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Preface

Additive Combinatorics

This book deals with additive combinatorics, a vibrant area of current mathematical re-
search. Additive combinatorics—an offspring of combinatorial number theory and additive
number theory—can be described as the study of combinatorial properties of sumsets (col-
lections of sums with terms from given subsets) in additive structures. For example, given a
subset A in an abelian group G, one can consider the sumset A+A consisting of all two-term
sums of the elements of A, and then ask how small this sumset may be; furthermore, given
that A+A is small, one can examine what can be said about the structure of A.

Additive combinatorics is a rather new field within mathematics that is just now coming
to its own; although some of its results have been known for a very long time, many of its
most fundamental questions have only been settled recently or are still unsolved. For exam-
ple, the question about the minimum size of A + A mentioned above was first determined
in groups of prime order by Cauchy in 1813 (then re-discovered by Davenport over a hun-
dred years later), but it has only been determined in the general setting in the twenty-first
century. For this and many other reasons, additive combinatorics provides an excellent area
for research by students of any background: it has intriguing and promising questions for
everyone.

Student Research

Student research in mathematics has been increasing dramatically at all levels over the past
several decades. Producing research is an expectation at all doctoral programs in mathemat-
ics, and it appears that the number of publications before students graduate has increased
substantially in recent years. The National Science Foundation (NSF) is sponsoring the
popular Research Experiences for Undergraduates (REU) program, and undergraduate re-
search is indeed blossoming at many colleges and universities. There are even organized
mathematics research programs for students in high school, such as PRIMES, held at the
Massachusetts Institute of Technology and online nationally, and PROMYS, held at Boston
University and at the University of Oxford.

The benefits and costs of student research in mathematics have been described
elsewhere—see, for example, the report [146] of the Committee on the Undergraduate Pro-
gram (CUPM) of the Mathematical Association of America (MAA). While the need for an
ample inventory of questions for student research is clear, it is often noted how challeng-
ing it is to produce an appropriate supply. Indeed, there are quite a few demands on such
questions; in the view of this author (see [12]), they are most appropriate when they are:

• based on substantial topics—students should be engaged in the study of non-trivial
and not-too-esoteric mathematics;

• challenging at a variety of different levels—students with different backgrounds and

xi
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interests should be able to engage in the projects;

• approachable with a variety of different methods—students interested in theoretical,
computational, abstract, or concrete work should be able to choose their own ap-
proaches;

• incrementally attainable, where at least partial results are within reach yet complete
solutions are not easy—no student would want to spend long hours of hard work and
not feel productive; and

• new and unsolved—the results attained by the students would have to be, at least in
theory, publishable.

I believe that the problems in the book abide by these objectives.

About This Book

In this book we interpret additive combinatorics, somewhat narrowly, as the study of sum-
sets in finite abelian groups. (A second volume, focusing on the set of integers and other
infinite groups, is in the planning phase.) This book offers an extensive menu of research
projects to any student interested in pursuing investigations in this area. It contains five
parts that we briefly describe, as follows.

Ingredients. We make no assumptions on the backgrounds of students wishing to en-
gage in research projects based on this collection. In order to equip beginners with the
necessary background, we provide brief introductions to the relevant branches of number
theory, combinatorics, and group theory. The sections in each chapter contain exercises
aimed to solidify the understanding of the material discussed.

Appetizers. The short articles in this part are meant to invite everyone to the main
entrees of the menu; the appetizers are carefully chosen so that they provide bite-size rep-
resentative samples of the research projects, as well as make connections to other parts of
mathematics that students might have encountered. (One article describes how this author’s
research in spherical geometry led him to additive combinatorics.)

Sides. Here we present and study some auxiliary functions that appear in several dif-
ferent chapters of the text.

Entrees. Each chapter in this main part of the book discusses a particular family of
open questions in additive combinatorics. At the present time, these questions are about

– maximum sumset size,
– spanning sets,
– Sidon sets,
– minimum sumset size,
– critical numbers,
– zero-sum-free sets, and
– sum-free sets.

(We plan to include additional chapters in the near future.) Each chapter is divided into the
same four sections, depending on whether the sums may contain repeated terms or not and
whether terms can be both added and subtracted or can only be added; each section is then
further divided into the same three subsections depending on the number of terms in the
sums: whether it is fixed, limited, or is arbitrary. Within most subsections, we investigate
both direct questions (e.g., what is the maximum size of a set with the required sumset
property?) and inverse questions (how can we characterize all subsets that achieve this
maximum size?).

Many of the questions we discuss have been investigated extensively already, in which
case we include all relevant results that are available to the best of our knowledge. We find
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it essential that our expositions are complete, and the author is committed to continually
surveying the literature to assure that the material remains current. (For a variety of reasons,
this is not always an easy task: as is often the case with relatively young fields, results appear
in a diverse set of outlets, are often presented using different notations and terminology,
and, occasionally, are even incorrect.)

While we aim to present each topic as thoroughly as possible, this book is not a historical
survey. In particular, in most cases, we only include the best results known on any given
question; previously achieved special cases and weaker or partial results can then usually
be found in the citations we provide. Furthermore, any reader with an interest in a more
contextual treatment of our topics or a desire to see them from different perspectives is
encouraged to turn to one of the available books on the subject, such as [87] by Freiman,
[98] by Geroldinger and Ruzsa, [103] by Grynkiewicz, [105] by Guy, [109] by Halberstam
and Roth, [161] by Nathanson, or [195] by Tao and Vu.

Pudding. The proofs are in the pudding!—well, not quite. The book contains several
hundred stated results; most of these results have been published, in which case we give
citations where proofs (as well as further material) can be read. In other cases, results have
not appeared elsewhere; proofs of these statements—unless rather brief and particularly
instructive, in which case they are presented where the results are stated—are separated
into this part of the book.
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Notations

Following is the list of the most commonly used notations throughout this book.

Chapter 1: Number theory

Number sets:

Integers: Z = {0,±1,±2,±3, . . .}
Nonnegative integers: N0 = {0, 1, 2, 3, . . .}
Positive integers: N = {1, 2, 3, . . .}
Interval: [a, b] = {c ∈ Z | a ≤ c ≤ b} for given a, b ∈ Z with a ≤ b

Divisors:

D(n) = {d ∈ N | d|n} for a given n ∈ N

d(n) = |D(n)| for a given n ∈ N

gcd(a, b) = max(D(a) ∩D(b)) for given a, b ∈ N

gcd(A) = max{d ∈ N | ∀a ∈ A, d|n} for a given finite A ⊂ N

Chapter 2: Combinatorics

Counting functions:

nm = n(n+ 1) · · · (n+m− 1) and n0 = 1 for n ∈ N0 and m ∈ N

nm = n(n− 1) · · · (n−m+ 1) and n0 = 1 for n ∈ N0 and m ∈ N(
n
m

)
= nm

m! = n(n−1)···(n−m+1)
m! for n,m ∈ N0[

n
m

]
= nm

m! = n(n+1)···(n+m−1)
m! for n,m ∈ N0

Some other useful counting functions:

a(j, k) =
∑

i≥0

(
j
i

)(
k
i

)
2i =

{
1 if j = 0 or k = 0

a(j − 1, k) + a(j − 1, k − 1) + a(j, k − 1) if j ≥ 1 and k ≥ 1

c(j, k) =
∑

i≥0

(
j−1
i−1

)(
k
i

)
2i =

{
1 if j = 0 and k ≥ 0
0 if j ≥ 1 and k = 0

c(j − 1, k) + c(j − 1, k − 1) + c(j, k − 1) if j ≥ 1 and k ≥ 1

Layers of the integer lattice:

Nm
0 (h) = {(λ1, . . . , λm) ∈ Nm

0 | Σm
i=1λi = h}

Zm(h) = {(λ1, . . . , λm) ∈ Zm | Σm
i=1|λi| = h}

N̂m
0 (h) = {(λ1, . . . , λm) ∈ {0, 1}m | Σm

i=1λi = h}
Ẑm(h) = {(λ1, . . . , λm) ∈ {−1, 0, 1}m | Σm

i=1|λi| = h}

xv
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Chapter 3: Group theory

Finite abelian groups:

Zn: cyclic group of order n using additive notation

G: (arbitrary) abelian group of order n using additive notation

r: rank of G (number of factors in the invariant decomposition of G)

κ: exponent of G (order of largest factor in the invariant decomposition of G)

Elements and subsets:

ordG(a) = min{d ∈ N | da = 0}
Ord(G, d) = {a ∈ G | ordG(a) = d}
〈a〉 = {λa | λ ∈ [1, ordG(a)]}
A = {a1, . . . , am}: (arbitrary) m-subset of G

〈A〉 = {Σm
i=1λiai | λi ∈ [1, ordG(ai)]}

Unrestricted sumsets:

hA = {Σm
i=1λiai | λi ∈ N0,Σλi = h}

[0, s]A = ∪s
h=0hA = {Σm

i=1λiai | λi ∈ N0,Σλi ≤ s}
〈A〉 = ∪∞

h=0hA = {Σm
i=1λiai | λi ∈ N0}

Unrestricted signed sumsets:

h±A = {Σm
i=1λiai | λi ∈ Z,Σ|λi| = h}

[0, s]±A = ∪s
h=0h±A = {Σm

i=1λiai | λi ∈ Z,Σ|λi| ≤ s}
〈A〉 = ∪∞

h=0h±A = {Σm
i=1λiai | λi ∈ Z}

Restricted sumsets:

ĥ A = {Σm
i=1λiai | λi ∈ {0, 1},Σλi = h}

[0, s]̂ A = ∪s
h=0ĥ A = {Σm

i=1λiai | λi ∈ {0, 1},Σλi ≤ s}
ΣA = ∪∞

h=0ĥ A = {Σm
i=1λiai | λi ∈ {0, 1}}

Σ∗A = ∪∞
h=1ĥ A = {Σm

i=1λiai | λi ∈ {0, 1},Σλi ≥ 1}

Restricted signed sumsets:

h±̂A = {Σm
i=1λiai | λi ∈ {−1, 0, 1},Σ|λi| = h}

[0, s]±̂A = ∪s
h=0h±̂A = {Σm

i=1λiai | λi ∈ {−1, 0, 1},Σ|λi| ≤ s}
Σ±A = ∪∞

h=0h±̂A = {Σm
i=1λiai | λi ∈ {−1, 0, 1}}

Σ∗
±A = ∪∞

h=1h±̂A = {Σm
i=1λiai | λi ∈ {−1, 0, 1},Σ|λi| ≥ 1}

Sides

vg(n, h) = max
{(⌊

d−1−gcd(d,g)
h

⌋
+ 1
)
· n
d | d ∈ D(n)

}
for given n, h, g ∈ N

v±(n, h) = max
{(

2 ·
⌊
d−2
2h

⌋
+ 1
)
· n
d | d ∈ D(n)

}
for given n, h ∈ N

u(n,m, h) = min
{(

h ·
⌈
m
d

⌉
− h+ 1

)
· d | d ∈ D(n)

}
for given n,m, h ∈ N

Chapter A: Maximum sumset size

A.1: Unrestricted sumsets:

ν(G,m, h) = max{|hA| | A ⊆ G, |A| = m}
ν(G,m, [0, s]) = max{|[0, s]A| | A ⊆ G, |A| = m}
ν(G,m,N0) = max{|〈A〉| | A ⊆ G, |A| = m}
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A.2: Unrestricted signed sumsets:
ν±(G,m, h) = max{|h±A| | A ⊆ G, |A| = m}
ν±(G,m, [0, s]) = max{|[0, s]±A| | A ⊆ G, |A| = m}
ν±(G,m,N0) = max{|〈A〉| | A ⊆ G, |A| = m}

A.3: Restricted sumsets:
ν (̂G,m, h) = max{|ĥ A| | A ⊆ G, |A| = m}
ν (̂G,m, [0, s]) = max{|[0, s]̂ A| | A ⊆ G, |A| = m}
ν (̂G,m,N0) = max{|ΣA| | A ⊆ G, |A| = m}
A.4: Restricted signed sumsets:
ν±̂(G,m, h) = max{|h±̂A| | A ⊆ G, |A| = m}
ν±̂(G,m, [0, s]) = max{|[0, s]±̂A| | A ⊆ G, |A| = m}
ν±̂(G,m,N0) = max{|Σ±A| | A ⊆ G, |A| = m}

Chapter B: Spanning sets

B.1: Unrestricted sumsets:
φ(G, h) = min{|A| | A ⊆ G, hA = G}
φ(G, [0, s]) = min{|A| | A ⊆ G, [0, s]A = G}
φ(G,N0) = min{|A| | A ⊆ G, 〈A〉 = G}
B.2: Unrestricted signed sumsets:
φ±(G, h) = min{|A| | A ⊆ G, h±A = G}
φ±(G, [0, s]) = min{|A| | A ⊆ G, [0, s]±A = G}
φ±(G,N0) = min{|A| | A ⊆ G, 〈A〉 = G}
B.3: Restricted sumsets:
φ̂ (G, h) = min{|A| | A ⊆ G, ĥ A = G}
φ̂ (G, [0, s]) = min{|A| | A ⊆ G, [0, s]̂ A = G}
φ̂ (G,N0) = min{|A| | A ⊆ G,ΣA = G}
B.4: Restricted signed sumsets:
φ±̂(G, h) = min{|A| | A ⊆ G, h±̂A = G}
φ±̂(G, [0, s]) = min{|A| | A ⊆ G, [0, s]±̂A = G}
φ±̂(G,N0) = min{|A| | A ⊆ G,Σ±A = G}

Chapter C: Sidon sets

C.1: Unrestricted sumsets:
σ(G, h) = max

{
|A| | A ⊆ G, |hA| = |Nm

0 (h)| =
(
m+h−1

h

)}

σ(G, [0, s]) = max
{
|A| | A ⊆ G, |[0, s]A| = Σs

h=0|Nm
0 (h)| =

(
m+s
s

)}

C.2: Unrestricted signed sumsets:
σ±(G, h) = max {|A| | A ⊆ G, |h±A| = |Zm(h)| = c(h,m)}
σ±(G, [0, s]) = max {|A| | A ⊆ G, |[0, s]±A| = Σs

h=0|Zm(h)| = a(m, s)}
C.3: Restricted sumsets:
σ (̂G, h) = max

{
|A| | A ⊆ G, |ĥ A| = |N̂m

0 (h)| =
(
m
h

)}

σ (̂G, [0, s]) = max
{
|A| | A ⊆ G, |[0, s]̂ A| = Σs

h=0|N̂m
0 (h)| = Σs

h=0

(
m
h

)}

σ (̂G,N0) = max
{
|A| | A ⊆ G, |ΣA| = Σm

h=0|N̂m
0 (h)| = 2m

}
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C.4: Restricted signed sumsets:

σ±̂(G, h) = max
{
|A| | A ⊆ G, |h±̂A| = |Ẑm(h)| =

(
m
h

)
2h
}

σ±̂(G, [0, s]) = max
{
|A| | A ⊆ G, |[0, s]±̂A| = Σs

h=0|Ẑm(h)| = Σs
h=0

(
m
h

)
2h
}

σ±̂(G,N0) = max
{
|A| | A ⊆ G, |Σ±A| = Σm

h=0|Ẑm(h)| = 3m
}

Chapter D: Minimum sumset size

D.1: Unrestricted sumsets:

ρ(G,m, h) = min{|hA| | A ⊆ G, |A| = m}
ρ(G,m, [0, s]) = min{|[0, s]A| | A ⊆ G, |A| = m}
ρ(G,m,N0) = min{|〈A〉| | A ⊆ G, |A| = m}

D.2: Unrestricted signed sumsets:

ρ±(G,m, h) = min{|h±A| | A ⊆ G, |A| = m}
ρ±(G,m, [0, s]) = min{|[0, s]±A| | A ⊆ G, |A| = m}
ρ±(G,m,N0) = min{|〈A〉| | A ⊆ G, |A| = m}

D.3: Restricted sumsets:

ρ̂ (G,m, h) = min{|ĥ A| | A ⊆ G, |A| = m}
ρ̂ (G,m, [0, s]) = min{|[0, s]̂ A| | A ⊆ G, |A| = m}
ρ̂ (G,m,N0) = min{|ΣA| | A ⊆ G, |A| = m}

D.4: Restricted signed sumsets:

ρ±̂(G,m, h) = min{|h±̂A| | A ⊆ G, |A| = m}
ρ±̂(G,m, [0, s]) = min{|[0, s]±̂A| | A ⊆ G, |A| = m}
ρ±̂(G,m,N0) = min{|Σ±A| | A ⊆ G, |A| = m}

Chapter E: The critical number

E.1: Unrestricted sumsets:

χ(G, h) = min{m | A ⊆ G, |A| = m ⇒ hA = G}
χ(G, [0, s]) = min{m | A ⊆ G, |A| = m ⇒ [0, s]A = G}
χ(G,N0) = min{m | A ⊆ G, |A| = m ⇒ 〈A〉 = G}

E.2: Unrestricted signed sumsets:

χ±(G, h) = min{m | A ⊆ G, |A| = m ⇒ h±A = G}
χ±(G, [0, s]) = min{m | A ⊆ G, |A| = m ⇒ [0, s]±A = G}
χ±(G,N0) = min{m | A ⊆ G, |A| = m ⇒ 〈A〉 = G}

E.3: Restricted sumsets:

χ̂ (G, h) = min{m | A ⊆ G, |A| = m ⇒ ĥ A = G}
χ̂ (G, [0, s]) = min{m | A ⊆ G, |A| = m ⇒ [0, s]̂ A = G}
χ̂ (G,N0) = min{m | A ⊆ G, |A| = m ⇒ ΣA = G}

E.4: Restricted signed sumsets:

χ±̂(G, h) = min{m | A ⊆ G, |A| = m ⇒ h±̂A = G}
χ±̂(G, [0, s]) = min{m | A ⊆ G, |A| = m ⇒ [0, s]±̂A = G}
χ±̂(G,N0) = min{m | A ⊆ G, |A| = m ⇒ Σ±̂A = G}
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Chapter F: Zero-sum-free sets

F.1: Unrestricted sumsets:
τ(G, h) = max{|A| | A ⊆ G, 0 6∈ hA}
τ(G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]A}
F.2: Unrestricted signed sumsets:
τ±(G, h) = max{|A| | A ⊆ G, 0 6∈ h±A}
τ±(G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]±A}
F.3: Restricted sumsets:
τ (̂G, h) = max{|A| | A ⊆ G, 0 6∈ ĥ A}
τ (̂G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]̂ A}
τ (̂G,N) = max{|A| | A ⊆ G, 0 6∈ [1,m]̂ A}
F.4: Restricted signed sumsets:
τ ±̂(G, h) = max{|A| | A ⊆ G, 0 6∈ h±̂A}
τ ±̂(G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]±̂A}
τ ±̂(G,N) = max{|A| | A ⊆ G, 0 6∈ [1,m]±̂A}

Chapter G: Sum-free sets

G.1: Unrestricted sumsets:
µ(G, {k, l}) = max{|A| | A ⊆ G, kA ∩ lA = ∅}
µ(G, [0, s]) = max{|A| | A ⊆ G, 0 ≤ l < k ≤ s ⇒ kA ∩ lA = ∅}
G.2: Unrestricted signed sumsets:
µ±(G, {k, l}) = max{|A| | A ⊆ G, k±A ∩ l±A = ∅}
µ±(G, [0, s]) = max{|A| | A ⊆ G, 0 ≤ l < k ≤ s ⇒ k±A ∩ l±A = ∅}
G.3: Restricted sumsets:
µ̂ (G, {k, l}) = max{|A| | A ⊆ G, k̂ A ∩ l̂ A = ∅}
µ̂ (G, [0, s]) = max{|A| | A ⊆ G, 0 ≤ l < k ≤ s ⇒ k̂ A ∩ l̂ A = ∅}
µ̂ (G,N0) = max{|A| | A ⊆ G, 0 ≤ l < k ⇒ k̂ A ∩ l̂ A = ∅}
G.4: Restricted signed sumsets:
µ±̂(G, {k, l}) = max{|A| | A ⊆ G, kA ∩ lA = ∅}
µ±̂(G, [0, s]) = max{|A| | A ⊆ G, 0 ≤ l < k ≤ s ⇒ k±̂A ∩ l±̂A = ∅}
µ±̂(G,N0) = max{|A| | A ⊆ G, 0 ≤ l < k ⇒ k±̂A ∩ l±̂A = ∅}
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Part I

Ingredients

1
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3

This book deals with additive combinatorics, a vibrant area of current mathematical
research. Additive combinatorics—which grew out of combinatorial number theory and
additive number theory—here is interpreted, somewhat narrowly, as the study of combi-
natorial properties of sumsets in abelian groups. In Chapters 1, 2, and 3 we provide brief
introductions to the relevant branches of number theory, combinatorics, and group theory,
respectively. The sections in each chapter contain exercises aimed to solidify the under-
standing of the material discussed.
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Chapter 1

Number theory

Number theory, at least in its most traditional form, is the branch of mathematics that
studies the set of integers:

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .},

or one of its subsets, such as the set of nonnegative integers:

N0 = {0, 1, 2, 3, 4, 5, . . .}

or the set of positive integers:

N = {1, 2, 3, 4, 5, 6, . . .}.

The field of number theory occupies a distinguished spot within mathematics: the Ger-
man mathematician Carl Friedrich Gauss (1777–1855) even dubbed it the “Queen of Math-
ematics.” Some of the reasons for this distinction is that it (or she?) manages to simulta-
neously possess the following seemingly contradictory attributes:

• although a substantial amount of the terminology and the methods in number theory,
at least at the introductory level, are quite simple and need very little background,
number theory reaches into some of the deepest and most complex areas of mathe-
matics;

• even though many of its questions and problems are easy to present, number theory
has a cornucopia of impossibly difficult unsolved questions, some hundreds of years
old;

• though number theory may be the oldest branch of mathematics and has always had
a large number of devotees, it remains one of the most active and perplexing fields
within mathematics with new developments and results being published every day.

Below we review some of the foundations of number theory that we will rely on later.

1.1 Divisibility of integers

The most fundamental concept in number theory is probably divisibility: Given two integers
a and b, we say that a is a divisor of b (or b is divisible by a) whenever there is an integer
c for which a · c = b. If a is a divisor of b, we write a|b.

5
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For example, 3|6 and 6|6, but 6 6 |3. (We must be clear with our terminology: 3 is not
divisible by 6, but of course 3 can be divided by 6; in the set Q of rational numbers—
fractions of integers—the concept of divisibility is trivial in that every rational number is
divisible by every nonzero rational number.) Also, 5|0, since 5 · 0 = 0; in fact, 0|0, since (for
example) 0 · 7 = 0. But 0 6 |5, since there is no integer c for which 0 · c = 5 because for every
real number c, 0 · c = 0. As it is often the case with mathematical definitions, one needs to
be careful: saying that a is a divisor of b is not quite equivalent to saying that the fraction
b/a is an integer: 0 is a divisor of 0, but 0/0 is not an integer (it’s not even a number)!

In theory, for each integer n, we can easily find the set of its positive divisors, denoted
by D(n). For example, we have

D(18) = D(−18) = {1, 2, 3, 6, 9, 18}

and
D(19) = D(−19) = {1, 19}.

Finding the divisors of large positive integers can be very difficult. Cryptography, the study
of encoding and decoding information, takes advantage of the dichotomy that multiplying
two large integers (as sometimes used in encoding) is easy, but factoring the product without
knowing any of the factors (i.e., decoding) could be, if the factors are chosen carefully, very
hard!

Given an integer n, we denote the number of its positive divisors by d(n); that is, we set

d(n) = |D(n)|.

For instance, as the examples above show, we have d(18) = d(−18) = 6 and d(19) =
d(−19) = 2. Clearly, d(n) is always positive as 1|n for every integer n. The function d(n)
allows us to separate the set of integers into four classes:

• units have exactly one positive divisor,

• prime numbers have exactly two positive divisors,

• composite numbers have three or more positive divisors, and

• zero has infinitely many positive divisors.

There are two units among the integers: 1 and −1 divide all integers, but have only one
positive divisor. The set of prime numbers

P = {±2,±3,±5,±7,±11,±13,±17,±19, . . .},

as we explain shortly, forms the basic building block of the set of integers. Primes have
been studied for thousands of years. They have many intriguing attributes, some of which
are not fully understood to this day. For those interested in more on primes may start
their investigations with [188], the On-Line Encyclopedia of Integer Sequences; the positive
primes appear as the sequence A000040.

Given two positive integers a and b, we define their greatest common divisor, denoted
by gcd(a, b), to be the greatest integer that is a divisor of both a and b; in other words,

gcd(a, b) = max(D(a) ∩D(b)).

A pair of integers is said to be relatively prime if their greatest common divisor is 1. The
dual concept is the least common multiple of two positive integers: it is the smallest positive
integer that is a multiple of both of them. The least common multiple of integers a and b is
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denoted by lcm(a, b). It is not hard to see that all pairs of positive integers have a unique
greatest common divisor as well as a least common multiple.

Exercises

1. Characterize all integers n for which

(a) d(n) = 3,

(b) d(n) = 4,

(c) d(n) = 5.

2. (a) The concepts of greatest common divisor and least common multiple of two
positive integers can be extended to three or more positive integers. Find
gcd(24, 32, 60) and lcm(24, 32, 60).

(b) Find positive integers a, b, c, and d that are relatively prime, but no two of them
are relatively prime (that is, gcd(a, b, c, d) = 1, but gcd(a, b) > 1, gcd(a, c) > 1,
etc.).

1.2 Congruences

As a generalization of divisibility, we may consider situations where an integer leaves a
remainder when divided by another integer. More precisely, given a positive integer m, we
say that an integer a leaves a remainder r when divided by m, if there is an integer k for
which a = m ·k+r and 0 ≤ r ≤ m−1; in this case we sometimes also say that a is congruent
to r mod m and write a ≡ r mod m. For example, both 13 and 1863 are congruent to 3
mod 10, and so is −57 as it can be written as 10 · (−6)+3. (Recall that any remainder mod
10 must be between 0 and 9, inclusive.) It is not hard to see that for any positive integer m
and for any integer a, one can determine a unique remainder r that a is congruent to mod
m.

A bit more generally, given a positive integer m, we say that two integers are congruent
mod m if they leave the same remainder when divided by m. For example, 13 and 1863 are
congruent mod 10, since they both leave a remainder of 3 when divided by 10; we denote
this by writing 13 ≡ 1863 mod 10. In fact, all positive integers with a last decimal digit of
3 and all negative integers with a last digit of 7 are congruent to each other, and they form
the congruence class of

[3]10 = {10k + 3 | k ∈ Z} = {. . . ,−27,−17,−7, 3, 13, 23, 33, . . .}.

Congruence classes allow us to partition the set of integers in a natural way; for example,
we have

Z = [0]10 ∪ [1]10 ∪ [2]10 ∪ [3]10 ∪ [4]10 ∪ [5]10 ∪ [6]10 ∪ [7]10 ∪ [8]10 ∪ [9]10.

Since, for a given m ∈ N, the remainder r may be any integer value between 0 and m− 1,
we have exactly m congruence classes mod m; these classes are disjoint and their union
contains every integer. For example, the congruence classes [0]2 and [1]2 contain the even
and the odd integers, respectively; the fact that any integer must be either even or odd but
not both can be expressed by saying that [0]2 and [1]2 form a partition of Z.

Congruence classes play a prominent role in additive combinatorics, and we will return
to their study shortly.
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Exercises

1. Find all integers between −100 and 100 that are in the congruence class [7]33.

2. (a) Find integers a, b, c, and d for which the congruence classes [a]2, [b]4, [c]8, and
[d]8 partition Z. (To be a partition, every integer must belong to exactly one
congruence class.)

(b) Partition Z into exactly five congruence classes where four of the five moduli are
distinct. (It is a well-known result that the moduli cannot all be distinct.)

1.3 The Fundamental Theorem of Number Theory

In general, there may be many ways to factor an integer into a product of other integers. In
fact, if we allow 1 or −1 to appear as factors, then every integer has infinitely many different
factorizations. For example, factorizations of 18 include 1 · 18, 1 · (−1) · (−18), 2 · 3 · 3, and
3 · 6. Here and in the next section we briefly discuss two of these factorizations (namely,
generalizations of the last two factorizations of 18 that we listed).

First, there is what is referred to as the prime factorization of an integer. According
to the Fundamental Theorem of Number Theory, every integer n with n ≥ 2 is either a
(positive) prime or can be expressed as a product of positive primes; furthermore, this
factorization into primes is essentially unique (that is, there is only one factorization if we
ignore the order of the prime factors or the possibility of using their negatives). So, for
example, the prime factorization of 18 is 2 · 3 · 3. In general, the prime factorization of an
integer n with n ≥ 2 can be written as

n = p1 · p1 · · · p1︸ ︷︷ ︸
α1

· p2 · p2 · · · p2︸ ︷︷ ︸
α2

· · · · · pk · pk · · · pk︸ ︷︷ ︸
αk

,

where p1, p2, . . . , pk are the distinct prime factors of n and α1, α2, . . . , αk are positive inte-
gers. This prime factorization is often turned into the prime-power factorization

n = pα1

1 · pα2

2 · · · · · pαk

k ;

for example, the prime-power factorization of 18 is 2 ·32. (If n has only a single prime factor
p that appears α times in its factorization, we simply write n = pα.) Note that n = 1, of
course, has no prime or prime-power factorization.

The prime and prime-power factorizations of integers are very useful and appear often in
discussions. For example, they allow us to quickly see if an integer b is divisible by another
integer a: this is the case if, and only if, each of the prime factors of a appears in b as well
and at least as many times as it does in a. For example,

18 = 2 · 32

is a factor of
252 = 22 · 32 · 7,

but not of
840000 = 27 · 3 · 55 · 7.

It also helps us compute the greatest common divisor and the least common multiple of
two integers explicitly; for instance, given the prime-power factorizations of 252 and 840000
above, we immediately see that

gcd(252, 840000) = 22 · 3 · 7
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and
lcm(252, 840000) = 27 · 32 · 55 · 7.

(We mention, in passing, that

gcd(252, 840000) · lcm(252, 840000) = 29 · 33 · 55 · 72 = 252 · 840000,

exemplifying the general fact that the product of the gcd and the lcm of two integers equals
the product of the two integers.)

Exercises

1. (a) Find d(1225).

(b) Suppose that p and k are positive integers and p is a prime. Find, in terms of p
and k, d(pk).

(c) Find a formula for d(n) for an arbitrary n ∈ N in terms of its prime factorization.

2. Let us define, for a given n ∈ N, m ∈ N, and i = 0, 1, . . . ,m− 1, the set

Dm,i(n) = {d ∈ D(n) | d ≡ i (m)}

and, if Dm,i(n) 6= ∅, let
fm,i(n) = minDm,i(n).

(a) Find f3,1(1225) and f3,2(1225).

(b) Explain why f3,2(n) is a prime number for every n ∈ N for which D3,2(n) 6= ∅.
(c) Is f3,1(n) also a prime number for every n ∈ N for which D3,1(n) 6= ∅?
(d) For each value of i = 0, 1, 2, 3, decide if f4,i(n) must be a prime or not whenever

D4,i(n) 6= ∅.
(e) For each value of i = 0, 1, 2, 3, 4, decide if f5,i(n) must be a prime or not whenever

D5,i(n) 6= ∅.

1.4 Multiplicative number theory

The branch of number theory commonly referred to as multiplicative number theory deals
with the various ways that integers can be factored into products of other integers. The
Fundamental Theorem of Number Theory, discussed above, plays a key role. The prime
factorization and the prime-power factorization of an integer are only two of the many
different factorizations; here we discuss some others that we will use later.

First, a common generalization of the prime factorization and the prime-power factor-
ization: the so-called primary factorization. Indeed, the prime factorization

n = p1 · p1 · · · p1︸ ︷︷ ︸
α1

· p2 · p2 · · · p2︸ ︷︷ ︸
α2

· · · · · pk · pk · · · pk︸ ︷︷ ︸
αk

and prime-power factorization

n = pα1

1 · pα2

2 · · · · · pαk

k

of an integer n ≥ 2 can be considered the two extremes of the (potentially) many different
primary factorizations of the form

n = n1 · n2 · · · · · nk
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where each factor ni is a product of (one or more) prime powers with base pi (here i =
1, 2, . . . , k). For example, the number n = 18 has only two primary factorizations, the prime
factorization (2) · (3 · 3) and the prime-power factorization (2) · (32), but a number such as
n = 840000 = 27 · 3 · 55 · 7 has many, for example,

840000 = (2 · 23 · 23) · (3) · (5 · 54) · (7)

and
840000 = (22 · 22 · 23) · (3) · (5 · 5 · 53) · (7).

(Our parentheses indicate factors n1, n2, etc.)
One can enumerate the number of primary factorizations of a given integer n, as follows.

Let us first consider the case when n is a prime power itself; for example, let us examine
n = 32 = 25. It is easy to see that 25 has seven primary factorizations:

2 · 2 · 2 · 2 · 2 = 2 · 2 · 2 · 22 = 2 · 2 · 23 = 2 · 22 · 22 = 2 · 24 = 22 · 23 = 25.

More generally, if n = pα for some prime p and positive integer α, then the number of
primary factorizations of n agrees with the number of ways that α can be written as the
sum of positive integers (where the order of the terms is irrelevant). Denoting this quantity
by p(α), we find the following values.

α 1 2 3 4 5 6 7 8 9
p(α) 1 2 3 5 7 11 15 22 30

For example, p(5) = 7 as the ways to write 5 as the sum of positive integers are

1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 2 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 4 = 2 + 3 = 5.

Consequently, any number of the form p5 with prime base p has seven primary factorizations.
The function p(α) is called the partition function; it plays an important role in mathe-

matics in various ways, but, unfortunately, there is no closed formula for it. For more values
and information, see sequence A000041 in the On-Line Encyclopedia of Integer Sequences
[188].

In general, we can see that if the prime-power factorization of n is

n = pα1

1 · pα2

2 · · · · · pαk

k ,

then the number of primary factorizations of n equals

p(α1) · p(α2) · · · · · p(αk).

Therefore,
n = 840000 = 27 · 3 · 55 · 7

has
p(7) · p(1) · p(5) · p(1) = 15 · 1 · 7 · 1 = 105

different primary factorizations.
Related to primary factorizations, we have the so-called invariant factorizations. We say

that
n = n1 · n2 · · · · · nr

is an invariant factorization of the integer n ≥ 2, if either r = 1, or r ≥ 2 with n1 ≥ 2, and
ni|ni+1 holds for each i = 1, 2, . . . , r − 1. For example, 18 has two invariant factorizations,
3 · 6 and 18 itself; 840000, however, has many more, for instance,

840000 = (2) · (23 · 5) · (23 · 3 · 54 · 7)
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and

840000 = (22 · 5) · (22 · 5) · (23 · 3 · 53 · 7).
(As before, our parentheses indicate factors n1, n2, etc.)

There is a nice one-to-one correspondence between primary factorizations and invariant
factorizations. Producing a primary factorization from an invariant factorization is easy:
one can simply order and group the prime powers involved according to their prime bases.
For example, the primary factorization that we get from

(2) · (23 · 5) · (23 · 3 · 54 · 7)

is

(2 · 23 · 23) · (3) · (5 · 54) · (7).
To get an invariant factorization from a primary factorization, start by setting the largest

factor of the invariant factorization equal to the product of the largest factors of each of
the factors in the primary factorization, follow that by the second largest factors, and so
on. For example, for the primary factorization

(22 · 22 · 23) · (3) · (5 · 5 · 53) · (7),

we see that the largest invariant factor equals 23 · 3 · 53 · 7, the next one is 22 · 5, and then
22 · 5 again, yielding the invariant factorization

(22 · 5) · (22 · 5) · (23 · 3 · 53 · 7).

Primary factorizations and invariant factorizations will enable us to classify all finite
abelian groups—see Chapter 3.

Exercises

1. Find p(10).

2. (a) How many primary factorizations and how many invariant factorizations does 72
have?

(b) Find all primary factorizations and invariant factorizations of 72.

1.5 Additive number theory

In contrast to multiplicative number theory that deals with ways in which positive integers
factor into products of other positive integers, additive number theory is concerned with
ways that positive integers can be expressed as sums of certain other positive integers.

In a typical setting, one is given a set A of positive integers, and asks whether every
positive integer can be written as a sum of terms all in A. In further variations of this
question, one may restrict the total number of terms in the sum or the number of times
that a particular element of A may occur in a sum.

Regarding this latter restriction: the two most frequent variations are where we allow
any element of A to appear an arbitrary number of times and when each element may occur
only at most once. For a given n ∈ N, A ⊆ N and H ⊆ N, we introduce the notation
p(n,A,H) to denote the number of ways that n can be written as a sum of elements of
A, where the total number of terms in the sum must be an element of H , but there is
no restriction on the number of times that elements may appear; similarly, p̂ (n,A,H) will
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denote the number of those sums where the total number of terms in the sum must be an
element of H , but where each element of A may appear at most once.

For instance, one can verify that there are three ways to write 11 as a sum of either
three or four terms, where each term is 2, 3, 6, or 7:

7 + 2 + 2, 6 + 3 + 2, 3 + 3 + 3 + 2,

thus
p(11, {2, 3, 6, 7}, {3, 4}) = 3,

but
p̂ (11, {2, 3, 6, 7}, {3, 4}) = 1,

as only the sum 6 + 3 + 2 has distinct terms.
A more familiar example is the case when A = N and H = N; that is, the terms may be

arbitrary positive integers, and we have no restrictions on the number of terms in the sum
or the number of times that a particular term may appear. In this case, we get the partition
function p(n) introduced on page 10, so

p(n,N,N) = p(n).

For instance,
p(5,N,N) = p(5) = 7,

as 5 can be written as

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

If we allow only sums where the terms are distinct, we get p̂ (n,N,N); in the case of n = 5,
we see that p̂ (5,N,N) = 3 as only the first three sums above contain distinct terms. As
we noted on page 10, no closed formula exists for p(n), though its values for small n and
various estimates for higher n are known. There is also no closed formula for p̂ (n,N,N),
although we should mention the remarkable fact that the number of ways to partition a
positive integer into distinct parts equals the number of its partitions into odd parts; that
is,

p̂ (n,N,N) = p(n,O,N).

(We denote the set of odd positive integers here by O.) Indeed, we see that 5 has three
partitions comprised of only odd terms.

Keeping A = N and putting no restrictions on the number of times that elements of A
may appear in a sum, but limiting the total number of possible terms to at most s (for some
s ∈ N), we get the function p(n,N, [1, s]). (As usual, we denote the set H = {1, 2, . . . , s}
by [1, s].) For example, we see that p(5,N, [1, 3]) = 5 since five of the sums above contain
no more than three terms. We have no closed formula for p(n,N, [1, s]), though we have
another remarkable identity:

p(n,N, [1, s]) = p(n, [1, s],N);
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that is, for all positive integers n and s, the number of partitions of n into at most s parts
equals the number of partitions of n into parts that do not exceed s. For example, just
like we had five ways to partition 5 into at most three parts, we have five partitions where
each part is at most 3. These are just some of the many amazing identities involving the
partition function.

In closing this section, we mention some other interesting examples. The famous Gold-
bach Conjecture asserts that every positive even number is the sum of at most two positive
primes; denoting the set of positive primes by P and the set of positive even integers by E,
this conjecture can be presented to say that

p(n, P, [1, 2]) ≥ 1

holds for all n ∈ E. While several partial results have been achieved, the Goldbach Con-
jecture remains as one of the oldest and most famous unsolved problems in mathematics.
Very recently, Helfgott solved the related Weak Goldbach Conjecture: that

p(n, P, [1, 3]) ≥ 1

for all n ∈ O and n > 1 (see [118]; this work has not been published in a refereed journal
yet).

For a fixed positive integer k, let Sk denote the set {1k, 2k, 3k, . . . } of all k-th powers of
positive integers. Waring’s Problem asks for the smallest positive integer s, usually denoted
by g(k), for which

p(n, Sk, [1, s]) ≥ 1

for all n ∈ N; that is, the smallest s for which it is true that every positive integer can be
written as at most s k-th powers. (Equivalently, we may include 0k as an element of Sk in
which case g(k) is the minimum value of h for which

p(n, Sk, {h}) ≥ 1

for all n ∈ N.) For example, g(2) = 4: as the Four Squares Theorem or Lagrange’s Theorem
asserts, every positive integer can be written as the sum of at most four positive squares
(or, equivalently, as the sum of exactly 4 nonnegative squares). To see that g(2) cannot be
less than 4, observe that n = 7 (and infinitely many other n) indeed requires four squares.
We also know that g(3) = 9, g(4) = 19, and many other values of g(k), but the question of
finding all values is still open today.

Our final famous example is the so-called Money Changing Problem. Suppose that we
are given a finite set A of relatively prime positive integers; we want to find the largest
positive integer n, denoted by f(A), for which

p(n,A,N) = 0;

that is, the largest positive integer n that cannot be written as a sum of elements of A. (The
reason for the name of the problem should be obvious.) Note that if the elements of A are
not relatively prime, then f(A) does not exist; this is the case, for example, if all elements
of A are even, as only even numbers can be partitioned into even terms. On the other hand,
one can show that if the elements of A are relatively prime, then f(A), called the Frobenius
number of A, exists. For example, with A = {5, 8}, we find that f(A) = 27 as 27 cannot be
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written as a sum of 5’s and 8’s, but every number greater than 27 can be:

28 = 4 · 5 + 1 · 8,
29 = 1 · 5 + 3 · 8,
30 = 6 · 5 + 0 · 8,
31 = 3 · 5 + 2 · 8,
32 = 0 · 5 + 4 · 8,
33 = 5 · 5 + 1 · 8,
34 = 2 · 5 + 3 · 8,

and so on. In general, if A = {a, b} (and gcd(a, b) = 1), then f(A) = ab − a − b; similar
formulas for the case when |A| > 2 are not known.

Exercises

1. (a) Verify that, as listed on page 10, p(7,N,N) = p(7) = 15.

(b) Verify that p̂ (7,N,N) = p(7,O,N).

(c) Verify that p(7,N, [1, 3]) = p(7, [1, 3],N).

2. (a) Prove that the Weak Goldbach Conjecture follows from the Goldbach Conjecture.

(b) Prove that the Weak Goldbach Conjecture implies that

p(n, P, [1, 4]) ≥ 1

holds for all n ∈ N and n > 1.

3. (a) Prove that g(3) ≥ 9 by finding a positive integer n for which p(n, S3, [1, 8]) = 0.

(b) Prove that g(4) ≥ 19 by finding a positive integer n for which p(n, S4, [1, 18]) = 0.

4. Suppose that a fast-food chain sells chicken nuggets in packages of 6, 9, and 20. Find
the largest positive integer n for which we are not able to buy exactly n pieces.



Chapter 2

Combinatorics

Explaining what combinatorics is about may be simple since it deals with objects and
techniques that are quite familiar to most people. Yet, combinatorics is not easy to define
precisely. At the fundamental level, combinatorics deals with the questions related to count-
ing the number of elements in a given set; a bit more precisely, combinatorics deals with
discrete structures: sets—with, perhaps, some specific characteristics—whose elements can
be listed and enumerated, as opposed to sets whose elements vary continuously and cannot
be put in a list.

Moreover, beyond its object of study, combinatorics can be characterized by its methods.
Typically, by the combinatorial method we mean a relatively basic—but, perhaps, surpris-
ingly deep and far-reaching—argument using some relatively elementary tools, rather than
the application of sophisticated and elaborately developed machinery. That is what makes
combinatorics so highly applicable and why it serves as a very elegant and accessible branch
of study in the mathematics curriculum.

In this section we introduce some of the concepts and methods of combinatorics that we
will need later.

2.1 Basic enumeration principles

Enumeration—or, simply, counting—is probably one of our earliest intellectual pursuits,
and it is a ubiquitous task in everyday life. The principles of enumeration are also what
several branches of mathematics are based on, especially probability theory and statistics.
In this section we briefly discuss elementary enumeration techniques.

A typical enumeration problem asks us to determine the size of a set: the size of a set A,
denoted by |A|, is the number of elements in A. Clearly, each set has either finite or infinite
size. Here we focus on finite sets only.

Most enumeration questions can be reduced to one of two fundamental principles: the
Addition Rule and the Multiplication Rule. According to the Addition Rule, if A and B are
disjoint finite sets, then we have

|A ∪B| = |A|+ |B|.
More generally, if A1, A2, . . . , An are pairwise disjoint finite sets (n ∈ N), then we have

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An|.
The Multiplication Rule says that for arbitrary finite sets A and B, we have

|A×B| = |A| · |B|,

15
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and more generally, for arbitrary finite sets A1, A2, . . . , An (n ∈ N), we have

|A1 × · · · ×An| = |A1| · · · · · |An|.
Observe that the Addition Rule—unlike the Multiplication Rule—requires that the sets

be pairwise disjoint. A more general formula treats the case when our sets are not (or not
known to be) pairwise disjoint: for finite sets A and B we can verify that

|A ∪B| = |A|+ |B| − |A ∩B|;
indeed, to count the elements in the union of A and B, adding the sizes of A and B
together would double-count the elements that are in both A and B, so we need to subtract
the number of elements in the intersection of A and B. Similarly, for finite sets A, B, and
C, we have

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.
The situation gets more complicated as the number of sets increases; while a precise state-
ment (called the Inclusion–Exclusion Rule) is readily available, we will not state it here.
Instead, we just point out that, in general, for arbitrary sets A1, A2, . . . , An we have

|A1 ∪ · · · ∪ An| ≤ |A1|+ · · ·+ |An|.
An often-used consequence of this inequality is the Pigeonhole Principle, which says

that, if we have
|A1 ∪ · · · ∪ An| > kn

for some nonnegative integer k, then there must be at least one index i ∈ {1, . . . , n} for
which |Ai| ≥ k + 1. To paraphrase: if more than kn pigeons happen to sit in n holes, then
at least one hole must have at least k + 1 pigeons in it. Consequently, for example, we see
that in a set of 101 positive integers, one can always find 11 (or more) that share their last
digits; similarly, among a group of 3000 people there is always a group of at least nine that
share the same birthday.

While the counting principles we reviewed here may seem rather elementary, they have
far-reaching consequences. We present some in the exercises below.

Exercises

1. Exhibit the Inclusion–Exclusion formula for four sets; that is, find an expression for
the size of the union of four sets in terms of the sizes of their various intersections.

2. Prove that however we place seven points inside an 8-by-9 rectangle, we can always
find

(a) a pair whose distance is at most 5, and

(b) three that form a triangle of area at most 12.

3. Let S be a set of 100 distinct positive integers. Which of the following statements are
true?

(a) If each element of S is at most 198, then S must contain two elements that are
relatively prime.

(b) If each element of S is at most 199, then S must contain two elements that are
relatively prime.

(c) If each element of S is at most 198, then S must contain two elements so that
one is divisible by the other.

(d) If each element of S is at most 199, then S must contain two elements so that
one is divisible by the other.
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2.2 Counting lists, sequences, sets, and multisets

Before we discuss the four main counting questions in mathematics, we review some familiar
terminology and notations, and introduce some new ones. Recall that, for a given set A and
positive integer m, an element (a1, a2, . . . , am) of Am is called a sequence of length m. The
order of the terms in the sequence matters; for example, the sequence (2, 3, 4, 5) of integers
is different from (3, 2, 4, 5). On the other hand, a subset of A of size m is simply a collection
of m of its elements, where two subsets are considered equal without regard to the order
in which the terms are listed; for example, {2, 3, 4, 5} and {3, 2, 4, 5} are equal subsets of
the set of integers. Recall also that a set remains unchanged if we choose to list some of its
elements more than once; for example, the sets {2, 3, 3, 5}, {2, 3, 5, 5}, and {2, 3, 5} are all
equal, while the sequences (2, 3, 3, 5), (2, 3, 5, 5), and (2, 3, 5) are all different. Thus, we can
consider sets as two-fold relaxations of sequences: we don’t care about the order in which
the elements are listed, nor do we care how many times the elements are listed.

It will be useful for us to introduce two other objects. First, we say that a sequence
(a1, a2, . . . , am) of elements of a set A is a list, if the m terms are pairwise distinct. Thus,
in a list, the order of the elements still matters, but each element is only allowed to appear
once. For example, the sequence (2, 3, 4, 5) is a list, but (2, 3, 3, 5) is not. Conversely, in
a so-called multiset [a1, a2, . . . , am] of size m, the order of the elements a1, a2, . . . , am of
A does not matter (as it is the case with sets), but elements may appear repeatedly (as
they may in sequences). For example, the multisets [2, 3, 3, 5], [2, 3, 5, 5], and [2, 3, 5] are all
different, but [2, 3, 3, 5] is still the same as [2, 5, 3, 3].

Given a set A and a positive integer m, we are interested in counting the number of m-
sequences (sequences of length m), m-lists (lists of length m), m-multisubsets (multisubsets
of size m), and m-subsets (subsets of size m) of A. The schematic summary of these four
terms is given in the following table.

order matters order does not matter

elements distinct m-lists m-sets

elements may repeat m-sequences m-multisets

Obviously, if |A| < m, then A has neither m-lists nor m-subsets. If |A| = m, then the
(only) m-subset of A is A itself, while, as we will soon see, if |A| = m, then A has m! m-lists.
For other situations, we introduce the following notations.

Suppose that n is a nonnegative integer and m is a positive integer. We define the rising
factorial m-th power and the falling factorial m-th power of n to be

nm = n(n+ 1) · · · (n+m− 1)

and

nm = n(n− 1) · · · (n−m+ 1),

respectively. For example, we have

103 = 10 · 11 · 12 = 1320

and

103 = 10 · 9 · 8 = 720.
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Analogous to n0 = 1 and 0! = 1, we extend these notations with

n0 = 1 and n0 = 1

for arbitrary nonnegative integers n.
Furthermore, we introduce the notations

(
n
m

)
(pronounced “n choose m”) and

[
n
m

]

(pronounced “n multichoose m”): For nonnegative integers m and n,
(
n

m

)
=

nm

m!
=

n(n− 1) · · · (n−m+ 1)

m!

and [ n
m

]
=

nm

m!
=

n(n+ 1) · · · (n+m− 1)

m!
.

It is well known that these quantities always denote integers. The values of
(
n
m

)
, also

known as binomial coefficients, are exhibited in Pascal’s Triangle; here we tabulate some of
these values in a table format. (Note that, when m > n, the formula above yields

(
n
m

)
= 0;

keeping the traditional shape of Pascal’s Triangle, we omitted these entries from the table
below.)

(
n
m

)
m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=5 1 5 10 10 5 1
n=6 1 6 15 20 15 6 1
n=7 1 7 21 35 35 21 7 1

Observe that, since

n(n− 1) · · · (n−m+ 1)

m!
=

n(n− 1) · · · (m+ 1)

(n−m)!

(which we can check by cross-multiplying), we have the identity
(
n

m

)
=

(
n

n−m

)
,

expressing the fact that the rows in Pascal’s Triangle are “palindromic.” The explanation
for the term “binomial coefficient” will be clear once we discuss the Binomial Theorem
below.

The first few values of
[
n
m

]
are as follows.

[
n
m

]
m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7

n=1 1 1 1 1 1 1 1 1
n=2 1 2 3 4 5 6 7 8
n=3 1 3 6 10 15 21 28 36
n=4 1 4 10 20 35 56 84 120
n=5 1 5 15 35 70 126 210 330
n=6 1 6 21 56 126 252 462 792
n=7 1 7 28 84 210 462 924 1716
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As we can see, the two tables contain the same data—values are just shifted: the entries
in column m in the first table are moved up by m − 1 rows in the second table. Indeed,
since for integers n and m we clearly have

nm = n(n+ 1) · · · (n+m− 1) = (n+m− 1)(n+m− 2) · · ·n = (n+m− 1)m,

we see that values of
[
n
m

]
can be expressed via the more-often-used binomial coefficients as

[ n
m

]
=

(
n+m− 1

m

)
.

We are now ready to “size up” our four main configurations. The Enumeration Theorem
says that, if A is a set of size n and m is a positive integer, then

• the number of m-sequences of A is nm,

• the number of m-lists of A is nm,

• the number of m-multisubsets of A is
[
n
m

]
, and

• the number of m-subsets of A is
(
n
m

)
.

Note that, when n < m, then nm = 0 and
(
n
m

)
= 0, in accordance with the fact that A

has no m-lists and no m-subsets in this case. If n = m, then nm = m! and
(
n
m

)
= 1; indeed,

in this case A has m! m-lists while its only m-subset is itself.
The enumeration techniques discussed above are often employed to determine the num-

ber of choices one has for selecting or arranging a given number of elements from a given
set or collection of sets. For example, the Addition Rule and the Multiplication Rule can be
interpreted to say that, given boxes labeled A1, A2, . . . , An, if box Ai contains mi distinct
objects (i = 1, 2, . . . , n), then there are

m1 +m2 + · · ·+mn

ways to choose an object from one of the boxes, and there are

m1 ·m2 · · · · ·mn

ways to choose an object from each of the boxes. In a similar manner, the four basic enu-
meration functions of the Enumeration Theorem are sometimes called “choice functions”;
the following table summarizes our results for the number of ways to choose m elements
from a given set of n elements.

order matters order does not matter

elements distinct nm
(
n
m

)

elements may repeat nm
[
n
m

]

An important example for enumeration problems, one that we will refer to often, is to
count the number of positive integer solutions to an equation of the form

x1 + x2 + · · ·+ xm = h;
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that is, to find, for a given h ∈ N, the number of m-sequences of N with the property that
the entries in the sequence add up to h. (Note that we are counting sequences: the order
of the terms does matter.) We can visualize this question by imagining a segment of length
h inches with markings at all integer inches (that is, at 1, 2, and so on, all the way to
h − 1); our task is then to find the number of ways this segment can be broken into m
pieces at m − 1 distinct markings: the lengths of the m parts created will correspond, in
order, to x1, x2, . . . , xm. By the Enumeration Theorem, the number of ways that this can
be done, and therefore the number of positive integer solutions to our equation, is

(
h−1
m−1

)
.

As a variation, one can easily prove (see one of the exercises below) that the number of

nonnegative integer solutions to the same equation equals
[

h+1
m−1

]
=
(
m+h−1

h

)
.

Exercises

1. Find the number of

(a) 4-sequences,

(b) 4-lists,

(c) 4-multisubsets, and

(d) 4-subsets

of a set of size 7. Exhibit one example for each question.

2. Above we have shown that the number of positive integer solutions to an equation

x1 + x2 + · · ·+ xm = h

equals
(
h−1
m−1

)
. Here we use three different approaches to find the number of nonnegative

solutions to the equation.

(a) Modify the argument used for the number of positive integer solutions to prove

that the number of nonnegative integer solutions equals
[

h+1
m−1

]
.

(b) Explain why the number of nonnegative integer solutions to

x1 + x2 + · · ·+ xm = h

is the same as the number of positive integer solutions to

x1 + x2 + · · ·+ xm = h+m,

and use this fact to get that the result is
(
h+m−1
m−1

)
.

(c) Explain why the number of nonnegative integer solutions to

x1 + x2 + · · ·+ xm = h

is the same as the number of ways one can place h identical objects into m
distinct boxes, and use this fact to get that the result is

[
m
h

]
.

(d) Verify algebraically that the results of the three previous parts are the same.
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2.3 Binomial coefficients and Pascal’s Triangle

In this section we discuss some of the many famous and interesting properties of the so-
called binomial coefficients, that is, the quantities

(
n
m

)
. First, let us explain the reason for

the name.
A closer look at the rows of the table of entries for

(
n
m

)
, exhibited earlier, reveals, in

order, the coefficients of the various terms in the expansion of the power (a + b)n (here a
and b are arbitrary real numbers and n is a nonnegative integer). For example, the entries
in row 4 of the table are 1, 4, 6, 4, and 1; indeed, the power (a+ b)4 expands as

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4.

We can easily explain this coincidence as follows. When using the distributive law to
expand the expression

(a+ b)n = (a+ b) · · · (a+ b),

we arrive at a sum of products of n factors, where each factor is either a or b. Using the
commutative property of multiplication, each term can be arranged so that the a’s (if any)
all come before the b’s (if any). We can then collect “like” terms; that is, terms of the form
an−mbm for the same m = 0, 1, . . . , n. The number of such terms clearly equals the number
of those n-sequences of the set {a, b} that contain exactly n −m a’s and m b’s, which, by
the Enumeration Theorem, is exactly

(
n
m

)
.

This result is known as (Newton’s) Binomial Theorem, and can be stated in general as
the identity

(a+ b)n =

n∑

m=0

(
n

m

)
an−mbm.

As the name implies,
(
n
m

)
is indeed a “binomial coefficient.”

The first few entries for
(
n
m

)
(and, therefore, for

[
n
m

]
as well) are tabulated in Pascal’s

Triangle below.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

We can read off values of
(
n
m

)
as follows. If we label the rows, the “left” diagonals, and the

“right” diagonals 0, 1, 2, etc. (we start with 0), then
(
n
m

)
appears as the entry where row n

and right diagonal m intersect. For example, we see that
(
6
3

)
= 20.

The binomial coefficients possess many interesting properties. We have already men-
tioned the fact that the rows are “palindromic”:

(
n

m

)
=

(
n

n−m

)
.

Another important property is known as Pascal’s Identity:

(
n

m

)
=

(
n− 1

m

)
+

(
n− 1

m− 1

)
.
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This identity provides us, actually, with the easiest way to enumerate binomial coefficients:
each entry in Pascal’s Triangle is simply the sum of the two entries above it. We can, thus,
quite quickly find the next row:

1 8 28 56 70 56 28 8 1

Another interesting property of Pascal’s Triangle is that the sum of the entries in each
row add up to a power of 2:

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

Note that this identity follows directly from the Binomial Theorem (take a = b = 1).
Similarly, (by taking a = 1 and b = 2) we have

(
n

0

)
· 20 +

(
n

1

)
· 21 + · · ·+

(
n

n

)
· 2n = 3n.

Of the numerous other interesting properties of Pascal’s Triangle, we list only two more:

(
n− 1

m

)
+

(
n− 2

m− 1

)
+ · · ·+

(
n−m− 1

0

)
=

(
n

m

)
,

expressing the fact that the entries in each NW-SE diagonal, above a certain row, add to
an entry in the next row. Adding up numbers on NE-SW diagonals yields

(
n− 1

m− 1

)
+

(
n− 2

m− 1

)
+ · · ·+

(
m− 1

m− 1

)
=

(
n

m

)
.

(See the exercises below for proofs.)
We will use each of these identities later.

Exercises

1. What identity of binomial coefficients arises from using the Binomial Theorem for
evaluating (1− 1)n? Verify your identity for n = 6 and n = 7.

2. Suppose that n and m are positive integers, and suppose that m ≤ n.

(a) We set A = {1, 2, . . . , n}; furthermore, we let A0 be the set of m-subsets of A
that do not contain 1, let A1 be the set of m-subsets of A that contain 1 but do
not contain 2, let A2 be the set of m-subsets of A that contain 1 and 2 but do
not contain 3, and so on. Prove the identity

(
n− 1

m

)
+

(
n− 2

m− 1

)
+ · · ·+

(
n−m− 1

0

)
=

(
n

m

)

by considering A0 ∪ A1 ∪ A2 ∪ · · · ∪ Am.

(b) Prove the identity

(
n− 1

m− 1

)
+

(
n− 2

m− 1

)
+ · · ·+

(
m− 1

m− 1

)
=

(
n

m

)

using similar techniques as in part (a).
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2.4 Some recurrence relations

Let us return to the binomial coefficients discussed in the previous section. Rather than
looking at Pascal’s Triangle, let’s arrange their values in a more convenient table format:

p(j,k) k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

j=0 1 1 1 1 1 1 1 1
j=1 1 2 3 4 5 6 7 8
j=2 1 3 6 10 15 21 28 36
j=3 1 4 10 20 35 56 84 120
j=4 1 5 15 35 70 126 210 330
j=5 1 6 21 56 126 252 462 792
j=6 1 7 28 84 210 462 924 1716
j=7 1 8 36 120 330 792 1716 3432

Here p(j, k) denotes the entry in row j and column k; we have

p(j, k) =

[
j + 1

k

]
=

(
j + k

k

)
.

As we noted before, Pascal’s Identity, together with the values in the top row and the
left-most column in the table, determine all entries recursively: we simply need to add the
(previously determined) values directly above and directly to the left of the desired entry.
In fact, we can define the function p(j, k) recursively by the recurrence relation

p(j, k) = p(j − 1, k) + p(j, k − 1)

and the initial conditions that p(j, 0) = 1 for all j ∈ N0 and p(0, k) = 1 for all k ∈ N0.
Let us consider a variation where the function a(j, k) is defined by the initial conditions

a(j, 0) = 1 for all j ∈ N0 and a(0, k) = 1 for all k ∈ N0 and by the recursive relation

a(j, k) = a(j − 1, k) + a(j − 1, k − 1) + a(j, k − 1).

The first few values of the function are as follows.

a(j, k) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

j = 0 1 1 1 1 1 1 1
j = 1 1 3 5 7 9 11 13
j = 2 1 5 13 25 41 61 85
j = 3 1 7 25 63 129 231 377
j = 4 1 9 41 129 321 681 1289
j = 5 1 11 61 231 681 1683 3653
j = 6 1 13 85 377 1289 3653 8989

The numbers in this table are called Delannoy numbers, named after the French amateur
mathematician who introduced them in the nineteenth century in [62]. According to its
recurrence relation, the Delannoy number a(j, k) is the sum of not only the entries directly
above and to the left, but the entry in the “above-left” position as well. Delannoy numbers—
like any two-dimensional array—can be turned into a sequence by listing entries by its anti-
diagonals; this sequence is given as A008288 in [188]. (The sequence of entries in various
columns can be found in [188] as well.) In the next section we shall see an interesting
interpretation of Delannoy numbers.
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Changing the initial conditions, we next define the function c(j, k) by the initial condi-
tions c(j, 0) = 0 for all j ∈ N and c(0, k) = 1 for all k ∈ N0 and by the (same) recursive
relation

c(j, k) = c(j − 1, k) + c(j − 1, k − 1) + c(j, k − 1).

The first few values of this function are as follows.

c(j, k) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

j = 0 1 1 1 1 1 1 1
j = 1 0 2 4 6 8 10 12
j = 2 0 2 8 18 32 50 72
j = 3 0 2 12 38 88 170 292
j = 4 0 2 16 66 192 450 912
j = 5 0 2 20 102 360 1002 2364
j = 6 0 2 24 146 608 1970 5336

The numbers given by this table can be found in sequence form at A266213 in [188].
The functions a(j, k) and c(j, k) are strongly related; it is not difficult to reduce each

one to the other, as we now show.
Consider first the function c(j, k). A quick glance at the tables above suggests that for

j ≥ 1 and k ≥ 1, the entry c(j, k) is the sum of entries a(j, k − 1) and a(j − 1, k − 1):

c(j, k) = a(j, k − 1) + a(j − 1, k − 1).

We will prove this by induction. We see that the equation holds for j = 1 and for k = 1; we
then use the defining recursions for both c and a, as well as our inductive hypothesis, for
j ≥ 1 and k ≥ 1 to write

c(j, k) = c(j − 1, k) + c(j − 1, k − 1) + c(j, k − 1)

= a(j − 1, k − 1) + a(j − 2, k − 1) +

+a(j − 1, k − 2) + a(j − 2, k − 2) +

+a(j, k − 2) + a(j − 1, k − 2)

= a(j, k − 1) + a(j − 1, k − 1),

as claimed.
Using the recursion for a(j, k) once more, we may rewrite this identity as

c(j, k) = a(j, k)− a(j − 1, k),

from which we get
a(j, k) = c(j, k) + a(j − 1, k).

We can then use this identity to express a in terms of c:

a(j, k) = c(j, k) + a(j − 1, k)

= c(j, k) + c(j − 1, k) + a(j − 2, k)

= c(j, k) + c(j − 1, k) + c(j − 2, k) + a(j − 3, k)

= . . .

= c(j, k) + c(j − 1, k) + · · ·+ c(1, k) + a(0, k)

= c(j, k) + c(j − 1, k) + · · ·+ c(1, k) + c(0, k).

In summary, we have:
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Proposition 2.1 For the functions a(j, k) and c(j, k), defined recursively above for all non-
negative integers j and k, we have

c(j, k) = a(j, k − 1) + a(j − 1, k − 1) = a(j, k)− a(j − 1, k)

for all j, k ∈ N and

a(j, k) = c(j, k) + c(j − 1, k) + · · ·+ c(1, k) + c(0, k)

for all j, k ∈ N0.

While recursive expressions are quite helpful, direct formulae, if they exist, would be even
more useful, particularly when the variables are large. For example, the binomial coefficients
can be easily computed via the function p(j, k) defined above, but it is good to know that

p(j, k) =

(
j + k

k

)
=

(j + k)!

j! · k! .

Although formulae for a(j, k) and c(j, k) are not so direct, we have the following expressions.

Proposition 2.2 For all nonnegative integers j and k we have

a(j, k) =
∑

i≥0

(
j

i

)(
k

i

)
2i

and

c(j, k) =
∑

i≥0

(
j − 1

i− 1

)(
k

i

)
2i.

For a proof of Proposition 2.2, see page 308. Note that, while the summations seem to
include infinitely many terms, all but finitely many are zero. Note also that including i = 0
in the last sum is only relevant if j = 0. (Here we use the convention that

(
j−1
−1

)
equals 1

for j = 0 and 0 if j > 0.)
It may seem a bit strange that, while p(j, k) and a(j, k) are similarly defined—with the

only difference being that p relies on a double recursion while a uses a triple recursion—they
yield very different formulae. We gain some insight by the following consideration. Suppose
that we are given j+k distinct (for example, numbered) balls, and that j of them are green
and k are yellow. Recall that p(j, k) =

(
j+k
k

)
, a quantity expressing the number of ways one

can select k balls from the collection of these j+ k balls. Now if i of the k balls selected are
green and the other k− i are yellow, then the number of such choices, by the Multiplication
Rule, equals

(
j
i

)
·
(
k
i

)
; summing over all possible values of i, we get

p(j, k) =

(
j + k

j

)
=
∑

i≥0

(
j

i

)(
k

i

)
,

a form more closely reminiscent to the one for a(j, k) in Proposition 2.2.
We will make frequent use of the quantities a(j, k) and c(j, k). Without going into detail

here, we mention, for example, that

• for an s-spanning set of size m in a group of order n (see Chapter B), we have
n ≤ a(m, s);

• for aBh set over Z of sizem in a group of order n (see Chapter C), we have n ≥ c(h,m);
and
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• for a t-independent set of size m in a group of order n (see Chapter F), we have

– n ≥ c(m, t+1
2 ) if t is odd and t > 1, and

– n ≥ a(m, t
2 ) if t is even.

We will discuss each of these bounds in the relevant chapters of the book.

Exercises

1. Find a(7, 7) and c(7, 7) using

(a) their recursive definitions and

(b) Proposition 2.2.

2. Suppose that m ∈ N. Express a(m, 3) and c(m, 3) as polynomial functions in m.

2.5 The integer lattice and its layers

One of the most often discussed combinatorial objects—and one that we will frequently rely
on—is the m-dimensional integer lattice

Zm = Z× Z× · · · × Z︸ ︷︷ ︸
m

,

consisting of all points (or vectors) (λ1, λ2, . . . , λm) with integer coordinates. (Here m ∈ N

is called the dimension of the lattice.) Of course, the 1-dimensional integer lattice is simply
the set of integers Z, while the points in Z2 are arranged in an infinite (2-dimensional) grid
in the plane, and Z3 can be visualized as an infinite grid in 3-space. (For m ≥ 4, geometric
visualization of Zm is not convenient.)

A layer of the integer lattice is defined as the collection of points with a given fixed
norm; that is, for a given nonnegative integer h, the hth layer of Zm is defined as

Zm(h) = {(λ1, λ2, . . . , λm) ∈ Zm | |λ1|+ |λ2|+ · · ·+ |λm| = h}.

Obviously, Zm(0) consists of a single point, the origin. We can also easily see that Zm(1)
consists of the points of the m-dimensional lattice with all but one coordinate equal to 0
and the remaining coordinate equal to 1 or −1; there are exactly 2m such points.

Describing Zm(h) explicitly gets more complicated as h increases, however. For instance,
we find that

Z2(3) = {(0,±3), (±1,±2), (±2,±1), (±3, 0)},
and

Z3(2) = {(0, 0,±2), (0,±2, 0), (±2, 0, 0), (0,±1,±1), (±1, 0,±1), (±1,±1, 0)}.

The twelve points of Z2(3) lie on the boundary of a square in the plane (occupying the four
vertices and two points on each edge), and the eighteen points of Z3(2) are on the surface
of an octahedron (the six vertices and the midpoints of the twelve edges).

We can derive a formula for the size of Zm(h), as follows. For i = 0, 1, 2, . . . ,m, let Ii
be the set of those elements of Zm(h) where exactly i of the m coordinates are nonzero.
How many elements are in Ii? We can choose which i of the m coordinates are nonzero in(
m
i

)
ways. Next, we choose the absolute values of these nonzero coordinates: since the sum
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of these i positive integers equals h, we have
(
h−1
i−1

)
choices (see page 20). Finally, each of

these i coordinates can be positive or negative, and therefore

|Ii| =
(
m

i

)(
h− 1

i − 1

)
2i.

Summing now for i yields

|Zm(h)| =
h∑

i=0

(
m

i

)(
h− 1

i− 1

)
2i;

since for i > h the terms vanish, we may write this as

|Zm(h)| =
∑

i≥0

(
m

i

)(
h− 1

i− 1

)
2i.

Here we recognize the expression for the size of Zm(h) as the quantity c(h,m), discussed in
detail in Section 2.4.

In our investigations later, we will also consider certain restrictions of Zm(h). In some
cases, we will look at the part of Zm(h) that is in the “first quadrant;” that is, the subset
Nm

0 (h) of Zm(h) that contains only those points that contain no negative coordinates:

Nm
0 (h) = {(λ1, λ2, . . . , λm) ∈ Nm

0 | λ1 + λ2 + · · ·+ λm = h}.

So, for example,
N2

0(3) = {(0, 3), (1, 2), (2, 1), (3, 0)}
and

N3
0(2) = {(0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

We can enumerate Nm
0 (h) by observing that it is nothing but the set of m-sequences of

N0 with the property that the entries in the sequence add up to h; as we have seen on page
20, this set has size

|Nm
0 (h)| =

(
m+ h− 1

h

)
.

Two other, frequently appearing, cases occur when we restrict Zm(h) or Nm
0 (h) to those

points where the absolute value of the coordinates are not more than 1. (These points lie

within a cube of side length 2 centered at the origin.) We denote these sets by Ẑm(h) and

N̂m
0 (h), respectively; namely, we have

Ẑm(h) = {(λ1, λ2, . . . , λm) ∈ {−1, 0, 1}m | |λ1|+ |λ2|+ · · ·+ |λm| = h}

and
N̂m

0 (h) = {(λ1, λ2, . . . , λm) ∈ {0, 1}m | λ1 + λ2 + · · ·+ λm = h}.
So, for example,

Ẑ3(2) = {(0,±1,±1), (±1, 0,±1), (±1,±1, 0)}
and

N̂3
0(2) = {(0, 1, 1), (1, 0, 1), (1, 1, 0)},

but we have Ẑ2(3) = ∅ and N̂2
0(3) = ∅. It is easy to see that the sizes of these sets are given

by

|Ẑm(h)| =
(
m

h

)
2h
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and

|N̂m
0 (h)| =

(
m

h

)
.

Often, rather than considering a single layer Zm(h) of the integer lattice, we will study
the union of several of them. Since the layers are pairwise disjoint, for a given range H ⊆ N0

of norms we have ∣∣∣∣∣
⋃

h∈H

Zm(h)

∣∣∣∣∣ =
∑

h∈H

|Zm(h)|;

we can similarly just add the sizes of Nm
0 (h), Ẑm(h), and N̂m

0 (h) for all h ∈ H . Most often,
we will consider H consisting of

• a single norm h (with h ∈ N0),

• a range [0, s] = {0, 1, 2, . . . , s} (with s ∈ N0), or

• allow all possible norms (i.e., have H = N0).

The following table summarizes what we can say, using some of the identities we have seen
earlier, about the size of

Λm(H) = {(λ1, λ2, . . . , λm) ∈ Λm | |λ1|+ |λ2|+ · · ·+ |λm| ∈ H}

for these choices of H ⊆ N0 and our four exemplary sets Λ ⊆ Z.

|Λm(H)| H = {h} H = [0, s] H = N0

Λ = N0

(
m+h−1

h

) (
m+s
s

)
∞

Λ = Z c(h,m) =
∑

i≥0

(
m
i

)(
h−1
i−1

)
2i a(m, s) =

∑
i≥0

(
m
i

)(
s
i

)
2i ∞

Λ = {0, 1}
(
m
h

) ∑
h∈H

(
m
h

)
2m

Λ = {−1, 0, 1}
(
m
h

)
2h

∑
h∈H

(
m
h

)
2h 3m

We need to compute the size of an additional set that we use later. Namely, we want
to find the number of lattice points that are strictly on one side of one of the coordinate
planes of the m-dimensional space; that is, the size of the set

Zm(h)k+ = {(λ1, λ2, . . . , λm) ∈ Zm | |λ1|+ |λ2|+ · · ·+ |λm| = h, λk > 0}.

For example, the lattice points of the layer Z2(3) that are to the right of the y-axis are

Z2(3)1+ = {(1,±2), (2,±1), (3, 0)}.

Note that |Zm(h)k+| is the same for any k = 1, 2, . . . ,m; here we calculate |Zm(h)1+|.
As before, we let, for each j = 1, . . . ,m, Ij denote the set of those elements of Zm(h)1+

where exactly j of the m coordinates are nonzero. (Note that I0 = ∅.) How many elements
are in Ij? Here we can choose which j of the m coordinates are nonzero in

(
m−1
j−1

)
ways (since
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we must have λ1 > 0). Next, we choose the absolute values of these nonzero coordinates:
since the sum of these j positive integers equals h, we have

(
h−1
j−1

)
choices. Finally, j − 1 of

these coordinates can be positive or negative, and therefore

|Ij | =
(
m− 1

j − 1

)(
h− 1

j − 1

)
2j−1.

Summing now for j yields

|Zm(h)1+| =
∑

j≥1

(
m− 1

j − 1

)(
h− 1

j − 1

)
2j−1.

We can replace j − 1 by i; this yields

|Zm(h)1+| =
∑

i≥0

(
m− 1

i

)(
h− 1

i

)
2i,

and therefore

|Zm(h)k+| =
∑

i≥0

(
m− 1

i

)(
h− 1

i

)
2i = a(m− 1, h− 1)

for every k = 1, 2, . . . ,m. Indeed, the set Z2(3)1+ featured above consists of a(1, 2) = 5
points.

Exercises

1. We have already evaluated the entries in the column of H = {h} in the table on page
28; here we verify the rest. Prove each of the following.

(a) |Zm([0, s])| = a(m, s)

(b) |Nm
0 ([0, s])| =

(
m+s
s

)

(c) |Ẑm(N0)| = 3m

(d) |N̂m
0 (N0)| = 2m

2. For each set below, first find the size of the set, then list all its elements.

(a) Z2([0, 3])

(b) N2
0([0, 3])

(c) Ẑ2([0, 3])

(d) N̂2
0([0, 3])

(e) Z2(3)1+
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Chapter 3

Group theory

A group is arguably the most important structure in abstract mathematics. In essence, a
group is any set of objects—for example, numbers, functions, vectors, etc.—combined with
a binary operation—such as addition, multiplication, composition, etc.—satisfying certain
fundamental properties. More precisely, a set G and an operation ∗ form a group, if each of
the following four properties holds.

• Closure property: for any pair of elements a and b of G, a ∗ b is also in G.

• Associative property: for any a, b, and c in G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c).

• Identity property: there is an element z in G so that a ∗ z = z ∗ a = a holds for any
element a of G.

• Inverse property: for any element a of G, there exists an element a, also in G, for
which a ∗ a = a ∗ a = z.

Here we discuss a special class of groups: abelian groups. The group is said to be abelian if,
in addition, the following holds.

• Commutative property: for any a and b in G, we have a ∗ b = b ∗ a.

One can show that, in a group, the identity element (denoted by z above) is unique, and
each element a of the group has its unique inverse a.

Abelian groups—named after the Norwegian mathematician Niels Abel (1802–1829)—
play a central role in most branches of mathematics; our goal here is to investigate some
of their fascinating number theoretic properties. Since our focus in this book is on additive
combinatorics, we restrict our attention to additive groups, where the operation ∗ is addition,
denoted as +; we will also write 0 for the identity z and −a for the inverse a of a.

The additive groups most familiar to us are probably

• the set of integers (nonnegative and negative whole numbers), denoted by Z;

• the set of rational numbers (fractions of integers), denoted by Q; and

• the set of real numbers (finite or infinite decimals), denoted by R.

Other well-studied abelian groups include the set of vectors in n-dimensional space, the set
of n-by-m real matrices, and the set of real polynomials. Another example of an abelian
group is the set of even integers (including positive and negative even integers and zero);
however, the set of odd integers is not a group, since the closure and zero properties fail

31
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(neither 1 + 1 nor 0 is odd). The sets of positive and nonnegative integers, denoted by N

and N0, respectively, are also not groups: they both fail the negative inverse property (and
N even fails the zero property).

Our examples of groups above are all infinite groups; that is, they have infinitely many
elements. The groups we intend to study here, however, are finite groups: those that have
only a finite number of elements. Thus the title of this chapter really should be an intro-
duction to the theory of finite abelian groups.

3.1 Finite abelian groups

The simplest family of finite abelian groups are the cyclic groups: the cyclic group of size (or
order) n, denoted by Zn, can be defined as follows. The elements of Zn are the nonnegative
integers up to n− 1:

Zn = {0, 1, 2, . . . , n− 1}.
Addition is performed “mod n”; that is, for elements a and b of Zn, the sum a + b is the
remainder of a+ b when divided by n. For example, in Z10 we have 9+ 4 = 3, representing
the fact that when we add two integers whose last decimal digits are 9 and 4, respectively,
then their sum will have a last digit of 3. In Z12, we have 9 + 4 = 1: if our evening guests
arrive at 9 p.m. and plan to stay for 4 hours, then they will leave at 1 a.m. (Of course, in
both Z10 and Z12 we still have 5 + 3 = 8.)

We call Zn cyclic because if we add 1 repeatedly to itself, then within n steps we run
through each of the elements in the group, after which the cycle repeats itself. The same
holds for any other element a that is relatively prime to n; for example, in Z10 we have

{λ · 3 | λ = 0, 1, 2, . . . , 9} = {0, 3, 6, 9, 2, 5, 8, 1, 4, 7}= Z10.

(The notation λ · 3, for λ ∈ N0, stands for the sum of λ terms with each term being 3.) If
a and n are not relatively prime, then we still get a cycle, it’s just that the cycle will be
shorter as we won’t run through all n elements; for example, the multiples of 2 in Z10 only
yield the set {0, 2, 4, 6, 8}.

The length of the cycle that an element a of a group G generates is called the order of a
in G, and is denoted by ordG(a) or simply ord(a). For example, in Z10 we have ord(1) = 10,
ord(2) = 5, ord(3) = 10, and so on. According to Lagrange’s Theorem, in a group of order
n, the order of any element is a divisor of n; for example, in Z10, only orders 1, 2, 5, and
10 are possible.

The set of elements in G that have order d is denoted by Ord(G, d). For example, we
have

Ord(Z10, 1) = {0},
Ord(Z10, 2) = {5},

Ord(Z10, 5) = {2, 4, 6, 8},
and

Ord(Z10, 10) = {1, 3, 7, 9}.
From cyclic groups, we can build up other finite abelian groups using direct sums. The

direct sum (which is also called the direct product) of the groups G1 and G2, denoted by
G1×G2, consists of all ordered pairs of the form (a1, a2) where a1 is any element of G1 and
a2 is any element of G2; formally,

G1 ×G2 = {(a1, a2) | a1 ∈ G1, a2 ∈ G2}.
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If G1 and G2 have orders n1 and n2, respectively, then the order of G1 × G2 is n1n2. For
example, Z2 × Z5 has ten elements:

Z2 × Z5 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)}.

We can also define the direct sum of more than two groups: the direct sum of finite
abelian groups G1, G2, . . . , Gr consists of the ordered r-tuples (a1, a2, . . . , ar) where ai is
any element of Gi (here i = 1, 2, . . . , r). As a special case, if each component in the direct
sum is the same group, then we often use exponential notation. For example, Z2 ×Z2 ×Z2

is denoted by Z3
2, and consists of eight elements:

Z3
2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

We add and subtract the elements of the direct sum component-wise. For example, in
Z2 × Z5 one has (1, 3) + (1, 4) = (0, 2), and in Z3

2 we have (1, 0, 1)− (1, 1, 0) = (0, 1, 1).
We must note that not all such direct sum compositions result in new types of groups—as

we will see in the next section.

Exercises

1. (a) For each positive integer d, find the set Ord(Z18, d).

(b) For each positive integer d, find the set Ord(Z3 × Z6, d).

2. Exhibit the complete addition table of the groups Z3 × Z4 and Z3
2.

3.2 Group isomorphisms

Let us examine again two of the groups mentioned above: Z10 and Z2 × Z5. Both of these
groups have ten elements; furthermore, they form exactly the same structure as we now
explain.

Consider the following table.

Z10 0 1 2 3 4 5 6 7 8 9
Z2 × Z5 (0, 0) (1, 1) (0, 2) (1, 3) (0, 4) (1, 0) (0, 1) (1, 2) (0, 3) (1, 4)

The table exhibits a correspondence between the elements of the two groups with a
very special property: if we add two elements in one group and then add the corresponding
elements in the other group, then the two sums will also correspond to each other. For
example:

Z10 : 9 + 4 = 3
l l l

Z2 × Z5 : (1, 4) + (0, 4) = (1, 3)

We thus find that each entry in the addition table of Z10 (the ten by ten table that
lists all possible pairwise sums of elements) corresponds to the appropriate entry in the
addition table of Z2×Z5. Therefore, the two groups are essentially the same; using standard
terminology, we say that they are isomorphic—a fact that we denote as follows:

Z10
∼= Z2 × Z5.

More generally, one can prove that, if n1 and n2 are relatively prime integers, then

Zn1
× Zn2

∼= Zn1n2
.
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For example, the groups Z5 ×Z12, Z4 ×Z15, Z3 ×Z20, and Z3 ×Z4 ×Z5 are all isomorphic
to Z60.

One can also show that, if n1 and n2 are not relatively prime, then Zn1
×Zn2

and Zn1n2

are not isomorphic. For example, Z6 × Z10 is an example of a group of order 60 that is
not isomorphic to Z60, since 6 and 10 are not relatively prime. (To see why there cannot
possibly be an isomorphism between these two groups, note that Z60 is cyclic, but Z6×Z10

is not cyclic as none of its elements has order 60—see Section 3.3 below.)
Group isomorphism is a very important and useful concept: when two groups are iso-

morphic, it suffices to study one of them (either one). For example, if G1
∼= G2, then the

number of elements of a certain order in G1 will be the same as the number of elements of
that order in G2, and the same kind of property holds for other important group character-
istics. This reduces our task of studying all finite abelian groups to that of studying only
those that have different isomorphism types (are pairwise non-isomorphic).

Exercises

1. Show that the groups Z3 × Z4 and Z12 are isomorphic by finding an explicit corre-
spondence between the elements of the two groups.

2. Explain why the groups Z3×Z6 and Z18 are not isomorphic by considering the orders
of the various elements in the two groups.

3.3 The Fundamental Theorem of Finite Abelian

Groups

Suppose that one wishes to study all abelian groups of order 60, that is, those that have
exactly 60 elements. First, we wish to determine how many possible isomorphism types
there are for abelian groups of order 60. We have already seen that the groups

Z3 × Z4 × Z5, Z5 × Z12, Z4 × Z15, Z3 × Z20, and Z60

are all isomorphic to one another. Considering all other possible factorizations of 60 into a
product of positive integers, we see that there are five other direct sums to examine:

Z2 × Z2 × Z3 × Z5, Z2 × Z3 × Z10, Z2 × Z5 × Z6, Z2 × Z30, and Z6 × Z10.

(We should note that, since we only study abelian groups here, changing the order of the
terms in a direct sum will not change its isomorphism type.)

It is not hard to determine that these five direct sums are also all isomorphic to each
other. For example, to see that

Z2 × Z30
∼= Z6 × Z10,

note that 5 and 6 are relatively prime, and thus Z2 × Z30
∼= Z2 × Z5 × Z6, from which,

since 2 and 5 are also relatively prime, we get Z6×Z10. Thus, among the ten possible direct
sums, we have two different isomorphism types.

We say that the isomorphism relation is an equivalence relation: one can partition the col-
lection of all groups into equivalence classes (sometimes called isomorphism classes) where
all groups within a class are equivalent to each other (but not to those in other classes).
As we have just seen, the collection of abelian groups of order 60 form two isomorphism
classes.
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In general, we can find the number of different isomorphism classes among the groups
of order n as follows: if

n = pα1

1 · · · pαk

k

is the prime factorization of n, then the number of different isomorphism classes among the
groups of order n equals

p(α1) · · · · · p(αk)

where p is the partition function introduced in Section 1.4. For example, since

60 = 22 · 31 · 51,

there are

p(2) · p(1) · p(1) = 2

different isomorphism types among groups of order 60.
We even have a convenient way of listing representatives of the different isomorphism

types for a given order. The Fundamental Theorem of Finite Abelian Groups asserts that
for any finite abelian group G of order at least 2, there are positive integers r and n1, . . . , nr

such that

G ∼= Zn1
× Zn2

× · · · × Znr
;

furthermore, we can assume that ni+1 is divisible by ni for i = 1, 2, . . . , r − 1 and that
n1 ≥ 2 (and therefore ni ≥ 2 for all i). The factorization of G above, which is unique, is
called the invariant decomposition of G. We say that r is the rank of G, and the largest
invariant factor, nr, is called the exponent of G; the exponent clearly equals the length of
the longest cycle in G. We should also note that our treatment here includes the possibility
that r = 1, in which case we simply have G ∼= Zn (with n = n1), and the group is cyclic.

Therefore, we get a list of all possible isomorphism types of abelian groups of order n
directly from the list of invariant factorizations of n (see Section 1.4). For example, there
are two isomorphism classes of abelian groups of order 60, as shown by the two invariant
decompositions Z60 and Z2×Z30. The group Z60 has rank 1 (as does any cyclic group), and
the group Z2 ×Z30 has rank 2; every cycle in the latter group has length at most 30. From
Section 1.4 we also know that there are exactly 105 different isomorphism types among
abelian groups of order 840000.

We should also mention two other notable members of the two isomorphism classes for
order 60: Z3 × Z4 × Z5 (which is isomorphic to Z60) and Z2 × Z2 × Z3 × Z5 (which is
isomorphic to Z2 × Z30). These direct sums involve (prime and) prime power orders only,
and they are thus called primary decompositions. Like the invariant decomposition of G,
the primary decomposition is also unique (up to the order of terms, of course).

We can easily convert any decomposition of a finite abelian group into its invariant
decomposition or its primary decomposition. Let us consider the example

G = Z40 × Z50 × Z60 × Z70.

We start with the primary decomposition as that is easier: since 40 = 8 · 5, 50 = 2 · 25,
60 = 4 · 3 · 5, and 70 = 2 · 5 · 7, the primary decomposition of G is

G ∼= Z2 × Z2 × Z4 × Z8 × Z3 × Z5 × Z5 × Z5 × Z25 × Z7,

which we can condense as

G ∼= Z2
2 × Z4 × Z8 × Z3 × Z3

5 × Z25 × Z7.
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From this, we find that the invariant decomposition is

G ∼= Z10 × Z10 × Z20 × Z4200,

since 8 · 3 · 25 · 7 = 4200, 4 · 5 = 20, and 2 · 5 = 10 (recall from Section 1.4 the procedure of
turning a primary decomposition of a positive integer into an invariant decomposition).

Exercises

1. (a) How many different isomorphism types are there among abelian groups of order
72?

(b) For each isomorphism class of part (a), find the member of the class that is in
invariant decomposition and the one that is in primary decomposition.

2. (a) Prove that every abelian group of prime order is cyclic.

(b) Characterize all positive integers n for which it is true that every abelian group
of order n is cyclic.

3.4 Subgroups and cosets

As we have seen before, every element a in a group G determines a cycle

〈a〉 = {λ · a | λ = 0, 1, . . . , d− 1};

the length d of the cycle is the order ordG(a) of a. We also learned that ordG(a) must divide
the order |G| of G.

A key feature of the cycle 〈a〉 is that it is not only a subset, but a subgroup of G; that
is, 〈a〉 itself forms a group (for the same operation). In general, if a subset H ⊆ G is itself
a group for the same operation, then we call H a subgroup; this fact is denoted by H ≤ G.
For example, G = Z10 has four different subgroups: besides {0} and G itself (which are
always subgroups), we have

〈2〉 = {0, 2, 4, 6, 8} ≤ Z10

and
〈5〉 = {0, 5} ≤ Z10.

The group Z12 has more: {0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}, and Z12 itself. It
is not hard to prove that the cyclic group Zn has exactly d(n) different subgroups (where
d(n) is the number of positive divisors of n): each subgroup H of Zn must have order d for
some divisor d of n, and, conversely, for each divisor d of n, there is a unique subgroup H
of Zn with order d. Therefore, groups of prime order p—which, by the exercise at the end
of the previous section, must be cyclic and thus are isomorphic to Zp—only have the trivial
subgroups: {0} and Zp itself.

In noncyclic groups, the situation is considerably more complicated. Clearly, if G =
G1 ×G2, then for all subgroups H1 of G1 and H2 of G2, H1 ×H2 is a subgroup of G; these
kinds of subgroups are called subproducts. For example, we may take H1 = {0, 1} ≤ Z2 and
H2 = {0, 2} ≤ Z4, with which the subset

H1 ×H2 = {(0, 0), (1, 0), (0, 2), (1, 2)}

is a subgroup of Z2×Z4. But the collection of subgroups of a noncyclic group is more varied:
G1 ×G2 may have subgroups that are not even in the form H1 ×H2. In G = Z2 × Z4, for
example,

H = {(0, 0), (1, 2)}
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is a subgroup of G and is not of this form. It still holds that any subgroup of a (noncyclic)
group of order n must have order d for some divisor d of n, and, for any positive divisor d
of n, a group of order n has a subgroup of order d, but we may have more than one such
subgroup.

The number of subgroups of finite abelian groups is not yet fully understood. As we
mentioned above—and can easily be seen—the number of subgroups of the cyclic group
Zn is d(n). Regarding groups of rank two, the group Zn1

× Zn2
obviously has d(n1) · d(n2)

subproducts, but its total number of subgroups is given by

∑

d1∈D(n1),d2∈D(n2)

gcd(d1, d2).

This formula follows from an 1987 paper of Calhoun (cf. [48]) and was recently proved
directly by Hampejs et al. (see [116]). Thus, for example, the group Z2 × Z4 has eight
subgroups; of these, six are subproducts and two are not. Similarly simple formulae for
groups of rank three or more are not yet known.

Next, we discuss another important concept: cosets of subgroups. Given any subgroup
H ≤ G and any element a ∈ G, the set

a+H = {a+ h | h ∈ H}

is called a coset of H in G. For example, if G = Z10, then for H = {0, 5} ≤ G and 3 ∈ G
we have

3 +H = {3, 8},
and if G = Z2 × Z4, then for H = {(0, 0), (1, 2)} and (1, 1) ∈ G we have

(1, 1) +H = {(1, 1), (0, 3)}.

Observe also that cosets could be represented by any of their other elements. So, for example,
with H = {0, 5}, the coset {3, 8} of Z10 can be written both as 3 +H and 8 +H , since in
Z10 we have

3 + {0, 5} = 8 + {0, 5};
similarly, with H = {(0, 0), (1, 2)}, the coset {(1, 1), (0, 3)} of Z2 × Z4 can be written both
as (1, 1) +H and (0, 3) +H as in Z2 × Z4 we have

(1, 1) + {(0, 0), (1, 2)} = (0, 3) + {(0, 0), (1, 2)}.

Clearly, if H has order d, then every coset of H has size d as well. It turns out that for
any two elements a and b of G, the cosets a+H and b+H are either identical (as sets) or
entirely disjoint. Therefore, the collection of distinct cosets of H partitions G; that is, if H
has order d, then one can find n/d elements a1, . . . , an/d so that

G = (a1 +H) ∪ · · · ∪ (an/d +H).

For example, with H = {0, 5} in G = Z10, we have

Z10 = (0 +H) ∪ (1 +H) ∪ (2 +H) ∪ (3 +H) ∪ (4 +H)

= {0, 5} ∪ {1, 6} ∪ {2, 7} ∪ {3, 8} ∪ {4, 9},

and with H = {(0, 0), (1, 2)} in G = Z2 × Z4, we have

Z2 × Z4 = ((0, 0) +H) ∪ ((0, 1) +H) ∪ ((1, 0) +H) ∪ ((1, 1) +H)

= {(0, 0), (1, 2)} ∪ {(0, 1), (1, 3)} ∪ {(1, 0), (0, 2)} ∪ {(1, 1), (0, 3)}.
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As we pointed out above, the elements a1, . . . , an/d are not unique; for example, we could
also write

Z10 = (5 + {0, 5})∪ (6 + {0, 5}) ∪ (7 + {0, 5}) ∪ (8 + {0, 5})∪ (9 + {0, 5}).

Furthermore, we also define the sum of cosets a+H and b+H as

(a+H) + (b +H) = (a+ b) +H.

It is easy to see that this addition operation is well-defined (does not depend on which
representatives a and b we choose), is closed (the sum of two cosets is also a coset), is
associative, has an identity (the coset 0 +H = H), and each coset has an additive inverse
(the inverse of a+H being −a+H). Thus, with this operation, the collection of cosets is
itself a group, called the quotient group of H in G; it is denoted by G/H .

For example, the quotient group Z10/{0, 5} consists of the five cosets

0 + {0, 5}, 1 + {0, 5}, 2 + {0, 5}, 3 + {0, 5}, 4 + {0, 5};

since (for example) 1 + {0, 5} generates all five cosets, we have

Z10/{0, 5} ∼= Z5.

Similarly, the quotient group (Z2 × Z4)/{(0, 0), (1, 2)} consists of the four cosets

(0, 0) + {(0, 0), (1, 2)}, (0, 1) + {(0, 0), (1, 2)}, (1, 0) + {(0, 0), (1, 2)}, (1, 1) + {(0, 0), (1, 2)};

here (0, 1) + {(0, 0), (1, 2)} cycles through the four cosets and thus

(Z2 × Z4)/{(0, 0), (1, 2)} ∼= Z4.

Exercises

1. (a) Find the number of subgroups of Z100. How many of them are cyclic?

(b) Find the number of subgroups of Z2
10. How many of them are subproducts?

(c) Using information presented above, prove that the number of subgroups of Zn1
×

Zn2
that are not subproducts equals

∑

d1∈D(n1),d2∈D(n2)

(gcd(d1, d2)− 1).

(d) Use part (c) to prove that every finite abelian group of rank two has at least one
subgroup that is not a subproduct.

(e) Prove that Z2
2 is the only finite abelian group of rank two that has exactly one

subgroup that is not a subproduct.

2. (a) List all subgroups of Z18. Find the isomorphism type of each subgroup.

(b) List all subgroups of Z3 × Z6. Find the isomorphism type of each subgroup.

3. (a) Consider the subgroup H = {0, 9} of G = Z18. Find each coset of H in G, and
find the isomorphism type of G/H .

(b) Consider the subgroup H = {(0, 0), (0, 3)} of G = Z3 ×Z6. Find each coset of H
in G, and find the isomorphism type of G/H .
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3.5 Subgroups generated by subsets

Recall that, for any element a of G, the set 〈a〉 consists of all d multiples of a where
d = ordG(a) is the order of a:

〈a〉 = {λ · a | λ = 0, 1, . . . , d− 1}.

We should note that it makes no difference if we increase the range of λ: since d · a = 0,
(d+ 1) · a = a, (d+ 2) · a = 2 · a, etc., we may also write

〈a〉 = {λ · a | λ ∈ N0};

in fact, since (−1) · a = (d− 1) · a, (−2) · a = (d− 2) · a, and so on, we have

〈a〉 = {λ · a | λ ∈ Z}.

Recall also that 〈a〉 is a subgroup of G; we call 〈a〉 the subgroup generated by a as it is
the smallest subgroup of G that contains a. More generally, we may look for the smallest
subgroup of G that contains all of the set A = {a1, . . . , am}; this subgroup, denoted by
〈A〉, is called the subgroup generated by A. It is not hard to see that, with di = ord(ai)
(i = 1, 2, . . . ,m), we have

〈A〉 = {λ1 · a1 + · · ·+ λm · am | λi = 0, 1, . . . , di − 1 for i = 1, 2, . . . ,m}.

For example, in G = Z15, the subset A = {6, 10} generates the subgroup

〈A〉 = {λ1 · 6 + λ2 · 10 | λ1 = 0, 1, 2, 3, 4;λ2 = 0, 1, 2},

since 6 has order 5 and 10 has order 3 in G. Evaluating the expressions above yields

〈A〉 = {0, 6, 12, 3, 9, 10, 1, 7, 13, 4, 5, 11, 2, 8, 14};

so in this case we have 〈A〉 = G. Again, it makes no difference if we let the range of
coefficients increase:

〈A〉 = {λ1 · a1 + · · ·+ λm · am | λi ∈ N0 for i = 1, 2, . . . ,m}

or
〈A〉 = {λ1 · a1 + · · ·+ λm · am | λi ∈ Z for i = 1, 2, . . . ,m}.

In our example above, we have the 2-element set A = {6, 10} generating the cyclic group
G = Z15; but, like any cyclic group, G = Z15 could be generated by a single element (1 or
any other a ∈ Z15 that is relatively prime to 15). The question may arise: how large does a
subset of a group need to be in order to generate the entire group? The general answer is
provided by the following proposition.

Proposition 3.1 An abelian group of rank r cannot be generated by fewer than r elements;
that is, if A = {a1, . . . , am} is a subset of G for which 〈A〉 = G, then m ≥ r.

For the proof of Proposition 3.1, see page 309. We should note that a subset of size r
doesn’t always generate a given group of rank r. For example, {(1, 2), (1, 4)} in the group Z2

6

generates only a subgroup of order 18 (only ordered pairs with an even second component
get generated), and the subset {(1, 2), (3, 1)} of Z2

5 only generates a subgroup of order 5
(each of the two elements alone, in fact, generates the other). It is not easy to see in general
how large of a subgroup a given subset A of a group G generates.



40 CHAPTER 3. GROUP THEORY

Exercises

1. (a) Above, we made the comment that for any a ∈ Z15 that is relatively prime to
15, a generates the entire group. Verify this statement.

(b) Prove that, conversely, if an element a ∈ Z15 is not relatively prime to 15, then
a does not generate the entire group.

2. Consider the group G = Z2
15. Find the subgroups of G generated by each of the

following subsets, and find the isomorphism type of each subgroup.

(a) {(1, 3), (1, 5)}.
(b) {(1, 3), (2, 3)}.
(c) {(1, 4), (4, 1)}.

3.6 Sumsets

As we have just seen, taking all integer linear combinations

λ1 · a1 + · · ·+ λm · am
of a subset A = {a1, . . . , am} of some finite abelian group G generates a subgroup 〈A〉 of
G; in fact, we arrive at 〈A〉 by taking only the above linear combinations with coefficients

λi = 0, 1, . . . , ord(ai)− 1

(i = 1, 2 . . . ,m).
In many famous and still-investigated problems, we put limitations on the coefficients.

For example, while we saw in Section 3.5 that {6, 10} generates all of Z15, to generate 7,
we may use (for example) 6 twice and 10 once (thus, a total of three terms) to write

2 · 6 + 1 · 10,

but there is no way to get to 7 without using at least three terms. The question then arises:
which terms do we get with, say, at most two terms? In other words, we want to find the
linear combinations

λ1 · 6 + λ2 · 10
with integer coefficients λ1 and λ2 satisfying

|λ1|+ |λ2| ≤ 2.

The answer then is the set

{0, ±1 · 6, ±1 · 10, ±2 · 6, ±2 · 10, ±1 · 6± 1 · 10} = {0, 1, 3, 4, 5, 6, 9, 10, 11, 12, 14}.

These eleven elements correspond to the thirteen elements of the layer

Z2(2) = {(λ1, λ2) ∈ Z2 | |λ1|+|λ2| ≤ 2} = {(0, 0), (±1, 0), (0,±1), (±2, 0), (0,±2), (±1,±1)}

of the 2-dimensional integer lattice (see Section 2.5). (Note that not all elements of Z2(2)
yield distinct group elements: 1 · 10 = (−2) · 10 and 2 · 10 = (−1) · 10.)

More generally, given a subset Λ ⊆ Z and a subset H ⊆ N0, we consider sumsets of
A = {a1, . . . , am} corresponding to

Λm(H) = {(λ1, λ2, . . . , λm) ∈ Λm | |λ1|+ |λ2|+ · · ·+ |λm| ∈ H}
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(see Section 2.5); namely, we consider the collection

HΛA = {λ1a1 + · · ·+ λmam | (λ1, . . . , λm) ∈ Λm(H)}

= {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ Λ, |λ1|+ · · ·+ |λm| ∈ H}

in G. In our example above we had G = Z15, A = {6, 10}, Λ = Z, and H = [0, 2] = {0, 1, 2}.
We see that the sumset of A corresponding to Λ and H consists of sums of the elements

of A with the conditions that

• the repetition number of each element of A in the sum must be from the set Λ, and

• the total number of terms in each sum must be from the set H .

