the $3 \times 3 \mathrm{ASMs}$.

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

- Two of the forty-two 4×4 ASMs.

$$
\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

A large random ASM

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & -1 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Enumeration

- In 1983, W. Mills, D. Robbins, and H. Rumsey conjectured that $n \times n$ ASMs are counted by:

$$
\begin{gathered}
\prod_{j=0}^{n-1} \frac{(3 j+1)!}{(n+j)!}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!\cdots(2 n-1)!} . \\
1,2,7,42,429,7436,218348,10850216, \ldots
\end{gathered}
$$

- This was proved in 1996, independently, by
D. Zeilberger and G. Kuperberg. Kuperberg's proof introduced the following connection to physics.

Physics connection - Square ice

Alternating sign matrices are in bijection with configurations of the six-vertex model with domain wall boundary conditions.

Known alternating sign matrix bijections

$$
\begin{aligned}
& \text { ASM Monotone triangle } \\
& \text { Height function }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 2 & 3 \\
2 & 1 & 2 & 3 & 2 \\
3 & 2 & 3 & 2 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Six-vertex model Fully-packed loop

Alternating sign matrices

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Alternating sign matrices \rightarrow fully-packed loops

Fully-packed loops

Fully-packed loops

Start with an $n \times n$ grid.

Fully-packed loops

Add boundary conditions.

Fully-packed loops

Interior vertices adjacent to 2 edges.

Gyration on fully-packed loops

Given a square in the grid, the local move swaps the configurations below and leaves every other edge configuration fixed.

Gyration on fully-packed loops

Gyration on fully-packed loops

Start with the even squares.

Gyration on fully-packed loops

Apply the local move to all even squares.

Gyration on fully-packed loops

Apply the local move to all even squares.

Gyration on fully-packed loops

Apply the local move to all even squares.

Gyration on fully-packed loops

Now consider the odd squares.

Gyration on fully-packed loops

Apply the local move to all odd squares.

Gyration on fully-packed loops

Apply the local move to all odd squares.

Gyration on fully-packed loops

Apply the local move to all odd squares.

Gyration rotates the link pattern (B. Wieland 2000)

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method
(4) Further alternating sign matrix research/code
(5) Research: Posets and rowmotion
(6) Code: Posets and rowmotion code

Writing methods for combinatorial classes

- First, write a function that does what you want it to do.
- Then write some documentation and examples (tests).
- *Add it to your local Sage source code to test (on a new git branch).
- *When everything works, pull a trac ticket and push your code to the trac server.
*Kevin's talk on Friday

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method
(4) Further alternating sign matrix research/code
(5) Research: Posets and rowmotion
(6) Code: Posets and rowmotion code

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method
(4) Further alternating sign matrix research/code
(5) Research: Posets and rowmotion
(6) Code: Posets and rowmotion code

A missing bijection

Definition

Totally Symmetric Self-Complementary Plane Partitions are:

- Plane Partitions
- Totally Symmetric (invariant under all permutations of the axes)
- Self-Complementary (inside $2 n \times 2 n \times 2 n$ box)

A missing bijection

- All seven of the TSSCPPs inside a $6 \times 6 \times 6$ box.

A missing bijection

Totally symmetric self-complementary plane partitions inside a $2 n \times 2 n \times 2 n$ box are also counted by $\prod_{j=0}^{n-1} \frac{(3 j+1)!}{(n+j)!}$ (Andrews 1994), but no explicit bijection is known.

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Known TSSCPP bijections

Lattice paths
Order ideal

Permutation case progress (S. 2014)

TSSCPP

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method
(4) Further alternating sign matrix research/code

(5) Research: Posets and rowmotion

(6) Code: Posets and rowmotion code

Posets

A poset is a partially ordered set.

Definition

A poset is a set with a partial order " \leq " that is reflexive, antisymmetric, and transitive.

Order ideals

Definition

An order ideal of a poset P is a subset $I \subseteq P$ such that if $y \in I$ and $z \leq y$, then $z \in I$.

Ordered by inclusion, order ideals form a distributive lattice, denoted $J(\mathcal{P})$.

The distributive lattice of order ideals $J(P)$

ASM height functions

All seven of the height functions of order 3 .

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 1 & 2 \\
2 & 1 & 2 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 1 & 2 \\
2 & 3 & 2 & 1 \\
3 & 2 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{lllll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 2 \\
2 & 1 & 2 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 2 \\
2 & 3 & 2 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Alternating sign matrix poset (EKLP 1992)

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Alternating sign matrix poset (EKLP 1992)

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) \\
& \backslash\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right) \backslash \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right) \\
& \backslash\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Alternating sign matrix poset (EKLP 1992)

Alternating sign matrix poset (EKLP 1992)

Alternating sign matrix poset (EKLP 1992)

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

Alternating sign matrix poset

$n \times n$ ASMs are in bijection with order ideals in this poset with $n-1$ layers, as constructed above.

Alternating sign matrix poset

Theorem (Lascoux and Schützenberger 1996)

The restriction of the ASM poset to permutations is the Bruhat order. In fact, is the smallest lattice containing the Bruhat order on the symmetric group as a subposet.

TSSCPP poset

O

TSSCPP poset

TSSCPPs inside a $2 n \times 2 n \times 2 n$ box are in bijection with order ideals in this poset with $n-1$ layers, as constructed above.

ASM and TSSCPP posets (S. 2011)

ASM and TSSCPP posets (S. 2011)

ASM

TSSCPP

Tetrahedral poset family (S. 2011)

Rowmotion

Definition

Let P be a poset, and let $I \in J(P)$. Then rowmotion, Row (I), is the order ideal generated by the minimal elements of P not in I.

An order ideal /

Rowmotion

Definition

Let P be a poset, and let $I \in J(P)$. Then rowmotion, Row (I), is the order ideal generated by the minimal elements of P not in I.

Find the minimal elements of P not in I

Rowmotion

Definition

Let P be a poset, and let $I \in J(P)$. Then rowmotion, Row (I), is the order ideal generated by the minimal elements of P not in I.

Use them to generate a new order ideal Row(I)

Outline

(1) Research: Alternating sign matrices
(2) Code: Alternating sign matrix methods
(3) Implement a new alternating sign matrix method
(4) Further alternating sign matrix research/code
(5) Research: Posets and rowmotion
(6) Code: Posets and rowmotion code

Promotion, rowmotion, and gyration

Theorem (N. Williams and S. 2012)
In any ranked poset, there is an equivariant bijection between the order ideals under rowmotion and promotion.

Corollary

Gyration on fully-packed loops and rowmotion on the ASM poset have the same orbit structure!