We need to point out that the order of the elements of A is immaterial: the sumset remains
unchanged when the elements a1, . . . , am are permuted.

There are a number of special cases of sumsets that are most often studied. First, we
introduce terms and notations for the case when sums in our sumset all have a fixed number
of terms (that is, H consists of a single nonnegative integer h) and when the coefficient-
set is Λ = N0,Z, {0, 1}, or {−1, 0, 1}. More precisely, we introduce the following notations.
Suppose that A = {a1, a2, . . . , am} is a subset of an abelian group G (with m ∈ N) and that
h is a nonnegative integer. We then define:

• the (ordinary) h-fold sumset hA of A, consisting of sums of exactly h (not necessarily
distinct) terms of A:

hA = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ N0, λ1 + · · ·+ λm = h};

• the h-fold signed sumset h±A of A, consisting of signed sums of exactly h (not neces-
sarily distinct) terms of A:

h±A = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ Z, |λ1|+ · · ·+ |λm| = h};

• the restricted h-fold sumset ĥ A of A, consisting of sums of exactly h distinct terms
of A:

ĥ A = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ {0, 1}, λ1 + · · ·+ λm = h};

and

• the restricted h-fold signed sumset h±̂A of A, consisting of signed sums of exactly h
distinct terms of A:

h±̂A = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ {−1, 0, 1}, |λ1|+ · · ·+ |λm| = h}.

A summary scheme of these four types of sumsets, indicating containment, can be given
as follows.

Terms must be Repetition of terms
distinct is allowed

Terms can be
added only ĥ A ⊆ hA

|⋂ |⋂

Terms can be
added or subtracted h±̂A ⊆ h±A
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We should caution that the h-fold sumset hA of a set A is different from the so-called
h-fold dilation

h ·A = {h · a1, . . . , h · am}

of A, which only contains the multiples of the elements in A. (However, for an element g ∈ G
and an integer λ ∈ Z we will use the notations λ · g and λg interchangeably.) We clearly
have h · A ⊆ hA but usually hA is much larger than h · A. We will rarely use dilations in
this book, except for the negative −A of A, defined, of course, as

−A = (−1) ·A = {−a1, . . . ,−am}.

Let us now illustrate the spectra of our four types of sumsets as h increases, using the
example of G = Z13 and A = {2, 3}.

The easiest to evaluate are the restricted sumsets; note that since |A| = 2, for h ≥ 3 we
have ĥ A = h±̂A = ∅. The relevant values of

λ1 · 2 + λ3 · 3

in G are as follows:

λ2 = 1 3 5
λ2 = 0 0 2

λ1 = 0 λ1 = 1

Therefore, we get

0̂ A 0
1̂ A 2 3
2̂ A 5

Similarly, for the restricted signed sumsets we have

λ2 = 1 1 3 5
λ2 = 0 11 0 2
λ2 = −1 8 10 12

λ1 = −1 λ1 = 0 λ1 = 1

and thus

0±̂A 0
1±̂A 2 3 10 11
2±̂A 1 5 8 12

Turning to unrestricted sumsets, we first observe that both hA and h±A equal the entire
group Z13 for h ≥ 12: indeed, we have

h±A ⊇ hA = {(h− i) · 2 + i · 3 | i = 0, 1, . . . , h} = {2h+ i | i = 0, 1, . . . , h},

which, if h ≥ 12, gives the entire group Z13. So we only need to exhibit the h-fold sumset
and the h-fold signed sumset of A for h ≤ 12; a computation similar to the ones above
yields the following results:
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0A 0
1A 2 3
2A 4 5 6
3A 6 7 8 9
4A 8 9 10 11 12
5A 0 1 2 10 11 12
6A 0 1 2 3 4 5 12
7A 1 2 3 4 5 6 7 8
8A 3 4 5 6 7 8 9 10 11
9A 0 1 5 6 7 8 9 10 11 12
10A 0 1 2 3 4 7 8 9 10 11 12
11A 0 1 2 3 4 5 6 7 9 10 11 12
12A 0 1 2 3 4 5 6 7 8 9 10 11 12

0±A 0
1±A 2 3 10 11
2±A 1 4 5 6 7 8 9 12
3±A 1 4 5 6 7 8 9 12
4±A 1 2 3 4 5 6 7 8 9 10 11 12
5±A 0 1 2 3 5 8 10 11 12
6±A 0 1 2 3 4 5 6 7 8 9 10 11 12
7±A 1 2 3 4 5 6 7 8 9 10 11 12
8±A 1 2 3 4 5 6 7 8 9 10 11 12
9±A 0 1 2 3 4 5 6 7 8 9 10 11 12
10±A 0 1 2 3 4 5 6 7 8 9 10 11 12
11±A 0 1 2 3 4 5 6 7 8 9 10 11 12
12±A 0 1 2 3 4 5 6 7 8 9 10 11 12

We can introduce similar notations and terminology for the cases when sums in our
sumsets contain a limited number of terms (say H = [0, s] = {0, 1, . . . , s} for some s ∈ N0)
or an arbitrary number of terms (H = N0). For instance, with the set A = {2, 3} in G = Z13,
we get

[0, 3]A = ∪3
i=0hA = {0} ∪ {2, 3}, {4, 5, 6}∪ {6, 7, 8, 9} = {0, 2, 3, 4, 5, 6, 7, 8, 9},

and

[0, 3]±A = ∪3
i=0h±A = {0} ∪ {2, 3, 10, 11}, {1, 4, 5, 6, 7, 8, 9, 12}∪ {1, 4, 5, 6, 7, 8, 9, 12}= G.

Our notations and terminology are summarized in the following table.
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H = {h} H = [0, s] H = N0

hA [0, s]A 〈A〉
Λ = N0

h-fold sumset [0, s]-fold sumset sumset
h±A [0, s]±A 〈A〉

Λ = Z

h-fold signed sumset [0, s]-fold signed sumset signed sumset
ĥ A [0, s]̂ A ΣA

Λ = {0, 1}
restricted restricted restricted

h-fold sumset [0, s]-fold sumset sumset
h±̂A [0, s]±̂A Σ±A

Λ = {−1, 0, 1}
restricted restricted restricted

h-fold signed sumset [0, s]-fold signed sumset signed sumset

Recall that the sumset ∪∞
h=0hA and the signed sumset ∪∞

h=0h±A of a subset A both
equal 〈A〉, the subgroup of G generated by A. For example, with our previous example of
A = {2, 3} in G = Z13, we have 〈A〉 = Z13. (Since 13 is prime, Z13 has no subgroups other
than {0} and Z13.)

Next, we point out some obvious but useful identities.
Suppose that A ⊆ G and assume, as usual, that A = {a1, . . . , am}. Let g be an arbitrary

element of G. We then define the set A− g as {a1 − g, . . . , am − g}. For a fixed h ∈ N0, we
now examine the sumsets h(A− g) and ĥ (A− g). By definition, we have

h(A− g) = h{a1 − g, . . . , am − g}
= {λ1(a1 − g) + · · ·+ λm(am − g) | λ1, . . . , λm ∈ N0, λ1 + · · ·+ λm = h}
= {λ1a1 + · · ·+ λmam − h · g | λ1, . . . , λm ∈ N0, λ1 + · · ·+ λm = h}
= hA− h · g.

Similarly,

ĥ (A− g) = ĥ {a1 − g, . . . , am − g}
= {λ1(a1 − g) + · · ·+ λm(am − g) | λ1, . . . , λm ∈ {0, 1}, λ1 + · · ·+ λm = h}
= {λ1a1 + · · ·+ λmam − h · g | λ1, . . . , λm ∈ {0, 1}, λ1 + · · ·+ λm = h}
= ĥ A− h · g.

Therefore, we see that h(A− g) has the same cardinality as hA, and ĥ (A− g) has the same
cardinality as ĥ A. This is particularly useful when g ∈ A, since then A− g is a subset of G
that contains zero. In summary, we have the following:

Proposition 3.2 For any G, A ⊆ G, g ∈ G, and h ∈ N0, we have

|h(A− g)| = |hA|

and
|ĥ (A− g)| = |ĥ A|.

In particular, there is a subset A0 of G so that 0 ∈ A0, |A0| = |A|, |hA0| = |hA|, and
|ĥ A0| = |ĥ A|.
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We need to point out that the “signed sumset” versions of these identities (when subtraction
of elements is allowed) do not necessarily hold.

The following identities are also obvious:

Proposition 3.3 For any G, A ⊆ G, and s ∈ N0, we have

[0, s]A = s(A ∪ {0})

and
[0, s]±A = s±(A ∪ {0}).

We should note that the restricted versions of these identities do not necessarily hold.
We also find that the (h-fold, etc.) signed sumset of a subset A is closely related to the

(h-fold, etc.) sumset of A ∪ (−A). Of course, for h = 0, we have

0±A = 0(A ∪ (−A)) = {0};

for h = 1 we get
1±A = 1(A ∪ (−A)) = A ∪ (−A).

For h = 2, we can easily see that 2±A and 2(A ∪ (−A)) are almost the same, except
that 2(A ∪ (−A)) always contains 0 while 2±A may not, so

2(A ∪ (−A)) = 2±A ∪ {0} = 2±A ∪ 0±A.

More generally, we have the following identities.

Proposition 3.4 For every subset A of G and every nonnegative integer h we have

h(A ∪ (−A)) = h±A ∪ (h− 2)±A ∪ (h− 4)±A ∪ · · · ;

and therefore, for all s ∈ N,

[0, s](A ∪ (−A)) = [0, s]±A

and
〈A ∪ (−A)〉 = 〈A〉.

We provide the proof on page 310.
Note that when A is symmetric, that is, A = −A, then an even simpler relation holds:

Proposition 3.5 For every symmetric subset A of G and every nonnegative integer h we
have h±A = hA.

The easy proof can be found on page 311.
Regarding restricted sumsets, we always have

ĥ (A ∪ (−A)) ⊆ h±̂A ∪ (h− 2)±̂A ∪ (h− 4)±̂A ∪ · · · ,

(see the last paragraph of the proof of Proposition 3.4), but an identity for our two types of
restricted sumsets seems a lot more complicated. Note that, for example, when A contains
distinct elements a1 and a2 for which a1 = −a2, then a1 − a2 is definitely an element of
2±̂A, but not necessarily of 2̂ (A ∪ (−A)). We pose the following vague problem.

Problem 3.6 Find identities similar to those in Proposition 3.4 for restricted sumsets.
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Exercises

1. Consider the subset A = {2, 3} in the cyclic group G = Z21. List the elements of each
of the following sumsets.

(a) [0, 3]±A

(b) [0, 3]A

(c) [0, 3]±̂A

(d) [0, 3]̂ A

2. Consider the subset A = {(0, 0, 1), (0, 1, 1), (1, 1, 1)} in the group G = Z3
3. List the

elements of each of the following sumsets.

(a) 2±A

(b) 2A

(c) 2±̂A

(d) 2̂ A
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The short articles in this part are meant to invite everyone to the main entrees of the
menu, presented in Part IV of the book. Our appetizers are carefully chosen so that they
provide bite-size representative samples of the research projects, as well as make connections
to other parts of mathematics that students might have encountered. (The first article de-
scribes how this author’s research in spherical geometry led him to additive combinatorics.)
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Spherical designs

This appetizer tells the (simplified) story of how the author’s research in algebraic combi-
natorics and approximation theory led him to additive combinatorics (cf. [9], [10]).

Imagine that we want to scatter a certain number of points on a sphere—how can we
do it in the most “uniformly balanced” way? The answer might be obvious in certain cases,
but far less clear in others. Consider, for example, the sphere S2 in 3-dimensional Euclidean
space, and suppose that we need to place six points on it: the most balanced configuration
for the points is undoubtedly at the six vertices of a regular octahedron (for example, at
the points (±1, 0, 0), (0,±1, 0), (0, 0,±1) in case the sphere is centered at the origin and
has radius 1). The answer is perhaps equally clear for four, eight, twelve, or twenty points:
place them so that they form a regular tetrahedron, cube, icosahedron, and dodecahedron,
respectively. But how should we position five points? Or how about seven or ten or a hundred
points? How can one do this in general?

The answer to our question depends, of course, on how we measure the degree to which
our pointset is balanced. For example, in the case of a packing problem, we want to place our
points as far away from each other as possible; more precisely, we may want to maximize the
minimum distance between any two of our points. Or, when addressing a covering problem,
we want to minimize the maximum distance that any place on the sphere has from the
closest point of our pointset. There are several other reasonable criteria, but the one that
is perhaps the most well known and applicable is the one where we maximize the degree to
which our pointset is in momentum balance. We make this precise as follows.

As usual, we let Sd denote the sphere in the (d+ 1)-dimensional Euclidean space Rd+1;
we also assume that Sd is centered at the origin and has radius 1, in which case it can be
described as the set of points that have distance 1 from the origin. Given a finite pointset
P ⊂ Sd and a polynomial f : Sd → R, we define the average of f over P as

fP =
1

|P | ·
∑

p∈P

f(p);

the average of f over the entire sphere is given by

fSd =
1

|Sd| ·
∫

Sd

f(x)dx

(here |Sd| denotes the surface area of Sd). We then say that our finite pointset P is a
spherical t-design on Sd, if

fP = fSd

holds for all polynomials f of degree up to t.
Spherical designs were introduced and first studied in 1977 by Delsarte, Goethals, and

Seidel in [63]. In this far-reaching paper they also established the following tight lower bound
for the number of points needed to form a spherical t-design on Sd:

|P | ≥ Nd
t =

(
d+ ⌊t/2⌋

d

)
+

(
d+ ⌊(t− 1)/2⌋

d

)
.

We shall refer to the quantity Nd
t as the DGS bound. Spherical designs of this minimum size

are called tight. Bannai and Damerell (cf. [30], [31]) proved that tight spherical designs for
d ≥ 2 exist only for t = 1, 2, 3, 4, 5, 7, or 11. All tight t-designs are known, except possibly
for t = 4, 5, or 7; in particular, there is a unique 11-design (with d=23 and |P | = 196560,
coming from the Leech lattice).
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Clearly, any finite pointset P ⊂ Sd is a spherical 0-design. Spherical 1-designs and
2-designs have basic interpretations in physics: it is easy to check that P is a spherical 1-
design exactly when P is in mass balance (that is, its center of gravity is at the center of the
sphere), and we can verify that P is a spherical 2-design if, and only if, P is in both mass
balance and inertia balance. Higher degrees of balance find their applications in a variety
of areas, including crystallography, coding theory, astronomy, and viral morphology.

According to the definition, to test whether a given pointset P is a spherical t-design,
one should check whether fP agrees with fSd for every polynomial f of degree at most t.
There is a well-known shortcut: it suffices to do this for non-constant homogeneous harmonic
polynomials of degree at most t. A polynomial is called homogeneous if all its terms have
the same (total) degree; for example,

f = x3z + xz3 − 6xy2z

is a homogeneous polynomial (of three variables and of degree 4). A polynomial is called
harmonic if it satisfies the Laplace equation; that is, the sum of its unmixed second-order
partial derivatives equals zero. We see that the polynomial f just mentioned is harmonic:

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 6xz − 12xz + 6xz = 0.

The reduction to homogeneous harmonic polynomials has two advantages. First, there
are a lot fewer of them: the set Harmk(S

d) of homogeneous harmonic polynomials over Sd

of degree k forms a vector space over R whose dimension is “only”

dimHarmk(S
d) =

(
d+ k

d

)
−
(
d+ k − 2

d

)
.

Second, the average of non-constant harmonic polynomials over the sphere is zero. Therefore,
a pointset P ⊂ Sd is a spherical t-design on Sd if, and only if, fP = 0 for every f ∈
Harmk(S

d) and 1 ≤ k ≤ t.
So, how can we construct spherical t-designs? We get an inspiration from the case d = 1

(when our sphere is a circle). Note that

dimHarmk(S
1) =

(
k + 1

1

)
−
(
k − 1

1

)
= 2,

and we can verify that the real and imaginary parts of the polynomial (x + iy)k (with i
denoting the imaginary square root of −1) form a basis of Harmk(S

1); for example,

Harm1(S
1) = 〈Re(x+ iy)1, Im(x+ iy)1〉 = 〈x, y〉,

Harm2(S
1) = 〈Re(x+ iy)2, Im(x+ iy)2〉 = 〈x2 − y2, 2xy〉,

Harm3(S
1) = 〈Re(x+ iy)3, Im(x+ iy)3〉 = 〈x3 − 3xy2, 3x2y − y3〉.

As it is probably easy to guess and as we now verify: regular polygons yield spherical
designs on the circle. More precisely, we show that the set of vertices

P = {(cos (2πj/n) , sin (2πj/n)) | j = 0, 1, 2, . . . , n− 1}

of the regular n-gon form a spherical t-design on S1 for all n ≥ t + 1. (Note that, by the
DGS bound, a spherical t-design on S1 must have at least N1

t = t+ 1 points.)
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Indeed, by identifying S1 with complex numbers of norm 1, our pointset can be described
as

P = {zj | j = 0, 1, 2, . . . , n− 1},

where z is the first n-th root of unity:

z = cos (2π/n) + i sin (2π/n) .

We see that, when k is not a multiple of n, then zk 6= 1, and thus

n−1∑

j=0

(
zj
)k

=

n−1∑

j=0

(
zk
)j

=

(
zk
)n − 1

zk − 1
=

(zn)
k − 1

zk − 1
=

1k − 1

zk − 1
= 0,

and thus the average of Re(x+ iy)k and Im(x+ iy)k over P both equal zero. (When k is a
multiple of n, then each term in the sum equals 1, so only the average of Im(x+ iy)k equals
zero over P .) Therefore, fP = 0 for all f ∈ Harmk(S

1) and all 1 ≤ k ≤ n− 1, and thus P
is a spherical t-design for every t ≤ n− 1, as claimed.

Let us see now how we can generalize this construction to higher dimensions. We will
assume that d is odd; the case when d is even can be reduced to this case. Let m = (d+1)/2,
and suppose that A = {a1, . . . , am} is a set of integers. We construct n points on Sd as
follows: for each j = 0, 1, 2, . . . , n− 1, we let

zj = (cos (2πja1/n) , sin (2πja1/n) , . . . , cos (2πjam/n) , sin (2πjam/n)) ;

we then set

P (A) =
{
1/

√
m · zj | j = 0, 1, 2, . . . , n− 1

}

(the factor 1/
√
m is needed so that P (A) ⊂ Sd). The question that we ask is then the

following: for what values of n and for which sets A is P (A) a spherical t-design on Sd?

We answer this question for t = 1 first. From our formula on page 51, we see that
dimHarm1(S

d) = d+ 1; clearly, the polynomials xi with i = 1, 2, . . . , d+ 1 form a basis for
Harm1(S

d). Consequently, P (A) is a spherical 1-design if, and only if,

n−1∑

j=0

cos (2πjai/n) =

n−1∑

j=0

sin (2πjai/n) = 0

for each ai ∈ A; as we verified above, these equations hold whenever ai is not a multiple of
n. Therefore, with

a1 = a2 = · · · = am = 1,

P (A) is a spherical 1-design for every n ≥ 2. (Note that the DGS bound requires that a
spherical 1-design on Sd has size at least Nd

1 = 2; obviously, a single point is never in mass
balance on the sphere, but two or more points may be.)

Let us turn to t = 2. This time our formula from page 51 yields

dimHarm2(S
d) =

(
d+ 2

d

)
−
(
d

d

)
=

(
d+ 1

2

)
+ d,

and we can verify that the set

{xi1xi2 | 1 ≤ i1 < i2 ≤ d+ 1} ∪ {x2
i+1 − x2

i | 1 ≤ i ≤ d}
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forms a basis for Harm2(S
d). In order to compute the average values of these functions over

P (A), we need to use the trigonometric identities

sinα · sinβ = 1/2 · (cos(α− β) − cos(α+ β)) ,

cosα · cosβ = 1/2 · (cos(α− β) + cos(α+ β)) ,

sinα · cosβ = 1/2 · (sin(α− β) + sin(α+ β)) .

We consider first f = xi1xi2 with 1 ≤ i1 < i2 ≤ d + 1. Let i′1 = ⌈i1/2⌉ and i′2 = ⌈i2/2⌉,
and note that 1 ≤ i′1 ≤ i′2 ≤ m. Assume first that i′1 < i′2. With our notations, f(zj) equals
the product of the cosine or sine of 2πjai′

1
/n and the cosine or sine of 2πjai′

2
/n, and with our

identities we can turn this into a linear combination of a cosine or sine of 2πj(ai′
1
− ai′

2
)/n

and of 2πj(ai′
1
+ai′

2
)/n. As we have seen above, if neither ai′

1
−ai′

2
nor ai′

1
+ai′

2
is a multiple

of n, then
n−1∑

j=0

cos
(
2πj(ai′

1
− ai′

2
)/n
)
=

n−1∑

j=0

sin
(
2πj(ai′

1
− ai′

2
)/n
)
= 0

and
n−1∑

j=0

cos
(
2πj(ai′

1
+ ai′

2
)/n
)
=

n−1∑

j=0

sin
(
2πj(ai′

1
+ ai′

2
)/n
)
= 0,

and thus the average of f over P (A) is zero. Turning to the case when i′1 = i′2: note that
we then must have i2 = i1 + 1 with i1 odd, so

f(zj) = cos (2πjai1/n) · sin (2πjai1/n) = 1/2 · sin (2πj(2ai1)/n) = 1/2 · Imzj ,

where z is the 2ai1 -th n-th root of unity. Since, as noted above,
∑n−1

j=0 Imzj equals zero for
any n-th root of unity z, the average of f over P (A) equals zero in this case as well.

Now let f = x2
i+1 − x2

i with 1 ≤ i ≤ d. We then find that, for even values of i we have

f(zj) = cos2
(
2πjai/2+1/n

)
− sin2

(
2πjai/2/n

)

= 1/2 ·
(
cos
(
2πj(2ai/2+1)/n

)
+ cos

(
2πj(2ai/2)/n

))
,

so, if 2a is not a multiple of n for any element a ∈ A, then f has a zero average over P (A);
our computation is similar when i is odd.

Therefore, in summary, P (A) is a spherical 2-design on Sd—that is, every polynomial
in Harm1(S

d) and Harm2(S
d) has a zero average on P (A)—if, and only if, A consists of m

distinct terms so that

• no element of A,

• the difference of no two distinct elements of A, and

• the sum of no two (not-necessarily-distinct) elements of A

is a multiple of n. Recall that for a subset A = {a1, . . . , am} of an abelian group G we
defined [1, 2]±A as

[1, 2]±A = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ Z, 1 ≤ |λ1|+ · · · |λm| ≤ 2},

so our three-part condition above can be summarized by saying that we want to assure that
A is an m-subset of Zn for which 0 6∈ [1, 2]±A; that is, using the terminology of Section
F.2.2, A is 2-independent in Zn.
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It is not hard to find specific 2-independent sets in Zn; for example, the set

A = {1, 2, . . . ,m}

is clearly 2-independent in Zn for every n ≥ 2m + 1. Recall that we set m = (d + 1)/2,
so we have constructed explicit spherical 2-designs on Sd of size n for every odd d and
n ≥ d+2. (Note that, by the DGS bound, a spherical 2-design on Sd must contain at least
d + 2 points.) As we mentioned before, the case of even d can be reduced to the odd case,
but we only get spherical 2-designs of sizes n = d + 2 or n ≥ d + 4; it can be shown that
when d is even, spherical 2-designs of size d+3 do not exist on Sd (cf. [158]). So, on S2, for
example, we have 2-designs of size four (the regular tetrahedron) and any size n ≥ 6, but
there is no spherical 2-design formed by five points.

Moving to t = 3, we define A to be a 3-independent set in Zn if 0 6∈ [1, 3]±A, that is, in
addition to our three-part condition above,

• the sum of three (not-necessarily-distinct) elements of A and

• the sum of two (not-necessarily-distinct) elements of A minus any element of A

is never a multiple of n. With similar techniques, we can prove that if A is 3-independent
in Zn, then the set P (A) defined above is a spherical 3-design on Sd.

It is an interesting problem to construct 3-independent sets in Zn. One quickly realizes
that the set

{1, 3, 5, . . . , 2m− 1}

works for every n ≥ 6m− 2, and this bound can be lowered to n ≥ 4m− 1 when n is even.
We can do better yet when n has a divisor p with p ≡ 5 mod 6:

A = {1, 3, 5, . . . , (p− 2)/3}+ {0, p, 2p, . . . , n− p}
= {2i+ 1 + jp | i = 0, 1, . . . , (p− 5)/6, j = 0, 1, . . . , n/p− 1}

is then 3-independent in Zn, and this set has size (p+1)/6 ·n/p. It turns out that we cannot
do better: as Bajnok and Ruzsa proved in 2003 in [24], the minimum size τ±(Zn, [1, 3]) of a
3-independent set in Zn equals

τ±(Zn, [1, 3]) =





⌊
n
4

⌋
if n is even,

(
1 + 1

p

)
n
6 if n is odd, has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor,

⌊
n
6

⌋
otherwise.

(The value of τ±(G, [1, 3]) is not completely known in noncyclic groups G, and quite little
is known about τ±(G, [1, t]) for t > 3 even for cyclic groups—see Section F.2.2.) As a
consequence, we get spherical 3-designs on Sd for odd d and every size n with

• n ≥ 2d+ 2 if n is divisible by 4,

• n ≥
(
1− 1

p+1

)
(3d + 3) if n has prime divisors congruent to 5 mod 6 and p is the

smallest such divisor, or

• n ≥ 3d+ 3.



55

Explicit constructions of spherical t-designs get increasingly complicated as t grows, and
the cases of small sizes n are particularly difficult and largely open (see [7, 8]). For further
information on this topic see the extensive survey paper [29] of Bannai and Bannai and its
nearly two hundred references. The construction of spherical designs and, more generally,
uniformly distributed pointsets on the sphere, was listed by Fields Medalist Steven Smale
as number 7 on his list of the most important mathematical problems for the twenty-first
century (see [189]).
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Caps, centroids, and the game SET

In this appetizer, we explore how one particular question in additive combinatorics connects
such diverse topics as centroids of triangles, caps in affine geometry, and the card game SET.
We present each of these topics by some relevant puzzles.

Let us start with the popular and award-winning card game SET, published by SET
Enterprises (cf. [186]). (The game was invented by the population geneticist Marsha Falco
while studying epilepsy patterns in German Shepherds.) The deck consists of 81 cards, each
of which features four attributes: shapes (ovals, diamonds, or squiggles); number of shapes
(one, two, or three); shadings (empty, striped, or solid); and colors (red, green, or purple).
Each of the 81 cards features a different combination of attributes. The game centers on
players identifying sets among the cards: three cards form a set if each of the four attributes,
when considered individually on the three cards, is either all the same or all different. For
example, the three cards✬

✫

✩

✪✂
✂✂
✂
✂✂✡�✁

✄✂ ✟ ✬

✫

✩

✪
☞
☞

▲
▲

☞
☞

▲
▲
☞
☞

▲
▲

☞
☞

▲
▲

✬

✫

✩

✪
✞
✝
☎
✆

✞
✝
☎
✆

✞
✝
☎
✆

feature all three shapes (squiggle, diamonds, and ovals), all three numbers (one, two, and
three), but share the same shading (empty), and they form a set either when they are of
the same color (e.g. all are green) or are of different colors (one green, one red, one purple).

In the most popular version of the game, twelve cards are dealt from a shuffled deck and
shown face up on a table. When a player sees a set, he or she calls “set,” and collects the
three cards from the table. The three cards then get replaced from the deck, and the game
continues; when the deck runs out and no more sets are left, the game ends. The player with
the most sets collected wins. Occasionally—as it turns out, with a probability of slightly
more than 3 percent—the twelve cards that were dealt don’t contain a set; in this case other
cards are dealt from the deck one by one, until a set is present and claimed. The question
then arises: what is the maximum number of cards without containing any sets?

We see that sets are quite ubiquitous; in fact, any pair of cards is contained in a (unique)
set. Indeed, for each of the four attributes, the two cards either share the attribute, in which
case we extend it with a card that also shares that attribute, or they don’t, in which case
we need a card whose relevant attribute differs from that of both cards. For example, if one
card has two striped green diamonds and the other has one striped red squiggle, then we can
extend them to form a set with the card containing three striped purple ovals. Therefore,
the probability that three cards don’t form a set equals 78/79, almost 99 percent.

A similar calculation shows that the probability that four cards don’t form a set equals
75/79, slightly under 95 percent. The computations get increasingly difficult as the number
of cards gets larger; the exact values have been calculated by Knuth in [134]. It is clear that
the probability that there are no sets among k cards decreases rapidly as k increases; as we
have mentioned above, the probability that twelve cards don’t contain any sets is just over
3 percent. Our question above is equivalent to asking for the largest value of k for which
this probability is still not zero. We will reveal the answer shortly.

Let us now move on to a (seemingly) very different topic: affine plane geometry. We
start by recalling two properties of the Euclidean plane:

• any two distinct points determine a unique line that contains both points, and

• any point P and any line l that does not contain P determine a unique line that
contains P but contains no point of l.
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(The second property, which guarantees the existence of a line through P that is parallel to
l, is referred to as the Parallel Postulate.)

Euclidean geometry has many other properties, of course, such as those involving dis-
tances. But any structure on a given set S and on a collection L of its subsets that satisfies
the two axioms and is not trivial—that is, S contains at least four points no three of which
are collinear (are contained in the same element of L)—is worth studying: we may simply
identify S with the set of points and L with the set of lines; if S and L satisfy the properties
we require, we say that they form an affine plane. In particular, here we discuss finite affine
planes: those that contain a finite number of points.

It turns out that the number of points in a finite affine plane cannot be arbitrary: it
must be a square number. In fact, not every square number is possible either: for example,
it cannot be 36 or 100, but we still don’t know if it can be 144. One can prove that for every
finite affine plane there is a positive integer k so that

• there are exactly k2 points and k2 + k lines,

• each line contains k points, and

• each point is contained in k + 1 lines.

The possible values of k include all prime-powers, and it is one of the most famous open
problems to prove that it does not include other values. As we mentioned above, we know
that k cannot be 6 or 10, but we still don’t know whether it can be 12.

The example that we are focusing on here is the one for k = 3; the correspond-
ing affine plane contains nine points and twelve lines. Let us denote the points by
A,B,C,D,E, F,G,H, and I; we can then verify that by setting the twelve lines equal
to the pointsets

{A,B,C} {D,E, F} {G,H, I} {A,D,G} {B,E,H} {C,F, I}

{A,F,H} {B,D, I} {C,E,G} {A,E, I} {B,F,G} {C,D,H}
our required properties hold. For example: the points B and F determine the unique line
{B,F,G} that contains them both, and the point A and the line {C,E,G} determine the
unique line {A,F,H} that containsA but none of C,E, orG. This affine geometry is denoted
by AG(2,3) (with the 2 representing the fact that we are in the plane—affine geometries
may be considered in higher dimensions as well), and we can visualize it by the diagram
below. (Note that eight of our lines are “straight” and four are “curved.”)

Our question then is the following: What is the maximum number of points that one can
find so that they do not contain all three points of any line? Pointsets within the geometry
that do not contain three collinear points are called cap-sets; we can thus rephrase our
question to ask for the maximum size of a cap-set in AG(2, 3). We defer answering this
question until we first discuss yet another topic: centroids of triangles.
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❅
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❅❅

❅
❅
❅
❅
❅
❅❅⑦

⑦

⑦

⑦

⑦

⑦

⑦

⑦
⑦A

D

B

G

E

C

H

F

I

Recall that the centroid of a triangle is defined as the point where the three medians of
the triangle (lines connecting a vertex with the midpoint of the opposite side) intersect, as
illustrated below: the centroid of the triangle with vertices A, B, and C is marked by M.
(It is a well-known fact that the three medians go through the same point.) Informally, the
centroid of the triangle is the point where the tip of a pin should be if one wants to balance
the triangle (made of material with uniform density) on it.

✥✥✥
✥✥✥

✥✥✥
✥✥✥

✥✥✥
✥✥✥✥

✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜✜❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈

A

B

C

M

✈
✈

✈

✈

Given the coordinates of the vertices of the triangle in a coordinate system, one can de-
termine the coordinates of the centroid by taking the arithmetic averages of the coordinates
of the three vertices; for example, if A=(a1, a2), B=(b1, b2), and C=(c1, c2), then

M =

(
a1 + b1 + c1

3
,
a2 + b2 + c2

3

)
.
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This formulation allows us to broaden our definition to include the degenerate case when
the three points are collinear; for example, the centroid of the collinear points A=(0, 0),
B=(2, 1), and C=(16, 8) is the point M=(6, 3):

✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

A

B

C

M

✈ ✈

✈

✈

Our question about centroids is the following: What is the maximum number of lattice
points that one can find in the integer lattice Z2 (points in the coordinate plane with integer
coordinates) so that no three of them have their centroid at a lattice point?

Well, let us reveal how the three questions we posed relate to one another and how they
are special cases of a quantity we investigate in Section F.3.1 of this book. Namely, our
interest is in finding the maximum size of a weakly zero-3-sum-free set in the group Zr

3,
defined as the maximum size—denoted by τ (̂Zr

3, 3)—of a subset of Zr
3 without any three

distinct elements adding to zero; that is, the quantity

τ (̂Zr
3, 3) = max{|A| | A ⊆ Zr

3, 0 6∈ 3̂ A}.
(The word “weak” signifies that we only disallow the sum of three distinct elements to
be zero.) The problem of finding τ (̂Zr

3, 3) seems forbiddingly difficult at the present time.
Exact values are only known for r ≤ 6:

r 1 2 3 4 5 6
τ (̂Zr

3, 3) 2 4 9 20 45 112

(See [97] by Gao and Thangadurai and its references for the first five entries and [175] by
Potechin for the last.) Here we only present the maximum-sized examples of r ≤ 4:

τ (̂Z3, 3) = 2 : ✈ ✈ ❢
τ (̂Z2

3, 3) = 4 :

✈ ✈
✈ ✈

❢
❢
❢❢❢

τ (̂Z3
3, 3) = 9 :

✈ ❢
❢ ❢

✈
❢
✈❢✈

❢ ❢
❢ ✈

❢
❢
❢❢❢

❢ ✈
✈ ❢

❢
✈
❢✈❢
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τ (̂Z4
3, 3) = 20 :

✈ ❢
❢ ❢

✈
❢
✈❢✈

❢ ❢
❢ ✈

❢
❢
❢❢❢

❢ ✈
✈ ❢

❢
✈
❢✈❢

❢ ✈
✈ ❢

❢
✈
❢✈❢

❢ ❢
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Hopefully, these diagrams are self-explanatory: For example, for rank two, we show the four
elements (0, 0), (0, 1), (1, 0), and (1, 1) that form a weakly zero-3-sum-free subset in Z2

3, and
within the three grids representing Z3

3, we feature the weakly zero-3-sum-free subset

{(0, 0, 0), (0, 0, 2), (0, 2, 0), (0, 2, 2), (1, 1, 1), (2, 0, 1), (2, 1, 0), (2, 1, 2), (2, 2, 1)}.

Besides verifying that the sets above are weakly zero-3-sum-free in their respective groups,
one would also need to prove that they are of maximum size—these proofs get increasingly
difficult as the rank of the group increases.

So how do our three questions above relate to these values? A key is the following
observation: three elements of Z3 add to zero if, and only if, they are all distinct (0+1+2 = 0)
or all the same (e.g., 1 + 1 + 1 = 0). If we assign coordinates to each attribute in the game
SET (for example, the first coordinate represents shape: namely, 0, 1, and 2 denote ovals,
diamonds, and squiggles, respectively; and similarly with the other three attributes), then
each of our 81 cards corresponds to a unique element of Z4

3, with three cards forming a
set exactly when their corresponding group elements add to (0, 0, 0, 0), the zero element
of Z4

3. Therefore, the maximum number of cards without having any sets among them is
τ (̂Z4

3, 3) = 20.
Now let us turn to the question of finding the maximum size of a cap-set in the geometry

AG(2, 3). To start, we identify our nine points with the elements of Z2
3 as follows: A =

(0, 0), B = (0, 1), C = (0, 2), D = (1, 0), E = (1, 1), F = (1, 2), G = (2, 0), H =
(2, 1), I = (2, 2).

Suppose that X , Y , and Z are three of these points. Recall that they are collinear
whenever the vectors from X to Y and from X to Z are parallel, that is, when the vector
Y −X is a scalar multiple of the vector Z −X . Since our points, and therefore our vectors,
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are considered here as elements of Z2
3, that scalar can only be 0, 1, or 2—but it cannot be

0 (since X and Y are distinct) and cannot be 1 (since Y and Z are distinct). Therefore,
X , Y , and Z are collinear exactly when Y − X = 2 · (Z − X) in Z2

3 or, equivalently,
X + Y +Z = (0, 0). Indeed, it is easy to check that for each of our twelve lines, the sum of
the three points within them equals zero; for example, two of our lines were {A,D,G} and
{B,F,G}, and indeed we have A + D + G = (0, 0) and B + F + G = (0, 0). (In fact, the
twelve lines exhibit all such 3-subsets: there are three of them where the first coordinates
are equal and the second coordinates are all distinct, three where the second coordinates
are equal and the first coordinates are all distinct, and six where both the first coordinates
and second coordinates are pairwise distinct.) Therefore, a set of points in AG(2, 3) is a
cap-set exactly when the corresponding subset of Z2

3 is a weakly zero-3-sum-free set, and
thus the maximum cap-set size in AG(2, 3) equals τ (̂Z2

3, 3) = 4. In particular, the cap-set of
size four that corresponds to our example of a weakly zero-3-sum-free set illustrated above
consists of A, B, D, and E.

Finally, let us consider the maximum size of a subset of Z2 without the centroid of
any three of its points at a lattice point. Note that the centroid of points A = (a1, a2),
B=(b1, b2), and C=(c1, c2) is a lattice point if, and only if, a1 + b1 + c1 and a2 + b2 + c2 are
both divisible by 3. Now the sum of three integers is divisible by 3 exactly when they all
leave the same remainder mod 3, or when they all leave different remainders mod 3.

Let us map the lattice points of Z2 to elements of Z2
3 based on the reminders of their

two coordinates. By the previous paragraph, if three points of Z2 are mapped to the same
element of Z2

3, then the centroid of the three points is a lattice point. Furthermore, the
same holds if the three points of Z2 are mapped to three distinct elements of Z2

3 whose
sum equals (0, 0). Therefore, if our pointset is such that no three of its points have their
centroid at a lattice point, then they must be mapped to a subset of Z2

3 that is weakly
zero-3-sum-free, and no more than two points can be mapped to the same element of Z2

3.
But then the maximum size of a subset of Z2 without the centroid of any three of its points
at a lattice point equals 2 · τ (̂Z2

3, 3) = 2 · 4 = 8. Our argument also shows that an example
of such a set of eight points could be

{(0, 0), (0, 1), (1, 0), (1, 1), (3, 3), (3, 7), (4, 9), (10, 10)}.

Hopefully, our set of examples provided an inviting appetizer for the entrees in this
book. One of these entrees is the question of finding τ (̂Zr

3, 3), which (Fields Medalist and
Breakthrough Prize Winner) Terence Tao calls “perhaps [his] favorite open question” (see
[194]).
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How many elements does it take to span a group?

Given a finite abelian group G and a positive integer h, we are interested in finding the
minimum possible size of a subset of G so that each element of G can be written as the sum
of (exactly) h elements of our set.

Recall that the h-fold sumset of a subset A of G, denoted by hA, consists of all possible
h-term sums of (not necessarily distinct) elements of A; more formally, for A = {a1, . . . , am},
we have

hA = {Σm
i=1λiai | λi ∈ N0, Σ

m
i=1λi = h} .

Thus our task is to find the minimum possible value of m for which G contains an m-subset
A so that hA = G.

Let us consider an example: suppose that G is the cyclic group Z10 and h = 2. After
some experimentation, one can find a variety of 5-subsets that yield the whole group; for
example, with A = {0, 1, 2, 5, 7}, we get each element: 0 = 0 + 0, 1 = 0 + 1, 2 = 0 + 2 (or
1 + 1, or 5 + 7), and so on, thus 2A = Z10. Can we do better? That is, is there a smaller
subset that generates the whole group?

Well, it is easy to see that for 2A to contain all 10 elements of our group, A must have
size at least four. Indeed, more generally, even if all possible h-fold sums of an m-subset of
G yield distinct elements, the size of hA is at most

(
m+h−1

h

)
, so to get all elements of the

group, we must have (
m+ h− 1

h

)
≥ |G|.

Therefore, in our example, m must be at least four.
Now we prove that, in fact, m has to be at least five. Suppose, indirectly, that there

exists a set A = {a1, a2, a3, a4} of size four for which 2A = Z10. We then have

2A = {2a1, 2a2, 2a3, 2a4, a1 + a2, a1 + a3, a1 + a4, a2 + a3, a2 + a4, a3 + a4}.

Therefore, the ten elements listed must all be distinct, and so are, in some order, equal to
the elements of Z10; in particular, exactly five of them are even and five are odd. But then
exactly one of the last six elements listed in 2A is even; say it is a1 + a2. Now

(a1 + a2) + (a3 + a4)

is the sum of an even and an odd number, thus odd. However, this sum also equals

(a1 + a3) + (a2 + a4),

the sum of two odd values, which is thus even. This is a contradiction, so the minimum
value of m for which Z10 contains an m-subset A with 2A = Z10 equals five.

Staying with Z10, let us try to find the answer for h = 3. From our general inequality
above, we see that no subset of size less than three will have a 3-fold sumset of size ten. While
there are numerous sets of size four that yield the entire group—for example, {0, 1, 4, 7}
does—it seems impossible to find one of size three. We can prove this as follows.

Assume that there is a set A = {a1, a2, a3} of size three for which 3A = Z10. We see
that

3A = {3a1, 3a2, 3a3, 2a1 + a2, a1 + 2a2, 2a1 + a3, a1 + 2a3, 2a2 + a3, a2 + 2a3, a1 + a2 + a3}.

Again, the ten elements listed must all be distinct, so are, in some order, equal to the
elements of Z10. Thus, adding the elements in 3A and in Z10 should yield the same answer,
so

10a1 + 10a2 + 10a3 = 0 + 1 + · · ·+ 9
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or 0 = 5, which is a contradiction.
Letting φ(G, h) denote the minimum possible size of a subset of G whose h-fold sumset

contains each element of G, we just proved that φ(Z10, 2) = 5 and φ(Z10, 3) = 4.
Let us now consider the variation where we are allowed not only to add terms of our

subset but subtract them as well: in particular, we are looking for the smallest value of m
for which an m-subset of G exists whose h-fold signed sumset is all of G; we let φ±(G, h)
denote this value. Recall that the h-fold signed sumset of an m-subset A = {a1, . . . , am} of
G is the set

h±A = {Σm
i=1λiai | λi ∈ Z, Σm

i=1|λi| = h} .
Examining the cyclic group Z10, we run into a bit of uncertainty at h = 1 already. We

would think that a set A = {a1, a2, a3, a4, a5} of size five is sufficient as its 1-fold signed
sumset is 1±A = {±a1,±a2,±a3,±a4,±a5}, which seems to contain ten elements. However,
we realize that, in Z10, every element and its inverse have the same parity; therefore, 1±A
cannot contain five even and five odd elements. Since a set of size six with a 1-fold signed
sumset of size ten can easily be found (for example, A = {0, 1, 2, 3, 4, 5}), we conclude that
φ±(Z10, 1) = 6.

It turns out that the case of h = 2 is easy: a set A = {a1, a2} of size two is clearly
insufficient, as its 2-fold sumset,

2±A = {±2a1,±2a2,±a1 ± a2},

will be of size at most eight; but a set of size three whose 2-fold signed sumset is of size ten
is not hard to find (e.g., {0, 1, 4}). Therefore, φ±(Z10, 2) = 3.

Now let us attempt to find φ±(Z10, 3). Here we see that two elements may be enough:
for A = {a1, a2}, we have

3±A = {±3a1,±3a2,±2a1 ± a2,±a1 ± 2a2};

we see twelve (not necessarily different) elements listed. We will prove, however, that this
cannot yield all of Z10. (Further analysis would prove that, in fact, 3±A has size at most
eight.)

Note that, if a1 and a2 have the same parity (that is, are both even or both odd), then
the twelve elements listed all share that parity; in particular, 3±A has size at most five.
Therefore, a1 and a2 are of different parity; we will assume that a1 is even and a2 is odd, and
therefore we see that the elements ±3a1 and ±a1 ± 2a2 are even, and ±3a2 and ±2a1 ± a2
are odd. We will need the fact that, if a1 is even, then 5a1 = 0 in Z10.

We also see that if a1 = 0, then

3±A = {0,±a2,±2a2,±3a2},

which is of size at most seven; so we assume that a1 6= 0. In that case, ±3a1 6= 0 as well. If
0 were to be an element of 3±A, then it would have to be one of ±a1 ± 2a2; let us assume
here that a1 + 2a2 = 0 and thus −a1 − 2a2 = 0 as well. (The case when a1 − 2a2 = 0 and
−a1 +2a2 = 0 can be examined the same way.) Thus we find that the elements 2, 4, 6, and
8 of Z10 are, in some order, the elements ±3a1 and ±(a1 − 2a2); in particular, these four
elements must be distinct. But from −2a2 = a1 and 5a1 = 0 we get

a1 − 2a2 = 2a1 = 2a1 − 5a1 = −3a1,

which is a clear contradiction with the four elements being distinct. Therefore, 0 is not
an element of 3±A, and thus φ±(Z10, 3) ≥ 3. Since a 3-subset of Z10 with a 3-fold signed
sumset of size ten can be found easily ({0, 1, 2} will do), we conclude that φ±(Z10, 3) = 3.
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Using techniques similar to the ones we just saw, we can find the values of φ(Z10, h) and
φ±(Z10, h) for all values of h:

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h ≥ 9

φ(Z10, h) 10 5 4 3 3 3 3 3 2
φ±(Z10, h) 6 3 3 3 2 2 2 2 2

The problem of determining φ(G, h) and φ±(G, h) for a general abelian group G is widely
open (not to mention other variations where restricted sums are considered or where the
number of terms varies)—Chapter B discusses all that is known (to this author) on this
subject.
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In pursuit of perfection

We are interested in the “speed” with which a given subset of a group generates the entire
group. As a (very nice) example, consider the set A = {3, 4} in the group Z25. How “fast”
does the set generate the group? Let us explain what we mean by this question.

Note that either element of A alone generates Z25: since 3 and 4 are both relatively
prime to 25, their multiples will yield all group elements, but this is not very “fast.” For
example, to get the element 22, we need to add up 24 terms of 3s. Even if subtraction is also
allowed, the fastest way to get to 14 is to subtract 3 (from 0) twelve times. The situation is
not better with using the element 4 alone either. However, if both 3s and 4s can be used,
and we can both add and subtract them, then we can verify that each element of Z25 can
be generated with three or fewer terms:

1 = 4− 3 7 = 3 + 4 13 = −4− 4− 4 19 = −3− 3
2 = 3 + 3− 4 8 = 4 + 4 14 = −3− 4− 4 20 = 3− 4− 4
3 = 3 9 = 3 + 3 + 3 15 = −3− 3− 4 21 = −4
4 = 4 10 = 3 + 3 + 4 16 = −3− 3− 3 22 = −3
5 = 4 + 4− 3 11 = 3 + 4 + 4 17 = −4− 4 23 = 4− 3− 3
6 = 3 + 3 12 = 4 + 4 + 4 18 = −3− 4 24 = 3− 4

As the table indicates, every element of Z25 can be generated by a signed sum of at most
three terms of A. (We consider 0 to be generated trivially.) We therefore call A = {3, 4} a
3-spanning set in Z25.

More generally, given a finite abelian group G, a subset A = {a1, a2, . . . , am} of G, and
a nonnegative integer s, we say that A is an s-spanning set in G, if every element of the
group can be written as a linear combination

λ1a1 + λ2a2 + · · ·+ λmam

for some integers λ1, λ2, . . . , λm with

|λ1|+ |λ2|+ · · ·+ |λm| ≤ s.

Using our notations and terminology introduced previously, we can say that A is an s-
spanning set of G if the [0, s]-fold signed sumset of A is the entire group, that is,

[0, s]±A = ∪s
h=0(h±A) = G.

In our example above, for A = {3, 4} in Z25, we find that

• 0±A = {0},

• 1±A = {±3, ±4} = {3, 4, 21, 22},

• 2±A = {±2 · 3, ±3± 4, ±2 · 4} = {1, 6, 7, 8, 17, 18, 19, 24}, and

• 3±A = {±3 · 3, ±2 · 3± 4, ±3± 2 · 4, ±3 · 4} = {2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 20, 23}.

Therefore,
[0, 3]±A = (0±A) ∪ (1±A) ∪ (2±A) ∪ (3±A) = Z25.

In fact, the set A = {3, 4} has a remarkable property: the

1 + 4 + 8 + 12 = 25
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possible signed sums in [0, 3]±A are all distinct elements of Z25; in other words, every
element of the group can be written uniquely as a signed sum of at most three elements
of A. We call such a set perfect ; perfect spanning sets generate the group most efficiently.
Unfortunately, they rarely exist!

Just how rare, we do not exactly know in general. If all elements generated are distinct,
then [0, s]±A must have size

a(m, s) =
∑

i≥0

(
m

i

)(
s

i

)
2i

(see Section 2.5 in Part I for a proof), and if each element of G must be generated, then
this quantity must equal the order of G. Therefore, a necessary condition for G to have a
perfect s-spanning set of size m is that |G| = a(m, s).

The first few values of the function a(m, s) are as follows:

a(m, s) s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

m = 0 1 1 1 1 1 1 1
m = 1 1 3 5 7 9 11 13
m = 2 1 5 13 25 41 61 85
m = 3 1 7 25 63 129 231 377
m = 4 1 9 41 129 321 681 1289
m = 5 1 11 61 231 681 1683 3653
m = 6 1 13 85 377 1289 3653 8989

It may be helpful to observe that, besides the formula we gave for a(m, s) above, the function
can also be evaluated using the recurrence relation

a(m, s) = a(m− 1, s) + a(m− 1, s− 1) + a(m, s− 1)

(together with the initial conditions a(m, 0) = a(0, s) = 1). As we see, our function resembles
Pascal’s Triangle, except here we get to the entry in row m and column s by adding not
only the entries directly above and to the left, but the entry in the “above-left” position as
well.

We have already seen earlier that the set A = {3, 4} is a perfect 3-spanning set in
G = Z25. Here are some others:

• In any group of odd order, the set of nonzero elements can be partitioned into parts K
and −K, and both K and −K are perfect 1-spanning sets in the group. For example,
the set {1, 2, . . . ,m} is a perfect 1-spanning set in Z2m+1.

• The set {a} is a perfect s-spanning set in Z2s+1 as long as a and 2s+1 are relatively
prime.

• The sets {1, 2s+ 1} and {s, s+ 1} are perfect s-spanning sets in Z2s2+2s+1.

The first two statements are easy to see. The claim regarding {s, s+ 1} we just demon-
strated for s = 3 and n = 25; we can illustrate the claim about {1, 2s + 1} for the same
parameters by exhibiting the values of

λ1 · 1 + λ2 · 7
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in Z25 for all relevant coefficients λ1 and λ2:

λ1 = −3 λ1 = −2 λ1 = −1 λ1 = 0 λ1 = 1 λ1 = 2 λ1 = 3

λ2 = 3 21
λ2 = 2 13 14 15
λ2 = 1 5 6 7 8 9
λ2 = 0 22 23 24 0 1 2 3
λ2 = −1 16 17 18 19 20
λ2 = −2 10 11 12
λ2 = −3 4

The table shows a nice pattern for how the elements of the group arise. (The general proofs
for {1, 2s+ 1} and {s, s+ 1} are provided on pages 325 and 327, respectively.)

Note that our three types of perfect spanning sets correspond to the cases

• s = 1 and |G| = a(m, 1) = 2m+ 1,

• m = 1 and |G| = a(1, s) = 2s+ 1, and

• m = 2 and |G| = a(2, s) = 2s2 + 2s+ 1.

respectively. Clearly, the cases of s = 1 and m = 1 are completely characterized by our
list above: the only possibilities are those listed. For m = 2, we may have other examples,
though none are known. We are also not aware of any perfect spanning sets for s ≥ 2 and
m ≥ 3. It might be an interesting problem to find and classify all perfect spanning sets (or
to prove that no others exist besides the ones listed).

As a modest attempt toward such a classification, we prove that there is neither a
perfect 3-spanning set of size two, nor a perfect 2-spanning set of size three in Z2

5. (Note
that a(2, 3) = a(3, 2) = 25. We have already seen that Z25 has perfect 3-spanning sets of
size two; we know, via a computer search, that it has no perfect 2-spanning sets of size
three. Our proofs below show that, sometimes, it is easier to work with noncyclic groups
than with cyclic ones of the same order.)

It is easy to rule out perfect 3-spanning sets of size 2 in Z2
5: indeed, if an element a of

the group were to be in a perfect 3-spanning set, then 2a and −3a would need to be distinct
elements; however, we have 5a = 0 for all a ∈ Z2

5, so 2a = −3a, which we just ruled out.
For our second claim, suppose, indirectly, that A = {a1, a2, a3} is a perfect 2-spanning

set in Z2
5, in which case

Z2
5 = {0, ±a1, ±a2, ±a3, ±2a1, ±2a2, ±2a3, ±a1 ± a2, ±a1 ± a3, ±a2 ± a3}.

In particular, a1 + a2 + a3 equals one of the elements listed. Note that it cannot be any of
the first seven; if it were, say, equal to −a1, then we would get a2+a3 = −2a1, contradicting
the fact that the 25 elements listed above are distinct. Similarly, a1 + a2 + a3 cannot equal
any of the 12 elements among the last 18 where any of a1, a2, or a3 appears with a positive
sign, since cancelling would again result in a repetition. This leaves only two possibilities:
a1 + a2 + a3 equals −2ai for some 1 ≤ i ≤ 3, or it equals −ai − aj for some 1 ≤ i < j ≤ 3;
without loss of generality,

a1 + a2 + a3 = −2a1

or
a1 + a2 + a3 = −a1 − a2.

But neither of these equations can occur: the first leads to

a2 + a3 = −3a1 = 2a1,
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and the second yields
a3 = −2a1 − 2a2,

from which we get
2a3 = −4a1 − 4a2 = a1 + a2,

again contradicting the assumption that the 25 elements listed are distinct.
We will study perfect spanning sets later in more detail in Chapter B.
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The declaration of independence

Those familiar with linear algebra have undoubtedly heard of “independent sets.” A subset
A = {a1, . . . , am} of elements in a vector space V (over the set of real numbers) is called
independent, if the zero element of V cannot be expressed as a linear combination

λ1a1 + · · ·+ λmam

with some (real number) coefficients λ1, . . . , λm non-trivially, that is, without all coefficients
λ1, . . . , λm being zero. There is an alternate definition: A is independent if no element of V
can be expressed in the above form in two different ways. It is a fundamental property of
vector spaces that the two definitions are equivalent.

We immediately realize that the analogous concept in finite abelian groups behaves
quite differently. In fact, no (nonempty) set in a finite abelian group is independent: if λ
is the order of an element a in G, then λa equals 0, so even the 1-element set {a} is not
independent. Thus to make our concept worth studying in finite abelian groups, we only
require that a subset be independent “to a certain degree” rather than that it is “completely”
independent. More precisely, rather than considering all linear combinations of the elements
of a subset, we limit our attention to those that use only a certain number of terms, that
is, where the sum of the absolute values of the coefficients,

|λ1|+ · · ·+ |λm|,

is at most some positive integer t. We will refer to the linear combination above as a signed
sum of |λ1|+ · · ·+ |λm| terms.

Given the two alternatives for defining independence mentioned above, we have two
choices: declare a subset A = {a1, . . . , am} of an abelian group G t-independent if

• no nontrivial signed sum of at most t terms equals zero (that is, the zero element of
the group cannot be expressed as a linear combination

λ1a1 + · · ·+ λmam

using integer coefficients λ1, . . . , λm with

|λ1|+ · · ·+ |λm| ≤ t,

unless λi = 0 for every i = 1, 2, . . . ,m); or

• no element of the group can be written as a signed sum of at most t terms in two
different ways (that is, we cannot have

λ1a1 + λ2a2 + · · ·+ λmam = λ′
1a1 + λ′

2a2 + · · ·+ λ′
mam

for some integers λ1, λ2, . . . , λm and λ′
1, λ

′
2, . . . , λ

′
m with

|λ1|+ |λ2|+ · · ·+ |λm| ≤ t and |λ′
1|+ |λ′

2|+ · · ·+ |λ′
m| ≤ t,

unless λi = λ′
i for every i = 1, 2, . . . ,m).

It may come as a surprise, but the two possible definitions are not equivalent! Consider,
for example, the set {1, 3} in the cyclic group Z10: the set is 3-independent according to
the first definition, since it is impossible to express zero as a non-trivial signed sum of at
most three terms (try!), but the set is not 3-independent using the second definition, as, for
example,

2 · 1 + (−1) · 3 = 0 · 1 + 3 · 3.
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So which definition should we declare to be the definition of independence?
It turns out that one definition is more powerful than the other; in fact, one of the two

definitions is merely a special case of the other! In particular, we can prove that a subset
is t-independent by the second definition if, and only if, it is 2t-independent by the first
definition. What this means is that studying t-independence for all possible t using the
second definition is equivalent to studying t-independence just for even t values only using
the first definition; therefore, the second definition is indeed superfluous.

To show that if a subset is 2t-independent by the first definition then it is t-independent
by the second definition, assume that two signed sums, each containing at most t terms,
equal one another. We can then move all terms to the same side and thereby express zero as
a signed sum of at most 2t terms. Note that, as a result, some of the terms may get cancelled.
In fact, the assumption that our set is 2t-independent by the first definition means that the
signed sumset we created must be the trivial one, thus all terms got cancelled, which means
that our two original signed sums were identical.

Conversely, if a signed sum of at most 2t terms equals zero, then we can rearrange this
equation so that each side contains at most t terms. If we know that our set is t-independent
by the second definition, then the two sides are identical, which means that our original
signed sum was the trivial one.

So we declare a set to be t-independent following the first definition; recalling our nota-
tions and terminology for the collection of signed sums of elements of a set A with exactly
h terms being called the h-fold signed sumset of A and denoted by h±A, we can thus say
that a subset A is t-independent in a group G whenever

0 6∈ ∪t
h=1(h±A).

Thus, to verify that the subset A = {1, 3} of Z10 in our earlier example is 3-independent,
we check that none of 1±A, 2±A, or 3±A contains zero: this is obviously the case for 1±A
and 3±A as they contain only odd elements, and

2±A = {±(1 + 1),±(3 + 3),±1± 3} = {2, 4, 6, 8}

doesn’t contain zero either. Our set is not 4-independent, since 4±A does contain zero (e.g.,
as 1+3+3+3 or 1+1+1− 3). It is also easy to check that Z10 has no 3-independent sets
of size larger than two.

To see a bigger example, consider the set A = {1, 4, 6, 9, 11} in Z25. We find that:

• 1±A = {1, 4, 6, 9, 11, 14, 16, 19, 21, 24},

• 2±A = {2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22, 23}, and

• 3±A = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24},
and therefore

0 6∈ ∪3
h=1h±A,

implying that A is 3-independent in G. We also see, however, that 1+4+4−9 (for example)
equals zero, so 0 ∈ 4±A, and therefore A is not 4-independent.

Can we pack more than five elements in Z25 that are 3-independent? Here is a quick
argument that shows that we certainly cannot pack seven. Suppose that

A = {a1, a2, a3, a4, a5, a6, a7} ⊂ Z25.

Now consider the following 28 signed sums:

0, ±a1, ±a2, ±a3, ±a4, ±a5, ±a6, ±a7,
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a1 + a1, a1 ± a2, a1 ± a3, a1 ± a4, a1 ± a5, a1 ± a6, a1 ± a7.

If A were to be 3-independent, then all 28 expressions would be different. (For example, if
−a2 were to equal a1− a4, then we would have a1+ a2− a4 = 0, contradicting the fact that
A is 3-independent.) Since G only contains 25 elements, this cannot happen.

It is also true that Z25 contains no six-element 3-independent sets either, but this is
much harder to prove; it follows from the more general result by Bajnok and Ruzsa (see
[24]) that the maximum size of a 3-independent set in the cyclic group Zn equals

• ⌊n/4⌋ when n is even;

• (1 + 1/p)n/6 when n is odd, has prime divisors congruent to 5 mod 6, and p is the
smallest such divisor; and

• ⌊n/6⌋ otherwise.

(The corresponding results for noncyclic groups or for t > 3 are not yet known.)
Our concept of independence is one of the most important ones in this book, and is

closely related to several other fundamental concepts, such as the zero-sum-free property,
the sum-free property, and the Sidon property, as we now explain.

Recall that we defined a subset A of G to be t-independent in G if no signed sum of t
or fewer terms of A (repetition of terms allowed), other than the all-zero sum, equals zero.
Observe that any equation expressing that a particular signed sum is zero can be rearranged
so that on both sides of the equation the elements of A appear with positive coefficients.
Therefore, an equivalent way of saying that A is a t-independent set in G is to say that,
for all nonnegative integers k and l with k + l ≤ t, the sum of k (not necessarily distinct)
elements of A can only equal the sum of l (not necessarily distinct) elements of A in a trivial
way, that is, k = l and the two sums contain the same terms in some order.

Therefore, we can thus break up our definition of A being t-independent into three
conditions:

• the zero-sum-free property:
0 6∈ hA,

that is, the sum of h elements of A cannot equal zero—this needs to hold for 1 ≤ h ≤ t;

• the sum-free property:
(kA) ∩ (lA) = ∅,

that is, the sum of k elements of A never equals the sum of l elements of A—this
needs to hold whenever k and l are distinct positive integers and k + l ≤ t; and

• the Sidon property:

|hA| =
(
m+ h− 1

h

)
,

that is, two h-term sums of elements of A can only be equal if the sums contain the
same terms—this needs to hold for 1 ≤ h ≤ ⌊t/2⌋.

(It is enough, in fact, to require these conditions for equations containing a total of t or t−1
terms; therefore the total number of equations considered can be reduced to 2+(t−2)+1 =
t+ 1.)

We can return to our earlier example of the set A = {1, 4, 6, 9, 11} in G = Z25 to verify
that A is 3-independent in G using the equivalent three-part condition we just gave. We
find that
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• 1A = {1, 4, 6, 9, 11},

• 2A = {2, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22}, and

• 3A = {1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}.

To conclude that A is 3-independent in G, note that A is zero-sum-free for h = 1, 2, 3 as
0 6∈ hA then; sum-free for (k, l) = (2, 1) since A and 2A are disjoint; and a Sidon set for
h = 1 (as are all sets). The fact that A is not 4-independent can be seen by the fact that it
is not zero-4-sum-free (1 + 4 + 9 + 11 = 0), or that it is not (3, 1)-sum-free (1 + 4 + 4 = 9),
or that it is not a Sidon set for h = 2 (4 + 6 = 1 + 9).

We study zero-sum-free sets, sum-free sets, and Sidon sets in detail in Chapters F, G,
and C, respectively.
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Here we introduce and study some functions that prove valuable for several topics in
this book.
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The function vg(n, h)

Suppose that h and g are fixed positive integers. Since we will only need the cases when
1 ≤ g ≤ h, we make that assumption here. Given a positive integer n, recall that D(n) is
the set of positive divisors of n. We define

vg(n, h) = max

{(⌊
d− 1− gcd(d, g)

h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}
.

(Here we usually think of vg(n, h) as a function of n for fixed values of g and h.)
For example, we can compute v2(18, 4) by evaluating, for each positive divisor d of 18,

the quantity (⌊
d− 1− gcd(d, 2)

4

⌋
+ 1

)
· 18
d
;

since the maximum occurs at d = 3 and equals 6, we have v2(18, 4) = 6.
The evaluation of vg(n, h) can be quite cumbersome in general. For a prime p, however,

vg(p, h) can be evaluated easily. In this case, there are only two positive divisors to consider:
d = 1 and d = p. For d = 1, the expression yields 0; therefore we have

vg(p, h) = max

{
0,

⌊
p− 1− gcd(p, g)

h

⌋
+ 1

}
.

The greatest common divisor of p and g is either p or 1, depending on whether p is a divisor
of g or not. This yields the following.

Proposition 4.1 If p is a positive prime number, then

vg(p, h) =





0 if p|g,
⌊
p−2
h

⌋
+ 1 otherwise.

With a bit more work, we can evaluate vg(n, h) for any prime power value of n, at least
in the case when g is not divisible by that prime; since we will use this later, we present the
result here:

Proposition 4.2 If p is a positive prime number that is not a divisor of g, then

vg(p
r, h) =





pr−1
h if p ≡ 1 mod h,

(⌊
p−2
h

⌋
+ 1
)
· pr−1 otherwise.

We present the proof on page 312.
Let us now turn to the evaluation of vg(n, h) when n is arbitrary. For h = 1 and h = 2,

we can prove the following.

Proposition 4.3 For all positive integers n we have

v1(n, 1) = n− 1

and

vg(n, 2) =





⌊
n
2

⌋
if g = 1,

⌊
n−1
2

⌋
if g = 2.

For a proof, see page 313.
For higher values of h, the evaluation of vg(n, h) becomes more difficult using its def-

inition above. The following table lists the values of v1(n, 3), v3(n, 3), v1(n, 4), v2(n, 4),
v4(n, 4), v1(n, 5), v3(n, 5), v5(n, 5) for n ≤ 40. (These sequences appear in [188] as A211316,
A289435, A289436, A289437, A289438, A289439, A289440, and A289441, respectively.)
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n v1(n, 3) v3(n, 3) v1(n, 4) v2(n, 4) v4(n, 4) v1(n, 5) v3(n, 5) v5(n, 5)

2 1 1 1 0 0 1 1 1
3 1 0 1 1 1 1 0 1
4 2 2 2 1 0 2 2 2
5 2 2 1 1 1 1 1 0
6 3 3 3 2 2 3 3 3
7 2 2 2 2 2 2 2 2
8 4 4 4 2 1 4 4 4
9 3 2 3 3 3 3 2 3
10 5 5 5 2 2 5 5 5
11 4 4 3 3 3 2 2 2
12 6 6 6 4 4 6 6 6
13 4 4 3 3 3 3 3 3
14 7 7 7 4 4 7 7 7
15 6 6 5 5 5 5 3 5
16 8 8 8 4 3 8 8 8
17 6 6 4 4 4 4 4 4
18 9 9 9 6 6 9 9 9
19 6 6 5 5 5 4 4 4
20 10 10 10 5 4 10 10 10
21 7 6 7 7 7 7 6 7
22 11 11 11 6 6 11 11 11
23 8 8 6 6 6 5 5 5
24 12 12 12 8 8 12 12 12
25 10 10 6 6 6 5 5 4
26 13 13 13 6 6 13 13 13
27 9 8 9 9 9 9 6 9
28 14 14 14 8 8 14 14 14
29 10 10 7 7 7 6 6 6
30 15 15 15 10 10 15 15 15
31 10 10 8 8 8 6 6 6
32 16 16 16 8 7 16 16 16
33 12 12 11 11 11 11 6 11
34 17 17 17 8 8 17 17 17
35 14 14 10 10 10 10 10 10
36 18 18 18 12 12 18 18 18
37 12 12 9 9 9 8 8 8
38 19 19 19 10 10 19 19 19
39 13 12 13 13 13 13 9 13
40 20 20 20 10 9 20 20 20
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The next theorem, based in part on work by Butterworth (cf. [46]), simplifies the eval-
uation of vg(n, h).

Theorem 4.4 (Bajnok; cf. [19]) Suppose that n, h, and g are positive integers and that
1 ≤ g ≤ h. Let D(n) denote the set of positive divisors of n. For i = 0, 1, 2, . . . , h− 1, let

Di(n) = { d ∈ D(n) | d ≡ i (mod h) and gcd(d, g) < i}.

We let I denote those values of i = 0, 1, 2, . . . , h − 1 for which Di(n) 6= ∅, and for each
i ∈ I, we let di be the smallest element of Di(n).

Then, the value of vg(n, h) is

vg(n, h) =





n
h ·max

{
1 + h−i

di
| i ∈ I

}
if I 6= ∅;

⌊
n
h

⌋
if I = ∅ and g 6= h;

⌊
n−1
h

⌋
if I = ∅ and g = h.

The proof of Theorem 4.4 can be found on page 314. Observe that this result generalizes
Proposition 4.3. Theorem 4.4 makes the computation of vg(n, h) considerably simpler; for
instance, for the example of v2(18, 4) above, we see that I = {3}, d3 = 3, and thus v2(18, 4) =
18/4 · (1 + 1/3) = 6.

Let us now examine what explicit bounds we can deduce from Theorem 4.4. Clearly,
vg(n, h) ≥

⌊
n−1
h

⌋
. To find an upper bound, we assume that h ≥ 2. First, note that for all n

we have D0(n) = D1(n) = ∅. Furthermore, for i ≥ 2 we have

1 +
h− i

di
≤ 1 +

h− 2

2
=

h

2
,

with equality if, and only if, i = 2 and di = 2. This gives:

Corollary 4.5 For all integers n, h ≥ 2, and 1 ≤ g ≤ h, we have

⌊
n− 1

h

⌋
≤ vg(n, h) ≤

n

2
,

with vg(n, h) =
n
2 if, and only if, n is even and g is odd.

We can use Theorem 4.4 to evaluate vg(n, h) explicitly when h is relatively small. Con-
sider, for example, the case when h = 3 and g = 1. Then I = {2} or I = ∅ depending on
whether n has divisors that are congruent to 2 mod 3 or not. Note that, when an integer
has divisors that are congruent to 2 mod 3, then its smallest such divisor must be a prime,
since the product of integers that are not congruent to 2 mod 3 will also not be congruent
to 2 mod 3. We thus see that

v1(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
otherwise.

We can use Theorem 4.4 to evaluate other cases similarly. We find the following expres-
sions.
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v2(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor,

⌊
n
3

⌋
otherwise;

v3(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n−1
3

⌋
otherwise;

v1(n, 4) =





n
2 if n is even

(
1 + 1

p

)
n
4 if n is odd, has prime divisors congruent to 3

mod 4, and p is the smallest such divisor,

⌊
n
4

⌋
otherwise;

v2(n, 4) =





(
1 + 1

p

)
n
4 if n has prime divisors congruent to 3 mod 4,

and p is the smallest such divisor,

⌊
n
4

⌋
otherwise;

v4(n, 4) =





(
1 + 1

p

)
n
4 if n has prime divisors congruent to 3 mod 4,

and p is the smallest such divisor,

⌊
n−1
4

⌋
otherwise;

v1(n, 5) =





max
{(

1 + 1
p4

)
n
5 ,
(
1 + 2

p3

)
n
5 ,
(
1 + 3

p2

)
n
5

}
if n has prime

divisors 2, 3,
or 4 mod 5,
and p2, p3, p4
are smallest
respectively;

⌊
n
5

⌋
otherwise;

v3(n, 5) =





max
{(

1 + 1
d4

)
n
5 ,
(
1 + 2

p3

)
n
5 ,
(
1 + 3

p2

)
n
5

}
if n has prime

divisors 2 mod
5 and p2 is
smallest, prime
divisors 3 mod
5 other than 3
and p3 is smallest,
or divisors 4 mod
5 and d4 smallest,

⌊
n
5

⌋
otherwise;
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v5(n, 5) =





max
{(

1 + 1
p4

)
n
5 ,
(
1 + 2

p3

)
n
5 ,
(
1 + 3

p2

)
n
5

}
if n has prime

divisors 2, 3,
or 4 mod 5,
and p2, p3, p4
are smallest
respectively;

⌊
n−1
5

⌋
otherwise.

Observe that in all the formulas above, with the exception of v3(n, 5), the divisors playing
a role can be assumed to be primes (a fact that can be proven easily). In the case of v3(n, 5),
however, d4 is not necessarily prime: for example, when n = 9, we have d4 = 9 (and no p2
or p3 exist), thus v3(9, 5) = 2. We should also point out that the maximum value in the
formulae for h = 5 above may occur with a prime that is not the smallest prime divisor of
n congruent to 2, 3, or 4 mod 5. For example, for n = 437 = 19 · 23 we get

v5(437, 5) = max

{(
1 +

1

19

)
437

5
,

(
1 +

2

23

)
437

5

}
=

(
1 +

2

23

)
437

5
= 95.

Similar expressions for vg(n, h) get more complicated for some other choices of g and h.
It is not true, for example, that in Theorem 4.4 the minimal element di of Di(n) is prime:
v3(9, 5) = 2 with d4 = 9, and v6(16, 11) = 4 with d4 = 4.

The function vg(n, h) seems to possess many interesting properties; we offer the following
rather vague problem.

Problem 4.6 Investigate some of the properties of the function vg(n, h).
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The function v±(n, h)

Here we introduce and investigate a close relative of the function vg(n, h) discussed above.
Unlike with vg(n, h), the function v±(n, h) we discuss here has no g: it depends only on

positive integers n and h. (We can think of v±(n, h) as the “plus–minus” version of v1(n, h).)
We define this function as

v±(n, h) = max

{(
2 ·
⌊
d− 2

2h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}
.

We can immediately see the close relationship between v±(n, h) and v1(n, h). In partic-
ular, note that for every d and h we have

2 ·
⌊
d− 2

2h

⌋
≤
⌊
d− 2

h

⌋
,

since if q and r are, respectively, the quotient and the remainder of d − 2 when divided
by 2h, then 2 · ⌊(d− 2)/(2h)⌋ = 2q, while ⌊(d− 2)/h⌋ equals 2q or 2q + 1 (depending on
whether r is less than h or not). This yields:

Proposition 4.7 For all positive integers n and h we have v±(n, h) ≤ v1(n, h).

The analogue of Proposition 4.1, this time even simpler as we have no g, is:

Proposition 4.8 If p is a positive prime number, then

v±(p, h) = 2 ·
⌊
p− 2

2h

⌋
+ 1.

When n is not (necessarily) prime, the evaluation of v±(n, h) is complicated even for
small values of h. For h = 1, 2, 3, we can prove the following results.

Proposition 4.9 For all positive integers n we have the following:

v±(n, 1) =





n− 1 if n is even,

n− 2 if n is odd.

v±(n, 2) =





n/2 if n is even,

(n− 1)/2 if n ≡ 3 mod 4,

(n− 3)/2 if n ≡ 1 mod 4.

v±(n, 3) =





n/2 if n is even,

n/3 if n ≡ 3 mod 6,

(n− 2)/3 if n ≡ 5 mod 6,

(n− 4)/3 if n ≡ 1 mod 6.

For a proof, see page 316.
We go one step further and evaluate v±(n, 4):



82

Proposition 4.10 For all positive integers n we have

v±(n, 4) =





n
2 if n is even,

(
1 + 1

d

)
n
4 if n is odd and has divisors congruent to 3 mod 8,

and d is the smallest such divisor,

2 ·
⌊
n−2
8

⌋
+ 1 otherwise.

The proof of Proposition 4.10 appears on page 317. We should note that the smallest
divisor d of n that is congruent to 3 mod 8 is not necessarily a prime (consider, for example,
n = 35), unlike in the analogous formula for v1(n, 4) involving the smallest divisor of n that
is congruent to 3 mod 4, which is always a prime.

For higher values of h, the evaluation of v±(n, h) becomes increasingly difficult. We offer:

Problem 4.11 Develop the analogue of Theorem 4.4 for v±(n, h).

While we don’t yet have an analogue of Theorem 4.4 that helps us evaluate v±(n, h)
exactly, we can still establish a tight upper bound for v±(n, h). By Proposition 4.7 and
Corollary 4.5, for h ≥ 2 we get

v±(n, h) ≤ v1(n, h) ≤
n

2
.

When n is even, we have 2 ∈ D(n), and thus with

gd(n, h) =

(
2 ·
⌊
d− 2

2h

⌋
+ 1

)
· n
d
,

we see that v±(n, h) ≥ g2(n, 2) = n/2; therefore, equality must hold. When n is odd and
h ≥ 3, we can show that v±(n, h) ≤ n/3, since g1(n, h) = −n, and for odd d ≥ 3, we have

gd(n, h) ≤
(
2 · d− 3

2h
+ 1

)
· n
d
=

(
h− 3

d
+ 1

)
· n
h
≤
(
h− 3

3
+ 1

)
· n
h
=

n

3
,

with equality holding if, and only if, d = 3. In summary, we get:

Proposition 4.12 Let n be a positive integer.

1. If h ≥ 2, then v±(n, h) ≤ n/2, with equality if, and only if, 2|n.

2. If n is odd and h ≥ 3, then v±(n, h) ≤ n/3, with equality if, and only if, 3|n.

We should point out that, in contrast, one can have v1(n, 3) > n/3 even for odd values of
n (see page 78).

As with vg(n, h), we offer the following rather vague problem:

Problem 4.13 Investigate some of the properties of the function v±(n, h).
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The function u(n,m, h)

The next function we discuss here is a variation on the famous Hopf–Stiefel function, in-
troduced in the 1940s to study real division algebras. Since then, the Hopf–Stiefel function
has been studied in a variety of contexts, including topology, linear and bilinear algebra,
and additive number theory.

Suppose that n, m, and h are fixed positive integers; we will also assume that m ≤ n.
Recall that D(n) is the set of all positive divisors of n. For a fixed d ∈ D(n), we set

fd = fd(m,h) =
(
h ·
⌈m
d

⌉
− h+ 1

)
· d,

and then define

u(n,m, h) = min {fd(m,h) | d ∈ D(n)} .

The evaluation of u(n,m, h) can become quite cumbersome, particularly when D(n) is
relatively large. Since for every positive integer n, 1 and n are divisors of n, we have

u(n,m, h) ≤ f1(m,h) =
(
h ·
⌈m
1

⌉
− h+ 1

)
· 1 = hm− h+ 1

and

u(n,m, h) ≤ fn(m,h) =
(
h ·
⌈m
n

⌉
− h+ 1

)
· n = n,

providing two upper bounds for u(n,m, h). If n is prime, then D(n) = {1, n}, and thus we
have to compare only the two values above; thus we have the following proposition.

Proposition 4.14 For a prime number p we have

u(p,m, h) = min{p, hm− h+ 1}.

We can also easily handle the cases of m = 1 and h = 1. When m = 1, we see that⌈
m
d

⌉
= 1 for every d ∈ D(n), and thus u(n, 1, h) equals the least element of D(n):

u(n, 1, h) = min {d | d ∈ D(n)} = 1.

Similarly, when h = 1, we see that

u(n,m, 1) = min
{⌈m

d

⌉
· d | d ∈ D(n)

}
;

since the expression
⌈
m
d

⌉
·d attains its minimum when d is a divisor of m, we can take d = 1

and get

u(n,m, 1) = m.

When n is not prime, evaluating u(n,m, h) is not easy in general. For example, for
n = 15, we can tabulate the values of u(15,m, h) for all 1 ≤ m ≤ n and for h = 2, 3, 4, 5:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

u(15,m, 2) 1 3 3 5 5 9 13 15 15 15 15 15 15 15 15
u(15,m, 3) 1 3 3 5 5 12 15 15 15 15 15 15 15 15 15
u(15,m, 4) 1 3 3 5 5 15 15 15 15 15 15 15 15 15 15
u(15,m, 5) 1 3 3 5 5 15 15 15 15 15 15 15 15 15 15
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These values seem to indicate that we always have m ≤ u(n,m, h) ≤ n. The upper
bound we have already explained above; in fact, we have seen that

u(n,m, h) ≤ min{n, hm− h+ 1}.

We will prove that the lower bound holds as follows. We have seen that u(n,m, 1) = m, so
let us assume that h ≥ 2. Consider the expression

fd(m,h) =
(
h ·
⌈m
d

⌉
− h+ 1

)
· d.

Note that fm(m,h) = m. What we will show is that fd(m,h) is greater than m both when
d > m and when d < m.

If d > m, then
⌈
m
d

⌉
= 1, and thus fd(m,h) = d; since we assumed that d > m, we have

fd(m,h) > m.
If d < m, we see that

fd(m,h) =
(
h ·
⌈m
d

⌉
− h+ 1

)
· d

≥
(
h · m

d
− h+ 1

)
· d

= (h− 1)(m− d) +m;

a value strictly greater than m under the assumptions that h ≥ 2 and d < m.
Therefore, we have the following result.

Proposition 4.15 For all positive integers n, m, and h, with m ≤ n, we have

m ≤ u(n,m, h) ≤ min{n, hm− h+ 1};

furthermore, u(n,m, h) = m if, and only if, h = 1 or n is divisible by m.

In certain cases, it is useful to compare u(n,m, h) to the smallest prime divisor p of n.
Suppose first that m ≤ p. In this case, we have

u(n,m, h) = min{p, hm− h+ 1},

since for d = 1 we have fd(m,h) = hm − h + 1, and for all other divisors d of n, we have
d ≥ p ≥ m and, therefore,

fd(m,h) =
(
h ·
⌈m
d

⌉
− h+ 1

)
· d = d,

which attains its minimum when d = p. On the other hand, when p < m, then p < u(n,m, h)
since u(n,m, h) ≥ m, and, therefore,

u(n,m, h) > min{p, hm− h+ 1}.

In summary, we have shown the following.

Proposition 4.16 Let n, m, and h be positive integers, m ≤ n, and let p be the smallest
prime divisor of n. We then have

u(n,m, h) ≥ min{p, hm− h+ 1},

with equality if, and only if, m ≤ p.
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Note that Proposition 4.16 is a generalization of Proposition 4.14.
Proposition 4.15 has a complete characterization for situations when u(n,m, h) reaches

its lower bound, m—but how about its upper bound? In particular, when is u(n,m, h) = n?
From its definition, we can observe that the function u(n,m, h) is a nondecreasing function
of m and also of h (but not of n). Furthermore, for fixed n and h ≥ 1, the values of the
function as m increases reach n; indeed, noting that if d ∈ D(n), then

⌈
n
d

⌉
= n

d , we have

u(n, n, h) = min
{(

h ·
⌈n
d

⌉
− h+ 1

)
· d | d ∈ D(n)

}
= min{hn− d(h− 1) | d ∈ D(n)} = n.

We call the minimum value of m for which u(n,m, h) = n the h-critical number of n;
according to our computation we see that the h-critical number of n is well-defined for every
h ≥ 1, and equals at most n. This value is now known, as we can prove the following result:

Theorem 4.17 The h-critical number of n equals v1(n, h) + 1.

The short proof of Theorem 4.17 can be found on page 318. (Campbell in [49] established
Theorem 4.17 in some special cases, and provided lower bounds in other cases.) According
to Theorem 4.17, the arithmetic function v1(n, h) is a certain inverse of the Hopf–Stiefel
function. In particular, the maximum value of m for which u(n,m, h) < n equals v1(n, h).

While the function u(n,m, h) seems to be quite mysterious, it may be possible to find
its values, at least in certain special cases, more easily, or to determine upper and lower
bounds better than those above. We pose the following rather vague problem.

Problem 4.18 Find some exact formulas or good upper or lower bounds, at least in certain
special cases, for u(n,m, h).
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The function û (n,m, h)

The function û (n,m, h) we introduce here is a relative of the Hopf–Stiefel function
u(n,m, h) discussed above. (These two functions will express cardinalities of two related
sets we study later.)

Suppose that n, m, and h are fixed positive integers; we will also assume that h < m ≤ n.
For a fixed d ∈ D(n), we let k and r denote the positive remainder of m mod d and h mod
d, respectively. That is, we write

m = cd+ k and h = qd+ r

with
1 ≤ k ≤ d and 1 ≤ r ≤ d.

Note that one can compute these quotients and remainders as

c =
⌈m
d

⌉
− 1 and q =

⌈
h

d

⌉
− 1;

k = m− d
⌈m
d

⌉
+ d and r = h− d

⌈
h

d

⌉
+ d.

We then set

f d̂(n,m, h) =





min{n, fd, hm− h2 + 1} if h ≤ min{k, d− 1},

min{n, hm− h2 + 1− δd} otherwise;

where fd is the function

fd(m,h) =
(
h ·
⌈m
d

⌉
− h+ 1

)
· d

defined on page 83, and δd is a “correction term” defined as

δd(n,m, h) =





(k − r)r − (d− 1) if r < k,
(d− r)(r − k)− (d− 1) if k < r < d,

d− 1 if k = r = d,
0 otherwise.

We then define
û (n,m, h) = min{f d̂(n,m, h) | d ∈ D(n)}.

Evaluating û (n,m, h) is more complicated than evaluating u(n,m, h); to see some spe-
cific values, we compute û (n,m, h) for n = 15 and for all h < m ≤ n and h = 2, 3, 4, 5:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

û (15,m, 2) 3 5 5 9 11 13 15 15 15 15 15 15 15
û (15,m, 3) 4 5 8 13 15 15 15 15 15 15 15 15
û (15,m, 4) 5 9 13 15 15 15 15 15 15 15 15
û (15,m, 5) 6 11 15 15 15 15 15 15 15 15

We pose the following rather vague problem.

Problem 4.19 Find a simpler way to define û (n,m, h).

Somewhat less ambitiously:
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Problem 4.20 Find a general expression for û (n,m, h), at least for some cases.

As perhaps a step toward Problems 4.19 and 4.20, there may be a simplified expression
for δd. Indeed, we can easily compute δd for small values of d. We get

δ1 = 0 for all m and h;

δ2 =

{
1 if m and h are both even,
0 otherwise;

and

δ3 =





2 if m and h are both divisible by 3,
−1 if none of m, h, or m− h is divisible by 3,
0 otherwise.

As these formulae suggest, one may be able to evaluate δd easily.

Problem 4.21 Find a simpler general expression for δd(n,m, h).

With a simpler general expression for δd, we can hope for an easier way to evaluate f d̂.
For d ≤ 3 we find that

f 1̂ = min{n, hm− h2 + 1};

f 2̂ =





min{n, hm− h2} if m and h are both even,

min{n, hm− h2 + 1} otherwise;

and

f 3̂ =





min{n, 2m− 1, 3m− 8} if h = 2 and 3|m− 2,

min{n, 2m− 3, 3m− 8} if h = 2 and 3|m,

min{n, hm− h2 − 1} if 3|m and 3|h,

min{n, hm− h2 + 2} if h > 1, 3 6 |m, 3 6 |h, and 3 6 |m− h,

min{n, hm− h2 + 1} otherwise.

Having explicit formulae for f d̂ for all n,m, h, and d would enable us to evaluate
û (n,m, h). Regarding the case of h = 1: we see that either d ≥ 2 in which case

f d̂(n,m, 1) = min{n, fd, hm− h2 + 1} = min{n,
⌈m
d

⌉
· d,m} = m,

or d = 1 in which case

f 1̂(n,m, 1) = min{n, hm− h2 + 1} = min{n,m} = m;

and therefore
û (n,m, 1) = m.

For h = 2 and h = 3 we have the following results.

Proposition 4.22 For h = 2, we have

û (n,m, 2) =





min{u(n,m, 2), 2m− 4} if n and m are both even,

min{u(n,m, 2), 2m− 3} otherwise.
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Proposition 4.23 Let d0 = gcd(n,m− 1). For h = 3, we have

û (n,m, 3) =





min{u(n,m, 3), 3m− 3− d0} if gcd(n,m− 1) ≥ 8;

min{u(n,m, 3), 3m− 10} if gcd(n,m− 1) = 7, or
gcd(n,m− 1) ≤ 5, 3|n, and 3|m;

min{u(n,m, 3), 3m− 9} if gcd(n,m− 1) = 6;

min{u(n,m, 3), 3m− 8} otherwise.

The proof of Propositions 4.22 and 4.23 can be found on pages 319 and 320, respectively.
As h increases, the evaluation of û (n,m, h) gets more complicated; we offer the following
problem.

Problem 4.24 Find an explicit formula for û (n,m, h) in terms of u(n,m, h) for h = 4,
h = 5, and h = 6.

We also know the value of û (n,m, h) when n is prime; in that case D(n) = {1, n}. We
have already seen that

f 1̂ = min{n, hm− h2 + 1};
we can similarly verify that

f n̂ = min{n, hm− h2 + 1}

and thus we have the following proposition.

Proposition 4.25 For a prime number p we have

û (p,m, h) = min{p, hm− h2 + 1}.

Other than the results above, we have no general formula for û (n,m, h). Below we inves-
tigate some upper and lower bounds instead. First, we compare û (n,m, h) and u(n,m, h).

Proposition 4.26 For all h < m ≤ n we have û (n,m, h) ≤ u(n,m, h).

The proof of Proposition 4.26 can be found on page 320.
Let us now see how much less û (n,m, h) can get below u(n,m, h). For h = 1, we have

already seen that u(n,m, 1) = û (n,m, 1) = m. For h = 2, we use Proposition 4.22 to see
that, when û (n,m, 2) < u(n,m, 2) and n and m are both even, then

u(n,m, 2)−û (n,m, 2) = u(n,m, 2)−(2m−4) ≤ f2(m, 2)−(2m−4) = (2m−2)−(2m−4) = 2,

and when û (n,m, 2) < u(n,m, 2) and n or m is odd, then

u(n,m, 2)−û (n,m, 2) = u(n,m, 2)−(2m−3) ≤ f1(m, 2)−(2m−3) = (2m−1)−(2m−3) = 2.

This proves the following.

Proposition 4.27 For all m ≤ n we have

u(n,m, 2)− 2 ≤ û (n,m, 2) ≤ u(n,m, 2).
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According to Proposition 4.27, the only possible values of û (n,m, 2) are u(n,m, 2),
u(n,m, 2)− 1, and u(n,m, 2)− 2.

In contrast to Proposition 4.27, we can show that, when h ≥ 3, then u(n,m, h) −
û (n,m, h) can get arbitrarily large: larger than any given (positive) real number C. As an
example, take an arbitrary prime p > h and a positive integer t > 2 so that

(h− 2)pt−1 ≥ C.

One can readily verify that for n = pt and m = pt−1 + 1 we have

u(n,m, h) = f1 = hpt−1 + 1

and for d = pt−1 we get
û (n,m, h) ≤ f d̂ = 2pt−1.

Thus, we have:

Proposition 4.28 For every h ≥ 3 and for every positive real number C, one can find
positive integers n and m for which

û (n,m, h) < u(n,m, h)− C.

Recall that by Proposition 4.15, we have

m ≤ u(n,m, h) ≤ min{n, hm− h+ 1},

with u(n,m, h) = m if, and only if, h = 1 or n is divisible by m. For û (n,m, h) we have
the following result.

Proposition 4.29 For all positive integers n, m, and h with h < m ≤ n we have

m ≤ û (n,m, h) ≤ min{u(n,m, h), hm− h2 + 1} ≤ min{n, hm− h2 + 1},

with û (n,m, h) = m if, and only if, (at least) one of the following holds:

(i) h = 1,

(ii) h = m− 1,

(iii) n is divisible by m, or

(iv) h = 2, m = 4, and n is even.

The upper bound in Proposition 4.29 follows from the fact that

û (n,m, h) ≤ f 1̂(n,m, h) = min{n, hm− h2 + 1}

and Propositions 4.26 and 4.15. The proof of the lower bound and the classification of its
equality can be found on page 321.

We know considerably less about cases when û (n,m, h) reaches the upper bound

min{u(n,m, h), hm− h2 + 1}

in Proposition 4.29. Equality clearly always holds when h = 1, and from Proposition 4.22
we see that, when h = 2, equality also holds unless n and m are both even and 2m− 3 ≤
u(n,m, 2). When comparing the table on page 83 to the table on page 86, we see that, for
n = 15 and 2 ≤ h ≤ 5, there is only one case when the upper bound is not reached: h = 3
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and m = 6. We may observe that in both these cases we have gcd(n,m, h) > 1; indeed,
when gcd(n,m, h) = d > 1 and hm− h2 + 1 ≤ u(n,m, h), then

û (n,m, h) ≤ f d̂(n,m, h) = hm− h2 + 1− (d− 1) < min{u(n,m, h), hm− h2 + 1}.

It is not hard to find other scenarios when the upper bound is not reached, but we do not
have a full understanding of all of them. We offer the following challenging problem.

Problem 4.30 Classify all situations when û (n,m, h) < min{u(n,m, h), hm− h2 + 1}.

As we did for u(n,m, h), we now compare û (n,m, h) to the smallest prime divisor p of
n. Clearly, if p < m then, by Proposition 4.29,

û (n,m, h) ≥ m > p ≥ min{p, hm− h2 + 1}.

On the other hand, if p ≥ m, then

f 1̂(n,m, h) = min{n, hm− h2 + 1} ≥ min{p, hm− h2 + 1},

and for d ∈ D(n) \ {1}, we have d ≥ p ≥ m > h and, therefore, r = h < m = k, so
h ≤ min{d− 1, k} and thus

f d̂(n,m, h) = min{n,
(
h ·
⌈m
d

⌉
− h+ 1

)
· d, hm− h2 + 1}

= min{n, d, hm− h2 + 1}
≥ min{p, hm− h2 + 1},

with equality when (though not necessarily only when) d = p, and thus

û (n,m, h) = min{p, hm− h2 + 1}.

In summary, we have shown the following.

Proposition 4.31 Let n, m, and h be positive integers, h < m ≤ n, and let p be the
smallest prime divisor of n. We then have

û (n,m, h) ≥ min{p, hm− h2 + 1},

with equality if, and only if, m ≤ p.

Note that Proposition 4.31 is a generalization of Proposition 4.25.
Recall that the function u(n,m, h) is a nondecreasing function of both m and h (but not

of n) and, for a fixed h, it reaches n at a certain threshold value of m, called the h-critical
number of n. In contrast, as the table on page 86 indicates, û (n,m, h) is not a nondecreasing
function of h. With some effort, one can prove that û (n,m, h) is a nondecreasing function of
m and that it reaches n eventually, so we are able to define the restricted h-critical number
of n. We will only do this here for h ≤ 2.

Since û (n,m, 1) = m is nondecreasing with m reaching n at m = n, the restricted
1-critical number of n is clearly well-defined and equals n. For h = 2, we use Proposition
4.22 to show that û (n,m+ 1, 2) ≥ û (n,m, 2). Indeed, if n is odd, then

û (n,m+1, 2) = min{u(n,m+1, 2), 2(m+1)− 3} ≥ min{u(n,m, 2), 2m− 3} = û (n,m, 2);

if n is even and m is even, then

û (n,m+1, 2) = min{u(n,m+1, 2), 2(m+1)− 3} ≥ min{u(n,m, 2), 2m− 4} = û (n,m, 2);
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and, if n is even and m is odd, then

û (n,m+1, 2) = min{u(n,m+1, 2), 2(m+1)− 4} ≥ min{u(n,m, 2), 2m− 3} = û (n,m, 2).

Therefore, û (n,m, 2) is a nondecreasing function of m. Furthermore, using Theorem 4.17
and Propositions 4.3 and 4.22, we also see that

û (n,m, 2)

{
< n if m ≤

⌊
n
2

⌋
+ 1,

= n if m ≥
⌊
n
2

⌋
+ 2,

and thus we have the following.

Theorem 4.32 The restricted 2-critical number of n is
⌊
n
2

⌋
+ 2.

Problem 4.33 For each h ≥ 3, prove that the h-critical number of n is well-defined and
find its value.

The arithmetic function û (n,m, h) seems quite interesting; we offer the following vague
problem.

Problem 4.34 Find some exact formulas or good upper or lower bounds, at least in certain
special cases, for û (n,m, h).
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This is the main part of the book where our problems are posed and their backgrounds
are explained. At the present time, these problems are about maximum sumset size, span-
ning sets, Sidon sets, minimum sumset size, critical numbers, zero-sum-free sets, and sum-
free sets. (We plan to include additional chapters in the near future.)

Guide to section numbering: In Chapter X (where X ∈ {A, B, C, . . . }), we study, for
A ⊆ G, H ⊆ N0, h ∈ N0, and s ∈ N0:

Section X.1: Unrestricted sumsets: HA
Section X.1.1: Fixed number of terms: hA
Section X.1.2: Limited number of terms: [0, s]A
Section X.1.3: Arbitrary number of terms: 〈A〉

Section X.2: Unrestricted signed sumsets: H±A
Section X.2.1: Fixed number of terms: h±A
Section X.2.2: Limited number of terms: [0, s]±A
Section X.2.3: Arbitrary number of terms: 〈A〉

Section X.3: Restricted sumsets: H Â
Section X.3.1: Fixed number of terms: ĥ A
Section X.3.2: Limited number of terms: [0, s]̂ A
Section X.3.3: Arbitrary number of terms: ΣA

Section X.4: Restricted signed sumsets: H±̂A
Section X.4.1: Fixed number of terms: h±̂A
Section X.4.2: Limited number of terms: [0, s]±̂A
Section X.4.3: Arbitrary number of terms: Σ±A

See the table on page 44 for definitions and terminology.
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Chapter A

Maximum sumset size

Recall that for a given finite abelian group G, m-subset A = {a1, . . . , am} of G, Λ ⊆ Z, and
H ⊆ N0, we defined the sumset of A corresponding to Λ and H as

HΛA = {λ1a1 + · · ·+ λmam | (λ1, . . . , λm) ∈ Λm(H)}

where the index set Λm(H) is defined as

Λm(H) = {(λ1, . . . , λm) ∈ Λm | |λ1|+ · · ·+ |λm| ∈ H}.

In this chapter we attempt to answer the following question: Given a finite abelian group
G and a positive integer m, how large can a sumset of an m-subset of G be? More precisely,
our objective is to determine, for any G, m, Λ, and H the quantity

νΛ(G,m,H) = max{|HΛA| | A ⊆ G, |A| = m}.

We can immediately see two upper bounds for νΛ(G,m,H): since HΛA is a subset of G
and since each element of the index set Λm(H) contributes a unique element toward HΛA
(which may or may not be distinct), we have the following obvious result.

Proposition A.1 We have

νΛ(G,m,H) ≤ min{|G|, |Λm(H)|}.

One of the most fascinating questions in additive combinatorics is to investigate the
cases when equality occurs in Proposition A.1. In particular, subsets A of G with HΛA = G
(that is, every element of G can be written as an appropriate sum of the elements of A)
are called spanning sets, and subsets with |HΛA| = |Λm(H)| (i.e., all sums are distinct
modulo the rearrangement of the terms) are called Sidon sets. We investigate spanning sets
in Chapter B and Sidon sets in Chapter C.

In the following sections we consider νΛ(G,m,H) for special Λ ⊆ Z and H ⊆ N0.

A.1 Unrestricted sumsets

Our goal in this section is to investigate the quantity

ν(G,m,H) = max{|HA| | A ⊆ G, |A| = m}

where HA is the union of all h-fold sumsets hA for h ∈ H . We consider three special
cases: when H consists of a single nonnegative integer h, when H consists of all nonnegative
integers up to some value s, and when H is the entire set of nonnegative integers.
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A.1.1 Fixed number of terms

We first consider
ν(G,m, h) = max{|hA| | A ⊆ G, |A| = m},

that is, the maximum size of an h-fold sumset of an m-element subset of G.
In general, we do not know the value of ν(G,m, h). Obviously, for h = 0 and h = 1 we

have hA = {0} and hA = A, respectively, thus

ν(G,m, 0) = 1

and
ν(G,m, 1) = m

for every m ∈ N. If A consists of a single element a, then hA = {ha} for every h ∈ N0, so

ν(G, 1, h) = 1

for every h ∈ N0.
Before turning to the case of m = 2, recall that, according to Proposition 3.2, in order

to find ν(G,m, h) (for any G, m, and h), we may assume that the subset A of G of size m
yielding |hA| = ν(G,m, h) will contain 0. Therefore, to find ν(G, 2, h), we only need to look
for an element a ∈ G for which the size of

h{0, a} = {0, a, 2a, . . . , ha}

is maximal. But the size of this set is clearly min{|〈a〉|, h+ 1}. Here |〈a〉| is the order of a;
its maximal value is the exponent of G, denoted by κ. Therefore,

ν(G, 2, h) = min{κ, h+ 1}

for any h ∈ N0.
Summarizing our results thus far, we have the following.

Proposition A.2 In any abelian group G of order n and exponent κ we have

ν(G,m, 0) = 1,

ν(G,m, 1) = m,

ν(G, 1, h) = 1,

ν(G, 2, h) = min{κ, h+ 1}.

For values of m ≥ 3 and h ≥ 2, we have no exact values for ν(G,m, h) in general; as a
consequence of Proposition A.1, we have, however, the following upper bound.

Proposition A.3 In any abelian group G of order n we have

ν(G,m, h) ≤ min

{
n,

(
m+ h− 1

h

)}
.

We pose the following very general problem.

Problem A.4 Find the value of (or, at least, find good bounds for) ν(G,m, h) for noncyclic
groups G and integers m and h.

The case of cyclic groups is of special interest:
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Problem A.5 For positive integers n, m, and h, find the value of (or, at least, find good
bounds for) ν(Zn,m, h).

The value of ν(Zn,m, h) (or, more generally, the value of ν(G,m, h)) tends to agree with
the upper bound in Proposition A.3. Perhaps the most intriguing aspect of Problem A.5
(or, more generally, of Problem A.4) is to analyze the exceptions to this predilection. The
number of exceptions seems to vary a great deal. For example, Manandhar in [148] found
(using a computer program) that, as n ranges from 2 to 20, the number of such exceptions
is as follows.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

exceptions 0 0 0 0 1 0 0 1 2 2 3 1 2 2 2 4 5 4 6

The six exceptions for n = 20 are listed in the following table.

h m min
{
20,
(
m+h−1

h

)}
ν(Z20,m, h)

2 5 15 14
2 6 20 18
3 4 20 18
4 3 15 14
5 3 20 17
6 3 20 19

These data suggest that Problem A.5 might be difficult. Therefore, we also pose the
following special cases.

Problem A.6 For positive integers n and h, find ν(Zn, 3, h).

Problem A.7 For positive integers n and m, find ν(Zn,m, 2).

Problem A.8 Find all (or, at least, infinitely many) positive integers n, m, and h, for
which

ν(Zn,m, h) < min

{
n,

(
m+ h− 1

h

)}
.

A.1.2 Limited number of terms

Here we ought to consider, for a given group G, positive integer m (with m ≤ n = |G|), and
nonnegative integer s,

ν(G,m, [0, s]) = max{|[0, s]A| | A ⊆ G, |A| = m},

that is, the maximum size of ∪s
h=0hA for an m-element subset A of G.

Obviously, we have

ν(G,n, [0, s]) = |[0, s]G| =
{

1 if s = 0,
n if s ≥ 1;

hence we may restrict our attention to the cases when m ≤ n − 1. However, we have the
following result.

Proposition A.9 For any group G, positive integer m ≤ n− 1, and nonnegative integer s
we have

ν(G,m, [0, s]) = ν(G,m+ 1, s).
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We can prove Proposition A.9 as follows. Suppose first that A is a subset of G of size m
and that it has maximum-size [0, s]-fold sumset:

|[0, s]A| = ν(G,m, [0, s]).

Clearly, |A ∪ {0}| ≤ m+ 1, so

|s(A ∪ {0})| ≤ ν(G,m+ 1, s).

But [0, s]A = s(A ∪ {0}) (see Proposition 3.3), and therefore

ν(G,m, [0, s]) ≤ ν(G,m+ 1, s).

For the other direction, choose a subset A of G of size m+ 1 for which

|sA| = ν(G,m + 1, s).

By Proposition 3.2, we may assume that 0 ∈ A; let A′ = A \ {0}. Then A′ has size m, and
we have

ν(G,m+ 1, s) = |sA| = |s(A′ ∪ {0})| = |[0, s]A′| ≤ ν(G,m, [0, s]).

Therefore,
ν(G,m, [0, s]) = ν(G,m+ 1, s),

as claimed.
Proposition A.9 makes this section superfluous (or makes Section A.1.1 superfluous via

this section).

A.1.3 Arbitrary number of terms

Here we consider, for a given group G and positive integer m (with m ≤ n),

ν(G,m,N0) = max{|〈A〉| | A ⊆ G, |A| = m}.
Recall that 〈A〉 is the subgroup of G generated by A.

We can easily determine that

ν(Zn,m,N0) = n

for all m and n, since any set A which contains an element of order n will generate all of
Zn.

More generally, consider the invariant decomposition of G,

G = Zn1
× Zn2

× · · · × Znr
,

where r and n1, . . . , nr are integers all at least 2 and ni+1 is divisible by ni for i = 1, 2, . . . , r−
1. (Here r is the rank of G and nr = κ is the exponent of G.) For each i = 1, 2, . . . , r, let
ei denote the element (0, . . . , 0, 1, 0, . . . , 0) of G where the 1 occurs in position i. When
m = r, taking A = {e1, . . . , em} results in 〈A〉 = G, and thus ν(G,m,N0) = n; this
holds when m > r for any set A containing {e1, . . . , em}. When m < r, we can take
A = {er−m+1, er−m+2, . . . , er}, and this results in

〈A〉 ∼= Zn
r−m+1

× Zn
r−m+2

× · · · × Znr
.

We conjecture that we cannot do better:

Conjecture A.10 Suppose that G is given by its invariant decomposition, as above. Prove
that

ν(G,m,N0) =





n
r−m+1

n
r−m+2

· · ·n
r

if m ≤ r,

n if m ≥ r.

Problem A.11 Prove (or disprove) Conjecture A.10.
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A.2 Unrestricted signed sumsets

In this section we investigate the quantity

ν±(G,m,H) = max{|H±A| | A ⊆ G, |A| = m}

for various H ⊆ N0.

A.2.1 Fixed number of terms

First, we consider
ν±(G,m, h) = max{|h±A| | A ⊆ G, |A| = m},

that is, the maximum size of an h-fold signed sumset of an m-element subset of G.
In general, we do not know the value of ν±(G,m, h), but we can evaluate it for h = 0,

h = 1, and m = 1 as follows. Since 0±A = {0} for every A ⊆ G, we have

ν±(G,m, 0) = 1.

Furthermore, 1±A = A ∪ (−A), so to find ν±(G,m, 1), we need to find a subset A of G
with |A| = m for which |A ∪ (−A)| is maximal. We can do this as follows.

Let
L = Ord(G, 2) ∪ {0} = {g ∈ G | 2g = 0} = {g ∈ G | g = −g}.

Observe that the elements of G \ L are distinct from their inverses, so we have a subset
K of G \ L with which G = L ∪K ∪ (−K), and L, K, and −K are pairwise disjoint. We
then see that to maximize the quantity |A ∪ (−A)|, we can have A ⊆ K when m ≤ |K|;
K ⊆ A ⊆ K ∪ L when |K| ≤ m ≤ |K ∪ L|; and K ∪ L ⊆ A when m ≥ |K ∪ L|. Thus,

ν±(G,m, 1) =





2m if m ≤ |K|

m+ |K| if |K| ≤ m ≤ |K ∪ L|

n if m ≥ |K ∪ L|;

since |K ∪ L| = n− |K|, this simplifies to

ν±(G,m, 1) = min {2m,m+ |K|, n}

or

ν±(G,m, 1) = min

{
n, 2m,m+

n− |Ord(G, 2)| − 1

2

}
.

Let’s turn to the case ofm = 1. If A consists of a single element a, then h±A = {ha,−ha}
for every h ∈ N0, so to find ν±(G, 1, h), we need to find, if possible, a one-element subset
A = {a} of G for which the set 〈A, h〉 = {ha,−ha} has size 2. This means that we only need
to answer the following question: when does G contain an element a for which ha 6= −ha?
But, for any a ∈ G, ha 6= −ha is equivalent to 2ha 6= 0, which is the same as saying that
the order of a does not divide 2h. Since the order of any element in G is a divisor of the
exponent κ of G, if the order of a does not divide 2h, then κ does not divide 2h either.
Conversely, if κ does not divide 2h, then choosing a to be an element of order κ will work.
Therefore, we get

ν±(G, 1, h) =

{
1 if κ|2h;
2 otherwise.

In summary, we have the following.
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Proposition A.12 In any abelian group G of order n and exponent κ we have

ν±(G,m, 0) = 1;

ν±(G,m, 1) = min

{
n, 2m,m+

n− |Ord(G, 2)| − 1

2

}
;

ν±(G, 1, h) =

{
1 if κ|2h,
2 otherwise.

For values of h ≥ 2 and m ≥ 2, we have no exact values for ν±(G,m, h) in general; as a
consequence of Proposition A.1, we have, however, the following upper bound.

Proposition A.13 In any abelian group G of order n we have

ν±(G,m, h) ≤ min {n, c(h,m)} .

Recall that

c(h,m) =
∑

i≥0

(
m

i

)(
h− 1

i− 1

)
2i.

Similar to Section A.1.1, we pose the following problems.

Problem A.14 Find the value of (or, at least, find good bounds for) ν±(G,m, h) for non-
cyclic groups G and integers m and h.

Problem A.15 Find the value of (or, at least, find good bounds for) ν±(Zn,m, h) for all
positive integers n,m, and h.

Problem A.16 For positive integers n and h, find ν±(Zn, 2, h).

Problem A.17 For positive integers n and m, find ν±(Zn,m, 2).

Problem A.18 Find all (or, at least, infinitely many) positive integers n, m, and h, with
m ≥ 2 and h ≥ 2, for which

ν±(Zn,m, h) < min {n, c(h,m)} .

Some of the cases when the inequality of Problem A.31 holds were found by Buell in
[44]; namely, when 2 ≤ m ≤ 5, the set of n values for which ν±(Zn,m, 2) is less than
min {n, c(2,m)} are as follows:

m n

2 6− 8
3 14− 18, 20
4 22− 33, 36, 40
5 34, 36− 54, 56− 58

From these data it appears that a complete solution to our problems above may be quite
challenging.



A.2. UNRESTRICTED SIGNED SUMSETS 103

A.2.2 Limited number of terms

Here we consider, for a given group G, positive integer m (with m ≤ n = |G|), and nonneg-
ative integer s,

ν±(G,m, [0, s]) = max{|[0, s]±A| | A ⊆ G, |A| = m},
that is, the maximum size of [0, s]±A for an m-element subset A of G.

We note that we don’t have a version of Proposition 3.2 for signed sumsets, so we are
not able to reduce this entire section to Section A.2.1. (However, one may be able to apply
similar techniques.)

It is easy to see that, for every m, we have

ν±(G,m, [0, 0]) = 1.

Furthermore,
[0, 1]±A = A ∪ (−A) ∪ {0},

whose maximum size we can find as we did for A ∪ (−A) in Section A.2.1, except here we
write G as the pairwise disjoint union of four (potentially empty) parts: {0}, Ord(G, 2), K,
and −K. The computation this time yields

ν±(G,m, [0, 1]) = min

{
n, 2m+ 1,m+

n− |Ord(G, 2)|+ 1

2

}
.

Regarding the case of m = 1, we see that for A = {a} we have

[0, s]±A = {0,±a,±2a, . . . ,±sa},

thus
ν±(G, 1, [0, s]) = min{κ, 2s+ 1}.

Summarizing our results thus far, we have the following.

Proposition A.19 In any abelian group G of order n and exponent κ we have

ν±(G,m, [0, 0]) = 1,

ν±(G,m, [0, 1]) = min

{
n, 2m+ 1,m+

n− |Ord(G, 2)|+ 1

2

}
,

ν±(G, 1, [0, s]) = min{κ, 2s+ 1}.

For values of s ≥ 2 and m ≥ 2, we have no exact values for ν±(G,m, [0, s]) in general;
as a consequence of Proposition A.1, we have, however, the following upper bound.

Proposition A.20 In any abelian group G of order n we have

ν±(G,m, [0, s]) ≤ min {n, a(m, s)} .

Recall that

a(m, s) =
∑

i≥0

(
m

i

)(
s

i

)
2i.

Similarly to previous sections, we pose the following problems.

Problem A.21 Find the value of (or, at least, find good bounds for) ν±(G,m, [0, s]) for
noncyclic groups G and integers m and s.
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Problem A.22 Find the value of (or, at least, find good bounds for) ν±(Zn,m, [0, s]) for
all integers n, m, and s.

Problem A.23 For positive integers n and s, find ν±(Zn, 2, [0, s]).

Problem A.24 For positive integers n and m, find ν±(Zn,m, [0, 2]).

Problem A.25 Find all (or, at least, infinitely many) positive integers n, m, and s for
which

ν±(Zn,m, [0, s]) < min {n, a(m, s)} .

A.2.3 Arbitrary number of terms

This subsection is identical to Subsection A.1.3.

A.3 Restricted sumsets

Our goal in this section is to investigate the quantity

ν (̂G,m,H) = max{|H Â| | A ⊆ G, |A| = m}

for various H ⊆ N0.

A.3.1 Fixed number of terms

Here we consider
ν (̂G,m, h) = max{|ĥ A| | A ⊆ G, |A| = m},

that is, the maximum size of a restricted h-fold sumset of an m-element subset of G.
Observe first that for all h > m, ĥ A = ∅ and thus ν (̂G,m, h) = 0. Furthermore, note

that for every set A = {a1, . . . , am} ⊆ G of size m and for every h ∈ N0, we have

(m− h)̂ A = (a1 + · · ·+ am)− ĥ A;

in particular,
|(m− h)̂ A| = |ĥ A|

and
ν (̂G,m,m− h) = ν (̂G,m, h).

Therefore, we can restrict our attention to the cases when

h ≤
⌊m
2

⌋
.

It is also quite obvious that we have 0̂ A = {0} and 1̂ A = A; consequently, we have the
following.

Proposition A.26 In any abelian group G we have
ν (̂G,m, 0) = 1,
ν (̂G,m, 1) = m,
ν (̂G,m,m− 1) = m,
ν (̂G,m,m) = 1,
ν (̂G,m, h) = 0 for h > m.
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For values of 2 ≤ h ≤ m − 2, we have no exact values for ν (̂G,m, h) in general; as a
consequence of Proposition A.1, we have, however, the following upper bound.

Proposition A.27 In any abelian group G of order n we have

ν (̂G,m, h) ≤ min

{
n,

(
m

h

)}
.

We pose the following problems.

Problem A.28 Find the value of (or good bounds for) ν (̂G,m, h) for noncyclic groups G
and integers m and h.

Problem A.29 Find the value of (or good bounds for) ν (̂Zn,m, h) for all positive integers
n,m, and h.

Problem A.30 For positive integers n and m, find ν (̂Zn,m, 2).

Problem A.31 Find all (or, at least, infinitely many) positive integers n, m, and h for
which

ν (̂Zn,m, h) < min

{
n,

(
m

h

)}
.

Manandhar (cf. [148]) found (using a computer program) that for all n ≤ 20, we have

ν (̂Zn,m, h) = min

{
n,

(
m

h

)}
,

with the following exceptions:

n m h min
{
n,
(
m
h

)}
ν (̂Zn,m, h)

10 5 2, 3 10 9
14 6 2, 4 14 13
15 6 2, 4 15 13
16 6 2, 4 15 14
17 6 2, 4 15 14
18 6 2, 4 15 14
18 7 2, 5 18 17
19 7 2, 5 19 18
20 7 2, 5 20 19

It is interesting to note that all these exceptions occur with h = 2 or h = m− 2.

A.3.2 Limited number of terms

Here we consider, for a given group G, positive integer m (with m ≤ n = |G|), and nonneg-
ative integer s,

ν (̂G,m, [0, s]) = max{|[0, s]̂ A| | A ⊆ G, |A| = m},
that is, the maximum size of [0, s]̂ A for an m-element subset A of G. We may assume that
s ≤ m, since for s > m we have

ν (̂G,m, [0, s]) = ν (̂G,m, [0,m]).
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It is easy to see that, for every m, we have

ν (̂G,m, [0, 0]) = 1

and
ν (̂G,m, [0, 1]) = min{n,m+ 1}.

For values of 2 ≤ s ≤ m, we have no exact values for ν (̂G,m, [0, s]) in general; as a
consequence of Proposition A.1, we have, however, the following upper bound.

Proposition A.32 In any abelian group G of order n we have

ν (̂G,m, [0, s]) ≤ min

{
n,

s∑

h=0

(
m

h

)}
.

As in previous section, we have the following problems.

Problem A.33 For positive integers n, m, and s, find the value of (or, at least, good bounds
for) ν (̂Zn,m, [0, s]). In particular, find ν (̂Zn,m, [0, 2]).

Problem A.34 Find all (or, at least, infinitely many) positive integers n, m, and s, for
which

ν (̂Zn,m, [0, s]) < min

{
n,

s∑

h=0

(
m

h

)}
.

Problem A.35 Find the value of (or, at least, good bounds for) ν (̂G,m, [0, s]) for noncyclic
groups G and integers m and s.

A.3.3 Arbitrary number of terms

Here we consider, for a given group G and positive integer m (with m ≤ n),

ν (̂G,m,N0) = max{|ΣA| | A ⊆ G, |A| = m}.

Note that
ν (̂G,m,N0) = ν (̂G,m, [0, s])

for every s ≥ m, thus we could think of the problem of finding ν (̂G,m,N0), the maximum
size of a restricted sumset, as a special case of finding ν (̂G,m, [0, s]) when s = m (or any
s ≥ m). However, it may be worthwhile to separate this case as it is of special interest.

As a consequence of Proposition A.1, we have the following upper bound.

Proposition A.36 In any abelian group G of order n we have

ν (̂G,m,N0) ≤ min {n, 2m} .

We can easily prove that, in the case of cyclic groups, equality holds in Proposition A.36.
We will consider two cases: when n ≥ 2m and when n < 2m.

If n ≥ 2m, then let
A = {1, 2, 22, . . . , 2m−1}.

Clearly, A has size m, and one can also see (recalling the base 2 representation of integers)
that

|ΣA| = 2m = min {n, 2m} .
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Suppose now that n < 2m, and let k = ⌈log2 n⌉; note that 2k−1 < n ≤ 2k. Therefore,
for the set

A′ = {1, 2, 22, . . . , 2k−1},
we get ΣA′ = Zn; and this implies that for any set A that contains A′ we have ΣA = Zn.
But n < 2m implies that m > log2 n and thus m ≥ k, which means that, again we are able
to find an m-subset A of Zn for which

|ΣA| = n = min {n, 2m} .

These constructions, together with Proposition A.36, imply the following:

Proposition A.37 For positive integers n and m with m ≤ n we have

ν (̂Zn,m,N0) = min {n, 2m} .

As we have mentioned above, this also implies that

ν (̂Zn,m, [0, s]) = min {n, 2m}

holds for every integer s ≥ m.
So, the case of cyclic groups has been settled, which leaves us with the following problem.

Problem A.38 For every positive integer m and noncyclic group G, find the value of
ν (̂G,m,N0).

A.4 Restricted signed sumsets

Our goal in this section is to investigate the quantity

ν±̂(G,m,H) = max{|H±̂A| | A ⊆ G, |A| = m}

for various H ⊆ N0.

A.4.1 Fixed number of terms

Here we consider
ν±̂(G,m, h) = max{|h±̂A| | A ⊆ G, |A| = m},

that is, the maximum size of a restricted h-fold signed sumset of an m-element subset of G.
Observe first that, for all h > m, h±̂A = ∅ and thus ν±̂(G,m, h) = 0, so only h ≤ m

needs to be considered, as was the case in Section A.3.1. On the other hand, here we do not
have the “palindromic” property of restricted sumsets that ν (̂G,m,m− h) = ν (̂G,m, h).

As in Section A.2.1, we get:

Proposition A.39 In any abelian group G of order n and for every m ≤ n we have

ν±̂(G,m, 0) = 1,

ν±̂(G,m, 1) = min

{
n, 2m,m+

n− |Ord(G, 2)| − 1

2

}
.

For values of 2 ≤ h ≤ m, we have no exact values for ν±̂(G,m, h) in general; as a
consequence of Proposition A.1, we have, however, the following upper bound.
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Proposition A.40 In any abelian group G of order n we have

ν±̂(G,m, h) ≤ min

{
n,

(
m

h

)
· 2h
}
.

Not much else is known about the value of ν±̂(G,m, h) in general. We thus pose the
following.

Problem A.41 Find the value of (or, at least, good bounds for) ν±̂(G,m, h) for noncyclic
groups G and integers m and 2 ≤ h ≤ m.

At least for cyclic groups, we can find the exact answer when h = m. As conjectured by
Olans in [165], we have the following result:

Proposition A.42 For all positive integers n and m ≤ n we have

ν±̂(Zn,m,m) =





min {n, 2m} if n is odd,

min {n/2, 2m} if n is even.

The easy proof is on page 323. This result leaves us with the following open questions.

Problem A.43 Find the value of ν±̂(Zn,m, h) for all positive integers n,m, and 2 ≤ h ≤
m− 1.

The following two special cases of Problem A.43 are worth mentioning separately.

Problem A.44 For positive integers n and m, find ν±̂(Zn,m, 2).

Problem A.45 Find all (or, at least, infinitely many) positive integers n, m, and 2 ≤ h ≤
m− 1, for which

ν±̂(Zn,m, h) < min

{
n,

(
m

h

)
· 2h
}
.

A.4.2 Limited number of terms

Here we consider, for a given group G, positive integer m (with m ≤ n = |G|), and nonneg-
ative integer s,

ν±̂(G,m, [0, s]) = max{|[0, s]±̂A| | A ⊆ G, |A| = m},

that is, the maximum size of [0, s]±̂A for an m-element subset A of G. We may assume that
s ≤ m, since for s > m we have

ν±̂(G,m, [0, s]) = ν±̂(G,m, [0,m]).

As in Section A.2.2, we get:

Proposition A.46 In any abelian group G of order n and for every m ≤ n we have

ν±̂(G,m, [0, 0]) = 1,

ν±̂(G,m, [0, 1]) = min

{
n, 2m+ 1,m+

n− |Ord(G, 2)|+ 1

2

}
.
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For other values of s, we have no exact values for ν±̂(G,m, [0, s]) in general; as a conse-
quence of Proposition A.1, we have, however, the following upper bound.

Proposition A.47 In any abelian group G of order n we have

ν±̂(G,m, [0, s]) ≤ min

{
n,

s∑

h=0

(
m

h

)
2h

}
.

The following problems are largely unsolved.

Problem A.48 Find the value of (or, at least, good bounds for) ν±̂(Zn,m, [0, s]) for all
integers n, m, and s; in particular, find ν±̂(Zn,m, [0, 2]).

Problem A.49 Find all (or, at least, infinitely many) positive integers n, m, and s, for
which

ν±̂(Zn,m, [0, s]) < min

{
n,

s∑

h=0

(
m

h

)
2h

}
.

Problem A.50 Find the value of (or, at least, good bounds for) ν±̂(G,m, [0, s]) for non-
cyclic groups G and integers m and s.

A.4.3 Arbitrary number of terms

Here we consider, for a given group G and positive integer m (with m ≤ n),

ν±̂(G,m,N0) = max{|Σ±A| | A ⊆ G, |A| = m}.

Note that
ν±̂(G,m,N0) = ν±̂(G,m, [0, s])

for every s ≥ m, thus we could think of the problem of finding ν±̂(G,m,N0), the maximum
size of a restricted sumset, as a special case of finding ν±̂(G,m, [0, s]) when s = m (or any
s ≥ m). Nevertheless, we separate this subsection as it is of special interest.

As a consequence of Proposition A.1, we have the following upper bound.

Proposition A.51 In any abelian group G of order n we have

ν±̂(G,m,N0) ≤ min {n, 3m} .

With an argument similar to the one in Section A.3.3, we show that, when G is cyclic,
equality holds in Proposition A.51. We will consider two cases: when n ≥ 3m and when
n < 3m.

If n ≥ 3m, then let
A = {1, 3, 32, . . . , 3m−1};

clearly, A has size m. Recall that every positive integer up to 3m− 1 has a (unique) ternary
representation of at most m ternary digits. Subtracting

1 + 3 + 32 + · · ·+ 3m−1 =
3m − 1

2
,

every integer between −(3m − 1)/2 and (3m − 1)/2, inclusive, can be written (uniquely) as

r0 + r1 · 3 + · · ·+ rm−1 · 3m−1
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with r0, r1, . . . , rm−1 ∈ {−1, 0, 1}. Therefore,

|Σ±A| = 3m = min {n, 3m} .

Suppose now that n < 3m, and let k = ⌈log3 n⌉; note that 3k−1 < n ≤ 3k. Therefore,
for the set

A′ = {1, 3, 32, . . . , 3k−1},
we get Σ±A′ = Zn; and this implies that for any set A that contains A′ we have Σ±A = Zn.
But n < 3m implies that m > log3 n and thus m ≥ k, which means that, again we are able
to find an m-subset A of Zn for which

|Σ±A| = n = min {n, 3m} .

These constructions, together with Proposition A.51, imply the following:

Proposition A.52 For positive integers n and m with m ≤ n we have

ν±̂(Zn,m,N0) = min {n, 3m} .

As we have mentioned above, this also implies that

ν±̂(Zn,m, [0, s]) = min {n, 3m}

holds for every integer s ≥ m.
So, the case of cyclic groups has been settled, which leaves us with the following problem.

Problem A.53 For every positive integer m and noncyclic group G, find the value of
ν±̂(G,m,N0).



Chapter B

Spanning sets

Recall that for a given finite abelian group G, m-subset A = {a1, . . . , am} of G, Λ ⊆ Z, and
H ⊆ N0, we defined the sumset of A corresponding to Λ and H as

HΛA = {λ1a1 + · · ·+ λmam | (λ1, . . . , λm) ∈ Λm(H)}

where the index set Λm(H) is defined as

Λm(H) = {(λ1, . . . , λm) ∈ Λm | |λ1|+ · · ·+ |λm| ∈ H}.

The case when the sumset yields the entire group is of special interest; we say that A
is an H-spanning set over Λ if HΛA = G. In this chapter we attempt to find the minimum
possible size of an H-spanning set over Λ in a given finite abelian group G. Namely, our
objective is to determine, for any G, Λ ⊆ Z, and H ⊆ N0 the quantity

φΛ(G,H) = min{|A| | A ⊆ G,HΛA = G}.

If no H-spanning set exists, we put φΛ(G,H) = ∞.
Note that we have a strong connection between the maximum possible size of sumsets,

studied in Chapter A, and the minimum size of spanning sets, studied here. In particular,
we have the following obvious proposition.

Proposition B.1 For any group G of size n, Λ ⊆ Z, and H ⊆ N0, we have

φΛ(G,H) = min{m | νΛ(G,m,H) = n}.

Therefore, in theory, the question of finding φΛ(G,H) is a special case of the more general
problem of finding νΛ(G,m,H); however, there is enough interest in spanning sets alone to
treat them separately.

We have the following obvious bound.

Proposition B.2 If A is an H-spanning set over Λ in a group G of order n and |A| = m,
then

n ≤ |Λm(H)|.

Proposition B.2 provides a lower bound for the size of H-spanning sets over Λ in G. The
case of equality in Proposition B.2 is of special interest: an H-spanning set over Λ of size
m in a group G is called perfect when n = |Λm(H)| holds.

In the following subsections we consider φΛ(G,H) for special coefficient sets Λ.
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B.1 Unrestricted sumsets

Our goal in this section is to investigate the quantity

φ(G,H) = min{|A| | A ⊆ G,HA = G};

if no H-spanning set exists, we put φ(G,H) = ∞. Note that we have

φ(G, {0}) = ∞

for all groups of order at least 2, but if H contains at least one positive integer h, then

φ(G,H) ≤ n

since we have
G = {(h− 1) · 0 + 1 · g | g ∈ G} ⊆ hG ⊆ HG

and thus HG = G.

B.1.1 Fixed number of terms

In this subsection we ought to consider

φ(G, h) = min{|A| | A ⊆ G, hA = G},

that is, the minimum value of m for which G contains a set A of size m with hA = G.
However, using Propositions B.1 and A.9, we can easily reduce the study of φ(G, h) to

that of
φ(G, [0, h]) = min{|A| | A ⊆ G, [0, h]A = G}.

Namely, we have the following result.

Proposition B.3 For any group G and nonnegative integer h we have

φ(G, h) = φ(G, [0, h]) + 1.

According to Proposition B.3, it suffices to study only one of φ(G, h) or φ(G, [0, h]). We
elect to study the latter—see Subsection B.1.2 below.

B.1.2 Limited number of terms

A subset A of G for which [0, s]A = G for some nonnegative integer s is called an s-
basis for G. (The term is somewhat confusing as for a set to be a basis, it only needs to
be spanning—no independence property is assumed. Nevertheless, we keep this historical
terminology.)

Here we investigate

φ(G, [0, s]) = min{|A| | A ⊆ G, [0, s]A = G},

that is, the minimum size of an s-basis for G.
As we pointed out above, we have

φ(G, [0, 0]) = ∞

for all groups of order at least 2, but

φ(G, [0, s]) ≤ n
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for every s ∈ N. Furthermore, for every G of order 2 or more we get

φ(G, [0, 1]) = n− 1,

since for every A ⊆ G we have [0, 1]A = {0} ∪A. But for s ≥ 2, we do not have a formula
for φ(G, [0, s]). Therefore we pose the following problem.

Problem B.4 Find φ(G, [0, s]) for every G and s ≥ 2.

From Proposition B.2, we have the following general bound.

Proposition B.5 If A is an s-basis of size m in G, then

n ≤
(
m+ s

s

)
.

We are particularly interested in the extremal cases of Proposition B.5. Namely, we
would like to find perfect s-bases, that is, s-bases of size m with

n =

(
m+ s

s

)
.

It is easy to determine all perfect s-bases for s = 1 or m = 1:

Proposition B.6 Let G be a finite abelian group, A ⊆ G, and a ∈ G.

1. A ⊆ G is a perfect 1-basis in G if, and only if, A = G \ {0}.

2. {a} ⊆ G is a perfect s-basis in G if, and only if, G ∼= Zs+1 and gcd(a, s+ 1) = 1.

We are not aware of any other perfect bases; in fact, we believe that there are none:

Conjecture B.7 There are no perfect s-bases of size m in G, unless s = 1 or m = 1.

The following result says that Conjecture B.7 holds for s = 2 and s = 3:

Theorem B.8 For s ∈ {2, 3}, there are no perfect s-bases in G of size m ≥ 2.

We present the proof starting on page 323. Our proof there can probably be generalized, so
we offer:

Problem B.9 Prove Conjecture B.7.

Let us return to the question of finding φ(G, [0, s]). As a consequence of Proposition B.5,
we have the following lower bound for φ(G, [0, s]).

Proposition B.10 For any abelian group G of order n and positive integer s we have

φ(G, [0, s]) >
⌈

s
√
s!n
⌉
− s.

To find some upper bounds for φ(G, [0, s]), we exhibit an explicit s-basis as follows.
Consider first the cyclic group Zn, and let a = ⌈ s

√
n⌉. It is then easy to see that the set

A = {i · aj | i = 1, 2, . . . , a− 1; j = 0, 1, . . . , s− 1}

is an s-basis for Zn (this follows from the fact that all nonnegative integers up to as−1 have
a base a representation of at most s digits, and that as − 1 ≥ n− 1). Since |A| ≤ (a− 1) · s,
we get the following result.
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Proposition B.11 For positive integers n and s we have

φ(Zn, [0, s]) ≤ s ·
(
⌈ s
√
n⌉ − 1

)
< s · s

√
n.

Observe that if A1 and A2 are s-bases for groups G1 and G2, respectively, then

A = {(a1, a2) | a1 ∈ A1, a2 ∈ A2}

is an s-basis for G1 ×G2; therefore,

φ(G1 ×G2, [0, s]) ≤ φ(G1, [0, s]) · φ(G2, [0, s]).

So, from Proposition B.11 we get the following corollary:

Proposition B.12 Let G be an abelian group of rank r and order n, and let s be a positive
integer. We then have

φ(G, [0, s]) < sr · s
√
n.

A different—and in most cases much lower—upper bound was provided by Jia:

Theorem B.13 (Jia; cf. [122]) Let G be an abelian group of order n, and let s be a
positive integer. We then have

φ(G, [0, s]) < s ·
(
1 +

1
s
√
2

)s−1

· s
√
n.

Let us now examine the case of cyclic groups in more detail. Krasny (see [137]) developed
a computer program that yields the following data.

φ(Zn, [0, 2]) =





1 if n = 1, 2, 3;
2 if n = 4, 5;
3 if n = 6, . . . , 9;
4 if n = 10, . . . , 13;
5 if n = 14, . . . , 17, and n = 19;
6 if n = 18, 20, 21;
7 if n = 22, . . . , 27, n = 29, 30;
8 if n = 28, n = 31, . . . , 35;

φ(Zn, [0, 3]) =





1 if n = 1, . . . , 4;
2 if n = 5, . . . , 8;
3 if n = 9, . . . , 16;
4 if n = 17, . . . , 25;
5 if n = 26, . . . , 40;

and

φ(Zn, [0, 4]) =





1 if n = 1, . . . , 5;
2 if n = 6, . . . , 11;
3 if n = 12, . . . , 27;
4 if n = 28, . . . , 49.

As these values suggest, φ(Zn, [0, s]) behaves rather peculiarly; the following problem is
wide open.

Problem B.14 Find φ(Zn, [0, s]) for all n and s.

Observe that the coefficient of s
√
n in the lower bound of Proposition B.10 and the

upper bound of Proposition B.11 are s
√
s! and s, respectively; therefore, even the following

problems are of much interest.
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Problem B.15 For a given s ≥ 2, find a constant c1 > s
√
s! so that

φ(Zn, [0, s]) > c1 · s
√
n

holds for all n (or, perhaps, all but finitely many n), or prove that such a constant cannot
exist.

Problem B.16 For a given s ≥ 2, find a constant c2 < s so that

φ(Zn, [0, s]) < c2 · s
√
n

holds for all n (or, perhaps, all but finitely many n), or prove that such a constant cannot
exist.

For example, for s = 2, Problems B.15 and B.16 ask for constants c1 >
√
2 and c2 < 2,

if they exist, for which

c1 ·
√
n < φ(Zn, [0, 2]) < c2 ·

√
n

holds for all (but finitely many) n. While there has been no progress toward finding such a
c1, there have been several results for c2; after a series of papers by Fried in [88], Mrose in
[160], and Kohonen in [135], the best such result thus far was found by Jia and Shen who in
[123] proved that one can take c2 to be any real number larger than

√
3. As a special case

of Problem B.16, we ask for an improvement of this construction:

Problem B.17 Find a constant c2 <
√
3 so that

φ(Zn, [0, 2]) < c2 ·
√
n

holds for all (but finitely many) n, or prove that such a constant cannot exist.

It is also interesting to investigate s-bases from the opposite viewpoint: given positive
integers s and m, what are the possible groups G for which φ(G, [0, s]) = m?

For m = 1 the answer is clear:

Proposition B.18 Let s be a positive integer and G be an abelian group of order n. Then
G contains an s-basis of size 1 if, and only if, G is cyclic and n ≤ s+ 1.

For m ≥ 2, the answer is not known, so we pose the following problem.

Problem B.19 For each s ≥ 2 and m ≥ 2, find all groups G for which φ(G, [0, s]) = m.

As a special case of Problem B.19, we have:

Problem B.20 For each s ≥ 2 and m ≥ 2, find all values of n for which φ(Zn, [0, s]) = m.

For m = 2, Maturo (see [153]) used a computer program to provide the following partial
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answer to Problem B.20:

s all n for which φ(Zn, [0, s]) = 2
2 4, 5
3 5, . . . , 8
4 6, . . . , 11
5 7, . . . , 16
6 8, . . . , 19, 21
7 9, . . . , 24, 26
8 10, . . . , 31, 33
9 11, . . . , 40

10 12, . . . , 45, 47
11 13, . . . , 52, 54, 55, 56
12 14, . . . , 61, 63, 65
13 15, . . . , 66, 68, . . . , 72, 74
14 16, . . . , 81, 84, 85
15 17, . . . , 88, 90, 91, 92, 94, 95, 96
16 18, . . . , 98, 100, 101, 102, 105, 107
17 19, . . . , 120
18 20, . . . , 121, 123, 124, 126, 127, 129, 131, 133
19 21, . . . , 136, 138, 139, 140, 143, 144, 146
20 22, . . . , 155, 157, 159, 161
21 23, . . . , 162, 164, . . . , 172, 174, 175, 176
22 24, . . . , 180, 182, . . . , 185, 189, 191
23 25, . . . , 196, 198, . . . , 208

The data make Problem B.20 seem challenging even for m = 2:

Problem B.21 For each s ∈ N, find all values of n for which φ(Zn, [0, s]) = 2.

We can formulate two sub-problems of Problem B.20:

Problem B.22 For each s ≥ 2 and m ≥ 2, find the largest integer f(m, s) for which
φ(Zn, [0, s]) ≤ m holds for n = f(m, s).

Problem B.23 For each s ≥ 2 and m ≥ 2, find the largest integer g(m, s) for which
φ(Zn, [0, s]) ≤ m holds for all n ≤ g(m, s).

For example, from the table above we see that f(2, 16) = 107, g(2, 16) = 98, and
f(2, 17) = g(2, 17) = 120.

Regarding f(2, s), it is not hard to prove that

f(2, s) ≥
⌊
s2+4s+3

3

⌋
,

in particular, one can verify that the set A = {1, s+ r}, where r is the positive remainder
of s when divided by 3, is an s-basis in Zn for

n =
⌊
s2+4s+3

3

⌋
.

For example, for s = 6, the set A = {1, 9} is a 6-basis in G = Z21, since for nonnegative
integer coefficients λ1 and λ2 satisfying λ1 + λ2 ≤ 6, the values of

λ1 · 1 + λ2 · 9
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yield all elements of the group:

λ1 = 0 λ1 = 1 λ1 = 2 λ1 = 3 λ1 = 4 λ1 = 5 λ1 = 6

λ2 = 0 0 1 2 3 4 5 6
λ2 = 1 9 10 11 12 13 14
λ2 = 2 18 19 20 0 1
λ2 = 3 6 7 8 9
λ2 = 4 15 16 17
λ2 = 5 3 4
λ2 = 6 12

In fact, Morillo, Fiol, and Fàbrega proved that f(2, s) cannot be larger (this was inde-
pendently re-proved by Hsu and Jia in [119] and conjectured by Maturo in [153]):

Theorem B.24 (Morillo, Fiol, and Fàbrega; cf. [159]) Let s be a positive integer.
The largest possible value f(2, s) of n for which φ(Zn, [0, s]) ≤ 2 is

f(2, s) =
⌊
s2+4s+3

3

⌋
.

Exact values for f(m, s) are not known in general when m ≥ 3, though we have compu-
tational data for small s and m = 3 and for small m and s = 2. Namely, in the paper [119]
of Hsu and Jia we see:

s 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(3, s) 9 16 27 40 57 78 111 138 176 217 273 340 395 462

In [106], Haanpää presents:

m 1 2 3 4 5 6 7 8 9 10 11 12
f(m, 2) 3 5 9 13 19 21 30 35 43 51 63 67

(Some of these values had been determined earlier by Graham and Sloane in [100].)

More ambitiously than Problem B.22, but more modestly than Problem B.19, we may
ask the following:

Problem B.25 For each s ≥ 2 and m ≥ 2, find the largest integer F (m, s) so that there is
a group G of order n = F (m, s) for which φ(G, [0, s]) ≤ m.

Since obviously F (m, s) ≥ f(m, s), we already know from Theorem B.24 that

F (2, s) ≥
⌊
s2+4s+3

3

⌋
.

In [83], Fiol, Yebra, Alegre, and Valero proved that, when s 6≡ 1 mod 3, then we cannot
do better. However, when s ≡ 1 mod 3, then the group G = Zk × Z3k has the s-basis

{(0, 1), (1, 3k − 1)}, where k = (s + 2)/3. Note that this group has order s2+4s+4
3 , and if

s 6≡ 1 mod 3, then ⌊
s2+4s+3

3

⌋
=
⌊
s2+4s+4

3

⌋
.

In summary, we have:
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Theorem B.26 (Fiol; cf. [82]) Let s be any positive integer. The largest value F (2, s) for
which there is a group G of order n = F (m, s) for which φ(G, [0, s]) ≤ 2 is

F (2, s) =
⌊
s2+4s+4

3

⌋
.

Exact values for F (m, s) are not known in general when m ≥ 3, but in [106], Haanpää
computed the values of F (m, 2) form ≤ 12. He found that F (m, 2) = f(m, 2) for allm ≤ 12,
except as follows:

• F (8, 2) = 36 = f(8, 2) + 1, as shown by the 2-basis

{(1, 0, 1), (0, 0, 1), (0, 0, 2), (1, 1, 0), (1, 2, 0), (3, 0, 2), (3, 1, 0), (3, 2, 0)}
in G = Z4 × Z2

3;

• F (11, 2) = 64 = f(11, 2) + 1, as shown by the 2-basis

{(0, 1), (0, 4), (1, 0), (1, 2), (2, 1), (2, 2), (2, 6), (4, 5), (5, 0), (5, 2), (6, 5)}
in G = Z2

8; and

• F (12, 2) = 72 = f(12, 2) + 5, as shown by the 2-basis

{(0, 1, 1), (0, 0, 2), (0, 2, 1), (0, 2, 4), (0, 2, 7), (0, 3, 1),
(1, 0, 3), (1, 0, 8), (1, 1, 1), (1, 2, 5), (1, 2, 6), (1, 3, 1)}

in G = Z2 × Z4 × Z9.

Turning now to g(m, s), first note that, obviously, g(m, s) ≤ f(m, s). We can find a lower
bound for g(m, s) as follows. Observe that the base a representation of nonnegative integers
guarantees that the set

A = {aj | j = 0, 1, . . . ,m− 1}
is an s-basis for Zn for all n ≤ am, as long as s ≥ m · (a− 1). Thus, with

a =
⌊ s

m

⌋
+ 1,

we get the following.

Proposition B.27 Let m and s be positive integers. The largest possible value g(m, s) of
n for which φ(Zn, [0, s]) ≤ m holds for all n ≤ g(m, s) satisfies

g(m, s) ≥
(⌊ s

m

⌋
+ 1
)m

.

In fact, for g(2, s) we can do slightly better:

Proposition B.28 Let s be a positive integer. The largest possible value g(2, s) of n for
which φ(Zn, [0, s]) ≤ 2 holds for all n ≤ g(2, s) satisfies

⌊
s2+6s+5

4

⌋
≤ g(2, s) ≤

⌊
s2+4s+3

3

⌋
.

The upper bound follows directly from Theorem B.24 above. To prove the lower bound,
we can verify that for each n up to this value, the set

A =
{
1,
⌊
s+3
2

⌋}

is an s-basis in Zn—the details can be found on page 325. Note that for s ∈ {2, 3, 4}, the
values of ⌊ s2+6s+5

4 ⌋ and ⌊ s2+4s+3
3 ⌋ agree, thus, for these values, g(2, s) is determined and

Problem B.21 is answered. However, we still have the following:

Problem B.29 For each s ≥ 2, find the largest integer g(2, s) for which φ(Zn, [0, s]) ≤ 2
holds for all n ≤ g(2, s).
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B.1.3 Arbitrary number of terms

B.2 Unrestricted signed sumsets

In this section we investigate the quantity

φ±(G,H) = min{|A| | A ⊆ G,H±A = G};

if no H-spanning set exists, we put φ±(G,H) = ∞. Note that we have

φ±(G, {0}) = ∞

for all groups of order at least 2, but if H contains at least one positive integer h, then

φ±(G,H) ≤ n

since we have

G = {(h− 1) · 0 + 1 · g | g ∈ G} ⊆ h±G ⊆ H±G,

so H±G = G.

B.2.1 Fixed number of terms

A subset A of G for which h±A = G for some nonnegative integer h is called an exact
h-spanning set for G. Here we investigate

φ±(G, h) = min{|A| | A ⊆ G, h±A = G},

that is, the minimum size of an exact h-spanning set for G.
As we pointed out above, we have

φ±(G, 0) = ∞

for all groups of order at least 2, but

φ±(G, h) ≤ n

for every h ∈ N.
For h = 1, it is clear that A is an exact 1-spanning set if, and only if, for each g ∈ G, A

contains at least one of g or −g; in particular, A must contain 0, every element of order 2,
and half of the elements of order more than 2. Therefore, we have:

Proposition B.30 For any finite abelian group G we have

φ±(G, 1) =
n+ |Ord(G, 2)|+ 1

2
;

in particular,

φ±(Zn, 1) = ⌊(n+ 2)/2⌋.

But for h ≥ 2, we do not have a formula for φ±(G, h). Therefore we pose the following
general problem.

Problem B.31 Find φ±(G, h) for every G and h ≥ 2.
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To find a lower bound for φ±(G, h), note that an m-subset of G may have an h-fold
signed sumset of size at most

c(h,m) =
∑

i≥0

(
m

i

)(
h− 1

i− 1

)
2i;

if the h-fold signed sumset is in fact G, then the elements that are their own inverses are
generated twice, since replacing all coefficients in the linear combination by their negatives
yields the same element. Therefore, we have the following general bound:

Proposition B.32 If A is an exact h-spanning set of size m in G, then

n ≤ c(h,m)− |Ord(G, 2)| − 1;

in particular, for the cyclic group Zn we must have

n ≤ c(h,m)− 1.

(Note that c(h,m) is even for all n, h ∈ N.)
Proposition B.32 provides us with a lower bound for φ±(G, h). For h = 1, it yields

φ±(G, 1) ≥ n+ |Ord(G, 2)|+ 1

2
;

in fact, by Proposition B.30, we know that equality holds. For h = 2, we have:

Proposition B.33 For all abelian groups G of order n we have

φ±(G, 2) ≥
√

n+ |Ord(G, 2)|+ 1

2
;

in particular,
φ±(Zn, 2) ≥

√
⌊(n+ 2)/2⌋.

For h ≥ 3 this bound is difficult to state explicitly.
To find some upper bounds for φ±(G, h), we exhibit an explicit exact h-spanning set as

follows. We will only consider the cyclic group Zn here (for noncyclic groups we may use
the method we discussed on page 114). Let a =

⌈
h
√
n+ 1

⌉
. We can readily verify that the

set
A = {0} ∪ {i · aj | i = 1, 2, . . . , ⌊a/2⌋ ; j = 0, 1, . . . , h− 1}

is an exact h-spanning set for Zn: indeed, all integers with absolute value at most n/2 are
generated:

⌊a
2

⌋
· (1 + a+ · · ·+ ah−1) =

⌊a
2

⌋
· a

h − 1

a− 1
≥ a− 1

2
· a

h − 1

a− 1
=

ah − 1

2
≥ n

2
.

Since

|A| = 1 + ⌊a/2⌋ · h = 1 + h ·
⌊⌈

h
√
n+ 1

⌉
/2
⌋
≤ 1 + h ·

⌊
( h
√
n+ 1)/2

⌋
≤ 1 + h · ( h

√
n+ 1)/2,

we get the following result.

Proposition B.34 For positive integers n and h we have

φ±(Zn, h) ≤ h/2 · h
√
n+ (h+ 2)/2.
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The following problem is wide open.

Problem B.35 For positive integers n and h ≥ 2, find φ±(Zn, h).

For h = 2, from Propositions B.33 and B.34 we get
√
⌊(n+ 2)/2⌋ ≤ φ±(Zn, 2) ≤

√
n+ 2.

We offer the following interesting problem:

Problem B.36 Find constants c1 > 1√
2
and c2 < 1 so that for all (but perhaps finitely

many) positive integers n we have

c1 ·
√
n ≤ φ±(Zn, 2) ≤ c2 ·

√
n,

or prove that no such constants exist.

It is also interesting to investigate exact h-spanning sets from the opposite viewpoint:
given positive integers h and m, what are the possible groups G for which φ±(G, h) = m?

The answer for m = 1 follows immediately from Proposition B.32: since c(h, 1) = 2, the
inequality, and thus φ±(G, h) = 1, holds if, and only if, n = 1. For m = 2, Reckner in [177]
has the following results:

Proposition B.37 (Reckner; cf. [177]) Let n and h be positive integers.

1. If
2 ≤ n ≤ 2h+ 1,

then φ±(Zn, h) = 2. In particular, the set {0, 1} is an exact h-spanning set in Zn for
all n in the given range.

2. If n and h are both odd and
2h+ 3 ≤ n ≤ 3h,

then φ±(Zn, h) = 2. In particular, when h is odd, the set {1, 3} is an exact h-spanning
set in Zn for all odd n in the given range.

Proposition B.37 does not classify all n and h with φ±(Zn, h) = 2, so we offer the
following problem:

Problem B.38 Find all other values of n and h for which φ±(Zn, h) = 2.

Note that, by Proposition B.32, it suffices to investigate Problem B.38 when n ≤ 4h−1.
Moving on to m = 3, we observe that, as an immediate consequence of Proposition B.54

in the next subsection, we have:

Proposition B.39 Let n and h be positive integers. If

n ≤ 2h2 + 2h+ 1,

then φ±(Zn, h) ≤ 3. In particular, the set {0, h, h+ 1} is an exact h-spanning set in Zn for
all n ≤ 2h2 + 2h+ 1.

Problem B.40 Find all other values of n and h for which φ±(Zn, h) ≤ 3.

Note that, by Proposition B.32, it suffices to investigate Problem B.40 when n ≤ 4h2+1.

Problem B.41 For each h and m ≥ 4, find all n for which φ±(Zn, h) = m.

And, more generally:

Problem B.42 For all positive integers h and m, find all groups G for which φ±(G, h) =
m.
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B.2.2 Limited number of terms

A subset A of G for which [0, s]±A = G for some nonnegative integer s is called an s-
spanning set for G. Here we investigate

φ±(G, [0, s]) = min{|A| | A ⊆ G, [0, s]±A = G},

that is, the minimum size of an s-spanning set for G.
As we pointed out above, we have

φ±(G, [0, 0]) = ∞

for all groups of order at least 2, but

φ±(G, [0, s]) ≤ n

for every s ∈ N.
For s = 1, it is clear that A is 1-spanning if, and only if, for each g ∈ G, A contains at

least one of g or −g; in particular, A must contain every element of order 2 and half of the
elements of order more than 2. Therefore, we have:

Proposition B.43 For any finite abelian group G we have

φ±(G, [0, 1]) =
n+ |Ord(G, 2)| − 1

2
;

in particular,
φ±(Zn, [0, 1]) = ⌊n/2⌋.

But for s ≥ 2, we do not have a formula for φ±(G, [0, s]). Therefore we pose the following
general problem.

Problem B.44 Find φ±(G, [0, s]) for every G and s ≥ 2.

As a consequence of Proposition B.2, we have the following general bound.

Proposition B.45 If A is an s-spanning set of size m in G, then

n ≤ a(m, s) =
∑

i≥0

(
m

i

)(
s

i

)
2i.

The classification of the extremal cases of Proposition B.45 is a particularly intriguing
question. Namely, we would like to find perfect s-spanning sets, that is, s-spanning sets of
size m with n = a(m, s). The values of a(m, s) can be tabulated for small values of m and
s (see also Section 2.4):

a(m,s) s=0 s=1 s=2 s=3 s=4 s=5 s=6

m=1 1 3 5 7 9 11 13
m=2 1 5 13 25 41 61 85
m=3 1 7 25 63 129 231 377
m=4 1 9 41 129 321 681 1289
m=5 1 11 61 231 681 1683 3653
m=6 1 13 85 377 1289 3653 8989

Cases where there exists a group of size a(m, s) with a known perfect s-spanning set
are marked with boldface. The following proposition exhibits perfect spanning sets for all
known parameters.
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Proposition B.46 Let m be a positive integer and s be a nonnegative integer, and let G
be an abelian group of order n.

1. If n = 2m+1, then G \ {0} can be partitioned into parts K and −K, and both K and
−K are perfect 1-spanning sets in G. For example, the set {1, 2, . . . ,m} is a perfect
1-spanning set in Zn.

2. If n = 2s+ 1 and gcd(a, n) = 1, then the set {a} is a perfect s-spanning set in Zn.

3. If n = 2s2 +2s+1, then the sets {1, 2s+1} and {s, s+1} are perfect s-spanning sets
in Zn.

The first two statements are obvious. The fact that the set {1, 2s + 1} is a perfect
s-spanning set in Zn is provided on page 325, and the same claim for {s, s + 1} follows
from Proposition B.54 below; note, however, that {s, s + 1} in Proposition B.54 cannot
be replaced by {1, 2s + 1}. (Both claims were demonstrated for s = 3 and n = 25 in the
Appetizer section “In pursuit of perfection”) While these two perfect spanning sets of size
2 are known, there has not been a characterization of any others.

Problem B.47 Find all perfect s-spanning sets of size 2 in the cyclic group Z2s2+2s+1.

We could not find perfect spanning sets for s ≥ 2 and m ≥ 3 for any n, and neither could
we find any noncyclic groups with perfect spanning sets for s ≥ 2 and m = 2. In particular,
we definitely know that, other than the ones already mentioned, no perfect spanning sets
exist in groups of order up to 100: Laza (cf. [138]) has verified (using a computer program)
that no perfect 2-spanning sets exist in Z25, Z41, Z61, or Z85 (note that a(m, 2) = 25, 41, 61,
and 85 for m = 3, 4, 5, and 6, respectively) and that no perfect 3-spanning set exists in Z63

(we have a(3, 3) = 63); on page 67, we presented simple arguments to prove that there is
neither a perfect 3-spanning set of size two, nor a perfect 2-spanning set of size three in Z2

5;
and Jankowski in [121] proved that Z3×Z21 cannot contain a perfect 3-spanning set of size
3 either.

It might be an interesting problem to find and classify all perfect spanning sets.

Problem B.48 Find perfect s-spanning sets in G = Zn of size m for some values s ≥ 2
and m ≥ 3, or prove that such perfect spanning sets do not exist.

Problem B.49 Find perfect s-spanning sets in noncyclic groups of size m for some values
s ≥ 2 and m ≥ 2, or prove that such perfect spanning sets do not exist.

Let us return to the question of finding φ±(G, [0, s]). Proposition B.45 provides us with
a lower bound for φ±(G, [0, s]), though for s ≥ 3 this bound is difficult to state explicitly.
For s = 2 we get:

Proposition B.50 For all abelian groups G of order n we have

φ±(G, [0, 2]) ≥
√
2n− 1− 1

2
.

As in the subsection B.2.1, we can find some upper bounds for φ±(Zn, [0, s]) by letting
a = ⌈ s

√
n+ 1⌉ and verifying that the set

A = {i · aj | i = 1, 2, . . . ,
⌊a
2

⌋
; j = 0, 1, . . . , s− 1}

is an s-spanning set for Zn. Since

|A| = s · ⌊a/2⌋ = s ·
⌊⌈

s
√
n+ 1

⌉
/2
⌋
≤ s ·

⌊
( s
√
n+ 1)/2

⌋
≤ s · ( s

√
n+ 1)/2,

we get the following result.
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Proposition B.51 For positive integers n and s we have

φ±(Zn, [0, s]) ≤ s/2 · s
√
n+ s/2.

The computational data of Laza (see [138]) shows that

φ±(Zn, [0, 2]) =





1 if n = 1, 2, 3, 4,5;
2 if n = 6, 7, . . . , 12,13;
3 if n = 14, 15, . . . , 21;
4 if n = 22, 23, . . . , 33, and n = 35;
5 if n = 34, n = 36, 37, . . . , 49, and n = 51;

and

φ±(Zn, [0, 3]) =





1 if n = 1, 2, . . . , 6,7;
2 if n = 8, 9 . . . , 24,25;
3 if n = 26, 27, . . . , 50, n = 52, and n = 55;
4 if n = 51, 53, 54, n = 56, 57, . . . , 100, and n = 104.

(Values marked in boldface indicate perfect spanning sets, as explained above.) The follow-
ing problem is wide open.

Problem B.52 For positive integers n and s ≥ 2, find φ±(Zn, [0, s]).

For s = 2, from Propositions B.50 and B.51 we get

√
2n− 1− 1

2
≤ φ±(Zn, [0, 2]) ≤

√
n+ 1.

We offer the following interesting problem:

Problem B.53 Find constants c1 > 1√
2
and c2 < 1 so that for all (but perhaps finitely

many) positive integers n we have

c1 ·
√
n ≤ φ±(Zn, [0, 2]) ≤ c2 ·

√
n,

or prove that no such constants exist.

It is also interesting to investigate s-spanning sets from the opposite viewpoint: given
positive integers s and m, what are the possible groups G for which φ±(G, [0, s]) = m? Here
is what we know:

Proposition B.54 (Bajnok; cf. [11]) Suppose, as usual, that G is an abelian group of
order n. Let s ≥ 1 be an integer.

1. We have φ±(G, [0, s]) = 1 if, and only if, G is cyclic and

1 ≤ n ≤ 2s+ 1.

In particular, the set {1} is s-spanning in Zn for every n ≤ 2s+ 1.
2. We have φ±(Zn, [0, s]) = 2 if, and only if,

2s+ 2 ≤ n ≤ 2s2 + 2s+ 1.

In particular, the set {s, s+ 1} is s-spanning in Zn for every n ≤ 2s2 + 2s+ 1.

The case of m = 1 in Proposition B.54 is clear: for any given s ∈ N, the only groups that
contain an s-spanning set of size 1 are the cyclic groups Zn, and we have φ(Zn, [0, s]) = 1
if, and only if, n ≤ 2s+1 (in which case the set {1}, for example, is s-spanning in Zn). For
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m = 2, the “only if” part follows from the fact that for n ≤ 2s+1 we have φ±(Zn, [0, s]) = 1
(lower bound) and from Proposition B.45 (upper bound). For the rest, see page 327.

Note that the second part of Theorem B.54 treats only cyclic groups. While it is clear
from Proposition 3.1 that the only noncyclic groups G possessing s-spanning sets of size two
must have rank two, we do not have a characterization of those for which φ±(G, [0, s]) = 2.
We have the following obvious conditions:

Proposition B.55 Let G = Zn1
× Zn2

be of rank two.

1. A necessary condition for φ±(G, [0, s]) = 2 is that

n1 · n2 ≤ 2s2 + 2s+ 1.

2. A sufficient condition for φ±(G, [0, s]) = 2 is that

⌊n1/2⌋+ ⌊n2/2⌋ ≤ s.

The first claim is due to Proposition B.45, and the second claim follows from the fact
that if the stated condition holds, then (for example) the set {(0, 1), (1, 0)} is s-spanning in
G.

While the two conditions in Proposition B.55 are generally far away from each other,
we can see what conclusions we have for small values of s. For s = 1, by the necessary
condition, the only possible group with a 1-spanning set of size two is Z2

2, but (e.g. by
Proposition B.43) φ±(Z2

2, [0, 1]) = 3. For s = 2, the only possible groups with a 2-spanning
set of size two are Z2

2, Z2 × Z4, Z
2
3, and Z2 × Z6; of these, the first three have one (e.g. the

set {0, 1), (1, 1)} works in each), but, as we can easily check, the fourth one does not. For
s = 3, the necessary condition of Proposition B.55 yields six other possibilities besides the
ones mentioned, which we can then be checked individually. We summarize our findings as
follows:

Corollary B.56 1. There is no group G of rank two with φ±(G, [0, 1]) = 2.

2. There are exactly three groups G of rank two with φ±(G, [0, 2]) = 2; namely, Z2
2, Z

2
3,

and Z2 × Z4.

3. There are exactly six groups G of rank two with φ±(G, [0, 3]) = 2; namely, Z2 × Z2k

for k ∈ {1, 2, 3, 4}, and Z3 × Z3k for k ∈ {1, 2}.

For groups of rank two whose first component is of size two, we have the following more
general result:

Proposition B.57 Suppose that k and s are positive integers satisfying one of the following
conditions:

• s = 2 and k ∈ {1, 2},

• s = 3 and k ∈ {1, 2, 3, 4},

• s = 4 and k ∈ {1, 2, 3, 4, 5, 6, 8}, or

• s ≥ 5 and k ≤ 3s− 4.

Then φ±(Z2 × Z2k, [0, s]) = 2.
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The fact that k = 7 is not listed for s = 4 is no typo: φ±(Z2 ×Z14, [0, 4]) = 3. The proof
of Proposition B.57 starts on page 327.

We also believe that the converse of Proposition B.57 holds as well:

Conjecture B.58 All values of s and k for which φ±(Z2 × Z2k, [0, s]) = 2 are listed in
Proposition B.57.

We pose the following interesting problems.

Problem B.59 Prove or disprove Conjecture B.58.

Problem B.60 For each s ≥ 2, find all values of k and l for which φ±(Z3×Z3k, [0, s]) = 2
and φ±(Z4 × Z4l, [0, s]) = 2.

Problem B.61 For each s ≥ 2, find all values of k for which φ±(Z2
k, [0, s]) = 2.

Problem B.62 For each s ≥ 2, find all groups G of rank two for which φ±(G, [0, s]) = 2.

Problem B.63 For each s ≥ 2 and m ≥ 3, find all values of n for which φ±(Zn, [0, s]) = m.

Problem B.64 For each s ≥ 2 and m ≥ 3, find all groups G for which φ±(G, [0, s]) = m.

We can formulate two sub-problems of Problem B.63:

Problem B.65 For all positive integers s and m, find the largest integer f±(m, s) for which
φ±(Zn, [0, s]) ≤ m holds for n = f±(m, s).

Problem B.66 For all positive integers s and m, find the largest integer g±(m, s) for which
φ±(Zn, [0, s]) ≤ m holds for all n ≤ g±(m, s).

Recall that Proposition B.45 provides the following upper bound:

g±(m, s) ≤ f±(m, s) ≤ a(m, s) =
∑

i≥0

(
m

i

)(
s

i

)
2i.

According to Proposition B.54, we have

g±(1, s) = f±(1, s) = 2s+ 1 = a(1, s),

and
g±(2, s) = f±(2, s) = 2s2 + 2s+ 1 = a(2, s).

We can find a general lower bound for g±(m, s), and thus for f±(m, s), using an analogous
argument to the one on page 118; we get the following.

Proposition B.67 Let m and s be a positive integers. The largest possible value g±(m, s)
of n for which φ±(Zn, [0, s]) = m holds for all n ≤ g±(m, s) satisfies

g±(m, s) ≥
(
2
⌊ s

m

⌋
+ 1
)m

.

For example, for m = 3 we get

8

27
s3 ∼

(
2
⌊s
3

⌋
+ 1
)3

≤ g±(3, s) ≤ f±(3, s) ≤ a(3, s) ∼ 4

3
s3.

Problem B.68 Find (if possible) better bounds for g±(3, s) and f±(3, s) than those above.

We mention that, as an attempt to find a lower bound for g±(3, s), Doskov, Pokhrel,
and Singh in [69] conjectured that the set

A(s) =

{⌈
s2

2

⌉
− s+ 1,

s2 − s

2
+ 2,

s2 − s

2
+ 3

}

is s-spanning in Zn for all n up to s3 − s2 + 6s + 1 and thus g±(3, s) ≥ s3 − s2 + 6s + 1;
while this indeed holds for s ≤ 7, A(8) only generates 493 elements of Z497.
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B.2.3 Arbitrary number of terms

B.3 Restricted sumsets

B.3.1 Fixed number of terms

B.3.2 Limited number of terms

A subset A of G for which [0, s]̂ A = G for some nonnegative integer s is called a restricted
s-basis for G. Here we investigate

φ̂ (G, [0, s]) = min{|A| | A ⊆ G, [0, s]̂ A = G},

that is, the minimum size of a restricted s-basis for G.
Clearly, we have

φ̂ (G, [0, 0]) = ∞
for all groups of order at least 2, but, since 1̂ G = G,

φ̂ (G, [0, s]) ≤ n

for every s ∈ N. Furthermore, for every G of order 2 or more we get

φ̂ (G, [0, 1]) = n− 1,

since for every A ⊆ G we have [0, 1]̂ A = {0} ∪A. But for s ≥ 2, we do not have a formula
for φ̂ (G, [0, s]). Therefore we pose the following problem.

Problem B.69 Find φ̂ (G, [0, s]) for every G and s ≥ 2.

From Proposition B.2, we have the following general bound.

Proposition B.70 If A is an s-basis of size m in G, then

n ≤
s∑

h=0

(
m

h

)
.

We are particularly interested in the extremal cases of Proposition B.70. Namely, we
would like to find perfect restricted s-bases, that is, restricted s-bases of size m with

n =

s∑

h=0

(
m

h

)
.

It is easy to determine all perfect restricted 1-bases:

Proposition B.71 A subset A of a finite abelian group is a perfect restricted 1-basis in G
if, and only if, A = G \ {0}.

Let us pursue a search for perfect restricted 2-bases. If A is an m-subset of G that is a
perfect restricted 2-basis, then we must have

n =
m2 +m+ 2

2
.

Thus, for m = 1 we have n = 2 and thus G ∼= Z2; {1} is indeed a perfect restricted 2-basis
in Z2. For m = 2 we have n = 4 and thus G ∼= Z4 or G ∼= Z2

2; {1, 2} is a perfect restricted
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2-basis in Z4, and {(0, 1), (1, 0)} is a perfect restricted 2-basis in Z2
2. Moving on to m = 3,

we have n = 7 and thus G ∼= Z7; {1, 2, 4} (for example) is a perfect restricted 2-basis in Z7.
However, as Krasny in [137] verified, there are no perfect restricted 2-bases of size 4, 5, 6, 7,
or 8 in the relevant cyclic groups. In fact, we are not aware of any other perfect restricted
s-bases.

Problem B.72 Find restricted perfect s-bases for s ≥ 3 or for s = 2 and m ≥ 4, or prove
that they do not exist.

Let us return to the question of finding φ̂ (G, [0, s]). As a consequence of Proposition
B.70, we have a lower bound for φ̂ (G, [0, s]), although this bound is difficult to exhibit
exactly. For s = 2, though, we have the following.

Proposition B.73 For any abelian group G of order n we have

φ̂ (G, [0, 2]) ≥
⌈√

8n− 7− 1

2

⌉
.

Regarding the upper bound, note that our construction for Propositions B.11 and B.12
used distinct terms, thus we again have:

Proposition B.74 For positive integers n and s we have

φ̂ (Zn, [0, s]) ≤ s ·
(
⌈ s
√
n⌉ − 1

)
< s · s

√
n.

Proposition B.75 Let G be an abelian group of rank r and order n, and let s be a positive
integer. We then have

φ̂ (G, [0, s]) < sr · s
√
n.

Krasny (see [137]) developed a computer program that yields the following data.

φ̂ (Zn, [0, 2]) =





1 if n = 1, 2;
2 if n = 3, 4;
3 if n = 5, 6, 7;
4 if n = 8, 9, 10;
5 if n = 11, 12, 13, 14;
6 if n = 15, 16, 17, 18, 19, 20;
7 if n = 21, 22, 23, 24;
8 if n = 25, 26, 27, 28, 29, 30;
9 if n = 31, 32, 33, 34, 35, 36, 37;

φ̂ (Zn, [0, 3]) =





1 if n = 1, 2;
2 if n = 3, 4;
3 if n = 5, 6, 7, 8;
4 if n = 9, . . . , 15;
5 if n = 16, . . . , 24;
6 if n = 25, . . . , 35;
7 if n = 36, . . . , 50;

and

φ̂ (Zn, [0, 4]) =





1 if n = 1, 2;
2 if n = 3, 4;
3 if n = 5, 6, 7, 8;
4 if n = 9, . . . , 16;
5 if n = 17, . . . , 31;
6 if n = 32, . . . , 52.

As these values suggest, φ̂ (Zn, [0, s]) behaves rather peculiarly; the following problem
is wide open.
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Problem B.76 Find φ̂ (Zn, [0, s]) for all n and s.

In particular, it is worth considering the following special cases:

Problem B.77 Find φ̂ (Zn, [0, 2]) for all n.

Problem B.78 For all positive integers s and m, find the largest integer f (̂m, s) for which
φ̂ (Zn, [0, s]) ≤ m holds for n = f (̂m, s).

Problem B.79 For all positive integers s and m, find the largest integer g (̂m, s) for which
φ̂ (Zn, [0, s]) ≤ m holds for all n ≤ g (̂m, s).

B.3.3 Arbitrary number of terms

B.4 Restricted signed sumsets

B.4.1 Fixed number of terms

B.4.2 Limited number of terms

B.4.3 Arbitrary number of terms
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Chapter C

Sidon sets

Recall that for a given finite abelian group G, m-subset A = {a1, . . . , am} of G, Λ ⊆ Z, and
H ⊆ N0, we defined the sumset of A corresponding to Λ and H as

HΛA = {λ1a1 + · · ·+ λmam | (λ1, . . . , λm) ∈ Λm(H)},

where the index set Λm(H) is defined as

Λm(H) = {(λ1, . . . , λm) ∈ Λm | |λ1|+ · · ·+ |λm| ∈ H}.

The cases where the elements of the sumset corresponding to distinct elements of the
index set are themselves distinct have generated much interest: we say that a subset A of
size m is a Sidon set over Λ in G if

|HΛA| = |Λm(H)|.

Sidon sets are named after the Hungarian mathematician Simon Sidon who introduced them
in the 1930s to study Fourier series. (Traditionally, only the special case of Λ = N0 and
H = {2} is being referred to as a Sidon set.)

In this chapter we attempt to find the maximum possible size of a Sidon set over Λ in a
given finite abelian group G. Namely, our objective is to determine, for any G, Λ ⊆ Z, and
H ⊆ N0, the quantity

σΛ(G,H) = max{|A| | A ⊆ G, |HΛA| = |Λ|A|(H)|}.

If no Sidon set exists, we put σΛ(G,H) = 0.

There are strong connections between the maximum possible size of Sidon sets and sev-
eral other quantities studied in this book—we will point out these connections throughout.

We have the following obvious bound.

Proposition C.1 If A is a Sidon set over Λ in a group G of order n and |A| = m, then

n ≥ |Λm(H)|.

Proposition C.1 provides an upper bound for the size of Sidon sets over Λ in G. The
case of equality in Proposition C.1 is of special interest: a Sidon set for which equality holds
coincides with perfect spanning sets (see Chapter B).

In the following sections we consider σΛ(G,H) for special coefficient sets Λ.

131
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C.1 Unrestricted sumsets

We first study, for any G and H ⊆ N0, the quantity

σ(G,H) = max{|A| | A ⊆ G, |HA| = |N|A|
0 (H)|}.

If no such set exists, we put σ(G,H) = 0; for example, we clearly have σ(G,H) = 0 whenever
H contains two elements h1 and h2 whose difference is divisible by κ (the exponent of
G). Conversely, if all elements of H leave a different remainder when divided by κ, then
σ(G,H) ≥ 1, since for any element a of G with order κ, at least the one-element set {a}
will be a Sidon set for H over N0.

Proposition C.2 We have σ(G,H) ≥ 1 if, and only if, the elements of H are pairwise
incongruent mod κ. In particular, if |H | > κ, then σ(G,H) = 0.

C.1.1 Fixed number of terms

In this section we investigate, for a given group G and positive integer h so-called Bh-sets;
that is, sets A whose h-term sums are distinct up to the rearrangement of terms. Thus, A
is a Bh-set of size m if, and only if, the equality

|hA| =
(
m+ h− 1

h

)

holds.
We are interested in finding the maximum size of a Bh-set in G—we denote this quantity

by σ(G, h).
Clearly, every subset of G is a B1 set, so

σ(G, 1) = n.

We can also see that, if A is a Bh set for some positive integer h, then it is also a Bk set for
every positive integer k ≤ h; therefore, σ(G, h) is a monotone nonincreasing function of h.
When h ≥ κ in a group of exponent κ, then the only Bh sets in the group are its 1-subsets:
Indeed, if a1 and a2 are two distinct elements of G, then

κa1 + (h− κ)a2 = ha2,

so no Bh set in the group can contain more than one element. Therefore, by also noting
Proposition C.2, we get:

Proposition C.3 If G is an abelian group with exponent κ and h ≥ κ, then σ(G, h) = 1.

According to Proposition C.3, we may limit our investigation to 2 ≤ h ≤ κ−1. The case
h = 2 is worth special mentioning; traditionally, a B2-set is called a Sidon set.

As a consequence of Proposition C.1, we have the following bound.

Proposition C.4 If A is a Bh set of size m in G, then

n ≥
(
m+ h− 1

h

)
.

From Proposition C.4 we get an upper bound for σ(G, h):
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Corollary C.5 The maximum size of a Bh set in an abelian group G of order n satisfies

σ(G, h) ≤
⌊

h
√
h!n
⌋
.

With a bit more work, Bravo, Ruiz, and Trujillo improved this as follows:

Theorem C.6 (Bravo, Ruiz, and Trujillo; cf. [43]) The maximum size of a Bh set in
an abelian group G of order n satisfies

σ(G, h) ≤
⌊

h

√
⌊h/2⌋!⌈h/2⌉!n

⌋
+ h− 1.

Note that Theorem C.6 is indeed an improvement of Corollary C.5; for example, we get
σ(G, 2) ≤ ⌊

√
2n⌋ from Corollary C.5, but σ(G, 2) ≤ ⌊√n⌋+ 1 from Theorem C.6.

Below we demonstrate these results for h = 2 and h = 3; in fact, we slightly improve
the bound. Note that, if A = {a1, a2, . . . , am} is a Sidon set in G, then the set

{ai − aj | 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}

must have exactly m(m−1) elements, since all the differences listed above must be distinct.
Furthermore, none of these elements are 0. Therefore, m(m− 1) + 1 ≤ n, which yields the
following:

Proposition C.7 For every abelian group G of order n we have

σ(G, 2) ≤
⌊√

4n− 3 + 1

2

⌋
.

Similarly, one can show, as we do in the proof of Theorem B.8 on page 323, that if A is
a B3 set, then 2A−A has cardinality

|2A−A| = m(m− 1)(m− 2)/2 +m(m− 1) +m,

A−A has cardinality
|A−A| = m(m− 1) + 1,

and that these two sets are disjoint. Therefore,

m(m− 1)(m− 2)/2 + 2m(m− 1) +m+ 1 ≤ n,

or
m3 +m2 ≤ 2n− 2,

and thus certainly
m3 ≤ 2n− 2.

This implies:

Theorem C.8 For every abelian group G of order n we have

σ(G, 3) ≤
⌊

3
√
2n− 2

⌋
.

Let us now turn to constructions of Bh sets. We start with cyclic groups, for which we
present three famous results that all guarantee Sidon sets of maximum possible cardinality.

Theorem C.9 (Singer; cf. [187]) Suppose that q is a prime power and that n = q2+q+1.
We then have

σ(Zn, 2) = q + 1.
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Theorem C.10 (Bose; cf. [41]) Suppose that q is a prime power and that n = q2 − 1.
We then have

σ(Zn, 2) = q.

Theorem C.11 (Ruzsa; cf. [181]) Suppose that p is a prime and that n = p2 − p. We
then have

σ(Zn, 2) = p− 1.

We can verify that in each of these three results,

σ(Zn, 2) =

⌊√
4n− 3 + 1

2

⌋
,

and thus are best possible. To illuminate this further, we can compute that for positive
integers m and n, ⌊√

4n− 3 + 1

2

⌋
= m

holds if, and only if,
m2 −m+ 1 ≤ n ≤ m2 +m.

When m = q + 1 for a prime power q, then

m2 −m+ 1 = q2 + q + 1,

so Theorem C.9 treats the case of smallest possible n, while if m = p−1 for a prime p, then

m2 +m = p2 − p,

so Theorem C.11 addresses the case of largest possible n. (Theorem C.10 handles an inter-
mediate case.) In particular, note that there is no “waste” in Singer’s Theorem C.9, since
for his Sidon set A of size q + 1, the (q + 1)q + 1 elements of A−A cover all of Zn. Such a
set is called a perfect difference set.

Other cases of equality in Proposition C.7 also deserve special interest.

Problem C.12 Find all values of n for which

σ(Zn, 2) =

⌊√
4n− 3 + 1

2

⌋
;

that is, find all values of m and n with

m2 −m+ 1 ≤ n ≤ m2 +m,

for which a Sidon set of size m exists in Zn.

For small values of m, we can provide the answer to Problem C.12 as follows. In the
table below, for each m ∈ {1, 2, 3, 4, 5, 6}, we list the values of n that are in the relevant
range, then those values of n for which a Sidon set of size m exists in Zn with an example
of such a set, and we also list the values of n for which such a Sidon set does not exist.

m n yes set no

1 1,2 1,2 {0} –
2 3,. . . ,6 3,. . . ,6 {0, 1} –
3 7, . . . , 12 7, . . . , 12 {0, 1, 3} –
4 13, . . . , 20 13, . . . , 20 {0, 1, 4, 6} –
5 21, . . . ,30 21; 23, . . . , 30 {0, 2, 7, 8, 11} 22
6 31, . . . , 42 31; 35, . . . , 42 {0, 1, 4, 10, 12, 17} 32,33,34
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It is easy to verify that the sets given work for each relevant n; the fact that no such sets
exist for the four cases listed was verified via the computer program [120].

Of course, we are interested in the value of σ(Zn, 2) even when it is not of the maximum
size given by Proposition C.7:

Problem C.13 Find σ(Zn, 2) for all (or at least infinitely many) positive integers n.

Very little is known about σ(Zn, h) for h ≥ 3. As generalizations of Theorems C.9 and
C.10, we have the following results:

Theorem C.14 (Bose and Chowla; cf. [42]) Let h ≥ 2. Suppose that q is a prime
power and that n = qh + qh−1 + · · ·+ 1. We then have

σ(Zn, h) ≥ q + 1.

Theorem C.15 (Bose and Chowla; cf. [42]) Let h ≥ 2. Suppose that q is a prime
power and that n = qh − 1. We then have

σ(Zn, h) ≥ q.

Regarding σ(Zn, h) in general, we can exhibit a rather obvious lower bound in terms of
σ(Zn0

, h) for some n0 that is much smaller than n. Suppose that A is a set of nonnegative
integers, so that A is a Bh set when viewed in Zn0

. Note that the largest element of hA is at
most h(n0−1). It is then easy to see that A is also a Sidon set in Zn for all n ≥ h(n0−1)+1.
This yields:

Proposition C.16 Suppose that n and n0 are positive integers so that n ≥ hn0 − h + 1.
We then have σ(Zn, h) ≥ σ(Zn0

, h).

For example, we can apply Proposition C.16 with Theorem C.11 as follows. By Cheby-
shev’s famous theorem (also known as Bertrand’s Postulate), there is always a prime between
a positive integer and its double; in particular, for every n, there is a prime p so that

⌊√
n/8

⌋
< p < 2

⌊√
n/8

⌋
.

For this prime p, by Theorem C.11 we have σ(Zp2−p, 2) ≥ p−1, and since n ≥ 2(p2−p)−1,
by Proposition C.16 we get σ(Zn, 2) ≥ p− 1. Therefore:

Proposition C.17 For every positive integer n, we have

σ(Zn, 2) ≥
⌊√

n/8
⌋
.

By using stronger results than Chebyshev’s Theorem, stating that primes are denser, one
can greatly improve on Proposition C.17.

We seem to be quite far away from the exact answer:

Problem C.18 Find (better lower bounds for) σ(Zn, h) for all positive integers n and h ≥
2.

Let us now turn to noncyclic groups; in particular, groups of the form Zr
k. The situation

is quite trivial when k = 2, since by Proposition C.3 we have:

Proposition C.19 For all r ≥ 1 and h ≥ 2, we have σ(Zr
2, h) = 1.
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Moving to k ≥ 3, we have the following exact results:

Theorem C.20 (Babai and Sós; cf. [6]) Suppose that p is an odd prime and that r is
even. We then have

σ(Zr
p, 2) = pr/2.

Theorem C.21 (Cilleruelo; cf. [56]) Suppose that q is a prime power. We then have

σ(Z2
q−1, 2) = q − 1.

By Proposition C.7, we can verify that in both cases the results are maximum possible. We
are not aware of other such cases, so we offer:

Problem C.22 Find all values of k and r for which σ(Zr
k, 2) equals the maximum value

allowed by Proposition C.7.

For example, when k = 3, according to Theorem C.20, the answer to this problem
includes all even values of r. Since we have σ(Z3, 2) = 2, as shown by the Sidon set {0, 1},
and σ(Z3

3, 2) = 5, as demonstrated by

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)},

the answer also includes r = 1 and r = 3. It would be nice to know whether Z5
3 has a Sidon

set of size 16.
Note that when r is even, the maximum value allowed by Proposition C.7 equals kr/2,

so Problem C.22 can be specialized as follows:

Problem C.23 Find all values of k and even values of r for which

σ(Zr
k, 2) = kr/2;

in particular, find all values of k for which

σ(Z2
k, 2) = k.

By Theorems C.20 and C.21, for r = 2, the answer to Problem C.23 includes all prime
values of k, as well as those where k+1 is a prime power. The first k for which neither condi-
tion applies is k = 9. With the computer program [120], we can determine that σ(Z2

9, 2) ≥ 8;
an example of a Sidon set of size eight is

{(0, 0), (0, 1), (0, 3), (1, 0), (1, 4), (2, 2), (3, 7), (5, 3)}.

Generalizing Problem C.22, we have:

Problem C.24 Find all abelian groups G for which σ(G, 2) equals the maximum value
allowed by Proposition C.7.

Let us now present some lower bounds for σ(G, 2). First, an obvious observation:

Proposition C.25 For all finite abelian groups G1 and G2 and for all positive integers h,
we have

σ(G1 ×G2, h) ≥ σ(G1, h).

Indeed: if A is a Bh set in G1, then A× {0} is a Bh set in G1 ×G2.
As an immediate corollary, from Theorem C.20 we get:
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Theorem C.26 (Babai and Sós; cf. [6]) Suppose that p is an odd prime and that r is
odd. We then have

σ(Zr
p, 2) ≥ p(r−1)/2.

For a more general lower bound, one can generalize Proposition C.17 as follows:

Theorem C.27 (Babai and Sós; cf. [6]) Suppose that G is an abelian group of rank r,
odd order n, and smallest invariant factor n1. We then have

σ(G, 2) ≥
⌊√

n1/8r
⌋
.

It is important to point out that Theorem C.27 is stated for all n in [6], but their concept
of a Sidon set there is slightly different from ours and only coincides with ours when n is
odd. We should also add that, just like with Proposition C.17, the constant 8 can be largely
reduced. In particular, we have:

Corollary C.28 (Babai and Sós; cf. [6]) For all positive integers r and k, with k odd,
we have

σ(Zr
k, 2) ≥ (k/8)r/2.

It is worth pointing out that when k is an odd prime, then Corollary C.28 is weaker
than Theorem C.20 when r is even, but stronger than Theorem C.26 when r is odd and p
is larger than 8r.

The main conjecture here is as follows:

Conjecture C.29 (Babai; cf. [5]) There is a positive constant C so that σ(G, 2) ≥ C ·√n
holds for all abelian groups G of odd order n.

Note that, by Proposition C.7, the constant C cannot be more than 1.

Problem C.30 Prove Conjecture C.29.

Note that Conjecture C.29 is false for groups of even order; see, for example, Proposition
C.19.

Regarding values of h ≥ 3, we are only aware of the following result, which generalizes
Theorem C.20:

Theorem C.31 (Ruiz and Trujillo; cf. [180]) If p is a prime so that p > h and r0 is a
divisor of r for which r0 ≥ h, then

σ(Zr
p, h) ≥ pr/r0 .

The assumption that p > h is necessary: see Proposition C.3. We should also note that [180]
only addresses the case when r0 = h, but our version immediately follows from that.

The most general question remains largely unsolved:

Problem C.32 Find σ(G, h) for abelian groups G and h ≥ 2.

It is also interesting to approach these questions from another viewpoint. Namely, we
may fix positive integers m and h, and ask for all groups G that have a Bh set of size m.
In other words:

Problem C.33 Let m and h be given positive integers. Find all finite abelian groups G for
which σ(G, h) ≥ m.
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We can answer Problem C.33 easily for h = 1, m = 1, and m = 2 as follows. Since
σ(G, 1) = n, we have σ(G, 1) ≥ m if, and only if, n ≥ m. By Proposition C.2, we have
σ(G, h) ≥ 1 for all G. Furthermore, we can see that σ(G, h) ≥ 2 if, and only if, the exponent
κ of G is at least h+ 1: The “only if” part follows from Proposition C.3, and for the “if”
part, note that the set {0, a} is a Bh set for every a ∈ G of order κ, since if we were to have
distinct nonnegative integers λ1 and λ2 with λ1 ≤ h and λ2 ≤ h for which

λ1 · 0 + (h− λ1) · a = λ2 · 0 + (h− λ2) · a,
then

(λ1 − λ2) · a = 0,

which is impossible since
1 ≤ |λ1 − λ2| ≤ h < κ.

Problem C.33 is unsolved for higher values of m and h, and may already be challenging
for m = 3. For example, we find (via a computer program) that

σ(Zn, h) ≥ 3 holds for





n ≥ 7 if h = 2,
n ≥ 13 if h = 3,
n = 19,≥ 21 if h = 4,
n ≥ 30 if h = 5,
n = 37, 39, 40, 41,≥ 43 if h = 6.

We formulate the following two sub-problems of Problem C.33:

Problem C.34 Let m and h be given positive integers. Find the smallest positive integer
f(m,h) for which σ(Zn, h) ≥ m holds for n = f(m,h).

Problem C.35 Let m and h be given positive integers. Find the smallest positive integer
g(m,h) for which σ(Zn, h) ≥ m holds for all n ≥ g(m,h).

According to our considerations right above, we have f(m, 1) = g(m, 1) = m, f(1, h) =
g(1, h) = 1, and f(2, h) = g(2, h) = h+1, and as the data above indicate, we have f(3, 4) =
19, g(3, 4) = 21, and f(3, 5) = g(3, 5) = 30.

For h = 2, we have the following data:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f(m, 2) 1 3 7 13 21 31 48 57 73 91 120 133 168 183

Most of these entries follow directly from our comments on page 134: If m − 1 is a
prime power, then Theorem C.9 provides the value of f(m, 2). Regarding the remaining
three entries: f(7, 2) was found by Graham and Sloane in [100], and f(11, 2) and f(13, 2)
by Haanpää, Huima, and Österg̊ard in [107]; note that these three values are given exactly
by Theorem C.10.

We can prove the existence and in fact find an upper bound for g(m,h) (and thus for
f(m,h)), by verifying that for every m ≥ 1 and h ≥ 2, the set

A = {1, h, h2, . . . , hm−1}
is a Bh set in Zn whenever n ≥ hm—we will do this on page 329. This yields:

Proposition C.36 For all positive integers m ≥ 1 and h ≥ 2, we have

f(m,h) ≤ g(m,h) ≤ hm.

As our computations on page 138 show, the bound in Proposition C.36 can be greatly
lowered. In particular, note that for h = 2, from Proposition C.17 one gets g(m, 2) ≤ 8m2

(approximately), substantially better than 2m.



C.2. UNRESTRICTED SIGNED SUMSETS 139

C.1.2 Limited number of terms

Sidon sets over N0 for the set [0, s] are called B[0,s]-sets; that is, A ⊆ G is a B[0,s]-set if,

and only if, all
(
m+s
m

)
linear combinations of at most s terms of A are distinct (ignoring the

order of the terms).

In this section we ought to investigate the quantity σ(G, [0, s]), denoting the maximum
size of a B[0,s]-set in G. However, as we now prove, this section is superfluous as it can be
reduced to Section C.1.1 above.

Suppose first that A is a B[0,s] set in G for some positive integer s. Then 0A = {0}
and 1A = A must be disjoint, so 0 6∈ A. Let B = A ∪ {0}. Here B must be a Bs set in G,
since if two different s-term sums were to be equal, then, after deleting all 0s from these
sums (if needed), we get two different sums with at most s terms in each that are equal,
contradicting the fact that A is a B[0,s] set in G. Therefore, σ(G, s) ≥ σ(G, [0, s]) + 1.

Conversely, suppose that A is a Bs set in G. Note that, for any g ∈ G,

A− g = {a− g | a ∈ A}

is then also a Bs set, since an s-term linear combination of the elements of A is always
exactly sg more than the s-term linear combination of the corresponding elements of A− g.
In particular, for any a ∈ A, the set B = A − a is then a Bs set in G for which 0 ∈ B.
Let C = B \ {0}. Then C is a B[0,s] set in G, since if two different linear combinations of
at most s terms of C were to be equal, then extending each by the necessary terms of 0s
we get two different linear combinations of exactly s terms of B that are equal, which is a
contradiction. Thus σ(G, [0, s]) ≥ σ(G, s) − 1. This yields:

Proposition C.37 For every group G and all positive integers s we have

σ(G, [0, s]) = σ(G, s)− 1.

C.1.3 Arbitrary number of terms

Here we ought to consider σ(G,N0), but this quantity (e.g., by Proposition C.2) is clearly
0.

C.2 Unrestricted signed sumsets

Here we study, for any G and H ⊆ N0, the quantity

σ±(G,H) = max{|A| | A ⊆ G, |H±A| = |Z|A|(H)|}.

If no such set exists, we put σ±(G,H) = 0.

We clearly have σ±(G,H) = 0 whenever H contains an element h ∈ N for which 2h is
divisible by the exponent κ of G, or distinct elements h1, h2 ∈ N0 whose sum or difference is
divisible by κ. Conversely, if there are no such elements in H , then at least the one-element
set {a} whose order equals κ will be a Sidon set for H over Z.

Proposition C.38 We have σ±(G,H) ≥ 1 if, and only if, there is no h ∈ H for which 2h
is divisible by κ and no distinct elements h1, h2 ∈ H for which h1 ± h2 is divisible by κ. In
particular, if |H | > ⌈κ/2⌉, then σ±(G,H) = 0.
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C.2.1 Fixed number of terms

In this section we investigate, for a given G and positive integer h, the quantity

σ±(G, h) = max{|A| | A ⊆ G, |h±A| = |Z|A|(h)|};

that is, the maximum size of a Bh set over Z. Since, according to Section 2.5,

|Zm(h)| = c(h,m),

a Bh set over Z that has size m has unrestricted signed sumset size

c(h,m) =
∑

i≥0

(
m

i

)(
h− 1

i− 1

)
2i.

The problem of finding σ±(G, h) is related to τ±(G, 2h)—see Chapter F.2.1.
Clearly, a subset A of G is a B1 set over Z if, and only if, A and −A are disjoint, from

which we get:

Proposition C.39 For any abelian group G of order n we have

σ±(G, 1) =
n− 1− |Ord(G, 2)|

2
;

in particular,
σ±(Zn, 1) = ⌊(n− 1)/2⌋ .

We do not know the value of σ±(G, h) in general for h ≥ 2.
It is important to point out that, in contrast to Section C.1.1, a Bh set over Z is not

necessarily a Bk set over Z for values of k ≤ h. Suppose, for example, that n is a positive
integer that is divisible by 4, and consider the set A = {n/4} in Zn. We can then see that
A is a Bh set over Z in Zn if, and only if, h is odd: Indeed,

h · n/4 = −h · n/4

in Zn if, and only if, h is even. In particular,

σ±(Z4, h) =

{
1 if h is odd,
0 if h is even.

As a consequence of Proposition C.1, we have the following bound.

Proposition C.40 If A is a Bh set over Z of size m in G, then

n ≥ c(h,m).

From Proposition C.40 we get an upper bound for σ±(G, h); in particular, since c(2,m) =
2m2, we have:

Corollary C.41 For any abelian group G of order n we have

σ±(G, 2) ≤
⌊√

n/2
⌋
.

It would be particularly interesting to classify situations with equality in Corollary C.41:



C.2. UNRESTRICTED SIGNED SUMSETS 141

Problem C.42 For each n ∈ N, find all groups G of order n for which

σ±(G, 2) =
⌊√

n/2
⌋
.

The following problems are wide open.

Problem C.43 Find σ±(Zn, h) for all positive integers n and h ≥ 2.

Problem C.44 Find σ±(G, h) for all finite abelian groups G and integers h ≥ 2.

It is also interesting to approach these questions from another viewpoint. Namely, we
may fix positive integers m and h, and ask for all groups G that have a Bh set over Z of
size m. In other words:

Problem C.45 Let m and h be given positive integers. Find all finite abelian groups G for
which σ±(G, h) ≥ m.

We can answer Problem C.45 for m = 1 and for h = 1 easily; by Propositions C.38 and
Proposition C.39, we get the following:

Proposition C.46 Suppose that G is a finite abelian group with exponent κ; as usual, let
Ord(G, 2) denote the set of involutions (elements of order 2) in G.

1. For a given positive integer h, we have σ±(G, h) ≥ 1 if, and only if, 2h is not divisible
by κ.

2. For a given positive integer m, we have σ±(G, 1) ≥ m if, and only if,

|Ord(G, 2)| ≤ n− 2m− 1.

The answer to Problem C.45 is not known when h ≥ 2 and m ≥ 2.
We formulate the following two sub-problems of Problem C.45:

Problem C.47 Let m and h be given positive integers. Find the smallest positive integer
f±(m,h) for which σ±(Zn, h) ≥ m holds for n = f±(m,h).

Problem C.48 Let m and h be given positive integers. Find the smallest positive integer
g±(m,h) for which σ±(Zn, h) ≥ m holds for all n ≥ g±(m,h).

It is easy to see that Proposition C.46 implies the following:

Proposition C.49 With f±(m,h) and g±(m,h) defined above,

1. f±(1, h) equals the smallest integer that is not a divisor of 2h, and g±(1, h) = 2h+1;
and

2. f±(m, 1) = g±(m, 1) = 2m+ 1.

To verify the second statement, note that Ord(Zn, 2) is empty when n is odd, and contains
exactly one element when n is even.

We can prove the existence and in fact find an upper bound for g±(m,h) (and thus for
f±(m,h)), by verifying that for every m ≥ 1 and h ≥ 2, the set

A = {1, 2h, (2h)2, . . . , (2h)m−1}

is a Bh set in Zn whenever n ≥ 2hm + 1—we will do this on page 330. This yields:
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Proposition C.50 For all positive integers m and h, we have

f±(m,h) ≤ g±(m,h) ≤ (2h)m + 1.

Observe that, by Proposition C.49, for m = 1, equality holds in Proposition C.50.
By Proposition C.50, we have

g±(2, h) ≤ 4h2 + 1.

However, Day in [61] conjectured that the set A = {a1, h}, with a1 = 2 if h is odd and
a1 = 1 if h is even provides a signed sumset of size c(h, 2) = 4h when n > 2h2. Indeed, we
can prove the following.

Proposition C.51 For all positive integers h we have

g±(2, h) ≤ 2h2 + 1.

For a proof of Proposition C.51, see page 331. Note that, by Proposition C.40, we have

g±(2, h) ≥ 4h;

therefore, almost certainly, one can even improve the bound 2h2 + 1.

Problem C.52 Find a better upper bound for g±(2, h).

For m = 3, from Propositions C.40 and C.50 we have

4h2 + 2 ≤ g±(3, h) ≤ 8h3 + 1.

Day in [61] conjectured that the set A = {a1, h, a3}, with a1 = 2 and a3 = h2 + h+ 4 if h
is odd and a1 = 1 and a3 = h2 + h+ 1 if h is even provides a signed sumset of size c(h, 3)
when n > 2ha3, from which we can conjecture the following.

Conjecture C.53 (Day; cf. [61]) For all positive integers h we have

g±(3, h) ≤ 2h3 + 2h2 + 8h+ 1.

Problem C.54 Prove (or disprove) Conjecture C.53, or—even better—find an improved
upper bound for g±(3, h).

C.2.2 Limited number of terms

Here we ought to study, for a given G and nonnegative integer s, the quantity

σ±(G, [0, s]) = max{|A| | A ⊆ G, |[0, s]±A| = |Z|A|([0, s])|},
that is, the size of the largest subset A of G for which all signed sums of at most s terms
of A are distinct (ignoring the order of the terms). However, as we proved on page 70, this
quantity agrees with the maximum size of a subset A of G for which no signed sum of at
most 2s terms of A, other than the trivial one with zero terms, is equal to 0—in Section
F.2.2, we denote this latter quantity by τ±(G, [1, 2s]). Therefore:

Proposition C.55 For every finite abelian group G and every positive integer s, we have

σ±(G, [0, s]) = τ±(G, [1, 2s]).

In addition, for s = 0, we trivially have

σ±(G, [0, 0]) = n;

thus, we reduced the question of finding σ±(G, [0, s]) to Section F.2.2.
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C.2.3 Arbitrary number of terms

Here we ought to consider σ±(G,N0), but this quantity (e.g., by Proposition C.38) is clearly
0.

C.3 Restricted sumsets

In this section we study, for any G and H ⊆ N0, the quantity

σ (̂G,H) = max{|A| | A ⊆ G, |H Â| = |N̂|A|
0 (H)|};

that is, the size of the largest subset of G whose restricted sumset (for a given H) has the
same size as the corresponding index set. If no such set exists, we put σ (̂G,H) = 0.

C.3.1 Fixed number of terms

The analogue of a Bh set for restricted addition is called a weak Bh set. More precisely, we
call a subset A of G (with |A| = m) a weak Bh set if

|ĥ A| = |N̂m
0 (h)| =

(
m

h

)
.

The maximum size of a weak Bh set in G is denoted by σ (̂G, h); if no such subset exists,
we write σ (̂G, h) = 0.

Note that, if A is a Bh set, then it is also a weak Bh set, and therefore we have

σ (̂G, h) ≥ σ(G, h).

We trivially have σ (̂G, 1) = n, since every subset of G is a weak Bh set. We do not
know the value of σ (̂G, h) in general for h ≥ 2.

As a consequence of Proposition C.1, we have the following bound.

Proposition C.56 If A is a weak Bh set of size m in G, then

n ≥
(
m

h

)
.

From Proposition C.56 we get an upper bound for σ (̂G, h):

Corollary C.57 For any abelian group G of order n we have

σ (̂G, h) ≤
⌊

h
√
h!n
⌋
+ h− 1.

A weak Bh set for h = 2 is called a weak Sidon set. Weak Sidon sets were introduced
and studied by Ruzsa in [181], though the same concept under the name “well spread set”
was investigated both earlier (cf. [136]) and later (cf. [127], [170]). For weak Sidon sets a
better upper bound is known, in terms of the number of order-two elements of G:

Theorem C.58 (Haanpää and Österg̊ard; cf. [108]) For any abelian group G of order
n we have

σ (̂G, 2) ≤
⌊√

4n+ 4|Ord(G, 2)|+ 5 + 3

2

⌋
.



144 CHAPTER C. SIDON SETS

In particular, since in a cyclic group |Ord(G, 2)| ≤ 1, from Theorem C.58 we get the previ-
ously published result:

Corollary C.59 (Haanpää, Huima, and Österg̊ard; cf. [107]) For any positive inte-
ger n we have

σ (̂Zn, 2) ≤
⌊√

4n+ 9 + 3

2

⌋
.

As for a lower bound, we have the result of Babai and Sós (which, unlike with Theorem
C.27 in Section C.1.1, applies to both even and odd values of n):

Theorem C.60 (Babai and Sós; cf. [6]) Suppose that G is an abelian group of rank r,
odd order n, and smallest invariant factor n1. We then have

σ (̂G, 2) ≥
⌊√

n1/8r
⌋
.

(We note that it is possible to improve the constant 8.)
The following problems are wide open.

Problem C.61 Find σ (̂Zn, h) for positive integers n and h ≥ 2.

Problem C.62 Find σ (̂G, h) for finite abelian groups G and integers h ≥ 2.

It is also interesting to approach these questions from another viewpoint. Namely, we
may fix positive integers m and h, and ask for all groups G that have a weak Bh set of size
m. In other words:

Problem C.63 Let m and h be given positive integers. Find all finite abelian groups G for
which σ (̂G, h) ≥ m.

We formulate the following two sub-problems of Problem C.63:

Problem C.64 Let m and h be given positive integers. Find the smallest positive integer
f (̂m,h) for which σ (̂Zn, h) ≥ m holds for n = f (̂m,h).

Problem C.65 Let m and h be given positive integers. Find the smallest positive integer
g (̂m,h) for which σ (̂Zn, h) ≥ m holds for all n ≥ g (̂m,h).

Problems C.64 and C.65 are trivial when m < h, and we have

f (̂h, h) = g (̂h, h) = h.

Furthermore, the answer is clear for h = 1: since σ (̂G, 1) = n, we have

f (̂m, 1) = g (̂m, 1) = m.

The general answers to Problems C.64 and C.65 are not known. For h = 2, Haanpää,
Huima, and Österg̊ard computed f (̂m, 2) for m ≤ 15 (see [107]; some of these values had
been determined earlier by Graham and Sloane in [100]), and Maturo and Yager-Elorriaga
computed g (̂m, 2) for m ≤ 9 (see [154]):

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f (̂m, 2) 2 3 6 11 19 28 40 56 72 96 114 147 178 183
g (̂m, 2) 2 3 6 11 19 28 42 56
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As we can see from the table, we have f (̂m, 2) = g (̂m, 2) for m ≤ 9, with one exception:
Zn contains a weak Sidon set of size 8 for n = 40 and for every n ≥ 42, but not for n = 41.

We can easily find a general upper bound for both f (̂m,h) and g (̂m,h) (and thus prove
their existence). Note that, for every h ∈ N, the set

{1, 2, 22, . . . , 2m−1}

is a weak Bh set in Zn when n is at least 2m. Therefore:

Proposition C.66 For all positive integers m and h we have

f (̂m,h) ≤ g (̂m,h) ≤ 2m.

Undoubtedly, this bound—which does not even depend on h—can be greatly reduced.
A bit more ambitiously than Problem C.64, but less ambitiously than Problem C.63, we

may pose the following:

Problem C.67 Let m and h be given positive integers. Find the smallest positive integer
F (̂m,h), for which there exists a group G of order F (̂m,h) such that σ (̂G, h) = m.

For h = 2, Haanpää and Österg̊ard computed F (̂m, 2) for m ≤ 15 (see [108]):

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F (̂m, 2) 2 3 6 11 16 24 40 52 72 96 114 147 178 183

When comparing values of F (̂m, 2) and f (̂m, 2) above, we see that they agree for all
m ≤ 15, except as follows:

• F (̂6, 2) = f (̂6, 2)− 3, as Z2
2 × Z4 and Z4

2 both have weak Sidon sets of size 6;

• F (̂7, 2) = f (̂7, 2)− 4, as Z3
2 × Z3 has a weak Sidon sets of size 7; and

• F (̂9, 2) = f (̂9, 2)− 4, as Z2
2 × Z13 has a weak Sidon sets of size 9.

C.3.2 Limited number of terms

We say that an m-subset A of G is a weak B[0,s]-set if, and only if, the equality

|[0, s]̂ A| = |N̂m
0 ([0, s])| =

s∑

h=0

(
m

h

)

holds. We are interested in finding the maximum size of a weak B[0,s]-set in G—we denote
this quantity by σ (̂G, [0, s]).

Clearly, every subset of G \ {0} is a weak B[0,1] set, so

σ (̂G, [0, 1]) = n− 1.

We do not know the value of σ (̂G, [0, s]) in general for s ≥ 2.
As a consequence of Proposition C.1, we have the following bound.

Proposition C.68 If A is a weak B[0,s] set of size m in G, then

n ≥
s∑

h=0

(
m

h

)
.
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Proposition C.68 yields an upper bound for σ (̂G, [0, s]); for example, for s = 2 we get:

Corollary C.69 The maximum size of a B[0,2] set in an abelian group G of order n satisfies

σ (̂G, [0, 2]) ≤
⌊√

8n− 7− 1

2

⌋
.

The following problems are wide open.

Problem C.70 Find σ (̂Zn, [0, s]) for positive integers n and s ≥ 2.

Problem C.71 Find σ (̂G, [0, s]) for finite abelian groups G and integers s ≥ 2.

It is also interesting to approach these questions from another viewpoint. Namely, we
may fix positive integers m and s, and ask for all groups G that have a weak B[0,s] set of
size m. In other words:

Problem C.72 Let m and s be given positive integers. Find all finite abelian groups G for
which σ (̂G, [0, s]) ≥ m.

We formulate the following two sub-problems of Problem C.72:

Problem C.73 Let m and s be given positive integers. Find the smallest positive integer
f (̂m, [0, s]) for which σ (̂Zn, [0, s]) ≥ m holds for n = f (̂m, [0, s]).

Problem C.74 Let m and s be given positive integers. Find the smallest positive integer
g (̂m, [0, s]) for which σ (̂Zn, [0, s]) ≥ m holds for all n ≥ g (̂m, [0, s]).

We can easily find a general upper bound for both f (̂m, [0, s]) and g (̂m, [0, s]) (and
thus prove their existence). Note that, for every s ∈ N, the set

{1, 2, 22, . . . , 2m−1}

is a weak B[0,s] set in Zn when n is at least 2m. Therefore:

Proposition C.75 For all positive integers m and s we have

g (̂m, [0, s]) ≤ 2m.

As Soma in [190] noticed, one can improve on the bound in Proposition C.75 slightly as
follows. For a fixed positive integer s, consider the sequence

a(s) = (a1(s), a2(s), . . . ),

defined as

ai(s) =





2i−1 if 1 ≤ i ≤ s,

1 +
∑i−1

j=i−s aj(s) if i > s.

For example,
a(2) = (1, 2, 4, 7, 12, 20, 33, 54, . . .);

the i-th term we recognize as the (i + 1)-st Fibonacci number minus 1. Clearly, if n ≥
am+1(s)− 1, then

A = {a1(s), a2(s), . . . , am(s)}
is a weak B[0,s] set in Zn. While the bound on n is hard to compute explicitly in general,
for s = 2 we get Fm+2 − 2; that is:
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Proposition C.76 (Soma; cf. [190]) For all positive integers m we have

g (̂m, [0, 2]) ≤
[

1√
5

(
1+

√
5

2

)m+3
]
− 2.

(As usual, [x] denotes the closest integer to the real number x.) This bound is still expo-
nential in m but its base is smaller than 2, thus it improves Proposition C.75. The measure
of improvement is difficult to state for s > 2 and becomes less pronounced as s gets closer
to m.

C.3.3 Arbitrary number of terms

Here we should consider, for a given group G,

σ (̂G,N0) = max{m | A ⊆ G, |A| = m, |ΣA| = |N̂m
0 (N0)| = 2m};

that is, the maximum size of a subset of G for which all restricted sums are distinct.
However, as we now show, this subsection is redundant in that the following holds:

Proposition C.77 For any subset A of G we have |ΣA| = 2m if, and only if, 0 6∈ ∪∞
h=1h±̂A.

To see this, simply note that two restricted sums are equal if, and only if, their difference
is zero; in particular, no two “different” restricted sums being equal is equivalent to no
“nontrivial” signed sum equaling zero.

As a consequence of Proposition C.77, we have

σ (̂G,N0) = τ ±̂(G,N),

so it suffices to study this quantity in Section F.4.3.

C.4 Restricted signed sumsets

C.4.1 Fixed number of terms

C.4.2 Limited number of terms

C.4.3 Arbitrary number of terms

Here we consider, for a given group G,

σ±̂(G,N0) = max{m | A ⊆ G, |A| = m, |Σ±A| = |Ẑm(N0)| = 3m}.

The case when G is cyclic is easy. Suppose that G = Zn, and let

m = ⌊log3 n⌋;

note that we then have
3m ≤ n < 3m+1.

Consider the set
A = {1, 3, . . . , 3m−1}

in Zn. Observe that |A| = m. We can easily see (see Section A.4.3) that

Σ±A =

{
−3m − 1

2
, . . . ,−1, 0, 1, . . . ,

3m − 1

2

}
,
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so
|Σ±A| = 3m;

therefore,
σ±̂(Zn,N0) ≥ m.

To show that we cannot do better, suppose, indirectly, that A′ ⊆ Zn, |A′| = m+ 1, and

|Σ±A
′| = 3m+1.

But this implies that
n ≥ 3m+1,

a contradiction. Thus we have proved the following.

Proposition C.78 For all positive integers n we have

σ±̂(Zn,N0) = ⌊log3 n⌋.

So, the case of cyclic groups has been settled, which leaves us with the following problem.

Problem C.79 Find the value of σ±̂(G,N0) for noncyclic groups G.



Chapter D

Minimum sumset size

In this chapter we attempt to answer the following question: Given a finite abelian group G
and a positive integer m, how small can a sumset of an m-subset of G be? More precisely,
our objective is to determine, for any G, m, Λ, and H , the quantity

ρΛ(G,m,H) = min{|HΛA| | A ⊆ G, |A| = m}.

In the following sections we consider ρΛ(G,m,H) for special Λ ⊆ Z and H ⊆ N0.

D.1 Unrestricted sumsets

Our goal in this section is to investigate the quantity

ρ(G,m,H) = min{|HA| | A ⊆ G, |A| = m}

where HA is the union of all h-fold sumsets hA for h ∈ H . We consider three special
cases: when H consists of a single nonnegative integer h, when H consists of all nonnegative
integers up to some value s, and when H is the entire set of nonnegative integers.

D.1.1 Fixed number of terms

Here we consider
ρ(G,m, h) = min{|hA| | A ⊆ G, |A| = m},

that is, the minimum size of an h-fold sumset of an m-element subset of G.
Clearly, for all A we have 0A = {0} and 1A = A, so

ρ(G,m, 0) = 1

and
ρ(G,m, 1) = m.

It is also easy to see that for all A = {a1, . . . , am} and h ≥ 1 we have

{(h− 1)a1 + ai | i = 1, 2, . . . ,m} ⊆ hA,

and thus we have the following obvious bound.

Proposition D.1 For all h ≥ 1 we have ρ(G,m, h) ≥ m.

149
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As we have said above, equality always holds when h = 1; in Proposition D.6 below,
we classify all other cases for equality in Proposition D.1. But first we provide a general
construction that, as it turns out, provides the minimum possible size of an h-fold sumset
that an m-element subset of G can have.

How can one find m-subsets A in a group G that have small h-fold sumsets hA? Two
ideas come to mind. First, observe that if A is a subset of a subgroup H of G, then hA will
be a subset of H as well; a bit more generally, if A is a subset of any coset g+H of H , then
hA will be a subset of the coset hg+H . For example, with G = Z15, m = 4, and h = 2, we
may choose A to be any 4-subset of H = {0, 3, 6, 9, 12}; we then have 2A ⊆ H and thus can
conclude that ρ(Z15, 4, 2) ≤ 5. (More generally, A may be a 4-subset of any coset of H .)

Our second idea is based on the observation that, when A is an arithmetic progression

A = {a, a+ g, a+ 2g, . . . , a+ (m− 1)g}

for some a, g ∈ G, then many of the h-fold sums coincide; in particular, we have

hA = {ha, ha+ g, ha+ 2g, . . . , ha+ (hm− h)g}.

For example, with G = Z15, m = 4, and h = 2, we may choose A to be the set {0, 1, 2, 3},
in which case 2A = {0, 1, 2, . . . , 6} and thus ρ(Z15, 4, 2) ≤ 7. While this result is worse
than that of the one obtained above, in other instances the second construction may be
better; for example, with G = Z15, m = 7, and h = 2, not having a subgroup H of G of
size at least 7 other than G itself, the first construction gives ρ(Z15, 7, 2) ≤ 15, while the
second construction yields the better bound ρ(Z15, 7, 2) ≤ 13. (We will soon see that, in
fact, ρ(Z15, 4, 2) = 5 and ρ(Z15, 7, 2) = 13.)

The general construction we are about to present is based on the combination of these
two ideas: we choose a subgroup H of G, and then select an m-subset A so that its elements
are in as few cosets ofH as possible; furthermore, we want these cosets to form an arithmetic
progression.

More explicitly, let us discuss this for the cyclic group G = Zn. Fixing a divisor d of n,
we consider the (unique) subgroup H of order d of Zn,

H =
{
j · n

d
| j = 0, 1, 2, . . . , d− 1

}
.

With |A| = m and |H | = d, the number of cosets of H that we need is
⌈
m
d

⌉
. (Note that

m ≤ n assures that
⌈
m
d

⌉
≤ n

d and thus A has m distinct elements.) Let k be the positive
remainder of m when divided by d; that is, write m = cd+k with integers c and k satisfying
1 ≤ k ≤ d. We note, in passing, that c and k can be computed as

c =
⌈m
d

⌉
− 1

and
k = m− cd = m−

(⌈m
d

⌉
− 1
)
· d,

respectively. Now we choose our cosets to be i+H with i = 0, 1, 2, . . . , c, and set

Ad(n,m) =

c−1⋃

i=0

(i +H) ∪
{
c+ j · n

d
| j = 0, 1, 2, . . . , k − 1

}
.

Then Ad(n,m) has size m. Note that, when c = 0 (that is, when m ≤ d), then

c−1⋃

i=0

(i+H) = ∅,
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so A lies entirely within a single coset and forms the arithmetic progression

{
j · n

d
| j = 0, 1, 2, . . . ,m− 1

}
.

On the other hand, k ≥ 1, so

{
c+ j · n

d
| j = 0, 1, 2, . . . , k − 1

}

is never the empty set.

It is easy to see that we have

hAd(n,m) =

hc−1⋃

i=0

(i +H) ∪
{
hc+ j · n

d
| j = 0, 1, 2, . . . , h(k − 1)

}
,

and thus

|hAd(n,m)| = min{n, hcd+min{d, h(k − 1) + 1}}

= min{n, (hc+ 1)d, hcd+ h(k − 1) + 1}

= min{n,
(
h
⌈m
d

⌉
− h+ 1

)
· d, hm− h+ 1}.

Recalling our notation

fd = fd(m,h) =
(
h
⌈m
d

⌉
− h+ 1

)
· d

from page 83, we get the following:

Proposition D.2 For integers n, m, h, a given divisor d of n, and Ad(n,m) defined as
above, we have

|hAd(n,m)| = min{n, fd, hm− h+ 1}.

Recalling from page 83 that

u(n,m, h) = min{fd | d ∈ D(n)},

and noting that fn = n and f1 = hm− h+ 1, we can summarize our findings to say that

ρ(Zn,m, h) ≤ min{|hAd(n,m)| | d ∈ D(n)} = u(n,m, h).

It is somewhat surprising that we get the same bound by taking a potentially larger set
that is easier to work with. Namely, completing the part of Ad(n,m) that falls into the last
coset, we get

Ad(n,m) =

c⋃

i=0

(i +H),

a set that is the union of c+ 1 =
⌈
m
d

⌉
cosets and thus is of size

|Ad(n,m)| =
⌈m
d

⌉
· d ≥ m.
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We now find that

|hAd(n,m)| = min{n, (hc+ 1)d}

= min{n, fd},
and therefore

ρ(Zn,m, h) ≤ min{|hAd(n,m)| | d ∈ D(n)} = u(n,m, h).

Next, we ask whether it is possible for the h-fold sumset of an m-subset of Zn to have
size less than u(n,m, h). The question of whether one can improve on the bound

ρ(G,m, h) ≤ u(n,m, h)

or not for Zn or other abelian groups has a long history. Cauchy’s result from 1813 in [52]
implies that for h = 2 and for cyclic groups of prime order we have equality above; since
for a prime p we have

u(p,m, 2) = min{p, 2m− 1}
(see Proposition 4.14), we thus have

ρ(Zp,m, 2) = min{p, 2m− 1}.
In 1935, Davenport in [59] rediscovered Cauchy’s result, which is now known as the Cauchy–
Davenport Theorem. (See page 334 for the general statement of the theorem. Davenport was
unaware of Cauchy’s result until twelve years later; see [60].) Finally, after various partial
results by several researchers, a sequence of papers at the beginning of the twenty-first
century, including [73] by Eliahou and Kervaire; [172] by Plagne; [76] by Eliahou, Kervaire,
and Plagne; and [173] by Plagne established that, indeed, equality holds for all finite abelian
groups and all h:

Theorem D.3 (Plagne; cf. [173]) For any finite abelian group G of order n we have

ρ(G,m, h) = u(n,m, h).

It may be worthwhile to state the following more explicit consequence of Theorem D.3
in light of Proposition 4.16.

Corollary D.4 Let G be any finite abelian group of order n ≥ m, and let p be the smallest
prime divisor of n. We then have

ρ(G,m, h) ≥ min{p, hm− h+ 1},
with equality if, and only if, m ≤ p. In particular,

ρ(Zp,m, h) = min{p, hm− h+ 1}
for all m ≤ p.

Note that Corollary D.4 is a generalization of the Cauchy–Davenport Theorem.
According to Theorem D.3, the question of finding the minimum size ρ(G,m, h) of the

h-fold sumset of an m-subset of G is solved. We then may ask for a classification of all
subsets A of G for which |hA| = ρ(G,m, h). Since, as we have seen, we have

|0A| = ρ(G,m, 0) = 1

and
|1A| = ρ(G,m, 1) = m

for all G and A (with |A| = m ≤ n), we may assume that h ≥ 2.
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Problem D.5 For each G, m, and h ≥ 2, find a characterization of all m-subsets of G
with an h-fold sumset of size ρ(G,m, h).

For example, let us consider G = Z15, m = 6, and h = 2, for which we have ρ(Z15, 6, 2) =
9 (see page 83). As we can verify, a 6-subset A of G has a 2-fold sumset of size 9 if, and
only if, it is of the form

A = (a1 +H) ∪ (a2 +H)

where H = {0, 5, 10} is the subgroup of G of order 3. Thus, in this situation, the only
subsets with minimum sumset size are those constructed above.

We get a more mixed picture when we consider G = Z15, m = 7, and h = 2. This time,
ρ(Z15, 7, 2) = 13, and we can determine that 7-subsets of G with a 2-fold sumset of size 13
come in a variety of forms: as an arithmetic progression

{a, a+ g, a+ 2g, . . . , a+ 6g}

for some a and g of G; as
(a1 +H) ∪ {a2, a3}

with H being the subgroup of G of order 5 and for certain a1, a2, a3 ∈ G; or in the form

(a1 +H) ∪ (a2 +H) ∪ {a3},
where H is the subgroup of G of order 3, and a1, a2, a3 ∈ G. For example,

{0, 1, 2, 3, 4, 5, 6},

{0, 3, 6, 9, 12} ∪ {1, 4},
and

{0, 5, 10} ∪ {1, 6, 11} ∪ {2}
all yield minimum sumset size. As these examples indicate, Problem D.5 may be quite
difficult in general.

We are able, however, to say more about the cases when u(n,m, h) achieves its extreme
values. Recall that, by Proposition 4.15, we have

m ≤ u(n,m, h) ≤ min{n, hm− h+ 1},
with u(n,m, h) = m if, and only if, h = 1 or n is divisible by m.

In the case when u(n,m, h) = m and h ≥ 2, we must have m ∈ D(n), and therefore a
subgroup of G of order m exists. Taking A to be a coset of this subgroup, hA will also be a
coset of the same subgroup, and thus |hA| = m. It turns out that the converse of this holds
as well, as we have the following.

Proposition D.6 Let A be an m-subset of G and h ≥ 1. Then |hA| ≥ m with equality if,
and only if, h = 1 or A is a coset of a subgroup of G.

For the proof of Proposition D.6, see page 333. In light of Proposition D.6, Problem D.5 is
solved in the case when u(n,m, h) = m.

Let us now turn to the upper bounds of u(n,m, h) in Proposition 4.15. The case when
u(n,m, h) = n translates to the situation when every m-subset A of G has hA = G; sets
like these are called h-fold bases (cf. Chapter B), and the minimum value of m for which
every m-subset of G is an h-fold basis of G is called the h-critical number of G. We allocate
a separate chapter to critical numbers; in particular, we will study the h-critical number of
groups in Section E.1.1.

The case when u(n,m, h) = hm − h+ 1 < n is also quite interesting, and we offer this
question as a special case of Problem D.5.
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Problem D.7 Find all G, m, and h ≥ 2 for which ρ(G,m, h) = hm− h+ 1 < n, and for
each such instance, find a characterization of all m-subsets of G with an h-fold sumset of
size hm− h+ 1.

Problem D.7, while only a special case of Problem D.5, is still quite elusive in general,
as the example of G = Z15, m = 7, and h = 2 above indicates. We do have a complete
answer, however, when G is of prime order.

Theorem D.8 Let p be a prime, h ≥ 2, and suppose that hm−h+1 < p. Then an m-subset
A of Zp satisfies |hA| = hm− h+ 1 if, and only if, A is an arithmetic progression; that is,

A = {a, a+ g, a+ 2g, . . . , a+ (m− 1)g}

for some a, g ∈ Zp.

Theorem D.8 can be reduced to Vosper’s Theorem (cf. [197]); see page 333. As we pointed
out above, the “only if” part of Theorem D.8 doesn’t hold when h = 1, and it is also false
when hm− h+1 = p. For example, the set A = {0, 1, 2, 4} is not an arithmetic progression
in Z7 (something that can be easily verified), but |2A| = 7 = 2 · 4− 2 + 1.

Let us see what we can say when n is not prime and the lower bound of Corollary D.4
is achieved so that

ρ(G,m, h) = min{p, hm− h+ 1},
where p is the smallest prime divisor of n. According to Corollary D.4, we then have p ≥ m.
We examine three cases.

When m ≤ p < hm− h+ 1, we can find m-subsets A of G for which

|hA| = p = min{p, hm− h+ 1},

as follows. Let H be any subgroup of G with |H | = p. Then for any g ∈ G, the coset g +H
contains p elements, and its h-fold sumset is another coset of H . Thus, any m-subset A of
g +H has |hA| = p. It turns out that there are no others:

Theorem D.9 Let p be the smallest prime divisor of n, A be an m-subset of G, and assume
that m ≤ p < hm− h+ 1. Then |hA| = p if, and only if, A is contained in a coset of some
subgroup H of G with |H | = p.

As Grynkiewicz pointed out in [104], Theorem D.9 follows easily from Kneser’s Theorem
[133]; we explain this on page 334.

Assume now that p > hm− h+ 1. This time, we can find m-subsets A of G for which

|hA| = hm− h+ 1 = min{p, hm− h+ 1},

as follows. Let g ∈ G be of order p. If A is the arithmetic progression

A = {a, a+ g, a+ 2g, . . . , a+ (m− 1)g},

then we clearly have

hA = {ha, ha+ g, ha+ 2g, . . . , ha+ h(m− 1)g};

since p > h(m− 1) + 1, these hm− h+ 1 elements are all distinct.
As a generalization of Theorem D.8 above, we can prove that the converse holds as well:
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Theorem D.10 Let h ≥ 2, p be the smallest prime divisor of n, A be an m-subset of G,
and assume that p > hm−h+1. Then |hA| = hm−h+1 if, and only if, A is an arithmetic
progression.

The proof of Theorem D.10 follows from Kemperman’s famous results in [129]—see page
335.

Finally, the third case, when p = hm − h + 1: this case seems more complicated. Not
only do we have the option of arithmetic progressions of length m and cosets of a subgroup
of order p, but there are other possibilities as well. For example, with p = 7, m = 4, and
h = 2 (as is the case, for example, with ρ(Z49, 4, 2) = 7) the subset

A = {0, a, (n− a)/2, (n+ a)/2}

works as well, as we get

2A = {0, a, 2a, (n− a)/2, (n+ a)/2, (n+ 3a)/2, n− a}

(since p = 7 implies that n must be odd, we need to assume that a is odd). The following
problem seems particularly intriguing:

Problem D.11 Suppose that n, mm, and h are positive integers, p is the smallest prime
divisor of n, and p = hm− h+ 1. Classify all m-subsets A of G for which |hA| = p.

D.1.2 Limited number of terms

Here we ought to consider, for a given group G, positive integer m (with m ≤ n = |G|), and
nonnegative integer s,

ρ(G,m, [0, s]) = min{|[0, s]A| | A ⊆ G, |A| = m},

that is, the minimum size of ∪s
h=0hA for an m-element subset A of G.

However, we have the following result.

Proposition D.12 For any group G, positive integer m ≤ n, and nonnegative integer s
we have

ρ(G,m, [0, s]) = ρ(G,m, s).

We can prove Proposition D.12 as follows. Suppose first that A is a subset of G of size
m and that it has a minimum-size [0, s]-fold sumset:

|[0, s]A| = ρ(G,m, [0, s]).

Clearly, sA ⊆ [0, s]A, so

ρ(G,m, [0, s]) = |[0, s]A| ≥ |sA| ≥ ρ(G,m, s).

For the other direction, choose a subset A of G of size m for which

|sA| = ρ(G,m, s).

By Proposition 3.2, we may assume that 0 ∈ A, so [0, s]A = sA, which implies that

ρ(G,m, [0, s]) ≤ |[0, s]A| = |sA| = ρ(G,m, s).

Proposition D.12 makes this subsection superfluous.
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D.1.3 Arbitrary number of terms

Here we consider, for a given group G and positive integer m (with m ≤ n = |G|) the
quantity

ρ(G,m,N0) = min{|〈A〉| | A ⊆ G, |A| = m}.
Recall that 〈A〉 is the subgroup of G generated by A; this immediately gives the following
result:

Proposition D.13 For any group G and positive integer m ≤ n, we have

ρ(G,m,N0) = min{d ∈ D(n) | d ≥ m}.

D.2 Unrestricted signed sumsets

Our goal in this section is to investigate the quantity

ρ±(G,m,H) = min{|H±A| | A ⊆ G, |A| = m}

where H±A is the union of all h-fold signed sumsets h±A for h ∈ H . We consider three
special cases: when H consists of a single nonnegative integer h, when H consists of all
nonnegative integers up to some value s, and when H is the entire set of nonnegative
integers.

D.2.1 Fixed number of terms

Here we consider
ρ±(G,m, h) = min{|h±A| | A ⊆ G, |A| = m},

that is, the minimum size of an h-fold signed sumset of an m-element subset of G.
It is easy to see that

ρ±(G, 1, h) = 1,

ρ±(G,m, 0) = 1,

and
ρ±(G,m, 1) = m.

(To see the last equality, it suffices to verify that one can always find a symmetric subset
of size m in G, that is, an m-subset A of G for which A = −A.) Therefore, for the rest of
this subsection, we assume that m ≥ 2 and h ≥ 2.

Perhaps surprisingly, we find that, while the h-fold signed sumset of a given set is gen-
erally much larger than its sumset, ρ±(G,m, h) often agrees with ρ(G,m, h); in particular,
this is always the case when G is cyclic:

Theorem D.14 (Bajnok and Matzke; cf. [22]) For all positive integers n, m, and h,
we have

ρ±(Zn,m, h) = ρ(Zn,m, h).

The situation seems considerably more complicated for noncyclic groups: in contrast to
ρ(G,m, h), the value of ρ±(G,m, h) depends on the structure of G rather than just the
order n of G. We do not have the answer to the following general problem:

Problem D.15 Find the value of ρ±(G,m, h) for all noncyclic groups G.



D.2. UNRESTRICTED SIGNED SUMSETS 157

We do, however, have some tight bounds. Observe that by Theorem D.3, we have the
lower bound

ρ±(G,m, h) ≥ u(n,m, h) = min{fd(m,h) : d ∈ D(n)}.
In [22], we proved that with a certain subset D(G,m) of D(n), we have

ρ±(G,m, h) ≤ u±(G,m, h) = min{fd(m,h) : d ∈ D(G,m)};

here D(G,m) is defined in terms of the type (n1, . . . , nr) of G, that is, via integers n1, . . . , nr

such that n1 ≥ 2, ni is a divisor of ni+1 for each i ∈ {1, . . . , r − 1}, and for which G is
isomorphic to the invariant product

Zn1
× · · · × Znr

.

Namely, we proved the following result:

Theorem D.16 (Bajnok and Matzke; cf. [22]) The minimum size of the h-fold signed
sumset of an m-subset of a group G of type (n1, . . . , nr) satisfies

ρ±(G,m, h) ≤ u±(G,m, h),

where

u±(G,m, h) = min{fd(m,h) : d ∈ D(G,m)}
with

D(G,m) = {d ∈ D(n) : d = d1 · · · dr, d1 ∈ D(n1), . . . , dr ∈ D(nr), dnr ≥ drm}.

Observe that, for cyclic groups of order n, D(G,m) is simply D(n).
We are aware of only one type of scenario where u±(G,m, h) does not yield the actual

value of ρ±(G,m, h); it only occurs when h = 2.
As a prime example, consider the group Z2

p for an odd prime p, let m = (p2 − 1)/2, and
h = 2. We find that

D(Z2
p, (p

2 − 1)/2) = {p, p2};
and we have

fp = fp2 = p2,

hence

u±(Z
2
p, (p

2 − 1)/2, 2) = p2.

However, observe that each nonzero element of Z2
p has order p ≥ 3, thus we can partition

Z2
p as

{0} ∪A ∪ (−A)

for some subset A of Z2
p of size (p2 − 1)/2. Since clearly 0 6∈ 2±A, we have

ρ±(Z
2
p, (p

2 − 1)/2, 2) ≤ p2 − 1.

A bit more generally, if d is an odd element of D(n) so that d ≥ 2m+ 1, then the same
argument yields

ρ± (G,m, 2) ≤ d− 1,

and therefore we have the following:
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Proposition D.17 (Bajnok and Matzke; cf. [22]) Suppose that G is an abelian group
of order n and type (n1, . . . , nr). Let m ≤ n, and let dm be the smallest odd element of D(n)
that is at least 2m+ 1; if no such element exists, set dm = ∞. We then have

ρ± (G,m, 2) ≤ min{u±(G,m, 2), dm − 1}.

We make the following conjecture:

Conjecture D.18 (Bajnok and Matzke; cf. [22]) Suppose that G is an abelian group
of order n and type (n1, . . . , nr).

If h ≥ 3, then
ρ± (G,m, h) = u±(G,m, h).

If each odd divisor of n is less than 2m, then

ρ± (G,m, 2) = u±(G,m, 2).

If there are odd divisors of n greater than 2m, let dm be the smallest one. We then have

ρ± (G,m, 2) = min{u±(G,m, 2), dm − 1}.

Problem D.19 Prove or disprove Conjecture D.18.

We are able to say more about minimum sumset size in elementary abelian groups;
in particular, we wish to study ρ±(Zr

p,m, h), where p denotes a positive prime and r is a
positive integer. By Theorem D.14, we assume that r ≥ 2, and, since obviously

ρ±(Z
r
2,m, h) = ρ(Zr

2,m, h)

for all m, h, and r, we will also assume that p ≥ 3.
Let us first exhibit a sufficient condition for ρ±(Zr

p,m, h) to equal ρ(Zr
p,m, h). When

p ≤ h, our result is easy to state:

Theorem D.20 (Bajnok and Matzke; cf. [23]) If p ≤ h, then for all values of 1 ≤
m ≤ pr we have

ρ±(Z
r
p,m, h) = ρ(Zr

p,m, h).

The case h ≤ p − 1 is more complicated and delicate. In order to state our results, we
will need to introduce some notations. Suppose that m ≥ 2 is a given positive integer. First,
we let k be the maximal integer for which

pk + δ ≤ hm− h+ 1,

where δ equals 0 or 1, depending on whether p− 1 is divisible by h or not. Second, we let c
be the maximal integer for which

(hc+ 1) · pk + δ ≤ hm− h+ 1.

Note that k and c are nonnegative integers and c ≤ p− 1, since for c ≥ p we would have

(hc+ 1) · pk ≥ pk+1 + δ > hm− h+ 1.

It is also worth noting that
f1(m,h) = hm− h+ 1.

Our sufficient condition can now be stated as follows:
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Theorem D.21 (Bajnok and Matzke; cf. [23]) Suppose that 2 ≤ h ≤ p− 1, and let k
and c be the unique nonnegative integers defined above. If

m ≤ (c+ 1) · pk,

then

ρ±(Z
r
p,m, h) = ρ(Zr

p,m, h).

In fact, we believe that this condition is also necessary:

Conjecture D.22 (Bajnok and Matzke; cf. [23]) The converse of Theorem D.21 is
true as well; that is, if 2 ≤ h ≤ p − 1, k and c are the unique nonnegative integers de-
fined above, and

m > (c+ 1) · pk,

then

ρ±(Z
r
p,m, h) > ρ(Zr

p,m, h).

Problem D.23 Prove or disprove Conjecture D.22.

We are able to prove that Conjecture D.22 holds in the case of ρ±(Z2
p,m, 2):

Theorem D.24 (Bajnok and Matzke; cf. [23]) Let p be an odd prime and m ≤ p2 be
a positive integer. Then

ρ±(Z
2
p,m, 2) = ρ(Z2

p,m, 2),

if, and only if, one of the following holds:

• m ≤ p,

• m ≥ (p2 + 1)/2, or

• there is a positive integer c ≤ (p− 1)/2 for which

c · p+ (p+ 1)/2 ≤ m ≤ (c+ 1) · p.

Theorem D.24 does not tell us the value of ρ±(Z2
p,m, 2) when it is more than ρ(Z2

p,m, 2);
for these cases, we have the following recent result of Lee:

Theorem D.25 (Lee; cf. [139]) Let p be an odd prime.

1. If m = c · p+ v with 1 ≤ c ≤ (p− 3)/2 and 1 ≤ v ≤ (p− 1)/2, then

ρ±(Z
2
p,m, 2) = (2c+ 1)p.

2. If m = c · p+ v with c = (p− 1)/2 and 1 ≤ v ≤ (p− 1)/2, then

ρ±(Z
2
p,m, 2) = p2 − 1.

Combining Theorems D.24 and D.25, we get:
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Corollary D.26 (Bajnok and Matzke; cf. [23] and Lee; cf. [139]) Let us write m as
m = cp+ v with

0 ≤ c ≤ p− 1 and 1 ≤ v ≤ p.

We then have:

c v ρ(Z2
p,m, 2) ρ±(Z2

p,m, 2) u±(Z2
p,m, 2)

v ≤ (p− 1)/2 2m− 1 = 2m− 1 = 2m− 1
0

v ≥ (p+ 1)/2 p = p = p

v ≤ (p− 1)/2 2m− 1 < (2c+ 1)p = (2c+ 1)p
1 ≤ c ≤ (p− 3)/2

v ≥ (p+ 1)/2 (2c+ 1)p = (2c+ 1)p = (2c+ 1)p

v ≤ (p− 1)/2 2m− 1 < p2 − 1 < p2
c = (p− 1)/2

v ≥ (p+ 1)/2 p2 = p2 = p2

c ≥ (p+ 1)/2 any v p2 = p2 = p2

We can also see that we have settled Conjecture D.18 for the group Z2
p. Indeed, from

Corollary D.26, we see that

ρ±(Z
2
p,m, 2) = u±(Z

2
p,m, 2)

in all cases, except when m = cp + v with c = (p − 1)/2 and 1 ≤ v ≤ (p − 1)/2, this case
coincides exactly with

dm − 1 < u±(Z
2
p,m, 2)

for
dm = min{d ∈ D(n) | d odd and d > 2m}.

Therefore:

Corollary D.27 (Bajnok and Matzke; cf. [23] and Lee; cf. [139]) Let p be an odd
prime. Conjecture D.18 holds for elementary abelian p-groups of rank two.

According to Theorem D.24, for a given p, there are exactly (p− 1)2/4 values of m for
which ρ±(Z2

p,m, 2) and ρ(Z2
p,m, 2) disagree—fewer than 1/4 of all possible values. We have

not been able to find any groups where this proportion is higher than 1/4, so make the
following conjecture:

Conjecture D.28 For any abelian group G of order n, we have fewer than n/4 values of
m for which ρ±(G,m, 2) and ρ(G,m, 2) disagree.

Problem D.29 Prove (or disprove) Conjecture D.28.

We do not know the generalization of Theorem D.24 for higher rank:

Problem D.30 Generalize Theorem D.24 for rank r ≥ 3.

We also have the following “inverse type” result from [22] regarding subsets that achieve
ρ± (G,m, h). Given a group G and a positive integer m ≤ |G|, we define a certain collection
A(G,m) of m-subsets of G. We let

• Sym(G,m) be the collection of symmetric m-subsets of G, that is, m-subsets A of G
for which A = −A;
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• Nsym(G,m) be the collection of near-symmetric m-subsets of G, that is, m-subsets
A of G that are not symmetric, but for which A \ {a} is symmetric for some a ∈ A;

• Asym(G,m) be the collection of asymmetric m-subsets of G, that is, m-subsets A of
G for which A ∩ (−A) = ∅.

We then let
A(G,m) = Sym(G,m) ∪ Nsym(G,m) ∪ Asym(G,m).

In other words, A(G,m) consists of those m-subsets of G that have exactly m, m− 1, or 0
elements whose inverse is also in the set.

Theorem D.31 (Bajnok and Matzke; cf. [22]) For every G, m, and h, we have

ρ±(G,m, h) = min{|h±A| : A ∈ A(G,m)}.

We should add that each of the three types of sets are essential as can be seen by examples
(cf. [22]). However, we do not know the answers to the following problems:

Problem D.32 Classify each situation where the minimum signed sumset size is achieved
by symmetric sets.

Problem D.33 Classify each situation where the minimum signed sumset size is achieved
by near-symmetric sets.

Problem D.34 Classify each situation where the minimum signed sumset size is achieved
by asymmetric sets.

Problem D.35 Classify each situation where the minimum signed sumset size is achieved
by sets that are not in A(G,m).

D.2.2 Limited number of terms

Here we consider, for a given group G, positive integer m (with m ≤ n = |G|), and nonneg-
ative integer s,

ρ±(G,m, [0, s]) = min{|[0, s]±A| | A ⊆ G, |A| = m},
that is, the minimum size of [0, s]±A for an m-element subset A of G.

We note that we don’t have a version of Proposition 3.2 for signed sumsets, so we are
not able to reduce this entire section to Section D.2.1. (However, one may be able to apply
similar techniques.)

It is easy to see that, for every m, we have

ρ±(G,m, [0, 0]) = 1,

and for every s, we have
ρ±(G, 1, [0, s]) = 1.

Furthermore, we can evaluate ρ±(G,m, [0, 1]) as follows. Note that

[0, 1]±A = A ∪ (−A) ∪ {0},

so |[0, 1]±A| ≥ m with equality if, and only if, A is symmetric (that is, A = −A) and
0 ∈ A. Let us see the conditions that allow for such a set A. We can partition G into
the pairwise disjoint union of four (potentially empty) parts: {0}, Ord(G, 2), K, and −K.
Therefore, if Ord(G, 2) 6= ∅, we can take A to be the set containing 0, together with the right
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number of pairs of the form ±k with k ∈ K, and some elements from Ord(G, 2). Likewise,
if Ord(G, 2) = ∅ but m is odd, we can let A be 0 together with (m − 1)/2 elements of K
together with their inverses.

This leaves only the case when Ord(G, 2) = ∅ (that is, n is odd), and m is even. It is
easy to find sets A with |[0, 1]±A| = m+1, and we can see that that is the best we can do.
Indeed, we will have either 0 6∈ A (but 0 ∈ [0, 1]±A), or an element a ∈ A for which −a 6∈ A
(but −a ∈ [0, 1]±A).

Summarizing our results thus far, we have the following.

Proposition D.36 Let G be an abelian group G of order n, and let m and s positive
integers.

• For all m we have
ρ±(G,m, [0, 0]) = 1.

• For all s we have
ρ±(G, 1, [0, s]) = 1.

• For all m we have

ρ±(G,m, [0, 1]) =





m if n is even or m is odd,

m+ 1 if n is odd and m is even.

For values of s ≥ 2 and m ≥ 2, we have no exact values for ρ±(G,m, [0, s]) in general.
However, Matzke in [155] provided the following upper bound for ρ±(G,m, [0, s]) for the

case when G is cyclic. First, we introduce some notations. For a positive integer k we let
v(k) denote the highest power of 2 that is a divisor of k. For given positive integers n and
m we then define

D1(n) = {d ∈ D(n) | v(n) ≥ v(d⌈m/d⌉)}
and

D2(n) = {d ∈ D(n) | v(n) < v(d⌈m/d⌉)}.
Finally, we set

u±(n,m, [0, s]) = min{min{fd(m, s) | d ∈ D1(n)}, min{fd(m+ d, s) | d ∈ D2(n)}}.

(Note that for d ∈ D2(n) we have d⌈m/d⌉ < n and thus m+ d ≤ n.)

Theorem D.37 (Matzke; cf. [155]) With the notations just introduced, we have

ρ±(Zn,m, [0, s]) ≤ u±(n,m, [0, s]).

Furthermore, Matzke believes that equality holds in Theorem D.37:

Conjecture D.38 (Matzke; cf. [155]) With the notations introduced above, we have

ρ±(Zn,m, [0, s]) = u±(n,m, [0, s]).

Problem D.39 Prove or disprove Conjecture D.38.

As Grynkiewicz pointed out (cf. [104]), we can prove Conjecture D.38 for prime values
of n:
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Theorem D.40 For odd prime values of p we have

ρ±(Zp,m, [0, s]) = u±(p,m, [0, s]) = min{p, 2s⌊m/2⌋+ 1}.

We present the short proof on page 335.
We do not know much about the value of ρ±(G,m, [0, s]) for noncyclic groups:

Problem D.41 Find the value of (or, at least, find good bounds for) ρ±(G,m, [0, s]) for
noncyclic groups G and integers m and s.

D.2.3 Arbitrary number of terms

This subsection is identical to Subsection D.1.3.

D.3 Restricted sumsets

Our goal in this section is to investigate the quantity

ρ̂ (G,m,H) = min{|H Â| | A ⊆ G, |A| = m}

where H Â is the union of all h-fold restricted sumsets ĥ A for h ∈ H . We consider three
special cases: when H consists of a single nonnegative integer h, when H consists of all
nonnegative integers up to some value s, and when H is the entire set of nonnegative
integers.

D.3.1 Fixed number of terms

Here we consider

ρ̂ (G,m, h) = min{|ĥ A| | A ⊆ G, |A| = m},
that is, the minimum size of an h-fold restricted sumset of an m-element subset of G.

Note that, when h > m, we obviously have ĥ A = ∅ for every m-subset A of G, thus we
may assume that h ≤ m. Clearly, for all A we have 0̂ A = {0} and 1̂ A = A, so

ρ̂ (G,m, 0) = 1

and

ρ̂ (G,m, 1) = m.

Furthermore, as we saw in Section A.3.1, for all m, h, and m-subsets A of G we have

|(m− h)̂ A| = |ĥ A|,

and thus

ρ̂ (G,m,m− h) = ρ̂ (G,m, h).

Therefore, it suffices to study cases when

2 ≤ h ≤
⌊m
2

⌋
.

By these considerations, we see that the only case with m ≤ 4 in which ρ̂ (G,m, h) is
not immediate is m = 4 and h = 2, for which we prove the following result.
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Proposition D.42 Let G be an abelian group with Ord(G, 2) as the set of its elements of
order 2. We have

ρ̂ (G, 4, 2) =





3 if |Ord(G, 2)| ≥ 2,
4 if |Ord(G, 2)| = 1,
5 if |Ord(G, 2)| = 0.

The proof of Proposition D.42 can be found on page 336; the proposition on page
336 also provides a complete characterization of 4-subsets A of G with |2̂ A| attaining all
possible values. We can rephrase the conditions in Proposition D.42 by using the invariant
factorization of G. Let

G ∼= Zn1
× · · · × Znr

with 2 ≤ n1, n1|n2| · · · |nr. We then have

ρ̂ (G, 4, 2) =





3 if r ≥ 2 and nr−1 is even,
4 if r ≥ 2 and nr−1 is odd but nr is even, or r = 1 and nr is even,
5 if nr is odd.

(Note that nr is even if, and only if, n = |G| is even.)
As Proposition D.42 demonstrates, the value of ρ̂ (G, 4, h) may be less than 4. (This is

in contrast to ρ(G,m, h) ≥ m; see Proposition D.1.) However, we can easily prove that

ρ̂ (G, 5, 2) ≥ 5,

as follows. Let A = {a1, . . . , a5} (with |A| = 5); we then have

2̂ A = {ai + aj | 1 ≤ i < j ≤ 5}.

It is easy to see that
B = {a1 + ai | i = 2, 3, 4, 5}

is a 4-subset of 2̂ A, thus |2̂ A| ≥ 4; furthermore, for 2̂ A to have size 4, we must have
(among other things) a2 + a3 ∈ B and a4 + a5 ∈ B. Since

a2 + a3 6∈ {a1 + a2, a1 + a3},

we have, w.l.o.g.,
a2 + a3 = a1 + a4;

similarly,
a4 + a5 = a1 + a2.

Adding these two equations and cancelling yields

a3 + a5 = 2a1,

and, therefore, 2a1 ∈ B, but that cannot happen. Therefore, |2̂ A| ≥ 5.
In fact, Carrick evaluated ρ̂ (G, 5, 2) for every group G:

Theorem D.43 (Carrick; cf. [51]) For an abelian group G of order n we have

ρ̂ (G, 5, 2) =





5 if n is divisible by 5,
6 if n is not divisible by 5 but is divisible by 6,
7 otherwise.

The evaluation of ρ̂ (G,m, 2) gets more difficult as m increases. We still offer:
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Problem D.44 Evaluate ρ̂ (G, 6, 2) for every finite abelian group G.

The values of ρ̂ (G,m, h) are largely unknown in general; we first attempt to evaluate
them in the case when G is cyclic. The general question regarding ρ̂ (Zn,m, h) remains
open:

Problem D.45 Find the exact value of ρ̂ (Zn,m, h) for all n, m, and h.

Below we summarize what we know about ρ̂ (Zn,m, h).
We start by wondering what the minimum possible value of ρ̂ (Zn,m, h) is. Suppose

that 1 ≤ h ≤ m− 1. Let A = {a1, . . . , am}, but assume that the elements (as integers) are
between 0 and n− 1 and that they are in increasing order. Now consider the sets

A1 = {a1 + a2 + · · ·+ ah−1 + ai | i = h, h+ 1, . . . ,m}

and

A2 = {a1 + a2 + · · ·+ ah − aj + am | j = 1, 2, . . . , h− 1}.
Note that A1 ⊆ ĥ A and (since h ≤ m−1) A2 ⊆ ĥ A. Clearly, |A1|+ |A2| = m; furthermore,
A1 and A2 are disjoint, since (as integers), we have

a1+a2+· · ·+ah < · · · < a1+· · ·+ah−1+am < a1+· · ·+ah−2+ah+am < · · · < a2+· · ·+ah+am,

and the smallest and largest sums differ by am − a1 < n, and thus the m elements are
distinct in Zn. Therefore, we have the following.

Proposition D.46 For all 1 ≤ h ≤ m− 1 we have ρ̂ (Zn,m, h) ≥ m.

Clearly, equality holds for h = 1 and h = m − 1. Another obvious example of
ρ̂ (Zn,m, h) = m is the case when m is a divisor of n: the (unique) subgroup A of Zn

of order m has |ĥ A| = |A| = m; more generally, A can be any coset of this subgroup. As it
turns out (see below), there are no other cases where equality holds for the cyclic group.

We now turn to the question of finding upper bounds for ρ̂ (Zn,m, h). An obvious upper
bound is that

ρ̂ (Zn,m, h) ≤ ρ(Zn,m, h),

where, according to Theorem D.3,

ρ(Zn,m, h) = u(n,m, h) = min
{(

h ·
⌈m
d

⌉
− h+ 1

)
· d | d ∈ D(n)

}
.

Recall that we provided, for each d ∈ D(n), an m-subset Ad(n,m) of Zn whose h-fold
sumset has size

|hAd(n,m)| = min{n, fd, hm− h+ 1},
where

fd =
(
h ·
⌈m
d

⌉
− h+ 1

)
· d

(see Proposition D.2). To get an upper bound for ρ̂ (Zn,m, h), we now compute the size of
the restricted h-fold sumset of Ad(n,m).

We recall the construction from Section D.1.1 as follows. For a divisor d of n, consider
the (unique) subgroup H of order d of Zn, namely,

H =
{
j · n

d
| j = 0, 1, 2, . . . , d− 1

}
,
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and then let Ad(n,m) be a certain subset of the “first”
⌈
m
d

⌉
cosets of H . Namely, we set

Ad(n,m) =

c−1⋃

i=0

(i+H) ∪
{⌈m

d

⌉
− 1 + j · n

d
| j = 0, 1, 2, . . . , k − 1

}

where
c =

⌈m
d

⌉
− 1

and
k = m− dc

assures that A = Ad(n,m) has size m. We also see that 1 ≤ k ≤ d and thus we take at least
1 but at most d elements of the coset c+H ; on the other hand, when c = 0 (that is, when
m ≤ d), we see that

c−1⋃

i=0

(i+H) = ∅,

so A lies entirely within a single coset and forms the arithmetic progression

{
j · n

d
| j = 0, 1, 2, . . . ,m− 1

}
.

Recall also the function û (n,m, h) from Section III. For that, we introduced the nota-
tions h = qd+ r with

q =

⌈
h

d

⌉
− 1

and
r = h− dq,

then set

f d̂(n,m, h) =





min{n, fd, hm− h2 + 1} if h ≤ min{k, d− 1},

min{n, hm− h2 + 1− δd} otherwise;

where δd is a “correction term” defined as

δd(n,m, h) =





(k − r)r − (d− 1) if r < k,
(d− r)(r − k)− (d− 1) if k < r < d,

d− 1 if k = r = d,
0 otherwise.

We can then prove the following result.

Theorem D.47 (Bajnok; cf. [15]) Suppose that 1 ≤ h < m ≤ n. We then have

|ĥ Ad(n,m)| = f d̂(n,m, h).

The proof of Proposition D.47 can be found on page 337.
Obviously, |ĥ Ad(n,m)| provides an upper bound for ρ̂ (Zn,m, h) for every d ∈ D(n). In

Section III we also defined

û (n,m, h) = min{f d̂(n,m, h) | d ∈ D(n)},

with which Theorem D.47 implies:
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Corollary D.48 Suppose that 1 ≤ h < m ≤ n. For the cyclic group of order n we have

ρ̂ (Zn,m, h) ≤ û (n,m, h).

Manandhar in [148] has computed the value of ρ̂ (Zn,m, h) for all n ≤ 25 and m ≤ 12;
Malec in [147] extended this search to the range n ≤ 40 and all m. They found that in all
cases, ρ̂ (Zn,m, h) agrees with û (n,m, h), with the following exceptions:

n m h û (n,m, h) ρ̂ (Zn,m, h)

10 6 3 10 9
12 7 2 11 10
15 8 3 15 14
20 6 3 10 9
20 11 2 19 18
24 13 2 23 22
28 15 2 27 26
35 12 5 35 34
40 11 2 19 18

(Only those with h ≤
⌊
m
2

⌋
are listed.)

From these data it seems that û (n,m, h) is a remarkably good upper bound for
ρ̂ (Zn,m, h): indeed, û (n,m, h) agrees with ρ̂ (Zn,m, h) in the overwhelming majority (over
99%) of cases, and when it does not, it differs by only 1. In light of this we pose the following:

Problem D.49 Classify all situations when

ρ̂ (Zn,m, h) < û (n,m, h);

in particular, how much smaller than û (n,m, h) can ρ̂ (Zn,m, h) be?

As we just mentioned, in all cases that we are aware of, we have ρ̂ (Zn,m, h) = û (n,m, h)
or ρ̂ (Zn,m, h) = û (n,m, h)− 1.

Let us mention three—as it turns out, quite predicative—examples of the case when
ρ̂ (Zn,m, h) = û (n,m, h)− 1.

• û (12, 7, 2) = 11, but ρ̂ (Z12, 7, 2) = 10 as shown by the set

C1 = {0, 4} ∪ {1, 5, 9} ∪ {6, 10}.

• û (10, 6, 3) = 10, but ρ̂ (Z10, 6, 3) = 9 as shown by the set

C2 = {0, 2, 4, 6} ∪ {7, 9}.

• û (15, 8, 3) = 15, but ρ̂ (Z15, 8, 3) = 14 as shown by the set

C3 = {0, 3, 6, 9} ∪ {10, 13, 1, 4}.

Needless to say, we chose to represent our sets in the particular formats above for a reason. In
fact, all known situations where ρ̂ (Zn,m, h) < û (n,m, h) can be understood by a particular
modification of our sets Ad(n,m), as we now describe.
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Observe that them elements of Ad(n,m) are within ⌈m/d⌉ cosets of the order d subgroup
H of Zn, and at most one of these cosets does not lie entirely in Ad(n,m). We now consider
the situation when the m elements are still within ⌈m/d⌉ cosets of H , but exactly two of
these cosets don’t lie entirely in our set. In order to do so, we write m in the form

m = k1 + (c− 1)d+ k2

for some positive integers c, k1, and k2; we assume that k1 < d, k2 < d, but k1 + k2 > d.
We then are considering m-subsets B of Zn of the form

B = Bd(n,m; k1, k2, g, j0) = B′ ∪
c−1⋃

i=1

(ig +H) ∪B′′,

where H is the subgroup of Zn with order d, g is an element of Zn, B
′ is a proper subset of

H given by

B′ =
{
j · n

d
: j = 0, 1, . . . , k1 − 1

}
,

and B′′ is a proper subset of cg +H of the form

B′′ =
{
cg + (j0 + j) · n

d
: j = 0, 1, . . . , k2 − 1

}

for some integer j0 with 0 ≤ j0 ≤ d− 1.
It turns out that our set B (under some additional assumptions to be made precise in

[15]) has the potential to have a restricted h-fold sumset of size less than û (n,m, h) in only
three cases:

• h = 2, m− 1 is not a power of 2, and n is divisible by 2m− 2;

• h = 3, m = 6, and n is divisible by 10; or

• h is odd, m+ 2 is divisible by h+ 2, and n is divisible by hm− h2.

In particular, we have the following.

Theorem D.50 (Bajnok; cf. [15]) Let Bd(n,m; k1, k2, g, j0) be the m-subset of Zn de-
fined above, and let h be a positive integer with h ≤ m− 1.

• If h = 2, m− 1 is not a power of 2, n is divisible by 2m− 2, and d is an odd divisor
of m− 1 with d > 1, then

Bd

(
n,m; d+1

2 , d+1
2 , n

2m−2 ,
d−1
2

)

has a restricted 2-fold sumset of size 2m− 4.

• If h = 3, m = 6, and n is divisible by 10, then

B5

(
n, 6; 4, 2, n

10 , 3
)

has a restricted 3-fold sumset of size 3m− 9 = 9.

• If h is odd, m+ 2 is divisible by h+ 2, and n is divisible by hm− h2, then

Bh+2

(
n,m;h+ 1, h+ 1, n

hm−h2 ,
h+3
2

)

has a restricted h-fold sumset of size hm− h2 − 1.
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Our examples above demonstrate the three cases of Theorem D.50 in order: we have

C1 = B3(12, 7; 2, 2, 1, 1),

C2 = B5(10, 6; 4, 2, 1, 3),

and
C3 = B5(15, 8; 4, 4, 1, 3).

The proof of Theorem D.50 is an easy exercise; it also follows from [15] where we verify
that, in a certain sense that we make precise, there are no other such sets.

While we seem far away from knowing the value of ρ̂ (Zn,m, h) in general, we do have
the answer in the case when n is prime. Recall that, by Proposition 4.25, for a prime p we
have

û (p,m, h) = min{p, hm− h2 + 1},
thus Corollary D.48, when n equals a prime number p, simplifies to

ρ̂ (Zp,m, h) ≤ min{p, hm− h2 + 1}.

The conjecture that equality holds here has been known since the 1960s as the Erdős–
Heilbronn Conjecture (not mentioned in [80] but in [79]). Three decades later, Dias Da Silva
and Hamidoune [66] succeeded in proving the Erdős–Heilbronn Conjecture and thus we
have

Theorem D.51 (Dias Da Silva and Hamidoune) For a prime p and integers 1 ≤ h ≤
m ≤ p we have

ρ̂ (Zp,m, h) = min{p, hm− h2 + 1}.

(The result was reestablished and extended, using different methods, by Alon, Nathanson,
and Ruzsa; see [3], [4], and [161].)

For composite values of n, the evaluation of ρ̂ (Zn,m, h) seems considerably more diffi-
cult; we attempt to summarize here what is known for h = 2 and h = 3.

For h = 2, recall Proposition 4.22:

û (n,m, 2) =





min{u(n,m, 2), 2m− 4} if n and m are both even,

min{u(n,m, 2), 2m− 3} otherwise.

We can then use Theorem D.50 to determine the values of n and m that allow for an
improvement over û (n,m, 2). Only one case applies: when m− 1 is not a power of 2 and n
is divisible by 2m− 2, in which a special set B exists with |2̂ B| = 2m− 4. Therefore, using
Theorem D.3 as well, we have the following result.

Corollary D.52 For all positive integers n and m with 3 ≤ m ≤ n we have

ρ̂ (Zn,m, 2) ≤





min{ρ(Zn,m, 2), 2m− 4} if 2|n and 2|m, or
(2m− 2)|n and 6 ∃k ∈ N,m = 2k + 1;

min{ρ(Zn,m, 2), 2m− 3} otherwise.

We have performed a computer search for all m-subsets of Zn with 3 ≤ m ≤ n ≤ 40,
and in each case we found that equality holds in Corollary D.52.

Conjecture D.53 For all n and m, we have equality in Corollary D.52.
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Problem D.54 Prove or disprove Conjecture D.53.

We can carry out a similar analysis for the case of h = 3, by first recalling from Propo-
sition 4.23:

û (n,m, 3) =





min{u(n,m, 3), 3m− 3− gcd(n,m− 1)} if gcd(n,m− 1) ≥ 8;

min{u(n,m, 3), 3m− 10} if gcd(n,m− 1) = 7, or
gcd(n,m− 1) ≤ 5, 3|n, and 3|m;

min{u(n,m, 3), 3m− 9} if gcd(n,m− 1) = 6;

min{u(n,m, 3), 3m− 8} otherwise.

We then examine Theorem D.50 for the case h = 3 to see if we can do better. We find
two such instances: when n is divisible by 10 and m = 6, and when n is divisible by 3m− 9
and m− 3 is divisible by 5. Observe that, in the latter case, we may assume that m is even,
since otherwise d0 = (3m− 9)/2 ∈ D(n) and thus

û (n,m, 3) ≤ u(n,m, 3) ≤ fd0
= d0 ≤ 3m− 10.

Therefore, we have the following.

Corollary D.55 Let n and m be positive integers, 4 ≤ m ≤ n, and set d0 = gcd(n,m− 1).
We then have

ρ̂ (Zn,m, 3) ≤





min{u(n,m, 3), 3m− 3− d0} if d0 ≥ 8;

min{u(n,m, 3), 3m− 10} if d0 = 7, or
d0 ≤ 5, 3|n, and 3|m, or
d0 ≤ 5, (3m− 9)|n, and 5|(m− 3);

min{u(n,m, 3), 3m− 9} if d0 = 6, or
m = 6 and 10|n but 3 6 |n;

min{u(n,m, 3), 3m− 8} otherwise.

Motivated by computational data mentioned above, we have:

Conjecture D.56 For all n and m, we have equality in Corollary D.55.

Problem D.57 Prove or disprove Conjecture D.56.

Few other results or even conjectures are known for the exact value of ρ̂ (Zn,m, h) or
(especially) for ρ̂ (G,m, h) in general. One such result is the following:

Proposition D.58 Let G be an abelian group of order n. We have ρ̂ (G,m, 2) = n if, and
only if,

m ≥ n+ |Ord(G, 2)|+ 3

2
.

In particular,

• ρ̂ (G,n, 2) = n if, and only if, G is not isomorphic to the elementary abelian 2-group;
and
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• ρ̂ (Zn,m, 2) = n if, and only if, m ≥ ⌊n/2⌋+ 2.

Note that n+ |Ord(G, 2)|+3 is always even. We should also mention that Proposition D.58
appeared several times in the literature: cf. [179] by Roth and Lempel; [53] (for the “if”
part only) and [54] by Chiaselotti; and [16] by Bajnok.

According to Proposition D.58, the largest value of m for which ρ̂ (G,m, 2) is less than
n equals

m0 =
n+ |Ord(G, 2)|+ 1

2
.

It is then an interesting question to find ρ̂ (G,m0, 2). By Proposition D.58,

ρ̂ (G,m0, 2) ≤ n− 1.

We prove the following:

Proposition D.59 For

m0 =
n+ |Ord(G, 2)|+ 1

2

we have

ρ̂ (G,m0, 2) ≤





n− 1 if ∃k ∈ N, n = 2k;

n− 2 otherwise.

In particular,

ρ̂
(
Zn,

⌊n
2

⌋
+ 1, 2

)
≤





n− 1 if ∃k ∈ N, n = 2k;

n− 2 otherwise.

As we mentioned, the first case of our result holds by Proposition D.58; the proof of the
second case can be found on page 344.

In 2002, Gallardo, Grekos, et al. proved that, when G is cyclic, Proposition D.59 holds
with equality:

Theorem D.60 (Gallardo, Grekos, et al.; cf. [89]) For every positive integer n ≥ 2
we have

ρ̂
(
Zn,

⌊n
2

⌋
+ 1, 2

)
=





n− 1 if ∃k ∈ N, n = 2k;

n− 2 otherwise.

Note that Conjecture D.53, once established, would generalize Theorem D.60.
We do not know if Proposition D.59 holds with equality when G is not cyclic:

Problem D.61 Decide whether equality holds in Proposition D.59 when G is noncyclic.

We can generalize Problem D.61 as follows. In Chapter E, we define and investigate the
critical numbers of groups; in particular, in Section E.3.1 we discuss the restricted h-critical
number χ̂ (G, h) of G, defined as the smallest positive integer m (if it exists) for which
ρ̂ (G,m, h) = n or, equivalently, the smallest positive integer m for which ĥ A = G holds
for every m-subset A of G. For example, according to Proposition D.58, for every group G
we have

χ̂ (G, 2) =
n+ |Ord(G, 2)|+ 3

2
.

The value of χ̂ (G, h) is not known in general—in Section E.3.1 we summarize what we
know.
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With this notation, we can restate Theorem D.60 in the form

ρ̂ (Zn, χ̂ (Zn, 2)− 1, 2) =





n− 1 if ∃k ∈ N, n = 2k;

n− 2 otherwise.

We can then ask for the following:

Problem D.62 For each G and h, find ρ̂ (G, χ̂ (G, h)− 1, h).

As an example, for G = Z15 we have the following values:

h χ̂ (G, h) ρ̂ (G, χ̂ (G, h)− 1, h)

1 15 14
2 9 13
3 9 14
4 8 13
5 9 14
6 9 13

7− 13 h+ 2 h+ 1
14 15 1

The most general problem, of course, is:

Problem D.63 Find the exact value of ρ̂ (G,m, h) for all groups G and positive integers
m and h.

We should point out that, while ρ(G,m, h) depends only on the order n of G and not on
the structure ofG, this is definitely not the case for ρ̂ (G,m, h) (see, for example, Proposition
D.42 or further results below).

Very few general results are known for ρ̂ (G,m, h) when G is not cyclic; indeed, most
exact values thus far have been for ρ̂ (Zr

p,m, 2) when p is prime.
The case p = 2 is easy. Consider any m-subset A = {a1, . . . , am} of G. We then have

2̂ A = {ai + aj | 1 ≤ i < j ≤ m}.

Since
2A = {ai + aj | 1 ≤ i ≤ j ≤ m} = 2̂ A ∪ {0}

and 0 6∈ 2̂ A, we have the following result.

Proposition D.64 For all positive integers r and m, we have

ρ̂ (Zr
2,m, 2) = ρ(Zr

2,m, 2)− 1 = u(2r,m, 2)− 1.

The corresponding answer for h ≥ 3 is not known.

Problem D.65 Find ρ̂ (Zr
2,m, h) for h ≥ 3.

For p ≥ 3 we do not have a complete answer even for h = 2. Here is what we do know:

Theorem D.66 (Eliahou and Kervaire; cf. [73]) Suppose that p is an odd prime, and
r and m are positive integers with 2 ≤ m ≤ pr.

1. The following statements are equivalent:
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(a)
(
2m−2
m−1

)
is divisible by p.

(b) The base p representation of m− 1 contains a digit that is at least p+1
2 .

(c) ρ(Zr
p,m, 2) = u(pr,m, 2) < 2m− 1.

(d) ρ̂ (Zr
p,m, 2) = u(pr,m, 2).

2. The following statements are equivalent:

(a)
(
2m−2
m−1

)
is not divisible by p.

(b) Each digit in the base p representation of m− 1 is at most p−1
2 .

(c) ρ(Zr
p,m, 2) = u(pr,m, 2) = 2m− 1.

(d) ρ̂ (Zr
p,m, 2) < u(pr,m, 2) and ρ̂ (Zr

p,m, 2) ∈ {2m− 3, 2m− 2}.

The fact that statements (a), (b), (c) are equivalent—which, obviously, only need to
be proved in 1 or 2—can be established by some elementary considerations (recall that
u(n,m, 2) ≤ f1(m, 2) = 2m − 1 holds for all n and m). Observe that the only unsettled
case in Theorem D.66 occurs in case 2: we don’t know whether the value of ρ̂ (Zr

p,m, 2)
equals 2m−2 or 2m−3. In [74] the authors write “The problem of deciding this alternative
is unsolved and looks amazingly difficult in general.” They have the following additional
partial results.

Theorem D.67 (Eliahou and Kervaire; cf. [73, 74, 75]) Keeping the notations of
Theorem D.66, suppose that we are in case 2.

1. If m− 1 is not divisible by p, then ρ̂ (Zr
p,m, 2) = 2m− 3.

2. For m = p+ 1 we have ρ̂ (Zr
p,m, 2) = 2m− 3 when p = 3 and ρ̂ (Zr

p,m, 2) = 2m− 2
when p ≥ 5.

3. Let m = 9k + 4 for some nonnegative integer k; we then have ρ̂ (Zr
3,m, 2) = 2m− 3.

4. Let m = 9 ·3k+1 for some nonnegative integer k; we then have ρ̂ (Zr
3,m, 2) = 2m−2.

We should point out that in the second statement of Theorem D.67 the case p = 3 follows
immediately from Proposition D.42; this simple fact, in turn, implies the third statement
of the theorem. After Theorems D.66 and D.67 we see that ρ̂ (Zr

3,m, 2) has been settled
for all cases except when m ≡ 1 mod 27 or when m ≡ 10 mod 27. For p ≥ 5, the simplest
unsolved case seems to be when m = 2p+ 1.

Problem D.68 Find the value of ρ̂ (Zr
3,m, 2) for each r ≥ 2 and m ≡ 1 mod 27 or m ≡ 10

mod 27.

Problem D.69 Find the value of ρ̂ (Zr
p, 2p+ 1, 2) for each r ≥ 2 and each prime p ≥ 5.

Furthermore:

Problem D.70 Find the value of ρ̂ (Zr
p,m, h) for each prime p ≥ 3, r ≥ 2, m ≥ 5, and

h ≥ 3.

We should also mention an “inverse” result of the same authors:



174 CHAPTER D. MINIMUM SUMSET SIZE

Theorem D.71 (Eliahou and Kervaire; cf. [74]) Suppose that p ≥ 5 is prime, A ⊂ Zr
p

with |A| = p+ 1, and that |2̂ A| = ρ̂ (Zr
p, p+ 1, 2) = 2p. Then A is of the form

A = (a1 +H) ∪ {a2}
for some a1, a2 ∈ G and H ≤ G with |H | = p.

It is easy to verify that the set A above has a restricted 2-fold sumset of size 2p; according
to Theorem D.71, all sets with minimum sumset size are of this form.

Turning now to general abelian groups, we have the following (unsurprising) result for
the case of m = n:

Theorem D.72 For positive integers r, we have 2̂ Zr
2 = Zr

2 \ {0}, but for all other finite
abelian groups G and 1 ≤ h ≤ ⌊n/2⌋, we have ĥ G = G. Consequently,

ρ̂ (G,n, h) =





n− 1 if G ∼= Zr
2 and h = 2;

n otherwise.

The proof of Theorem D.72 can be found on page 346 (for h = 2, see Proposition D.58 as
well).

With exact results for ρ̂ (G,m, h) few and far between, we turn to lower and upper
bounds.

We start with some lower bounds on ρ̂ (G,m, h). Repeating an argument from earlier,
we see that for all A = {a1, . . . , am} ⊆ G and 1 ≤ h ≤ m, we have

{a1 + a2 + · · ·+ ah−1 + ai | i = h, h+ 1, . . . ,m} ⊆ ĥ A,

and these m − h + 1 elements are distinct, thus |ĥ A| ≥ m − h + 1. The dual inequality
(switching h and m − h) gives |ĥ A| ≥ h + 1, and therefore we have the following obvious
lower bound.

Proposition D.73 For all 1 ≤ h ≤ m− 1 we have

ρ̂ (G,m, h) ≥ max{m− h+ 1, h+ 1};
consequently, for 1 ≤ h ≤

⌊
m
2

⌋
we have

ρ̂ (G,m, h) ≥ m− h+ 1.

Naturally, we would like to know about the cases where equality occurs in Proposition
D.73—this has been very recently answered by Girard, Griffiths, and Hamidoune in [99].
For h = 1, the answer, of course, is obvious: equality holds for all G and m. For h = 2,
we have already seen that equality holds if m = 4 and G has more than one element of
order 2. More generally, if A is any coset g +H of some subgroup H = {0, h2, . . . , hm} of
G2 = Ord(G, 2) ∪ {0}, then, since hi + hj ∈ H \ {0} for any 2 ≤ i < j ≤ m, we have

2̂ A = {2g + h2, . . . , 2g + hm},
and thus |2̂ A| = m − 1. It turns out that these are the only cases when equality holds in
Proposition D.73:

Theorem D.74 (Girard, Griffiths, and Hamidoune; cf. [99]) Suppose that A is an
m-subset of G and that 1 ≤ h ≤

⌊
m
2

⌋
. Then

|ĥ A| = m− h+ 1

if, and only if, h = 1 (and A arbitrary) or h = 2 and A is a coset of some subgroup of
Ord(G, 2) ∪ {0}.
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As a consequence of Theorem D.74, we get that

ρ̂ (G,m, h) ≥ m− 1,

with equality if, and only if, h ∈ {2,m − 2} and Ord(G, 2) ∪ {0} possesses a subgroup of
order m (and thus m = 2k for some 2 ≤ k ≤ e where e is the number of even orders in the
invariant factorization of G).

As it turns out, we also have a full characterization of cases where

ρ̂ (G,m, h) = m.

This equality clearly holds for h = 1, h = m− 1, or when m is a divisor of n (in which case
G has a subgroup of order m).

Let us demonstrate another example. Let H = {0, h2, . . . , hm, hm+1} be a subgroup of
G2 = Ord(G, 2) ∪ {0} in a (noncyclic) group G, and let A be a coset of H in G with one
element removed:

A = {g, g + h2, . . . , g + hm}.
As above, we see that

2̂ A = {2g + h2, . . . , 2g + hm},
and thus |2̂ A| = m. The question of lower bounds for ρ̂ (G,m, h) is settled for general G
by the following results.

Theorem D.75 (Girard, Griffiths, and Hamidoune; cf. [99]) Suppose that m ≥ 5
and 1 ≤ h ≤

⌊
m
2

⌋
, and let A be an m-subset of G that is not a coset of some subgroup

of Ord(G, 2) ∪ {0}. Then |ĥ A| ≥ m. Furthermore, |ĥ A| = m if, and only if, (at least) one
of the following holds:

(i) h = 1 (and A arbitrary),

(ii) A is a coset of some subgroup of G, or

(iii) h = 2 and A is a coset of some subgroup of Ord(G, 2) ∪ {0} minus one element.

Note that the assumption that m ≥ 5 is permissible as we have the corresponding results
for m ≤ 4 in Proposition D.42 above.

It is worthwhile to compare Theorem D.75 to Proposition D.6. We state the following
corollary explicitly.

Corollary D.76 Suppose that m ≥ 5 and 1 ≤ h ≤ m − 1. Let e be the number of even
orders in the invariant factorization of G. We then have

ρ̂ (G,m, h)





= m− 1 if h ∈ {2,m− 2} and m = 2k for some 2 ≤ k ≤ e;

= m if h ∈ {1,m− 1}, or
m|n, or
h ∈ {2,m− 2} and m = 2k − 1 for some 2 ≤ k ≤ e;

≥ m+ 1 otherwise.

We can attempt to find a different type of lower bound for ρ̂ (G,m, h) by considering
Proposition 4.31. We make the following conjecture:
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Conjecture D.77 Let G be a group of order n, p be the smallest prime divisor of n, and
assume that 1 ≤ h < m ≤ n. We then have

ρ̂ (G,m, h) ≥ min{p, hm− h2 + 1},

with equality if, and only if, p ≥ m.

Note that Conjecture D.77 is a generalization of Theorem D.51.
Károlyi succeeded in providing a proof for the case h = 2:

Theorem D.78 (Károlyi; cf. [124, 125]) For any abelian group G of order n, we have

ρ̂ (G,m, 2) ≥ min{p, 2m− 3},

where p is the smallest prime divisor of n. Equality may occur if, and only if, p ≥ m.

A very difficult problem is the following.

Problem D.79 Prove Conjecture D.77 for h ≥ 3.

Let us attempt to characterize situations where the lower bound of Conjecture D.77 is
achieved and

ρ̂ (G,m, h) = min{p, hm− h2 + 1},
where p is the smallest prime divisor of n. We examine four cases.

First, let us assume that p < m, in which case min{p, hm− h2 + 1} = p for all h. If p
is odd, then n is odd, and thus, by Theorem D.75, we have |ĥ A| ≥ m, so we cannot have
|ĥ A| = p. If p = 2 < m, then |ĥ A| = p cannot happen either, since by Proposition D.73
this would imply that

2 ≥ max{m− h+ 1, h+ 1},
which cannot hold for any m and h with 2 < m. So this case yields no examples, and we, in
fact, verified the “only if” part of the last claim in Conjecture D.77; we are about to prove
the “if” part as well.

Suppose now that m ≤ p < hm − h2 + 1. Let H be any subgroup of G with |H | = p,
and let A be any m-subset of H . By Theorem D.51,

|ĥ A| = min{p, hm− h2 + 1} = p.

Therefore, any m-subset of H and, more generally, any m-subset of any coset of H , is an
example of a set for which the lower bound of Conjecture D.77 is achieved. We then question
whether there are any other such sets:

Conjecture D.80 Let p be the smallest prime divisor of n, A be an m-subset of G, and
assume that m ≤ p < hm− h2+1. Then |ĥ A| = p if, and only if, A is contained in a coset
of some subgroup H of G with |H | = p.

Problem D.81 Prove (or disprove) Conjecture D.80.

Assume now that p > hm− h2 + 1. This time, we can find m-subsets A of G for which

|ĥ A| = hm− h2 + 1 = min{p, hm− h2 + 1},

as follows. First of all, any m-subset A of G will do, if h = 1 or h = m− 1. Second, by our
proposition on page 336, we see that when h = 2 and m = 4, 4-subsets of G of the form

A = {a, a+ d1, a+ d2, a+ d1 + d2}
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work for any a, d1, d2 ∈ G. (Note that, since p > hm−h2 +1 = 5 in this case, n is odd, and
thus G has no elements of order 2. Therefore, |2̂ A| = 5.)

We can find further examples by using arithmetic progressions. Let g ∈ G be of order p.
If A is the arithmetic progression

A = {a, a+ g, a+ 2g, . . . , a+ (m− 1)g},

then, as we have seen,

ĥ A =

{
ha+

h2 − h

2
g, . . . , ha+

(
h(m− 1)− h2 − h

2

)
g

}
;

since p > hm− h2 + 1, these hm − h2 + 1 elements are all distinct. We believe that there
are no other examples.

Conjecture D.82 Let p be the smallest prime divisor of n, A be an m-subset of G, and
assume that p > hm − h2 + 1. Then |ĥ A| = hm − h2 + 1 if, and only if, (at least) one of
the following holds:

(i) h = 1 (and A arbitrary);

(ii) h = m− 1 (and A arbitrary);

(iii) h = 2, m = 4, and A is of the form A = {a, a+ d1, a+ d2, a+ d1 + d2} (for arbitrary
a, d1, d2 ∈ G); or

(iv) A is an arithmetic progression (of size m).

By a result of Károlyi, we have:

Theorem D.83 (Károlyi; cf. [126]) Conjecture D.82 holds for h = 2.

A difficult problem is the following.

Problem D.84 Prove (or disprove) Conjecture D.82 for h ≥ 3.

Finally, suppose that p = hm− h2 + 1. This case (mirroring the analogous situation for
unrestricted sumsets) is more complicated. For example, with p = 7, m = 5, and h = 2 (as
is the case, for example, with ρ̂ (Z49, 5, 2) = 7) we see that the set

A = {0, a, 2a, (n+ a)/2, (n+ 3a)/2}

provides an example, as we have

2̂ A = {a, 2a, 3a, (n+ a)/2, (n+ 3a)/2, (n+ 5a)/2, (n+ 7a)/2}.

We have the following intriguing problem:

Problem D.85 Suppose that n, m, and h are positive integers, p is the smallest prime
divisor of n, and p = hm− h2 +1. Classify all m-subsets A of G for which ρ̂ (G,m, h) = p.

Of course, these last types of lower bounds on ρ̂ (G,m, h) are not meaningful when p (the
smallest prime divisor of |G|) is small. For example, when a subset of G is within a subgroup
of small size (or within a coset of that subgroup), then its restricted sumset—indeed, any
sumset—will not be larger than that subgroup (a coset of that subgroup). Therefore, when
there is a divisor d of n with d ≥ m, then ρ̂ (G,m, h) cannot be more than d. Thus, to form
more meaningful lower bounds, one may wonder what happens if we assume that no such
divisor d exists. The following theorem provides one answer to this question.
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Theorem D.86 (Hamidoune, Lladó, and Serra; cf. [113]) Suppose that G is an
abelian group that is either cyclic or is of odd order, and let m be an integer with m ≥ 33
and m ≥ 21 in these two cases, respectively. Furthermore, suppose that the only divisor of
n that is greater than or equal to m is n itself. Then

ρ̂ (G,m, 2) ≥ min{n, 3m/2}.

We can prove that Conjecture D.53, with the additional assumption that the only divisor
of n that is greater than or equal to m is n itself, implies Theorem D.86 when G is cyclic,
and we only need to know that m ≥ 8. (The claim is false for m = 7 as example C1 on page
167 demonstrates.) Indeed, we will show that

min{u(n,m, 2), 2m− 4} ≥ min{n, 3m/2}.

Note that m ≥ 8 implies that 2m− 4 ≥ 3m/2; therefore, our claim clearly holds when

u(n,m, 2) ≥ min{n, 3m/2}.

We can show that, in fact, if the only divisor of n that is greater than or equal to m is n
itself, then

u(n,m, h) ≥ min{n, (h+ 1)m/2}
holds for all positive integers h.

To see this, let d ∈ D(n) be such that

u(n,m, h) = fd(m,h) =
(
h
⌈m
d

⌉
− h+ 1

)
d.

Note that when d < m ≤ 2d, we have

(
h
⌈m
d

⌉
− h+ 1

)
d = (h+ 1)d ≥ (h+ 1)m/2,

and in the case when m > 2d, we have

(
h
⌈m
d

⌉
− h+ 1

)
d ≥

(
h
m

d
− h+ 1

)
d = hm− (h− 1)d > hm− (h− 1)m/2 = (h+1)m/2.

The remaining case to consider is when m ≤ d, but then, by assumption, d = n, for which
we have fn = n, and thus our claim is established.

To see that Theorem D.86 is not true for an arbitrary finite abelian group, consider
G = Zr

2 × Z3, and let A = Zr
2 × {0, 1}. Note that n = 3 · 2r, m = 2 · 2r, so the only divisor

of n that is greater than or equal to m is n itself. We can see that

2̂ A = G \ {(0, 0), (0, 2)},

thus
|2̂ A| = n− 2 = 3m/2− 2.

This example prompts us to wonder the following:

Problem D.87 Is there a constant C (independent of n and m) for which the inequality

ρ̂ (G,m, 2) ≥ min{n, 3m/2} − C

holds for every abelian group G and for every n and m with the property that the only divisor
of n that is greater than or equal to m is n itself?
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As our example above demonstrates, if there is such a constant, it must be at least 2.
A similar argument shows that, for h = 3, Conjecture D.56 implies that, if m ≥ 8 and

the only divisor of n that is greater than or equal to m is n itself, then

ρ̂ (Zn,m, 3) ≥ min{n, 2m− 2}.
Indeed, according to Conjecture D.56, we have

ρ̂ (Zn,m, 3) ≥ min{u(n,m, 3), 3m− 10, 3m− 3− gcd(n,m− 1)}.
The fact that our assumptions imply that

u(n,m, 3) ≥ min{n, 2m} ≥ min{n, 2m− 2}
was shown above, and for m ≥ 8 we obviously have 3m − 10 ≥ 2m − 2 and 3m − 3 −
gcd(n,m− 1) ≥ 2m− 2.

Therefore, we pose the following:

Problem D.88 Is there a constant C (independent of n and m) for which the inequality

ρ̂ (G,m, 3) ≥ min{n, 2m} − C

holds for every abelian group G and for every n and m with the property that the only divisor
of n that is greater than or equal to m is n itself?

Since ρ̂ (Z15, 6, 3) = û (15, 6, 3) = 8, C would have to be at least 4.
More generally:

Problem D.89 Let h be a given positive integer. Is there a constant C(h) (independent of
n and m but dependent on h) for which the inequality

ρ̂ (G,m, h) ≥ min{n, (h+ 1)m/2} − C(h)

holds for every abelian group G and for every n and m with the property that the only divisor
of n that is greater than or equal to m is n itself?

We can propose some other lower bounds for ρ̂ (G,m, h) (at least for h = 2) in terms of
ρ(G,m, h). One such conjecture is the following:

Conjecture D.90 (Plagne; cf. [174]) For any finite abelian group G and positive integer
m ≥ 2 we have

ρ̂ (G,m, 2) ≥ ρ(G,m, 2)− 2.

If true, Conjecture D.90 limits the value of ρ̂ (G,m, 2) to one of only three possibilities:
ρ(G,m, 2), ρ(G,m, 2)− 1, or ρ(G,m, 2)− 2. We can verify that each exact result mentioned
in this section satisfies this conjecture.

Problem D.91 Prove or disprove Conjecture D.90.

We should point out that Conjecture D.53 implies Conjecture D.90 for cyclic groups.
Indeed, we have

ρ(Zn,m, 2) ≤ f1 = 2m− 1;

furthermore, when n is even, we have

ρ(Zn,m, 2) ≤ f2 = 2m− 2,

and when n is divisible by 2m− 2, we find that

ρ(Zn,m, 2) ≤ f2m−2 = 2m− 2.

Another conjecture of this type is the following:
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Conjecture D.92 (Lev; cf. [140]) For any G and m, we have

ρ̂ (G,m, 2) ≥ min{ρ(G,m, 2), 2m− 3− |Ord(G, 2)|}.

Problem D.93 Prove or disprove Conjecture D.92.

Lev proved the somewhat weaker result that

ρ̂ (G,m, 2) ≥ min{ρ(G,m, h), θm− 3− |Ord(G, 2)|}

where θ = 1+
√
5

2 ≈ 1.6 is the golden ratio. For the case when G is cyclic, Ord(G, 2) can have
at most one element (namely, n

2 if n is even), and thus Conjecture D.53 implies Conjecture
D.92 for cyclic groups.

We can further illuminate Conjectures D.90 and D.92 by the following example of a set
A for which we have both

|2̂ A| = |2A| − 2

and
|2̂ A| = 2|A| − 3− |Ord(G, 2)|.

Let G be any group of even order that has at least one element of order more than 2 (and
thus G is not isomorphic to Zr

2).
Recall that, by the Fundamental Theorem of Finite Abelian Groups, we have

G ∼= Z
α1

2 × Z
α2

4 × · · · × Z
αk

2k
×H,

where k ∈ N (since n is even), αi ∈ N0 for each i = 1, 2, . . . , k with at least one being
positive, and H is a group of odd order (perhaps |H | = 1). One can also easily verify that

G2 = Ord(G, 2) ∪ {0} = {g ∈ G | 2g = 0}

is a subgroup of G. Let a be an element of G of order at least 3, and set

A = G2 ∪ {a+ g2 | g2 ∈ G2}.

We can then check that

2A = G2 ∪ {a+ g2 | g2 ∈ G2} ∪ {2a+ g2 | g2 ∈ G2}

and
2̂ A = 2A \ {0, 2a}.

(Note that the sum of two distinct elements of order 2 in G is again an element of order 2,
and the sum of 0 and an element of order 2 is, of course, an element of order 2.) Therefore,
we have

|2̂ A| = |2A| − 2 = 2|A| − 3− |Ord(G, 2)|.
By Proposition 4.28, for every h ≥ 3 and for every positive real number C, one can find

positive integers n and m for which

ρ̂ (Zn,m, h) ≤ û (n,m, h) < u(n,m, h)− C = ρ(Zn,m, h)− C.

Therefore, for h ≥ 3, one cannot expect a claim similar to Conjecture D.90. However, we
offer:

Problem D.94 Generalize Conjecture D.92 for h ≥ 3.
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Let us now turn to upper bounds for ρ̂ (G,m, h). Of course, most trivially, we have

ρ̂ (G,m, h) ≤ ρ(G,m, h).

More meaningful bounds were given by Plagne for h = 2:

Theorem D.95 (Plagne; cf. [174]) For any G and m, we have

ρ̂ (G,m, 2) ≤ min{ρ(G,m, 2), 2m− 2}.

Furthermore, if n has a prime divisor p that does not divide m− 1, then

ρ̂ (G,m, 2) ≤ min{ρ(G,m, 2), 2m− 3}.

We are not aware of similar bounds for h ≥ 3 and thus we pose:

Problem D.96 Find a function f(h) (as “small” as possible) for which

ρ̂ (G,m, h) ≤ min{ρ(G,m, h), hm− h2 + 1 + f(h)}

holds for any G, m, and h.

Recall that, by Proposition 4.29 we have

û (n,m, h) ≤ min{u(n,m, h), hm− h2 + 1}

for any n, m, and h.
A particularly intriguing question is the following:

Problem D.97 Find a set analogous to Ad(n,m) (described earlier) that yields a good
upper bound for ρ̂ (G,m, h) when G has rank 2 (or more).

Before closing this section, we define two new quantities related to restricted addition.
For positive integers m and h, we let

ρ̂ (m,h)min = min{ρ̂ (G,m, h) | |G| ≥ m},
and

ρ̂ (m,h)max = max{ρ̂ (G,m, h) | |G| ≥ m}.
(The condition that the order of G is at least m is necessary to avoid trivialities.)

Clearly,

ρ̂ (m, 1)min = ρ̂ (m, 1)max = m,

and, as before, we may assume 2 ≤ h ≤ ⌊m/2⌋. By these considerations, the first non-trivial
example is (m,h) = (4, 2): According to Proposition D.42, we have ρ̂ (4, 2)min = 3 and
ρ̂ (4, 2)max = 5. Thus we may assume that m ≥ 5.

The value of ρ̂ (m,h)min is already known for all (m,h): By Corollary D.76, we have:

Theorem D.98 Suppose that m and h are positive integers with m ≥ 5 and h ≤ ⌊m/2⌋.
Then

ρ̂ (m,h)min =





m− 1 if h = 2 and m = 2k for some k ∈ N;

m otherwise.



182 CHAPTER D. MINIMUM SUMSET SIZE

The value of ρ̂ (m,h)max is not known in general but, from previous results, we can find
lower and upper bounds. For a lower bound, recall that by Theorem D.51, when p is a prime
with

p ≥ hm− h2 + 1,

then

ρ̂ (Zp,m, h) = hm− h2 + 1.

This yields the lower bound hm− h2 + 1.

For an upper bound, recall that by Theorem D.3, we have

ρ(G,m, h) = u(n,m, h),

and if

n ≥ hm− h+ 1,

then by Proposition 4.15,

u(n,m, h) ≤ hm− h+ 1,

which then is an upper bound for ρ̂ (m,h)max. In summary:

Theorem D.99 Suppose that m and h are positive integers with m ≥ 5 and h ≤ ⌊m/2⌋.
Then

hm− h2 + 1 ≤ ρ̂ (m,h)max ≤ hm− h+ 1.

For h = 2, we know a bit more: by Theorem D.95, we see that

ρ̂ (m, 2)max ≤ 2m− 2.

Therefore:

Theorem D.100 For all positive integers m, ρ̂ (m, 2)max is either 2m− 3 or 2m− 2.

We offer the following intriguing problem:

Problem D.101 Find the value of ρ̂ (m, 2)max for all positive integers m.

We note that, by Theorem D.67, we have

ρ̂ (m, 2)max = 2m− 2

when m− 1 ≥ 5 is a prime, and also when m = 9 ·3k+1 for some k ∈ N0. As a consequence
of Theorem D.43, for m = 5 we have:

Theorem D.102 (Carrick; cf. [51]) We have ρ̂ (5, 2)max = 7.

We know very little about ρ̂ (m,h)max for h ≥ 3:

Problem D.103 Find the value of ρ̂ (m,h)max for all positive integers m and 3 ≤ h ≤
⌊m/2⌋.
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D.3.2 Limited number of terms

Here we consider, for a given group G, positive integer m (with m ≤ n = |G|), and nonneg-
ative integer s,

ρ̂ (G,m, [0, s]) = min{|[0, s]̂ A| | A ⊆ G, |A| = m},
that is, the minimum size of ∪s

h=0ĥ A for an m-element subset A of G. Clearly, we may
restrict our attention to 0 ≤ s ≤ m; in fact, when s ≥ m,

ρ̂ (G,m, [0, s]) = ρ̂ (G,m,N0)

(cf. Subsection D.3.3).
Note that, although we always have

ρ(G,m, [0, s]) = ρ(G,m, s)

(cf. Section D.1.2), the quantities ρ̂ (G,m, [0, s]) and ρ̂ (G,m, s) are not necessarily equal.
(Of course, the inequality

ρ̂ (G,m, [0, s]) ≥ ρ̂ (G,m, s)

holds.)

Problem D.104 Find ρ̂ (G,m, [0, s]) for any group G, positive integer m ≤ n, and non-
negative integer s.

Some authors have investigated the minimum size of [0, s]̂ A among all m-subsets of G
that possess some additional properties. One such pursuit is the attempt to find

ρA (̂G,m, [0, s]) = min{|[0, s]̂ A| | A ⊆ G, |A| = m,A ∩ −A = ∅},
that is, the minimum size of [0, s]̂ A among asymmetric m-subsets of G. Since no element
of Ord(G, 2) ∪ {0} may be in an asymmetric set in G, for an asymmetric set of size m to
exist, we need to assume that

m ≤ n− |Ord(G, 2)| − 1

2
.

We can get a lower bound in the case of the cyclic group Zn by considering the set

A = {1, 2, . . . ,m};
this results in

[0, s]̂ A = {0, 1, 2, . . . ,ms− (s2 − s)/2}
and thus we get:

Proposition D.105 For positive integers n, m, and s with m ≤ ⌊(n − 1)/2⌋ and s ≤ m,
we have

ρA (̂Zn,m, [0, s]) ≤ min{n,ms− (s2 − s)/2 + 1}.
As was recently proved by Balandraud in [27], equality occurs in Proposition D.105 when

n is prime:

Theorem D.106 (Balandraud; cf. [27]) If p is prime and m ≤ ⌊(p− 1)/2⌋, we have

ρA (̂Zp,m, [0, s]) = min{p,ms− (s2 − s)/2 + 1}.
The value of ρA (̂G,m, [0, s]) is not known for groups with composite order.

Problem D.107 Find ρA (̂Zn,m, [0, s]) for composite values of n.

Problem D.108 Find ρA (̂G,m, [0, s]) for noncyclic groups G.
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D.3.3 Arbitrary number of terms

In this subsection we discuss what we know about

ρ̂ (G,m,N0) = min{|ΣA| | A ⊆ G, |A| = m},

that is, the minimum size of
ΣA = ∪m

h=0ĥ A

among all m-subsets A of G.
Suppose that G is cyclic. We can develop an upper bound for ρ̂ (Zn,m,N0) as follows.

Let d be an arbitrary positive divisor of n; we write m as

m = cd+ k

where 1 ≤ k ≤ d and thus
c = ⌈m/d⌉ − 1.

We also let H be the subgroup of Zn of size d:

H = {j · n/d | j = 0, 1, . . . , d− 1}.

We separate two cases depending on the parity of c.
When c is odd, we let

A =

(c−1)/2⋃

i=−(c−1)/2

(i+H)
⋃

{(c+ 1)/2 + j · n/d | j = 0, 1, . . . , k − 1} .

Then |A| = m. We also see that

ΣA =

c
2
−1

8
·d+ c+1

2
·k⋃

i=− c2−1

8
·d

(i+H),

and thus

|ΣA| = min

{
n,

(
c2 − 1

4
· d+ c+ 1

2
· k + 1

)
· d
}

= min

{
n,

(
c2 − 1

4
· d+ c+ 1

2
· (m− cd) + 1

)
· d
}

= min

{
n,

(
c+ 1

2
·m− (c+ 1)2

4
· d+ 1

)
· d
}
.

The case when c is even is similar; this time we let

A =

c/2−1⋃

i=−c/2

(i +H)
⋃

{c/2 + j · n/d | j = 0, 1, . . . , k − 1} .

Again |A| = m, and we have

ΣA =

c
2
−2c

8
·d+ c

2
·k⋃

i=− c2+2c

8
·d

(i+H),
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and thus

|ΣA| = min

{
n,

(
c2

4
· d+ c

2
· k + 1

)
· d
}

= min

{
n,

(
c2

4
· d+ c

2
· (m− cd) + 1

)
· d
}

= min

{
n,

(
c

2
·m− c2

4
· d+ 1

)
· d
}
.

We can combine our two cases and say that

|ΣA| = min

{
n,

(⌈ c
2

⌉
·m−

⌈ c
2

⌉2
· d+ 1

)
· d
}

= min

{
n,

(⌈⌈m/d− 1⌉
2

⌉
·m−

⌈⌈m/d− 1⌉
2

⌉2
· d+ 1

)
· d
}

= min

{
n,

(⌈
m/d− 1

2

⌉
·m−

⌈
m/d− 1

2

⌉2
· d+ 1

)
· d
}
.

Observe also that for d = n, we have ⌈(m/n− 1)/2⌉ = 0, so
(⌈

m/n− 1

2

⌉
·m−

⌈
m/n− 1

2

⌉2
· n+ 1

)
· n = n.

This provides the following upper bound:

Proposition D.109 With D(n) denoting the set of positive divisors of n, we have

ρ̂ (Zn,m,N0) ≤ min

{(⌈
m/d− 1

2

⌉
·m−

⌈
m/d− 1

2

⌉2
· d+ 1

)
· d | d ∈ D(n)

}
.

We risk the following:

Conjecture D.110 For all positive integers n and m with m ≤ n, we have equality in
Proposition D.109.

Problem D.111 Prove or disprove Conjecture D.110.

Evaluating our expression in Proposition D.109 for d = 1 yields

⌈(m− 1)/2⌉ ·m− ⌈(m− 1)/2⌉2 + 1 = ⌊m2/4⌋+ 1,

so we get the following:

Corollary D.112 For every positive integer n we have

ρ̂ (Zn,m,N0) ≤ min
{
n, ⌊m2/4⌋+ 1

}
.

We can, in fact, prove that, for cyclic groups of prime order p, equality holds in Corollary
D.112, since clearly

ρ̂ (Zp,m,N0) ≥ ρ̂ (Zp,m, ⌊m/2⌋),
and, by Theorem D.51, we have

ρ̂ (Zp,m, ⌊m/2⌋) = min
{
p, ⌊m/2⌋ ·m− ⌊m/2⌋2 + 1

}
= min

{
p, ⌊m2/4⌋+ 1

}
.
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Proposition D.113 For all positive primes p and positive integers m ≤ p,

ρ̂ (Zp,m,N0) = min
{
p, ⌊m2/4⌋+ 1

}
.

We do not know the value of ρ̂ (G,m,N0) for noncyclic groups:

Problem D.114 Find the value of ρ̂ (G,m,N0) for all positive integers m ≤ n and non-
cyclic groups G.

Some authors have investigated the minimum size of ΣA among all m-subsets of G that
possess some additional properties. One such pursuit is the attempt to find

ρA (̂G,m,N0) = min{|ΣA| | A ⊆ G, |A| = m,A ∩ −A = ∅},

that is, the minimum size of ΣA among asymmetric m-subsets of G. Since no element of
Ord(G, 2)∪{0} may be in an asymmetric set in G, for an asymmetric set of size m to exist,
we need to assume that

m ≤ n− |Ord(G, 2)| − 1

2
.

We can get a lower bound in the case of the cyclic group Zn by considering the set

A = {1, 2, . . . ,m};

this results in
ΣA = {0, 1, 2, . . . ,m(m+ 1)/2}

and thus we get:

Proposition D.115 For positive integers n and m with m ≤ ⌊(n− 1)/2⌋, we have

ρA (̂Zn,m,N0) ≤ min{n, (m2 +m+ 2)/2}.

As a consequence of Balandraud’s Theorem D.106 with s = m (and as proved by him
in [25]), equality occurs in Proposition D.115 when n is prime:

Theorem D.116 (Balandraud; cf. [25], [26]) If p is prime and m ≤ ⌊(p − 1)/2⌋, we
have

ρA (̂Zp,m,N0) = min{p, (m2 +m+ 2)/2}.

The value of ρA (̂G,m,N0) is not known for groups with composite order.

Problem D.117 Find ρA (̂Zn,m,N0) for composite values of n.

Problem D.118 Find ρA (̂G,m,N0) for noncyclic groups G.

As a variation, we may consider

ρA (̂G,m,N) = min{|Σ∗A| | A ⊆ G, |A| = m,A ∩ −A = ∅},

that is, the minimum size of
Σ∗A = ∪∞

h=1ĥ A

among asymmetric m-subsets of G.
The subset

A = {1, 2, . . . ,m}
of Zn provides a lower bound again:
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Proposition D.119 For positive integers n and m with m ≤ ⌊(n− 1)/2⌋, we have

ρA (̂Zn,m,N0) ≤ min{n, (m2 +m)/2}.
And we have:

Theorem D.120 (Balandraud; cf. [25], [26]) If p is prime and m ≤ ⌊(p − 1)/2⌋, we
have

ρA (̂Zp,m,N) = min{p, (m2 +m)/2}.
Problem D.121 Find ρA (̂Zn,m,N) for composite values of n.

Problem D.122 Find ρA (̂G,m,N) for noncyclic groups G.

Another related quantity of interest is

ρ̂∗ (̂G,m,N0) = min{|ΣA| | A ⊆ G \ {0}, |A| = m, 〈A〉 = G},
that is, the minimum size of ΣA among those m-subsets A of G that do not contain zero
(hence the ∗) but generate the entire group (hence the )̂.

A relevant result is the following:

Theorem D.123 (Hamidoune; cf. [112]) Let S ⊆ G \ {0} be such that |S| ≥ 3 and
〈S〉 = G; furthermore, if |S| = 3, then suppose that S is not of the form {±a, 2a} for any
a ∈ G, and that if |S| = 4, then S is not of the form {±a,±2a} for any a ∈ G. Then

|ΣS| ≥ min{n− 1, 2|S|}.
Combining Theorem D.123 with the fact that if n ≥ 10, then χ̂ (G∗,N) ≤ n/2 (see

Section E.3.3), we get the following:

Corollary D.124 Suppose that n ≥ 10, and let S ⊆ G \ {0} be such that |S| ≥ 5 and
〈S〉 = G. Then

|ΣS| ≥ min{n, 2|S|}.
Indeed, if |S| ≤ (n − 1)/2, then the result follows from Theorem D.123; if |S| ≥ n/2, then
it is due to the fact that χ̂ (G∗,N) ≤ n/2. (We mention that Corollary D.124 was stated in
[112] only for cyclic groups G; its proof there, however, relied on Lemma 3.3 in [112], which
is actually false for all groups of even order; cf. [17].)

Furthermore, as it was noted by Hamidoune in [112], if n is divisible by 3, and

S = (H \ {0}) ∪ {s}
for an index 3 subgroup H of G and s ∈ G \H , then |ΣS| = 2n/3. Consequently,

Corollary D.125 If n is divisible by 3 and n ≥ 15, then

ρ̂∗ (̂G,n/3,N0) = 2n/3.

Problem D.126 Evaluate ρ̂∗̂ (G,m,N0) for other G and m.

Yet another variation, introduced by Eggleton and Erdős in [72], is to find the following
quantity:

ρZ (̂G,m,N) = min{|Σ∗A| | A ⊆ G, |A| = m, 0 6∈ Σ∗A},
that is, the minimum size of Σ∗A among all weakly zero-sum-free m-subsets A of G; if no
such set A exists, we set ρZ (̂G,m,N) = ∞.

For m = 1 the answer is obvious, since |Σ∗A| = 1 for all 1-subsets of G. The case of
m = 2 is not much harder: if A = {a, b} with a 6= b, a 6= 0, and b 6= 0, then Σ∗A = {a, b, a+b}
has size 3; we just need to make sure that a+ b 6= 0. We can summarize:
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Proposition D.127 We have:

ρZ (̂G, 1,N) =

{
∞ if n = 1,
1 if n ≥ 2;

and

ρZ (̂G, 2,N) =

{
∞ if n ≤ 3,
3 if n ≥ 4.

For m = 3, we have the following result:

Proposition D.128 We have:

ρZ (̂G, 3,N) =





∞ if n ≤ 5;
5 if n ≥ 6, n is even, and G 6∼= Zr

2;
6 if n ≥ 7 and n is odd;
7 if n ≥ 8 and G ∼= Zr

2.

The proof of Proposition D.128 is on page 349.

Problem D.129 Evaluate ρZ (̂G, 4,N), ρZ (̂G, 5,N), etc. for all abelian groups G.

A considerably easier, but still largely unknown, special case is the evaluation of
ρZ (̂G,m,N) for cyclic groups G; we review what is currently known.

From Section F.3.3, we have that the set A = {1, 2, . . . ,m} is weakly zero-sum-free in
Zn when n ≥ (m2 +m+ 2)/2; since

Σ∗A = {1, 2, . . . , (m2 +m)/2},

this implies:

Proposition D.130 If n ≥ (m2 +m+ 2)/2, then

ρZ (̂Zn,m,N) ≤ (m2 +m)/2.

The two constructions of Selfridge mentioned on page 261 yield slightly better bounds
for certain values of n. The first, based on the fact that

A = {1,−2, 3, 4, . . . ,m}

is weakly zero-sum-free in Zn when n ≥ (m2 +m− 2)/2 and n ≥ 6, has an advantage over
Proposition D.130 only when n = (m2 +m− 2)/2 or n = (m2 +m)/2, since we have

Σ∗A = {−1,−2, 1, 2, . . . , (m2 +m− 4)/2},

which has the same size as the set yielding that theorem when n ≥ (m2+m+2)/2. However,
for n = (m2 +m− 2)/2,

−2 = (m2 +m− 6)/2

and

−1 = (m2 +m− 4)/2;

and for n = (m2 +m)/2,

−2 = (m2 +m− 4)/2.
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We thus get that if A is the m-subset of the cyclic group of order (m2 +m− 2)/2 described
above, then A is weakly zero-sum-free with

|Σ∗A| = (m2 +m− 4)/2;

and if A is the m-subset of the cyclic group of order (m2 +m)/2 described above, then A
is weakly zero-sum-free with

|Σ∗A| = (m2 +m− 2)/2.

We can take this further by noting that whenever A is weakly zero-sum-free in Zn, then
d · A is weakly zero-sum-free in Zdn; this holds for every d ≥ 1 and neither the size of the
subset nor the size of its sumset changes. We thus arrive at the following result:

Proposition D.131 If n ≥ 6 and n is divisible by (m2 +m− 2)/2, then

ρZ (̂Zn,m,N) ≤ (m2 +m− 4)/2,

and if n ≥ 6 and n is divisible by (m2 +m)/2, then

ρZ (̂Zn,m,N) ≤ (m2 +m− 2)/2.

The second construction assumes that n is even, and considers the set

A = {1, 2, . . . , ⌊(m− 1)/2⌋} ∪ {n/2, n/2+ 1, n/2 + 2, . . . , n/2 + ⌊m/2⌋},

for which

Σ∗A = {1, 2, . . . ,
⌊
m2/4

⌋
} ∪ {n/2, n/2 + 1, n/2 + 2, . . . , n/2 +

⌊
m2/4

⌋
}.

Therefore, if n/2 ≥
⌊
m2/4

⌋
+1, that is, if n ≥

⌊
m2/2

⌋
+2, then A is weakly zero-sum-free.

We get:

Proposition D.132 If n is even and n ≥
⌊
m2/2

⌋
+ 2, then

ρZ (̂Zn,m,N) ≤
⌊
m2/2

⌋
+ 1.

Let us see now what our propositions tell us for small values of m. The cases of m ≤ 3
follow from Propositions D.127 and D.128. For m = 4,

(i) Proposition D.130 yields that if n ≥ 11, then ρZ (̂Zn,m,N) ≤ 10;

(ii) Proposition D.131 yields that if 9|n, then ρZ (̂Zn,m,N) ≤ 8;

(iii) Proposition D.131 also yields that if 10|n, then ρZ (̂Zn,m,N) ≤ 9; and

(iv) Proposition D.132 yields that if n ≥ 10 and 2|n, then ρZ (̂Zn,m,N) ≤ 9.

Note that statement (iii) follows from (iv) and thus is unnecessary. In [33], Bhowmik,
Halupczok, and Schlage-Puchta presented one additional construction: if n ≥ 12 and 3|n,
then the set

A = {1, n/3, n/3+ 1, 2n/3 + 1}
is weakly zero-sum-free in Zn, and Σ∗A has size 9. Furthermore, relying on a computer
program, they proved that one can never do better:
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Theorem D.133 (Bhowmik, Halupczok, and Schlage-Puchta; cf. [33]) We have:

ρZ (̂Zn, 4,N) =





∞ if n ≤ 8;
8 if 9|n;
9 if n ≥ 10 and 9 6 |n but (2|n or 3|n);
10 otherwise.

For m = 5 and m = 6, the same authors proved that our Propositions D.130, D.131,
and D.132 provide the right values:

Theorem D.134 (Bhowmik, Halupczok, and Schlage-Puchta; cf. [33]) We have:

ρZ (̂Zn, 5,N) =





∞ if n ≤ 13;
13 if n ≥ 14 and 2|n;
14 if 15|n;
15 otherwise;

and

ρZ (̂Zn, 6,N) =





∞ if n ≤ 19;
19 if n ≥ 20 and 2|n;
20 if 21|n;
21 otherwise.

The same authors also exhibited the precise (but quite a bit more complicated) formula for
ρZ (̂Zn, 7,N) (see [33]).

Problem D.135 Evaluate ρZ (̂Zn, 8,N), ρZ (̂Zn, 9,N), etc. for all values of n.

There is more known about ρZ (̂Zn,m,N) for prime values of n. First, recall that, ac-
cording to Balandraud’s result from [25] (cf. Theorem F.124), if

1 + 2 + · · ·+m ≥ p,

then Zp has no weakly zero-sum-free subsets of size m. We can restate this as follows:

Theorem D.136 (Balandraud; cf. [25], [26]) If p is prime for which p ≤ (m2 +m)/2,
then ρZ (̂Zp,m,N) = ∞.

On the other hand, from Proposition D.130 we get that if p ≥ (m2 +m+ 2)/2, then

ρZ (̂Zp,m,N) ≤ (m2 +m)/2.

Olson proved that when p is large, equality holds:

Theorem D.137 (Olson; cf. Theorem 2 in [166]) Let p be a prime for which p ≥
m2 +m− 1 when m is even, and p ≥ m2 + (3m− 5)/2 when m is odd. Then

ρZ (̂Zp,m,N) = (m2 +m)/2.

This raises the following:

Problem D.138 Decide whether

ρZ (̂Zp,m,N) = (m2 +m)/2

holds for all primes p with p ≥ (m2 +m+ 2)/2.
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According to Theorem D.137, only finitely many primes need to be considered to answer
Problem D.138 for a given value of m. We should observe that the answer to Problem D.138
is affirmative for m = 1 and m = 2 (by Proposition D.127), for m = 3 (by Proposition
D.128), and for m ∈ {4, 5, 6, 7} (by [33]).

Rather than finding ρZ (̂G,m,N) for all G and m, Eggleton and Erdős in [72] proposed
the potentially easier problem of evaluating f(m), defined as the minimum possible value
of ρZ (̂G,m,N) for any group G. According to Propositions D.127 and D.128, we have
f(1) = 1, f(2) = 3, and f(3) = 5. We also have:

• f(4) = 8 (Eggleton and Erdős; cf. [72]);

• f(5) = 13 (Gao, et al.; cf. [95]);

• f(6) = 19 (Gao, et al.; cf. [95]);

• f(7) = 24 (Yuan and Zeng; cf. [203]).

The proof of f(6) = 19 is long with a very large number of cases, and the proof of f(7) = 24
relies on a computer program.

Problem D.139 Evaluate (perhaps relying on a computer program) f(8), f(9), etc.

We can also observe that for m ≤ 7, f(m) agrees with the smallest possible value of
ρZ (̂G,m,N) for cyclic groups G, and Eggleton and Erdős believed that this is always the
case:

Conjecture D.140 (Eggleton and Erdős; cf. [72]) For every m ∈ N there is an n ∈ N

for which f(m) = ρZ (̂Zn,m,N).

Problem D.141 Prove Conjecture D.140.

We should mention that by Proposition D.132, we get:

Corollary D.142 For every m ∈ N, we have f(m) ≤
⌊
m2/2

⌋
+ 1.

From our stated values above, we have equality in Corollary D.142 for m ∈ {1, 2, 3, 5, 6}
but not for m ∈ {4, 7}.

A particularly intriguing problem is the following:

Problem D.143 Find infinitely many values of m for which f(m) ≤
⌊
m2/2

⌋
or prove that

this is not possible.

We also have a lower bound for f(m):

Theorem D.144 (Olson; cf. [167]) For every m ∈ N, we have f(m) ≥
⌈
m2/9

⌉
.

Problem D.145 Find a real number c > 1/9 so that f(m) ≥
⌈
c ·m2

⌉
holds for all (but

finitely many) m ∈ N.

D.4 Restricted signed sumsets

D.4.1 Fixed number of terms

D.4.2 Limited number of terms

D.4.3 Arbitrary number of terms
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Chapter E

The critical number

Recall that in Chapter D we investigated, for given Λ and H , the minimum sumset size of
an m-subset of G:

ρΛ(G,m,H) = min{|HΛA| | A ⊆ G, |A| = m}.

As a special case, here we are interested in the minimum value of m for which

ρΛ(G,m,H) = n;

that is, the minimum value of m for which every m-subset of G spans all of G. This value,
if it exists, is called the (Λ, H)-critical number of G and is denoted by χΛ(G,H).

In the following sections we consider χΛ(G,H) for special Λ ⊆ Z and H ⊆ N0.

E.1 Unrestricted sumsets

Our goal in this section is to investigate χ(G,H), the minimum value of m for which

HA = G

holds for every m-subset of G. (Recall that HA is the union of all h-fold sumsets hA for
h ∈ H .) Since 0A = {0} for every subset A of G but hG = G for every positive integer h,
we see that χ(G,H) does not exist for n ≥ 2 when H = {0}, but χ(G,H) does exist and is
at most n when H contains at least one positive integer.

We consider three special cases: when H consists of a single nonnegative integer h, when
H consists of all nonnegative integers up to some value s, and when H is the entire set of
nonnegative integers.

E.1.1 Fixed number of terms

Here we ought to consider, for fixed G and positive integer h, the quantity χ(G, h), that
is, the minimum value of m for which the h-fold sumset of every m-element subset of G
is G itself. However, according to Theorem D.3, the h-critical number of a group of order
n is the minimum value of m for which u(n,m, h) = n, and this value was determined by
Theorem 4.17 to be v1(n, h) + 1 where

v1(n, h) = max

{(⌊
d− 2

h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}
.

Thus we have:

193
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Theorem E.1 For all finite abelian groups G of order n and all positive integers h we have

χ(G, h) = v1(n, h) + 1.

Having found the value of χ(G, h), we are now interested in the inverse problem of
classifying all m-subsets A of G with

m = χ(G, h)− 1 = v1(n, h)

for which hA 6= G. The problem being trivial for h = 1, we let h ≥ 2.
We consider h = 2 first. (As we explain below, the case of h = 2 seems more complicated

than the case of h ≥ 3.)
When n is even, we have v1(n, 2) = n/2. Recall that, by Theorem D.3, we have

ρ(G,m, h) = u(n,m, h) = min{fd(m,h) | d ∈ D(n)},

where D(n) is the set of positive divisors of n and

fd(m,h) = (h · ⌈m/d⌉ − h+ 1) · d.

In particular, when fd(n/2, 2) < n for some d ∈ D(n), then we are guaranteed to find
subsets Ad of G with |Ad| = n/2 and |2Ad| < n.

One can easily determine that

(2 · ⌈n/(2d)⌉ − 1) · d =





n− d if n/d is even,

n if n/d is odd.

When n and n/d are both even for some d ∈ D(n), we can, in fact, find explicit subsets Ad

of G of size n/2 whose two-fold sumset has size n− d; we will explain this here for the case
when G is cyclic. Recall the set Ad(n,m) from page 150. In particular, for m = n/2 and
when n/d is even, we have

Ad(n, n/2) = ∪n/(2d)−1
i=0 (i+H),

where H is the subgroup of Zn with order d. We see that |Ad(n, n/2)| = n/2, and

2Ad(n, n/2) = ∪n/d−2
i=0 (i +H),

so |2Ad(n, n/2)| = n− d. We thus have:

Proposition E.2 Suppose n is even and that it has a divisor d for which n/d is also even.
Then Zn has a subset A of size n/2 for which 2A has size n− d.

For example, Z20 has subsets Ad(20, 10) for d ∈ {1, 2, 5, 10}, each of size ten, so that
2Ad(20, 10) has size 20 − d. Using the computer program [120], we checked that for d ∈
{2, 5, 10}, there are essentially (ignoring equivalences) no other 10-subsets A with 2A 6= Z20

besides Ad(20, 10). However, there are many 10-subsets whose 2-fold sumset has size 19
other than the (arithmetic progression) A1(20, 10) constructed above: for example,

{0, 1, 2, 3, 4, 5, 6, 7}∪ C

with C = {8, 10}, C = {9, 11}, C = {16, 17}, etc.
We pose the following questions, in increasing order of difficulty:
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Problem E.3 For each even value of n, classify all subsets of Zn of size n/2 whose two-fold
sumset is not Zn.

Problem E.4 For each abelian group G of even order n, classify all subsets of size n/2
whose two-fold sumset is not G.

Problem E.5 For each abelian group G of odd order n, classify all subsets of size (n−1)/2
whose two-fold sumset is not G.

Let us now turn to the case of h ≥ 3; we again assume that n is even, in which case
v1(n, h) = n/2 by Corollary 4.5. For divisors d ∈ D(n), we can compute fd(n/2, h) as
follows. We see that fn(n/2, h) = n, fn/2(n/2, h) = n/2, and (in the case when n is divisible
by 3) fn/3(n/2, h) = (h+ 1) · n/3 > n. For any other d we get

fd = (h · ⌈n/(2d)⌉ − h+ 1) · d ≥ (h · n/(2d)− h+ 1) · d ≥ h · n/2− (h− 1) · n/4 ≥ n.

So fd < n holds only for d = n/2, in which case fd = n/2. This suggests that, if A is a
subset of G of size n/2 for which hA 6= G, then A = H or A = G \ H where H ≤ G has
order n/2 (and in both cases |hA| = n/2).

Conjecture E.6 Suppose that G is an abelian group of even order n, h is an integer with
h ≥ 3, and A is a subset of G with |A| = n/2 and |hA| < n. Then G has a subgroup H of
order n/2 for which A = H or A = G \H.

We know that this claim holds for cyclic groups:

Theorem E.7 (Navarro; cf. [162]) Conjecture E.6 holds when G is cyclic.

We have the following open questions:

Problem E.8 Prove Conjecture E.6 for noncyclic groups G.

Problem E.9 For each n and h with n odd and h ≥ 3, characterize all subsets A of Zn of
size v1(n, h) for which hA 6= Zn.

Problem E.10 For each G of odd order n and for each h ≥ 3, characterize all subsets A
of G of size v1(n, h) for which hA 6= G.

We have the following result of Lev that not only answers Problem E.10 in a special
case, but accomplishes more:

Theorem E.11 (Lev; cf. [144]) Suppose that A is an m-subset of Zr
5 with

(3 · 5r−1 − 1)/2 ≤ m ≤ 2 · 5r−1 = v1(5
r, 3)

for which 3A 6= Zr
5. Then A is contained in a union of two cosets of a subgroup of index 5.

Note that if A is contained in a union of two cosets of a subgroup of index 5, then indeed
3A 6= Zr

5; furthermore, Lev constructed an example in [144] that shows that the lower bound
on m is tight.

We should mention that, as an analogue of χ̂(G, [0, s]) discussed in Section E.1.2 below,
one may define the variation where only generating subsets of G are considered:

χ̂(G, h) = min{m | A ⊆ G, 〈A〉 = G, |A| ≥ m ⇒ hA = G}.

We have the following—somewhat surprising—result:
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Theorem E.12 (Bajnok; cf. [18]) For all G and h, we have

χ̂(G, h) = χ(G, h) = v1(n, h) + 1.

It is likely an interesting question to find inverse results as well:

Problem E.13 For each G and h, classify all generating subsets A of G for which |A| =
χ̂(G, h)− 1 and hA 6= G.

E.1.2 Limited number of terms

For given groups G and positive integer s, here we consider χ(G, [0, s]), that is, the minimum
value of m for which the [0, s]-fold sumset of every m-subset of G is G itself. By Proposition
D.12 and Theorem E.1, we have:

Theorem E.14 For all finite abelian groups G of order n and all positive integers s we
have

χ(G, [0, s]) = v1(n, s) + 1.

While
χ(G, [0, s]) = min{m | A ⊆ G, |A| ≥ m ⇒ [0, s]A = G}

has thus been evaluated for each G and s, there is a variation that has been considered in the
literature for which much less is known. Namely, Klopsch and Lev in [132] have investigated
the quantity χ̂(G, [0, s]): the minimum value of m for which the [0, s]-fold sumset of every
m-subset of G that generates G is G itself, that is,

χ̂(G, [0, s]) = min{m | A ⊆ G, 〈A〉 = G, |A| ≥ m ⇒ [0, s]A = G}.

It turns out that the following relative of the arithmetic function v1(n, s) of page 76 will
be useful: we define

v̂(n, s) = max

{(⌊
d− 2

s

⌋
+ 1

)
· n
d
| d ∈ D(n), d ≥ s+ 2

}
;

we adhere to the convention that the maximum element of the empty set equals zero, and
thus if n ≤ s+1, we have v̂(n, s) = 0. (Note also that we omitted the index 1 as unnecessary
here.)

From the paper [132] of Klopsch and Lev we are able to deduce the following upper
bound for χ̂(G, [0, s]):

Theorem E.15 For every G and s we have

χ̂(G, [0, s]) ≤ v̂(n, s) + 1.

Since this result was not stated in [132], we provide a proof—see page 349.
We can easily see that equality holds in Theorem E.15, when G is cyclic. This is obvious

when n ≤ s+ 1, since then

χ̂(Zn, [0, s]) = v̂(n, s) + 1 = 1.

Assume now that n ≥ s+2. Recall from Section D.1.1 (see page 150) that, for 1 ≤ m ≤ n
and a divisor d of n, we defined the set Ad(n,m). Suppose now that d ∈ D(n), d ≥ s + 2
(possible since n ≥ s+ 2), and

m = v̂(n, s) =

(⌊
d− 2

s

⌋
+ 1

)
· n
d
.
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Then, with H as the order n/d subgroup of Zn and c = ⌊(d− 2)/s⌋, we get

An/d(n,m) = ∪c
i=0(i+H).

Now An/d(n,m) has size m, and

[0, s]An/d(n,m) = ∪sc
i=0(i+H)

has size

(sc+ 1) · n
d
=

(
s

⌊
d− 2

s

⌋
+ 1

)
· n
d
≤ (d− 1) · n

d
< n,

so [0, s]A 6= Zn. Furthermore, since d ≥ s+ 2, we have c ≥ 1 and thus 1 ∈ A, which implies
that A generates Zn. This yields:

Proposition E.16 For all positive integers n and s we have

χ̂(Zn, [0, s]) ≥ v̂(n, s) + 1.

Combining Proposition E.16 with Theorem E.15, we get:

Theorem E.17 (Klopsch and Lev; cf. [132]) For all positive integers n and s we have

χ̂(Zn, [0, s]) = v̂(n, s) + 1.

Considerably less is known about χ̂(G, [0, s]) for noncyclic G; in fact, in contrast to
χ(G, [0, s]), which only depends on the order n of G (see Theorem E.14 above), χ̂(G, [0, s])
is generally greatly dependent on the structure of G itself.

We have the following general lower bound:

Proposition E.18 (Bajnok; cf. [18]) Let G be an abelian group of order n, and let H be
a subgroup of G of index d > 1 for which G/H is of type (d1, . . . , dt). For each i = 1, . . . , t,
let ci be a positive integer with ci ≤ di − 1, and suppose that

Σt
i=1 ⌈(di − 1)/ci⌉ ≥ s+ 1.

Then we have
χ̂(G, [0, s]) ≥

(
1 + Σt

i=1ci
)
· n/d+ 1.

As an application, we consider Zr
2, the elementary abelian 2-group of rank r. Trivially,

when r ≤ s, we have

χ̂(Zr
2, [0, s]) = 1,

so assume that s+ 1 ≤ r, and let t be an integer with

s+ 1 ≤ t ≤ r.

Then choosing H = Zt
2 and ci = 1 for all i ∈ {1, . . . , t}, Proposition E.18 implies that

χ̂(Zr
2, [0, s]) ≥ (t+ 1) · 2r−t + 1;

in particular, we have
χ̂(Zr

2, [0, s]) ≥ (s+ 2) · 2r−s−1 + 1.

It turns out that equality holds:
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Theorem E.19 (Lev; cf. [142]) Let r and s be positive integers, s ≥ 2. If r ≤ s, then
χ̂(Zr

2, [0, s]) = 1; otherwise we have

χ̂(Zr
2, [0, s]) = (s+ 2) · 2r−s−1 + 1.

We thus find that
χ̂(Zr

2, [0, 2]) = χ̂(Z2r , [0, 2])

for all r ≥ 3, but
χ̂(Zr

2, [0, s]) < χ̂(Z2r , [0, s])

for all r ≥ s+ 1 ≥ 4.

Problem E.20 Find other applications of Proposition E.18.

The following additional results are known:

Theorem E.21 (Klopsch and Lev; cf. [132]) Suppose that G is a finite abelian group
of order n ≥ 2, rank r, and invariant factorization Zn1

× · · · × Znr
; we set

D = n1 + · · ·+ nr − r.

(D is called the positive diameter of G.)

1. If G 6∼= Z2, then χ̂(G, [0, 1]) = n.

2. If G 6∼= Z2,Z
2
2, then χ̂(G, [0, 2]) = ⌊n/2⌋+ 1.

3. If G 6∼= Zr
2, then

χ̂(G, [0, 3]) =





(
1 + 1

d

)
· n
3 + 1 if G has a subgroup whose order is congruent to

2 mod 3 and which is not isomorphic to an
elementary abelian 2-group, and d is the
minimum size of such a subgroup;

⌊
n
3

⌋
+ 1 otherwise.

4. If G 6∼= Z2, then χ̂(G, [0, D − 1]) = r + 2.

5. If s ≥ D, then χ̂(G, [0, s]) = 1.

We can observe that, according to Theorem E.21, for s ∈ {1, 2} we have

χ̂(G, [0, s]) = χ(G, [0, s]) = v1(n, s) + 1.

To assess the case of s = 3, recall from page 78 that

v1(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
otherwise.

Similarly, we get

v̂1(n, 3) =





(
1 + 1

d

)
n
3 if n has divisors congruent to 2 mod 3 that are greater than 2,

and d is the smallest such divisor,

⌊
n
3

⌋
otherwise.
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(Note that d need not be prime.) Therefore, we see that

χ̂(G, [0, 3]) ≤ v̂1(n, 3) + 1 ≤ χ(G, [0, 3]) = v1(n, 3) + 1.

While equality holds throughout for cyclic groups, this may not be the case for noncyclic
groups; for example, for G = Z2

2 × Z6, we get χ̂(G, [0, 3]) = 9, v̂1(n, 3) + 1 = 10, and
χ(G, [0, 3]) = v1(n, 3) + 1 = 13.

Combining all results above, we see that χ̂(G, [0, s]) has been determined for all G and
s, except for noncyclic groups of exponent more than two and for 4 ≤ s ≤ D − 2.

Problem E.22 Find χ̂(G, [0, s]) for every noncyclic group G and every 4 ≤ s ≤ D − 2.

Since the general problem is probably difficult, we offer the following special cases:

Problem E.23 Find χ̂(G, [0, 4]) for every noncyclic group G.

Problem E.24 Find χ̂(G, [0, D − 2]) for every noncyclic group G.

Problem E.25 Find χ̂(Z2
k, [0, s]) for all k ≥ 4 and s ≥ 4.

Problem E.26 Find χ̂(G, [0, s]) for every s ≥ 4 and every noncyclic group G of odd order.

While exact values of χ̂(G, [0, s]) might be difficult to get in general, we can find a tight
upper bound for it. Recall that by Theorem E.15, we have

χ̂(G, [0, s]) ≤ v̂(n, s) + 1.

Observe that, when d ∈ D(n) for which d ≥ s+ 2, then

(⌊
d− 2

s

⌋
+ 1

)
· n
d

≤
(
d− 2

s
+ 1

)
· n
d

=

(
s− 2

d
+ 1

)
· n
s

≤
(
s− 2

s+ 2
+ 1

)
· n
s

=
2n

s+ 2
.

Therefore, we have

χ̂(G, [0, s]) ≤ 2n

s+ 2
+ 1,

with equality if, and only if, n is divisible by s+ 2.
We have the following extension of this result:

Theorem E.27 (Klopsch and Lev; cf. [132]) For every G abelian group of order n and
integer s we have

χ̂(G, [0, s]) ≤ 2n

s+ 2
+ 1;

furthermore, when s ≥ 3, equality holds if, and only if, there is a subgroup H of order
n/(s+ 2) in G for which G/H is cyclic.
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Indeed, when H is a subgroup of order n/(s+ 2) in G for which G/H is cyclic with g +H
as a generator, then the set

A = H ∪ (g +H)

has size |A| = 2n/(s+ 2), and we have 〈A〉 = G, but

[0, s]A = ∪s
i=0(ig +H) 6= G.

Alternately, as did Margotta in [152], instead of χ̂(G, [0, s]), we may study the quantity
ŝ(G,m): the minimum value of s for which the [0, s]-fold sumset of every m-subset of G
that generates G is G itself, that is,

ŝ(G,m) = min{s | A ⊆ G, 〈A〉 = G, |A| ≥ m ⇒ [0, s]A = G}.

While, in theory, it suffices to study only one of ŝ(G,m) or χ̂(G, [0, s]), it may be possible
to gain different results via the two different perspectives.

To establish a lower bound for ŝ(Zn,m) for all n ≥ m ≥ 2, we can observe that for the
subset

A = {0, 1, 2, . . . ,m− 1}

of Zn we get

[0, s]A = {0, 1, 2, . . . , s(m− 1)},

which immediately implies the following:

Proposition E.28 For every positive integer n and m with n ≥ m ≥ 2, we have

ŝ(Zn,m) ≥
⌊
n+m− 3

m− 1

⌋
.

It turns out that for prime values of n, equality holds in Proposition E.28: Indeed, by
Corollary D.4 (the generalization of the Cauchy–Davenport Inequality), with

s =

⌊
p+m− 3

m− 1

⌋
,

for all m-subsets A of Zp we get

|[0, s]A| ≥ |sA|
≥ min{p, sm− s+ 1}

= min

{
p,

⌊
p+m− 3

m− 1

⌋
· (m− 1) + 1

}

≥ min

{
p,

p− 1

m− 1
· (m− 1) + 1

}

= p.

Therefore:

Proposition E.29 For every prime p and positive integer m with p ≥ m ≥ 2, we have

ŝ(Zp,m) =

⌊
p+m− 3

m− 1

⌋
.
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While determining ŝ(G,m) was easy when the order of G is prime, this seems not to be
the case when G has subgroups of many different sizes. As a case in point, observe that for
every divisor d of n, by Proposition E.16 above we have

χ̂(Zn, [0, n/d− 2]) ≥ v̂(n, n/d− 2) + 1 ≥
(⌊

n/d− 2

n/d− 2

⌋
+ 1

)
· n

n/d
+ 1 = 2d+ 1.

Therefore, if d ≥ m/2, then there must be an m-subset A of Zn that generates Zn but for
which

[0, n/d− 2]A 6= Zn;

this yields the following lower bound:

Proposition E.30 Suppose that n and m are positive integers, and d ∈ D(n) with d ≥
m/2. Then

ŝ(Zn,m) ≥ n/d− 1.

It turns out that for m ≤ 5 our two lower bounds above actually determine ŝ(Zn,m); it
can be shown that (for n ≥ m):

ŝ(Zn, 2) = n− 1;

ŝ(Zn, 3) = ⌊n/2⌋;

ŝ(Zn, 4) =





n/2− 1 if n is even;

⌊(n+ 1)/3⌋ if n is odd;

ŝ(Zn, 5) =





n/3− 1 if n is divisible by 3;

⌊(n+ 2)/4⌋ if n is not divisible by 3.

(Margotta in [152] conjectured the first three formulae.) However, as m increases, the result
becomes less transparent; for example, for n ≥ 7 we get

ŝ(Zn, 6) =





n/3− 1 if n is divisible by 3;

⌊n/4⌋ n is even but not divisible by 3;

⌊(n+ 3)/5⌋ otherwise.

We pose the following (potentially difficult) problems:

Problem E.31 Find a concise formula for ŝ(Zn,m) for all m ≤ n.

Problem E.32 Evaluate, or find bounds for ŝ(G,m) for arbitrary m and noncyclic group
G.

E.1.3 Arbitrary number of terms

Here we consider, for a given group G, the quantity

χ(G,N0) = min{m | A ⊆ G, |A| ≥ m ⇒ 〈A〉 = G},

where 〈A〉 is the subgroup of G generated by A. By Proposition D.13, we have:
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Proposition E.33 Let G be any abelian group of order n ≥ 2, and let p be the smallest
prime divisor of n. Then

χ(G,N0) = n/p+ 1.

We also note that the variation

χ̂(G,N0) = min{m | A ⊆ G, 〈A〉 = G, |A| ≥ m ⇒ 〈A〉 = G}
that would correspond to the analogous χ̂(G, [0, s]) of Subsection E.1.2 is trivial and thus
of no interest.

E.2 Unrestricted signed sumsets

Our goal in this section is to investigate χ±(G,H), the minimum value of m for which

H±A = G

holds for every m-subset of G. (Recall that H±A is the union of all h-fold signed sumsets
h±A for h ∈ H .) Since 0±A = {0} for every subset A of G but h±G = G for every positive
integer h, we see that χ±(G,H) does not exist for n ≥ 2 when H = {0}, but χ±(G,H) does
exist and is at most n when H contains at least one positive integer.

We consider three special cases: when H consists of a single nonnegative integer h, when
H consists of all nonnegative integers up to some value s, and when H is the entire set of
nonnegative integers.

E.2.1 Fixed number of terms

Our goal here is to find, for a given group G and positive integer h, the quantity

χ±(G, h) = min{m | A ⊆ G, |A| ≥ m ⇒ h±A = G}.
It is easy to see that

χ±(G, 1) = n

for each group G: indeed, 1±G = G, but 1±(G \ {0}) = G \ {0}.
We can also evaluate χ±(G, 2). First, observe that

χ±(G, 2) ≤ χ(G, 2) = ⌊n/2⌋+ 1.

Clearly, if n is even, then for a subgroup H of order n/2 we have 2±H = H , so χ±(G, 2)
cannot be n/2 or less. When n is odd, G can be partitioned as

G = {0} ∪K ∪ (−K);

here 0 6∈ 2±K, so χ±(G, 2) cannot be (n− 1)/2 or less. In summary, we have:

Proposition E.34 For all groups G of order n, we have

χ±(G, 1) = n

and
χ±(G, 2) = ⌊n/2⌋+ 1.

Furthermore, as an immediate consequence of Theorems D.14 and E.1, we get:

Theorem E.35 For all n and h we have

χ±(Zn, h) = v1(n, h) + 1.

This leaves us with the following problem:

Problem E.36 Evaluate χ±(G, h) for noncyclic groups G and integers h ≥ 3.
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E.2.2 Limited number of terms

For given groups G and positive integer s, here we consider χ±(G, [0, s]), that is, the mini-
mum value of m for which the [0, s]-fold signed sumset of every m-subset of G is G itself.

By Proposition D.36, we have:

Proposition E.37 For all finite abelian groups G of order n ≥ 3, we have

χ±(G, [0, 1]) =





n− 1 if n is odd,

n if n is even.

For s ≥ 2, we do not know the value of χ±(G, [0, s]) in general, but we have the following
obvious upper bound:

Proposition E.38 For every G and s we have

χ±(G, [0, s]) ≤ χ±(G, s).

We can also establish a lower bound in the case when G is cyclic as follows. Let d be
any positive divisor of n, and let H be a subgroup of order n/d in G. Consider the set

A =

⌊(d−2)/(2s)⌋⋃

i=−⌊(d−2)/(2s)⌋
(i+H).

We then see that A has size (
2 ·
⌊
d− 2

2s

⌋
+ 1

)
· n
d
.

Furthermore,

[0, s]±A =

s⌊(d−2)/(2s)⌋⋃

i=−s⌊(d−2)/(2s)⌋
(i+H),

so [0, s]±A has size (
2s ·

⌊
d− 2

2s

⌋
+ 1

)
· n
d
≤ (d− 1) · n

d
< n,

and thus [0, s]±A 6= Zn. Recalling the function

v±(n, h) = max

{(
2 ·
⌊
d− 2

2h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}

from page 81, we get:

Proposition E.39 For all positive integers n and s we have

χ±(Zn, [0, s]) ≥ v±(n, s) + 1.

Combining Propositions E.35, E.38, and E.39, we get:

Proposition E.40 For all positive integers n and s we have

v±(n, s) + 1 ≤ χ±(Zn, [0, s]) ≤ v1(n, s) + 1.

We believe that the lower bound is exact:
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Conjecture E.41 For all positive integers n and s we have

χ±(Zn, [0, s]) = v±(n, s) + 1.

Problem E.42 Prove (or disprove) Conjecture E.41.

From Propositions 4.9 and E.37, we see that Conjecture E.41 holds for s = 1. By
Proposition E.40, Conjecture E.41 also holds whenever v±(n, s) = v1(n, s). In particular,
from Propositions 4.5 and 4.12 we get:

Proposition E.43 When n is even and s ≥ 2, we have

χ±(Zn, [0, s]) = v±(n, s) + 1 = v1(n, s) + 1 = n/2 + 1.

For the case when n is odd and divisible by 3, by Proposition 4.12, Conjecture E.41
becomes:

Conjecture E.44 When n is odd and divisible by 3 and s ≥ 3, we have

χ±(Zn, [0, s]) = v±(n, s) + 1 = n/3 + 1.

As a modest step toward Conjecture E.41, we offer:

Problem E.45 Prove (or disprove) Conjecture E.44.

We can also prove Conjecture E.41 for groups of prime order p. Recall that, by Theorem
D.40, we have

ρ±(Zp,m, [0, s]) = min{p, 2s⌊m/2⌋+ 1}.
Since for

m ≥ 2⌊(p− 2)/(2s)⌋+ 2

we have

2s⌊m/2⌋+ 1 ≥ 2s⌊(p− 2)/(2s)⌋+ 2s+ 1 ≥ 2s

(
p− 2− (2s− 1)

2s

)
+ 2s+ 1 = p,

but for
m ≤ 2⌊(p− 2)/(2s)⌋+ 1

we have
2s⌊m/2⌋+ 1 ≤ 2s⌊(p− 2)/(2s)⌋+ 1 ≤ p− 1,

we get
χ±(Zp, [0, s]) = 2⌊(p− 2)/(2s)⌋+ 2.

Therefore, recalling Proposition 4.8, this yields:

Theorem E.46 For every prime p and positive integer s, we have

χ±(Zp, [0, s]) = v±(p, s) + 1 = 2⌊(p− 2)/(2s)⌋+ 2.

We know little about χ±(G, [0, s]) for noncyclic groups:

Problem E.47 Find χ±(G, [0, 2]) for all noncyclic groups G.

Problem E.48 Find χ±(G, [0, s]) for all noncyclic groups G and positive integers s ≥ 3.
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Analogous to χ̂(G, [0, s]) of Subsection E.1.2 above, Klopsch and Lev in [131] investigated
the quantity χ̂±(G, [0, s]): the minimum value of m for which the [0, s]-fold signed sumset
of every m-subset of G that generates G is G itself, that is,

χ̂±(G, [0, s]) = min{m | A ⊆ G, 〈A〉 = G, |A| ≥ m ⇒ [0, s]±A = G}.

It turns out that the following relative of the function v1(n, s) of page 76 will be useful:
if n ≥ 2s+ 2, we define

v̂±(n, s) = max

{(
2

⌊
d− 2

2s

⌋
+ 1

)
· n
d
| d ∈ D(n), d ≥ 2s+ 2

}
;

we adhere to the convention that the maximum element of the empty set equals zero, and
thus if n ≤ 2s+1, we have v̂(n, s) = 0. (Note also that we omitted the index 1 as unnecessary
here.)

We can easily see that for all n and s we have

χ̂±(Zn, [0, s]) ≥ v̂±(n, s) + 1.

This is trivial if s ≥ ⌊n/2⌋, so assume s ≤ ⌊n/2⌋ − 1. Suppose that d ∈ D(n), d ≥ 2s+ 2,
and

m = v̂±(n, s) =

(
2

⌊
d− 2

2s

⌋
+ 1

)
· n
d
.

Then, with H as the order n/d subgroup of Zn and c = ⌊(d− 2)/(2s)⌋, we define

A = ∪c
i=−c(i+H).

Now A has size m, and

[0, s]±A = ∪sc
i=−sc(i+H)

has size

(2sc+ 1) · n
d
=

(
2s

⌊
d− 2

2s

⌋
+ 1

)
· n
d
≤ (d− 1) · n

d
< n,

so [0, s]±A 6= Zn. Furthermore, since d ≥ 2s + 2, we have c ≥ 1 and thus 1 ∈ A, which
implies that A generates Zn. This yields:

Proposition E.49 For positive integers n and s, we have

χ̂±(Zn, [0, s]) ≥ v̂±(n, s) + 1.

As it turns out, we have equality in Proposition E.49:

Theorem E.50 (Klopsch and Lev; cf. [131]) Let n and s be positive integers; n ≥ 2.
We have

χ̂±(Zn, [0, s]) = v̂±(n, s) + 1.

As a special case, we have:

Corollary E.51 For every prime p and positive integer s, we have

χ̂±(Zp, [0, s]) =





2⌊(p− 2)/(2s)⌋+ 2 if s ≤ (p− 3)/2;

1 if s ≥ (p− 1)/2.
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Let us turn to χ̂±(G, [0, s]) for noncyclic G. First, we recall that, by Theorem E.19, we
have

χ̂±(Z
r
2, [0, s]) = χ̂(Zr

2, [0, s]) = (s+ 2) · 2r−s−1 + 1.

The following additional results are known:

Theorem E.52 (Klopsch and Lev; cf. [131]) Suppose that G is a finite abelian group
of order n ≥ 2, rank r, and invariant factorization Zn1

× · · · × Znr
; we set

D± = ⌊n1/2⌋+ · · ·+ ⌊nr/2⌋.

(D± is called the diameter of G.)

1. If D± ≥ 2, then

χ̂±(G, [0, 1]) =





n− 1 if n is odd,

n if n is even.

2. If D± ≥ 3, then

χ̂±(G, [0, 2]) =





nr−1
2 · n

nr
if nr ≡ 1 (4),

nr−1
2 · n

nr
+ 1 if nr ≡ 3 (4),

n
2 if G ∼= Z2k for some k ∈ N,

n
2 + 1 otherwise.

3. If D± ≥ 2, then

χ̂±(G, [0, D± − 1]) = 2r + 2− n(Z2) + 2 · ⌊n(Z3)/2⌋,

where n(Z2) and n(Z3) are the number of Z2 and Z3 factors in the invariant factor-
ization of G, respectively.

4. If s ≥ D±, then χ̂±(G, [0, s]) = 1.

Thus we see that χ̂±(G, [0, s]) has been determined for all G and s, except for noncyclic
groups of exponent more than two and for 3 ≤ s ≤ D± − 2.

Problem E.53 Find χ̂±(G, [0, s]) for every noncyclic group G and every 3 ≤ s ≤ D± − 2.

Since the general problem is probably difficult, we offer the following special cases:

Problem E.54 Find χ̂±(G, [0, 3]) for every noncyclic group G.

Problem E.55 Find χ̂±(G, [0, D± − 2]) for every noncyclic group G.

While exact values of χ̂±(G, [0, s]) might be difficult to get in general, there is a tight
upper bound for it. Recall that by Proposition E.49, for all n and s we have

χ̂±(Zn, [0, s]) ≥ v̂±(n, s) + 1;

in the case when n happens to be divisible by 2s+ 2, we can further see from our formula
for v̂±(n, s) that

χ̂±(Zn, [0, s]) ≥
3n

2s+ 2
+ 1.

As Klopsch and Lev proved in [131], this is as good a bound as one can get:
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Theorem E.56 (Klopsch and Lev; cf. [131]) For every G abelian group of order n and
integer s ≥ 3 we have

χ̂±(G, [0, s]) ≤ 3n

2s+ 2
+ 1;

furthermore, equality holds if, and only if, there is a subgroup H of order n/(2s+ 2) in G
for which G/H is cyclic.

E.2.3 Arbitrary number of terms

This subsection is identical to Subsection E.1.3.

E.3 Restricted sumsets

Our goal in this section is to investigate χ̂ (G,H), the minimum value of m for which

H Â = G

holds for every m-subset of G. (Recall that H Â is the union of all restricted h-fold sumsets
ĥ A for h ∈ H .) In contrast to χ(G,H), which exists for every group G when H contains
at least one positive element, there are some less trivial situations for which χ̂ (G,H) does
not exist.

In the subsections below, we consider three special cases: when H consists of a single
nonnegative integer h, when H consists of all nonnegative integers up to some value s, and
when H is the entire set of nonnegative integers.

E.3.1 Fixed number of terms

Analogous to the h-critical number of a group G, we define the restricted h-critical number
of G to be the minimum value of m for which every m-subset A of G has ĥ A = G; this
quantity, if it exists, is denoted by χ̂ (G, h).

Let us make some initial observations. First, note that 0̂ A = {0} for every subset A
of G, thus χ̂ (G, 0) only exists when n = 1 (in which case it obviously equals 1). Second,
since 1̂ A = A for every A ⊆ G, the restricted 1-critical number of any G is clearly just n.
Third, if h > n, then ĥ G = ∅, and when h = n, then ĥ G consists of exactly one element.
Furthermore, for h = n− 1, we have ĥ G = G: to see this, note that

(n− 1)̂ G = {−g +Σg∈Gg | g ∈ G} = G,

so χ̂ (G,n − 1) exists for all G and is at most n. Since we have |(n − 1)̂ A| = 1 for every
subset A of G that has size n− 1, we also see that χ̂ (G,n− 1) = n.

We summarize our findings as follows:

Proposition E.57 Let G be an abelian group of order n.

1. If n = 1, then χ̂ (G, 0) = 1; if n ≥ 2, then χ̂ (G, 0) does not exist.

2. We have χ̂ (G, 1) = n.

3. We have χ̂ (G,n− 1) = n.

4. If n = 1, then χ̂ (G,n) = 1; if n ≥ 2, then χ̂ (G,n) does not exist.

5. If h > n, then χ̂ (G, h) does not exist.
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By Proposition E.57, it suffices to investigate χ̂ (G, h) for 2 ≤ h ≤ n− 2. The question
then arises: when does χ̂ (G, h) exist? This question is clearly equivalent to deciding when
ĥ G = G holds, for which the answer is provided by Theorem D.72. Therefore:

Theorem E.58 The restricted h-critical number χ̂ (G, h) of an abelian group G of order
n exists for all G and 1 ≤ h ≤ n − 1, except for the elementary abelian 2-group for h = 2
or h = n− 2.

For h = 2 we recall Proposition D.58, which can be rephrased as follows:

Proposition E.59 Suppose that G is of order n ≥ 3 and is not isomorphic to the elemen-
tary abelian 2-group. Then

χ̂ (G, 2) =
n+ |Ord(G, 2)|+ 3

2
.

In particular,
χ̂ (Zn, 2) = ⌊n/2⌋+ 2.

For h ≥ 3, we know the value of χ̂ (G, h) for all h when n is even:

Theorem E.60 (Roth and Lempel; cf. [179]) Suppose that G is an abelian group of
even order n ≥ 12.

If G ∈ {Zr
2,Z

r−1
2 × Z4} and h ∈ {3, n/2− 2}, then χ̂ (G, h) = n/2 + 2.

In all other cases:

χ̂ (G, h) =





n/2 + 1 if 3 ≤ h ≤ n/2− 2;

h+ 3 if n/2− 1 ≤ h ≤ (n+ |Ord(G, 2)| − 3)/2;

h+ 2 if (n+ |Ord(G, 2)| − 1)/2 ≤ h ≤ n− 2.

Observe that the assumption that n ≥ 12 is necessary: we have χ̂ (Z10, 3) = 7 as shown
by the subset A = {1, 2, 4, 6, 8, 9} for which 0 6∈ 3̂ A. We also note that Theorem E.60 was
proved independently for cyclic groups by Bajnok; cf. [16].

Let us now turn to the case of odd values of n, for which we know much less.
First, we find a lower bound as follows. Assume that A is an (h+ 1)-subset of G. Then

|ĥ A| = h+ 1 ≤ n− 1.

Therefore:

Proposition E.61 For all abelian groups G of order n and positive integers h ≤ n− 2 we
have χ̂ (G, h) ≥ h+ 2.

Next, we show that, in fact, equality holds in Proposition E.61 for every group G of odd
order and for all

(n− 1)/2 ≤ h ≤ n− 2.

Let A be an (h+ 2)-subset of G. Then, by symmetry, |ĥ A| = |2̂ A|; since

|A| = h+ 2 ≥ (n+ 3)/2,

by Proposition E.59 we have
|ĥ A| = n.

This proves the following:



E.3. RESTRICTED SUMSETS 209

Proposition E.62 Let G be an abelian group of odd order n, and suppose that h is a
positive integer with

(n− 1)/2 ≤ h ≤ n− 2.

Then χ̂ (G, h) = h+ 2.

This leaves us with the following problem:

Problem E.63 For each abelian group G of odd order n and each h with

3 ≤ h ≤ (n− 3)/2,

find the restricted h-critical number of G.

We now summarize what we know about cyclic groups. First, a lower bound. Consider
the set

A = {1, 2, . . . , ⌊(n− 2)/h⌋+ h}
in Zn. We can easily see that

ĥ A = {h(h+ 1)/2, h(h+ 1)/2 + 1, . . . , h⌊(n− 2)/h⌋+ h(h+ 1)/2};

in particular,
h(h+ 1)/2− 1 6∈ ĥ A.

Therefore:

Proposition E.64 For all positive integers n and h with h ≤ n− 1 we have

χ̂ (Zn, h) ≥ ⌊(n− 2)/h⌋+ h+ 1.

For cyclic groups of prime order, Theorem D.51 implies that equality holds in Proposition
E.64:

Theorem E.65 For any positive integer h and prime p with h ≤ p− 1 we have

χ̂ (Zp, h) = ⌊(p− 2)/h⌋+ h+ 1.

For cyclic groups, this leaves us with the following question:

Problem E.66 Find the restricted h-critical number of Zn for each odd composite value of
n and for 3 ≤ h ≤ (n− 3)/2.

As an example, we mention that for n = 15 we find the following values:

χ̂ (Z15, h) =





15 h = 1
9 h = 2, 3
8 h = 4
9 h = 5, 6

h+ 2 h = 7, 8, . . . , 13
15 h = 14.

The answers for h ≤ 2 and for h ≥ 7 follow from our results above; the rest were determined
by a computer program (of course, χ̂ (Z15, h) does not exist for h = 0 or h ≥ 15). As these
values indicate, Problem E.66 may be challenging in general.

Relying on Corollary D.55, we have additional results for h = 3:
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Proposition E.67 (Bajnok; cf. [16]) Let n be an arbitrary integer with n ≥ 16.

1. If n has prime divisors congruent to 2 mod 3 and p is the smallest such divisor, then

χ̂ (Zn, 3) ≥





(
1 + 1

p

)
n
3 + 2 if n = 3p;

(
1 + 1

p

)
n
3 + 1 otherwise.

2. If n has no prime divisors congruent to 2 mod 3, then

χ̂ (Zn, 3) ≥





⌊
n
3

⌋
+ 4 if n is divisible by 9;

⌊
n
3

⌋
+ 3 otherwise.

Observe that the case when n is even follows from Theorem E.60, since

(
1 +

1

2

)
n

3
+ 1 =

n

2
+ 1;

and the case when n is prime follows from Theorem E.65 since

⌊
p− 2

3

⌋
+ 3 + 1 =





(
1 + 1

p

)
p
3 + 3 if p ≡ 2 mod 3;

⌊
p
3

⌋
+ 3 otherwise.

We make the following conjecture:

Conjecture E.68 For all values of n ≥ 16, equality holds in Proposition E.67.

We have verified that Conjecture E.68 holds for all values of n ≤ 50, and by Theorems
E.65 and E.60, it holds when n is prime or even. As additional support, we have the following:

Theorem E.69 (Bajnok; cf. [16]) Conjecture D.56 implies Conjecture E.68.

It is worth mentioning the following special case of Conjecture E.68:

Conjecture E.70 If n ≥ 31 is an odd integer, then

χ̂ (Zn, 3) ≤ 2
5n+ 1.

(The additive constant could be adjusted to include odd integers less than 31.) This con-
jecture was made by Gallardo, Grekos, et al. in [89], and (for large n) proved by Lev via
the following more general result:

Theorem E.71 (Lev; cf. [141]) Let G be an abelian group of order n with

n ≥ 312 · |Ord(G, 2)|+ 1235.

Then for any subset A of G, at least one of the following possibilities holds:

• |A| ≤ 5
13n;

• A is contained in a coset of an index-two subgroup of G;

• A is contained in a union of two cosets of an index-five subgroup of G; or
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• 3̂ A = G.

So, in particular, if n is odd, is at least 1235, and a subset A of G has size more than
2n/5, then the last possibility must hold, so we get:

Corollary E.72 (Lev; cf. [141]) If n ≥ 1235 is an odd integer, then

χ̂ (Zn, 3) ≤ 2
5n+ 1.

The bound on n in Corollary E.72 can hopefully be reduced to the one in Conjecture E.70:

Problem E.73 Prove that

χ̂ (Zn, 3) ≤ 2
5n+ 1

holds for odd integer values of n between 31 and 1235 (inclusive).

As another special case of Conjecture E.68, we have:

Conjecture E.74 If n ≥ 83 is odd and not divisible by five, then

χ̂ (Zn, 3) ≤ 4
11n+ 1.

Theorem E.71 does not quite yield Conjecture E.74: while a careful read of [141] enables us
to reduce the coefficient 5/13 to (3−

√
5)/2 (at least for large enough n), this is still higher

than 4/11. Hence we pose:

Problem E.75 Prove Conjecture E.74.

Combining Theorem E.1 with Conjecture E.68, we claim that, when n ≥ 11, we have

χ(Zn, 3) ≤ χ̂ (Zn, 3) ≤ χ(Zn, 3) + 3.

Before closing this subsection, we should mention that, unlike in Subsection E.3.3 below,
there is no point in considering the quantity

χ̂ (G∗, h) = min{m | A ⊆ G \ {0}, |A| ≥ m ⇒ ĥ A = G}.

(The study of critical numbers originated with the paper [80] of Erdős and Heilbronn, where
they studied only subsets of G \ {0}.) Indeed, we have the following easy result:

Proposition E.76 Let G be a finite abelian group of order n ≥ 6, and let h be an integer
with 2 ≤ h ≤ n− 2. Suppose that χ̂ (G, h) exists (that is, if h ∈ {2, n− 2} then G is not an
elementary abelian 2-group; cf. Proposition E.58). Then

χ̂ (G∗, h) = χ̂ (G, h).

The short proof can be found on page 350.
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E.3.2 Limited number of terms

For a finite abelian group G and a nonnegative integer s, we define the restricted [0, s]-
critical number of G to be the minimum value of m for which every m-subset A of G has
[0, s]̂ A = G; this quantity, if it exists, is denoted by χ̂ (G, [0, s]).

Let us make some initial observations. First, note that 0̂ A = {0} for every subset A of
G, thus χ̂ (G, [0, 0]) only exists when n = 1 (in which case it obviously equals 1). Second,
since 1̂ A = A for every A ⊆ G, the restricted [0, 1]-critical number of any G is clearly just
n. Third, since for each s ≥ 1,

G = 1̂ G ⊆ [0, s]̂ G,

χ̂ (G, [0, s]) exists (and is at most n) for all G and s ≥ 1.
We summarize our observations as follows:

Proposition E.77 Let G be an abelian group of order n, and let s be a nonnegative integer.

1. If n = 1, then χ̂ (G, [0, 0]) = 1; if n ≥ 2, then χ̂ (G, [0, 0]) does not exist.

2. For all s ≥ 1, χ̂ (G, [0, s]) exists and is at most n.

3. We have χ̂ (G, [0, 1]) = n.

Furthermore, χ̂ (G, s) is clearly an upper bound for χ̂ (G, [0, s]), and χ(G, [0, s]) is a
lower bound for it, so by Theorem E.14, we have:

Proposition E.78 For all G and s ≥ 1,

v1(n, s) + 1 = χ(G, [0, s]) ≤ χ̂ (G, [0, s]) ≤ χ̂ (G, s).

For s = 2 we see that by Proposition E.59, we have

χ̂ (Zn, [0, 2]) ≤ χ̂ (Zn, 2) = ⌊n/2⌋+ 2;

we can show that equality holds by finding a subset A of Zn for which |A| = ⌊n/2⌋+ 1 but
[0, 2]̂ A 6= Zn. Indeed, we see that when n is odd and

A = {0, 1, . . . , (n− 1)/2},

then |A| = ⌊n/2⌋+ 1 = (n+ 1)/2 and n− 1 6∈ [0, 2]̂ A; when n is divisible by 4, then with

A = {0, 1, . . . , n/4} ∪ {n/2 + 1, n/2 + 2, . . . , 3n/4},

|A| = n/2 + 1 and n/2 6∈ [0, 2]̂ A; and when n− 2 is divisible by 4, then with

A = {0, 1, . . . , (n− 2)/4} ∪ {n/2, n/2+ 1, . . . , (3n− 2)/4},

|A| = n/2 + 1 and n/2− 1 6∈ [0, 2]̂ A. Therefore:

Proposition E.79 For all integers n ≥ 3,

χ̂ (Zn, [0, 2]) = ⌊n/2⌋+ 2.

(We mention that Lemma 3.3 in [112] says that if A ⊆ Zn \ {0} and |A| ≥ n/2, then
[1, 2]̂ A = Zn, but, as we have just seen, this is always false when n is even—see [17] for
more information.)
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Recall that, by Theorem E.60, for even values of n ≥ 12 we have

χ̂ (Zn, 3) = n/2 + 1.

But for even n, we must have

χ̂ (Zn, [0, s]) ≥ n/2 + 1

for all positive integers s, so for s ≥ 3 we have

n/2 + 1 ≤ χ̂ (Zn, [0, s]) ≤ χ̂ (Zn, [0, 3]) ≤ χ̂ (Zn, 3) = n/2 + 1.

Therefore:

Theorem E.80 For all even values of n ≥ 12 and every s ≥ 3, we have

χ̂ (Zn, [0, s]) = n/2 + 1.

This leaves us with the following open question:

Problem E.81 Find χ̂ (Zn, [0, s]) for all s ≥ 3 and for odd values of n.

We can get a lower bound for χ̂ (Zn, [0, s]) as follows. Suppose that n ≥ s2 − s+ 2, and
consider

A = {0, 1, . . . , ⌊(n− 2)/s)⌋} ∪ {n− s+ 1, n− s+ 2, . . . , n− 1};
we may consider this set as the interval

A = {−(s− 1),−(s− 2), . . . ,−1, 0, 1, . . . , ⌊(n− 2)/s)⌋}.
For the size of A we have

|A| = ⌊(n− 2)/s)⌋+ s

(note that this value is less than n).
By the assumption that n ≥ s2 − s+ 2, we have

⌊(n− 2)/s)⌋ ≥ s− 1,

and thus for the [0, s]-fold restricted sumset of A we get

[0, s]̂ A = {−s(s− 1)/2,−s(s− 1)/2 + 1, . . . , s⌊(n− 2)/s)⌋ − s(s− 1)/2},
which we can rewrite as

[0, s]̂ A = {0, 1, . . . , s⌊(n−2)/s)⌋−s(s−1)/2}∪{n−s(s−1)/2, n−s(s−1)/2+1, . . . , n−1}.
Here

0 ≤ s⌊(n− 2)/s)⌋ − s(s− 1)/2 < n− s(s− 1)/2− 1 < n− s(s− 1)/2 < n;

so
n− s(s− 1)/2− 1 6∈ [0, s]̂ A.

We just proved the following:

Proposition E.82 For all positive integers s and n with n ≥ s2 − s+ 2, we have

χ̂ (Zn, [0, s]) ≥ ⌊(n− 2)/s)⌋+ s+ 1.

We should mention that Proposition E.82 is not tight in that the condition n ≥ s2−s+2
is not necessary for the conclusion to hold, and the bound does not always give the value
of χ̂ (Zn, [0, s]). So Problem E.81 is very much still open.

We know little about noncyclic groups:

Problem E.83 Find χ̂ (G, [0, 2]) for all noncyclic groups G.

Problem E.84 Find χ̂ (G, [0, s]) for all noncyclic groups G and for all s ≥ 3.
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E.3.3 Arbitrary number of terms

In this subsection we determine the restricted critical number of G, which we define as

χ̂ (G,N0) = min{m | A ⊆ G, |A| ≥ m ⇒ ΣA = G}

where, for A = {a1, . . . , am} ⊆ G,

ΣA = ∪∞
h=0ĥ A = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ {0, 1}}.

Before doing so, we introduce three variations:

χ̂ (G∗,N0) = min{m | A ⊆ G \ {0}, |A| ≥ m ⇒ ΣA = G},

χ̂ (G,N) = min{m | A ⊆ G, |A| ≥ m ⇒ Σ∗A = G},

χ̂ (G∗,N) = min{m | A ⊆ G \ {0}, |A| ≥ m ⇒ Σ∗A = G},

where

Σ∗A = ∪∞
h=1ĥ A = {λ1a1 + · · ·+ λmam | λ1, . . . , λm ∈ {0, 1}, λ1 + · · ·+ λm ≥ 1}.

We can determine if these four quantities are well-defined as follows. Since

G = 1̂ G ⊆ Σ∗G ⊆ ΣG,

we see that χ̂ (G,N0) and χ̂ (G,N) are well-defined (and are at most n) for any group G.
Similarly,

G = {0} ∪ 1̂ (G \ {0}) ⊆ Σ(G \ {0}),
so χ̂ (G∗,N0) is also well-defined (and at most n − 1) for any group G of order n ≥ 2.
The same way, we see that χ̂ (G∗,N) is well-defined (and is at most n − 1) if, and only if,
0 ∈ Σ∗(G \ {0}). This is clearly the case if G has an element of order three or more (the
element and its inverse are distinct and add to zero); if G is an elementary abelian 2-group
of rank two or more, then, for example, e1 = 1000 . . . , e2 = 0100 . . . , and e1 + e2 are three
distinct elements that add to zero. That leaves us with the group of order two, but χ̂ (Z∗

2,N)
cannot exist. In summary:

Proposition E.85 The quantities χ̂ (G,N0) and χ̂ (G,N) are well-defined for every group
G; χ̂ (G∗,N0) is well-defined for every group G of order at least two; and χ̂ (G∗,N) is
well-defined for every group G of order at least three.

The four quantities are strongly related—see Theorem E.98 below. The last quantity,
χ̂ (G∗,N), is the one that has been studied most; it is in fact the one that has been coined
the critical number of G. Thus we begin our investigation with χ̂ (G∗,N).

First, following a construction of Erdős and Heilbronn in [80] that was improved by
Griggs in [102], we show that

χ̂ (Z∗
n,N) ≥ ⌊2

√
n− 2⌋.

Assume that n ≥ 3 (as noted above, χ̂ (Z∗
2,N) does not exist). Letting k = ⌊2

√
n− 2⌋,

we set

A =





{±1,±2, . . . ,±(k − 1)/2} if k is odd;

{±1,±2, . . . ,±(k − 2)/2, k/2} if k is even.



E.3. RESTRICTED SUMSETS 215

Then |A| = k− 1, and Σ∗A is an interval consisting of all integers between −(k2− 1)/8 and
(k2 − 1)/8 (inclusive) when k is odd, and between −(k2 − 2k)/8 and (k2 +2k)/8 (inclusive)
when k is even. This yields

|Σ∗A| =





k2−1
8 + 1 + k2−1

8 = k2+3
4 if k is odd;

k2−2k
8 + 1 + k2+2k

8 = k2+4
4 if k is even.

Therefore,

|Σ∗A| ≤ 4(n− 2) + 4

4
= n− 1,

and we get:

Proposition E.86 (Cf. [80], [102]) With n ≥ 3, we have

χ̂ (Z∗
n,N) ≥ ⌊2

√
n− 2⌋.

It turns out that, when n is prime, the lower bound of Proposition E.86 is sharp. We
will need the following inequality:

Lemma E.87 For an odd integer n ≥ 3, k = ⌊2
√
n− 2⌋, and h = ⌊(k + 1)/2⌋ we have

⌊(n− 2)/h⌋+ h ≤ k.

The short and easy proof of Lemma E.87 is on page 351.
We now show how Theorem E.65 (via Lemma E.87) implies that, for any odd prime p,

χ̂ (Z∗
p,N) ≤ ⌊2

√
p− 2⌋.

We follow the proof of Dias Da Silva and Hamidoune in [66].
The claim is obvious for p = 3, so we assume that p ≥ 5. Consider any subset A of

Zp \ {0} of size k = ⌊2√p− 2⌋. Then B = A ∪ {0} has size k + 1, so by Lemma E.87, for
h = ⌊(k + 1)/2⌋, we have

|B| ≥ ⌊(p− 2)/h⌋+ h+ 1.

Note also that h ≤ p− 1. Therefore, Theorem E.65 implies that ĥ B = Zp. But

ĥ B = ĥ (A ∪ {0}) = ĥ A ∪ (h− 1)̂ A,

so (since p ≥ 5 implies that h ≥ 2) Σ∗A = Zp, proving our claim.
Combining this upper bound with the lower bound of Proposition E.86, we get:

Theorem E.88 (Dias Da Silva and Hamidoune; cf. [66] and Griggs; cf. [102]) If
p is an odd prime, then

χ̂ (Z∗
p,N) = ⌊2

√
p− 2⌋.

Let us now turn to groups of composite order. We can easily find a lower bound for
χ̂ (G∗,N) as follows.

Following Diderrich’s construction in [67], we let p denote the smallest prime divisor of
n, and consider the set

A = (H \ {0}) ∪ (g +K)

where H is a subgroup of G with index p, K is a subset of H of size p − 2, and g is any
element of G \H . (This is possible as n being composite implies that p− 2 ≤ n/p.) Since
(p − 1) · g (and, in fact, every element of (p − 1) · g + H) is outside of Σ∗A, we get the
following lower bound:
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Proposition E.89 (Cf. [67]) Let n be a composite integer with smallest prime divisor p.
Then for every abelian group G of order n, we have

χ̂ (G∗,N) ≥ n/p+ p− 2.

It took about 35 years after Diderrich’s lower bound to determine the value of χ̂ (G∗,N)
for all groupsG. As it turns out, in most cases, the lower bound above is sharp. In particular,
we have the following results:

Theorem E.90 (Diderrich and Mann; cf. [68]) If G is of even order n ≥ 4, then

χ̂ (G∗,N) =





n/2 + 1 if G ∼= Z4,Z6,Z8,Z
2
2, or Z2 × Z4;

n/2 otherwise.

Theorem E.91 (Mann and Wou; cf. [149]) Let p be an odd prime. We have

χ̂ ((Z2
p)

∗,N) =





2p− 1 if p = 3;

2p− 2 otherwise.

Theorem E.92 (Gao and Hamidoune; cf. [93]) Suppose that G is an abelian group of
odd order n. Let p be the smallest prime divisor of n. If n/p is a composite number, then

χ̂ (G∗,N) = n/p+ p− 2.

These results leave us with the case of cyclic groups whose order n is the product of two
(not necessarily different) odd primes. When the two primes are far from one another, we
have the following:

Theorem E.93 (Diderrich; cf. [67]) Suppose that p and q are odd primes. If q ≥ 2p+1,
then

χ̂ (Z∗
pq ,N) = p+ q − 2.

In the same paper, Diderrich also proved that

χ̂ (Z∗
pq,N) ≤ p+ q − 1

holds for all odd primes p and q, and thus, by Proposition E.89, the critical number of Zpq

is either p+ q − 2 or p+ q − 1. We can observe that, by Proposition E.86, we also have

χ̂ (Z∗
pq,N) ≥ ⌊2

√
pq − 2⌋.

We claim that for odd integers p and q with 3 ≤ p ≤ q, we have

⌊2
√
pq − 2⌋ ≤ p+ q − 1,

with equality if, and only if,
q ≤ p+ ⌊2

√
p− 2⌋+ 1.

Indeed, the first claim follows from the fact that

2
√
pq − 2 < p+ q

is equivalent to
(q − p)2 + 8 > 0.



E.3. RESTRICTED SUMSETS 217

To prove the second claim, we can square and rearrange the inequality

2
√
pq − 2 ≥ p+ q − 1

to get
(q − p− 1)2 ≤ 4p− 8,

from which the claim follows.
Therefore, if p and q are odd integers with

3 ≤ p ≤ q ≤ p+ ⌊2
√
p− 2⌋+ 1,

then
χ̂ (Z∗

pq ,N) ≥ p+ q − 1.

Consequently, we have the following result:

Theorem E.94 (Cf. Diderrich; cf. [67] and Griggs; cf. [102]) Suppose that p and q
are odd primes. If

p ≤ q ≤ p+ ⌊2
√
p− 2⌋+ 1,

then
χ̂ (Z∗

pq ,N) = p+ q − 1 = ⌊2
√
pq − 2⌋.

(Griggs in [102] provided a more constructive proof for the lower bound than our argument
above: he showed that, given the condition for p and q in Theorem E.94, the set

A = {±1,±2, . . . ,±(p+ q − 2)/2}

does not generate the elements ±(pq − 1)/2 in Zpq.)
Finally, nearly a half century after Erdős and Heilbronn posed the original problem of

finding the critical number of an abelian group, the remaining case was decided in [85] (see
also [86] for a correction):

Theorem E.95 (Freeze, Gao, and Geroldinger; cf. [85], [86]) Suppose that p and q
are odd primes. If

p+ ⌊2
√
p− 2⌋+ 1 < q < 2p+ 1,

then
χ̂ (Z∗

pq ,N) = p+ q − 2.

(We note that

p+ ⌊2
√
p− 2⌋+ 1 < 2p+ 1

holds for all odd primes p.)
We can summarize these results as follows:

Theorem E.96 Suppose that n ≥ 3 is an integer, let p be the smallest prime divisor of n,
and set k = ⌊2√p− 2⌋. Then

χ̂ (G∗,N) =





k if n = p;

n/p+ p− 1 if G ∼= Z4,Z6,Z8,Z2 × Z4, or Z2
3,

or G is cyclic, n/p is prime, and 3 ≤ p ≤ n/p ≤ p+ k + 1;

n/p+ p− 2 otherwise.
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As we noted above, for odd integers p and n/p with

3 ≤ p ≤ n/p ≤ p+ ⌊2
√
p− 2⌋+ 1,

we have
n/p+ p− 1 = ⌊2

√
n− 2⌋.

Thus for n ≥ 10 this allows for the second line in Theorem E.96 to be combined with the
first:

Corollary E.97 Suppose that n ≥ 10, and let p be the smallest prime divisor of n. Then

χ̂ (G∗,N) =





⌊2
√
n− 2⌋ if G is cyclic of order n = p or n = pq where

q is prime and 3 ≤ p ≤ q ≤ p+ ⌊2√p− 2⌋+ 1,

n/p+ p− 2 otherwise.

With χ̂ (G∗,N) thus determined for any finite abelian group G, let us now turn to our
other three quantities: χ̂ (G∗,N0), χ̂ (G,N0), and χ̂ (G,N).

First, we note the obvious facts that

χ̂ (G∗,N0) ≤ χ̂ (G∗,N)

and
χ̂ (G,N0) ≤ χ̂ (G,N).

Next, we show that
χ̂ (G,N) ≤ χ̂ (G∗,N) + 1

and
χ̂ (G,N0) ≤ χ̂ (G∗,N0) + 1.

Indeed, if A is a subset of G of size χ̂ (G,N)−1 so that Σ∗A 6= G, then A\{0} is a subset of
G \ {0} of size at least χ̂ (G,N)− 2 and Σ∗(A \ {0}) 6= G. This implies our first inequality;
the second can be shown similarly.

We now prove that for every group G of order at least ten, we have

χ̂ (G,N0) ≥ χ̂ (G∗,N) + 1.

(We here ignore the exceptional cases of Theorems E.90 and E.91 that may occur when
n ≤ 9.)

Our strategy is to point to a(n already-mentioned) subset A of G for which (i) 0 6∈ A,
(ii) 0 ∈ Σ∗A, (iii) Σ∗A 6= G, and (iv) |A| = χ̂ (G∗,N)−1. Then, by (i) and (iv), B = A∪{0}
has size |B| = χ̂ (G∗,N); and by (ii) and (iii), ΣB = Σ∗A 6= G. Therefore,

χ̂ (G,N0) ≥ |B|+ 1 = χ̂ (G∗,N) + 1

follows.
To find a set A in G satisfying properties (i)–(iv), recall that, when G is cyclic of order

n, the set A we exhibited on page 214 has size

|A| = k − 1 = ⌊2
√
n− 2⌋ − 1,

and satisfies (i), (ii), and (iii) above; furthermore, when n is prime or a product of odd
primes p and q with

p ≤ q ≤ p+ k + 1,
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then, by Theorem E.97, |A| = χ̂ (G∗,N) − 1. Additionally, with p denoting the smallest
prime divisor of the composite number n, the set leading to Proposition E.89 above also
satisfies properties (i), (ii), and (iii); and by Theorem E.97, in all remaining cases (that is,
when G is not cyclic, or n is even, or n/p is composite, or when n/p equals a prime q that
is greater than p+ k + 1), its size n/p+ p− 3 equals χ̂ (G∗,N)− 1 as well. Therefore,

χ̂ (G,N0) ≥ χ̂ (G∗,N) + 1,

as claimed.
The combination of our five inequalities enables us to evaluate each of χ̂ (G∗,N0),

χ̂ (G,N0), and χ̂ (G,N) in terms of the already-determined value of χ̂ (G∗,N):

Theorem E.98 For any abelian group G of order at least ten we have

χ̂ (G∗,N0) = χ̂ (G∗,N)⋖ χ̂ (G,N0) = χ̂ (G,N),

where x⋖ y means that x is exactly one less than y.

In particular, for χ̂ (G,N0) we have:

Corollary E.99 Suppose that n ≥ 10 is an integer, and let p be the smallest prime divisor
of n. Then

χ̂ (G,N0) =





⌊2
√
n− 2⌋+ 1 if G is cyclic of order n = p or n = pq where

q is prime and 3 ≤ p ≤ q ≤ p+ ⌊2√p− 2⌋+ 1,

n/p+ p− 1 otherwise.

Now that we have determined the restricted critical number of all finite groups, we move
on to the inverse problem of classifying the extremal sets. Given that we have four different
versions for the critical number, we have four corresponding inverse problems:

P1 Classify all subsets A of G with size χ̂ (G,N0) − 1 for which ΣA 6= G. (We shall refer
to these sets as P1-sets.)

P2 Classify all subsets A of G \ {0} with size χ̂ (G∗,N0)− 1 for which ΣA 6= G. (We shall
refer to these sets as P2-sets.)

P3 Classify all subsets A of G with size χ̂ (G,N) − 1 for which Σ∗A 6= G. (We shall refer
to these sets as P3-sets.)

P4 Classify all subsets A of G \ {0} with size χ̂ (G∗,N)− 1 for which Σ∗A 6= G. (We shall
refer to these sets as P4-sets.)

We can prove that (for n ≥ 10) the first three problems are equivalent and that the
fourth problem incorporates the first three:

Theorem E.100 Let G be an abelian group of order at least ten. The following are equiv-
alent:

• A is a P1-set in G;

• 0 ∈ A and A \ {0} is a P2-set in G; and

• A is a P3-set in G.
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Furthermore, each of the above implies that 0 ∈ A and A \ {0} is a P4-set in G.

The short proof is on page 351. We believe that P4 is also equivalent to the other three
problems:

Problem E.101 Prove that for groups G of order ten or more, every P4-set in G is also
a P2-set in G.

Note that having a P4-set in G that is not a P2-set would mean that there is a subset A of
G \ {0} of size χ̂ (G∗,N)− 1 for which Σ∗A = G \ {0}.

Assuming that the four problems are indeed equivalent, we focus on P1:

Problem E.102 For each finite abelian group G, classify all subsets A of size χ̂ (G,N0)−1
for which ΣA 6= G.

Problem E.102 is quite extensive; we discuss next what we already know.
Let us first consider the case when G is cyclic of order n. It is helpful to view the elements

of Zn as integers in the interval (−n/2, n/2]. Suppose that A ⊆ Zn, and let

A = {a1, . . . , at,−at+1, . . . ,−am}

with a1, . . . , at nonnegative and −at+1, . . . ,−am negative (of course, we may have t = 0 or
t = m). The norm of A, denoted by ||A||, is the sum a1 + · · ·+ am; for example, for the set

A = {0, 2, 5, 8} = {0, 2, 5,−2}

in Z10, we have

||A|| = 0 + 2 + 5 + 2 = 9.

We will show that if A is a subset of Zn with norm ||A|| ≤ n− 2, then ΣA 6= Zn; in fact,
we can easily see that, using our notations from above,

a1 + · · ·+ at + 1 6∈ ΣA.

Indeed, this follows right away from our assumption, since it is equivalent to

a1 + · · ·+ at + 1 < n− (at+1 + · · ·+ am).

Thus we have:

Proposition E.103 Let A ⊆ Zn. If ||A|| ≤ n− 2, then ΣA 6= Zn.

Note also that if ΣA 6= Zn for some A ⊆ Zn, then for any b ∈ Zn, Σ(b · A) 6= Zn as well,
where

b · A = {b · a | a ∈ A}
is a dilate of A; indeed, the size of Σ(b ·A) cannot be more than the size of ΣA.

We have the following question:

Problem E.104 Find all odd prime values p for which whenever Zp contains a subset A
of size

|A| = χ̂ (Zp,N0)− 1 = ⌊2
√
p− 2⌋

so that ΣA 6= Zp, then there is an element b ∈ {1, . . . , p− 1} for which ||b ·A|| ≤ p− 2.
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We have verified that all primes less than 30 satisfy the requirements of Problem E.104,
except for p = 17: the subset

A = {0, 1, 3, 4, 5, 12, 14}
of Z17 (for example) has size |A| = χ̂ (Z17,N0)− 1 = 7 and norm 21, does not generate the
element 11, and has no dilate with a norm less than 21.

Related to Problem E.104, we mention two results:

Theorem E.105 (Nguyen, Szemerédi, and Vu; cf. [163]) There is a positive con-
stant C, so that whenever A is a subset of Zp for an odd prime p, if |A| ≥ 1.99

√
p and

ΣA 6= Zp, then there is an element b ∈ {1, . . . , p− 1} for which

||b ·A|| ≤ p+ C
√
p.

Theorem E.106 (Nguyen and Vu; cf. [164]) There is a positive constant c, so that
whenever A is a subset of Zp for an odd prime p, if ΣA 6= Zp, then there is a subset
A′ of A of size at most cp6/13 log p and an element b ∈ {1, . . . , p− 1}, for which

||b · (A \A′)|| < p.

Theorem E.105 says that, for large values of p, if A has size near χ̂ (Zp,N0) − 1 but
ΣA 6= Zp, then A has a dilate with norm not much larger than p; Theorem E.106 tells us
that, again for large values of p, if ΣA 6= Zp, then after removing a relatively small subset
from A, the remaining part has a dilate with norm less than p.

The inverse problem for groups of prime order is thus not fully settled:

Problem E.107 For each odd prime p, classify all subsets A of Zp of size χ̂ (Zp,N0) − 1
for which ΣA 6= Zp.

Moving on to groups of composite order n, let us first consider the case when n is even.
According to Corollary E.99, for n ≥ 10 we have

χ̂ (G,N0) = n/2 + 1.

Clearly, if A is a subgroup of G of order n/2, then ΣA 6= G; it turns out that (for groups of
order at least 16) the converse of this is true as well:

Theorem E.108 Suppose that G is an abelian group of order n ≥ 16 and that n is even.
Let A be a subset of G with |A| = n/2. Then ΣA 6= G if, and only if, A is a subgroup of G.

We will show how results from the paper [94] by Gao, Hamidoune, Lladó, and Serra imply
Theorem E.108; see page 352. We should point out that the lower bound of 16 on n cannot
be reduced: in Z14, for example, the set

{0,±1,±2,±3}

is not a subgroup, yet it does not generate 7.
Suppose now that n is odd, divisible by 3, and n/3 is composite. We then have the

following result:

Theorem E.109 Suppose that G is an abelian group of order n where n is odd, divisible
by 3, n/3 is composite, and n 6= 27, 45. Let A be a subset of G with |A| = n/3 + 1. Then
ΣA 6= G if, and only if, there is a subgroup H of G of size n/3 and an element a ∈ A so
that

A = H ∪ {a}.
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Like for Theorem E.108, our proof for Theorem E.109 will come from a careful reexamination
of a corresponding result by Gao, Hamidoune, Lladó, and Serra in [94]; see page 353. We
can settle the case of n = 27: The claim is false in Z27 as seen by the set

{0,±1,±2,±3,±4, 5},

but true in the other two groups of order 27, as verified by the computer program [120].
The case of n = 45 is still open and poses the following:

Problem E.110 Decide if the claim of Theorem E.109 above is true for the two groups of
order 45.

In a similar fashion:

Theorem E.111 Suppose that G is an abelian group of order n where n is odd, has smallest
prime divisor p ≥ 5, n/p is composite, and n 6= 125. Let A be a subset of G with |A| =
n/p+ p− 2. Then ΣA 6= G if, and only if,

A = H ∪ A1 ∪A2,

where H is a subgroup of G of size n/p, and there is an element a ∈ A so that A1 ⊂ a+H
and A2 ⊂ −a+H.

This result is essentially Theorem 4.1 in [94] by Gao, Hamidoune, Lladó, and Serra. Note
that their assumption that n ≥ 7p2 + 7p can be reduced to n ≥ 7p2 in our case, which,
considering that p ≥ 5, excludes only n = 125.

Problem E.112 Decide if the claim of Theorem E.111 above is true for the three groups
of order 125.

This leaves us with the case when n is the product of two odd primes. One such case
was resolved by Qu, Wang, Wang, and Guo:

Theorem E.113 (Qu, Wang, Wang, and Guo; cf. [176]) Suppose that p and q are
odd primes so that q ≥ 2p + 3. Let A be a subset of Zpq of size p + q − 2 for which
ΣA 6= Zpq. Then

A = H ∪ A1 ∪A2,

where H is a subgroup of G of size q, and there is an element a ∈ A so that A1 ⊂ a +H
and A2 ⊂ −a+H.

(We should caution that the paper [176] contains some inaccuracies: In Theorem A, the
critical numbers of Z2

2 and cyclic groups of order p2 with prime p are given incorrectly; the
other main result in the paper, regarding groups of even order, had been done previously
(cf. Theorem E.90); and Example 4.1 is the wrong example of the point that the authors
make.)

We separate the remaining cases of Problem E.102 into three parts:

Problem E.114 For each prime p ≥ 5, classify all subsets A of size 2p− 2 of Z2
p for which

ΣA 6= Z2
p.

Problem E.115 For all primes p and q with

3 ≤ p ≤ q ≤ p+ ⌊2
√
p− 2⌋+ 1,

classify all subsets A of size p+ q − 1 of Zpq for which ΣA 6= Zpq.
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Problem E.116 For all primes p and q with

p+ ⌊2
√
p− 2⌋+ 2 ≤ q ≤ 2p+ 2,

classify all subsets A of size p+ q − 2 of Zpq for which ΣA 6= Zpq.

Recall that our examples of sets in Problems E.114 and E.116 were generated by cosets
of subgroups, but for Problem E.115, they came from sets with small norm.

E.4 Restricted signed sumsets

E.4.1 Fixed number of terms

E.4.2 Limited number of terms

E.4.3 Arbitrary number of terms
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Chapter F

Zero-sum-free sets

Recall that for a given finite abelian group G, m-subset A = {a1, . . . , am} of G, Λ ⊆ Z, and
H ⊆ N0, we defined the sumset of A corresponding to Λ and H as

HΛA = {λ1a1 + · · ·+ λmam | (λ1, . . . , λm) ∈ Λm(H)}

where the index set Λm(H) is defined as

Λm(H) = {(λ1, . . . , λm) ∈ Λm | |λ1|+ · · ·+ |λm| ∈ H}.

In this chapter we investigate the maximum possible size of a zero-sum-free set over Λ
in a given finite abelian group G. Namely, our objective is to determine, for any G, Λ ⊆ Z,
and H ⊆ N0 the quantity

τΛ(G,H) = max{|A| | A ⊆ G, 0 6∈ HΛA}.

If no zero-sum-free set exists, we put τΛ(G,H) = 0.

Since, by definition, for every subset A of size χΛ(G,H) or more HΛA equals the entire
group, we have the following:

Proposition F.1 Let Λ ⊆ Z and H ⊆ N0. If χΛ(G,H) exists, then

τΛ(G,H) ≤ χΛ(G,H)− 1.

In the following sections we consider τΛ(G,H) for special coefficient sets Λ.

F.1 Unrestricted sumsets

Our goal in this section is to investigate the maximum possible size of a zero-H-sum-free
set, that is, the quantity

τ(G,H) = max{|A| | A ⊆ G, 0 6∈ HA}.

Clearly, we always have τ(G,H) = 0 when 0 ∈ H ; in fact, τ(G,H) = 0 wheneverH contains
any multiple of the exponent of G. However, when H contains no multiples of the exponent
κ, then τ(G,H) ≥ 1: for any a ∈ G with order κ, at least for the one-element set A = {a}
we have 0 6∈ HA.

225
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It is often useful to consider G of the form G1 × G2. (We may do so even when G is
cyclic if its order has at least two different prime divisors.) It is not hard to see that, if
A1 ⊆ G1 is zero-H-sum-free in G1, then

A = {(a, g) | a ∈ A1, g ∈ G2}

is zero-H-sum-free in G. Indeed, if hA were to contain (0, 0) (the zero-element of G =
G1 × G2) for some h ∈ H , then we would have h (not necessarily distinct) elements of
A adding to (0, 0); this would then mean that h (not necessarily distinct) elements of A1

would add to 0 in G1, a contradiction. Thus, we have the following.

Proposition F.2 For all finite abelian groups G1 and G2 and for all H ⊆ N0 we have

τ(G1 ×G2, H) ≥ τ(G1, H) · |G2|.

Below we consider two special cases: when H consists of a single positive integer h and
when H consists of all positive integers up to some value t. The cases when H = N0 or
H = N, as we just mentioned, yield no zero-sum-free sets.

F.1.1 Fixed number of terms

In this section we investigate, for a given group G and positive integer h, the quantity

τ(G, h) = max{|A| | A ⊆ G, 0 6∈ hA},

that is, the maximum size of a zero-h-sum-free subset of G.
For h = 1, we see that a subset of G is zero-1-sum-free if, and only if, it does not contain

0, hence the unique maximal zero-1-sum-free set in G is G \ {0}.
We can also easily determine the value of τ(G, 2). First, note that a zero-2-sum-free set

A cannot contain any element of {0} ∪ Ord(G, 2) (the elements of order at most 2), and
neither can it contain any element with its negative; to get a maximum zero-2-sum-free set
in G, take exactly one of each element or its negative in G \Ord(G, 2) \ {0}. To summarize:

Proposition F.3 We have
τ(G, 1) = n− 1

and

τ(G, 2) =
n− |Ord(G, 2)| − 1

2
;

in particular,
τ(Zn, 2) = ⌊(n− 1)/2⌋.

Suppose now that h = 3. For the cyclic group Zn, we can find explicit zero-3-sum-free
sets as follows. For every n, the positive integers that are less than n/3 form a zero-3-sum-
free set; that is, the set

A = {1, 2, . . . , ⌊(n− 1)/3⌋}
is zero-3-sum-free in Zn, since

3A = {3, 4, . . . , 3 · ⌊(n− 1)/3⌋}

does not contain 0.
We can do better in some cases. For example, when n is even, we may take the larger

set
{1, 3, 5, . . . , n− 1},
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which is zero-3-sum-free since no three odd numbers can add to a number divisible by n
when n is even. More generally, suppose that n has a prime divisor p which is congruent to
2 mod 3. It is not hard to see that the set

{(p+ 1)/3 + i+ pj | i = 0, 1, . . . , (p− 2)/3, j = 0, 1, . . . , n/p− 1}

is zero-3-sum-free. Indeed, if

k = (p+ 1) + (i1 + i2 + i3) + p(j1 + j2 + j3) = 0

in Zn for some
i1, i2, i3 ∈ {0, 1, . . . , (p− 2)/3}

and
j1, j2, j3 ∈ {0, 1, . . . , n/p− 1} ,

then the integer k is divisible by n and thus by p. Therefore, 1 + (i1 + i2 + i3) would have
to be divisible by p, but this is not possible as

1 ≤ 1 + (i1 + i2 + i3) ≤ p− 1.

Recalling the function vg(n, h) from page 76, we see that we have established the fol-
lowing.

Proposition F.4 We have

τ(Zn, 3) ≥ v3(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor;

⌊
n−1
3

⌋
otherwise.

We believe that equality holds in Proposition F.4, but no proof of this has been discov-
ered. More generally, we make the following conjecture.

Conjecture F.5 For all positive integers h and n, the maximum size of a zero-h-sum-free
set in the cyclic group Zn is given by

τ(Zn, h) = vh(n, h).

We have already seen that Conjecture F.5 holds when h = 1 or h = 2, and we have the
following result.

Theorem F.6 For all positive integers h and n, we have

vh(n, h) ≤ τ(Zn, h) ≤ v1(n, h).

The upper bound here follows directly from Proposition F.1 and Theorem E.1; the proof
of the lower bound can be found on page 354.

The lower and upper bounds in Theorem F.6 often agree—in which case the value of
τ(Zn, h) is determined. For example, for h = 3, we have v3(n, 3) = v1(n, 3) if, and only if, n
has at least one prime divisor which is congruent to 2 mod 3 or if all its prime divisors are
congruent to 1 mod 3. So, for h = 3, the first few values of n for which v3(n, 3) 6= v1(n, 3)
are

n = 3, 9, 21, 27, 39, 57, 63, . . . .

A potentially difficult problem is the following.
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Problem F.7 Prove or disprove Conjecture F.5; in particular, settle the case for h = 3.

It is worth mentioning that, using Theorem F.6, we can determine the size of the largest
zero-h-sum-free set in cyclic groups of prime order. According to Proposition 4.1, for a prime
p and an arbitrary positive integer h we have

v1(p, h) =

⌊
p− 2

h

⌋
+ 1

and

vh(p, h) =





0 if p|h,
⌊
p−2
h

⌋
+ 1 otherwise.

Therefore, if h is not divisible by p, then v1(p, h) = vh(p, h), and by Theorem F.6 this yields
τ(Zp, h). On the other hand, if h is divisible by p, then clearly no (nonempty) subset of Zp

is zero-h-sum-free since for every element a of the group we have ha = 0. In summary, we
have the following.

Theorem F.8 The size of the largest zero-h-sum-free set in cyclic group of prime order p
is

τ(Zp, h) = vh(p, h) =





0 if p|h,
⌊
p−2
h

⌋
+ 1 otherwise.

At this point we know considerably less about the value of τ(G, h) for h ≥ 3 when G is
not cyclic. An immediate consequence of Proposition F.2 and Theorem F.6 is the following.

Corollary F.9 Suppose that G is an abelian group of order n and exponent κ. Then, for
all positive integers h we have

vh(κ, h) ·
n

κ
≤ τ(G, h) ≤ v1(n, h).

When the two bounds above coincide, then of course we have the exact value of τ(G, h).
Two such instances are worth mentioning: one coming from Corollary 4.5, and the other
from our formulas for v1(n, 3) and v3(n, 3) on page 78:

Corollary F.10 If n is even and h ≥ 3 is odd, then

τ(G, h) = v1(n, h) = n/2.

Corollary F.11 If n is divisible by a prime p with p ≡ 2 mod 3 and p is the smallest such
prime, then

τ(G, 3) = v1(n, 3) =

(
1 +

1

p

)
n

3
.

We also know the value of τ(G, h) when h is relatively prime to n:

Theorem F.12 If h is relatively prime to n, then

τ(G, h) = χ(G,n)− 1 = v1(n, h).
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We verify Theorem F.12 following an idea of Lemma 2.1 in the paper [179] of Roth and
Lempel. Note that it suffices to find a set A in G of size χ(G,n)− 1 for which 0 6∈ hA. Since
h and n are relatively prime, we have a positive integer h′ for which hh′ ≡ 1 mod n. Now
let B be a subset of G of size χ(G,n)− 1 for which hB 6= G, choose an element g ∈ G \hB,
and set A = −h′g +B. As

hA = −hh′g + hB = −g + hB,

we indeed find that 0 6∈ hA.

Next, for a positive prime p and r ≥ 1, we consider Zr
p, the elementary abelian p-group of

rank r. Let h ≥ 2. When h is divisible by p, then, as we have mentioned above, τ(Zr
p, h) = 0.

If h is not divisible by p, then p cannot be divisible by h either (since that would imply
p = h and thus p|h). If p leaves a remainder of at least 2 mod h, then, by Corollary F.9 and
by Propositions 4.1 and 4.2,

τ(Zr
p, h) = v1(p

r, h) = pr−1 · (1 + ⌊p/h⌋) .

This leaves one case: when p ≡ 1 mod h, which can be treated using Finn’s construction in
[81] that we explain (in a generalized form) next.

Suppose that Gi is a finite abelian group for i = 1, . . . , r; Ai is a zero-[1, h]-sum-free
set in Gi for i = 1, . . . , r − 1; and Ar is a zero-h-sum-free set in Gr. (We say that A is
zero-[1, h]-sum-free in G if 0 6∈ ∪h

j=1jA—see Section F.1.2.) Now set

G = G1 × · · · ×Gr

and

A = (A1 ×G2 × · · · ×Gr) ∪ ({0} ×A2 ×G3 × · · · ×Gr) ∪ · · · ∪ ({0} × · · · × {0} ×Ar).

It is easy to verify that A is zero-h-sum-free in G, and therefore we get the following result:

Proposition F.13 (Finn; cf. [81]) For all abelian groups G1, . . . , Gr we have

τ(G1 × · · · ×Gr, h) ≥
r∑

i=1

τ(Gi, [1, h]) · Πr
j=i+1|Gj |.

(Of course, Πr
j=r |Gj | = |Gr| and Πr

j=r+1|Gj | = 1; τ(G, [1, h]) denotes the maximum size of
a zero-[1, h]-sum-free set in G.)

We can apply Proposition F.13 to the case when each Gi is cyclic by observing that the
set

{1, 2, . . . , ⌊(n− 1)/h⌋}

is zero-[1, h]-free (and thus also zero-h-sum-free) in Zn. In particular, when p is a prime
with p ≡ 1 mod h, then

τ(Zp, [1, h]) ≥ (p− 1)/h,

so in this case

τ(Zr
p, h) ≥

p− 1

h
· (pr−1 + · · ·+ p+ 1) =

pr − 1

h
= v1(p

r, h).

Therefore, we have the following:
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Theorem F.14 (Finn; cf. [81]) Let p be a positive prime and r ≥ 1.

If h is divisible by p, then τ(Zr
p, h) = 0.

If h is not divisible by p, then

τ(Zr
p, h) = v1(p

r, h) =





(pr − 1)/h if p ≡ 1 mod h;

pr−1 · (1 + ⌊p/h⌋) if p 6≡ 1 mod h.

Note that Theorem F.14 is a generalization of Theorem F.8.

The general problem of finding τ(G, h) for noncyclic groups G is quite intriguing, even
for h = 3.

Problem F.15 Determine the value of τ(G, h) for noncyclic G.

F.1.2 Limited number of terms

Here we investigate, for a given group G and positive integer t, the quantity

τ(G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]A},

that is, the maximum size of a zero-[1, t]-sum-free subset of G.

For t = 1 and t = 2 our considerations of Section F.1.1 above yield the answers here as
well:

Proposition F.16 We have

τ(G, [1, 1]) = n− 1

and

τ(G, [1, 2]) =
n− |Ord(G, 2)| − 1

2
;

in particular,

τ(Zn, [1, 2]) = ⌊(n− 1)/2⌋.

The following general upper bound is easy to establish (see Corollary 2.3 in [1]):

Theorem F.17 (Alon; cf. [1]) In any group of order n we have

τ(G, [1, t]) ≤ ⌊(n− 1)/t⌋.

Note that the set

{1, 2, . . . , ⌊(n− 1)/t⌋}

is zero-[1, t]-free in Zn, hence we get:

Corollary F.18 For all positive integers t and n, we have

τ(Zn, [1, t]) = ⌊(n− 1)/t⌋.

The case of noncyclic groups remains open:

Problem F.19 Find the value of τ(G, [1, t]) for noncyclic groups G for t ≥ 3.
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F.1.3 Arbitrary number of terms

Here we ought to consider

τ(G,H) = max{|A| | A ⊆ G, 0 6∈ HA}

for the case when H is the set of all nonnegative or all positive integers. However, as we have
already mentioned, we have τ(G,H) = 0 whenever H contains a multiple of the exponent
of the group (including 0). Thus, there are no zero-sum-free sets when the addition of an
arbitrary number of terms is allowed.

F.2 Unrestricted signed sumsets

Our goal in this section is to investigate the maximum possible size of a zero-sum-free set
over the set of all integers, that is, the quantity

τ±(G,H) = max{|A| | A ⊆ G, 0 6∈ H±A}.

Clearly, we have τ±(G,H) = 0 whenever H contains a multiple of the exponent of
the group (including 0). However, when H contains no multiples of the exponent κ, then
τ±(G,H) ≥ 1: for any a ∈ G with order κ, at least the one-element set {a} will be zero-
sum-free for H .

It is important to note that Proposition F.2 does not carry through to zero-sum-free
sets over the set of all integers. For example, the subset A1 = {1} of Z10 is clearly zero-
4-sum-free over the integers, since 0 6∈ 4±A, but A1 × Z10 is not zero-4-sum-free over the
integers in Z2

10, since (for example)

(1, 1) + (1, 6)− (1, 3)− (1, 4) = (0, 0).

We consider two special cases: when H consists of a single positive integer h and when
H consists of all positive integers up to some value t. The cases when H = N0 or H = N

are trivial as we then have τ±(G,H) = 0 since 0 ∈ H±A for any nonempty subset A of G.

F.2.1 Fixed number of terms

In this section we investigate, for a given group G and positive integer h, the quantity

τ±(G, h) = max{|A| | A ⊆ G, 0 6∈ h±A},

that is, the maximum size of a zero-h-sum-free set over Z.
Since both for h = 1 and for h = 2, a subset of G is zero-h-sum-free over Z if, and only

if, it is zero-h-sum-free (over N0), Proposition F.3 implies:

Proposition F.20 We have

τ±(G, 1) = n− 1

and

τ±(G, 2) =
n− |Ord(G, 2)| − 1

2
;

in particular,

τ±(Zn, 2) = ⌊(n− 1)/2⌋.
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Now consider the case h = 3. For a subset A of G, we have 0 6∈ 3±A if, and only if, A is
both zero-3-sum-free and sum-free, that is, 0 6∈ 3A and 0 6∈ 2A−A. Let us consider G = Zn.
In Section F.1.1, we showed that

τ(Zn, 3) ≥ v3(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n−1
3

⌋
otherwise.

Here we show that τ±(Zn, 3) ≥ v3(n, 3) as well. As before, when n has a divisor p which is
congruent to 2 mod 3, we take

A = {(p+ 1)/3 + i+ pj | i = 0, 1, . . . , (p− 2)/3, j = 0, 1, . . . , n/p− 1} .

We have already seen that A is zero-3-sum-free, it is also easy to see that it is sum-free as
well. Indeed, if

k = (p+ 1)/3 + (i1 + i2 − i3) + p(j1 + j2 − j3) = 0

in Zn for some
i1, i2, i3 ∈ {0, 1, . . . , (p− 2)/3}

and
j1, j2, j3 ∈ {0, 1, . . . , n/p− 1} ,

then the integer k is divisible by n and thus by p. Therefore, (p+1)/3+ (i1+ i2− i3) would
have to be divisible by p, but this is not possible as

1 ≤ (p+ 1)/3 + (i1 + i2 − i3) ≤ p− 1.

Now suppose that n has no such divisor—in this case, n itself cannot be congruent to 2
mod 3. Then n is either divisible by 3, in which case the set

{n
3
+ 1,

n

3
+ 2, . . . , 2 · n

3
− 1
}

works, or it is congruent to 1 mod 3, in which case we can take

{
n− 1

3
+ 1,

n− 1

3
+ 2, . . . , 2 · n− 1

3

}
.

Both of these sets have size
⌊
n−1
3

⌋
, completing the proof of the inequality above.

Therefore, we have the following.

Proposition F.21 For all positive integers n, we have

τ±(Zn, 3) ≥ v3(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n−1
3

⌋
otherwise.

Our conjecture is that, in Proposition F.21, the lower bound gives the actual value:

Conjecture F.22 For all positive integers n, we have

τ±(Zn, 3) = v3(n, 3).
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We pose the following problem.

Problem F.23 Prove Conjecture F.22.

We should mention that Conjecture F.22 obviously holds when v3(n, 3) = v1(n, 3), as is
the case, for example, if n is even (more generally, has a prime divisor congruent to 2 mod
3) or is prime.

Let us now turn to noncyclic groups. As we noted on page 231, Proposition F.2 does
not carry through to zero-sum-free sets over the integers.

However, if h ≥ 3 is odd, and for each odd integer k ≤ h, A1 is zero-k-sum-free over
the integers in G1, then we still see that A1 × G2 is zero-h-sum-free over the integers in
G1 ×G2: Indeed, if we were to have

(a1, g1) + · · ·+ (ai, gi)− (ai+1, gi+1)− · · · − (ah, gh) = (0, 0)

with ai ∈ A1 and gi ∈ G2 for some i = 1, 2, . . . , h (ignoring subtractions when i = h),
then, looking at the first components and cancelling identical terms that are both added
and subtracted (if any), we arrive at a signed sum of k elements of A1 for some odd integer
k ≤ h, a contradiction. In fact, assuming that A1 is zero-1-sum-free is not necessary as that
is implied by it being zero-h-sum-free for h. This results in the following:

Proposition F.24 Suppose that G1 and G2 are finite abelian groups, h ≥ 3 is odd, and
that A1 is zero-k-sum-free over the integers in G1 for each k ∈ {3, 5, . . . , h}. Then A1 ×G2

is zero-h-sum-free over the integers in G1 ×G2.

(A special case of this result was discovered by Matys in [156].)
As a consequence of Propositions F.9, F.21, and F.24, we get:

Corollary F.25 If G is an abelian group of order n and exponent κ, then

v3(κ, 3) ·
n

κ
≤ τ±(G, 3) ≤ v1(n, 3).

We do not have a conjecture for τ±(G, 3) when G is not cyclic.

Problem F.26 Evaluate τ±(G, 3) for noncyclic groups G.

Turning to the case of h = 4, we see a radical difference: as we are about to see, we
cannot expect a formula for τ±(Zn, 4) that is a linear function of n. Indeed, we have the
following results.

Proposition F.27 Let A ⊆ G, and suppose that h ∈ N. If A is a Bh set over Z, then A is
also a zero-2h-sum-free set over Z, and therefore

σ±(G, h) ≤ τ±(G, 2h).

Proposition F.28 Let A ⊆ G, and suppose that h is a positive integer that is divisible by
4. If A is a zero-h-sum-free set over Z, then A is also a B2 set over Z, and therefore

τ±(G, h) ≤ σ±(G, 2).

For the proofs of Propositions F.27 and F.28, see pages 355 and 356, respectively.
By these results:

Corollary F.29 A set is zero-4-sum-free set over Z in G if, and only if, it is a B2 set over
Z in G.
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Therefore, by Proposition C.7, we must have

τ±(G, 4) = σ±(G, 2) ≤ σ(G, 2) ≤ ⌊√n⌋+ 1.

We do not know τ±(Zn, 4).

Problem F.30 Find the value of τ±(Zn, 4) for all n.

A bit more modestly:

Problem F.31 Find a positive constant c and an explicit zero-4-sum-free set over Z in Zn

which has at least c · √n elements for every large enough n.

The following result comes short of the demands of Problem F.31: it provides a set of
(asymptotically) smaller size, and the set is not given explicitly.

Proposition F.32 For each h there exists a positive constant ch for which

τ±(Zn, h) > ch · n1/(h−1).

In particular, if

n >
4

3
m3 +

8

3
m,

then there is a zero-4-sum-free set over Z in Zn that has size m.

The proof of Proposition F.32 is on page 357. (The result for h = 4 was found by Phillips
in [169].)

We also offer the following problem.

Problem F.33 Find the value of τ±(Zn, h) for even values of h ≥ 6.

The situation is very different for odd values of h. We have already discussed the case
h = 3 above; here we see what we can say about the general case when h ≥ 5 is odd. As
Matys in [156] pointed out, we cannot hope for a result similar to Proposition F.25: we see
that v5(9, 5) = 3, but τ±(Z9, 5) = 2. (We can verify this last assertion as follows. Suppose
that A is a zero-5-sum-free set over the integers in Z9. Clearly, 0 6∈ A. Also, if a ∈ A, then
4a 6∈ A; since the sequence (1, 4, 16, 64) becomes (1, 4, 7, 1) mod 9, at most one of 1, 4, or
7 can be in A. Similarly, at most one of 2, 8, or 5 can be in A. Furthermore, neither 3 nor
6 can be in A together with any of 1, 4, 7, 2, 8, or 5: for example, if 3 ∈ A and a ∈ A for
some a ≡ 1 mod 3, then

3 + 3 + a+ a+ a = 3(a+ 2) ≡ 0 mod 9,

and if 3 ∈ A and a ∈ A for some a ≡ 2 mod 3, then

−3− 3 + a+ a+ a = 3(a− 2) ≡ 0 mod 9.

This proves that τ±(Z9, 5) ≤ 2; the set {4, 5} shows that equality holds.)
Here is what we know about τ±(G, h) for odd h ≥ 5 when G is cyclic. As Matys in [156]

observed, when n is even, then the odd elements of Zn form a zero-h-sum-free set over the
integers, hence τ±(Zn, h) ≥ n/2 then. Since τ(Zn, h), and thus v1(n, h) provides an upper
bound and, by Corollary 4.5, v1(n, h) = n/2 in this case, we get:

Proposition F.34 (Matys; cf. [156]) If n is even and h ≥ 3 is odd, then τ±(Zn, h) =
n/2.
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When n and h are both odd, we can find a linear lower bound for τ±(Zn, h) as follows.
Let A be the set of integers (viewed as elements of G = Zn) that are strictly between h−1

2
n
h

and h+1
2

n
h . We can then prove that 0 6∈ h±A, and evaluating the size of A results in the

following proposition.

Proposition F.35 (Matys; cf. [156]) For all odd positive integers n and h,

τ±(Zn, h) ≥ 2

⌊
n+ h− 2

2h

⌋
.

The proof of Proposition F.35 (different from the one given by Matys in [156]) is on
page 357.

The following problem seems rather intriguing:

Problem F.36 Find τ±(Zn, h) for odd values of h ≥ 5.

As always, we are also interested in noncyclic groups.

Problem F.37 Find the value of τ±(G, h) for noncyclic groups and for h ≥ 4.

F.2.2 Limited number of terms

A subset A of G for which
0 6∈ [1, t]±A = ∪t

h=1h±A

for some positive integer t is called a t-independent set in G. Here we investigate

τ±(G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]±A},

that is, the maximum size of a t-independent set in G.
As we pointed out above, with κ denoting the exponent of the group, adding any element

of the group to itself κ times results in 0. Therefore, if t ≥ κ, then no element of G can belong
to a t-independent set and we have τ±(G, [1, t]) = 0. However, if t < κ, then τ±(G, [1, t]) ≥ 1:
at the least the one-element set {a}, where a is any element of order κ, will be t-independent.

The cases of t = 1 and t = 2 are easy to handle. Clearly, a set A is 1-independent if,
and only if, 0 6∈ A. Regarding t = 2, first note that a 2-independent set cannot contain
any element of {0} ∪ Ord(G, 2) (the elements of order at most 2); to get a maximum 2-
independent set in G, take exactly one of each element or its negative in G\Ord(G, 2)\{0}.
In summary:

Proposition F.38 For all groups G we have

τ±(G, [1, 1]) = n− 1

and

τ±(G, [1, 2]) =
n− |Ord(G, 2)| − 1

2
;

in particular,
τ±(Zn, [1, 2]) = ⌊(n− 1)/2⌋.

Let us now consider t = 3. Before we proceed, it is helpful to state that a subset A is
3-independent in G if, and only if, none of the equations

x = 0, x+ y = 0, x+ y + z = 0, and x+ y = z
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have a solution in A.

We first find explicit 3-independent sets in the cyclic group Zn as follows. For every n,
the odd integers that are less than n/3 form a 3-independent set; that is, the set

{2i+ 1 | i = 0, 1, . . . , ⌊n/6⌋ − 1}

is 3-independent in Zn. Furthermore, if n is even, we can go up to (but not including) n/2
as then the sum of two odd integers cannot equal n; so, when n is even, the set

{2i+ 1 | i = 0, 1, . . . , ⌊n/4⌋ − 1}

is 3-independent in Zn.

We can do better in one special case when n is odd; namely, when n has a prime divisor
p that is congruent to 5 mod 6, one can show that the set

{pi1 + 2i2 + 1 | i1 = 0, 1, . . . , n/p− 1, i2 = 0, 1, . . . , (p− 5)/6}

is 3-independent. For example, when n = 25, we may take p = 5, with which we get

{5i1 + 2i2 + 1 | i1 = 0, 1, . . . , 4, i2 = 0} = {1, 6, 11, 16, 21}.

This set is 3-independent in G = Z25. Note that, when determining the independence num-
ber of a subset, an element and its negative play the same role, thus the set {1, 6, 11, 16, 21}
above is essentially the same as the set {1, 4, 6, 9, 11} of the example on page 70.

In summary, we have

τ±(Zn, [1, 3]) ≥





⌊
n
4

⌋
if n is even,

(
1 + 1

p

)
n
6 if n is odd, has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor,

⌊
n
6

⌋
otherwise.

Let us now turn to noncyclic groups. First, an observation. Suppose that G is of the
form G1 ×G2. (Note that every group can be written in the form G1 × G2 with G2 = Zκ

where κ is the exponent of G.) It is not hard to see that, if A2 ⊆ G2 is 3-independent in
G2, then

A = {(g, a) | g ∈ G1, a ∈ A2}

is 3-independent in G, so we have the following:

Proposition F.39 Let G1 and G2 be finite abelian groups, G = G1×G2, and suppose that
A2 ⊆ G2 is 3-independent in G2. Then

A = {(g, a) | g ∈ G1, a ∈ A2}

is 3-independent in G; in particular,

τ±(G1 ×G2, [1, 3]) ≥ |G1| · τ±(G2, [1, 3]).

(This proposition does not hold for t-independent sets for t ≥ 4.)
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Combining Proposition F.39 with our results for cyclic groups above, we see that, for a
group of exponent κ we get:

τ±(G, [1, 3]) ≥





n
4 if κ is divisible by 4,

n
κ · κ−2

4 if κ is even but not divisible by 4,

(
1 + 1

p

)
n
6 if κ is odd, has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor,

⌊
κ
6

⌋
· n
κ otherwise.

Next, we show that we can do slightly better when κ is even but not divisible by 4. Let
G = G1 × Zκ. Suppose that A1 is a 2-independent set in G1, and A2 is the 3-independent
set

A2 = {2i+ 1 | i = 0, 1, . . . , (κ− 6)/4}
in Zκ. We can then verify that the set

A = {(g, a) | g ∈ G1, a ∈ A2} ∪ {(a, κ/2) | a ∈ A1}

is 3-independent in G. (When checking that the equations x+ y+ z = 0 and x+ y = z have
no solutions in A, note that κ is even, but κ/2 and all elements of A2 are odd.)

Suppose further that A1 is of maximum size; that is,

|A1| =
|G1| − |Ord(G1, 2)| − 1

2
;

since

|Ord(G1, 2)| =
|Ord(G, 2)| − 1

2
,

we have

|A1| =
n

2κ
− |Ord(G, 2)|+ 1

4
,

with which

|A| = κ− 2

4
· n
κ
+

n

2κ
− |Ord(G, 2)|+ 1

4
=

n− |Ord(G, 2)| − 1

4
.

Therefore, we have

τ±(G, [1, 3]) ≥





n
4 if κ is divisible by 4,

n−|Ord(G,2)|−1
4 if κ is even but not divisible by 4,

(
1 + 1

p

)
n
6 if κ is odd, has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor,

⌊
κ
6

⌋
· n
κ otherwise.

In [24], Bajnok and Ruzsa showed that, in the first three cases, equality holds; for the
last case, they only proved that τ±(G, [1, 3]) cannot be more than

⌊
n
6

⌋
. Namely, we have

the following result.
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Theorem F.40 (Bajnok and Ruzsa; cf. [24]) As usual, let κ be the exponent of G. We
have

τ±(G, [1, 3]) =





n
4 if κ is divisible by 4,

n−|Ord(G,2)|−1
4 if κ is even but not divisible by 4,

(
1 + 1

p

)
n
6 if κ is odd, has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor;

furthermore, if κ (iff n) is odd and has no prime divisors congruent to 5 mod 6, then
⌊κ
6

⌋ n
κ
≤ τ±(G, [1, 3]) ≤ n

6
.

As a consequence, we see that Theorem F.40 has settled the problem of finding the
maximum size of a 3-independent set in cyclic groups:

Theorem F.41 (Bajnok and Ruzsa; cf. [24]) For the cyclic group G = Zn we have

τ±(Zn, [1, 3]) =





⌊
n
4

⌋
if n is even,

(
1 + 1

p

)
n
6 if n is odd, has prime divisors congruent to 5 mod 6,

and p is the smallest such divisor,

⌊
n
6

⌋
otherwise.

As a corollary to Theorem F.41, we get the following.

τ±(Zn, [1, 3]) =





1 if n = 4, 5, 6, 7, 9;
2 if n = 8, 10, 11, 13;
3 if n = 12, 14, 15, 17, 19, 21;
4 if n = 16, 18, 23, 27;
5 if n = 20, 22, 25, 29, 31;
6 if n = 24, 26, 33, 37, 39.

(Entries in boldface mark tight 3-independent sets, as we will explain shortly.)
Since the publication of [24], Green and Ruzsa succeeded in determining the maximum

size of a sum-free set in any G:

µ(G, {1, 2}) = v1(κ, 3) ·
n

κ

(cf. Theorem G.18). We can use this result to determine τ±(G, [1, 3]) when κ is only divisible
by primes congruent to 1 mod 6. Indeed, since a 3-independent set A must be asymmetric:
A ∩ −A must be empty. Furthermore, the set A ∪ −A has to be sum-free, so we get

2|A| = |A ∪ −A| ≤ v1(κ, 3) ·
n

κ
=
⌊κ
3

⌋
· n
κ
=

κ− 1

3
· n
κ
,

and thus

|A| ≤ κ− 1

6
· n
κ

(note that (κ− 1)/3 is an even integer). Since in our case
⌊κ
6

⌋ n
κ
=

κ− 1

6
· n
κ

as well, from the last case of Theorem F.40 we get the following:
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Corollary F.42 Suppose that G has exponent κ and that every prime divisor of κ is con-
gruent to 1 mod 6. Then

τ±(G, [1, 3]) =
κ− 1

6
· n
κ
.

This leaves only one case open:

Problem F.43 Suppose that G is not cyclic and that its exponent is the product of a
positive integer power of 3 and perhaps some primes that are congruent to 1 mod 6. Find
τ±(G, [1, 3]).

For example, by Theorem F.40 we see that τ±(Z2
9, [1, 3]) is at least 9 and at most 13;

according to Laza (see [138]), we have τ±(Z2
9, [1, 3]) ≥ 11 as the set

A = {(0, 1), (1, 0), (1, 3), (1, 6), (2, 1), (2, 4), (2, 7), (4, 1), (4, 4), (4, 7), (6, 1)}

is 3-independent in Z2
9. (It is worth noting that [1, 3]±A contains all nonzero elements of

the group.)

For t ≥ 4, exact results seem more difficult. With the help of a computer, Laza (see
[138]) generated the following values:

τ±(Zn, [1, 4]) =





1 if n = 5, 6, . . . , 12;
2 if n = 13, 14, . . . , 26;
3 if n = 27, 28, . . . , 45, and n = 47;
4 if n = 46, n = 48, 49, . . . , 68, and n = 72, 73;
5 if n = 69, 70, 71, and n = 74, 75, . . . , 102;

τ±(Zn, [1, 5]) =





1 if n = 6, 7, . . . , 17, and n = 19, 20;
2 if n = 18, n = 21, 22, . . . , 37, n = 39, 40, 41, n = 43, 44, 45, 47;
3 if n = 38, 42, 46, n = 48, 49, . . . , 69,

n=71, 72, 73, 75, 76, 77, 79, 81, 83, 85, 87;

τ±(Zn, [1, 6]) =





1 if n = 7, 8, 9, . . . , 24;
2 if n = 25, 26, 27, . . . , 69;
3 if n = 70, 71, . . . , 151, and n = 153, 154, 155, 158, 159, 160.

(Values marked in boldface will be discussed shortly.)

The following two problems seem difficult, but even partial answers (those for certain
special values of n) would be very interesting:

Problem F.44 Find τ±(Zn, [1, 4]) (at least for some infinite family of n values).

Problem F.45 Find τ±(Zn, [1, 5]) (at least for some infinite family of n values).

It is also interesting to investigate t-independent sets from the opposite viewpoint: given
a nonnegative integer m and positive integer t, what are the possible groups G for which
τ±(G, [1, t]) = m?

The answer for m = 0 is clear and has already been discussed. For m = 1 we can see
from Laza’s work [138] that, in the cyclic group Zn, we have



240 CHAPTER F. ZERO-SUM-FREE SETS

τ±(Zn, [1, t]) = 1 ⇔





n = 3− 4 if t = 2;
n = 4− 7, 9 if t = 3;
n = 5− 12 if t = 4;
n = 6− 17, 19− 20 if t = 5;
n = 7− 24 if t = 6;
n = 8− 31, 33, 35 if t = 7;
n = 9− 40 if t = 8;
n = 10− 49, 51− 53 if t = 9;
n = 11− 60 if t = 10.

We can prove the following:

Proposition F.46 As usual, let G be an abelian group of order n and exponent κ. Let
t ≥ 2 be an integer.

1. We have τ±(G, [1, t]) = 0 if, and only if, κ ≤ t.

2. Set bt =
⌊
t2/2

⌋
+ t.

(a) Suppose that t is even. Then τ±(Zn, [1, t]) = 1 if, and only if, t + 1 ≤ n ≤ bt.
In particular, the set {1} is t-independent in Zn for n ≥ t + 1, and the set
{t/2, t/2 + 1} is t-independent in Zn for n ≥ bt + 1.

(b) Suppose that t is odd.

i. If t + 1 ≤ n ≤ bt, then τ±(Zn, [1, t]) = 1; in particular, the set {1} is t-
independent in Zn.

ii. (Miller; cf. [157]) If τ±(Zn, [1, t]) = 1, then t + 1 ≤ n ≤ bt + (t + 1)/2;
in particular, the set {(t + 1)/2, (t + 3)/2} is t-independent in Zn for n ≥
bt + (t+ 3)/2.

iii. If n = bt + 1, then τ±(Zn, [1, t]) = 2; in particular, the set {1, t} is t-
independent in Zn.

iv. (Miller; cf. [157]) If t is congruent to 3 mod 4, n is even, and n ≥ bt +
1, then τ±(Zn, [1, t]) ≥ 2; in particular, the set {(t − 1)/2, (t + 3)/2} is t-
independent in Zn.

v. (Miller; cf. [157]) If t is congruent to 1 mod 4, n is congruent to 2 mod 4,
and n ≥ bt + 1, then τ±(Zn, [1, t]) ≥ 2; in particular, the set {(t− 3)/2, (t+
5)/2} is t-independent in Zn.

Some of these statements we have already seen: the set {1} is clearly t-independent in
Zn for n ≥ t+ 1, and Proposition F.52 implies that

• if there is a t-independent set of size 1 in Zn, then n ≥ t+ 1, and

• if there is a t-independent set of size 2 in Zn, then n ≥
⌊
t2/2

⌋
+ t+ 1.

To complete the proof, we need to verify that the given two-element sets are indeed t-
independent in their corresponding groups—for that, see page 358. We can observe that,
when t ≡ 1 mod 4, then bt + 1 ≡ 2 mod 4, so statements (iv) and (v) together imply that
if n = bt + 1, then τ±(Zn, [1, t]) = 2—cf. statement (iii).

We should point out that Proposition F.46 does not completely determine all n for which
τ±(Zn, [1, t]) = 1, although for t ≤ 10 it rules out all n values other than those listed above.
For example, for t = 9, n ≤ 9 and n ≥ 55 are ruled out by statement 2 (b) (ii), n = 50 is
ruled out by both 2 (b) (iii) and (v), and n = 54 is ruled out by 2 (b) (v).

We offer the following open problems.
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Problem F.47 Examine the remaining cases of statement 2 (b) of Proposition F.46 to
determine, for each odd value of t, all values of n for which τ±(Zn, [1, t]) = 1.

Problem F.48 For each even value of t, find all values of n for which τ±(Zn, [1, t]) = 2.

Problem F.49 For each odd value of t, find all values of n for which τ±(Zn, [1, t]) = 2.

The general problem for cyclic groups is as follows:

Problem F.50 For each value of t and each m ≥ 3, find all values of n for which
τ±(Zn, [1, t]) = m.

For noncyclic groups, we offer:

Problem F.51 For each value of t, find all noncyclic groups for which τ±(G, [1, t]) = 1.

With exact values few and far between, we are also interested in some good bounds for
the value of τ±(G, [1, t]). We can derive an upper bound for τ±(G, [1, t]) as follows. Since
the case t = 1 is trivial, we assume that t ≥ 2.

When t is even, we already pointed out in Section C.2.2 that A = {a1, . . . , am} (with
|A| = m) being t-independent is equivalent to

|[0, t
2 ]±A| = |Zm([0, t

2 ])|

where
Zm([0, t

2 ])) = {(λ1, . . . , λm) ∈ Zm | |λ1|+ · · ·+ |λm| ≤ t
2}.

Therefore, for even values of t, if a set A of size m is t-independent in G, then

|Zm([0, t
2 ])| ≤ n

must hold. Recalling from Section 2.5 that

|Zm([0, t
2 ])| = a(m, t/2) =

∑

i≥0

(
m

i

)(
t/2

i

)
2i,

we thus must have

a(m, t/2) =
∑

i≥0

(
m

i

)(
t/2

i

)
2i ≤ n.

If t is odd, we similarly must have

|[0, t−1
2 ]±A| = |Zm([0, t−1

2 ])|;

in addition, signed sums
λ1a1 + · · ·+ λmam

corresponding to the index set

Zm( t+1
2 )1+ = {(λ1, . . . , λm) ∈ Zm | λ1 ≥ 1, λ1 + |λ2|+ · · ·+ |λm| = t+1

2 }

must be pairwise distinct and distinct from [0, t
2 ]±A as well. Therefore, for odd values of t,

if a set A of size m is t-independent in G, then

|Zm([0, t−1
2 ])|+ |Zm( t+1

2 )1+| ≤ n
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must hold.
Of course, there is nothing special about using λ1 in the argument above—we could

have replaced λ1 by any one of the indices. It is important to note that, while our condition
above for the case when t is even is equivalent for A to be t-independent, for odd t we only
have a necessary condition: we could, in theory, still have, say, t+1

2 · a2 equal one of the
elements of [0, t−1

2 ]±A, preventing A from being t-independent.
Recalling from Section 2.5 that

|Zm( t+1
2 )1+| = a(m− 1, (t− 1)/2) =

∑

i≥0

(
m− 1

i

)(
(t− 1)/2

i

)
2i,

we must have

a(m, (t− 1)/2) + a(m− 1, (t− 1)/2) =
∑

i≥0

[(
m

i

)
+

(
m− 1

i

)](
(t− 1)/2

i

)
2i ≤ n.

Note also that by Proposition 2.1, we can rewrite the left-hand side as

a(m, (t− 1)/2) + a(m− 1, (t− 1)/2) = c(m, (t+ 1)/2) =
∑

i≥0

(
m− 1

i− 1

)(
(t+ 1)/2

i

)
2i.

In summary, we have the following:

Proposition F.52 Suppose that t ≥ 2 and that A is a t-independent set of size m in a
group G of order n. Then

n ≥





a(m, t/2) =
∑

i≥0

(
m
i

)(
t/2
i

)
2i if t is even,

c(m, (t+ 1)/2) =
∑

i≥0

(
m−1
i−1

)(
(t+1)/2

i

)
2i if t is odd.

Proposition F.52 gives a lower bound for τ±(G, [1, t]). For example, we have

τ±(G, [1, 2]) ≤
⌊
n− 1

2

⌋
,

τ±(G, [1, 3]) ≤
⌊n
4

⌋
,

τ±(G, [1, 4]) ≤
⌊√

2n− 1− 1

2

⌋
,

τ±(G, [1, 5]) ≤
⌊√

n− 2

2

⌋
;

the bound is less explicit for t ≥ 6, but we certainly have

τ±(G, [1, t]) ≤
⌊
1

2
s
√
s! · n+ s

⌋
,

where s = ⌊t/2⌋. In particular:

Corollary F.53 For every t ≥ 2 there is a positive constant Ct so that

τ±(G, [1, t]) ≤ Ct · s
√
n,

where s = ⌊t/2⌋.
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For a lower bound, Bajnok and Ruzsa proved the following:

Theorem F.54 (Bajnok and Ruzsa; cf. [24]) For every t ≥ 2 there is a positive con-
stant ct so that

τ±(Zn, [1, t]) ≥ ct · s
√
n,

where s = ⌊t/2⌋.

Letting
c · g1(n) . f(n) . C · g2(n)

mean that for every real number ǫ > 0, if n is large enough (depending on ǫ), then

(c− ǫ) · g1(n) ≤ f(n) ≤ (C + ǫ) · g2(n),

we can combine Corollary F.53 and Theorem F.54 to write

ct · s
√
n . τ±(Zn, [1, t]) . Ct · s

√
n.

What can we say about the values of ct and Ct? From Proposition F.38 we see that we
may take c2 = C2 = 1/2, and therefore

lim
τ±(Zn, [1, 2])

n
= 1/2.

From Theorem F.41, we can have c3 = 1/6 and C3 = 1/4; we also see that both of these
are tight as τ±(Zn, [1, 3]) approaches both n/6 and n/4 infinitely often and thus

lim
τ±(Zn, [1, 3])

n

does not exist.
For t = 4 and t = 5 we have:

Theorem F.55 (Bajnok and Ruzsa; cf. [24]) We have

1/
√
8 · √n . τ±(Zn, [1, 4]) . 1/

√
2 · √n

and
1/

√
15 · √n . τ±(Zn, [1, 5]) . 1/

√
2 · √n.

The following problems seem intriguing:

Problem F.56 Find (if possible) a value higher than 1/
√
8 for c4 and one lower than 1/

√
2

for C4.

Problem F.57 Find (if possible) a value higher than 1/
√
15 for c5 and one lower than

1/
√
2 for C5.

In [24] we find the following conjectures:

Conjecture F.58 (Bajnok and Ruzsa; cf. [24]) We have

lim
τ±(Zn, [1, 4])√

n
= 1/

√
3,

but

lim
τ±(Zn, [1, 5])√

n

does not exist.
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Note that this conjecture, if true, would imply that one can take c4 = C4 but not c5 = C5.
While we see that for a given t ≥ 3, τ±(Zn, [1, t]) is not a monotone function of n, we

may find that the subsequence of even or odd n values is monotonic:

Problem F.59 Decide whether for each even value of t (but at least for t = 4), the sequence
τ±(Zn, [1, t]) is monotone for odd values of n.

Problem F.60 Decide whether for each odd value of t (but at least for t = 5), the sequence
τ±(Zn, [1, t]) is monotone for even values of n.

We are also interested in 4-independent and 5-independent sets in noncyclic groups:

Problem F.61 Determine the value of τ±(G, [1, 4]) for noncyclic groups G.

Problem F.62 Determine the value of τ±(G, [1, 5]) for noncyclic groups G.

We close this section with a particularly intriguing question: when can the size of t-
independent sets achieve the maximum possible value allowed by the upper bound of
Proposition F.52? (We mention that for t = 1 the answer is trivial: the set G \ {0} is
the maximum size 1-independent set in G.) For t ≥ 2, we are thus interested in classifying
all tight t-independent sets, that is, t-independent sets of size m with n = b(m, t) where

b(m, t) =





a(m, t/2) =
∑

i≥0

(
m
i

)(
t/2
i

)
2i if t is even,

c(m, (t+ 1)/2) =
∑

i≥0

(
m−1
i−1

)(
(t+1)/2

i

)
2i if t is odd.

The values of b(m, t) can be tabulated for small values of m and t:

b(m,t) t=2 t=3 t=4 t=5 t=6 t=7 t=8

m=1 3 4 5 6 7 8 9
m=2 5 8 13 18 25 32 41
m=3 7 12 25 38 63 88 129
m=4 9 16 41 66 129 192 321
m=5 11 20 61 102 231 360 681
m=6 13 24 85 146 377 608 1289

Cases where there exists a group of size b(m, t) with a known tight t-independent set
are marked with boldface. The following proposition exhibits tight t-independent sets for
all known parameters.

Proposition F.63 Let m and t be positive integers, t ≥ 2, and let G be an abelian group
of order n and exponent κ.

1. If n = 2m+1, then G \ {0} can be partitioned into parts K and −K, and both K and
−K are tight 2-independent sets in G. For example, the set {1, 2, . . . ,m} is a tight
2-independent set in Zn.

2. If n = 4m and κ is divisible by 4, then the set

{(g, 2i+ 1) | g ∈ G1, i = 0, 1, . . . , κ/4− 1}

is a tight 3-independent set in G = G1 × Zκ. For example, the set {1, 3, . . . , 2m− 1}
is a tight 3-independent set in Zn.
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3. If n = t+ 1, then the set {1} is a perfect t-independent set in Zn.

4. Let n = ⌊t2/2⌋+ t+ 1.

• If t is even, then the set {t/2, t/2 + 1} is a tight t-independent set in Zn.

• If t is odd, then the set {1, t} is a tight t-independent set in Zn.

• The set {(1, 1), (1, 3)} is a tight 5-independent set in Z3 × Z6.

5. The set {1, 7, 11} is a tight 5-independent set in Z38.

Each part of Proposition F.63, other than the two specific examples (which can be easily
verified by hand or on a computer), is either obvious or follows from previously discussed
results. Note that the sets given in Proposition F.63 are not unique.

We could not find tight independent sets for t ≥ 4 and m ≥ 3 for any n other than
the seemingly sporadic example listed last. It might be an interesting problem to find and
classify all tight independent sets.

Problem F.64 For each positive integer n, find all tight t-independent sets in Zn of size
2.

Problem F.65 For any given noncyclic group G, find all tight t-independent sets in G of
size 2.

Problem F.66 Find tight t-independent sets in G = Zn of size m for some values t ≥ 4
and m ≥ 3 other than for t = 5 and n = 38, or prove that such tight independent sets do
not exist.

Problem F.67 Find tight t-independent sets in noncyclic groups of size m for values t ≥ 4
and m ≥ 2 (cf. the example of Z3 × Z6 above).

Finally, a more general problem.

Problem F.68 For each given value of n, find all values of m and t for which the group
Zn has a t-independent set of size m.

Proposition F.52 puts a necessary condition on n, m, and t, but that inequality is not
necessarily sufficient.

F.2.3 Arbitrary number of terms

Here we ought to consider

τ±(G,H) = max{|A| | A ⊆ G, 0 6∈ H±A}

for the case when H is the set of all nonnegative or all positive integers. However, as we have
already mentioned, we have τ±(G,H) = 0 whenever H contains a multiple of the exponent
of the group (including 0). Thus, there are no “infinitely independent” sets in a finite group.
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F.3 Restricted sumsets

In this section we investigate the maximum possible size of a weakly zero-H-sum-free set,
that is, the quantity

τ (̂G,H) = max{|A| | A ⊆ G, 0 6∈ H Â}
(if there is no subset A for which 0 6∈ H Â, we let τ (̂G,H) = 0). Clearly, we always have
τ (̂G,H) = 0 when 0 ∈ H ; however, when 0 6∈ H and n ≥ 2, then τ (̂G,H) ≥ 1: for any
a ∈ G \ {0}, for the one-element set A = {a} we obviously have 0 6∈ H Â.

It is important to note that Proposition F.2 does not carry through for τ (̂G,H): for
example, {1} is trivially weakly zero-N-sum-free in Z5, but {1} × Z5 is not weakly zero-N-
sum-free in Z2

5 since

(1, 0) + (1, 1) + (1, 2) + (1, 3) + (1, 4) = (0, 0).

We consider three special cases: when H consists of a single positive integer h, when H
consists of all positive integers up to some value t, and when H = N. As noted above, we
have τ (̂G,H) = 0 whenever 0 ∈ H , so the cases when H = [0, t] or H = N0 yield no weakly
zero-sum-free sets.

F.3.1 Fixed number of terms

The analogue of a zero-h-sum-free set for restricted addition is called a weak or weakly
zero-h-sum-free set. In particular, in this section we investigate, for a given group G and
positive integer h, the quantity

τ (̂G, h) = max{|A| | A ⊆ G, 0 6∈ ĥ A},

that is, the maximum size of a weak zero-h-sum-free subset of G.
Since we trivially have τ (̂G, h) = n for every h ≥ n+ 1, we assume below that h ≤ n.
We start with the following obvious bounds:

Proposition F.69 When χ̂ (G, h) exists, then we have

τ(G, h) ≤ τ (̂G, h) ≤ χ̂ (G, h)− 1.

As before, we can easily verify the following:

Proposition F.70 In a group of order n, we have

τ (̂G, 1) = n− 1

and

τ (̂G, 2) =
n+ |Ord(G, 2)|+ 1

2
;

as a special case, for the cyclic group of order n we have

τ (̂Zn, 2) =

⌊
n+ 2

2

⌋
.

Next, we consider the other end of the spectrum: h = n. As Blyler in ([40]) observed, in
Zn we have

0 + 1 + · · ·+ (n− 1) =
(n− 1) · n

2





6= 0 if n even;

= 0 if n odd,
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and thus

τ (̂Zn, n) =





n if n even;

n− 1 if n odd.

More generally, suppose that G has exponent κ and G ∼= G1 × Zκ. The elements of
G1 × Zκ sum to

∑

g∈G1

(
κ · g,

κ−1∑

i=0

i

)
=
∑

g∈G1

(
0,

κ−1∑

i=0

i

)
=

(
0, |G1| ·

κ−1∑

i=0

i

)
=

(
0, |G1| ·

(κ− 1) · κ
2

)
.

Here the second component is zero if, and only if, |G1| = n/κ is even or if κ is odd. Therefore:

Proposition F.71 Suppose that G has order n and exponent κ. Then

τ (̂G,n) =





n if κ is even and n/κ is odd;

n− 1 otherwise.

We can also evaluate τ (̂G,n − 1). Let g ∈ G denote the sum of all n elements of G.
Then G \ {g} is not a weak zero-(n − 1)-sum-free set, since its elements add to zero, so
τ (̂G,n− 1) ≤ n− 1. On the other hand, for every g′ ∈ G \ {g}, the set G \ {g′} is a weak
zero-(n− 1)-sum-free set, since its elements add to g− g′ 6= 0, so τ (̂G,n− 1) ≥ n− 1. Thus:

Proposition F.72 For every group G of order n we have τ (̂G,n− 1) = n− 1.

Furthermore, Bajnok and Edwards determined the value of τ (̂G, h) for every G in a
wide range of h values:

Theorem F.73 (Bajnok and Edwards; cf. [21]) For every abelian group G of order n
and all

n+ |Ord(G, 2)| − 1

2
≤ h ≤ n− 2,

we have τ (̂G, h) = h+ 1, with the following exceptions:

• τ (̂G,n − 3) = n − 3 when κ = 3 (that is, G is isomorphic to an elementary abelian
3-group);

• τ (̂G,n− 2) = n− 2 when |Ord(G, 2)| = 1 and κ ≡ 2 mod 4.

Note that Theorem F.73 does not apply to elementary abelian 2-groups; for these groups
we have the value of τ (̂G, h) for all h ≥ n/2− 1:

Theorem F.74 (Bajnok and Edwards; cf. [21]) For every positive integer r we have

τ (̂Zr
2, h) =





h+ 2 if 2r−1 − 1 ≤ h ≤ 2r − 5 or h = 2r − 3;

h if h = 2r − 4.

For the elementary abelian 2-group, we also have the value τ (̂Zr
2, 3). We readily have

two different weakly zero-3-sum-free sets of size 2r−1 + 1:

• the zero element together with all elements with last component 1 and

• the zero element together with all elements with an odd number of 1 components.
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Therefore, τ (̂Zr
2, 3) is at least 2

r−1+1. On the other hand, by Proposition F.69 and Theorem
E.60, τ (̂Zr

2, 3) is at most 2r−1 + 1. Therefore:

Theorem F.75 For all positive integers r we have τ (̂Zr
2, 3) = 2r−1 + 1.

(Edwards proved Theorem F.75 independently in [71].)
Comparing the results thus far in this section to the corresponding results in Section

E.3.1, we may get the impression that τ (̂G, h) and χ̂ (G, h) are always very close to each
other, and in fact, tend to only differ by one (cf. Proposition F.69). Our next example shows
that, in fact, τ (̂G, h) and χ̂ (G, h) can be arbitrarily far from one another.

Suppose that A is a weak zero-4-sum-free set in Zr
2; we will show that it is then a weak

Sidon set as well. Indeed, if
a1 + a2 = a3 + a4

for some elements a1, a2, a3, a4 ∈ Zr
2 with a1 6= a2 and a3 6= a4, then we also have

a1 + a2 + a3 + a4 = 0,

which implies that at least two of the elements are equal, but that leads to {a1, a2} =
{a3, a4}. We can show the same way that the converse holds as well, and therefore:

Proposition F.76 A subset of the elementary abelian 2-group Zr
2 is a weak zero-4-sum-free

set if, and only if, it is a weak Sidon set. Consequently,

τ (̂Zr
2, 4) = σ (̂Zr

2, 2).

Now recall that, by Proposition C.56, if an m-subset of Zr
2 is a weak Sidon set, then

2r ≥
(
m

2

)
;

consequently,
τ (̂Zr

2, 4) ≤ 2(r+1)/2 + 1.

On the other hand, we have

χ̂ (Zr
2, 4) ≥ χ(Zr

2, 4) = v1(2
r, 4) + 1 = 2r−1 + 1.

Therefore:

Proposition F.77 We have

lim
r→∞

(χ̂ (Zr
2, 4)− τ (̂Zr

2, 4)) = ∞.

We have the following open questions:

Problem F.78 For positive integer r and each h with 3 ≤ h ≤ 2r−1 − 2, find τ (̂Zr
2, h).

Problem F.79 For each abelian group G of order n and each h with

3 ≤ h ≤ n+ |Ord(G, 2)| − 3

2
,

find τ (̂G, h).

We can develop some useful lower bounds for τ (̂G, h) by constructing explicit weak
zero-h-sum-free sets as follows. We start by considering cyclic groups. The most general
result we have thus far is as follows:
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Proposition F.80 For positive integers n and h ≤ n, let r be the nonnegative remainder
of (h2 − h− 2)/2 when divided by gcd(n, h). We have

τ (̂Zn, h) ≥
⌊
n+ h2 − r − 2

h

⌋
.

We should note that (h2 − h− 2)/2 is an integer for all h. For the proof, see page 360.
Since r is at most gcd(n, h)− 1, we have the following immediate consequence:

Corollary F.81 For all positive integers n and h ≤ n,

τ (̂Zn, h) ≥
⌊
n+ h2 − gcd(n, h)− 1

h

⌋
.

Furthermore, when n is divisible by h, then gcd(n, h) = h; if h is even, then

h2 − h− 2

2
=

(
h

2
− 1

)
· h+

h− 2

2
,

so r = (h− 2)/2, and we get the following:

Corollary F.82 If h is even and n is divisible by h, then

τ (̂Zn, h) ≥
n

h
+ h− 1.

Note that when n is divisible by h, then

⌊
n+ h2 − gcd(n, h)− 1

h

⌋
=

n

h
+ h− 2,

so Corollary F.82 is stronger than Corollary F.81 in this case.
We can do very slightly better when n is divisible by h2 and h > 2. This was first

observed and proved by Yager-Elorriaga in [200] for h = 3 and h = 4; we provide a general
proof.

Proposition F.83 For positive integers n and h ≥ 3 for which n is divisible by h2 we have

τ (̂Zn, h) ≥
n

h
+ h.

For the proof, see page 361.
There are some additional instances where we can do better—we present these (rather

easy) results below.
First, we observe that the set

A = {±1,±2, . . . ,±(h+ 1)/2}

is weakly zero-h-sum-free when h is odd and n ≥ h + 2; indeed, we have ĥ A = A. The
similar, but slightly less obvious set

A = {0, 1,±2,±3, . . . ,±h/2, h/2 + 1}

works when h is even and n ≥ h+ 3, since in this case we have

ĥ A = {1, 2, . . . , h/2 + 2, h/2 + 4, h/2 + 5, h+ 2} .

This gives the following.
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Proposition F.84 Suppose that n ≥ h + 2 when h is odd and n ≥ h + 3 when h is even.
Then τ (̂Zn, h) ≥ h+ 1.

Another simple construction applies when n is even and h is odd: clearly, the set

{1, 3, 5, . . . , n− 1}

is then weakly zero-h-sum-free. As a generalization, assume that n is divisible by some
positive integer d, and that, for some nonnegative integer k, none of h, h + 1, . . . , h + k is
divisible by d. Consider then the set A = A1 ∪A2 where

A1 = {1, d+ 1, 2d+ 1, . . . , (n/d− 1)d+ 1}

and

A2 = {2, d+ 2, 2d+ 2, . . . , (k − 1)d+ 2} .

To prove that A is weakly zero-h-sum-free, consider an element x of ĥ A where h1 terms
come from A1 and h2 terms come from A2. This sum is then of the form

x = (q1d+ h1) + (q2d+ 2h2) = (q1 + q2)d+ h+ h2

for some integers q1 and q2. Since h ≤ h+h2 ≤ h+k, by assumption, h+h2 is not divisible
by d, and therefore x is not divisible by d. But then it cannot be divisible by n either,
proving that 0 6∈ ĥ A. We just proved the following:

Proposition F.85 Let n and h ≤ n be positive integers, and let d be a positive divisor of
n for which none of h, h+ 1, . . . , h+ k is divisible by d. We then have

τ (̂Zn, h) ≥
n

d
+ k.

The following result is not difficult to establish either. For fixed positive integers n1, n2,
and h, consider the set

A = {0, 1, 2, . . . , ⌊n1/h⌋}

in Zn1
and any weakly zero-h-sum-free set B in Zn2

. We show that

A×B = {(a, b) | a ∈ A, b ∈ B}

is weakly zero-h-sum-free in Zn1
× Zn2

.

Indeed, if the sum of h elements (a1, b1), . . . , (ah, bh) of A×B were to equal (0, 0), then,
since

0 ≤ a1 + · · ·+ ah ≤ h · ⌊n1/h⌋ ≤ n1,

either a1 = · · · = ah = 0 or (n1 is divisible by h and) a1 = · · · = ah = n1/h. But if all first
coordinates are equal, then all second coordinates must be distinct, but that would mean
that we have h distinct elements in B that sum to 0 in Zn2

, which is a contradiction. Thus,
we proved the following result.

Proposition F.86 For positive integers n1, n2, and h we have

τ (̂Zn1
× Zn2

, h) ≥ (⌊n1/h⌋+ 1) · τ (̂Zn2
, h).
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Note that Proposition F.86 applies even to a cyclic group, as long as its order has more
than one prime divisor.

Relying on a computer program, Yager-Elorriaga in [200] exhibited the values of τ (̂Zn, h)
for h ∈ {3, 4} and all n ≤ 30; Blyler in [40] extended this to h ≤ 10—we provide these data
in the table below. Most entries are in agreement with the highest of the values that Propo-
sitions F.80, F.83, F.84, F.85, or F.86 yield. (None of these propositions is superfluous.) For
some entries this is not the case; we marked these entries in the table by a * and listed them
here with an exemplary set.

τ (̂Z10, 3) = 6 {1, 2, 4, 6, 8, 9}
τ (̂Z15, 5) = 8 {1, 2, 4, 5, 7, 10, 11, 14}
τ (̂Z15, 6) = 8 {0, 1, 2, 3, 4, 6, 12, 13}
τ (̂Z27, 6) = 10 {0, 2, 4, 7, 9, 11, 13, 18, 20, 22}
τ (̂Z21, 7) = 9 {0, 1, 2, 3, 4, 5, 7, 8, 9}
τ (̂Z20, 8) = 10 {0, 1, 2, 3, 4, 5, 6, 8, 9, 18}
τ (̂Z28, 8) = 11 {0, 1, 2, 3, 4, 5, 6, 8, 24, 25, 26}
τ (̂Z21, 9) = 11 {0, 1, 2, 3, 4, 5, 6, 7, 10, 12, 13}
τ (̂Z27, 9) = 12 {0, 1, 2, 3, 9, 10, 11, 12, 18, 19, 20, 21}
τ (̂Z25, 10) = 12 {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 15}
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n τ (̂Zn, 3) τ (̂Zn, 4) τ (̂Zn, 5) τ (̂Zn, 6) τ (̂Zn, 7) τ (̂Zn, 8) τ (̂Zn, 9) τ (̂Zn, 10)

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 2 3 3 3 3 3 3 3
4 3 4 4 4 4 4 4 4
5 4 4 4 5 5 5 5 5
6 4 4 5 6 6 6 6 6
7 4 5 6 6 6 7 7 7
8 5 5 6 7 7 8 8 8
9 6 5 6 7 8 8 8 9
10 6∗ 5 6 7 8 8 9 10
11 6 6 6 7 8 9 10 10
12 6 6 7 7 8 9 10 10
13 6 6 7 7 8 9 10 11
14 7 6 7 8 8 9 10 11
15 8 7 8∗ 8∗ 8 9 10 11
16 8 8 8 8 9 9 10 11
17 8 7 8 8 9 9 10 11
18 9 7 9 8 9 9 10 11
19 8 8 8 8 9 10 10 11
20 10 8 10 9 10 10∗ 11 11
21 8 8 8 8 9∗ 10 11∗ 11
22 11 8 11 9 11 10 11 12
23 10 9 9 9 10 10 11 12
24 12 9 12 9 12 10 12 12
25 10 9 10 9 10 10 11 12∗
26 13 9 13 10 13 10 13 12
27 12 10 10 10∗ 10 11 12∗ 12
28 14 10 14 10 14 11∗ 14 12
29 12 10 10 10 10 11 12 12
30 15 11 15 10 15 11 15 12

After these lower bounds, we mention some exact results. First, the value of τ (̂Zp, h)
for p prime immediately follows from combining Propositions F.69 and F.80 and Theorem
E.65:

Theorem F.87 Suppose that p is a positive prime and 1 ≤ h ≤ p− 1. We then have

τ (̂Zp, h) =

⌊
p− 2

h

⌋
+ h.

Next, we have:
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Theorem F.88 If n ≥ 12 is even and 3 ≤ h ≤ n− 1 is odd, then

τ (̂Zn, h) = χ̂ (Zn, h)− 1 =





n− 1 if h = 1;

n/2 if 3 ≤ h ≤ n/2− 2;

n/2 + 1 if h = n/2− 1;

h+ 1 if n/2 ≤ h ≤ n− 2;

n− 1 if h = n− 1.

The proof can be found on page 362.
We pose the following problems.

Problem F.89 Find the exact formulas for τ (̂Zn, 3) and τ (̂Zn, 5) for all odd n.

Problem F.90 Find τ (̂Zn, 4).

Regarding noncyclic groups, we can use the same argument as the one provided for
Theorem F.12 to prove the following:

Theorem F.91 If h is relatively prime to n, then

τ (̂G, h) = χ̂ (G, h)− 1.

Let us now turn to elementary abelian groups. We have already considered the elemen-
tary abelian 2-group Zr

2, so we move on to the elementary abelian 3-groups. Pursuing the
determination of τ (̂Zr

3, 3) is attracting much attention as it is related to finite geometry.
For example:

• τ (̂Zr
3, 3) is the maximum size of a cap (a collection of points without any three being

collinear) in the affine space AG(r, 3), and

• 2 · τ (̂Zr
3, 3) is the maximum number of points in the integer lattice Zr so that the

centroid of no three of them is a lattice point.

We elaborated more on these questions in an “appetizer” section, see page 56.
The following table summarizes all values of τ (̂Zr

3, 3) that are known (see [97] by Gao
and Thangadurai and its references for the first five entries and [175] by Potechin for the
last):

r 1 2 3 4 5 6
τ (̂Zr

3, 3) 2 4 9 20 45 112

We also know that the sets of maximum size for r ≤ 6 are essentially unique.
Even good bounds are difficult to achieve for τ (̂Zr

3, 3)—we summarize what is currently
known. Starting with lower bounds, observe that the set {0, 1}r is clearly weakly zero-3-
sum-free in Zr

3, hence

τ (̂Zr
3, 3) ≥ 2r.

A better and very nice lower bound can be developed as follows. For i = 0, 1, . . . , r − 1,
consider the collection of elements Ai of Z

r
3 that contain exactly i 0-components, and whose

remaining r − i components are all 1, and let −Ai denote the negatives of the elements of
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Ai (which contain exactly i 0-components, and whose remaining r − i components are all
2). (We will not use Ar.) Note that

|Ai ∪ −Ai| = 2 ·
(
r

i

)

for each i = 0, 1, . . . , r − 1. Bui (see [45]) proved the following interesting result: If I is a
subset of {0, 1, . . . , r − 1} for which the equation

i1 + i2 − i3 = r

has no solution with i1, i2, i3 ∈ I, then A = ∪i∈I(Ai∪−Ai) is weakly zero-3-sum-free. (Note
that we had to exclude r from I as i1 = i2 = i3 = r does yield a solution to the equation.)
For example, for r = 3, the index set I = {0, 1} yields no solution for

i1 + i2 − i3 = 3,

and, correspondingly, the set A = ±A0 ∪ ±A1, consisting of the eight elements

(1, 1, 1), (2, 2, 2), (0, 1, 1), (0, 2, 2), (1, 0, 1), (2, 0, 2), (1, 1, 0), (2, 2, 0),

is, as can be easily verified, weakly zero-3-sum-free in Z3
3: no three of them add to (0, 0, 0).

(The index set I = {0, 2} would work as well.)
We can select the index set I to maximize |A| by positioning it in the “middle” of

{0, 1, . . . , r − 1}. More precisely, if r = 3q + s with a remainder s = 0, 1, 2, then letting

I = {q + s− 1, q + s, q + s+ 1, . . . , 2q + s− 1}

works, since for any i,1 , i2, i3 ∈ I, we have i1 + i2 − i3 at most equal to

(2q + s− 1) + (2q + s− 1)− (q + s− 1) = 3q + s− 1 = r − 1 < r,

and it yields an optimal |A|. This results in the following lower bound:

Theorem F.92 (Bui; cf. [45]) Let r be any positive integer, and write r = 3q + s with
s = 0, 1, or 2. Then we have

τ (̂Zr
3, 3) ≥ 2 ·

2q+s−1∑

i=q+s−1

(
r

i

)
.

Theorem F.92 gives a remarkably good lower bound for the values of τ (̂Zr
3, 3); for

example, for r = 4, 5, and 6, we get that τ (̂Zr
3, 3) is at least 20 (the actual value, see

above), 40, and 82, respectively.
It would be very interesting to see if Bui’s idea generalizes to other settings; we pose the

following problems.

Problem F.93 Find a lower bound for τ (̂Zr
k, 3) for k ≥ 4.

Problem F.94 Find a lower bound for τ (̂Zr
3, h) for h ≥ 4.

Beyond the lower bound of Theorem F.92, Edel in [70], improving on a result of Frankl,
Graham, and Rödl in [84], has shown that there are infinitely many values of r for which

τ (̂Zr
3, 3) > 2.2r.
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(Note that the lower bound of Theorem F.92 is less than 2r+1.)
An easy upper bound can be derived from the fact that if A is weakly zero-3-sum-free

in Zr
3, then it is disjoint from

B = −a1 − (A \ {a1})
for any fixed a1 ∈ A. Indeed, if −a1 − ai = aj for some ai ∈ A \ {a1} and aj ∈ A, then
a1 + ai + aj = 0, so the fact that A is weakly zero-3-sum-free implies that these three
elements of A cannot be all distinct, but in Zr

3 this actually implies that all three are equal,
contradicting ai ∈ A \ {a1}. Since |B| = |A| − 1, we get

τ (̂Zr
3, 3) ≤ (3r + 1)/2.

This bound was improved to

τ (̂Zr
3, 3) ≤ (r + 1) · 3r/r2

by Bierbrauer and Edel in [39], where the upper bound is of approximate size 3r/r for large
r. More recently, Bateman and Katz proved in their lengthy paper [32] that we actually
have

lim
r→∞

τ (̂Zr
3, 3)/(3

r/r) = 0.

We offer the following very difficult problem:

Problem F.95 Find better lower and upper bounds for τ (̂Zr
3, 3).

The case when h equals the exponent κ of the group, as with the elementary abelian 3-
group and h = 3 above, has attracted much attention: the value of τ (̂G, κ)+1 (the smallest
integer such that each subset of G of that cardinality has a subset size κ whose elements
sum to 0) is called the Harborth constant of G. Below we summarize what is known about
τ (̂G, κ).

It is obvious that for every G of order n and exponent κ we have

κ− 1 ≤ τ (̂G, κ) ≤ n;

we can easily classify cases when either inequality becomes an equality as follows. For the
elementary abelian 2-group, we have τ (̂Zr

2, 2) = 2r by Proposition F.70. Furthermore, for
the cyclic group, by Proposition F.71, we have τ (̂Zn, n) = n if n is even and τ (̂Zn, n) = n−1
if n is odd. Next, we show that in all other cases,

κ ≤ τ (̂G, κ) ≤ n− 1.

Suppose that G ∼= G1 × Zκ, where κ ≥ 3 (so G is not isomorphic to an elementary abelian
2-group) and |G1| ≥ 2 (so G is not cyclic). To prove our claim, we need to find a subset
of size κ whose elements don’t sum to zero, and another subset of size κ whose elements
do sum to zero. Note that the elements in {0} × Zκ sum to zero if κ is odd, and don’t
sum to zero if κ is even. Furthermore, for any g ∈ G1 \ {0}, if κ is odd, then the elements
in {0} × (Zκ \ {0}) ∪ {(g, 0)} don’t sum to zero, and if κ is even, then the elements in
{0} × (Zκ \ {0, κ/2})∪ {(g, 1), (−g, κ− 1)} sum to zero. We thus proved:

Proposition F.96 For all groups G of order n and exponent κ we have

κ− 1 ≤ τ (̂G, κ) ≤ n.

Furthermore:
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• the lower bound holds if, and only if, G is cyclic of odd order, and

• the upper bound holds if, and only if, G is cyclic of even order or G is an elementary
abelian 2-group.

We should note that the claim regarding the upper bound appeared by Gao and Geroldinger
in [91] (see Lemma 10.1).

Regarding exact values, we first consider τ (̂Zr
k, k). As Kemnitz observed in [128], the

set
A = {0, 1}r−1 × {0, 1, . . . , k − 2},

that is, the collection of elements whose first r − 1 components are 0 or 1 and whose last
component is not k− 1, is zero-k-sum-free: indeed, the sum of k distinct elements in A can
only be the zero element of Zr

k if they agree in each of their first r − 1 components, but
then their last components must be distinct, which is impossible since we only have k − 1
choices. We can do slightly better when k is even: k distinct elements of

A = {0, 1}r−1 × Zk

again must share their first r − 1 components, but then their last components must be
distinct and thus add to

0 + 1 + · · ·+ k − 1 = k/2 6= 0

in Zk. Thus we get:

Proposition F.97 (Kemnitz; cf. [128]) For each k ≥ 2 and r ≥ 1 we have

τ (̂Zr
k, k) ≥





(k − 1) · 2r−1 if k odd;

k · 2r−1 if k even.

Note that, by Proposition F.71, equality holds for r = 1, and it has been conjectured
that equality holds for r = 2 as well:

Conjecture F.98 (Gao and Thangadurai; cf. [97]) For each k ≥ 2 we have

τ (̂Z2
k, k) =





2k − 2 if k odd;

2k if k even.

Kemnitz in [128] proved that Conjecture F.98 holds for k ∈ {2, 3, 5, 7}, and in [97] Gao
and Thangadurai established Conjecture F.98 for prime values of k with k ≥ 67; this has
been improved somewhat by Gao, Geroldinger, and Schmid:

Theorem F.99 (Gao, Geroldinger, and Schmid; cf. [92]) If p ≥ 47 is a prime, then

τ (̂Z2
p, p) = 2p− 2.

Furthermore, in [92] the authors also determine all weakly zero-p-sum-free subsets of Zp

of size 2p− 2 (for p ≥ 47).
Additionally, Gao and Thangadurai showed in [97] that τ (̂Z2

4, 4) = 8, and Schmid and
co-authors verified that τ (̂Z2

6, 6) = 12; cf. [184].
We pose the following problems:

Problem F.100 Prove that Conjecture F.98 holds for prime numbers 11 ≤ p ≤ 43.
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Problem F.101 Prove that Conjecture F.98 holds for small composite numbers k ≥ 8.

However, we know of at least one case when the inequality is strict in Proposition F.97:
We have τ (̂Z3

3, 3) ≥ 9, since

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 1), (2, 0, 1), (0, 1, 2)}

is weakly zero-3-sum-free in Z3
3.

Let us now examine general noncyclic groups, in particular groups of rank 2. Let n1 and
n2 be positive integers with n1 ≥ 2 and n1|n2, and consider Zn1

×Zn2
. It is easy to see that

the set

({0} ×A2) ∪ ({1} ×A′
2)

is weakly zero-n2-sum-free for all A2 and A′
2 of Zn2

when |A2| = n2 − 1 and |A′
2| = n1 − 1.

And, like we mentioned above, when n2 is even, we may replace A2 by all of Zn2
. This yields

the following:

Proposition F.102 Let n1 and n2 be integers greater than 1 so that n2 is divisible by n1.
We then have

τ (̂Zn1
× Zn2

, n2) ≥ n1 + n2 − 2;

if n2 is even, we have

τ (̂Zn1
× Zn2

, n2) ≥ n1 + n2 − 1.

The question then arises whether we can do better than Proposition F.102; we exhibit
two cases when we can: one for n1 = 2, the other for n1 = 3.

For the case when n1 = 2, we follow the construction of Marchan, Ordaz, Ramos, and
Schmid; cf. [150]. Suppose that n2 = 2k with k odd, in which case Z2 × Zn2

is isomorphic
to Z2 × Z2 × Zk. We define the subsets B1 and B2 of Zk as

B1 = {0, 1, 2, . . . , (k − 1)/2}

and

B2 = {(k + 1)/2, (k + 1)/2 + 1, . . . , k − 1, 0},
and set

A = ({0} × {0} ×B1) ∪ ({0} × {1} ×B2) ∪ ({1} × {0} ×B2) ∪ ({1} × {1} ×B1).

Then A is a subset of Z2 × Z2 × Zk of size 2k + 2, and it is easy to verify that the sum of
these 2k + 2 elements equals (0, 0, 0). Therefore, having k distinct elements of A adding to
(0, 0, 0) is equivalent to having two of them add to (0, 0, 0), but this is clearly not the case.
Therefore, when n1 = 2 and n2 ≡ 2 mod 4, we have

τ (̂Zn1
× Zn2

, n2) ≥ n1 + n2.

It turns out that we cannot do better:

Theorem F.103 (Marchan, Ordaz, Ramos, and Schmid; cf. [150]) For each posi-
tive integer k,

τ (̂Z2 × Z2k, 2k) =





2k + 2 if k odd;

2k + 1 if k even.
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Let us turn now to n1 = 3. We already know from Proposition F.102 that

τ (̂Z3 × Z3k, 3k) ≥ 3k + 2

when k is even; we now show that the same bound holds when k is odd and k ≥ 2 (for k = 1
we have τ (̂Z2

3, 3) = 4; cf. Conjecture F.98 above). Kiefer in [130] presents the following
subset of Z3 × Z3k:

A = ({0} × (Z3k \ {3k − 2, 3k − 1})) ∪ {(1, 0), (1, 1), (1, 3k− 6), (2, 0)}.

Then A has size 3k + 2 (note that k ≥ 3), and these elements add to (2, 3k − 2). As with
the previous example, for k distinct elements to add to (0, 0), we must have two distinct
elements that add to (2, 3k−2), but one can quickly see that that is impossible. This yields:

Proposition F.104 (Kiefer; cf. [130]) For all values of k > 1 we have

τ (̂Z3 × Z3k, 3k) ≥ 3k + 2.

It turns out that one can do a bit better for k = 3. Namely, consider the set

A = {(0, 0), (0, 1), (0, 3), (0, 4), (0, 6), (0, 7), (1, 0), (1, 1), (1, 3), (1, 4), (1, 6), (1, 7)}

in Z3 × Z9; note that A can be rewritten as

A = {0, 1} × ({0, 3, 6}+ {0, 1}).

Since the twelve elements add to (0, 6), A is weakly zero-9-sum-free if, and only if, (0, 6) 6∈
3̂ A. Indeed, for three distinct elements of A to add to (0, 6), the three first components
would need to agree (all 0s or all 1s), but then the second components must be distinct.
There are only two possibilities for the second components to add to a number divisible by
3: 0 + 3 + 6 or 1 + 4 + 7, but neither sum equals 6 in Z9. Therefore,

τ (̂Z3 × Z9, 9) ≥ 12.

Schmid writes in [184] that he and co-authors have proved that the lower bound in
Proposition F.104 holds for large enough primes, but the general question remains open:

Problem F.105 Evaluate τ (̂Z3 × Z3k, 3k) for each positive integer k.

And, more generally:

Problem F.106 Evaluate τ (̂Zn1
× Zn2

, n2) for positive integers n1 ≥ 4, n1|n2, and n2 >
n1.

More generally still:

Problem F.107 Evaluate τ (̂G, κ) for each noncyclic group G of exponent κ.

F.3.2 Limited number of terms

In this section we investigate, for a given group G and positive integer t, the quantity

τ (̂G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]̂ A},

that is, the maximum size of a weak zero-[1, t]-sum-free subset of G.
As before, we can easily verify the following:
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Proposition F.108 In a group of order n, we have

τ (̂G, [1, 1]) = n− 1

and

τ (̂G, [1, 2]) =
n+ |Ord(G, 2)| − 1

2
;

as a special case, for the cyclic group of order n we have

τ (̂Zn, [1, 2]) =
⌊n
2

⌋
.

We have the following general upper bound for τ (̂G, [1, t]):

Proposition F.109 For every G and t ≥ 2, we have

τ (̂G, [1, t]) ≤ τ (̂G, t)− 1.

Indeed, if A is a weak zero-[1, t]-sum-free in G of size τ (̂G, [1, t]), then 0 6∈ A, so A∪{0}
has size τ (̂G, [1, t]) + 1. Furthermore, 0 6∈ (t − 1)̂ A and 0 6∈ t̂ A, which implies that 0 6∈
t̂ (A ∪ {0}). This proves that τ (̂G, t) is at least one more than τ (̂G, [1, t]), as claimed. As
Propositions F.70 and F.108 show, we have equality in Proposition F.109 for t = 2.

Let us now consider t ≥ 3. Clearly, if m is a positive integer for which

m+ (m− 1) + · · ·+ (m− t+ 1) ≤ n− 1,

then the set
A = {1, 2, . . . ,m}

is a weak zero-[1, t]-sum-free subset of the cyclic group Zn; this gives:

Proposition F.110 For all positive integers n and t we have

τ (̂Zn, [1, t]) ≥
⌊
n− 1

t
+

t− 1

2

⌋
.

(Observe that, by Proposition F.108, equality holds for t = 1 and t = 2.)
We are able to do better in certain cases. Consider, for example, the case when n− 2 is

divisible by 6, and define the subset A of Zn as

A = {1, 2, . . . , (n− 2)/6} ∪ {n/2, n/2+ 1, . . . , (2n+ 2)/3}.

(Note that when n− 2 is divisible by 6, then n is even and 2n+2 is divisible by 6.) An easy
computation shows that 0 6∈ [1, 3]̂ A; furthermore, A contains (n+4)/3 elements. Therefore,
we get:

Proposition F.111 If n− 2 is divisible by 6, then

τ (̂Zn, [1, 3]) ≥ (n+ 4)/3.

In a similar manner, Yin proved that the set

A = {1, 2, . . . , n/6} ∪ {n/2, n/2 + 1, . . . , 2n/3}

is a weak zero-[1, 3]-sum-free set in Zn when n is divisible by 6, and that the set

{1, 2, . . . , ⌊(n+ 2)/8⌋} ∪ {n/2, n/2 + 1, . . . , n/2 + ⌊(n+ 6)/8⌋}

is a weak zero-[1, 4]-sum-free set in Zn when n− 2 is divisible by 4. These results yield:
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Proposition F.112 (Yin; cf. [202]) 1. If n is divisible by 6, then

τ (̂Zn, [1, 3]) ≥ n/3 + 1.

2. If n− 2 is divisible by 4, then

τ (̂Zn, [1, 4]) ≥ (n+ 6)/4.

We should note that Proposition F.111 and both parts of Proposition F.112 yield values
one larger than Proposition F.110 does.

For an upper bound, we have the following conjecture of Hamidoune (see Conjecture 1.1
in [112]):

Conjecture F.113 (Hamidoune; cf. [112]) For all integers n ≥ t we have

τ (̂Zn, [1, t]) ≤ (n− 2)/t+ t− 1.

In particular, for t = 3 we believe that

τ (̂Zn, [1, 3]) ≤ (n+ 4)/3,

and Proposition F.111 above shows that this inequality, if true, is sharp.
It is a very interesting question to see if Conjecture F.113 is sharp in general:

Problem F.114 Find all pairs of integers t and n for which a weak zero-[1, t]-sum-free
subset of size ⌊(n− 2)/t⌋+ t− 1 exists in the cyclic group Zn.

A less exact upper bound was established by Alon in [1]: if n is large enough (depending
on t and any fixed positive real number ǫ), then

τ (̂Zn, [1, t]) ≤ (1/t+ ǫ) · n.

Lev generalized this to arbitrary finite abelian groups as follows:

Theorem F.115 (Lev; cf. [143]) For any t and positive real number ǫ, there is a constant
n0(t, ǫ) so that

τ (̂G, [1, t]) ≤ (1/t+ ǫ) · n
holds for every n ≥ n0(t, ǫ) · |Ord(G, 2)|.

We have very few exact values known for τ (̂G, [1, t]), particularly when G is not cyclic.
We mention the following result:

Proposition F.116 (Yin; cf. [202]) For all positive integers r, we have τ (̂Zr
2, [1, 3]) =

2r−1.

We present the short proof on page 363.
For the group Z3

3, Bhowmik and Schlage-Puchta computed in [34] three values:

τ (̂Z3
3, [1, 3]) = 8, τ (̂Z3

3, [1, 4]) = 7, τ (̂Z3
3, [1, 5]) = 7.

In [35], the same authors prove that any weak zero-[1, 3]-free subset of size 8 in Z3
3 is of the

form
{a1, a2, a3, a1 + a2, a1 + a2 + a3, a1 + 2a2 + a3, 2a1 + a3, a2 + 2a3}.

The general problem of finding the exact value of τ (̂G, [1, t]) is still wide open:

Problem F.117 Find τ (̂G, [1, t]) for all groups G and integers t ≥ 3.
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F.3.3 Arbitrary number of terms

Here we investigate the maximum value of m for which there exists an m-subset A of G
that is zero-sum-free in G; that is, for which its sumset

Σ∗A = ∪∞
h=1ĥ A

does not contain zero:

τ (̂G,N) = max{|A| | A ⊆ G, 0 6∈ Σ∗A}.

The quantity τ (̂G,N) + 1, that is, the smallest integer for which for any subset A of G of
that size (or more) one has 0 ∈ Σ∗A, is called the Olson’s constant of G, and has been the
subject of much attention since Erdős and Heilbronn first discussed it in [80] in 1964. (The
term “Olson’s constant” was coined at a 1994 meeting in Venezuela to honor Olson who
contributed tremendously to this and other questions in additive combinatorics.)

Let us consider the cyclic group first. It is easy to see that if 1 + 2 + · · ·+m < n, then
the set {1, 2, . . . ,m} is zero-sum-free in Zn, and therefore we get:

Proposition F.118 For all positive integers n we have

τ (̂Zn,N) ≥
⌊
(
√
8n− 7− 1)/2

⌋
.

Selfridge (see Problem C.15 in [105]; cf. also page 95 in [79]) offered two other con-
structions that are sometimes better than the one above. First, observe that there is no
harm replacing the element 2 with −2, so when 1 + 3 + 4 + · · · + m < n, then the set
{1,−2, 3, . . . ,m} is zero-sum-free in Zn. (For −2 6∈ {1, 3, 4, . . . ,m} we must have n ≥ 6.)
We thus get:

Proposition F.119 (Selfridge; cf. Problem C.15 in [105]) For all positive integers
n ≥ 6 we have

τ (̂Zn,N) ≥
⌊
(
√
8n+ 9− 1)/2

⌋
.

The other construction of Selfridge assumes that n is even, and considers the set

A =





{1, 2, . . . , (m− 1)/2} ∪ {n/2, n/2 + 1, . . . , n/2 + (m− 1)/2} if m is odd;

{1, 2, . . . ,m/2− 1} ∪ {n/2, n/2+ 1, . . . , n/2 +m/2} if m is even.

(When m = 1, we simply take A = {n/2}.)
Clearly, A is zero-sum-free in Zn when m is odd and

2 · (1 + 2 + · · ·+ (m− 1)/2) < n/2,

or when m is even and

2 · (1 + 2 + · · ·+ (m/2− 1)) +m/2 < n/2.

Therefore, we can say that

τ (̂Zn,N) ≥





⌊√
2n− 3

⌋
if this value is odd;

⌊√
2n− 4

⌋
if this value is even.

(Note that these two conditions are not mutually exclusive, but, as the next few lines
demonstrate, they do cover all cases.) Observe that

⌊√
2n− 3

⌋
and

⌊√
2n− 4

⌋
are only

unequal when 2n − 3 happens to be a square number, but when that is the case, then it
must be odd (and thus

⌊√
2n− 3

⌋
is odd as well). Therefore, we can conclude:
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Proposition F.120 (Selfridge; cf. Problem C.15 in [105]) For all positive even inte-
gers n we have

τ (̂Zn,N) ≥
⌊√

2n− 3
⌋
.

We can also verify that Proposition F.119 never trumps Proposition F.120; indeed, for
all n ≥ 14, we have √

2n− 3 ≥ (
√
8n+ 9− 1)/2.

(For n ∈ {6, 8, 10, 12} the two floors are equal.) We are not aware of any even n for which
Proposition F.120 is not exact, and we have:

Conjecture F.121 (Selfridge; cf. Problem C.15 in [105]) For all positive even inte-
gers n we have

τ (̂Zn,N) =
⌊√

2n− 3
⌋
.

Subocz in [193] verified Conjecture F.121 for all even n ≤ 64.

Problem F.122 Prove (or disprove) Conjecture F.121.

The case when n is odd seems more complicated. From Subocz’s paper [193] we see that
Proposition F.119 gives the correct value of τ (̂Zn,N) for all odd n with 7 ≤ n ≤ 63, except
for n = 25; that exception is demonstrated by the fact that

{1, 6, 11, 16, 21}∪ {5, 10}

is zero-sum-free in Z25.
After a variety of partial results, the case when n is prime is now settled: As Balandraud

pointed out in [25] (cf. [26]) and as we now explain, for a prime p, the value of τ (̂Zp,N)
easily follows from his Theorem D.120. The cases of p ∈ {2, 3, 5} can be easily evaluated,
so we assume that p ≥ 7. Given Proposition F.119, we only need to prove that if A ⊆ Zp

has size
|A| ≥

⌊
(
√
8p+ 9− 1)/2

⌋
+ 1 > (

√
8p+ 9− 1)/2,

then A is not zero-sum-free in Zp.
Clearly, if A is not asymmetric, that is, if A and −A are not disjoint, then 0 ∈ 2̂ A, and

A is not zero-sum-free. On the other hand, if A is asymmetric, then |A| ≤ (p − 1)/2, and
by Theorem D.120, Σ∗A has size at least

min {p, |A| · (|A| + 1)/2} ≥ min
{
p, (
√
8p+ 9− 1) · (

√
8p+ 9 + 1)/8

}
= min{p, p+ 1} = p.

But this means that Σ∗A = Zp, thus A is not zero-sum-free.

Theorem F.123 (Balandraud; cf. [25], [26]) We have τ (̂Z2,N) = 1, τ (̂Z3,N) = 1,
and τ (̂Z5,N) = 2; furthermore, for every prime p ≥ 7, we have

τ (̂Zp,N) =
⌊
(
√

8p+ 9− 1)/2
⌋
.

Perhaps it is worth pointing out that the +9 in the expression above can be omitted, since
for every prime p ≥ 7, ⌊

(
√
8p+ 9− 1)/2

⌋
=
⌊√

2p− 1/2
⌋
.

To see this, note that for (
√
8p+ c − 1)/2 to equal an integer k, one must have c ≡ 1

mod 8, and if (
√
8p+ 9− 1)/2 or (

√
8p+ 1− 1)/2 equals k, then p equals (k + 2)(k − 1)/2

or k(k + 1)/2, but neither of these quantities can equal a prime p ≥ 7. Dropping the +9
from our formula also has the advantage that the cases of p ∈ {2, 3, 5} do not need to be
separated, thus we get:
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Corollary F.124 (Balandraud; cf. [25], [26]) For every prime p, we have

τ (̂Zp,N) =
⌊√

2p− 1/2
⌋
.

The question of finding the exact value of τ (̂Zn,N) for composite n remains open:

Problem F.125 Evaluate τ (̂Zn,N) for odd composite n. In particular, find all instances
when

τ (̂Zn,N) >
⌊
(
√
8n+ 9− 1)/2

⌋
.

Let us now move on to noncyclic groups. First, following Gao, Ruzsa, and Thangadurai
(see [96]), we establish a recursive lower bound for τ (̂G,N). Suppose that G has exponent
κ and G ∼= G1 × Zκ. Let A1 be a zero-sum-free set in G1 and, if possible, let A2 be any
subset of G1 of size κ− 1; if |G1| < κ− 1, then let A2 = G1. It is then easy to see that

A = (A1 × {0}) ∪ (A2 × {1})

is zero-sum-free in G1 × Zκ. Therefore:

Proposition F.126 For every finite abelian group G1 and positive integer κ we have

τ (̂G1 × Zκ,N) ≥ τ (̂G1,N) + min{|G1|, κ− 1}.

Consequently, we have the following lower bound for groups of the form Zr
k:

Corollary F.127 (Gao, Ruzsa, and Thangadurai; cf. [96]) For all k ≥ 2 and r ≥ 2,
we have

τ (̂Zr
k,N) ≥ τ (̂Zr−1

k ,N) + k − 1.

Furthermore, Gao, Ruzsa, and Thangadurai in [96] proved that when k is a very large
prime and r = 2, then equality holds in Corollary F.127; the requirement on the prime
being large was then greatly reduced by Bhowmik and Schlage-Puchta in [36], though it is
still formidable:

Theorem F.128 (Bhowmik and Schlage-Puchta; cf. [36]) For every prime p >
6000, we have

τ (̂Z2
p,N) = τ (̂Zp,N) + p− 1.

Combining this with Corollary F.124 yields:

Corollary F.129 (Bhowmik and Schlage-Puchta; cf. [36]) For every prime p >
6000, we have

τ (̂Z2
p,N) = p+

⌊√
2p− 1/2

⌋
− 1.

The obvious question here is whether the bound on p can be reduced:

Problem F.130 Prove that the conclusion of Corollary F.129 (or, equivalently, of Theorem
F.128) holds for primes p < 6000.

In fact, we believe that the same equality holds for composite values of k as well:

Conjecture F.131 (Gao, Ruzsa, and Thangadurai; cf. [96]) For all values of k ≥ 2,
we have

τ (̂Z2
k,N) = τ (̂Zk,N) + k − 1.
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Problem F.132 Prove (or disprove) Conjecture F.131.

The paper [96] actually had a stronger version of Conjecture F.131: the authors conjec-
tured that equality always holds in Corollary F.127. However, as it was first pointed out by
Gao and Geroldinger in [91], for every prime power k ≥ 3 there exists an r ≥ 2 for which
the claim fails. Furthermore, as Ordaz et al. proved in [168] and as we review below, even
for r = 3, equality in Corollary F.127 can only hold for at most finitely many prime values
of k (possibly only for k = 2).

Ordaz at al. proved lower bounds for τ (̂Zr
k,N) for all r ≥ 3:

Theorem F.133 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) For all integers
k ≥ 2 we have

τ (̂Z3
k,N) ≥





3(k − 1) if k ≤ 3;

2k +
⌊(√

8k − 31− 1
)
/2
⌋

if k ≥ 4.

Theorem F.134 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) For all integers
k ≥ 2 and r ≥ 4 we have

τ (̂Zr
k,N) ≥





r(k − 1) if k ≤ r + 1;

(r − 1)k +
⌊(√

8(k − r) + 1− 1
)
/2
⌋

if k ≥ r + 2.

(Observe that there are slight discrepancies between the formulae as well as the conditions
of Theorems F.133 and F.134.)

Combining Theorem F.133 and Corollary F.129, for a prime p > 6000 we thus get:

τ (̂Z3
p,N) ≥ 2p+

⌊(√
8p− 31− 1

)
/2
⌋
> 2p+

⌊√
2p− 1/2

⌋
− 2 = τ (̂Z2

p,N) + p− 1,

which shows that equality in Corollary F.127 does not hold for primes p > 6000. This
disproves the conjecture in [96] that we mentioned above.

The authors of [168] also believe (though shy away from a conjecture) that equality holds
everywhere in Theorems F.133 and F.134; we thus have the following interesting question:

Problem F.135 Decide whether equality always holds in Theorems F.133 and F.134.

We do know that equality holds in Theorems F.133 and F.134 for k ∈ {2, 3, 4, 5} and in
Theorem F.133 when k ∈ {6, 7}:

Theorem F.136 (Subocz; cf. [193]) For every r ≥ 3 we have τ (̂Zr
2,N) = r and

τ (̂Zr
3,N) = 2r.

Theorem F.137 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) For every r ≥ 4
we have τ (̂Zr

4,N) = 3r and τ (̂Zr
5,N) = 4r. Furthermore, τ (̂Z3

4,N) = 8, τ (̂Z3
5,N) = 11,

τ (̂Z3
6,N) = 13, and τ (̂Z3

7,N) = 16.

We also have the following upper bound:

Theorem F.138 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) For every r ≥ 1
and prime power q,

τ (̂Zr
q ,N) ≤ r(q − 1).

Combining Theorems F.138 and F.134 yields:
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Theorem F.139 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) For every r ≥ 4
and prime power q for which q ≤ r + 1,

τ (̂Zr
q ,N) = r(q − 1).

We mention some other exact results:

Theorem F.140 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) For every r1, r2 ≥
1, we have

τ (̂Zr1
2 × Z

r2
4 ,N) = r1 + 3r2.

Theorem F.141 (Ordaz, Phillipp, Santos, and Schmid; cf. [168]) Suppose that G
has invariant factorization

Zr1
p × Z

r2
p2 × · · · × Z

rk
pk

where p is prime, r1, . . . , rk ≥ 0, rk > 0, and r1 + · · ·+ rk ≥ pk. Then we have

τ (̂G,N) = r1(p− 1) + r2(p
2 − 1) + · · ·+ rk(p

k − 1).

(This last result on τ (̂G,N) for p-groups, under stronger assumptions on the rank of G,
was given by Gao and Geroldinger as Corollary 7.4 in [90].)

Note that by Theorem F.141, it suffices to determine τ (̂Zr1
3 × Z

r2
9 ,N) for r1 + r2 ≤ 8:

Problem F.142 Evaluate τ (̂Zr1
3 × Z

r2
9 ,N) for all r1, r2 ≥ 1 with r1 + r2 ≤ 8.

Problem F.143 Evaluate τ (̂Zr
6,N) for all r ≥ 4.

Turning now to general finite abelian groups, we first pose a 1973 conjecture of Erdős:

Conjecture F.144 (Erdős; cf. [78]) For every finite abelian group of order n, we have

τ (̂G,N) <
√
2n.

According to Corollary F.129, Conjecture F.144 holds for all prime values of n > 6000;
furthermore, we see from Subocz’s tables in [193] that the conjecture holds for all groups
of order n ≤ 50 and all cyclic groups of order n ≤ 64.

In 1975, Olson proved the following:

Theorem F.145 (Olson; cf. [167]) For every G we have

τ (̂G,N) < 3
√
n.

The best current general result is the following:

Theorem F.146 (Hamidoune and Zémor; cf. [115]) There exists a positive real num-
ber C for which

τ (̂G,N) <
√
2n+ C · 3

√
n lnn

holds for every finite abelian group of order n.

We also mention the following interesting conjecture:

Conjecture F.147 (Subocz; cf. [193]) For every finite abelian group of order n, we have

τ (̂G,N) ≤ τ (̂Zn,N).
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We should note that the difference between τ (̂G,N) (for |G| = n) and τ (̂Zn,N) can be
arbitrarily large: For example, we have τ (̂Zr

2,N) = r (see Theorem F.136) but τ (̂Z2r ,N) ∼
2(r+1)/2 (see Proposition F.120).

In closing this section, we mention that results regarding the structure of zero-sum-
free subsets A of Zp (with p prime) for which |A| is close to τ (̂Zp,N) are discussed by
Deshouillers and Prakash in [64]; by Nguyen, Szemerédi, and Vu in [163]; and by Nguyen
and Vu in [164]. For example, the analogue of Theorem E.106 is:

Theorem F.148 (Nguyen and Vu; cf. [164]) There is a positive constant c, so that
whenever A is a zero-sum-free subset of Zp for an odd prime p, then there is a subset
A′ of A of size at most cp6/13 log p and an element b ∈ {1, . . . , p− 1}, for which

||b · (A \A′)|| < p.

Zero-sum-free subsets of Z2
p (with p > 6000 prime) that have size exactly τ (̂Z2

p,N) are
classified by Bhowmik and Schlage-Puchta in [36] and [37].

We offer the following difficult problems:

Problem F.149 Prove Conjecture F.144, or at least improve on the bound in Theorem
F.146.

Problem F.150 for each group G, classify all zero-sum-free sets in G of size exactly
τ (̂G,N).

In particular, one may be able to improve on Theorem F.148:

Problem F.151 For any odd prime p, classify all zero-sum-free sets in Zp of size exactly
τ (̂Zp,N) =

⌊√
2p− 1/2

⌋
.

F.4 Restricted signed sumsets

In this section we investigate the quantity

τ ±̂(G,H) = max{|A| | A ⊆ G, 0 6∈ H±̂A}

(if there is no subset A for which 0 6∈ H±̂A, we let τ ±̂(G,H) = 0). Clearly, we always have
τ ±̂(G,H) = 0 when 0 ∈ H ; however, when 0 6∈ H and n ≥ 2, then τ ±̂(G,H) ≥ 1: for any
a ∈ G \ {0}, for the one-element set A = {a} we obviously have 0 6∈ H±̂A.

We consider three special cases: when H consists of a single positive integer h, when H
consists of all positive integers up to some value t, and when H = N.

F.4.1 Fixed number of terms

Here we investigate, for a given group G and positive integer h, the quantity

τ ±̂(G, h) = max{|A| | A ⊆ G, 0 6∈ h±̂A}.

As before, we can easily verify the following:

Proposition F.152 In a group of order n, we have

τ ±̂(G, 1) = n− 1;
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τ ±̂(G, 2) =
n+ |Ord(G, 2)|+ 1

2
;

and
τ ±̂(G, h) = n

for every h ≥ n+ 1.

Next, we evaluate τ ±̂(G,n) as follows. Note that, trivially, τ ±̂(G,n) ≥ n − 1. Recall
also that on page 247 we found that when G has exponent κ and G ∼= G1 × Zκ, then the
elements of G1 × Zκ sum to (0, 0) if |G1| = n/κ is even or if κ is odd, and to (0, κ/2) when
n/κ is odd and κ is even. We can thus also observe that when κ is divisible by 4 and n/κ
is odd, then adding all elements of G1 ×Zκ, except for the element (0, κ/4) that we instead
subtract, we get (0, 0). That leaves us with the case when κ ≡ 2 mod 4 and n/κ is odd. But
in this case, no signed sum of the n elements results in (0, 0), since the second component
of the signed sum will differ from the second component of the sum (which is odd) in an
even number (if we subtract an element instead of adding it, the sum gets reduced by an
even value). Therefore, we proved:

Proposition F.153 Suppose that G has order n and exponent κ. Then

τ ±̂(G,n) =





n if κ ≡ 2 mod 4 and n/κ is odd;

n− 1 otherwise.

For 3 ≤ h ≤ n− 1, the value of τ ±̂(G, h) is not known in general.
The values of τ ±̂(G, h) behave quite differently for even and odd values of h. For example,

let us consider h = 4 first. Note that, if for a set A ⊆ G, we have 0 6∈ 4±̂A, then A must be
a weak Sidon set in G: Indeed, if we had

a1 + a2 = a3 + a4

for some a1, a2, a3, a4 ∈ A with a1 6= a2 and a3 6= a4, then the four elements cannot
be all distinct as then we would have 0 ∈ 4±̂A. Therefore, we must have, for example,
a1 ∈ {a3, a4}, which proves that A is a weak Sidon set in G. Therefore, by Corollary C.69,
we get the following upper bound:

Proposition F.154 For every G of order n, we have

τ ±̂(G, 4) ≤ ⌊
√
2n⌋ − 1.

For odd values of h, however, we may have lower bounds for τ ±̂(G, h) that are linear in
n. Consider first the cyclic group Zn with n even. Note that, when h is odd, for the set

A = {1, 3, 5, . . . , n− 1}

we have h±̂A ⊆ A; in particular, 0 6∈ h±̂A. This shows that

τ ±̂(Zn, h) ≥ n/2.

On the other hand,
τ ±̂(G, h) ≤ τ (̂G, h),

so by Theorem F.88, when n ≥ 12 and 3 ≤ h ≤ n/2− 2, then

τ ±̂(Zn, h) ≤ n/2.

Therefore:
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Theorem F.155 When n is even, h is odd, and 3 ≤ h ≤ n/2− 2, then

τ ±̂(Zn, h) = n/2.

For the case when n and h are both odd, Collins has the following lower bound:

Proposition F.156 (Collins; cf. [58]) When n and h ≤ n are both odd, we have

τ ±̂(Zn, h) ≥
⌊
n

h
+

h2 − 3

2h

⌋
.

We present a proof for Proposition F.156 on page 363.
We believe that Proposition F.156 is quite accurate. For example, when p is prime, we

know from Theorem F.87 that

τ ±̂(Zp, h) ≤ τ (̂Zp, h) =

⌊
p− 2

h

⌋
+ h.

In particular, for h = 3 we get the following:

Corollary F.157 For every prime p, we have

(p+ 1)/3 ≤ τ ±̂(Zp, 3) ≤ (p+ 7)/3.

We offer the following intriguing problems:

Problem F.158 Find τ ±̂(Zp, 3) for each prime p.

Problem F.159 Find τ ±̂(Zp, h) for each prime p and odd h ≤ p.

Problem F.160 For each odd n and odd h with 3 ≤ h ≤ n− 1, evaluate τ ±̂(Zn, h).

Problem F.161 For each even n and odd h with n/2− 1 ≤ h ≤ n− 1, evaluate τ ±̂(Zn, h).

Problem F.162 For given n and even h, evaluate, or at least find a good lower bound for
τ ±̂(Zn, h), in particular for τ ±̂(Zn, 4).

Let us now turn to noncyclic groups. The general question, of course, is as follows:

Problem F.163 For each G and h, evaluate, or at least find a good lower bound for
τ ±̂(G, h), in particular for τ ±̂(G, 3).

The case of h = κ attracts special interest. Recall that the value τ (̂G, κ)+1 (the smallest
integer such that each subset of G of that cardinality has a subset size κ whose elements sum
to 0) is called the Harborth constant of G; analogously, here we define the signed Harborth
constant of G as the value of τ ±̂(G, κ) + 1. This value is determined in Proposition F.153
above for cyclic groups; we have the following additional result:

Theorem F.164 (Marchan, Ordaz, Ramos, and Schmid; cf. [150]) For a positive
integer k, we have

τ ±̂(Z2 × Z2k, 2k) =





4 if k ∈ {1, 2};

2k + 1 if k ≥ 3.

Furthermore, in [151] the same authors determined all subsets A of size 2k+ 1 in Z2 ×Z2k

for which 0 6∈ (2k)±̂A.
We pose the following problem:

Problem F.165 Find τ ±̂(G, κ) for each noncyclic group G of exponent κ ≥ 3.

If κ = 2, then the answer is given by Proposition F.152:

τ ±̂(Z
r
2, 2) = 2r

for every r ∈ N.
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F.4.2 Limited number of terms

The analogue of a t-independent set for restricted addition is called a weak t-independent
set. In particular, in this section we investigate, for a given group G and positive integer t,
the quantity

τ ±̂(G, [1, t]) = max{|A| | A ⊆ G, 0 6∈ [1, t]±̂A},
that is, the maximum size of a weak t-independent subset of G.

For t = 1, we see that A is weakly 1-independent if, and only if, 0 6∈ A. We can easily
determine the value of τ ±̂(G, [1, 2]) as well. Obviously, a weak 2-independent set A cannot
contain 0; furthermore, for each element g of G, A cannot contain both g and −g, unless
g = −g. So, to get a maximum weak 2-independent set in G, take exactly one of each
element or its negative in G \ Ord(G, 2) \ {0}, and take all elements of Ord(G, 2). We can
summarize these findings as follows:

Proposition F.166 For all finite abelian groups G of order n we have

τ ±̂(G, [1, 1]) = n− 1

and

τ ±̂(G, [1, 2]) =
n+ |Ord(G, 2)| − 1

2
.

As a special case, for the cyclic group of order n we have

τ ±̂(Zn, [1, 2]) = ⌊n/2⌋.
For t ≥ 3, the value of τ ±̂(G, [1, t]) is not known. In [24], Bajnok and Ruzsa proved the

following general bounds:

Theorem F.167 (Bajnok and Ruzsa; cf. [24]) For every G and t ≥ 2 we have

(
t!/2t · n

)1/t − t/2 < τ ±̂(G, [1, t]) < (⌊t/2⌋! · n)1/⌊t/2⌋ + t/2.

In particular, for t ≥ 4, τ ±̂(G, [1, t]) is not a linear function of n.
For t = 3, the upper bound in Theorem F.167 is trivial; we can do better as follows.

Observe that if A is a weak 3-independent set in G, then the sets {0}, A, and 2̂ A must be
pairwise disjoint: indeed, if we were to have, say, a1 + a2 = a3 for some a1, a2, a3 ∈ A with
a1 6= a2, then we would have to have a1 = a3 or a2 = a3, but that would imply that one of
the elements is 0, a contradiction. Note also that for each a0 ∈ A,

{a0 + a | a ∈ A, a 6= a0} ⊆ 2̂ A,

so 2̂ A has size at least |A| − 1. Therefore,

n ≥ |{0} ∪A ∪ 2̂ A| ≥ 1 + |A|+ |A| − 1 = 2|A|,
which yields the following upper bound:

Proposition F.168 For all G of order n we have

τ ±̂(G, [1, 3]) ≤ n/2.

A better upper bound for τ ±̂(G, [1, 3]) can be derived in the case when n is odd. Note that,
in this case, if A is weakly 3-independent, then A and −A must be disjoint. (This may be
false if n is even: the elements of order 2 may belong to both A and −A.) Furthermore,
the set A∪ (−A) is weakly zero-3-sum-free: the sum of three distinct elements of A∪ (−A)
cannot be zero as it is either an element of A ∪ (−A) or the signed sum of three distinct
elements of A. Therefore, A ∪ (−A) has size at most equal to τ (̂G, 3), which yields:
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Proposition F.169 For all G of odd order n we have

τ ±̂(G, [1, 3]) ≤ τ (̂G, 3)/2.

For t = 3 we can also derive a much better lower bound for τ ±̂(G, [1, 3]) than what
Theorem F.167 gives based on the idea that if A is a (regular) 3-independent set in a group
G2, then G1 ×A is a weak 3-independent set in G1 ×G2 for any group G1:

Proposition F.170 For all groups G1 and G2 we have

τ ±̂(G1 ×G2, [1, 3]) ≥ |G1| · τ±(G2, [1, 3]).

Since any group G of order n and exponent κ is isomorphic to G1 × Zκ for some group G1

of order n/κ, Proposition F.170 implies:

Corollary F.171 For every group G of order n and exponent κ we have

τ ±̂(G, [1, 3]) ≥ n/κ · τ±(Zκ, [1, 3]).

Recall that the value of τ±(Zκ, [1, 3]) was explicitly evaluated in Theorem F.41.
While we have the various bounds just discussed, exact values for τ ±̂(G, [1, 3]) are not

known even for cyclic groups:

Problem F.172 Find the exact values of τ ±̂(Zn, [1, 3]).

Let us now consider noncyclic groups, in particular, groups of the form Zr
k.

First, we consider Zr
2. It is not hard to see that the set Zr−1

2 ×{1} is weakly 3-independent
in Z2

r (note that no two distinct elements add to zero), and therefore

τ ±̂(Z
r
2, [1, 3]) ≥ 2r−1.

Together with Proposition F.168, this implies:

Proposition F.173 For every r ≥ 1 we have

τ ±̂(Z
r
2, [1, 3]) = 2r−1.

We can obtain a large weakly 3-independent set in Zr
3 by using Bui’s idea described on

page 253: (using notations described there) the set ∪i∈IAi is weakly 3-independent in Zr
3,

yielding the following lower bound.

Theorem F.174 Let r be any positive integer, and write r = 3q + s with s = 0, 1, or 2.
Then we have

τ ±̂(Z
r
3, [1, 3]) ≥

2q+s−1∑

i=q+s−1

(
r

i

)
.

The lower bounds provided by Theorem F.174 are quite good. Indeed, by Proposition
F.169 above and considering the values for τ (̂Zr

3, 3) on page 253, we see that they give the
exact values for r ≤ 4:

τ ±̂(Z3, [1, 3]) = 1, τ ±̂(Z
2
3, [1, 3]) = 2, τ ±̂(Z

3
3, [1, 3]) = 4, τ ±̂(Z

4
3, [1, 3]) = 10.

For k ≥ 4, we know no better lower bounds for τ ±̂(Zr
k, [1, 3]) than what Corollary F.171

above provides.
We pose the following problems:
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Problem F.175 Find the exact values of τ ±̂(Zr
3, [1, 3]) for r ≥ 5.

Problem F.176 Find the exact values of τ ±̂(Zr
4, [1, 3]), τ ±̂(Z

r
5, [1, 3]), etc.

Problem F.177 Find τ ±̂(G, [1, 3]) for other noncyclic groups G.

Of course, the ultimate goal is to answer this question:

Problem F.178 Find τ ±̂(G, [1, t]) for all groups G and integers t ≥ 3.

As a modest step toward Problem F.178, we establish:

Proposition F.179 If n and t are positive integers so that 2t−1 ≤ n < 2t, then

τ ±̂(Zn, [1, t]) = t− 1.

The short proof of Proposition F.179 is on page 365.

F.4.3 Arbitrary number of terms

In this subsection we are trying to evaluate

τ ±̂(G,N) = max{|A| | A ⊆ G, 0 6∈ ∪∞
h=1h±̂A}.

A subset A of G for which
0 6∈ ∪∞

h=1h±̂A

holds is called a dissociated subset of G. Recall that, by Proposition C.77, our condition is
equivalent to

|ΣA| = 2|A|.

Indeed, we have
τ ±̂(G,N) = σ±̂(G,N0).

The case when G is cyclic is easy. Suppose that G = Zn, and let

m = ⌊log2 n⌋;

note that we then have
2m ≤ n < 2m+1.

According to Proposition F.179, we have

τ ±̂(Zn, [1,m+ 1]) = m.

In particular, there is an m-subset A of Zn (namely, as the proof of Proposition F.179 shows,

A = {1, 2, . . . , 2m−1}

works) for which 0 6∈ [1,m+ 1]±̂A. But, since |A| = m,

[1,m+ 1]±̂A = ∪∞
h=1h±̂A,

which proves that τ ±̂(Zn,N) ≥ m.
On the other hand, clearly,

τ ±̂(Zn,N) ≤ τ ±̂(Zn, [1,m+ 1]) = m.

Thus we have:
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Proposition F.180 For every positive integer n,

τ ±̂(Zn,N) = ⌊log2 n⌋.

We do not quite have the value of τ ±̂(G,N) for noncyclic groups G, but we can find
lower and upper bounds as follows. For an upper bound, note that if A is dissociated in G,
then |ΣA| = 2m, so τ ±̂(G,N) ≤ ⌊log2 n⌋.

For a lower bound, let us suppose that G is of type (n1, . . . , nr); that is, we have integers
n1, . . . , nr so that 2 ≤ n1 and ni is a divisor of ni+1 for each i = 1, 2, . . . , r − 1, and for
which

G ∼= Zn1
× · · ·Znr

.

Let mi = ⌊log2 ni⌋. It is easy to see that the set

(
{1, 2, . . . , 2m1−1} × {0}r−1

)
∪ · · · ∪

(
{0}r−1 × {1, 2, . . . , 2mr−1}

)

is dissociated in G, and thus

τ ±̂(G,N) ≥ m1 + · · ·+mr.

Therefore, we get:

Proposition F.181 Suppose that G is an abelian group of type (n1, . . . , nr) and order n.
We then have

⌊log2 n1⌋+ · · ·+ ⌊log2 nr⌋ ≤ τ ±̂(G,N) ≤ ⌊log2 n⌋.

Considering that

log2 n1 + · · ·+ log2 nr = log2(n1 · · ·nr) = log2 n,

we can say that the lower and upper bounds in Proposition F.181 are close. However, they
are not equal: For example, for the groups Z2

6 or Z2
7, the lower bound equals 4 and the upper

bound equals 5, and, indeed, the set

{(0, 1), (1, 0), (1, 2), (1, 4), (3, 2)}

(for example) is dissociated in both groups.
Hence the general question remains open:

Problem F.182 Find the value of τ ±̂(G,N) for noncyclic groups G.

Let us now turn to the inverse problem of classifying all dissociated subsets of G of
maximum size. We consider cyclic groups first; in particular, the cyclic group of order
n = 2k where k ∈ N—note that, by Proposition F.180, we have τ ±̂(Z2k ,N) = k.

We provide the following recursive construction for a collection Ak of k-subsets of Z2k :

• We let A1 consist of the single subset {1} of Z2.

• Suppose thatAj is already constructed for some positive integer j. For a given member

Aj = {a1, . . . , aj} of Aj and for a given element ǫ = (ǫ1, . . . , ǫj) of Z
j
2, we define the

set
Aj+1(Aj , ǫ) = {2j} ∪ {a1 + ǫ1 · 2j , . . . , aj + ǫj · 2j};

and then set
Aj+1 = {Aj+1(Aj , ǫ) | Aj ∈ Aj and ǫ ∈ Z

j
2}.
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So, for k = 2, we get

A2 = {{2} ∪ {1 + 0 · 2}, {2} ∪ {1 + 1 · 2} = {{1, 2}, {2, 3}};

and for k = 3, we have

A3 = {{4} ∪ {1 + 0 · 4, 2 + 0 · 4}, {4} ∪ {1 + 0 · 4, 2 + 1 · 4}, {4} ∪ {1 + 1 · 4, 2 + 0 · 4},
{4} ∪ {1 + 1 · 4, 2 + 1 · 4}, {4} ∪ {2 + 0 · 4, 3 + 0 · 4}, {4} ∪ {2 + 0 · 4, 3 + 1 · 4},
{4} ∪ {2 + 1 · 4, 3 + 0 · 4}, {4} ∪ {2 + 1 · 4, 3 + 1 · 4}}

= {{1, 2, 4}, {1, 4, 6}, {2, 4, 5}, {4, 5, 6}, {2, 3, 4}, {2, 4, 7}, {3, 4, 6}, {4, 6, 7}}.

We have the following conjecture for dissociated subsets of Z2k of maximum size

τ ±̂(Z2k ,N) = k.

Conjecture F.183 A k-subset A of Z2k is dissociated if, and only if, A ∈ Ak.

Using the computer program [120], we have verified Conjecture F.183 for k ∈ {1, 2, 3, 4}.
Note that Conjecture F.183 implies that there are exactly 2(k

2−k)/2 dissociated subsets of
Z2k of maximum size.

Problem F.184 Prove (or disprove) Conjecture F.183.

Observe that, if Conjecture F.183 is true, then every dissociated subset of Z2k of maxi-
mum size contains the element 2k−1. As a modest step toward Conjecture F.183, we state:

Conjecture F.185 Every dissociated subset of Z2k of size k contains the element 2k−1.

Problem F.186 Prove (or disprove) Conjecture F.185.

More generally:

Problem F.187 For each positive integer n, classify all dissociated subsets of Zn of max-
imum size ⌊log2 n⌋.

There is an interest in finding the largest dissociated subsets in any subset of G, not
just G itself. For a subset A of G, we let

dimA = max{|B| | B ⊆ A,B is dissociated}

denote the dissociativity dimension of A in G. (We mention in passing that there are other
notions for the dimension of a set: cf. [50] and [185].) Of course,

dimG = τ ±̂(G,N).

As a (less tight) generalization of Proposition F.181, Lev and Yuster proved the following:

Proposition F.188 (Lev and Yuster; cf. [145]) For any subset A of G, we have

rA ≤ dimA ≤ ⌊rA · log2 κ⌋,

where κ is the exponent of G and rA is the rank of the subgroup 〈A〉 generated by A.
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For any groupG of order n and for any positive integerm ≤ n, we introduce the following
quantity:

dim(G,m) = min{dimA | A ⊆ G, |A| = m}.
Our question is as follows:

Problem F.189 For every group G of order n and for any positive integer m ≤ n, find
dim(G,m).

Clearly, dim(G, 1) = 0 in every group G, since the only dissociated subset of {0} is the
empty set. It is also easy to see that dim(G, 2) = 1 (consider a set {0, g} for some non-zero
element g). For dim(G, 3), if G has exponent 3 or more, we can take the set {0, g,−g} for
any g ∈ G of order 3 or more, so dim(G, 3) = 1; if G is the elementary abelian 2-group,
then dim(G, 3) = 2. We have the following conjecture:

Conjecture F.190 For all positive integers n and m ≤ n, we have

dim(Zn,m) = ⌊log2 m⌋.

For example, we have dim(Z10, 7) = 2, since each 4-subset (and thus each 7-subset) of
Zn (when n ≥ 4) has dimension at least 2 (only subsets of a set of the form {0, g,−g} have
dimension less than 2), and the set

{0, 1, 2, 3, 7, 8, 9}

has dimension 2.
For m = n, Conjecture F.190 becomes Proposition F.180. Furthermore, when n = 2k

for some k ∈ N, then for m = n− 1, Conjecture F.190 says that

dim(Z2k , 2
k − 1) = k − 1;

in other words, one can find a subset of size 2k−1 in Z2k , which does not have a dissociated
subset of size k. Observe that, if Conjecture F.185 is true, then the set Z2k \ {2k−1} is one
such set.

Problem F.191 Prove (or disprove) Conjecture F.190.



Chapter G

Sum-free sets

Recall that for a given finite abelian group G, m-subset A = {a1, . . . , am} of G, Λ ⊆ Z, and
H ⊆ N0, we defined the sumset of A corresponding to Λ and H as

HΛA = {λ1a1 + · · ·+ λmam | (λ1, . . . , λm) ∈ Λm(H)}

where the index set Λm(H) is defined as

Λm(H) = {(λ1, . . . , λm) ∈ Λm | |λ1|+ · · ·+ |λm| ∈ H}.

In this chapter we consider, for G, H , and Λ, H-sum-free subsets of G over Λ; that is,
subsets A of G for which

(h1)ΛA ∩ (h2)ΛA = ∅
for any two distinct elements h1 and h2 of H .

Let us make some preliminary observations. First of all, if H contains fewer than two
elements, then every subset A of G is H-sum-free over Λ. Second, if H = {0, h} for some
positive integer h, then for a subset to be H-sum-free is the same as it being zero-h-sum-
free, a property we studied in Chapter F. More generally, if 0 ∈ H , then a set A being
H-sum-free implies that A is zero-H ′-sum-free for H ′ = H \ {0}.

Furthermore, the sum-free property is clearly a weakening of the Sidon property studied
in Chapter C: if linear combinations corresponding to different elements of the entire index
set Λm(H) are distinct, then they are certainly distinct when corresponding to distinct h1

and h2 of H .
While the sum-free property is thus closely related to properties discussed elsewhere in

the book, it offers unique opportunities for the study of interesting and well-known questions
in additive combinatorics.

In this chapter we attempt to find µΛ(G,H), the maximum possible size of an H-
sum-free set over Λ in a given finite abelian group G. If no H-sum-free set exists, we put
µΛ(G,H) = 0. With this notation, our observations above can be stated as follows:

Proposition G.1 Let G and Λ ⊆ Z be arbitrary.
If |H | ≤ 1, then µΛ(G,H) = n.
If 0 ∈ H, then

µΛ(G,H) ≤ τΛ(G,H \ {0});
in particular, if H = {0, h}, then

µΛ(G,H) = τΛ(G, h).

275
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Proposition G.2 For all G, Λ ⊆ Z, and H ⊆ N0 we have

µΛ(G,H) ≥ σΛ(G,H).

In the following sections we attempt to find µΛ(G,H) for special coefficient sets Λ.

G.1 Unrestricted sumsets

Our goal in this section is to investigate the maximum possible size of an H-sum-free set
over the set of nonnegative integers, that is, the quantity

µ(G,H) = max{|A| | A ⊆ G;h1, h2 ∈ H ;h1 6= h2 ⇒ h1A ∩ h2A = ∅}.

Clearly, we always have µ(G,H) = 0 wheneverH contains two elements h1 and h2 whose
difference is a multiple of the exponent κ of G, since for any element a ∈ G, we then have
h1a = h2a. However, when distinct elements of H leave different remainders when divided
by κ, then µ(G,H) ≥ 1: for any a ∈ G with order κ, at least the one-element set A = {a}
will be H-sum-free.

It is often useful to consider G of the form G1 × G2. (We may do so even when G is
cyclic if its order has at least two different prime divisors.) It is not hard to see that, if
A1 ⊆ G1 is H-sum-free in G1, then

A = {(a, g) | a ∈ A1, g ∈ G2}

is H-sum-free in G. Indeed, if we were to have

(a1, g1) + · · ·+ (ah1
, gh1

) = (a′1, g
′
1) + · · ·+ (a′h2

, g′h2
)

for some h1, h2 ∈ H , h1 6= h2, and (ai, gi), (a
′
i, g

′
i) ∈ A, then the equation for the sum of

the first coordinates contradicts the fact that A1 is H-sum-free in G1. Thus, we have the
following.

Proposition G.3 For all finite abelian groups G1 and G2 and for all H ⊆ N0 we have

µ(G1 ×G2, H) ≥ µ(G1, H) · |G2|.

Below we consider two special cases: when H consists of two distinct positive integers
(by Proposition G.1, the case when one of the integers equals 0 is identical to Section F.1.1),
and when H consists of all positive integers up to some value s. The cases when H = N0 or
H = N, as we just mentioned, yield no H-sum-free sets.

G.1.1 Fixed number of terms

Suppose that k and l are distinct positive integers; without loss of generality, we assume
that k > l. Sets satisfying the condition (kA)∩ (lA) = ∅ are called (k, l)-sum-free sets. Here
we intend to determine the maximum value of m for which G contains a (k, l)-sum-free
subset of size m—this value is denoted here by µ(G, {k, l}).

There are several similarities between (k, l)-sum-free sets and zero-h-sum-free sets; in
fact, in some respects, one might consider a zero-h-sum-free set to be (h, 0)-sum-free. There-
fore, our discussion in this section will be similar to that in Section F.1.1. This similarity
has its limits, however—see, for example, our comments below before Problem G.12 and
after Conjecture G.15.
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Since k and l are positive integers with k > l, the first case to discuss is when k = 2 and
l = 1; a (2, 1)-sum-free set in G is simply referred to as a sum-free set.

For the cyclic group Zn, we can find explicit sum-free sets as follows. For every n, the
integers that are between n/3 and 2n/3 form a sum-free set; more precisely, the set

{⌊
n
3

⌋
,
⌊
n
3

⌋
+ 1,

⌊
n
3

⌋
+ 2, . . . , 2

⌊
n
3

⌋
− 1
}

is sum-free in Zn. (The integers between n/6 and n/3, together with those between 2n/3
and 5n/6, with the endpoints carefully chosen, provide another sum-free set in Zn.)

Like in the case of zero-3-sum-free sets, we can do better when n has a prime divisor p
which is congruent to 2 mod 3. We see that the set

{(p+ 1)/3 + pi1 + i2 | i1 = 0, 1, . . . , n/p− 1, i2 = 0, 1, . . . , (p− 2)/3}

is sum-free.
These examples show that we have

µ(Zn, {2, 1}) ≥





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
otherwise;

and Diananda and Yap proved in 1969 (see [65]) that equality holds. Thus, using our function
introduced on page 76, we have:

Theorem G.4 (Diananda and Yap; cf. [65]) For all positive integers n, we have

µ(Zn, {2, 1}) = v1(n, 3).

More generally, we have the following result.

Theorem G.5 (Bajnok; cf. [13]) Suppose that k and l are positive integers and k > l.
Then we have

vk−l(n, k + l) ≤ µ(Zn, {k, l}) ≤ v1(n, k + l).

Of course, when the lower and upper bounds coincide, we get equality:

Corollary G.6 If k − l and n are relatively prime, then

µ(Zn, {k, l}) = v1(n, k + l).

In particular, for all positive integers n and l, we have

µ(Zn, {l+ 1, l}) = v1(n, 2l+ 1).

We note that Corollary G.6 was established in [114] by Hamidoune and Plagne.
As in Theorem F.8, we can determine the size of the largest (k, l)-sum-free set in cyclic

groups of prime order:

Theorem G.7 The size of the largest (k, l)-sum-free set in the cyclic group of prime order
p is

µ(Zp, {k, l}) = vk−l(p, k + l) =





0 if p|(k − l),

⌊
p−2
k+l

⌋
+ 1 otherwise.
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The value of µ(G, {k, l}) for groups of composite order is not known in general. By
the following result, it suffices to consider arithmetic progressions in order to determine
µ(Zn, {k, l}):

Theorem G.8 (Bajnok; cf. [13]) For a given divisor d of n, let α(Zd, {k, l}) be the max-
imum size of a (k, l)-sum-free arithmetic progression in Zd. Then

µ(Zn, {k, l}) = max
{
α(Zd, {k, l}) ·

n

d
| d ∈ D(n)

}
.

Using Theorem G.8, we can compute µ(Zn, {3, 1}) and µ(Zn, {4, 1}):

Theorem G.9 (Bajnok; cf. [13]) For all positive integers n, we have

µ(Zn, {3, 1}) = v2(n, 4).

Theorem G.10 (Butterworth; cf. [47]) For all positive integers n, we have

µ(Zn, {4, 1}) = v3(n, 5).

Recall from page 79 that

v2(n, 4) =





(
1 + 1

p

)
n
4 if n has prime divisors congruent to 3 mod 4,

and p is the smallest such divisor,

⌊
n
4

⌋
otherwise;

the value of v3(n, 5) is more complicated, see page 79.

Problem G.11 Use Theorem G.8 to compute µ(Zn, {k, l}) for other choices of k and l.

It may seem from our results thus far that µ(Zn, {k, l}) is given by vk−l(n, k+ l). While
this seems to be often the case, there are instances when

µ(Zn, {k, l}) > vk−l(n, k + l);

for example, µ(Z9, {5, 2}) = 2 (e.g., the set {1, 2} is (5, 2)-sum-free in Z9) while v3(9, 7) = 1,
and µ(Z16, {5, 1}) = 3 (e.g., the set {1, 2, 3} is (5, 1)-sum-free in Z16) while v4(16, 6) =
2. (These examples point to a difference between sum-free sets and zero-sum-free sets;
cf. Conjecture F.5.) It is a very interesting question to find others:

Problem G.12 Find other cases when µ(Zn, {k, l}) > vk−l(n, k + l).

The general question regarding cyclic group is, of course:

Problem G.13 Evaluate µ(Zn, {k, l}) for all positive integers n, k, and l.

Turning to the case of noncyclic groups, we first state the following consequence of
Proposition G.3:

Corollary G.14 For every group G of order n and exponent κ we have

µ(G, {k, l}) ≥ µ(Zκ, {k, l}) ·
n

κ
.

We (somewhat hesitantly) believe that equality holds:
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Conjecture G.15 For every group G of order n and exponent κ we have

µ(G, {k, l}) = µ(Zκ, {k, l}) ·
n

κ
.

We should point out that Conjecture G.15, if true, points to a difference in behavior
between sum-free sets and zero-sum-free sets, since we definitely may have

τ(G, h) 6= τ(Zκ, h) ·
n

κ
;

see, for example, Proposition F.13 and Theorem F.14. If Conjecture G.15 is true, it is likely
to be extremely difficult to prove; we offer the challenging problem:

Problem G.16 Prove (or disprove) Conjecture G.15.

We have the following partial result:

Theorem G.17 (Bajnok; cf. [13]) Conjecture G.15 holds whenever the exponent κ of G
possesses at least one divisor d that is not congruent to any integer between 1 and gcd(d, k−l)
(inclusive) mod k + l.

Thus, for example, if the exponent—or, equivalently, the order—of G is divisible by 3 or
has at least one (prime) divisor congruent to 2 mod 3, then µ(G, {2, 1}) is determined. The
case when all (prime) divisors of G are congruent to 1 mod 3 was unsolved for four decades,
until in 2005 in the breakthrough paper [101] Green and Ruzsa proved that Conjecture G.15
holds for sum-free sets:

Theorem G.18 (Green and Ruzsa; cf. [101]) Let κ be the exponent of G. Then

µ(G, {2, 1}) = µ(Zκ, {2, 1}) ·
n

κ
= v1(κ, 3) ·

n

κ
.

We should mention that the proof in [101] relies, in part, on a computer program.
For other k and l, the value of µ(G, {k, l}) is not known in general, though we have the

following bounds:

Theorem G.19 (Bajnok; cf. [13]) Suppose that G is an abelian group of order n and
exponent κ. Then, for all positive integers k and l with k > l we have

vk−l(κ, k + l) · n
κ
≤ µ(G, {k, l}) ≤ v1(n, k + l).

Problem G.20 Determine µ(G, {k, l}) for arbitrary finite abelian groups. In particular,
find µ(G, {3, 1}) for all noncyclic groups G.

We have the value of µ(G, {k, l}) when G is (isomorphic to) an elementary abelian 2-
group. Note that, when k and l have the same parity, then ka = la for all a ∈ Zr

2, so
µ(Zr

2, {k, l}) = 0 in this case. When k and l have opposite parity, then the set {1}×Zr−1
2 is

(k, l)-sum-free in Zr
2, so µ(Zr

2, {k, l}) ≥ 2r−1. On the other hand, for every subset A of Zr
2,

both kA and lA have size at least |A|, so they cannot be disjoint when A is (k, l)-sum-free
and |A| > 2r−1. Therefore:

Proposition G.21 For all positive integers r, k, and l with k > l, we have

µ(Zr
2, {k, l}) =





0 if k ≡ l mod 2;

2r−1 if k 6≡ l mod 2.



280 CHAPTER G. SUM-FREE SETS

We can observe that, by Propositions G.21 and F.14, we have

µ(Zr
2, {k, l}) = τ(Zr

2, k + l)

for all parameters.
We now turn to the inverse problem of classifying all (k, l)-sum-free subsets A of G of

maximum size |A| = µ(G, {k, l}).
Recall that arithmetic progressions play a fundamental role in providing (k, l)-sum-free

sets (see Theorem G.8) and, in particular, in providing sum-free sets. With this in mind,
we start by determining all sum-free arithmetic progressions in cyclic groups that have
maximum size.

Proposition G.22 Suppose that A is a sum-free arithmetic progression in Zn of size

|A| = µ(Zn, {2, 1}) = v1(n, 3).

Then one of the following possibilities must hold:

1. n is even and

A = {1, 3, . . . , n− 1}.

2. n is divisible by 3, has no prime divisors congruent to 2 mod 3, and there exists an
integer b relatively prime to n for which

(a)

b ·A = {1, 4, 7, . . . , n− 2}
or

(b)

b · A = {n/3, n/3 + 1, . . . , 2n/3− 1}.

3. n is equal to a prime p that is congruent to 2 mod 3, and there exists an integer b
relatively prime to p for which

b ·A = {(p+ 1)/3, (p+ 1)/3 + 1, . . . , 2(p+ 1)/3− 1}.

4. n is congruent to 1 mod 3, has no prime divisors congruent to 2 mod 3, and there
exists an integer b relatively prime to n for which

(a)

b ·A = {(n− 1)/3, (n− 1)/3 + 1, . . . , 2(n− 1)/3− 1}
or

(b)

b · A = {(n− 1)/3 + 1, (n− 1)/3 + 2, . . . , 2(n− 1)/3}.

(We should add that we may assume that the integer b of Case 2 (a) equals 1 or 2, or,
equivalently, 1 or −1.) The proof of Proposition G.22 starts on page 366.

To illuminate Proposition G.22, we discuss an example in detail. Recall that for each n,
we mentioned that the elements between n/6 and n/3, together with the elements between
2n/3 and 5n/6, with the endpoints carefully chosen, form a sum-free set in Zn. Is this an
arithmetic progression, and, if it has size v1(n, 3), is it included in Proposition G.22? The
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answers to both questions are affirmative. For example, if n = 27, then v1(n, 3) = n/3 = 9,
and the sum-free set in question is

A = {5, 6, 7, 8, 9} ∪ {19, 20, 21, 22}.

It is easy to verify that A is sum-free in Z27, and we see that it is an arithmetic progression,
since

A = {5, 5 + 14, 5 + 2 · 14, . . . , 5 + 8 · 14}.
We can verify that it is included in case 2 (b) of Proposition G.22, by noting that 25 and
27 are relatively prime, and

25 · A = {9, 10, 11, 12, 13, 14, 15, 16, 17}.

The classification of sum-free sets of maximum size has been known for several decades
for any G whose order has a prime divisor congruent to 2 mod 3 or whose order is divisible
by 3. It turns out that all such sets are arithmetic progressions of cosets of a subgroup of
G. Namely, we have the following two results:

Theorem G.23 (Diananda and Yap; cf. [65]; see also Theorem 7.8 in [199]) Suppose
that the order n of G has prime divisors congruent to 2 mod 3, and p is the smallest of
them. If A is a sum-free set of size

|A| = µ(G, {2, 1}) =
(
1 +

1

p

)
· n
3

in G, then there is a subgroup H in G, so that G/H is cyclic of order p, and A is the union
of (p+ 1)/3 cosets of H that form an arithmetic progression.

It is worth noting that, as a special case of Theorem G.23, we get cases 1 and 3 of
Proposition G.22 when G is cyclic of even order or cyclic of prime order p (with p ≡ 2 mod
3), respectively.

Theorem G.24 (Street; cf. [191, 192]; see also Theorem 7.9 in [199]) Suppose that
the order n of G is divisible by 3 and has no prime divisors congruent to 2 mod 3. If A is
a sum-free set of size

|A| = µ(G, {2, 1}) = n/3

in G, then there is a divisor k of n/3 and a subgroup H in G, so that G/H is cyclic of
order 3k, and A is the union of k cosets of H that form an arithmetic progression.

This time, observe that when G is cyclic, then for k = 1 and k = n/3 we get cases 2 (a)
and 2 (b) of Proposition G.22, respectively.

This leaves us with the task of characterizing sum-free sets of maximum size in G when
the order of G has only prime divisors congruent to 1 mod 3. As it turns out, in this case
not all such sets are arithmetic progressions of cosets of a subgroup, though the one other
type of set is not far from it. We first present the result for cyclic groups:

Theorem G.25 (Yap; cf. [201]) Suppose that all prime divisors of n are congruent to 1
mod 3. If A is a sum-free set of size

|A| = µ(Zn, {2, 1}) = (n− 1)/3

in Zn, then there exists an integer b relatively prime to n for which

b · A = {(n− 1)/3, (n− 1)/3 + 1, . . . , 2(n− 1)/3− 1},
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b · A = {(n− 1)/3 + 1, (n− 1)/3 + 2, . . . , 2(n− 1)/3},
or

b · A = {(n− 1)/3, (n− 1)/3 + 2, (n− 1)/3 + 3, . . . , 2(n− 1)/3− 1, 2(n− 1)/3 + 1}.

Observe that the third set listed is two elements short of being an arithmetic progression;
note also that this possibility can only occur if n > 7.

The classification for noncyclic groups is presented in the article [28] by Balasubrama-
nian, Prakash, and Ramana. Rather than stating the exact result, which is complicated, we
only discuss the situation in groups of rank 2.

How can one find sum-free sets of maximum size in Zn1
× Zn2

? The most obvious idea
is to follow Proposition G.3; for example, if A is a maximum-size sum-free set in Zn2

, then,
by Theorem G.18,

Zn1
×A

is a maximum-size sum-free set in Zn1
×Zn2

. The following construction is less obvious: we
can verify that, with an arbitrary subgroup H of Zn1

, the set A = A1 ∪ A2 ∪ A3, where

A1 = H × {(n2 − 1)/3}
A2 = (Zn1

\H)× {2(n2 − 1)/3}
A3 = Zn1

× {(n2 − 1)/3 + 1, (n2 − 1)/3 + 2, . . . , 2(n2 − 1)/3− 1}

is a maximum-size sum-free set in Zn1
× Zn2

. To see that A is sum-free, observe that,
considering the components in Zn2

alone, for elements g1, g2, g3 ∈ A to satisfy g1 + g2 = g3,
we must have g1, g2 ∈ A1 and g3 ∈ A2, but then the first component of g1+g2 is in H while
that is not the case for g3.

The following construction is similar: let H again be an arbitrary subgroup of Zn1
, and

let A = A1 ∪ A2 ∪ A3, where

A1 = H × {(n2 − 1)/3, 2(n2 − 1)/3 + 1}
A2 = (Zn1

\H)× {(n2 − 1)/3 + 1, 2(n2 − 1)/3}
A3 = Zn1

× {(n2 − 1)/3 + 2, (n2 − 1)/3 + 3, . . . , 2(n2 − 1)/3− 1}.

We can again verify that A is a maximum-size sum-free set in Zn1
× Zn2

.
The result of Balasubramanian, Prakash, and Ramana in [28] says that the three types

of sets just described provide “essentially” the only types of sum-free sets in Zn1
× Zn2

of
maximum size—see [28] for the precise statement for groups of arbitrary rank. (We should
add that the result for elementary abelian groups was proved by Street in 1971; see [178]
or Theorem 7.21 in [199].)

Let us turn now to the classification of maximum-size (k, l)-sum-free sets for (k, l) 6=
(2, 1). While we may suspect that the sets come in even more variety than they did for sum-
free sets, we find that this is not the case when the group is of prime order: all maximum-sized
sets are arithmetic progressions:

Theorem G.26 (Plagne; cf. [171]) Let p be a positive prime, and k and l be positive
integers with k > l and k ≥ 3; assume also that p does not divide k− l. If A is a (k, l)-sum-
free set of size

|A| = µ(Zp, {k, l}) =
⌊
p− 2

k + l

⌋
+ 1

in Zp, then A is an arithmetic progression.
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(We note that Theorem G.26 was conjectured and proved in part by Bier and Chin in [38].)
We can go a step beyond the statement of Theorem G.26 and determine the maximum-

sized (k, l)-sum-free sets in Zp more explicitly:

Theorem G.27 Let p be a positive prime, and k and l be positive integers with k > l and
k ≥ 3; assume also that p does not divide k − l. We let M and r denote, respectively, the
quotient and the remainder of p− 2 when divided by k+ l. For i = 1, 2, . . . , ⌊r/2⌋+1, let ai
be the (unique) solution of

(k − l)ai = lM + i

in Zp. If A is a (k, l)-sum-free set of size

|A| = µ(Zp, {k, l}) = M + 1

in Zp, then there is an i ∈ {1, 2, . . . , ⌊r/2⌋ + 1} and an integer b relatively prime to p for
which

b · A = {ai, ai + 1, . . . , ai +M}.

As an example, let us consider the case of maximum-sized (4, 1)-sum-free sets in Z19.
Note that M = ⌊(19− 2)/(4 + 1)⌋ = 3, so µ(Z19, {4, 1}) = 4, and that r = 2 and thus
⌊r/2⌋+ 1 = 2. Furthermore, solving the equations

(4− 1) · ai = 1 · 3 + i

for i = 1, 2 in Z19, we find that a1 = 14 and a2 = 8. Therefore, Theorem G.27 claims
that any (4, 1)-sum-free set of maximum size 4 in Z19 is a dilate of either {14, 15, 16, 17} or
{8, 9, 10, 11}. The easy proof—relying, of course, on Theorem G.26—is on page 368.

We do not have a classification of maximum-sized (k, l)-sum-free sets with k ≥ 3 in
groups of composite order:

Problem G.28 Let n, k, and l be positive integers with k > l and k ≥ 3. Classify all
(k, l)-sum-free sets of size µ(Zn, {k, l}) in the cyclic group Zn.

A particularly special (k, l)-sum-free set is one where no elements are “wasted”: we say
that a (k, l)-sum-free set A in G is complete if kA and lA partition G; in other words, not
only do we have kA ∩ lA = ∅ (i.e., A is (k, l)-sum-free), but also kA ∪ lA = G.

Before going any further, a word of caution: While the definition of A ⊆ G being (k, l)-
sum-free can be given either as kA ∩ lA = ∅ or as kA− lA ⊆ G \ {0}, the notions that for
a (k, l)-sum-free set kA ∪ lA = G holds or that kA− lA = G \ {0} holds are not equivalent
(though both notions express some sort of “un-wastefulness”)! We have counter-examples
in both directions:

• If A = {1, 3, 5, 7, 9} ⊆ Z10, then 2A = {0, 2, 4, 6, 8}, so A is sum-free set in Z10;
A ∪ 2A = G, thus A is complete, yet 2A−A = A 6= Z10 \ {0}.

• If A = {1, 3, 9} ⊆ Z13, then 2A = {2, 4, 5, 6, 10, 12}, so A is sum-free in Z13; 2A−A =
Z13 \ {0}, yet A ∪ 2A 6= G thus A is not complete.

While (k, l)-sum-free sets A in G for which kA− lA = G \ {0} may also be of interest, we
here define them as complete when kA ∪ lA = G.

We may use our classification of maximum-size sum-free sets (Theorems G.23, G.24,
and G.25) to determine which of these sets are complete sum-free sets. Consider first the
case when the order n of G has prime divisors congruent to 2 mod 3; let p be the smallest
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such divisor. From Theorem G.23 we see that a maximum-size sum-free set in G has size
(p+ 1)/3 · n/3 and is of the form

A = (a+H) ∪ (a+ d+H) ∪ · · · ∪ (a+ (p− 2)/3d+H)

for a subgroup H ≤ G of order n/p and elements a, d ∈ G. Then

2A = (2a+H) ∪ (2a+ d+H) ∪ · · · ∪ (2a+ 2(p− 2)/3d+H),

so 2A has size (2p−1)/3 ·n/p. Therefore, |A|+ |2A| = n, which (since A and 2A are disjoint)
can only be if A ∪ 2A = G, hence A is complete.

Next, assume that n is divisible by 3, but has no divisors congruent to 2 mod 3. By
Theorem G.24, a maximum-size sum-free set in G has size n/3 and is of the form

A = (a+H) ∪ (a+ d+H) ∪ · · · ∪ (a+ (k − 1)d+H)

for a divisor k of n/3, a subgroup H ≤ G of order n/(3k), and elements a, d ∈ G. Then

2A = (2a+H) ∪ (2a+ d+H) ∪ · · · ∪ (2a+ (2k − 2)d+H),

so 2A has size (2k − 1) · n/(3k). Therefore, |A| + |2A| = (3k − 1)/(3k) · n < n, so A is not
complete.

Suppose now that n has only prime divisors congruent to 1 mod 3. By Theorem G.25, if
A is a sum-free set of maximum size (n−1)/3 in Zn, then there exists an integer b relatively
prime to n for which b ·A is equal to

A1 = {(n− 1)/3, (n− 1)/3 + 1, . . . , 2(n− 1)/3− 1},

A2 = {(n− 1)/3 + 1, (n− 1)/3 + 2, . . . , 2(n− 1)/3},
or

A3 = {(n− 1)/3, (n− 1)/3 + 2, (n− 1)/3 + 3, . . . , 2(n− 1)/3− 1, 2(n− 1)/3 + 1}.

Since we have |b ·A| = |A| and |2(b ·A)| = |2A|, it suffices to examine sets A1, A2, and A3.
We get

2A1 = {2(n− 1)/3, 2(n− 1)/3 + 1, . . . , 4(n− 1)/3− 2},
2A2 = {2(n− 1)/3 + 2, 2(n− 1)/3 + 3, . . . , 4(n− 1)/3},

and

2A3 = {2(n− 1)/3} ∪ {2(n− 1)/3 + 2, 2(n− 1)/3 + 3, . . . , 4(n− 1)/3} ∪ {4(n− 1)/3 + 2}.

(All elements listed are considered mod n, of course.) Therefore, 2A1 and 2A2 both have
size 2(n − 1)/3 − 1, so A1 and A2 are not complete. However, |2A3| = 2(n − 1)/3 + 1, so
|A3 + |2A3| = n and A3 is complete.

We can summarize our findings as follows:

Theorem G.29 Let A be a maximum-sized sum-free set in G; as usual, let |G| = n.

1. If n has a prime divisor congruent to 2 mod 3, then A is a complete sum-free set in
G.

2. If n is divisible by 3 but has no prime divisors congruent to 2 mod 3, then A is not a
complete sum-free set in G.
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3. If n has only prime divisors congruent to 1 mod 3 and G is cyclic, then A is a complete
sum-free set in G if, and only if, there is an integer b relatively prime to n for which

b ·A = {(n− 1)/3, (n− 1)/3 + 2, (n− 1)/3 + 3, . . . , 2(n− 1)/3− 1, 2(n− 1)/3 + 1}.

This leaves us with the following problem:

Problem G.30 For each noncyclic group G whose order has only prime divisors congruent
to 1 mod 3, determine which sum-free sets A in G of maximum size |A| = (n − 1)/3 are
complete.

Problem G.30 is probably not difficult given the classification of the sum-sets in question
that we presented above (see page 282).

Turning to the case when k ≥ 3, we use Theorem G.27 to analyze maximum (k, l)-
sum-free sets in cyclic groups of prime order p. According to Theorem G.27, it suffices to
analyze

A = {ai, ai + 1, . . . , ai +M}
where M = ⌊(p − 2)/(k + l)⌋, r = p − 2 − (k + l)M , i = 1, 2, . . . , ⌊r/2⌋ + 1, and ai is the
unique solution to the equation (k − l)ai = lM + i in Zp.

We find that

kA = {kai, kai + 1, . . . , kai + kM}
lA = {lai, lai + 1, . . . , lai + lM}.

Now by definition, A is complete when

|kA|+ |lA| = (kM + 1) + (lM + 1) = p,

and this holds if, and only if, M = (p− 2)/(k+ l), that is, p− 2 is divisible by k+ l. In this
case, r = 0, and thus i can only equal 1. We get:

Theorem G.31 Let p be a positive prime, and k and l be positive integers with k > l and
k ≥ 3. Let A be a maximum-size (k, l)-sum-free set in Zp. Then A is complete if, and only
if, p− 2 is divisible by k + l, and A is a dilate of the set

A = {a, a+ 1, . . . , a+M},

where M = (p − 2)/(k + l) and a is the unique solution to the equation (k − l)a = lM + 1
in Zp.

As an example, we can compute explicitly that, when p − 2 is divisible by 5, then any
complete (4, 1)-sum-free set in Zp is a dilate of the set

{(2p+ 1)/5, (2p+ 1)/5 + 1, . . . , (3p− 1)/5}.

The similar question is not yet solved in cyclic groups of composite order:

Problem G.32 Let n, k, and l be positive integers with k > l and k ≥ 3. Classify all
complete (k, l)-sum-free sets of maximum size µ(Zn, {k, l}) in the cyclic group Zn.

Of course, a complete (k, l)-sum-free set need not have maximum size µ(Zn, {k, l}). For
example, when p is any (not necessarily the smallest) prime divisor of n with p ≡ 2 mod 3,
then the set

A = {(p+ 1)/3 + i+ pj | i = 0, 1, . . . , (p− 2)/3; j = 0, 1, . . . , n/p− 1}
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is a complete sum-free set in Zn, since

2A = {2(p+ 1)/3 + i+ pj | i = 0, 1, . . . , (2p− 4)/3; j = 0, 1, . . . , n/p− 1}

and thus A ∩ 2A = ∅ but A ∪ 2A = Zn.
The work [117] of Haviv and Levy generated many other examples of complete sum-free

sets that also have the additional property that they are symmetric (that is, subsets A of
G for which A = −A). Their results are somewhat complicated, so we just mention the
following special case:

Theorem G.33 (Haviv and Levy; cf. [117]) Let A be a complete sum-free subset of Zp

for some prime p, and suppose that A has size µ(Zp, {2, 1})− 2. If p is sufficiently large,
then there is an element b ∈ Zp \ {0} for which:

• If p ≡ 2 mod 3, then

b · A =

{
p− 5

3
+ i | i ∈ T

}
∪
[
p+ 13

3
,
2p− 13

3

]
∪
{
2p+ 5

3
− i | i ∈ T

}

where T = {0, 2, 4} or T = {0, 3, 4}.

• If p ≡ 1 mod 3, then

b · A =

{
p− 7

3
+ i | i ∈ T

}
∪
[
p+ 17

3
,
2p− 17

3

]
∪
{
2p+ 7

3
− i | i ∈ T

}

where T = {0, 2, 4, 6}, T = {0, 3, 5, 6},T={0,4,5,6}, or T = {1, 2, 6, 7}.

The classification of all complete (k, l)-sum-free sets remains open:

Problem G.34 Find all complete sum-free—or, more generally, complete (k, l)-sum-free—
sets in finite abelian groups that do not have maximum size µ(Zn, {k, l}).

Actually, Problem G.34 stays intriguing even when dropping the requirement that the
set be complete: we may just ask for (k, l)-sum-free sets that do not have maximum size
µ(Zn, {k, l}) but are maximal—that is, they cannot be enlarged without losing the (k, l)-
sum-free property. One then may ask for the possible cardinalities of maximal sum-free
sets:

Problem G.35 For each group G and for all positive integers k, l with k > l, find all
possible values of m for which a maximal (k, l)-sum-free set of size m exist.

In particular, for positive integers i, we let Mi(G, {k, l}) denote the i-th largest car-
dinality of a maximal (k, l)-sum-free set in G (for values of i for which this exists), and
M(G, {k, l}) denote the size of the smallest maximal (k, l)-sum-free set in G. Note that

M1(G, {k, l}) = µ(G, {k, l}).

We then may ask:

Problem G.36 Find the i-th largest size Mi(G, {k, l}) of maximal (k, l)-sum-free set in G.
In particular, find M2(G, {k, l}).

Problem G.37 Find the size M(G, {k, l}) of the smallest maximal (k, l)-sum-free set in
G.
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As an example, consider G = Z11, where µ(Z11, {2, 1}) = 4. The set A = {1, 3, 5} is
sum-free in G, but A ∪ {a} is not sum-free for any a ∈ G \A. We can also verify that each
set of size two can be enlarged so that it stays sum-free, hence

M2(Z11, {2, 1}) = M(Z11, {2, 1}) = 3.

Clark and Pedersen have the following result in elementary abelian 2-groups:

Theorem G.38 (Clark and Pedersen; cf. [57]) For each positive integer r ≥ 4, we
have

M2(Z
r
2, {2, 1}) = 5 · 2r−4.

Clark and Pedersen also computed all values of Mi(Z
r
2, {2, 1}) (that exist) and

M(Zr
2, {2, 1}) for r ≤ 6 and possibly all for 7 ≤ r ≤ 10. From their data, we may con-

jecture the following:

Conjecture G.39 For each positive integer r ≥ 4 and 2 ≤ i ≤ r − 2, we have

Mi(Z
r
2, {2, 1}) = 2r−2 + 2r−2−i,

and
M(Zr

2, {2, 1}) = 2⌈r/2⌉ + 2⌊r/2⌋ − 3.

We note that our formula does not hold for i = 1, but by Theorem G.38, it holds for
all r ≥ 4 and i = 2. Furthermore, from Corollary 5 in [57] (with s = 2 and t = r − 2 − i)
we also know that maximal sum-free sets of size 2r−2 + 2r−2−i exist in Zr

2 for each r ≥ 4
and 2 ≤ i ≤ r − 2, and (with s = ⌊r/2⌋ and t = 0) that maximal sum-free sets of size
2⌈r/2⌉ + 2⌊r/2⌋ − 3 exist in Zr

2 for each r ≥ 4. However, it has not been established yet that
these values equal Mi(Z

r
2, {2, 1}) and M(Zr

2, {2, 1}), respectively.

Problem G.40 Prove Conjecture G.39.

We now turn to a related problem that was first investigated by Erdős in [77]. Namely,
we wish to examine the size of the largest (k, l)-sum-free subset of a given A ⊆ G: we denote
this quantity by µ(G, {k, l}, A). We can then ask for the “worst-case scenario”: For each
positive integer m ≤ n, find the m-subsets A0 of G so that

µ(G, {k, l}, A0) ≤ µ(G, {k, l}, A)

for all m-subsets A of G; we then let µ(G, {k, l},m) = µ(G, {k, l}, A0).

Problem G.41 For each group G and all positive integers k, l, and m (with k > l and
m ≤ n), find µ(G, {k, l},m).

Of course, we have
µ(G, {k, l}, n) = µ(G, {k, l}),

but values of µ(G, {k, l},m) for m < n are not known (cf. the preprint [196] by Tao and Vu
for the history of this problem and for more information). We have the following general
lower bound for the case of sum-free sets:

Theorem G.42 (Alon and Kleitman; cf. [2]) For every group G and positive integer
m (with m ≤ n) we have

µ(G, {2, 1},m) ≥ ⌊2m/7⌋.
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We note that the bound here is tight in the sense that, by Theorem G.18, it is achieved by
the group Zr

7 when m = n = 7r.

As a step toward solving Problem G.41, we may ask for the smallest value of m for
which µ(G, {k, l},m) = µ(G, {k, l}):

Problem G.43 For each group G and all positive integers k and l with k > l, find the
smallest value T (G, {k, l}) of m for which µ(G, {k, l},m) = µ(G, {k, l}).

When p is an odd prime and p ≡ 2 mod 3, then by Theorem G.23 and Proposition G.22
(part 3), we know that Zp has exactly (p − 1)/2 sum-free subsets of size µ(Zp, {2, 1}) =
(p + 1)/3. Furthermore, by the result of Chin in [55], these sets form a block design; that
is, every nonzero element of Zp is contained in the same number (in our case, (p + 1)/6)
of these (p − 1)/2 sets. Since for p > 5, the value of 2 · (p + 1)/6 is less than (p − 1)/2,
deleting two nonzero elements of Zp results in a set of size p− 2 that still contains one of
the (p− 1)/2 sum-free sets of maximum size. Therefore, we have

µ(Zp, {2, 1}, p− 2) = µ(Zp, {2, 1}),

which yields:

Theorem G.44 For an odd prime p > 5 with p ≡ 2 mod 3, we have

T (Zp, {2, 1}) ≤ p− 2.

As an example, let us consider the group Z11; by Theorem G.44, T (Z11, {2, 1}) is at
most 9. We know that µ(Zp, {2, 1}) = 4 and that there are five sum-free subsets of size four:

{4, 5, 6, 7}, {8, 10, 1, 3}, {1, 4, 7, 10}, {5, 9, 2, 6}, {9, 3, 8, 2}.

We see that none of these five sets are contained in

A = Z11 \ {2, 4, 8},

and thus we get T (Z11, {2, 1}) = 9. We do not know the value of T (Zp, {2, 1}) in general,
so, as a special case of Problem G.43, we ask:

Problem G.45 Find the value of T (Zp, {2, 1}) for every odd prime p with p ≡ 2 mod 3.

Our next pursuit is the following related problem. For a given m-subset A of a given
group G, we may ask for the number of ordered pairs (a1, a2) with a1, a2 ∈ A for which
a1 + a2 ∈ A; we denote this quantity by P (G,A). (Note that, when a1 + a2 ∈ A, then
a2 + a1 ∈ A, so when a1 and a2 are distinct, both (a1, a2) and (a2, a1) contribute toward
the count.) We then may ask for the minimum value of P (G,A) among all m-subsets A of
G; we denote this quantity by P (G,m). Observe that, by definition, we have P (G,m) = 0
for each m ≤ µ(G, {2, 1}), but P (G,m) ≥ 1 for each m ≥ µ(G, {2, 1}) + 1.

Problem G.46 For each group G and all positive integers m with

µ(G, {2, 1}) + 1 ≤ m ≤ n,

find P (G,m).
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Consider, as an example, the cyclic group Zp of prime order p ≥ 3, where

µ(Zp, {2, 1}) = ⌊(p+ 1)/3⌋.

As we have already observed, the “middle” third of the elements, namely, the set

{⌊(p+ 1)/3⌋, ⌊(p+ 1)/3⌋+ 1, . . . , 2⌊(p+ 1)/3⌋ − 1}

forms a sum-free set of Zp of maximum size. Suppose that m is a positive integer so that

m > ⌊(p+ 1)/3⌋.

We enlarge our set to

A = {⌊(p+ 1−m)/2⌋, ⌊(p+ 1−m)/2⌋+ 1, . . . , ⌊(p+ 1−m)/2⌋+m− 1} .

Then A has size m, and it is still in the “middle” (when m is even, it is symmetrical in that
its first and last elements add to p, and if m is odd, then it is as close to being symmetrical
as possible). A short calculation finds that

P (Zp, A) =
⌊
(3m− p)2/4

⌋
.

A recent result by Samotij and Sudakov says that one cannot do better:

Theorem G.47 (Samotij and Sudakov; cf. [182], [183]) Suppose that p is an odd
prime, and A is a subset of Zp of size m > ⌊(p+ 1)/3⌋. Then

P (Zp,m) =
⌊
(3m− p)2/4

⌋
.

Furthermore, P (Zp, A) = P (Zp,m) holds if, and only if, there is an integer b, relatively
prime to p, for which

b ·A = {⌊(p+ 1−m)/2⌋, ⌊(p+ 1−m)/2⌋+ 1, . . . , ⌊(p+ 1−m)/2⌋+m− 1} .

(We note that the statement of this result is stated erroneously in [182]; see [183] for the
corrected version.)

In [182] the authors evaluate P (G,m) for the elementary abelian group G, and state
some partial results for other groups, but warn that finding P (G,m) for all G and m “would
be rather difficult.”

As a generalization, for a positive integer k we define

P (G, k,A) = |{(a1, . . . , ak) ∈ Ak | a1 + · · · ak ∈ A}|

and

P (G, k,m) = min{P (G, k,A) | A ∈ G, |A| = m}.
Note that we have P (G, 2, A) = P (G,A) and P (G, 2,m) = P (G,m).

Problem G.48 Evaluate P (G, k,m) for all groups G and positive integers k and m.

Of course, we are also interested in partial progress toward Problem G.48, such as the
following:

Problem G.49 Evaluate P (Zp, k,m) for prime values of p and k > l with k ≥ 3.
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G.1.2 Limited number of terms

Given a group G and a nonnegative integer s, here we are interested in finding the maximum
possible size of an [0, s]-sum-free set in G, that is, the quantity

µ(G, [0, s]) = max{|A| | A ⊆ G; 0 ≤ l < k ≤ s ⇒ kA ∩ lA = ∅}.

Note that in a group G of exponent κ, we have 0g = κg for any g ∈ G, so no subset of
G is [0, s]-sum-free if s ≥ κ. Furthermore, the cases of s = 0 and s = 1 are easy: any subset
A of G is [0, 0]-sum-free, and A ⊆ G is [0, 1]-sum-free if, and only if, 0 6∈ A. We thus have:

Proposition G.50 If G is of exponent κ and s ≥ κ, then µ(G, [0, s]) = 0. Furthermore,
µ(G, [0, 0]) = n and µ(G, [0, 1]) = n− 1.

According to Proposition G.50, we can assume that 2 ≤ s ≤ κ− 1.
We have two explicit constructions for [0, s]-sum-free sets in Zn. The first comes from

Zajaczkowski (see [204]): Let

m =

⌊
n− s− 1

s2

⌋
+ 1,

and consider

A = {1 + is | i = 0, 1, . . . ,m− 1}
in Zn. Note that the elements of hA are congruent to h mod s; therefore, kA and lA are
pairwise distinct for all 1 ≤ l < k ≤ s. Furthermore, 0 6∈ sA, since

s · (1 + (m− 1)s) = s+ s2 ·
⌊
n− s− 1

s2

⌋
≤ s+ (n− s− 1) < n.

Therefore, A is indeed [0, s]-sum-free set in Zn.
For our second construction, let m be as above, and set

a = (s− 1)(m− 1) + 1.

Then for

A = {a, a+ 1, . . . , a+m− 1}
we see that

hA = {ha, ha+ 1, . . . , ha+ h(m− 1)}.
Note that for each h = 0, 1, 2, . . . , s− 1 we have

ha+ h(m− 1) < (h+ 1)a,

since this inequality is equivalent to h(m− 1) < a, which holds as

h(m− 1) ≤ (s− 1)(m− 1) = a− 1.

Furthermore,

sa+ s(m− 1) = s((s− 1)(m− 1)+1)+ s(m− 1) = s2(m− 1)+ s = s2 ·
⌊
n− s− 1

s2

⌋
+ s < n.

Therefore, A is [0, s]-sum-free set in Zn.
From both constructions we get:
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Proposition G.51 (Zajaczkowski; cf. [204]) For all positive integers n and s, we have

µ(Zn, [0, s]) ≥
⌊
n− s− 1

s2

⌋
+ 1.

Recall that when the exponent (in this case, the order) of the group G is s or less, then
no set is [0, s]-sum-free in G. Observe that

⌊
n− s− 1

s2

⌋
+ 1

equals 0 when n ≤ s but is positive when n ≥ s+ 1.
In many cases, we can do better than Proposition G.51. Let d be any positive divisor of

n, and let H be the subgroup of order n/d in Zn. Note that if A is a [0, s]-sum-free set in
Zd, then A+H is a [0, s]-sum-free set in Zn. Therefore:

Proposition G.52 For all positive integers n and s, we have

µ(Zn, [0, s]) ≥ µ(Zd, [0, s]) ·
n

d
.

Combining Propositions G.51 and G.52 yields:

Corollary G.53 For all positive integers n and s, we have

µ(Zn, [0, s]) ≥ max

{(⌊
d− s− 1

s2

⌋
+ 1

)
· n
d
| d ∈ D(n)

}
.

(Zajaczkowski proved a special case of this for s = 2 in [204].)
We can analyze the bound of Corollary G.53 for small values of s as follows. First, note

that for s = 1, Corollary G.53 becomes

µ(Zn, [0, 1]) ≥ max
{
(d− 1) · n

d
| d ∈ D(n)

}
= n− 1,

and from Proposition G.50 we know that equality holds.
For s = 2, we get

µ(Zn, [0, 2]) ≥ max

{⌊
d+ 1

4

⌋
· n
d
| d ∈ D(n)

}
.

We separate two cases. Assume first that n has no divisors that are congruent to 3 mod 4.
In this case, for all d ∈ D(n) we have

⌊
d+ 1

4

⌋
· n
d
≤ d

4
· n
d
=

n

4
;

since the left-hand side is an integer, it can be at most ⌊n/4⌋. On the other hand, using
d = n we see that

max

{⌊
d+ 1

4

⌋
· n
d
| d ∈ D(n)

}
≥
⌊
n+ 1

4

⌋
=
⌊n
4

⌋
,

so Corollary G.53 gives

µ(Zn, [0, 2]) ≥
⌊n
4

⌋
.
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Suppose now that n has divisors that are congruent to 3 mod 4. Then for each such
divisor d, we get ⌊

d+ 1

4

⌋
· n
d
=

d+ 1

4
· n
d
=

(
1 +

1

d

)
n

4
;

this quantity is greatest when d is the smallest such divisor, namely, it is the smallest prime
divisor of n that is congruent to 3 mod 4. In summary, for s = 2 Corollary G.53 yields (see
page 79):

Corollary G.54 For all positive integers n, we have

µ(Zn, [0, 2]) ≥ v2(n, 4) =





(
1 + 1

p

)
n
4 if n has prime divisors congruent to 3 mod 4,

and p is the smallest such divisor;

⌊
n
4

⌋
otherwise.

We believe that equality holds in Corollary G.54:

Conjecture G.55 For all positive integers n, we have

µ(Zn, [0, 2]) = v2(n, 4).

Zajaczkowski verified Conjecture G.55 for all n ≤ 20 (cf. [204]).

Problem G.56 Prove Conjecture G.55.

Moving on to s = 3, we see that Corollary G.53 becomes:

Corollary G.57 For all positive integers n, we have

µ(Zn, [0, 3]) ≥ max

{⌊
d+ 5

9

⌋
· n
d
| d ∈ D(n)

}
.

(Note that the bound here is not always equal to v3(n, 9).) In particular, when n only
has divisors that are congruent to 0, 1, 2, or 3 mod 9, then we only get

µ(Zn, [0, 3]) ≥ ⌊n/9⌋.

It is not clear if we can do better:

Problem G.58 Improve, if possible, on the lower bound of Corollary G.57.

As an example, we prove that for n = 11, we cannot improve on the bound of Corollary
G.57, which yields only

µ(Z11, [0, 3]) ≥ 1.

We argue as follows. Suppose, indirectly, that Z11 contains a 2-subset A = {a, b} that is
[0, 3]-sum-free. This means that the sets

0A = {0}
1A = {a, b}
2A = {2a, a+ b, 2b}
3A = {3a, 2a+ b, a+ 2b, 3b}

are pairwise disjoint. Note also that the elements listed in each set are all distinct; for
example, 2a+b = 3b would yield 2a = 2b, which in Z11 can only happen if a = b. Therefore,
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the ten elements listed are ten distinct elements of Z11; in other words, there is a unique
element c ∈ Z11 so that

[0, 3]A = Z11 \ {c}.

Summing the elements on the two sides, we get

10a+ 10b = (0 + 1 + · · ·+ 10)− c,

or

10a+ 10b = −c,

from which c = a + b. But that is a contradiction, since a + b ∈ A and thus c ∈ [0, 3]A.
Therefore,

µ(Z11, [0, 3]) = 1.

We know even less about the cases of s ≥ 4:

Problem G.59 Improve, if possible, on the lower bound of Corollary G.53 for s ≥ 4.

We state the following challenging problems:

Problem G.60 Find the exact value of µ(Zn, [0, s]) for all n and a given s ≥ 4.

Problem G.61 Find the exact value of µ(G, [0, 2]) for noncyclic groups G.

Problem G.62 Find the exact value of µ(G, [0, s]) for noncyclic groups G and s ≥ 3.

G.1.3 Arbitrary number of terms

Here we ought to consider

µ(G,H) = max{|A| | A ⊆ G;h1, h2 ∈ H ;h1 6= h2 ⇒ h1A ∩ h2A = ∅}

for the case when H is the set of all nonnegative or all positive integers. However, as we
have already mentioned, we have µ(G,H) = 0 whenever H contains two elements whose
difference is a multiple of the exponent of the group.

G.2 Unrestricted signed sumsets

G.2.1 Fixed number of terms

G.2.2 Limited number of terms

G.2.3 Arbitrary number of terms

Here we ought to consider

µ±(G,H) = max{|A| | A ⊆ G;h1, h2 ∈ H ;h1 6= h2 ⇒ (h1)±A ∩ (h2)±A = ∅}

for the case when H is the set of all nonnegative or all positive integers. However, as we
have already mentioned, we have µ±(G,H) = 0 whenever H contains two elements whose
difference is a multiple of the exponent of the group.
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G.3 Restricted sumsets

Our goal in this section is to investigate the maximum possible size of a weak H-sum-free
set, that is, the quantity

µ̂ (G,H) = max{|A| | A ⊆ G;h1, h2 ∈ H ;h1 6= h2 ⇒ h1̂ A ∩ h2̂ A = ∅}.

Clearly, for all G of order at least 2, we have µ̂ (G,H) ≥ 1: for any a ∈ G \ {0}, at least
the one-element set A = {a} will be weakly H-sum-free.

It is important to note that Proposition G.3 does not carry through for µ̂ (G,H): for
example, {1, 2, 4} is weakly {1, 2}-sum-free in Z10 (the sum of any two distinct elements of
A is in G \A), but {1, 2, 4} × Z10 is not weakly {2, 1}-sum-free in Z2

10 since, for example,

(1, 3) + (1, 4) = (2, 7).

Below we consider three special cases: when H consists of two distinct positive integers
(by Proposition G.1, the case when one of the integers equals 0 is identical to Section F.3.1),
when H consists of all nonnegative integers up to some value s, and when H = N0.

G.3.1 Fixed number of terms

The analogue of a (k, l)-sum-free set for restricted addition is called a weak (k, l)-sum-free
set; namely, subsets A of G satisfying the condition (k̂ A)∩ (l̂ A) = ∅ are called weak (k, l)-
sum-free sets. Here we investigate, for a given group G and positive integers k and l with
k > l, the quantity

µ̂ (G, {k, l}) = max{|A| | A ⊆ G, (k̂ A) ∩ (l̂ A) = ∅},

that is, the maximum size of a weak (k, l)-sum-free set in G.
Since for k ≥ n+ 1 we trivially have µ̂ (G, {k, l}) = n, we assume that l < k ≤ n.
Note that, if A is (k, l)-sum-free, then it is also weakly (k, l)-sum-free, so by Theorem

G.19, we have the following lower bound:

Proposition G.63 Suppose that G is an abelian group of order n and exponent κ. Then,
for all positive integers k and l with k > l we have

µ̂ (G, {k, l}) ≥ µ(G, {k, l}) ≥ vk−l(κ, k + l) · n
κ
.

There are a variety of cases when µ̂ (G, {k, l}) is strictly more than µ(G, {k, l}); we
discuss some of these below.

First, we investigate intervals in the cyclic group, that is, arithmetic progressions in Zn

whose common difference is 1. For a fixed element a ∈ Zn and positive integer m ≤ n, the
set

A = {a, a+ 1, . . . , a+m− 1}
is called an interval of length m − 1 (we say that A has size m and length m − 1). For
example, {3, 4, 5, 6} and {5, 6, 0, 1} are both intervals of length 3 (size 4) in Z7.

The following result exhibits a formula for the maximum size γ (̂Zn, {k, l}) of a weak
(k, l)-sum-free interval in Zn. We introduce some notations:

δ = gcd(n, k − l),

J = k2 + l2 − (k + l),
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M = ⌊(n+ J − 2)/(k + l)⌋,
K = kM − J/2 + 1,

L = lM − J/2 + 1.

Observe that

K + L = (k + l)⌊(n+ J − 2)/(k + l)⌋ − J + 2 ≤ n.

Proposition G.64 Let n, k, and l be positive integers with l < k ≤ n, and let γ (̂Zn, {k, l})
be the maximum size of a weak (k, l)-sum-free interval in Zn. With the notations just intro-
duced,

γ (̂Zn, {k, l}) =





M + 1 if L/δ ≤ ⌊(n−K)/δ⌋;

M otherwise.

The proof of Proposition G.64 is on page 369.
We have the following more explicit consequence of Proposition G.64 (see the corre-

sponding Corollary F.81 regarding weak zero-h-sum-free sets):

Corollary G.65 For positive integers n, k, and l with l < k ≤ n we have

µ̂ (Zn, {k, l}) ≥
⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋
.

We provide two proofs: one using Proposition G.64 and another that is more direct; see
page 370.

We can use Corollary G.65 (as well as Theorem D.51) to find the value of µ̂ (Zp, {k, l})
for all k, l, and prime values of p. By Corollary G.65, we get

µ̂ (Zp, {k, l}) ≥
⌊
p+ k2 + l2 − 2

k + l

⌋
.

To see that equality holds, we employ Theorem D.51 to conclude that for a weak (k, l)-sum-
free set A ⊆ Zp we have

p ≥ |k̂ A|+ |l̂ A| ≥ (k|A| − k2 + 1) + (l|A| − l2 + 1),

from which

|A| ≤ p+ k2 + l2 − 2

k + l

follows. Therefore:

Theorem G.66 For all primes p and positive integers k and l with l < k ≤ p we have

µ̂ (Zp, {k, l}) =
⌊
p+ k2 + l2 − 2

k + l

⌋
.

The value of µ̂ (Zn, {k, l}) for composite n is harder to find, and is known for all n only
for (k, l) = (2, 1) (the case of weak sum-free sets)—we present this result next.

By combining Proposition G.63 and Corollary G.65, we get:

µ̂ (Zn, {k, l}) ≥ max

{
µ(Zn, {k, l}),

⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋}
.
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For k = 2 and l = 1, this translates to

µ̂ (Zn, {2, 1}) ≥ max
{
µ(Zn, {2, 1}),

⌊n
3

⌋
+ 1
}
.

The value of µ(Zn, {2, 1}) is given by Corollary G.6 as v1(n, 3); on page 277 we see that

v1(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
otherwise.

We should also note that, for any prime divisor p of n which is congruent to 2 mod 3, we
have (

1 +
1

p

)
n

3
≥
⌊n
3

⌋
+ 1.

Indeed, if n ≥ 3p, then

(
1 +

1

p

)
n

3
≥
(
1 +

1

n/3

)
n

3
=

n

3
+ 1 ≥

⌊n
3

⌋
+ 1;

if n = 2p, then

(
1 +

1

p

)
n

3
=

(
1 +

1

n/2

)
n

3
=

n− 1

3
+ 1 =

⌊n
3

⌋
+ 1;

and if n = p, then

(
1 +

1

p

)
n

3
=

(
1 +

1

n

)
n

3
=

n− 2

3
+ 1 =

⌊n
3

⌋
+ 1.

This proves that

µ̂ (Zn, {2, 1}) ≥





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
+ 1 otherwise.

It turns out that equality holds:

Theorem G.67 (Zannier; cf. [205]) For all positive integers we have

µ̂ (Zn, {2, 1}) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
+ 1 otherwise.

We present Zannier’s short and elegant proof on page 372.
Let us turn to the case of k = 3 and l = 1. Our considerations above now yield

µ̂ (Zn, {3, 1}) ≥ max

{
µ(Zn, {3, 1}),

⌊
n+ 9− gcd(n, 2)

4

⌋}
.
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Recall that by Theorem G.9 and page 79,

µ(Zn, {3, 1}) = v2(n, 4) =





(
1 + 1

p

)
n
4 if n has prime divisors congruent to 3 mod 4,

and p is the smallest such divisor,

⌊
n
4

⌋
otherwise.

Note that, unless n is divisible by 4, we have

⌊
n+ 9− gcd(n, 2)

4

⌋
=
⌊n
4

⌋
+ 2,

and thus for these values of n we have

µ̂ (Zn, {3, 1}) ≥ ⌊n/4⌋+ 2.

We are able to make the same claim even when n is divisible by 4 as long as it is not divisible
by 8, since we may apply the stronger Proposition G.64 to conclude exactly this when

n/4− 1

2
≤
⌊
n/4− 1

2

⌋

holds, or, equivalently, when n leaves a remainder of 4 mod 8.
This leaves us with the cases when n is divisible by 8. Ziegler in [206] noticed that in

some subcases one still has a weak (3, 1)-sum-free set in Zn of size n/4 + 2 (even when n
has no prime divisors congruent to 3 mod 4). For example, there are several such sets of
size 4 in Z8, including {0, 1, 2, 4} and {0, 3, 4, 6}. Furthermore, he observed that when n is
divisible by 16, then

{
n

16
,
n

16
+ 1, . . . ,

3n

16

}
∪
{
9n

16
,
9n

16
+ 1, . . . ,

11n

16

}

is a weak (3, 1)-sum-free set in Zn of size n/4+2. (See a generalization of this in Proposition
G.73 below.) It is tempting to conjecture that

µ̂ (Zn, {3, 1}) ≥ ⌊n/4⌋+ 2

always holds; however, as the computational data of Hallfors (see below) indicates, this is
false for n = 40. (Note that n = 24 has a prime divisor that is congruent to 3 mod 4.)

We pose the following intriguing problem:

Problem G.68 Suppose that n is congruent to 8 mod 16 and has no prime divisors con-
gruent to 3 mod 4. When is µ̂ (Zn, {3, 1}) equal to n/4 + 2 and when is it n/4 + 1?

As we have discussed above, µ̂ (Z8, {3, 1}) = 8/4 + 2, but µ̂ (Z40, {3, 1}) = 40/4 + 1. The
next value of n in question is n = 104.

Some more general questions:

Problem G.69 Find µ̂ (Zn, {3, 1}) for all values of n.

Problem G.70 Find µ̂ (Zn, {k, 1}) for other values of k.

Problem G.71 Find µ̂ (Zn, {k, l}) for other values of k and l.

Problem G.72 Find µ̂ (G, {k, l}) in noncyclic groups G, in particular, for G = Zr
k.
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We are not aware of any general exact results besides the ones already discussed. How-
ever, there are a variety of constructions yielding lower bounds for µ̂ (Zn, {k, l}), as we
present next.

One such result was discovered (although for l = 1 only) by Hallfors in [111]:

Proposition G.73 (Hallfors; cf. [111]) Suppose that n, k, and l are positive integers so
that l < k and n is divisible by (k2 − l2)(k− 1). Let H be the subgroup of order k− 1 in Zn,
and set

A = {a, a+ 1, . . . , a+ c}+H,

where

a =
ln

(k2 − l2)(k − 1)
and c =

n

(k + l)(k − 1)
.

Then A is a weak sum-free set in Zn, and thus

µ̂ (Zn, {k, l}) ≥
n

k + l
+ k − 1.

For example, if n is divisible by 3, then
{
n

3
,
n

3
+ 1, . . . ,

2n

3

}

is a weak (2, 1)-sum-free set in Zn of size n/3 + 1, and if n is divisible by 16, then we get
the weak (3, 1)-sum-free set

{
n

16
,
n

16
+ 1, . . . ,

3n

16

}
∪
{
9n

16
,
9n

16
+ 1, . . . ,

11n

16

}

of size n/4 + 2 mentioned above. The proof of Proposition G.73 is on page 373.
Another construction of Hallfors from [111] (though only presented there for the special

case of d = 4) is as follows:

Proposition G.74 (Hallfors; cf. [111]) Suppose that n, k, and l are positive integers so
that l < k. Let d ∈ D(n) be even, and suppose that n ≥ d(d/2− 1) and that the remainders
of k and l when divided by d differ by d/2. Let H be the subgroup of order n/d in Zn, and
set

A = (1 +H) ∪Hd,

where
Hd = {0, d, 2d, . . . , (d/2− 2)d} ⊆ H

(with H2 = ∅). Then A is a weak sum-free set in Zn, and thus

µ̂ (Zn, {k, l}) ≥ n/d+ d/2− 1.

The proof of Proposition G.74 is on page 374.
Observe that Proposition G.74 has the obvious special case for d = 2: If n is even, k and

l have opposite parity, and l < k ≤ n, then the set

A = {1, 3, 5, . . . , n− 1}
is a weak (k, l)-sum-free set in Zn, and thus

µ̂ (Zn, {k, l}) ≥ n/2.

This, however, already follows from Proposition G.63 and Corollary 4.5, since in this case
we have:

µ̂ (Zn, {k, l}) ≥ µ(Zn, {k, l}) ≥ vk−l(n, k + l) = n/2.

We continue with a set of other (rather easy) constructions.
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Proposition G.75 Suppose that n = k(k− 1). Let H be the subgroup of order k− 1 in Zn,
and set

A = (H \ {0}) ∪ (1 +H).

Then A is a weak (k, 1)-sum-free set in Zn, so

µ̂ (Zn, {k, 1}) ≥ 2k − 3.

This claim can be verified quickly, as

k̂ A ⊆ {2, 3, . . . , k − 1}+H,

so k̂ A is disjoint from A. We should point out that Proposition G.75 sometimes supersedes
our previous results: for example, it yields µ̂ (Z20, {5, 1}) ≥ 7 (which is the exact value, as
it turns out), while µ(Z20, {5, 1}) = 4 and γ (̂Z20, {5, 1}) = 6.

In a similar vein:

Proposition G.76 Suppose that n = k(k2 − 1). Let H be the subgroup of order k in Zn,
define

h0 =

{
0 if k is odd,

n/2 if k is even,

and set
A = ({1, 2, . . . , k − 1}+H) ∪ (k + (H \ {h0})).

Then A is a weak (k, 1)-sum-free set in Zn, so

µ̂ (Zn, {k, 1}) ≥ k2 − 1 =
n

k + 1
+ k − 1.

To verify our claim, observe that

k̂ A = {k + k(k − 1)/2 · (k2 − 1)} ∪ ({k + 1, k + 2, . . . , (k − 1)k + k − 1}+H)

= {k + h0} ∪ ({k + 1, k + 2, . . . , k2 − 1}+H)

= Zn \A,

establishing our claim.
Relying on a computer program, Hallfors in [111] exhibited the values of µ̂ (Zn, {k, l})

for n ≤ 40 and 1 ≤ l < k ≤ 4—we provide these data (except for (k, l) = (2, 1) for which
we have Theorem G.67) in the table below.
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n µ̂ (Zn, {3, 1}) µ̂ (Zn, {4, 1}) µ̂ (Zn, {3, 2}) µ̂ (Zn, {4, 2}) µ̂ (Zn, {4, 3})
5 3 4 3 3 4
6 3 4 3 4 4
7 3 4 3 4 4
8 4 4 4 4 4
9 4 4 4 4 4
10 4 5 5 4 5
11 4 5 4 4 4
12 5 6 6 5 6
13 5 5 4 5 5
14 5 7 7 5 7
15 5 6 5 5 5
16 6 8 8 5 8
17 6 6 5 5 5
18 6 9 9 6 9
19 6 6 6 6 6
20 7 10 10 6 10
21 7 6 7 7 7
22 7 11 11 6 11
23 7 7 6 6 6
24 8 12 12 8 12
25 8 8 7 7 6
26 8 13 13 7 13
27 9 8 9 9 9
28 9 14 14 8 14
29 9 8 8 7 7
30 10 15 15 10 15
31 9 9 8 8 7
32 10 16 16 9 16
33 11 9 11 11 11
34 10 17 17 8 17
35 10 10 10 8 8
36 12 18 18 12 18
37 11 10 9 9 8
38 11 19 19 9 19
39 13 10 13 13 13
40 11 20 20 11 20

Additionally, Hallfors in [110] also computed the values of µ̂ (Zn, {k, l}) for n ≤ 30,
l = 1, and 5 ≤ k ≤ 9, which are as follows:
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n µ̂ (Zn, {5, 1}) µ̂ (Zn, {6, 1}) µ̂ (Zn, {7, 1}) µ̂ (Zn, {8, 1}) µ̂ (Zn, {9, 1})
5 4 5 5 5 5
6 4 5 6 6 6
7 5 6 6 7 7
8 5 6 7 7 8
9 5 6 7 8 8
10 5 6 7 8 8
11 5 6 7 8 9
12 6 6 7 8 9
13 6 6 7 8 9
14 6 7 7 8 9
15 6 7 7 8 9
16 6 8 8 8 9
17 6 7 8 8 9
18 6 9 8 9 9
19 7 7 8 9 9
20 7 10 8 10 10
21 7 8 8 9 10
22 7 11 8 11 10
23 7 8 8 9 10
24 8 12 9 12 10
25 8 8 9 10 10
26 8 13 9 13 10
27 9 9 9 10 10
28 8 14 9 14 10
29 8 9 9 10 10
30 10 15 9 15 11

By carefully analyzing these data, one may be able to generate constructions that are
not included in this section:

Problem G.77 Develop new general constructions for weak (k, l)-sum-free sets in Zn, and
thereby exhibit new lower bounds for µ̂ (Zn, {k, l}).

It may be interesting to investigate the maximum size of weak (k, l)-sum-free sets in
groups from the opposite perspective: Rather than attempting to find µ̂ (G, {k, l}) for a
given group G, we look for all groups G that contain a weak (k, l)-sum-free set of a given
size:

Problem G.78 For each k, l,m ∈ N with l < k, find all groups G for which µ̂ (G, {k, l}) ≥
m.

We can formulate two sub-problems of Problem G.78:

Problem G.79 For each k, l,m ∈ N with l < k, find the least integer f(m, {k, l}) for which
µ̂ (Zn, {k, l}) ≥ m holds for n = f(m, {k, l}).

Problem G.80 For each k, l,m ∈ N with l < k, find the least integer g(m, {k, l}) for which
µ̂ (Zn, {k, l}) ≥ m holds for all n ≥ g(m, {k, l}).
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For example, the data above indicate that f(10, {3, 1}) = 30 and g(10, {3, 1}) = 32.

We have the following results:

Proposition G.81 For all positive integers k, l, and m, with l < k, we have

g(m, {k, l}) ≥ f(m, {k, l}) ≥ m,

with equality if, and only if, m ≤ k − 1.

The fact that both f(m, {k, l}) and g(m, {k, l}) must be at least m is obvious, and it is
also obvious that equality holds when m ≤ k − 1. The fact that for m ≥ k we have

g(m, {k, l}) ≥ f(m, {k, l}) ≥ m+ 1

follows directly from the Lemma on page 337.

We also have the values of f(m, {k, 1}) and g(m, {k, 1}) for m = k and m = k + 1:

Proposition G.82 For every integer k ≥ 2 we have

f(k, {k, 1}) = g(k, {k, 1}) =





k + 2 if k ≡ 1 mod 4,

k + 1 otherwise;

and

f(k + 1, {k, 1}) = g(k + 1, {k, 1}) = 2k + 2.

The proof starts on page 374.

Problem G.83 Find the values of (or at least good bounds for) f(m, {k, l}) and
g(m, {k, l}); in particular, evaluate f(k + 2, {k, 1}) and g(k + 2, {k, 1}).

As we did with (k, l)-sum-free sets in Section G.1.1, we also investigate weak (k, l)-sum-
free sets where no elements are “wasted”: we say that a weak (k, l)-sum-free set A in G is
complete if k̂ A and l̂ A partition G; in other words, not only do we have k̂ A∩ l̂ A = ∅ (i.e.,
A is weakly (k, l)-sum-free), but also k̂ A ∪ l̂ A = G.

Looking through our results above, we find the following complete weak (k, l)-sum-free
sets:

• The set A of Proposition G.73 is complete when l ≤ k − 2 (see page 373).

• The set A of Proposition G.74 is complete when

d/2− 1 < l < k < n/d

(see page 374).

• The set A in Proposition G.76 is complete (see page 299).

• The set A in the proof of the second statement of Proposition G.82 is complete when
n = 2k + 2 (see page 374).

Problem G.84 Find other complete weak (k, l)-sum-free sets in abelian groups.
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G.3.2 Limited number of terms

G.3.3 Arbitrary number of terms

G.4 Restricted signed sumsets

G.4.1 Fixed number of terms

G.4.2 Limited number of terms

G.4.3 Arbitrary number of terms
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“The proof is in the pudding!” In this chapter we provide proofs to those of our results
in the book that have not been published (and that were not presented where the results
are stated). A bit of warning: as is often the case, puddings can be messy . . . read at your
own risk!
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Proof of Proposition 2.2

1. Let us define

a′(j, k) :=
k∑

i=0

(
k

i

)(
j

i

)
2i.

Clearly, a′(j, 0) = a′(0, k) = 1; below we prove that a′(j, k) also satisfies the recursion.
We have

a′(j − 1, k − 1) =

k−1∑

i=0

(
k − 1

i

)(
j − 1

i

)
2i

=

k−2∑

i=0

(
k − 1

i

)(
j − 1

i

)
2i +

(
j − 1

k − 1

)
2k−1,

and

a′(j − 1, k) =

k∑

i=0

(
k

i

)(
j − 1

i

)
2i

=

k−1∑

i=0

(
k

i

)(
j − 1

i

)
2i +

(
j − 1

k

)
2k

=

k−1∑

i=0

(
k− 1

i− 1

)(
j− 1

i

)
2i +

k−2∑

i=0

(
k− 1

i

)(
j− 1

i

)
2i +

(
j− 1

k− 1

)
2k− 1 +

(
j− 1

k

)
2k.

Next, we add a′(j − 1, k) and a′(j − 1, k − 1). Note that
(
j − 1

k − 1

)
2k−1 +

(
j − 1

k − 1

)
2k−1 +

(
j − 1

k

)
2k =

(
j

k

)
2k,

and

k−2∑

i=0

(
k − 1

i

)(
j − 1

i

)
2i +

k−2∑

i=0

(
k − 1

i

)(
j − 1

i

)
2i =

k−2∑

i=0

(
k − 1

i

)(
j − 1

i

)
2i+1,

and by replacing i by i− 1, this sum becomes

k−1∑

i=0

(
k − 1

i− 1

)(
j − 1

i− 1

)
2i.

Therefore,

a′(j − 1, k) + a′(j − 1, k − 1) =

k−1∑

i=0

(
k − 1

i− 1

)(
j − 1

i

)
2i +

k−1∑

i=0

(
k − 1

i− 1

)(
j − 1

i− 1

)
2i +

(
j

k

)
2k

=

k−1∑

i=0

(
k − 1

i− 1

)(
j

i

)
2i +

(
j

k

)
2k

=

k∑

i=0

(
k − 1

i− 1

)(
j

i

)
2i

=

k∑

i=0

(
k

i

)(
j

i

)
2i −

k∑

i=0

(
k − 1

i

)(
j

i

)
2i

= a′(j, k)− a′(j, k − 1).
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2. The cases of j = 0 or k = 0 can be verified easily (see also the comments after the
statement of Proposition 2.2). For positive j and k we use Proposition 2.1 and part 1 above:

c(j, k) = a(j, k − 1) + a(j − 1, k − 1)

=

k∑

i=0

(
j

i

)(
k − 1

i

)
2i +

k∑

i=0

(
j − 1

i

)(
k − 1

i

)
2i

=

k∑

i=0

[(
j

i

)
+

(
j − 1

i

)](
k − 1

i− 1

)
2i,

and

c(j, k) = a(j, k)− a(j − 1, k)

=

k∑

i=0

(
k

i

)(
j

i

)
2i −

k∑

i=0

(
k

i

)(
j − 1

i

)
2i

=

k∑

i=0

(
k

i

)[(
j

i

)
−
(
j − 1

i

)]
2i

=

k∑

i=0

(
k

i

)(
j − 1

i− 1

)
2i.

✷

Proof of Proposition 3.1

Suppose that G has invariant factorization

Zn1
× · · · × Znr

(so 2 ≤ n1 and ni is a divisor of ni+1 for i = 1, . . . , r− 1). Let p be any prime divisor of n1,
and set

H = 〈{p · g | g ∈ G}〉.
(Actually, p would not need to be prime; any divisor d > 1 of n1 would do, including
d = n1.) It is easy to see that

H ∼= Zn1/p × · · · × Znr/p

and
G/H ∼= Zr

p.

Since each nonzero element of Zr
p has order p, it cannot be generated by fewer than r

elements.
Now suppose that A = {ai | i = 1, . . . ,m} ⊆ G has size m and that 〈A〉 = G. One can

readily verify that
A = {ai +H | i = 1, . . . ,m}

then generates G/H . Thus we have

m = |A| ≥ |A| ≥ r,

as claimed. ✷
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Proof of Proposition 3.4

As usual, we let A = {a1, . . . , am}.
Suppose first that x ∈ h(A ∪ (−A)); we then have

x = λ1a1 + · · ·+ λmam + λ′
1(−a1) + · · ·+ λ′

m(−am)

= (λ1 − λ′
1)a1 + · · ·+ (λm − λ′

m)am

for some nonnegative integers λ1, . . . , λm and λ′
1, . . . , λ

′
m for which

λ1 + · · ·+ λm + λ′
1 + · · ·+ λ′

m = h.

Divide the set {1, 2, . . . ,m} into two subsets, I1 and I2, such that i ∈ I1 when λi ≥ λ′
i

and i ∈ I2 when λi < λ′
i. We can then write

m∑

i=1

|λi − λ′
i| =

∑

i∈I1

(λi − λ′
i) +

∑

i∈I2

(λ′
i − λi)

=

m∑

i=1

λi +

m∑

i=1

λ′
i − 2

(
∑

i∈I1

λ′
i +

∑

i∈I2

λi

)

= h− 2h0

where

2h0 = 2

(
∑

i∈I1

λ′
i +

∑

i∈I2

λi

)

=
∑

i∈I2

λi +
∑

i∈I1

λ′
i +

∑

i∈I2

λi +
∑

i∈I1

λ′
i

≤
∑

i∈I2

λi +
∑

i∈I1

λ′
i +

∑

i∈I2

λ′
i +

∑

i∈I1

λi

= h.

Thus, x ∈ (h− 2h0)±A.
Conversely, let h0 be a nonnegative integer (not greater than ⌊h/2⌋), and suppose that

x ∈ (h− 2h0)±A; we then have integers λ1, . . . , λm with

x = λ1a1 + · · ·+ λmam

and
|λ1|+ · · ·+ |λm| = h− 2h0.

Similar to the above, divide the set {1, 2, . . . ,m} into two subsets, I1 and I2, such that
i ∈ I1 when λi ≥ 0 and i ∈ I2 when λi < 0. We then have

x =
∑

i∈I1

λiai +
∑

i∈I2

λiai

=
∑

i∈I1

λiai +
∑

i∈I2

(−λi)(−ai)

=
∑

i∈I1

λiai +
∑

i∈I2

(−λi)(−ai) + h0a1 + h0(−a1).
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This expression of x involves only nonnegative coefficients and thus no cancellation of terms
occurs (even when terms can be combined, e.g., when a1 = −a1), so for the nonnegative
coefficients we have

∑

i∈I1

λi +
∑

i∈I2

(−λi) + 2h0 = |λ1|+ · · ·+ |λm|+ 2h0 = h.

Thus x ∈ h(A ∪ (−A)). ✷
It may be worthwhile to mention that we can easily prove that

ĥ (A ∪ (−A)) ⊆ h±̂A ∪ (h− 2)±̂A ∪ (h− 4)±̂A ∪ · · · .

The proof is essentially the same as the corresponding proof above: note that with the
additional assumption that each coefficient λi and λ′

i is 0 or 1 implies that the coefficients
λi − λ′

i in the expression of x above are all in {−1, 0, 1}, and thus x ∈ (h− 2h0)±̂A.

Proof of Proposition 3.5

The claim is obvious for h = 0 and h = 1, since

0±A = {0} = 0A,

and

1±A = A ∪ −A = A = 1A.

For h ≥ 2, we show that (h−2)±A ⊆ h±A, from which our proposition follows by Proposition
3.4.

To show that (h− 2)±A ⊆ h±A, let A = {a1, . . . , am} and

g = λ1a1 + · · ·+ λmam

with coefficients λ1, . . . , λm ∈ Z for which

|λ1|+ · · ·+ |λm| = h− 2,

so that g ∈ (h−2)±A. Without loss of generality, assume that λ1 ≥ 0. Since A = −A, there
is an index i ∈ {1, . . . ,m} so that −a1 = ai. We consider three cases.

If i = 1, then 2a1 = 0, and thus

g = (λ1 + 2)a1 + λ2a2 + · · ·+ λmam,

so g ∈ h±A.
If i 6= 1, w.l.o.g. i = 2, and λ2 ≥ 0, then a1 + a2 = 0, and thus

g = (λ1 + 1)a1 + (λ2 + 1)a2 + λ3a3 + · · ·+ λmam,

so g ∈ h±A.
If i 6= 1, w.l.o.g. i = 2, and λ2 < 0, then

g = (λ1 + 1)a1 + (−λ2 + 1)a2 + λ3a3 + · · ·+ λmam,

so g ∈ h±A again. ✷
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Proof of Proposition 4.2

The claim is true for h = 1, so we assume that h ≥ 2.
Since g is not divisible by p, we have gcd(pk, g) = 1, so g is relatively prime with all

divisors of pr.
Suppose first that p ≡ 1 mod h. We then have

vg(p
r, h) = max

{(⌊
pk − 2

h

⌋
+ 1

)
· p

r

pk
| 1 ≤ k ≤ r

}

= max

{(
pk − 1− h

h
+ 1

)
· pr−k | 1 ≤ k ≤ r

}

= max

{
pk − 1

h
· pr−k | 1 ≤ k ≤ r

}

= max

{
pr − pr−k

h
| 1 ≤ k ≤ r

}

=
pr − 1

h
.

Next, let’s assume that p ≡ 0 mod h; this can only happen if p = h. We then have

vg(p
r, p) = max

{(⌊
pk − 2

p

⌋
+ 1

)
· p

r

pk
| 1 ≤ k ≤ r

}

= max

{(
pk − p

p
+ 1

)
· pr−k | 1 ≤ k ≤ r

}

= pr−1

=

(⌊
p− 2

p

⌋
+ 1

)
· pr−1.

For our main case, assume that p ≡ i mod h for some 2 ≤ i ≤ h− 1. Since p ∈ D(pr),
we must have

vg(p
r, p) ≥

(⌊
p− 2

h

⌋
+ 1

)
· pr−1;

so, to prove our claim, we must show that
(⌊

p− 2

h

⌋
+ 1

)
· pr−1 ≥

(⌊
pk − 2

h

⌋
+ 1

)
· pr−k

holds for every 2 ≤ k ≤ r. (We will, in fact, show that strict inequality holds.) We consider
two subcases: when p < h and when p ≥ h.

If p < h, then for every 2 ≤ k ≤ r we have
(⌊

p− 2

h

⌋
+ 1

)
· pr−1 = pr−1

=
pr + pr−2 · p

p+ 1

>
pr + pr−k · (p− 1)

p+ 1

=

(
pk − 2

p+ 1
+ 1

)
· pr−k

≥
(⌊

pk − 2

h

⌋
+ 1

)
· pr−k,



313

as claimed.
Similarly, if p ≥ h, then for every 2 ≤ k ≤ r we have

(⌊
p− 2

h

⌋
+ 1

)
· pr−1 ≥

(
p− (h− 1)

h
+ 1

)
· pr−1

=
p+ 1

h
· pr−1

=
pk + pk−1

h
· pr−k

>
pk + h− 2

h
· pr−k

≥
(⌊

pk − 2

h

⌋
+ 1

)
· pr−k,

as claimed. ✷

Proof of Proposition 4.3

The first claim is quite straightforward:

v1(n, 1) = max

{(⌊
d− 1− 1

1

⌋
+ 1

)
· n
d
| d ∈ D(n)

}

= max
{
n− n

d
| d ∈ D(n)

}

= n− n

n
= n− 1.

For v1(n, 2) we have

v1(n, 2) = max

{(⌊
d− 1− 1

2

⌋
+ 1

)
· n
d
| d ∈ D(n)

}

= max

{⌊
d

2

⌋
· n
d
| d ∈ D(n)

}
.

Now if n is odd, then all its divisors are odd, and we have

v1(n, 2) = max

{
d− 1

2
· n
d

d ∈ D(n)

}

= max
{n
2
− n

2d
d ∈ D(n)

}

=
n

2
− n

2n

=
n− 1

2
,

as claimed.
If n is even, then it has both even and odd divisors. For each even divisor d of n, we get

⌊
d

2

⌋
· n
d
=

n

2
;
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while for odd divisors d, we have ⌊
d

2

⌋
· n
d
<

n

2
.

Therefore, if n is even, we have

v1(n, 2) =
n

2
.

The proof of the third claim is similar. ✷

Proof of Theorem 4.4

Suppose that d is a positive divisor of n, and let i be the remainder of d when divided by
h. We define the function

f(d) =

(⌊
d− 1− gcd(d, g)

h

⌋
+ 1

)
· n
d
.

We first prove the following.
Claim 1: We have

f(d) =





n
h ·
(
1 + h−i

d

)
if gcd(d, g) < i;

n
h ·
(
1− h

d

)
if h|d and g = h;

n
h ·
(
1− i

d

)
otherwise.

Proof of Claim 1. We start with
⌊
d− 1− gcd(d, g)

h

⌋
=

d− i

h
+

⌊
i− 1− gcd(d, g)

h

⌋
.

We investigate the maximum and minimum values of the quantity
⌊
i−1−gcd(d,g)

h

⌋
.

For the maximum, we have
⌊
i− 1− gcd(d, g)

h

⌋
≤
⌊
(h− 1)− 1− 1

h

⌋
≤ 0,

with equality if, and only if, i − 1− gcd(d, g) ≥ 0; that is, gcd(d, g) < i.
For the minimum, we get

⌊
i− 1− gcd(d, g)

h

⌋
≥
⌊
0− 1− g

h

⌋
≥
⌊
0− 1− h

h

⌋
= −2,

with equality if, and only if, i = 0, gcd(d, g) = g, and g = h; that is, h|d and g = h.
The proof of Claim 1 now follows easily. ✷
Claim 2: Using the notations as above, assume that gcd(d, g) ≥ i. Then

f(d) ≤





n
h if g 6= h;

n−1
h if g = h.

Proof of Claim 2. By Claim 1, we have

f(d) =





n
h ·
(
1− h

d

)
if h|d and g = h;

n
h ·
(
1− i

d

)
otherwise.



315

Therefore,

f(d) ≤ n

h
.

Furthermore, unless i = 0 and g 6= h, we have

f(d) ≤ n

h
·
(
1− 1

d

)
≤ n

h
·
(
1− 1

n

)
=

n− 1

h
.

✷

Claim 3: For all g, h, and n we have

vg(n, h) ≥





⌊
n
h

⌋
if g 6= h;

⌊
n−1
h

⌋
if g = h.

Proof of Claim 3. We first note that

vg(n, h) = max

{(⌊
d− 1− gcd(d, g)

h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}

≥
(⌊

n− 1− gcd(n, g)

h

⌋
+ 1

)
· n
n

=

⌊
n− 1− gcd(n, g)

h

⌋
+ 1

≥
⌊
n− 1− g

h

⌋
+ 1

=

⌊
n+ (h− g − 1)

h

⌋
.

The claim now follows, since h− g − 1 ≥ 0, unless g = h in which case h− g − 1 = −1. ✷

We are now ready for the proof of Theorem 4.4.

Proof of Theorem 4.4. If I = ∅, then by Claims 2 and 3 we have

vg(n, h) =





⌊
n
h

⌋
if g 6= h;

⌊
n−1
h

⌋
if g = h

Suppose now that I 6= ∅. Here we call a positive divisor d of n good, if its remainder
mod h is larger than gcd(d, g). Since I 6= ∅, n has at least one good divisor; we let DI be
the collection of good divisors of n. By Claim 1, we have

vg(n, h) = max{f(d) | d ∈ DI}.

Suppose now that d and d′ are two elements of DI that both leave a remainder of i mod h.
If d′ > d, then by Claim 1, we have

f(d) =
n

h
·
(
1 +

h− i

d

)
>

n

h
·
(
1 +

h− i

d′

)
= f(d′),

from which our result follows. ✷
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Proof of Proposition 4.9

For a divisor d of n, let

gd(n, h) =

(
2 ·
⌊
d− 2

2h

⌋
+ 1

)
· n
d
.

Regarding h = 1, we see that

gd(n, 1) =

(
2 ·
⌊
d− 2

2

⌋
+ 1

)
· n
d
= (d− δ) · n

d
=

(
1− δ

d

)
· n,

where δ = 1 when d is even and δ = 2 when d is odd. This quantity is maximized with
d = n, from which the result for v±(n, 1) follows.

Now for h = 2 and even n, we have 2 ∈ D(n), and thus

n

2
= g2(n, 2) ≤ v±(n, 2) ≤ v1(n, 2) =

n

2
,

so v±(n, 2) = n/2. When n is odd, then each d ∈ D(n) is odd too, so

v±(n, 2) = max {gd(n, 2)} ≤ max

{(
2 · d− 3

4
+ 1

)
· n
d

}
= max

{(
1− 1

d

)
· n
2

}
.

Therefore, when n ≡ 3 mod 4, then

n− 1

2
= gn(n, 2) ≤ v±(n, 2) ≤

(
1− 1

n

)
· n
2
=

n− 1

2
,

so equality holds throughout. When n ≡ 1 mod 4, then we get

n− 3

2
= gn(n, 2) ≤ v±(n, 2),

and there is no d ∈ D(n) for which gd(n, 2) is larger than (n − 3)/2, since if d 6= n, then
d ≤ n/3, and thus (

1− 1

d

)
· n
2
≤
(
1− 1

n/3

)
· n
2
=

n− 3

2
.

For h = 3 and even n, we get v±(n, 3) = n/2 as we did for h = 2. When n is odd but
divisible by 3, then 3 ∈ D(n), so

n

3
= g3(n, 3) ≤ v±(n, 3) = max {gd(n, 3)} ≤ max

{(
2 · d− 3

6
+ 1

)
· n
d

}
=

n

3
,

and thus v±(n, 3) = n/3. When n is odd and is not divisible by 3, then each d ∈ D(n) leaves
a remainder of 1 or 5 mod 6, so

v±(n, 3) = max {gd(n, 3)} ≤ max

{(
2 · d− 5

6
+ 1

)
· n
d

}
= max

{(
1− 2

d

)
· n
3

}
.

Therefore, when n ≡ 5 mod 6, then

n− 2

3
= gn(n, 3) ≤ v±(n, 3) ≤

(
1− 2

n

)
· n
3
=

n− 2

3
,

so equality holds throughout. When n ≡ 1 mod 6, then we get

n− 4

2
= gn(n, 3) ≤ v±(n, 3),
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and there is no d ∈ D(n) for which gd(n, 3) is larger than (n − 4)/3, since if d 6= n, then
d ≤ n/5, and thus (

1− 2

d

)
· n
3
≤
(
1− 2

n/5

)
· n
3
=

n− 10

3
.

This completes our proof. ✷

Proof of Proposition 4.10

For a divisor d of n, let

gd(n, 4) =

(
2 ·
⌊
d− 2

8

⌋
+ 1

)
· n
d
.

As before, for even n, we have 2 ∈ D(n), and thus

n

2
= g2(n, 4) ≤ v±(n, 4) ≤ v1(n, 4) =

n

2
,

so v±(n, 4) = n/2.
Suppose that n is odd but has one or more divisors d congruent to 3 mod 8, then for all

such d we have

gd(n, 4) =

(
2 · d− 3

8
+ 1

)
· n
d
=

(
1 +

1

d

)
n

4
,

which is maximal when d is minimal. For any other d ∈ D(n) we have

gd(n, 4) ≤
(
2 · d− 5

8
+ 1

)
· n
d
<

n

4
,

so our claim holds in this case.
Suppose now that n is odd and has no divisors congruent to 3 mod 8; in particular,

3 6∈ D(n) and thus n/3 6∈ D(n), so the second largest divisor of n is at most n/5. We have

gd(n, 4) ≤
(
2 · d− 5

8
+ 1

)
· n
d
=

(
1− 1

d

)
· n
4
.

We consider the cases of n ≡ 5 mod 8, n ≡ 7 mod 8, and n ≡ 1 mod 8 separately. Let
d0 ∈ D(n) be such that v±(n, 4) = gd0

(n, 4).
If n ≡ 5 mod 8, then

n− 1

4
= 2 ·

⌊
n− 2

8

⌋
+ 1 = gn(n, 4) ≤ gd0

(n, 4) ≤
(
1− 1

d0

)
· n
4
≤
(
1− 1

n

)
· n
4
=

n− 1

4
,

so equality holds throughout.
If n ≡ 7 mod 8, then d0 = n and thus

v±(n, 4) = gn(n, 4) = 2 ·
⌊
n− 2

8

⌋
+ 1 =

n− 3

4
,

since if d0 6= n, then d0 ≤ n/5, so

gd0
(n, 4) ≤

(
1− 1

d0

)
· n
4
≤
(
1− 1

n/5

)
· n
4
=

n− 5

4
.

Suppose, finally, that n ≡ 1 mod 8. If d0 = n, we get

v±(n, 4) = gn(n, 4) = 2 ·
⌊
n− 2

8

⌋
+ 1 =

n− 5

4
.
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If d0 6= n, then d0 ≤ n/5. If d0 = n/5, we get

v±(n, 4) = gn/5(n, 4) ≤
(
1− 1

n/5

)
· n
4
=

n− 5

4
.

If d0 ≤ n/7, then

v±(n, 4) = gd0
(n, 4) ≤

(
1− 1

d0

)
· n
4
≤
(
1− 1

n/7

)
· n
4
=

n− 7

4
.

Therefore,

v±(n, 4) =
n− 5

4
= 2 ·

⌊
n− 2

8

⌋
+ 1.

That completes our proof. ✷

Proof of Theorem 4.17

We need to prove that, for m = v1(n, h), we have u(n,m, h) < n but u(n,m + 1, h) ≥ n.
Let d0 ∈ D(n) be such that

v1(n, h) = max

{(⌊
d− 2

h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}
=

(⌊
d0 − 2

h

⌋
+ 1

)
· n

d0
.

To establish the first inequality, simply note that u(n,m, h) ≤ fn/d0
(m,h) where

fn/d0
(m,h) =

(
h ·
(⌊

d0 − 2

h

⌋
+ 1

)
− h+ 1

)
· n
d0

=

(
h ·
⌊
d0 − 2

h

⌋
+ 1

)
· n
d0

≤ (d0−1) · n
d0

,

which is less than n.
For the second inequality, we must prove that, for any d ∈ D(n), we have fd(m+1, h) ≥

n; that is,

h ·
⌈(⌊

d0−2
h

⌋
+ 1
)
· n
d0

+ 1

d

⌉
− h+ 1 ≥ n

d
.

But n/d ∈ D(n), so by the choice of d0, we have

(⌊
d0 − 2

h

⌋
+ 1

)
· n

d0
≥
(⌊

n/d− 2

h

⌋
+ 1

)
· n

n/d
,

and thus

h ·
⌈(⌊

d0−2
h

⌋
+ 1
)
· n
d0

+ 1

d

⌉
− h+ 1 ≥ h ·

⌈(⌊
n/d− 2

h

⌋
+ 1

)
+

1

d

⌉
− h+ 1

= h ·
(⌊

n/d− 2

h

⌋
+ 2

)
− h+ 1

≥ h ·
(
n/d− 2− (h− 1)

h
+ 2

)
− h+ 1

=
n

d
.

Our proof is complete. ✷
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Proof of Proposition 4.22

From the formulae on page 87 we already have the following values:

f 1̂(n,m, 2) = min{n, 2m− 3};

and

f 2̂(n,m, 2) =





min{n, 2m− 4} if m is even,

min{n, 2m− 3} if m is odd.

For d ≥ 3, we have

f d̂(n,m, 2) =





min{n, fd, 2m− 3} if d 6 |m− 1,

min{n, 2m− 2} otherwise.

To prove Proposition 4.22, we suppose first that m is odd. Then

f 1̂(n,m, 2) = f 2̂(n,m, 2) = min{n, 2m− 3}.

We consider three subcases: when u(n,m, 2) = n, when 2m− 3 ≤ u(n,m, 2) < n, and when
u(n,m, 2) < 2m− 3. (Note that we always have u(n,m, 2) ≤ n.)

If u(n,m, 2) = n, then for every d ∈ D(n) we have fd ≥ n, and thus for d ≥ 3 we have

f d̂(n,m, 2) =





min{n, 2m− 3} if d 6 |m− 1,

min{n, 2m− 2} otherwise.

Therefore,

û (n,m, 2) = min{f d̂(n,m, h) | d ∈ D(n)} = min{n, 2m− 3} = min{u(n,m, 2), 2m− 3},

as claimed.
Similarly, if 2m− 3 ≤ u(n,m, 2) < n, then for every d ∈ D(n) we have fd ≥ 2m− 3, and

thus for d ≥ 3 we have

f d̂(n,m, 2) =





min{n, 2m− 3} if d 6 |m− 1,

min{n, 2m− 2} otherwise.

Therefore,

û (n,m, 2) = min{n, 2m− 3} = 2m− 3 = min{u(n,m, 2), 2m− 3},

as claimed.
Finally, if u(n,m, 2) < 2m−3, then let us choose a d0 ∈ D(n) for which u(n,m, 2) = fd0

.
Note that fd0

< 2m− 3 but, as a quick computation shows, f1 = 2m− 1 and f2 = 2m, so
d0 ≥ 3. Furthermore, whenever d|m − 1, we get fd = 2m+ d − 2 > 2m− 3, so d0 6 |m − 1,
and thus f d̂0

= fd0
.

We will verify that û (n,m, 2) = fd0
. Clearly, û (n,m, 2) ≤ f d̂0

= fd0
, so we only need

to show that there is no d ∈ D(n) for which f d̂ < fd0
. Since fd0

< 2m− 3, this could only
happen if f d̂ = fd, but that is not possible as fd ≥ fd0

. Thus, again we get,

û (n,m, 2) = fd0
= u(n,m, 2) = min{u(n,m, 2), 2m− 3},

as claimed.
The case when m is even can be analyzed similarly. ✷
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Proof of Proposition 4.23

We can carry out a similar analysis for the case of h = 3, where we may assume that
4 ≤ m ≤ n. If d ≥ 4 and k ≥ 3, then

f d̂(n,m, 3) = min{n, fd, 3m− 8}.

For the remaining cases we have the following.

d k r δd f d̂(n,m, 3)

1 1 1 0 min{n, 3m− 8}
2 1 1 0 min{n, 3m− 8}
2 2 1 0 min{n, 3m− 8}
3 1 3 0 min{n, 3m− 8}
3 2 3 0 min{n, 3m− 8}
3 3 3 2 min{n, 3m− 10}

≥ 4 1 3 d− 5 min{n, 3m− 3− d}
≥ 4 2 3 −2 min{n, 3m− 6}

The case of d ≥ 4 and k = 1 is interesting: it implies that m − 1 is divisible by d; thus,
to minimize 3m − 3 − d, we select d = gcd(n,m − 1). Note also that when 3|m then
gcd(n,m− 1) 6= 6. Therefore,

û (n,m, 3) =





min{u(n,m, 3), 3m− 3− gcd(n,m− 1)} if gcd(n,m− 1) ≥ 8;

min{u(n,m, 3), 3m− 10} if gcd(n,m− 1) = 7, or
gcd(n,m− 1) ≤ 5, 3|n, and 3|m;

min{u(n,m, 3), 3m− 9} if gcd(n,m− 1) = 6;

min{u(n,m, 3), 3m− 8} otherwise.

Proof of Proposition 4.26

Choose d0 ∈ D(n) so that fd0
= u(n,m, h). We will show that then f d̂0

≤ fd0
; this will

then imply our claim since

û (n,m, h) = min{f d̂ | d ∈ D(n)} ≤ f d̂0
≤ fd0

= u(n,m, h).

Suppose, indirectly, that f d̂0
> fd0

; we then have h > min{d0 − 1, k} and

f d̂0
= min{n, hm− h2 + 1− δd0

},

otherwise we would have

f d̂0
= min{n, fd0

, hm− h2 + 1} ≤ fd0
,

a contradiction.

Therefore,

f d̂0
≤ hm− h2 + 1− δd0

.
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Assume first that h < d0. Then k < h = r < d0, so δd0
= (d0 − r)(r− k)− (d0 − 1), and

thus

hm− hk + d0 =

(
h · m− k + d0

d0
− h+ 1

)
· d0

=

(
h

⌈
m

d0

⌉
− h+ 1

)
· d0

= fd0

< f d̂0

≤ hm− h2 + 1− δd0

= hm− h2 − (d0 − r)(r − k) + d0

= hm− h2 − (d0 − h)(h− k) + d0

= hm− hk + d0 − d0(h− k)

< hm− hk + d0,

which is a contradiction.
Assume now that h ≥ d0. We then have h ≥ k since k ≤ d0. Furthermore, we see from

the definition of δ that δ ≥ 1 − (d − 1) in all cases; therefore, −δd0
≤ d0 − 2. We now see

that

hm− hk + d0 =

(
h · m− k + d0

d0
− h+ 1

)
· d0

=

(
h

⌈
m

d0

⌉
− h+ 1

)
· d0

= fd0

< f d̂0

≤ hm− h2 + 1− δd0

≤ hm− h2 + d0 − 1

≤ hm− hk + d0 − 1

which is a contradiction. ✷

Proof of Proposition 4.29

Let d ∈ D(n). If h ≤ min{d− 1, k}, then

f d̂ = min{n, fd, hm− h2 + 1}.

Clearly, n ≥ m, and we can easily see that hm − h2 + 1 ≥ m holds as well, with equality
if, and only if, h = 1 or h = m − 1. Furthermore, from the argument for Proposition 4.15
we see that we also have fd ≥ m with equality if, and only if, h = 1 or m = d. Therefore,
when h ≤ min{d − 1, k}, we have f d̂ ≥ m with equality if, and only if, h = 1, h = m − 1,
or m = d.

Suppose now that h > min{d− 1, k}, in which case

f d̂ = min{n, hm− h2 + 1− δd}.

If δd = 0, then f d̂ ≥ m with equality if, and only if, h = 1 or h = m − 1. This leaves
three cases, according to the definition of δd.
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Assume first that r = k = d. Note that, if d = 1, then δd = 0, so we assume that d ≥ 2;
this then also implies that h ≥ 2. Furthermore, r = d implies that h ≥ d and k = d implies
that m− h ≥ d. Therefore, we have

hm− h2 + 1− δd −m = (h− 1)(m− h− 1)− (d− 1)

≥ (h− 1)(m− h− 1)− (h− 1)

= (h− 1)(m− h− 2)

≥ (h− 1)(d− 2)

≥ 0,

with equality if, and only if, h = d, m− h = d, and d = 2; that is, h = 2, m = 4, and d = 2.
Next, assume that r < k; note that this then implies that r ≤ d− 1. We now have

hm−h2+1−δd−m = (h−1)(m−h−1)−(k−r)r+(d−1) = (h−1)(m−h)−(k−r)r−(h−d).

Here
m− h = (cd+ k)− (qd+ r) = (c− q)d+ (k − r) ≥ k − r,

so

hm− h2 + 1− δd −m ≥ (h− 1)(k − r) − (k − r)r − (h− d)

= (h− r − 1)(k − r) − (h− d)

≥ (h− r − 1)− (h− d)

= d− 1− r

≥ 0.

We see that equality holds if, and only if, m− h = k − r, k − r = 1, and r = d− 1; that is,
h = qd+ d− 1, and m = h+ 1 = qd+ d.

In our last case, we have k < r < d. In this case, we must have d ≥ 3 and

1 ≤ m− h = (cd+ k)− (qd+ r) = d(c− q) + (k − r) < d(c− q),

so c− q ≥ 1 and thus

m− h = d(c− q − 1) + (d+ k − r) ≥ d+ k − r.

Thus,

hm− h2 + 1− δd −m = (h− 1)(m− h− 1)− (d− r)(r − k) + (d− 1)

≥ (h− 1)(d+ k − r) − (d− r)(r − k) + (d− 1)

= (d− r)(h− r + k − 1) + k(h− 1) + (d− 1).

Here each term is nonnegative, but d− 1 > 0.
Therefore, we have proved that f d̂ ≥ m; since d ∈ D(n) was arbitrary, this implies that

û (n,m, h) ≥ m.
If h = 1 or h = m− 1, then with d = n we get h ≤ min{d− 1, k}, and thus û (n,m, h) ≤

f d̂ = m.
If m is a divisor of n, then we may choose d = m, with which again h ≤ min{d− 1, k},

and thus û (n,m, h) ≤ f d̂ = m.
If h = 2, m = 4, and n is even, we may pick d = 2, with which h > min{d− 1, k}, and

so û (n,m, h) ≤ f d̂ = m holds again.
If none of these occur, then f d̂ > m for all d ∈ D(n) and thus û (n,m, h) > m. ✷
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Proof of Proposition A.42

We first show that we can write every odd integer between −2m and 2m in the form Σm−1
i=0 ±

2i. There are exactly 2m such odd integers, so we just need to verify that no two of the 2m

signed sums yield the same integer. Suppose we have

Σm−1
i=0 λi · 2i = Σm−1

i=0 λ′
i · 2i

with coefficients λi and λ′
i all from the set {−1, 1}, and assume that j is the largest index

for which λi 6= λ′
i; without loss of generality, let λj = 1 and λ′

j = −1. But then

Σm−1
i=0 λi · 2i ≥ 1 + Σm−1

i=j+1λi · 2i,

and
Σm−1

i=0 λ′
i · 2i ≤ −1 + Σm−1

i=j+1λi · 2i,
which is a contradiction.

Now if n is odd, then our 2m odd integers yield exactly min{n, 2m} elements in Zn; since
by Proposition A.40 we cannot hope for more, we have

ν±̂(Zn,m, h) = min {n, 2m} .

If n is even, our integers yield only min{n/2, 2m} elements in Zn, which is less than the
upper bound in Proposition A.40 when n < 2m+1. But note that, whenever n is even, no
m-subset A = {a1, . . . , am} of Zn has a restricted m-fold signed sumset of size more than
n/2: indeed, the signed sums in

m±̂A = {±a1 ± · · · ± am}

all have the same parity. ✷

Proof of Theorem B.8

We consider the cases of s = 2 and s = 3 separately.
Suppose that A is a perfect 2-basis of size m in G. Then we must have

n =

(
m+ 2

2

)
.

Clearly, 0 ∈ A−A; we show that A−A has size m(m− 1)+ 1: in other words, if a1 and
a2 are distinct elements of A and a3 and a4 are distinct elements of A so that

a1 − a2 = a3 − a4,

then a1 = a3 and a2 = a4. Indeed: our hypothesis implies that

a1 + a4 = a2 + a3,

so if A is a perfect 2-basis, then a1 ∈ {a2, a3} and a4 ∈ {a2, a3}, from which our claim
follows since a1 6= a2 and a3 6= a4.

Furthermore, A−A and A are disjoint, since if we were to have a1, a2, a3 ∈ A for which

a1 − a2 = a3,
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then

a1 = a2 + a3,

contradicting the assumption that A is a perfect 2-basis.
Therefore,

|(A−A) ∪ A| = m(m− 1) + 1 +m ≤ n =

(
m+ 2

2

)
,

from which m ≤ 3 follows. We will rule out m = 2 and m = 3 as follows.
If m = 2, then n =

(
m+2
2

)
= 6, so G = Z6. Suppose that A = {a, b} ⊆ Z6. Then

[0, 2]A = {0, a, b, 2a, 2b, a+ b} = Z6,

so a, b, and a+ b must all be odd, which is impossible.
Similarly, if m = 3, then n =

(
m+2
2

)
= 10, so G = Z10. Suppose that A = {a, b} ⊆ Z10.

Then

[0, 2]A = {0, a, b, c, 2a, 2b, 2c, a+ b, a+ c, b+ c} = Z10,

so exactly one of a, b, c, a+ b, a+ c, or b+ c is even, which is impossible.
Now we turn to s = 3. Suppose that A is a perfect 3-basis of size m in G. Then we must

have

n =

(
m+ 3

3

)
.

(Our argument here is similar to the proof of Theorem 3 in [43].) Note that the set
2A−A is the disjoint union of the sets

B = {a1 + a2 − a3 | a1, a2, a3 ∈ A; a1 6= a2 6= a3 6= a1},

C = {2a1 − a2 | a1, a2 ∈ A, a1 6= a2},
and A since, for example,

a1 + a2 − a3 = 2a′1 − a′2

would imply

a1 + a2 + a′2 = 2a′1 + a3,

from which a3 ∈ {a1, a2, a′2} so a3 = a′2, and thus a1 = a2, which is a contradiction.
Furthermore, B and C each have maximum cardinality; that is, if

a1 + a2 − a3 = a′1 + a′2 − a′3,

then {a1, a2} = {a′1, a′2} and a3 = a′3; similarly for C. Therefore,

|2A−A| = |B|+ |C|+ |A| = m(m− 1)(m− 2)/2 +m(m− 1) +m.

We can similarly see that 2A − A must also be disjoint from A − A, and, as above, we
have

|A−A| = m(m− 1) + 1.

Therefore, we have

m(m− 1)(m− 2)/2 +m(m− 1) +m+m(m− 1) + 1 ≤ n =

(
m+ 3

3

)
,

from which m ≤ 3.
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We can easily rule out m = 2 by hand: If A = {a, b} were to be a perfect 3-basis in G,
then n = 10 and thus G = Z10; with

[0, 3]A = {0, a, b, 2a, 2b, a+ b, 3a, 3b, 2a+ b, a+ 2b}

we see that (i) if both a and b are odd, then 6 elements of [0, 3]A are odd; (ii) if exactly one
of a or b is odd, then 4 elements of [0, 3]A are odd; and (iii) if both a and b are even, then
no element of [0, 3]A is odd. The case of m = 3 leads to G = Z20 or G = Z2 ×Z10; we ruled
out these by the computer program [120]. ✷

Proof of Proposition B.28

We will prove that for each 2 ≤ n ≤ ⌊ f2+6f+5
4 ⌋, the set A = {1, a} with a = ⌊ f+3

2 ⌋ has
folding number at most f in Zn.

What we need to verify is that for every g ∈ Zn, we have g ∈ ∪f
h=0hA. We may assume

that g is a nonnegative integer which is less than n.
By the Division Theorem, there exist (unique) integers q and r with 0 ≤ r ≤ a− 1 for

which g = q · a+ r · 1. We will prove that q + r ≤ f , from which our claim follows.

Case 1: f is even. In this case, we have a = f+2
2 and n ≤ f2+6f+4

4 . We separate several
subcases.

Subcase 1.1: q ≤ a− 1. Then q + r ≤ 2a− 2 ≤ f , as claimed.
Subcase 1.2: q = a and r ≤ a− 2. Again, q + r ≤ 2a− 2 ≤ f , as claimed.
Subcase 1.3: q = a and r = a− 1. Then we have

g = a2 + a− 1 =
f2 + 6f + 4

4
≥ n,

which cannot happen, since we assumed that g is less than n.
Subcase 1.4: q ≥ a+1. Then we have g ≥ a2 + a, which is a contradiction as in Subcase

1.3.
Case 2: f is odd. In this case, we have a = f+3

2 and n ≤ f2+6f+5
4 . We again separate

several subcases.
Subcase 2.1: q ≤ a− 2. Then q + r ≤ 2a− 3 ≤ f , as claimed.
Subcase 2.2: q = a− 1 and r ≤ a− 2. Again, q + r ≤ 2a− 3 ≤ f , as claimed.
Subcase 2.3: q = a− 1 and r = a− 1. Then we have

g = a(a− 1) + a− 1 =
f2 + 6f + 5

4
≥ n,

which cannot happen, since we assumed that g is less than n.
Subcase 2.4: q ≥ a. Then we have g ≥ a2, which is a contradiction as in Subcase 2.3. ✷

Proof of Proposition B.46

As we noted below the statement of Proposition B.46, here we only need to prove that the
set {1, 2s+ 1} is a perfect s-spanning set in Zn for n = 2s2 + 2s+ 1.

Let n = 2s2 + 2s+ 1. We will prove that for every integer g between −s and n− s− 1,
inclusive, one can find integers λ1 and λ2 so that |λ1|+ |λ2| ≤ s and

g ≡ λ1 · 1 + λ2 · (2s+ 1) mod n.
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Let k be the largest odd integer for which g > k(s + 1); k is then uniquely defined by
the inequalities

k(s+ 1) + 1 ≤ g ≤ (k + 2)(s+ 1).

Note that g ≥ −s implies that k ≥ −1, and g ≤ 2s2 + s implies that k ≤ 2s− 1, so we have

−1 ≤ k ≤ 2s− 1.

We consider two cases.
Case 1: Suppose that

k(s+ 1) + 1 ≤ g ≤ k(s+ 1) + (2s− k) = (k + 2)s.

(Note that 2s− k ≥ 1.) Let

λ1 = g − (k + 1)s− k + 1

2
,

and

λ2 =
k + 1

2
.

We can readily verify that
g = λ1 · 1 + λ2 · (2s+ 1);

we need to prove that |λ1|+ |λ2| ≤ s holds as well.
Note that k ≥ −1, so

|λ2| =
k + 1

2
.

Since λ1 is a linear function of g, |λ1| achieves its maximum value over the interval for g at
one (or both) of the endpoints; therefore, we need to evaluate

∣∣∣∣k(s+ 1) + 1− (k + 1)s− k + 1

2

∣∣∣∣

and ∣∣∣∣(k + 2)s− (k + 1)s− k + 1

2

∣∣∣∣ ;

since s ≥ k+1
2 , both expressions equal s− k+1

2 . Therefore, |λ1|+ |λ2| ≤ s, as claimed.
Case 2: Suppose now that

(k + 2)s+ 1 ≤ g ≤ (k + 2)(s+ 1) = (k + 2)s+ (k + 2).

(Note that k + 2 ≥ 1.) Let

λ1 = g − (k + 2)s− k + 3

2
,

and

λ2 =
k + 1

2
− s.

We can verify that
λ1 · 1 + λ2 · (2s+ 1) = g − (2s2 + 2s+ 1),

and thus λ1 · 1 + λ2 · (2s+ 1) ≡ g mod n. Next, we prove that |λ1|+ |λ2| ≤ s holds as well.
First, since s ≥ k+1

2 , we have

|λ2| = s− k + 1

2
.
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Since λ1 is a linear function of g, |λ1| achieves its maximum value over the interval for g at
one (or both) of the endpoints; therefore, we need to evaluate

∣∣∣∣(k + 2)s+ 1− (k + 2)s− k + 3

2

∣∣∣∣

and ∣∣∣∣(k + 2)(s+ 1)− (k + 2)s− k + 3

2

∣∣∣∣ ;

since k ≥ −1, both expressions equal k+1
2 . Therefore, we again have |λ1| + |λ2| ≤ s, as

claimed. ✷

Proof of Proposition B.54

We verify that for every n ≤ 2s2 + 2s+ 1, we have

[0, s]±{s, s+ 1} = {λ1s+ λ2(s+ 1) ∈ Zn | λ1, λ2 ∈ Z, |λ1|+ |λ2| ≤ s} = Zn.

Considering the elements of [0, s]±{s, s + 1} in Z (rather than Zn), we see that the
elements of

Σ = {λ1s+ λ2(s+ 1) ∈ Z | λ1, λ2 ∈ Z, |λ1|+ |λ2| ≤ s}
lie in the interval [−(s2 + s), (s2 + s)]. Since the index set

I±(2, [0, s]) = {(λ1, λ2) | λ1, λ2 ∈ Z, |λ1|+ |λ2| ≤ s}

contains exactly 2s2+2s+1 elements, it suffices to prove that no integer in [−(s2+s), (s2+s)]
can be written as an element of Σ in two different ways.

For that, suppose that

λ1s+ λ2(s+ 1) = λ′
1s+ λ′

2(s+ 1)

for some (λ1, λ2) ∈ I±(2, [0, s]) and (λ′
1, λ

′
2) ∈ I±(2, [0, s]); w.l.o.g., we can assume that

λ2 ≥ λ′
2. Our equation implies that λ2 − λ′

2 is divisible by s and is, therefore, equal to 0, s,
or 2s.

If λ2 − λ′
2 = 2s, then λ2 = s and λ′

2 = −s, which can only happen if λ1 = λ′
1 = 0;

this case leads to a contradiction with our equation. Assume, next, that λ2 − λ′
2 = s. Our

equation then yields λ1 − λ′
1 = −s − 1. In this case, we have λ1 ≤ 0, λ′

1 ≥ 0, λ2 ≥ 0, and
λ′
2 ≤ 0, and we see that

|λ1|+ |λ2| = −λ1 + λ2 = (s+ 1− λ′
1) + (s+ λ′

2) = 2s+ 1− (|λ′
1|+ |λ′

2|) ≥ s+ 1,

but that is a contradiction.
This leaves us with the case that λ2 = λ′

2, which implies λ1 = λ′
1, as claimed, and

therefore the set {s, s+ 1} is s-spanning in Zn. ✷

Proof of Proposition B.57

Suppose first that s ≥ 2, k ≤ 3s− 4, and k 6= 2s− 1. We will show that with

A = {(0, 1), (1, s− 1)},

we have [0, s]±A = Z2 × Z2k.
Let x and y be integers. Observe that
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(i) if 0 ≤ x ≤ s, then
(0, x) = x · (0, 1) ∈ [0, s]±A;

(ii) if s ≤ x ≤ 3s− 4, then

(0, x) = 2 · (1, s− 1) + (x− 2s+ 2) · (0, 1) ∈ [0, s]±A;

(iii) if 0 ≤ y ≤ 2s− 2, then

(1, y) = 1 · (1, s− 1) + (y − s+ 1) · (0, 1) ∈ [0, s]±A;

and

(iv) if 2s ≤ y ≤ 4s− 6, then

(1, y) = 3 · (1, s− 1) + (y − 3s+ 3) · (0, 1) ∈ [0, s]±A.

Therefore, by (i) and (ii), (0, x) ∈ [0, s]±A for all 0 ≤ x ≤ 3s−4, thus, since 2k ≤ 6s−8,
by symmetry, [0, s]±A contains all group elements whose first component is 0.

If k ≤ 2s− 2, then by (iii) and by symmetry, [0, s]±A contains all group elements whose
first component is 1, and we are done.

Suppose now that 2s ≤ k ≤ 3s− 4. By (iii), (1, y) ∈ [0, s]±A for all 0 ≤ y ≤ 2s− 2, so,
by symmetry, (1, y) ∈ [0, s]±A for all 2k − 2s+ 2 ≤ y ≤ 2k. Note that

2k − 2s+ 2 ≤ 4s− 6,

so combining this with (iv), we get that (1, y) ∈ [0, s]±A for all 2s ≤ y ≤ 2k. We are under
the assumption that 2s ≤ k, however, so by symmetry, again [0, s]±A contains all group
elements whose first component is 1, and [0, s]±A = Z2 × Z2k

This completes all cases of Proposition B.57, except for k = 2s− 1 with s ≥ 5. We will
show that, in this case, for

A = {(0, 1), (1, s+ 1)},
we have [0, s]±A = Z2 × Z2k.

Let x and y be integers. Observe that

(i) if 0 ≤ x ≤ s, then
(0, x) = x · (0, 1) ∈ [0, s]±A;

(ii) if s+ 1 ≤ x ≤ s+ 3, then

(0, x) = (−2) · (1, s+ 1) + (x− 2s+ 4) · (0, 1) ∈ [0, s]±A;

(iii) if s+ 4 ≤ x ≤ 3s, then

(0, x) = 2 · (1, s+ 1) + (x− 2s− 2) · (0, 1) ∈ [0, s]±A;

(iv) if 0 ≤ y ≤ 1, then

(1, y) = (−3) · (1, s+ 1) + (y − s+ 5) · (0, 1) ∈ [0, s]±A;

and

(v) if 2 ≤ y ≤ 2s, then

(1, y) = 1 · (1, s+ 1) + (y − s− 1) · (0, 1) ∈ [0, s]±A.
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As an explanation for (ii), we should add that, since k = 2s− 1, we have

−2(s+ 1) + (x− 2s+ 4) = −2k + x ≡ x mod 2k,

and, since s ≥ 5,
| − 2|+ |x− 2s+ 4| ≤ s

always holds when s+ 1 ≤ x ≤ s+ 3. The explanation for (iv) is similar.
The result now follows by symmetry, as above. ✷

Proof of Proposition C.36

We will prove a slightly more general result.
For positive integers n,m, h, a, and b, consider the geometric progression

A = {a, ab, ab2, . . . , abm−1}

in the cyclic group Zn. (By this we mean that each integer in the set is considered mod n;
we will talk about integers and their values mod n interchangeably.) Suppose that b ≥ h ≥ 2
and

n ≥ habm−1.

We first note that with these conditions, A has size m: indeed, we have

1 ≤ a < ab < · · · < abm−1 < n.

Furthermore, we show that two h-fold sums of A can be equal only if they correspond to
the same element of the index set

Nm
0 (h) = {(λ1, . . . , λm) ∈ Nm

0 | λ1 + · · ·+ λm = h}.

First, observe that, for nonnegative integer coefficients λ1, . . . , λm with

λ1 + · · ·+ λm = h,

we have
λ1a+ λ2ab+ · · ·+ λmabm−1 ≥ λ1a+ λ2a+ · · ·+ λma = ha > 0

and

λ1a+ λ2ab+ · · ·+ λmabm−1 ≤ λ1ab
m−1 + λ2ab

m−1 + · · ·+ λmabm−1 = habm−1 ≤ n,

so linear combinations
λ1a+ λ2ab+ · · ·+ λmabm−1

and
λ′
1a+ λ′

2ab+ · · ·+ λ′
mabm−1

in hA can only be equal in Zn if they are also equal in Z. But

λ1a+ λ2ab+ · · ·+ λmabm−1 = λ′
1a+ λ′

2ab+ · · ·+ λ′
mabm−1

in Z implies that λ1 −λ′
1 is divisible by b. Assume, without loss of generality, that λ1 ≥ λ′

1;
then

0 ≤ λ1 − λ′
1 ≤ h.
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In fact, we cannot have λ1 − λ′
1 = h, since that could only happen if λ1 = h and λ′

1 = 0,
but that would imply that

ha = λ′
2ab+ · · ·+ λ′

mabm−1,

which is impossible since

λ′
2ab+ · · ·+ λ′

mabm−1 ≥ λ′
2ab+ · · ·+ λ′

mab = hab > ha.

Therefore,
0 ≤ λ1 − λ′

1 < h ≤ b,

so the only way for λ1 − λ′
1 to be divisible by b is if λ1 = λ′

1.
This, in turn, implies that λi = λ′

i for every i = 2, 3, . . . ,m as well; therefore, each
element of the index set yields a different element. Thus we have shown that, under the
conditions of b ≥ h ≥ 2 and

n ≥ habm−1,

the geometric progression
A = {a, ab, ab2, . . . , abm−1}

has size m and is a Bh set in the cyclic group Zn. (We should note that there is nothing
special about A being a geometric progression: all that’s needed is that each element in the
progression is much larger than the previous one.)

By choosing a = 1 and b = h, we arrive at Proposition C.36. ✷

Proof of Proposition C.50

Again we will prove a slightly more general result.
We consider, for positive integers n,m, h, a, and b, the geometric progression

A = {a, ab, ab2, . . . , abm−1}

in the cyclic group Zn. Here we assume that b ≥ 2h ≥ 2 and

n > 2habm−1.

Again we see that, with these conditions, A has size m. Similarly as before, we see that for
integer coefficients λ1, . . . , λm with

|λ1|+ · · ·+ |λm| = h,

we have

λ1a+ λ2ab+ · · ·+ λmabm−1 ≥ −|λ1|abm−1 − |λ2|abm−1 − · · · − |λm|abm−1 = −habm−1,

and

λ1a+ λ2ab+ · · ·+ λmabm−1 ≤ |λ1|abm−1 + |λ2|abm−1 + · · ·+ |λm|abm−1 = habm−1,

so linear combinations
λ1a+ λ2ab+ · · ·+ λmabm−1

and
λ′
1a+ λ′

2ab+ · · ·+ λ′
mabm−1

in h±A can only be equal in Zn if they are also equal in Z.
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But
λ1a+ λ2ab+ · · ·+ λmabm−1 = λ′

1a+ λ′
2ab+ · · ·+ λ′

mabm−1

in Z implies that λ1 −λ′
1 is divisible by b. Assume, without loss of generality, that λ1 ≥ λ′

1;
then

0 ≤ λ1 − λ′
1 ≤ 2h.

In fact, we cannot have λ1 −λ′
1 = 2h, since that could only happen if λ1 = h and λ′

1 = −h,
but that would imply that

ha = −ha,

which is impossible. Therefore,

0 ≤ λ1 − λ′
1 < 2h ≤ b,

so the only way for λ1 − λ′
1 to be divisible by b is if λ1 = λ′

1.
This, in turn, implies that λi = λ′

i for every i = 2, 3, . . . ,m as well; therefore, each
element of the index set yields a different element in the h-fold signed sumset, and

|h±A| = |Zm(h)| = c(h,m).

In summary, we have shown that, under the conditions b ≥ 2h ≥ 2 and

n > 2habm−1,

the geometric progression
A = {a, ab, ab2, . . . , abm−1}

in the cyclic group Zn has size m, and its h-fold signed sumset h±A has size

|Zm(h)| = c(h,m)

and thus it is a Bh set over Z in Zn. (We should note that there is nothing special about A
being a geometric progression: all that’s needed is that each element in the progression is
much larger than the previous one.)

By choosing a = 1 and b = 2h, we arrive at Proposition C.50. ✷

Proof of Proposition C.51

We first provide a proof for the case when h is even: we will show that, in this case,
A = {1, h} has an h-fold signed sumset of size exactly 4h.

We start by observing that the relevant index set is Z2(h), which consists of the 4h
points

{(0,±h), (±1,±(h− 1)), (±2,±(h− 2)), . . . , (±(h− 1),±1), (±h, 0)};
we may rewrite this layer of the integer lattice as

Z2(h) = I ∪ J ∪ (−I) ∪ (−J)

where
I = {(i, h− i) | i = 0, 1, 2, . . . , h}

and
J = {(−j, h− j) | j = 1, 2, . . . , h− 1}.

(Note that |I|+ |J |+ | − I|+ | − J | = (h+ 1) + (h− 1) + (h+ 1) + (h− 1) = 4h.)
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Therefore, we get h±A = S ∪ T ∪ (−S) ∪ (−T ), where

S = {i · 1 + (h− i) · h | i = 0, 1, 2, . . . , h}

and

T = {−j · 1 + (h− j) · h | j = 1, 2, . . . , h− 1}.

We need to prove that the four sets S, T , −S, and −T are pairwise disjoint in Zn. First,
we prove that S and T are disjoint. Suppose, indirectly, that this is not so and we have
indices i ∈ {0, 1, 2, . . . , h} and j ∈ {1, 2, . . . , h− 1} for which

i · 1 + (h− i) · h = −j · 1 + (h− j) · h.

Rearranging yields that

j · (h+ 1)− i · (h− 1) = 0

in Zn. Now the integer j · (h+ 1)− i · (h− 1) is at least

1 · (h+ 1)− h · (h− 1) = −h2 + 2h+ 1 > −n

and at most

(h− 1) · (h+ 1)− 0 · (h− 1) = h2 − 1 < n,

so if

j · (h+ 1)− i · (h− 1) = 0

in Zn, then

j · (h+ 1)− i · (h− 1) = 0

in Z. Rearranging again, we get

i+ j = (i− j) · h,

which implies that i + j is divisible by h; since 1 ≤ i + j ≤ 2h − 1, this can only occur
if i + j = h. Our equation then yields i − j = 1, adding these two equations results in
2i = h+ 1, which is a contradiction as the left-hand side is even and the right-hand side is
odd. Therefore, we proved that S ∩ T = ∅.

Observe that the elements of S are between h and h2 (inclusive), and the elements of T
are between 1 and h2 − h − 1 (inclusive); in particular, all of them are between 1 and h2.
Therefore, if S and T are disjoint in Zn and n > 2h2, then the four sets S, T , −S, and −T
must be pairwise disjoint. This completes our proof for the case when h is even.

Next, we turn to the case when h is odd, and show that A = {2, h} has an h-fold signed
sumset of size exactly 4h. Again, we write h±A as S ∪ T ∪ (−S)∪ (−T ), but this time with

S = {i · 2 + (h− i) · h | i = 0, 1, 2, . . . , h}

and

T = {−j · 2 + (h− j) · h | j = 1, 2, . . . , h− 1}.

As above, we can show that the four sets S, T , −S, and −T must be pairwise disjoint. ✷
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Proof of Proposition D.6

Since the claim is obviously true for h = 1, we will assume that h ≥ 2.
Suppose first that A = a+H for some a ∈ G and H ≤ G; we then have |A| = |H | = m.

Note that hA = ha+H , since

a1 + · · ·+ ah = (a+ h1) + · · ·+ (a+ hh) ∈ ha+H

and
ha+ h0 = (a+ 0) + · · ·+ (a+ 0) + (a+ h0) ∈ hA.

Therefore,
|hA| = |ha+H | = |H | = |A|.

Conversely, suppose that |hA| = |A|. Let H be the stabilizer of (h− 1)A; that is,

H = {g ∈ G | g + (h− 1)A = (h− 1)A}.

Then H ≤ G. Choose any a ∈ A; we will show that A = a+H .
Consider the set A′ = A− a. Then |A′| = m and 0 ∈ A′, and therefore

(h− 1)A = {0}+ (h− 1)A ⊆ A′ + (h− 1)A.

But then

|hA| = |hA− a| = |A′ + (h− 1)A| ≥ |(h− 1)A| ≥ |(h− 2) · a+A| = |A|;

since we assumed |hA| = |A|, equality must hold throughout, and thus

A′ + (h− 1)A = (h− 1)A,

so A′ ⊆ H by definition. This means that A ⊆ a+H . This implies that

|a+H | ≥ |A| = |hA| = |(h− 1)A+A| ≥ |(h− 1)A| = |H + (h− 1)A| ≥ |H | = |a+H |.

Therefore, equality holds throughout and |a+H | = |A| and thus a+H = A. ✷

Proof of Theorem D.8

Suppose, first, that A is an arithmetic progression (AP) of length m; that is,

A = {a+ ig | i = 0, 1, . . . ,m− 1}

for some a, g ∈ Zp. Then

hA = {ha+ ig | i = 0, 1, . . . , hm− h},

and thus
|hA| = min{p, hm− h+ 1} = hm− h+ 1,

by assumption.
For the other direction, we will use the Cauchy–Davenport Theorem (see [52] and [59])

and Vosper’s Theorem (see [197] or Theorem 2.7 in [161]). They both refer to the sum

A+B = {a+ b | a ∈ A, b ∈ B}
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of subsets A and B in Zp, and can be stated as follows.
Theorem (Cauchy–Davenport Theorem) Suppose that p is a prime, and let A,B ⊆ Zp

for which |A+B| < p. Then |A+B| ≥ |A|+ |B| − 1.
Theorem (Vosper’s Theorem) Suppose that p is a prime, and let A,B ⊆ Zp for which
|A+B| < p. Then |A+B| = |A|+ |B| − 1 if, and only if, at least one of the following three
conditions holds:

i |A| = 1 or |B| = 1,

ii there is an element c ∈ Zp for which (A+B) ∪ {c} = Zp and Zp \B = {c} −A, or

iii A and B are APs with a common difference.

Suppose now that
|hA| = hm− h+ 1 < p.

We first observe that for any positive integer k and any a ∈ A, we have

(k − 1)A+ {a} ⊆ kA,

and thus |(k − 1)A| ≤ |kA|. Therefore, |kA| < p for k = 1, 2, . . . , h, and we can repeatedly
apply the Cauchy–Davenport Theorem to get

hm− h+ 1 = |hA|
= |A+ (h− 1)A|
≥ |A|+ |(h− 1)A| − 1

≥ 2|A|+ |(h− 2)A| − 2

...

≥ (h− 1)|A|+ |A| − (h− 1)

= hm− h+ 1.

Therefore, we must have equality throughout; in particular, |kA| = km − k + 1 for k =
1, 2, . . . , h.

In fact, to complete our proof, we will only need the fact that |2A| = 2m − 1 < p. If
m = 1, then we are done since if A = {a} for some a ∈ Zp, then A is an AP (of length
1). Assume then that m ≥ 2. Using the “only if ” part of Vosper’s Theorem for A = B
(which we are allowed as the hypotheses hold), we see that conditions i and ii cannot occur
as condition ii would imply that p = 2m and thus m = 1. Thus condition iii holds, proving
our claim. ✷

Proof of Theorem D.9

Recall that the stabilizer of a nonempty subset S in G is the set

H = {g ∈ G | g + S = S}.

It is easy to verify that the stabilizer of S is a subgroup of G, and we have

H + S = S;

that is, S is the union of some cosets of H .
We shall use the following famous result of Kneser (cf. [133] or Theorem 4.5 in [161]):
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Theorem (Kneser’s Theorem) Suppose that A is an m-subset of a finite abelian group
G, h is a positive integer, and H is the stabilizer subgroup of hA in G. We then have

|hA| ≥ h|A+H | − (h− 1)|H |.

Suppose now that A is an m-subset of G and that hA has size p, where p is the smallest
prime divisor of the order n of G. We also assume that m ≤ p < hm− h+ 1. Note that if
the stabilizer H of hA were to have order 1, then by Kneser’s Theorem, we would get

p = |hA| ≥ h|A+H | − (h− 1)|H | ≥ hm− (h− 1),

contradicting our assumption that p < hm−h+1. Therefore, |H | > 1, and by the definition
of p, we have |H | ≥ p. Since H is the stabilizer of hA, hA is the union of some cosets of H ;
with |H | ≥ p and |hA| = p this is only possible if |H | = p and hA equals a coset of H .

Note that if A would not lie in a single coset of H , then it would have elements a1 and a2
for which the cosets a1+H and a2+H are different, but then the cosets (h− 1)a1+a2+H
and ha1 +H would be different too, so hA could not lie in a single coset of H , which is a
contradiction. ✷

Proof of Theorem D.10

Suppose, first, that A is an arithmetic progression (AP) of length m; that is,

A = {a+ ig | i = 0, 1, . . . ,m− 1}

for some a, g ∈ G. Then

hA = {ha+ ig | i = 0, 1, . . . , hm− h},

and thus

|hA| = min{p, hm− h+ 1} = hm− h+ 1,

by assumption.
For the other direction, we will use the Corollary on page 74 of Kemperman’s work [129]:

Theorem (Kemperman; cf. [129]) Let p be the minimum prime divisor of n. Suppose
that m ≥ 2 and

|2A| ≤ min{p− 2, 2m− 1}
for some A ⊆ G. Then A is an AP.

Note that our assumption of hm − h + 1 < p implies that 2m − 1 < p and, since p is
odd, we then have 2m + 1 ≤ p or p− 2 ≥ 2m− 1. Hence, the conditions of Kemperman’s
Theorem above are met. The proof of Theorem D.10 then follows as the proof of Theorem
D.8 above.

Proof of Theorem D.40

We can evaluate u±(p,m, [0, s]) for odd prime values of p: we have

D1(p) =





{1, p} if m is odd,

{p} if m is even;
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and

D2(p) =





∅ if m is odd,

{1} if m is even.

Therefore, when m is odd, we get

u±(p,m, [0, s]) = min{f1(m, s), fp(m, s)} = min{p, sm− s+ 1} = min{p, 2s⌊m/2⌋+ 1},

and when m is even, we get

u±(p,m, [0, s]) = min{f1(m+ 1, s), fp(m, s)} = min{p, sm+ 1} = min{p, 2s⌊m/2⌋+ 1}.

This means that, by Theorem D.37, we have

ρ±(Zp,m, [0, s]) ≤ min{p, 2s⌊m/2⌋+ 1}.

Now we prove that for every m-subset A of Zp, we have

|[0, s]±A| ≥ min{p, 2s⌊m/2⌋+ 1}.

When m is odd, this follows immediately from the Cauchy–Davenport Theorem, since

|[0, s]±A| ≥ |sA| ≥ min{p, sm− s+ 1} = min{p, 2s⌊m/2⌋+ 1}.

Observe that when m is even, then A is a proper subset of A ∪ (−A) ∪ {0}; therefore,
by Propositions 3.3 and 3.4, we get

|[0, s]±A| = |s(A ∪ (−A) ∪ {0})| ≥ min ρ(Zp,m+ 1, s).

Our claim again follows from the Cauchy–Davenport Theorem, since

ρ(Zp,m+ 1, s) = min{p, s(m+ 1)− s+ 1} = min{p, 2s⌊m/2⌋+ 1}.

Our proof is now complete. ✷

Proof of Proposition D.42

Let us write an arbitrary 4-subset A of G in the form

A = {a, a+ d1, a+ d2, a+ d3}.

Here d1, d2, and d3 are distinct nonzero elements of G.
We first prove the following.
Proposition Suppose that d1, d2, and d3 are distinct nonzero elements of G, and let

A = {a, a+ d1, a+ d2, a+ d3}.

1. If none of d1, d2, or d3 equals the sum of the other two, then |2̂ A| = 6.

2. Suppose (w.l.o.g.) that d3 = d1 + d2.

(a) If both d1 and d2 have order 2, then |2̂ A| = 3;

(b) if exactly one of d1 or d2 have order 2, then |2̂ A| = 4;

(c) if neither of d1 or d2 have order 2, then |2̂ A| = 5.
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Proof of Proposition: Since 2a+ d1, 2a+ d2, and 2a+ d3 are distinct,

2̂ A = {2a+ d1, 2a+ d2, 2a+ d3, 2a+ d1 + d2, 2a+ d1 + d3, 2a+ d2 + d3}

has size 3, 4, 5, or 6, exactly when three, two, one, or none of the equations

d3 = d1 + d2, d2 = d1 + d3, or d1 = d2 + d3

hold, respectively. This proves 1.
Assume now that d3 = d1 + d2, and that both d1 and d2 have order 2. Then

d1 + d3 = d1 + (d1 + d2) = d2;

similarly, d2 + d3 = d1. This proves 2 (a).
If d3 = d1 + d2, and (w.l.o.g.) d1 has order 2 but d2 does not, then we still have

d1 + d3 = d2, but
d2 + d3 = d2 + (d1 + d2) 6= d1.

Finally, if neither of d1 or d2 have order 2, then d2 6= d1 + d3 and d1 6= d2 + d3. ✷
Proof of Proposition D.42. By our proposition above, it suffices to prove that

ρ̂ (G, 4, 2) ≤





3 if |Ord(G, 2)| ≥ 2,
4 if |Ord(G, 2)| = 1,
5 if |Ord(G, 2)| = 0.

Suppose, first, that |Ord(G, 2)| ≥ 2, and let d1 and d2 be two distinct elements of
Ord(G, 2). Then d3 = d1 + d2 (which is also of order 2) is nonzero, and distinct from d1 or
d2. Thus, by our proposition above, the set A = {0, d1, d2, d3} has |2̂ A| = 3.

Suppose now that d1 is the unique element of G of order 2; let d2 be any other nonzero
element of G (exists since n ≥ m = 4). Again, d3 = d1 + d2 is nonzero, and is distinct from
d1 or d2, and thus, by our proposition above, the set A = {0, d1, d2, d3} has |2̂ A| = 4.

Finally, assume that Ord(G, 2) = ∅, and let d1 and d2 be distinct nonzero elements of
G; assume further that d2 6= −d1 (this is possible since n ≥ m = 4). As before, d3 = d1+d2
is nonzero, and is distinct from d1 or d2, and thus, by our proposition above, the set
A = {0, d1, d2, d3} has |2̂ A| = 5. ✷

Proof of Theorem D.47

We first state and prove the following lemma.
Lemma Suppose that d and t are positive integers with t ≤ d− 1, and let j ∈ Zd. Then

there is a t-subset J = {j1, . . . , jt} of Zd for which

j1 + j2 + · · ·+ jt = j.

Note that the restriction of t ≤ d − 1 is necessary: for t = d the only j ∈ Zd for which
such a set exists is, of course,

j = 0 + 1 + · · ·+ (d− 1) =
d(d− 1)

2
=





d
2 if d is even;

0 if d is odd.

Proof of lemma: Write j as

j =
t2 − t

2
+ j0 mod d
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where j0 = 0, 1, . . . , d− 1. Note that 1 ≤ t ≤ d − 1. We will separate two cases: when j0 is
less than t and when it is not.

If 0 ≤ j0 ≤ t− 1, let
J = {0, 1, . . . , t− 1, t} \ {t− j0}.

Then |J | = t, and the elements of J add up to

t2 + t

2
− (t− j0) = j.

If t ≤ j0 ≤ d− 1, take
J = {1, . . . , t− 1} ∪ {j0}.

Again, |J | = t, and the elements of J add up to j. ✷
Before we turn to the proof of Proposition D.47, let us recall our notations and perform

some computations. We write

m = dc+ k with c =
⌈m
d

⌉
− 1,

and

h = dq + r with q =

⌈
h

d

⌉
− 1.

Note that c ≥ 0, q ≥ 0, 1 ≤ k ≤ d, and 1 ≤ r ≤ d.
Recall that we have set

A = Ad(n,m) =

c−1⋃

i=0

(i+H) ∪
{
c+ j · n

d
| j = 0, 1, 2, . . . , k − 1

}
.

Here
c−1⋃

i=0

(i +H) = ∅

when c = 0 (that is, when m ≤ d), but

{
c+ j · n

d
| j = 0, 1, 2, . . . , k − 1

}
6= ∅.

Note that every element of ĥ A is of the form

(i1 + i2 + · · ·+ ih) + (j1 + j2 + · · ·+ jh) ·
n

d

with i1, . . . , ih ∈ {0, 1, . . . , c} and j1, . . . , jh ∈ {0, 1, . . . , d − 1}, with the added conditions
that when any of the i-indices equals c, the corresponding j-index is at most k−1, and that
when two i-indices are equal, the corresponding j-indices are distinct.

Clearly, the least value of i1 + · · ·+ ih is

imin = d(0 + 1 + · · ·+ (q − 1)) + rq = q · h+ r − d

2
.

To compute the largest value imax of i1 + · · ·+ ih, we consider four cases depending on
whether r > k or not and whether q = 0 or not.

First, when q = 0 and r > k, then r = h and 1 ≤ h− k = r − k < r ≤ d, so it is easy to
see that

imax = kc+ (h− k)(c− 1) = h(c− 1) + k.
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In the case when r > k and q ≥ 1, we write h as h = k + dq + (r − k); thus

imax = kc+ [(c− 1) + (c− 2) + · · ·+ (c− q)]d+ (r − k)(c− q − 1)

= kc+ qcd− q(q + 1)

2
d+ rc− rq − r − kc+ kq + k

= qcd+ rc − q · dq + d+ 2r

2
− r + kq + k

= hc− q · h+ r − d

2
− dq − r + kq + k

= h(c− 1)− q · h+ r − d

2
+ kq + k.

Next, when q = 0 and r ≤ k, then r = h and h = r ≤ k, so we have

imax = hc = h(c− 1) + r.

Finally, in the case when q ≥ 1 and r ≤ k, then 0 < d − k + r ≤ d; we write h as
h = k + d(q − 1) + (d− k + r) and thus (using our result from the first case above)

imax = kc+ [(c− 1) + (c− 2) + · · ·+ (c− q + 1)]d+ (d+ r − k)(c− q)

= kc+ [(c− 1) + (c− 2) + · · ·+ (c− q + 1) + (c− q)]d+ (r − k)(c− q − 1) + (r − k)

= h(c− 1)− q · h+ r − d

2
+ kq + r.

All four cases can be summarized by the formula

imax = h(c− 1)− q · h+ r − d

2
+ kq +min{r, k}.

Clearly, when m ≤ d, then imin = imax = 0. But when m > d, we can verify that
imax > imin as follows. We have

imax − imin = h(c− 1)− q · (h+ r − d) + kq +min{r, k}
= h · (c− q − 1) + q(d− r + k) + min{r, k};

this quantity is positive when c ≥ q + 1. Note that we must have c − q =
⌈
m
d

⌉
−
⌈
h
d

⌉
≥ 0,

thus the only remaining case is when c = q, in which case k − r = m − h > 0 and q > 0
(since q = c and m > d), so we now have

imax − imin = −h+ q(d− r + k) + min{r, k} = −h+ qd+ q(k − r) + r = q(k − r) > 0.

Obviously, i = i1 + i2 + · · ·+ ih can assume the value of any integer between these two
bounds, and thus ĥ A lies in exactly

min
{n
d
, imax − imin + 1

}

cosets of H .
Proof of Proposition D.47. We can easily check that the result holds for h = 1, so below

we assume that 2 ≤ h ≤ m− 1. We will separate the rest of the proof into several cases. In
the first two cases, we have h ≤ k ≤ d, and thus q = 0 and h = r, so we have imin = 0 and
imax = hc.

Claim 1: If h ≤ k and h < d, then |ĥ A| = min{n, hcd+ d, hm− h2 + 1}.
We here recognize the quantity fd = hcd+ d.
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Proof of Claim 1: Note that the assumptions, using our lemma above, imply that

ĥ A =

hc−1⋃

i=0

(i+H) ∪
{
hc+ j · n

d
| j = h(h− 1)

2
, . . . , h(k − 1)− h(h− 1)

2

}
.

We first consider the case when c = 0 or, equivalently, when m ≤ d, i.e., when m = k.
In this case

ĥ A =

{
j · n

d
| j = h(h− 1)

2
, . . . , h(m− 1)− h(h− 1)

2

}
,

and therefore

|ĥ A| = min{d, hm− h2 + 1} = min{n, d, hm− h2 + 1} = min{n, hcd+ d, hm− h2 + 1},

as claimed.
Assume now that c ≥ 1 (iff m > d, iff m > k). If we also have

hc− 1 ≥ n

d
− 1,

then
|ĥ A| = n.

But note that, when k ≥ h and

hc− 1 ≥ n

d
− 1,

then we also have

hm− h2 + 1 = hcd+ hk − h2 + 1 ≥ hcd+ 1 > n

and
hcd+ d ≥ n+ d > n,

and thus
|ĥ A| = n = min{n, hcd+ d, hm− h2 + 1},

as claimed.
If, on the other hand, c ≥ 1 and

hc− 1 ≤ n

d
− 2,

then

|ĥ A| = hcd+min{d, hk−h2+1} = min{hcd+d, hcd+hk−h2+1} = min{hcd+d, hm−h2+1}.

Note that, under the assumption that

hc− 1 ≤ n

d
− 2,

we have
min{hcd+ d, hm− h2 + 1} ≤ hcd+ d ≤ n,

and therefore again we get

|ĥ A| = n = min{n, hcd+ d, hm− h2 + 1},

as claimed. This completes the proof of Claim 1.
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Claim 2: If h = k = d, then |ĥ A| = min{n, hm− h2 − h+ 2}.
Proof of Claim 2: First, we note that h < m = dc+ k = dc+ h, so c ≥ 1. In the case of

h = k = d, our lemma above cannot be used for the coset i+H when i = 0; we in fact now
have

ĥ A =

{
d(d− 1)

2
· n
d

}
∪

dc−1⋃

i=1

(i+H) ∪
{
dc+

d(d − 1)

2
· n
d

}
.

If we have
dc− 1 ≥ n

d
,

then clearly |ĥ A| = n, but we also have

hm− h2 − h+ 2 = h(dc+ h)− h2 − h+ 2 = h(dc− 1) + 2 ≥ n+ 2 > n,

so
|ĥ A| = min{n, hm− h2 − h+ 2},

as claimed.
Assume now that

dc− 1 ≤ n

d
− 2.

In this case

|ĥ A| = 1+ (dc− 1)d+ 1 = h(cd+ h)− h2 − h+ 2 = hm− h2 − h+ 2;

furthermore,
1 + (dc− 1)d+ 1 ≤ n− 2d+ 2 ≤ n,

thus
|ĥ A| = min{n, hm− h2 − h+ 2},

as claimed.
This leaves us with the case of

dc− 1 =
n

d
− 1,

when we have

ĥ A =

{
d(d− 1)

2
· n
d

}
∪

dc−1⋃

i=1

(i +H) ∪
{
dc+

d(d− 1)

2
· n
d

}

=

{
d(d− 1)

2
· n
d

}
∪

n

d
−1⋃

i=1

(i+H) ∪
{
n

d
+

d(d− 1)

2
· n
d

}

=

{
j · n

d
| j = d(d − 1)

2
,
d(d− 1)

2
+ 1

}
∪

n

d
−1⋃

i=1

(i +H),

and d = h ≥ 2, so

|ĥ A| = 2+
(n
d
− 1
)
·d = 2+(dc−1)d = cdh−h+2 = (cd+h)h−h2−h+2 = hm−h2−h+2.

Furthermore, 2 +
(
n
d − 1

)
· d = n− (d− 2) ≤ n, so again we have

|ĥ A| = min{n, hm− h2 − h+ 2},
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completing the proof of Claim 2.
We can also observe that, since we always have k ≤ d, Claims 1 and 2 cover all possibil-

ities under the assumption h ≤ k.
Claim 3: If h > k, r 6= d, and r 6= k, then

|ĥ A| = min{n, hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k}}.

Proof of Claim 3: First, observe that by our lemma above, the three conditions imply
that

ĥ A =

imax⋃

i=imin

(i +H).

Therefore, we just need to prove that

(imax − imin + 1) · d = hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k}.

Indeed, from our computations above we get

imax − imin + 1 = h(c− 1)− q · (h+ r − d) + kq +min{r, k}+ 1

= hc− h+ qd− q · (h+ r − k) + min{r, k}+ 1

= hc− r − q · (h+ r − k) + min{r, k}+ 1

= hc+ 1− h− r

d
· (h+ r − k) + min{0, k − r},

from which our result follows.
Claim 4: If h > k, r = d, and r 6= k, then

|ĥ A| = min{n, hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k} − (d− 1)}.

Proof of Claim 4: The only difference between the conditions here and the conditions
for Claim 3 is that this time we have

ĥ A = {xmin} ∪
imax⋃

i=imin+1

(i +H)

where xmin equals the sum of the h elements of the set

q⋃

i=0

(i +H).

Therefore,

|ĥ A| =





n if imax − imin ≥ n
d ,

(imax − imin) · d+ 1 if imax − imin ≤ n
d − 1

or, equivalently,

|ĥ A| = min{n, (imax − imin) · d+ 1}.
Our claim then follows, since, as can be seen from the proof of Claim 3,

(imax − imin) · d+ 1 = (imax − imin + 1) · d− (d− 1)

= hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k} − (d− 1).
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Claim 5: If h > k, r 6= d, and r = k, then

|ĥ A| = min{n, hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k} − (d− 1)}.

Proof of Claim 5: The only difference between the conditions here and the conditions
for Claim 3 is that this time we have

ĥ A =

imax−1⋃

i=imin

(i +H) ∪ {xmax}

where xmax equals the sum of the h elements of the set

c−1⋃

i=c−q

(i +H) ∪
{
c+ j · n

d
| j = 0, 1, 2, . . . , k − 1

}
.

Our claim then follows as in Claim 5.
Claim 6: If h > k, r = d, and r = k, then

|ĥ A| = min{n, n− (d− 2)}

if m = n
h + h, and

|ĥ A| = min{n, hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k} − 2(d− 1)}

otherwise.
Proof of Claim 6: This time we get

ĥ A = {xmin} ∪
imax−1⋃

i=imin+1

(i+H) ∪ {xmax}

where xmin and xmax were defined in Claims 4 and 5, respectively.
With r = k = d, we can simplify the expression we got for imax − imin + 1 in the proof

of Claim 3:

imax − imin + 1 = hc+ 1− h− r

d
· (h+ r − k) + min{0, k − r}

= hc+ 1− (h− d)h

d

=
h(cd+ d)− h2 + d

d

=
hm− h2 + d

d
.

Thus we see that, if m 6= n
h +h, then imax− imin− 1 6= n

d − 1. Moreover, if m > n
h +h, then

imax − imin − 1 ≥ n
d , and thus

|ĥ A| = n

= min{n, (imax − imin − 1) · d+ 2}
= min{n, (imax − imin + 1) · d− 2(d− 1)}
= min{n, hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k} − 2(d− 1)}.
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If, on the other hand, m < n
h + h, then imax − imin − 1 ≤ n

d − 2, and thus

|ĥ A| = (imax − imin − 1) · d+ 2

= min{n, (imax − imin − 1) · d+ 2}
= min{n, (imax − imin + 1) · d− 2(d− 1)}
= min{n, hcd+ d− (h− r)(h + r − k)− d ·max{0, r − k} − 2(d− 1)}.

This leaves us with the case of m = n
h + h. In this case

ĥ A = {xmin} ∪
imax−1⋃

i=imin+1

(i+H) ∪ {xmax}

=

imin+
n

d
−1⋃

i=imin+1

(i+H) ∪ {xmin, xmax}.

A simple computation shows that, denoting the sum of the elements in a subset S of Zn

by
∑

S, we have

xmin =
∑ q⋃

i=0

(i+H) =
dq(q + 1)

2
+

d(d− 1)(q + 1)

2
· n
d

and

xmax =
∑ c⋃

i=c−q

(i+H) = cd(q + 1)− dq(q + 1)

2
+

d(d − 1)(q + 1)

2
· n
d
.

But
cd = m− d =

n

h
+ h− d =

n

d(q + 1)
+ dq,

thus

xmax =
dq(q + 1)

2
+

(
d(d− 1)(q + 1)

2
+ 1

)
· n
d
,

showing that xmin = xmax if, and only if, d = 1. Therefore, when d ≥ 2, we get

|ĥ A| =
(n
d
− 1
)
d+ 2 = n− d+ 2,

and when d = 1 we get

|ĥ A| =
(n
d
− 1
)
d+ 1 = n.

This completes the proof of Claim 6.
Now it is an easy exercise to verify that in all cases, |ĥ A| is as claimed in the statement

of Theorem D.47.

Proof of Proposition D.59

Our task is to prove that, when n is not a power of 2, then

ρ̂ (G,m0, 2) ≤ n− 2,

where

m0 =
n+ |Ord(G, 2)|+ 1

2
.
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We use induction on the rank of G. When G is cyclic, the claim follows easily from Corol-
lary D.52; for the sake of completeness—and since the rest of our proof is constructive—we
exhibit a subset A of Zn of size m0 for which 2̂ A is of size n− 2.

When n is odd, we have m0 = (n+ 1)/2, and the set

A = {0, 1, 2, . . . , (n− 1)/2}

has restricted sumset
2̂ A = {1, 2, . . . , n− 2},

as claimed.
Suppose now that n is even, and set n = 2k · d where k ≥ 1 and d ≥ 3 is odd. In this

case,
m0 = n/2 + 1 = 2k−1 · d+ 1.

Consider the set
A = Bd(n,m0; (d+ 1)/2, (d+ 1)/2, 1, (d− 1)/2),

defined on page 168: in our case, this set becomes

A = B′ ∪
2k−1−1⋃

i=1

{i+ j · 2k | j = 0, 1, . . . , d− 1} ∪B′′,

with
B′ = {j · 2k | j = 0, 1, . . . , (d− 1)/2},

and
B′′ = {2k−1 + j · 2k | j = (d− 1)/2, (d+ 1)/2, . . . , d− 1}.

Then
|A| = (d+ 1)/2 + (2k−1 − 1) · d+ (d+ 1)/2 = 2k−1 · d+ 1 = m0,

and
2̂ A = Zn \ {0, (d− 1) · 2k},

since
2̂ B′ = {j · 2k | j = 1, 2, . . . , d− 2}

and
2̂ B′′ = {2k + j · 2k | j = d, d+ 1, . . . , 2d− 3} = 2̂ B′.

This completes the case when G is cyclic.
Assume now that our claim holds for groups of rank r− 1, and let G be a group of rank

r ≥ 2. Suppose further that G is of type (n1, . . . , nr); we write

G = Zn1
×G2

where G2 has order n/n1 and rank r − 1. Note that n1 is a divisor of n/n1, so if n is not a
power of 2, then n/n1 is not a power of 2 either. Therefore, by our inductive assumption,
G2 contains a subset A2 of size

|A2| =
n/n1 + |Ord(G2, 2)|+ 1

2

for which
2̂ A2 = G2 \X

for some X ⊆ G2 of size |X | ≥ 2.
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We separate two cases depending on the parity of n1.
Observe that when n1 is odd, then

|Ord(G, 2)| = |Ord(G2, 2)|,

so

m0 =
n+ |Ord(G2, 2)|+ 1

2
.

Set
A = ({0} ×A2) ∪ ({1, 2, . . . , (n1 − 1)/2} ×G2) .

The size of A is then

|A| = |A2|+ (n1 − 1)/2 · |G2| =
n/n1 + |Ord(G2, 2)|+ 1

2
+

(n1 − 1) · n/n1

2
= m0.

We can also see that
2̂ A ⊆ (Zn1

×G2) \ ({0} ×X),

and hence
|2̂ A| ≤ n− |X | ≤ n− 2,

as claimed.
Suppose now that n1 is even. In this case, we can easily see that

|Ord(G, 2)| = 2 · |Ord(G2, 2)|+ 1,

so

m0 =
n+ 2 · |Ord(G2, 2)|+ 2

2
=

n

2
+ |Ord(G2, 2)|+ 1.

This time, we set

A = ({0, n1/2} ×A2) ∪ ({1, 2, . . . , n1/2− 1} ×G2) .

We again have

|A| = 2 · |A2|+ (n1/2− 1) · |G2| = (n/n1 + |Ord(G2, 2)|+ 1) + (n/2− n/n1) = m0

and
2̂ A ⊆ (Zn1

×G2) \ ({0} ×X),

and thus
|2̂ A| ≤ n− |X | ≤ n− 2,

which completes our proof. ✷

Proof of Theorem D.72

Our claim is already established for cyclic groups by, for example, Proposition D.46.
Turning to noncyclic groups, let us first consider the elementary abelian 2-group Zr

2,
which we write as G1 × Z2 with G1 = Zr−1

2 . The result for h = 2 has been delivered in
Proposition D.64, so assume that h ≥ 3. Let g1 ∈ G1 and g2 ∈ Z2 be arbitrary; we need to
prove that there are h pairwise distinct elements in G1 × Z2 that add to (g1, g2).

Noting that we have h ≤ 2r−1, we choose h− 1 arbitrary elements a1, . . . , ah−1 in G1.
Set

a = g1 − (a1 + · · ·+ ah−1).
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(To make the proof more transparent, we used subtraction here, though of course in G1 it
is equivalent to addition.) If a is distinct from ai for all 1 ≤ i ≤ h− 1, then

(a, g2), (a1, 0), . . . , (ah−1, 0)

are h distinct elements of G1 × Z2 that add to (g1, g2).
In the case when a equals one of a1, . . . , ah−1, say a = a1, then, noting also that h−1 ≥ 2,

we see that
(a1, 0), (a1, 1), (a2, g2 − 1), (a3, 0), . . . , (ah−1, 0)

are h distinct elements of G1 × Z2 that add to (g1, g2).
Next, we consider the group Z2×Zκ with κ ≥ 4 even. Let g1 ∈ Z2 and g2 ∈ Zκ; we need

to find h distinct elements of Z2 ×Zκ that add to (g1, g2). If h < κ, then this follows easily
from the result for cyclic groups. Given that h ≤ n/2, the remaining case is that h = κ,
which needs more attention. We separate two cases depending on κ mod 4.

Suppose first that κ is divisible by 4, and let c = κ/4. Since

c ≤ κ/2− 1,

we have pairwise distinct integers a1, . . . , ac that are all between 1 and κ/2 − 1, inclusive.
We consider two subcases as follows: if g2 = 0, let

A = {(0, ai), (0,−ai), (1, ai), (1,−ai) | i = 1, . . . , c− 1} ∪ {(1, ac), (g1,−ac), (0, 0), (1, 0)}.

If g2 6= 0, then one of the integers a1, . . . , ac may equal g2 or −g2; we will assume that none
of a1, . . . , ac−1 equals ±g2, and we let

A = {(0, ai), (0,−ai), (1, ai), (1,−ai) | i = 1, . . . , c−1}∪{(0, ac), (0,−ac), (1, g2), (g1−1, 0)}.

In both subcases, A consists of h = κ pairwise distinct elements that add to (g1, g2).
Now suppose that κ ≡ 2 mod 4, and let c = (κ− 2)/4. This time,

c ≤ κ/2− 2,

so we have pairwise distinct integers a1, . . . , ac+1 that are all between 1 and κ/2−1, inclusive.
Again we consider two subcases: if g2 = 0, let

A = {(0, ai), (0,−ai), (1, ai), (1,−ai) | i = 1, . . . , c} ∪ {(0, ac+1), (g1,−ac+1)}.

If g2 6= 0, then one of the c+ 1 integers may equal g2 or −g2; we will assume that none of
a1, . . . , ac equals ±g2, and we let

A = {(0, ai), (0,−ai), (1, ai), (1,−ai) | i = 1, . . . , c} ∪ {(0, 0), (g1, g2)}.

In both subcases, A consists of h = κ pairwise distinct elements that add to (g1, g2).
This completes the cases when G is cyclic, the elementary abelian 2-group, or is of the

form Z2 ×Zκ, so we assume that G ∼= G1 ×Zκ, where G1 is of order at least three, κ is the
exponent of G, and κ ≥ 3. We will also write

h = cκ+ b

where
0 ≤ b ≤ κ− 1.

Furthermore, since |G1| ≥ 3 and h ≤ |G1| · κ/2, we also have

c ≤ |G1| − 2.



348

Let g1 ∈ G1 and g2 ∈ Zκ; we need to find h distinct elements of G1×Zκ that add to (g1, g2).
We consider two cases depending on whether b is positive or not.

If b ≥ 1, we let A1 be any c distinct elements of G1 \{0, g1} (possible since c ≤ |G1|−2),
and let A2 be any b distinct elements of Zκ that add to

g2 − κ(κ− 1)c/2

(possible since 1 ≤ b ≤ κ− 1). Let a be any element of A2. Then

(A1 × Zκ) ∪ ({0} × (A2 \ {a})) ∪ {(g1, a)}

is a set of h distinct elements of G, and its elements add to (g1, g2). (Note that, since κ is
the exponent of G, κa1 = 0 for any a1 ∈ A1.)

Suppose now that b = 0; we need to separate several subcases. If g1 6= 0, we let A1 ⊂ G1

be any c− 1 distinct elements of G1 \ {0, g1}, and let A2 be the κ− 1 distinct elements of
Zκ that add to

g2 − κ(κ− 1)(c− 1)/2.

Then
(A1 × Zκ) ∪ ({0} ×A2) ∪ {(g1, 0)}

is a set of h distinct elements of G and its elements add to (g1, g2).
Next, suppose that b = 0, g1 = 0, and κ is odd. Let a be any nonzero element of G1,

and choose A1 to be any c− 1 distinct elements of G1 \ {0, a,−a} (note that this is possible
even when a 6= −a, since c− 1 ≤ |G1| − 3); furthermore, let

A2 = {1, 2, 3, . . . , (κ− 1)/2}.

Then
(A1 × Zκ) ∪ ({a} ×A2) ∪ ({−a} × (−A2)) ∪ {(0, g2)}

is a set of h distinct elements of G and its elements add to (0, g2). (Note that, since κ − 1
is even, κ(κ− 1)(c− 1)/2) equals zero in Zκ.)

The case when b = 0, g1 = 0, κ is even, and g2 6= t where

t = κ(κ− 1)(c− 1)/2

is very similar: again we let a be any nonzero element of G1, and choose A1 to be any c− 1
distinct elements of G1 \ {0, a,−a}, but now we set

A2 = {1, 2, . . . , κ/2− 1}.

Then
(A1 × Zκ) ∪ ({0} ×A2) ∪ ({0} × (−A2)) ∪ {(a, 0), (−a, g2 − t)}

is a set of h distinct elements of G and its elements add to (0, g2). This very construction
works even if g2 = t as long as a has order at least three in G1.

This leaves us with the case when b = 0, g1 = 0, κ is even, g2 = t, andG1 is an elementary
abelian 2-group. Our construction is again similar, but we start with two distinct nonzero
elements a1 and a2 of G1. We then let A1 be any c− 1 distinct elements of G1 \ {0, a1, a2},
and set

A2 = {1, 2, . . . , κ/2− 2}.
Then

(A1 × Zκ) ∪ ({0} × A2) ∪ ({0} × (−A2)) ∪ {(a1, 0), (a2, 0), (a1, κ/2), (a2, κ/2}

is a set of h distinct elements of G and its elements add to (0, g2). ✷
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Proof of Proposition D.128

Let A = {a, b, c} be a weakly zero-sum-free 3-subset of G; we then have

Σ∗A = {a, b, c, a+ b, a+ c, b+ c, a+ b+ c}.

We can observe right away that the elements a, b, c, and a + b + c must be pairwise
distinct (otherwise one of a + b, a + c, or b + c would be 0). Furthermore, none of a + b,
a+ c, or b+ c can equal a+ b+ c. Therefore, the size of Σ∗A is 4, 5, 6, or 7, depending on
how many of the equations a + b = c, a+ c = b, and b + c = a hold. Note that if all three
of them hold, then a+ b+ c = 0. Therefore, the size of Σ∗A is 5, 6, or 7.

Suppose first that n is odd. In this case, |Σ∗A| ≥ 6, since otherwise we would have, wlog,
a+ b = c and a+ c = b, which would imply that 2a = 0, and that is impossible if n is odd.
On the other hand, if c = a+ b, then clearly |Σ∗A| = 6.

Now if n ∈ {1, 3, 5}, then G has no weakly zero-sum-free 3-subsets. In the case when
n ≥ 7 and odd, we show that we can always find elements a ∈ G and b ∈ G so that
A = {a, b, a + b} is weakly zero-sum-free. If G is isomorphic to G1 × G2, then for any
g1 ∈ G1 \ {0} and g2 ∈ G2 \ {0}, we can take a = (g1, 0) and b = (0, g2), since then

0 6∈ Σ∗A = {(g1, 0), (0, g2), (g1, g2), (2g1, g2), (g1, 2g2), (2g1, 2g2)}.

This leaves us with cyclic groups of (prime) order at least 7, in which case we take a = 1
and b = 2, for which

0 6∈ Σ∗A = {1, 2, 3, 4, 5, 6}.
Suppose next that n is even and that the exponent κ of G is at least 5. In this case, let

a be an order 2 element of G and b to be an order κ element of G; we also set c = a+ b. In
this case,

Σ∗A = {a, b, a+ b, 2b, a+ 2b}.
None of these elements are 0; for example, a + 2b = 0 would imply that 4b = −2a = 0,
contradicting the fact that b has order at least 5.

Suppose now that G has exponent 4 and order at least 8. In this case, we can write G
as G1 × Z4; let g1 be an element of G1 of order 2. Choosing a = (g1, 0), b = (0, 1) and
c = (g1, 1) gives us

Σ∗A = {(g1, 0), (0, 1), (g1, 1), (0, 2), (g1, 2)},
so A is weakly zero-sum-free.

We are left with the group Zr
2, for which we prove that Σ∗A has size 7 for every weakly

zero-sum-free subset A = {a, b, c} of size 3. Indeed, none of the equations a+b = c, a+c = b,
and b+ c = a hold: for example, a+ b = c implies that a+ b+ c = 2c = 0. Finally, observe
that when r ≥ 3, then letting a, b, and c denote the elements of Zr

2 that consist of r − 1
zero components, with the 1 component being in three different places, the set A = {a, , c}
is weakly zero-sum-free. This completes our proof. ✷

Proof of Theorem E.15

We will use the notations of [132]. First, note that

χ̂(G, [0, s]) = s+s+1(G) + 1.

Therefore, we need to prove that

s+ρ (G) ≤ v̂(n, ρ− 1) = max

{(⌊
d− 2

ρ− 1

⌋
+ 1

)
· n
d

| d ∈ D(n), d ≥ ρ+ 1

}
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for every integer ρ ≥ 2.
By Lemma 2.3 in [132], we have

s+ρ (G) = max{|H | · t+ρ (G/H) | H ≤ G,H 6= G}.

Let H ≤ G,H 6= G be such that

s+ρ (G) = |H | · t+ρ (G/H),

and suppose that |G/H | = d and that G/H has invariant factorization

G/H ∼= Zd1
× · · · × Zdr

.

By Theorem 2.1 in [132], we have

diam+(G/H) = Σr
i=1(di − 1).

Since the number of elements in Zd1
× · · ·×Zdr

with exactly one nonzero coordinate equals
Σr

i=1(di − 1) and this number is clearly at most the number of nonzero elements in G/H ,
we have

diam+(G/H) ≤ |G/H | − 1 = d− 1.

In particular, when d ≤ ρ, we have diam+(G/H) < ρ. According to page 27 in [132], we
then have t+ρ (G/H) = 0, so s+ρ (G) = 0, from which our claim trivially follows.

Assume now that d ≥ ρ+ 1. By Proposition 2.8 in [132], we have

t+ρ (G/H) ≤
⌊
d− 2

ρ− 1

⌋
+ 1,

and so

s+ρ (G) ≤
(⌊

d− 2

ρ− 1

⌋
+ 1

)
· n
d

≤ v̂(n, ρ− 1),

as claimed. ✷

Proof of Proposition E.76

Clearly,
χ̂ (G∗, h) ≤ χ̂ (G, h),

since if there is a subset A of G \ {0} with ĥ A 6= G, then |A| + 1 provides a lower bound
for χ̂ (G, h).

For the other direction, let B be a subset of G of size χ̂ (G, h) − 1 for which ĥ B 6= G.
Since χ̂ (G, h) ≤ n, we have |B| ≤ n− 1, and so | − B| ≤ n− 1 as well. Let g ∈ G \ (−B).
Then A = g + B has size χ̂ (G, h)− 1, and A ⊆ G \ {0}, since 0 ∈ A = g +B would imply
that 0 = g + b for some b ∈ B, and thus g = −b ∈ −B, a contradiction. But ĥ A and ĥ B
have the same size, so we conclude that ĥ A 6= G, from which

χ̂ (G∗, h) ≥ χ̂ (G, h)

follows. ✷
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Proof of Lemma E.87

Suppose first that k is odd, in which case h = (k+1)/2, and our desired inequality becomes

⌊(2n− 4)/(k + 1)⌋+ (k + 1)/2 ≤ k

or
⌊(2n− 4)/(k + 1)⌋ ≤ (k − 1)/2.

Since (k − 1)/2 is an integer, it suffices to prove that

(2n− 4)/(k + 1) < (k − 1)/2 + 1

or, equivalently, that
4n− 8 < (k + 1)2.

But
(k + 1)2 = (⌊2

√
n− 2⌋+ 1)2 > (2

√
n− 2)2 = 4n− 8,

as claimed.
Assume now that k is even, in which case h = k/2, and our desired inequality becomes

⌊(2n− 4)/k⌋+ k/2 ≤ k

or
⌊(2n− 4)/k⌋ ≤ k/2.

Since k/2 is an integer, it suffices to prove that

(2n− 4)/k < k/2 + 1

or, equivalently, that
4n− 7 < (k + 1)2.

As above, we see that
(k + 1)2 > 4n− 8,

so we just need to rule out the possibility that

(k + 1)2 = 4n− 7.

This is indeed impossible, as the left-hand side is the square of an odd integer and thus
congruent to 1 mod 8, while the right-hand side, since n is odd, is congruent to 5 mod 8. ✷

Proof of Theorem E.100

Clearly, any P1-set is a P3-set, and any P2-set is a P4-set.
Suppose now that A is a P3-set; we will prove that 0 ∈ A and A \ {0} is a P2-set as

follows. If we were to have 0 6∈ A, then, since by Theorem E.98 A has size

|A| = χ̂ (G,N)− 1 = χ̂ (G∗,N),

we have Σ∗A = G, but that contradicts our assumption that A is a P3-set. Therefore, 0 ∈ A,
and, using Theorem E.98 again,

|A \ {0}| = |A| − 1 = χ̂ (G,N)− 2 = χ̂ (G∗,N0)− 1.

Furthermore, since 0 ∈ A, we have Σ∗A = ΣA, but then Σ(A \ {0}) 6= G, since Σ∗A 6= G.
This proves that A \ {0} is a P2-set.

Finally, Theorem E.98 immediately implies that if 0 ∈ A and A \ {0} is a P2-set, then
A is a P1-set. This completes our proof. ✷
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Proof of Theorem E.108

Our proof will follow that of Theorem 3.1 in [94] for the case of |S| = n/2− 1. We will need
two lemmas, also found (though one stated with a crucial condition missing) in [94]:

Lemma 1 (Gao, Hamidoune, Lladó, and Serra; cf. [94] Lemma 2.7) Let S ⊆
G \ {0}, 〈S〉 = G, and |S| ≥ 14. Suppose further that there is no proper subgroup H of G
for which

|S ∩H | ≥ |S| − 1.

Then
|ΣS| ≥ min{n− 3, 3|S| − 3}.

Lemma 2 (Gao, Hamidoune, Lladó, and Serra; cf. [94] Lemma 2.9) Let S ⊆
G \ {0}. Suppose further that H is a subgroup of G of prime index p, for which

|S ∩H | ≥ p− 1.

Then
Σ(S \H) +H = G.

Proof of Theorem E.108: If A is a subgroup of order n/2, then clearly ΣA 6= G, so we
only need to prove the converse. We can check the claim for all groups of order 16 using the
computer program [120], so we will assume that n ≥ 18.

Let us assume, indirectly, that there is a subset A of G of size |A| = n/2 that is not
a subgroup of G but for which ΣA 6= G. Since A is not a subgroup of G, A ⊂ 〈A〉, which
implies that 〈A〉 = G.

Observe that by Theorem E.90, if |A| = n/2 and ΣA 6= G, then 0 ∈ A. Let S = A \ {0}.
Then

〈S〉 = 〈S ∪ {0}〉 = 〈A〉 = G.

Since ΣA 6= G implies that ΣS 6= G, we may choose an element g ∈ G \ ΣS.
Claim: For every proper subgroup H of G we have

|S ∩H | ≤ n/4.

Proof of Claim: Suppose that our claim is false; we then have a proper subgroup H of
G for which

|S ∩H | ≥ ⌈(n+ 2)/4⌉.
The index of H in G then is either 2 or 3. Since 〈S〉 = G, S cannot be a subset of H ;
furthermore, if the index of H in G is 3, then S \ H cannot consist of a single element.
Therefore, H is a subgroup of G of order p ∈ {2, 3} so that

|S \H | ≥ p− 1.

Thus, by Lemma 2 above,
Σ(S \H) +H = G.

But then
Σ(S ∩H) 6= H,

otherwise we would have

G = Σ(S \H) + Σ(S ∩H) = ΣS,
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contradicting our assumption. We fix an element h ∈ H \ Σ(S ∩H).
Since for n ≥ 16, |S∩H | ≥ ⌈(n+2)/4⌉ ≥ 5, we see that we can find an element s ∈ S∩H

so that S1 = (S ∩ H) \ {s} either has size at least 5, or has size 4 but is not of the form
{±a,±2a} for any a ∈ S.

Now
|S1 ∪ {0}| = |S ∩H | > n/4 ≥ |H |/2,

so
〈S1〉 = 〈S1 ∪ {0}〉 = H,

and, therefore, by Theorem D.123,

|ΣS1| ≥ min{|H | − 1, 2|S1|}.

Here
|H | − 1 ≤ n/2− 1 = 2 · ((n+ 2)/4− 1) ≤ 2 · (|S ∩H | − 1) = 2 · |S1|,

so
|ΣS1| ≥ |H | − 1.

This is impossible, however, since we know of at least two distinct elements of H that are
not in ΣS1: h and h− s. Indeed, h ∈ H \Σ(S ∩H), so h ∈ H \ΣS1; for the same reason, if
h− s ∈ ΣS1, then h = s+ (h− s) ∈ Σ(S ∩H), a contradiction. This proves our claim.

Since |S| = n/2− 1 > 2, we can select distinct elements s1, s2 ∈ S so that s1 + s2 6= 0.
Set S2 = S \ {s1, s2}. We find that 〈S2〉 = G, otherwise 〈S2〉 would be a proper subgroup
of G for which

|S ∩ 〈S2〉| ≥ |S2| = n/2− 3 > n/4,

contradicting our claim above. By the same claim, when n ≥ 18, then for each proper
subgroup H of G, we have

|S2 ∩H | ≤ |S ∩H | ≤ ⌊n/4⌋ ≤ n/2− 5 = |S2| − 2.

We can then apply Lemma 1 above, and get

|ΣS2| ≥ min{n− 3, 3|S2| − 3} = min{n− 3, 3(n/2− 3)− 3} = n− 3.

This is impossible; recall that g 6∈ ΣS, so none of the four pairwise distinct elements g, g −
s1, g − s2, or g − s1 − s2 are in ΣS2. ✷

Proof of Theorem E.109

Our proof will follow that of Theorem 3.2 in [94] for the case of |S| = n/3 + 1. Besides the
two lemmas in the proof of Theorem E.108 above, we will also need the following from [94]:

Lemma (Gao, Hamidoune, Lladó, and Serra; cf. [94] Lemma 2.8) Let X be a
generating subset of G that is asymmetric (i.e. X∩−X = ∅), and suppose that |ΣX | ≤ n/2.
Then there is a proper subset V of X so that

|ΣX | ≥ 4|V |+ (|X |+ |V |+ 5)(|X | − |V | − 1)− 2

4
.

Proof of Theorem E.109: If A is of the form specified, then clearly ΣA 6= G, so we only
need to prove the converse. Since 27 and 45 are the only odd values of n up to 62 for which
n/3 is a composite integer, we may assume that n ≥ 63.
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Let us assume that A is a subset of G so that |A| = n/3+1 and ΣA 6= G. Then 〈A〉 = G;
furthermore, by Theorem E.92, we see that 0 ∈ A. Let S = A \ {0}; then S has size n/3.

Claim 1: There is an asymmetric subsetX of S of size (n−3)/6 so that |ΣX | ≤ (n−1)/2.
Proof of Claim 1: Let s be an arbitrary element of S, and consider S \{s}. Observe that

S \ {s} can be partitioned as X1 ∪ X2 so that X1 and X2 are both asymmetric and have
size (n − 3)/6. We just have to prove that at least one of ΣX1 or ΣX2 has size at most
(n− 1)/2. If this were not the case, then for any g ∈ G \ ΣS, we would have

|ΣX1|+ |g − ΣX2| = |ΣX1|+ |ΣX2| ≥ n+ 1,

so ΣX1 and g − ΣX2 cannot be disjoint and thus

g ∈ Σ(X1 ∪X2) ⊆ ΣS,

a contradiction. This proves Claim 1.
Let X be a set specified by Claim 1, and set H = 〈X〉.
Claim 2: |H | = n/3.
Proof of Claim 2: Since X is asymmetric, we must have

|H | ≥ 2|X |+ 1 = n/3;

since n is odd, we only need to prove that H 6= G.
If H = G, then by the lemma above, there is a proper subset V of X so that

|ΣX | ≥ 4|V |+ (|X |+ |V |+ 5)(|X | − |V | − 1)− 2

4

and thus, by Claim 1,

n− 1

2
≥ 4|V |+ ((n− 3)/6 + |V |+ 5)((n− 3)/6− |V | − 1)− 2

4
.

However, we find that, when n ≥ 63, there is no value of 0 ≤ |V | ≤ (n − 3)/6 − 1 for
which this inequality holds. (The minimum value of the right-hand side must occur either
at |V | = 0 or at |V | = (n−3)/6−1, but both possibilities yield values more than (n−1)/2.)
This proves our claim.

Proof of Theorem E.109: Let p be the smallest prime divisor of n/3. Since

|X | = n− 3

6
≥ n

9
+ 2 =

3n+ 9p2 − 9p+ (p− 3)(n− 9p)

9p
≥ n/3

p
+ p− 1,

by Theorems E.91–E.95, we get ΣX = H . Therefore,

Σ(S \H) +H = Σ(S \ ΣX) + ΣX ⊆ Σ(S \X) + ΣX = ΣS 6= G,

so by Lemma 2 from the proof of Theorem E.108, |S \ H | ≤ 1. But |S| = |H | = n/3 and
0 ∈ H \ S, so |S \H | = 1, and our claim follows. ✷

Remark: We did not use in this proof that n/3 is composite, so as long as n ≥ 63, our
claim holds.

Proof of Theorem F.6

If n|h, then τ(Zn, h) = 0 and, since for each d ∈ D(n) we have gcd(d, h) = d,

vh(n, h) = max

{(⌊
d− 1− gcd(d, h)

h

⌋
+ 1

)
· n
d
| d ∈ D(n)

}
= 0
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as well.
Suppose now that h is not divisible by n, and let d ∈ D(n). If d|h, then

(⌊
d− 1− gcd(d, h)

h

⌋
+ 1

)
· n
d
= 0;

otherwise (and there is at least one such d)

d− 1− gcd(d, h) ≥ 0.

Let

c =

⌊
d− 1− gcd(d, h)

h

⌋
.

Note that
1 ≤ gcd(d, h) ≤ gcd(d, h) + hc ≤ d− 1.

Choose integers a and b for which

gcd(d, h) = ha+ db.

Let H be the subgroup of Zn of index d, and set

A =
a+c⋃

i=a

(i +H);

then A has size (c+ 1)n/d. We also see that A is zero-h-sum-free in Zn, since

hA =

ha+hc⋃

i=ha

(i+H) =

gcd(d,h)−db+hc⋃

i=gcd(d,h)−db

(i+H) =

gcd(d,h)+hc⋃

i=gcd(d,h)

(i+H) ⊆
d−1⋃

i=1

(i +H).

Thus we have constructed a zero-h-sum-free set of size (c+1)n/d in Zn for each d ∈ D(n),
which proves our lower bound. ✷

Proof of Proposition F.27

Suppose that A = {a1, . . . , am} is a Bh set over Z in G. Furthermore, suppose that
λ1, . . . , λm are integers for which

0 = λ1a1 + · · ·+ λmam

and
|λ1|+ · · ·+ |λm| = 2h.

Let k be the smallest index for which

h < |λ1|+ · · ·+ |λk|;

w.l.o.g., we may assume that λk > 0. Let us write λ = |λ1| + · · · + |λk−1| (if k = 1, then
simply let λ = 0).

We may then write our original equation as

λ1a1 + · · ·+ λk−1ak−1 + (h− λ)ak = (h− λ− λk)ak − λk+1ak+1 − · · · − λmam
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(with the understanding that if k = 1 or k = m, then the terms before or after the one with
ak in it vanish).

We first note that the left-hand side above is a signed sum of exactly h terms, since

|λ1|+ · · ·+ |λk−1|+ (h− λ) = h.

Before calculating the number of terms on the right-hand side, note that

h− λ− λk = h− λ− |λk| = h− (|λ1|+ · · ·+ |λk|) < 0,

so the right-hand side consists of

|h− λ− λk|+ |λk+1|+ · · ·+ |λm| = |λ1|+ · · ·+ |λk| − h+ |λk+1|+ · · ·+ |λm|
= |λ1|+ · · ·+ |λm| − h

= 2h− h = h

terms. Thus, the equation

λ1a1 + · · ·+ λk−1ak−1 + (h− λ)ak = (h− λ− λk)ak − λk+1ak+1 − · · · − λmam

has exactly h terms on each side; since A is a Bh set over Z, we get that λi = 0 for each
i = 1, . . . ,m, and therefore A is a zero-2h-sum-free set over Z in G. ✷

Proof of Proposition F.28

Let A = {a1, . . . , am} be a zero-h-sum-free set over Z in G for some positive integer h which
is divisible by 4, and suppose that

λ1a1 + · · ·+ λmam = λ′
1a1 + · · ·+ λ′

mam,

where the coefficients are integers and

|λ1|+ · · ·+ |λm| = |λ′
1|+ · · ·+ |λ′

m| = 2.

We will prove that we must have λi = λ′
i for every 1 ≤ i ≤ m.

It doesn’t take long to verify that the only possible values of

|λ1 − λ′
1|+ · · ·+ |λm − λ′

m|

are 0, 2, or 4.
If it is 0, then we are done. If it is 2 or 4, then consider the sum

h
2 (λ1 − λ′

1)a1 + · · ·+ h
2 (λm − λ′

m)am

or
h
4 (λ1 − λ′

1)a1 + · · ·+ h
4 (λm − λ′

m)am,

respectively. Since the sum of the absolute values of the coefficients equals h in both cases,
the expressions cannot be zero, and therefore we cannot have

λ1a1 + · · ·+ λmam = λ′
1a1 + · · ·+ λ′

mam,

which is a contradiction. ✷
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Proof of Proposition F.32

First, we note that, for any k ∈ N, the equation k · x = 0 has exactly gcd(k, n) solutions in
Zn: indeed, the equation is equivalent to kx being divisible by n and thus to (k/ gcd(k, n)) ·
x being divisible by n/ gcd(k, n), which happens if, and only if, x itself is divisible by
n/ gcd(k, n). Consequently, the equation k · x = 0 has at most k solutions in Zn.

We use the sequences a(j, k) and c(j, k) defined in Section 2.4.
Suppose that

n > a(0,m− 1) + a(1,m− 1) + · · ·+ a(h− 1,m− 1).

We construct the set A = {a1, . . . , am} recursively as follows. Since a(j, k) ≥ 1 for all j, k
implies n > h, we can find an element a1 ∈ Zn for which h · a1 6= 0.

Suppose now that we have already found the (m − 1)-subset Ak−1 = {a1, . . . , ak−1}
in Zn so that Ak−1 is zero-h-sum-free over Z in Zn. To find an element ak ∈ Zn so that
Ak = Ak−1 ∪ {ak} is zero-h-sum-free over Z in Zn, we must have that none of

h · ak, (h− 1) · ak + g1, (h− 2) · ak + g2, . . . , 1 · ak + gh−1

equals zero for any g1 ∈ 1±Ak−1, g2 ∈ 2±Ak−1, . . . , gh−1 ∈ (h− 1)±Ak−1. This rules out at
most

h+ (h− 1) · |1±Ak−1|+ (h− 2) · |2±Ak−1|+ · · ·+ 1 · |(h− 1)±Ak−1|
elements. This quantity is at most

h · c(0, k − 1) + (h− 1) · c(1, k − 1) + (h− 2) · c(2, k − 1) + · · ·+ 1 · c(h− 1, k − 1)

which, using Proposition 2.1, can be rewritten as

a(0, k − 1) + a(1, k − 1) + · · ·+ a(h− 1, k − 1).

Therefore, when k ≤ m, we can find the desired element ak.
In particular, for h = 4, it is sufficient that

n > a(0,m− 1) + a(1,m− 1) + a(2,m− 1) + a(3,m− 1)

= 4 + 12(m− 1) + 16

(
m− 1

2

)
+ 8

(
m− 1

3

)

=
4

3
m3 +

8

3
m.

✷

Proof of Proposition F.35

Let A be the set of integers (viewed as elements of G = Zn) that are strictly between h−1
2

n
h

and h+1
2

n
h . In particular, when n is divisible by h, we take

A =

{
h− 1

2

n

h
+ 1,

h− 1

2

n

h
+ 2, . . . ,

h+ 1

2

n

h
− 1

}
.

When n is not divisible by h, then neither are h−1
2 n and h+1

2 n, since h is relatively prime

to h−1
2 and h+1

2 ; so, if n is not divisible by h, we have

A =

{⌊
h− 1

2

n

h

⌋
+ 1,

⌊
h− 1

2

n

h

⌋
+ 2, . . . ,

⌊
h+ 1

2

n

h

⌋}
.
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We prove that 0 6∈ h±A by showing that, for every k = 0, 1, . . . , h, the set kA− (h−k)A
does not contain 0. Indeed, the smallest integer in kA− (h− k)A is greater than

k · h− 1

2

n

h
− (h− k) · h+ 1

2

n

h
=

(
k − h+ 1

2

)
n

and less than

k · h+ 1

2

n

h
− (h− k) · h− 1

2

n

h
=

(
k − h− 1

2

)
n,

or two consecutive multiples of n, and therefore 0 6∈ kA− (h− k)A.
It remains to be verified that the size of A equals 2

⌊
n+h−2

2h

⌋
.

This is easy to see if n is divisible by h, since then the size of A is clearly

h+ 1

2

n

h
− h− 1

2

n

h
− 1 = 2

(
n+ h

2h
− 1

)
= 2

(⌊
n+ h

2h

⌋
− 1

)
= 2

⌊
n+ h− 2

2h

⌋
.

When n is not divisible by h, then

|A| =

⌊
h+ 1

2

n

h

⌋
−
⌊
h− 1

2

n

h

⌋

=

(
n+ 1

2
+

⌊
n− h

2h

⌋)
−
(
n− 1

2
−
⌊
n− h

2h

⌋
− 1

)

= 2

(⌊
n− h

2h

⌋
+ 1

)

= 2

⌊
n+ h

2h

⌋
;

since neither n+ h nor n+ h− 1 is divisible by 2h (the first would imply that h|n and the
second that n+ h is odd), this equals 2

⌊
n+h−2

2h

⌋
, as claimed. ✷

Proof of Proposition F.46

For statement 2 (a), we prove that for t = 2s, the set {s, s+1} is 2s-independent in Zn for
all n ≥ 2s2 + 2s+ 1. Suppose that for the integer

a = λ1 · s+ λ2 · (s+ 1)

we have a = 0 in Zn for some integer coefficients with |λ1|+ |λ2| ≤ 2s; w.l.o.g., assume that
λ2 ≥ 0. Then

−2s2 ≤ a ≤ 2s2 + 2s,

so a = 0 in Zn means that a = 0 in Z. Therefore, λ2 is divisible by s, hence λ2 = 0, λ2 = s,
or λ2 = 2s. In the first and last cases, we have λ1 = 0, and we are done. The second case
cannot happen, since

λ1 · s+ s · (s+ 1) = 0

implies that λ1 = −(s+ 1), contradicting |λ1|+ |λ2| ≤ 2s.
Similarly, for statement 2 (b) (ii), we show (somewhat clarifying Miller’s proof) that the

set {s, s+ 1} is (2s− 1)-independent in Zn for n ≥ 2s2 + s. Suppose that for the integer

a = λ1 · s+ λ2 · (s+ 1)
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we have a = 0 in Zn for some integer coefficients with |λ1|+ |λ2| ≤ 2s− 1; w.l.o.g., assume
that λ2 ≥ 0. Then

−(2s2 − s) ≤ a ≤ 2s2 + s− 1,

so a = 0 in Zn means that a = 0 in Z. Therefore, λ2 is divisible by s, hence λ2 = 0 or
λ2 = s. In the first case, we have λ1 = 0, and we are done. The second case cannot happen,
since

λ1 · s+ s · (s+ 1) = 0

implies that λ1 = −(s+ 1), contradicting |λ1|+ |λ2| ≤ 2s− 1.
Next, we consider 2 (b) (iii), and prove that {1, 2s − 1} is (2s − 1)-independent in Zn

for n = 2s2. Assume that
a = λ1 · 1 + λ2 · (2s− 1) = 0

in Zn for some integer coefficients with |λ1| + |λ2| ≤ 2s − 1; w.l.o.g., assume that λ2 ≥ 0.
Then for the integer a we have

−(2s− 1) ≤ a ≤ 4s2 − 4s+ 1,

so a = 0 in Zn means that either a = 0 in Z or a = 2s2 in Z. If a = 0, then λ1 is divisible
by 2s− 1, hence λ1 = 0, which implies that λ2 = 0 and we are done, or |λ1| = 2s− 1, which
again implies that λ2 = 0, which can only happen if λ1 = 0 as well, a contradiction.

If a = 2s2 in Z, then λ1 − λ2 must be divisible by 2s, which can only happen if it is 0,
since

|λ1 − λ2| ≤ |λ1|+ |λ2| ≤ 2s− 1.

But solving the system

λ1 · 1 + λ2 · (2s− 1) = 2s2

and
λ1 − λ2 = 0

yields λ1 = λ2 = s, contradicting |λ1|+ |λ2| ≤ 2s− 1.
For statement 2 (b) (iv), we assume that s and n are both even, n ≥ 2s2, and prove

that the set {s− 1, s+ 1} is (2s− 1)-independent in Zn. Suppose that

a = λ1 · (s− 1) + λ2 · (s+ 1) = 0

in Zn for some integer coefficients with |λ1|+ |λ2| ≤ 2s− 1; w.l.o.g., assume that λ2 ≥ 0.
Note that every integer has the same parity as its absolute value. Therefore,

λ1 · (s− 1) + λ2 · (s+ 1) ≡ |λ1| · (s− 1) + |λ2| · (s+ 1) ≡ (|λ1|+ |λ2|) · (s+ 1) mod 2.

So if |λ1| + |λ2| is odd and s is even, then a is odd and, since n is even, a 6= 0 in Zn. In
particular, 0 6∈ (2s−1)±{s−1, s+1}. It remains to be shown that 0 6∈ [1, 2s−2]±{s−1, s+1}.

For |λ1|+ |λ2| ≤ 2s− 2, we have

−(2s2 − 4s+ 2) ≤ a ≤ 2s2 − 2,

so a = 0 in Zn means that a = 0 in Z. Therefore, λ1 is divisible by s+ 1 and λ2 is divisible
by s− 1, hence either one of them equals 0, in which case they both do, or

|λ1|+ |λ2| ≥ (s+ 1) + (s− 1) = 2s,

a contradiction.
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For statement 2 (b) (v), we assume that s is odd, n is congruent to 2 mod 4, n ≥ 2s2,
and prove that the set {s− 2, s+ 2} is (2s− 1)-independent in Zn. Suppose that

a = λ1 · (s− 2) + λ2 · (s+ 2) = 0

in Zn for some integer coefficients with |λ1|+ |λ2| ≤ 2s− 1; w.l.o.g., assume that λ2 ≥ 0.
Like in the previous case, we can show that if |λ1| + |λ2| is odd and s is odd, then

a is odd and, since n is even, a 6= 0 in Zn. Therefore, 0 6∈ (2s − 1)±{s − 2, s + 2} and
0 6∈ (2s− 3)±{s− 2, s+ 2}. We will now show that 0 6∈ (2s− 2)±{s− 2, s+ 2}.

Assume first that λ1 ≥ 0. In this case,

0 < (2s− 2)(s− 2) ≤ a ≤ (2s− 2)(s+ 2) < 2n,

so a = 0 in Zn implies that a = n. But then

n = λ1 · (s− 2)+λ2 · (s+2) = (λ1 +λ2) · (s− 2)+ 4λ2 = (2s− 2) · (s− 2)+ 4λ2 ≡ 0 mod 4,

a contradiction, since n is congruent to 2 mod 4.
If λ1 < 0, then

−n < −(2s− 2)(s− 2) ≤ a ≤ (−1)(s− 2) + (2s− 3)(s+ 2) < n.

Therefore, a = 0 in Z, and since s− 2 and s+2 are relatively prime, this implies that λ1 is
divisible by s + 2 and λ2 is divisible by s − 2, hence either one of them equals 0, in which
case they both do, or

|λ1|+ |λ2| ≥ (s+ 2) + (s− 2) = 2s,

a contradiction.
The proof that 0 6∈ [1, 2s− 4]±{s− 2, s+ 2} is similar: for |λ1|+ |λ2| ≤ 2s− 4, we have

−n < −(2s− 4)(s− 2) ≤ a ≤ (2s− 4)(s+ 2) < n

so a = 0 in Z, and we can complete the proof as above. ✷

Proof of Proposition F.80

Let n and h be fixed positive integers; note that

h =
h2 − h− 2

2

is an integer. Let d = gcd(n, h), and set r equal to the remainder of h when divided by d.
Furthermore, let

c =

⌊
n+ h2 − r − 2

h

⌋
.

Note that h ≤ n− 1, so

c ≤ (n+ h2 − 2)/h < (n+ h2 − 1)/h ≤ (n+ (h− 1)n)/h = n;

we need to prove that τ (̂Zn, h) ≥ c.
Since d is a divisor of h− r, we can find integers a and b for which

a · h− b · n = −(h− r);
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furthermore, we may assume w.l.o.g. that b ≥ 0.
Now define the set A as

A = {a, a+ 1, . . . , a+ c− 1}.

(Throughout this proof, we will talk about integers and elements of the group Zn inter-
changeably: when an integer is considered as an element of Zn, we regard it mod n; on the
other hand, an element k of Zn is treated as the integer k in Z.)

Clearly, |A| = c. We will show that A is a weak zero-h-sum-free set in Zn by showing
that every element of ĥ A is strictly between bn and (b+ 1)n.

The smallest element of ĥ A is

ha+
h(h− 1)

2
= ha+ h+ 1 = bn− (h− r) + h+ 1 = bn+ 1 + r ≥ bn+ 1.

For the largest element of ĥ A we have

ha+ hc− h(h+ 1)

2
= (ha− bn) + bn+ hc− h(h+ 1)

2

= −(h− r) + bn+ hc− h(h+ 1)

2

= bn+ hc− h2 + r + 1

≤ bn+ (n+ h2 − r − 2)− h2 + r + 1

= (b+ 1)n− 1,

as claimed. ✷

Proof of Proposition F.83

Let n and h be fixed positive integers, and assume that h2|n. We let ǫ equal 0 if h is even
and 1 if h is odd. We define the set

A =

h−1⋃

i=0

{
(ih+ ǫ) · n

h2
+ j | j = 0, 1, . . . ,

n

h2

}
.

We will prove that A is zero-h-sum-free in Zn.
First, observe that every element of ĥ A can be written as

b = ((i1 + · · ·+ ih)h+ ǫh) · n

h2
+ (j1 + · · ·+ jh)

= ((i1 + · · ·+ ih) + ǫ) · n
h
+ (j1 + · · ·+ jh)

where
{i1, . . . , ih} ⊆ {0, 1, . . . , h− 1}

and
{j1, . . . , jh} ⊆

{
0, 1, . . . ,

n

h2

}
.

If b were to be divisible by n (that is, b = 0 in Zn), then it would need to be divisible
by n

h . Since the first term above is always divisible by n
h , the second term must be as well.

However, since we have

0 ≤ j1 + · · ·+ jh ≤ h · n

h2
=

n

h
,
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this can only happen if either j1 = · · · = jh = 0 or j1 = · · · = jh = n
h2 . In either case, all j

values are equal.
Therefore, since b ∈ ĥ A, all i values must be distinct, and thus

{i1, . . . , ih} = {0, 1, . . . , h− 1}.

Thus we must have

b = ((i1 + · · ·+ ih)h+ ǫh) · n

h2
+ (j1 + · · ·+ jh)

= ((0 + 1 + · · ·+ (h− 1)) + ǫ) · n
h
+ (j1 + · · ·+ jh)

=

(
h(h− 1)

2
+ ǫ

)
· n
h
+ (j1 + · · ·+ jh).

We will show that b is not divisible by n. We have four cases.
Case 1: h is even and j1 = · · · = jh = 0. In this case we get

b =
h(h− 1)

2
· n
h
=

h− 1

2
· n,

and this is not divisible by n since h−1
2 is not an integer.

Case 2: h is odd and j1 = · · · = jh = 0. In this case we get

b =

(
h(h− 1)

2
+ 1

)
· n
h
=

(
h− 1

2
+

1

h

)
· n,

and this is not divisible by n since h−1
2 is an integer but 1

h is not (if h > 1).
Case 3: h is even and j1 = · · · = jh = n

h2 . In this case we get

b =
h(h− 1)

2
· n
h
+

n

h
=

(
h

2
− h− 2

2h

)
· n,

and this is not divisible by n since h
2 is an integer, but h−2

2h is not an integer as it is strictly
between 0 and 1

2 (if h > 2).
Case 4: h is odd and j1 = · · · = jh = n

h2 . In this case we get

b =

(
h(h− 1)

2
+ 1

)
· n
h
+

n

h
=

(
h− 1

2
+

2

h

)
· n,

and this is not divisible by n since h−1
2 is an integer but 2

h is not (if h > 2). ✷

Proof of Theorem F.88

By Proposition F.69 and Theorem E.60 we have

τ (̂G, h) ≤ χ̂ (G, h)− 1 =





n− 1 if h = 1;

n/2 if 3 ≤ h ≤ n/2− 2;

n/2 + 1 if h = n/2− 1;

h+ 1 if n/2 ≤ h ≤ n− 2;

n− 1 if h = n− 1.
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Therefore, it suffices to prove that a weakly zero-h-sum-free set of the desired size exists.
For h = 1 we take, of course, all nonzero elements of Zn, and for 3 ≤ h ≤ n/2 − 2

(indeed, for any odd h) we take all odd elements of Zn.
When h = n/2− 1, then, since h is odd, gcd(n, h) = 1, so by Corollary F.81, we get

τ (̂Zn, h) ≥
⌊
n+ h2 − 2

h

⌋
=

⌊
2h+ 2 + h2 − 2

h

⌋
= h+ 2 =

n

2
+ 1.

The result for n/2 ≤ h ≤ n− 2 follows from Proposition F.84.
Finally, when h = n− 1, we again have gcd(n, h) = 1, with which Corollary F.81 yields

τ (̂Zn, h) ≥
⌊
n+ h2 − 2

h

⌋
=

⌊
h+ 1 + h2 − 2

h

⌋
= h = n− 1,

which completes our proof. ✷
We should also note that some of our cases carry through for even h as well.

Proof of Proposition F.116

Since no two distinct elements of Zr
2 add to zero, {1}×Zr−1

2 is a weak zero-[1, 3]-free set in
Zr
2, and thus

τ (̂Zr
2, [1, 3]) ≥ 2r−1.

To prove the reverse inequality, suppose that A is a weak zero-[1, 3]-free set in Zr
2. Let

a ∈ A be arbitrary, and let
B = a+ (A \ {a}).

Then |B| = |A| − 1; furthermore, 0 6∈ A, and 0 6∈ B.
Furthermore, A and B are disjoint, since if we had an a′ ∈ A \ {a} for which a+ a′ = a′′

for some a′′ ∈ A, then a + a′ + a′′ would be 0, which can only happen if a′′ ∈ {a, a′};
however, this cannot be, as 0 6∈ A.

Therefore, A and B are disjoint subsets of Zr
2 \ {0}, from which

|A|+ |B| = |A|+ |A| − 1 ≤ 2r − 1,

and thus |A| ≤ 2r−1, as claimed. ✷

Proof of Proposition F.156

Note that ⌊
2n+ h2 − 3

2h

⌋
≤
⌊
2n+ h2

2h

⌋
≤
⌊
2n+ hn

2h

⌋
≤
⌊
2hn

2h

⌋
= n.

Let
2n+ h2 − 3 = 4hq + r

with
0 ≤ r < 4h.

Then ⌊
2n+ h2 − 3

2h

⌋
=





2q if 0 ≤ r < 2h,

2q + 1 if 2h ≤ r < 4h.

We treat the cases of 0 ≤ r < 2h and 2h ≤ r < 4h separately.
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Suppose first that 0 ≤ r < 2h; set

A = {(n+ 1)/2− q, (n+ 1)/2− q + 1, . . . , (n+ 1)/2 + q − 1}.

As we showed above, 2q ≤ n, so we have |A| = 2q.
For each integer 0 ≤ k ≤ h, let us denote by h(k)±̂A the collection of all signed sums

of h distinct terms of A in which exactly k terms are added and h− k are subtracted. (For
example, h(h)̂ A = ĥ A, and h(0)±̂A = −ĥ A.) Considering the elements of A as integers
(rather than elements of Zn), we will compute amin(k) and amax(k), the smallest and largest
elements of h(k)±̂A, respectively.

For amin(k) we get

amin(k) = (k · ((n+ 1)/2− q) + k(k − 1)/2)

− ((h− k) · ((n+ 1)/2 + q)− (h− k)(h− k + 1)/2)

= k(n+ 1)− h(n+ 1)/2− hq + k(k−1)+(h−k)(h−k+1)
2

≥ k(n+ 1)− h(n+ 1)/2− 2n+h2−3
4 + k(k−1)+(h−k)(h−k+1)

2

= (k − (h+ 1)/2)n+ ((h− 2k)2 + 3)/4

> (k − (h+ 1)/2)n.

Similarly,

amax(k) = (k · ((n+ 1)/2 + q)− k(k + 1)/2)

− ((h− k) · ((n+ 1)/2− q) + (h− k)(h− k − 1)/2)

= k(n+ 1)− h(n+ 1)/2 + hq − k(k+1)+(h−k)(h−k−1)
2

≤ k(n+ 1)− h(n+ 1)/2 + 2n+h2−3
4 − k(k+1)+(h−k)(h−k−1)

2

= (k − (h+ 1)/2 + 1)n− ((h− 2k)2 + 3)/4

< (k − (h+ 1)/2 + 1)n.

Therefore, all elements of h(k)±̂A lie strictly between two consecutive multiples of n,
thus 0 6∈ h(k)±̂A. Since this holds for every 0 ≤ k ≤ h and

h±̂A = ∪h
k=0h(k)±̂A,

we have 0 6∈ h±̂A.
Suppose now that 2h ≤ r < 4h; set

B = {(n+ 1)/2− q, (n+ 1)/2− q + 1, . . . , (n+ 1)/2 + q}.

As we showed above, 2q + 1 ≤ n, so we have |B| = 2q + 1.
Since B = A ∪ {(n+ 1)/2 + q}, we have

bmin(k) = amax(k)− k

= (k · ((n+ 1)/2− q) + k(k − 1)/2)

− ((h− k) · ((n+ 1)/2 + q)− (h− k)(h− k + 1)/2)− k

= k(n+ 1)− h(n+ 1)/2− hq + k(k−1)+(h−k)(h−k+1)
2 − k

≥ k(n+ 1)− h(n+ 1)/2− 2n+h2−3−2h
4 + k(k−1)+(h−k)(h−k+1)

2 − k

= (k − (h+ 1)/2)n+ ((h− 2k + 1)2 + 2)/4

> (k − (h+ 1)/2)n.
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Similarly,

amax(k) = amax(k) + k

= (k · ((n+ 1)/2 + q)− k(k + 1)/2)

− ((h− k) · ((n+ 1)/2− q) + (h− k)(h− k − 1)/2) + k

= k(n+ 1)− h(n+ 1)/2 + hq − k(k+1)+(h−k)(h−k−1)
2 + k

≤ k(n+ 1)− h(n+ 1)/2 + 2n+h2−3−2h
4 − k(k+1)+(h−k)(h−k−1)

2 + k

= (k − (h+ 1)/2 + 1)n− ((h− 2k + 1)2 + 2)/4

< (k − (h+ 1)/2 + 1)n.

Again, all elements of h(k)±̂B lie strictly between two consecutive multiples of n, thus
0 6∈ h(k)±̂B, and, therefore, 0 6∈ h±̂B. This completes our proof. ✷

Proof of Proposition F.179

First, we prove that if A = {a1, . . . , at} is a t-subset of Zn, then 0 ∈ [1, t]±̂A. Observe that
since |ΣA| ≤ n < 2t, we must have

ǫ1, . . . , ǫt, δ1, . . . , δt ∈ {0, 1}

for which
ǫ1a1 + · · ·+ ǫtat = δ1a1 + · · ·+ δtat,

but for at least one index 1 ≤ i ≤ t, ǫi 6= δi. But then

1 ≤ |ǫ1 − δ1|+ · · ·+ |ǫt − δt| ≤ t,

and
0 = (ǫ1 − δ1)a1 + · · ·+ (ǫt − δt)at ∈ [1, t]±̂A,

as claimed.
Second, we prove that for the set

A = {1, 2, . . . , 2t−2} ⊆ Zn,

we have 0 6∈ [1, t]±̂A. Suppose that we have

ǫ0, ǫ1, . . . , ǫt−2 ∈ {−1, 0, 1}

for which
ǫ0 · 1 + ǫ1 · 2 + · · ·+ ǫt−2 · 2t−2 = 0

in Zn. Since the left-hand side has absolute value at most 2t−1 − 1 < n, the same equation
must hold in Z as well. Now if there is an index 0 ≤ i ≤ t− 2 for which ǫi 6= 0, then let

k = min{i | ǫi 6= 0}.

Dividing our equation (in Z) by 2k we get

ǫk + ǫk+1 · 2 + · · ·+ ǫt−2 · 2t−2−k = 0,

which is a contradiction, since the left-hand side is odd. Therefore, ǫi = 0 for all 0 ≤ i ≤ t−2,
proving our claim. ✷
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Proof of Proposition G.22

Let
A = {a, a+ d, . . . , a+ (m− 1)d}

be a sum-free arithmetic progression in Zn of size

m = v1(n, 3) =





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
otherwise.

Note that m ≥ (n− 1)/3 (since in the case when n ≡ 2 mod 3, n must have a prime divisor
p ≡ 2 mod 3).

Let δ = gcd(d, n), d = d1δ, n = n1δ. Since d1 and n1 are relatively prime, there are
integers b and c for which

b · d1 = 1 + c · n1.

Then
b · d = δ + c · n,

so
b ·A = {ba, ba+ δ, . . . , ba+ (m− 1)δ}.

Note that the fact that A is sum-free implies that b ·A is as well.
Observe that b · A has size m, since otherwise we would have an i ∈ {1, 2, . . . ,m − 1}

for which iδ = 0 in Zn, but then id = 0 in Zn for the same i, contradicting |A| = m.
Furthermore, b ·A has size at most n1 = n/δ, since it is contained in a coset of the subgroup
of G that has order n1. Thus m ≤ n1; but since m ≥ (n − 1)/3, we get n/δ ≥ (n − 1)/3.
Therefore, either δ ≤ 3, or δ = 4 and n = 4, but the latter case is impossible since for even
n we have m = n/2, contradicting m ≤ n1.

We consider the cases δ = 3, δ = 2, and δ = 1 separately.
When δ = 3, we have n1 = n/3, so n/3 ≥ m ≥ (n − 1)/3 implies that m = n/3 and

thus b · A is a full coset of the subgroup of G that has order n/3. This coset cannot be the
subgroup itself, since then 0 ∈ A, contradicting sum-freeness. Therefore,

b ·A = {1, 4, 7, . . . , n− 2}

or
b · A = {2, 5, 8, . . . , n− 1},

but note that in the second case we have

(2b) · A = {1, 4, 7, . . . , n− 2}.

Since m = v1(n, 3) = n/3, we see that n cannot have any prime divisors congruent to 2
mod 3; in particular, n is odd. We also see that b and n are relatively prime, since 1 ∈ b ·A
or −1 ∈ b ·A . Since n is odd, 2b and n must be relatively prime too. This yields case 2 (a).

If δ = 2, then n is even and thus m = v1(n, 3) = n/2. Therefore,

b ·A = ba+ {0, 2, . . . , n− 2} = {1, 3, . . . , n− 1}.

Since then b is relatively prime to n, it has an inverse, with which we get

A = a+ {0, 2, . . . , n− 2} = {1, 3, . . . , n− 1}.
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This yields case 1.
Finally, assume that δ = 1. In this case,

b ·A = {ba, ba+ 1, . . . , ba+ (m− 1)},

and so
2(b · A) = b · A+ b ·A = {2ba, 2ba+ 1, . . . , 2ba+ 2(m− 1)},

and thus

2(b · A)− b ·A = {ba−m+ 1, ba−m, ba−m+ 1, . . . , ba+ 2m− 2}.

Therefore, we see that b · A is sum-free, that is, 0 6∈ 2(b · A) − b · A, exactly when there is
an integer k for which

kn+ 1 ≤ ba−m+ 1

and
ba+ 2m− 2 ≤ (k + 1)n− 1,

or, equivalently,
m ≤ ba− kn ≤ n− 2m+ 1.

Therefore, m ≤ (n+ 1)/3. We separate three subcases.
If n ≡ 2 mod 3, then

m = v1(n, 3) =

(
1 +

1

p

)
n

3
,

where p is the smallest prime divisor of n with p ≡ 2 mod 3. So m ≤ (n+ 1)/3 is possible
only when

m = (n+ 1)/3 =

(
1 +

1

p

)
n

3
,

which gives n = p. So m = (p+ 1)/3,

(p+ 1)/3 ≤ ba− kp ≤ n− 2(p+ 1)/3 + 1,

so
ba− kp = (p+ 1)/3,

and thus ba = (p+ 1)/3 in Zp. This yields case 3.
If 3|n, then m ≤ (n+1)/3 implies that m ≤ n/3, but we also know that m ≥ (n− 1)/3,

so m = n/3. Therefore, n cannot have a prime divisor congruent to 2 mod 3. We have

n/3 ≤ ba− kn ≤ n− 2n/3 + 1,

so ba− kn ∈ {n/3, n/3+ 1} and thus ba = n/3 or ba = n/3 + 1 in Zn, with which

b ·A = {n/3, n/3 + 1, . . . , 2n/3− 1}

or
b · A = {n/3 + 1, n/3 + 2, . . . , 2n/3}.

Note that

{n/3, n/3+ 1, . . . , 2n/3− 1} = −{n/3 + 1, n/3 + 2, . . . , 2n/3},

so the second possibility is superfluous. This yields case 2 (b).
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Finally, suppose that n ≡ 1 mod 3. Then m ≤ (n + 1)/3 implies that m ≤ (n − 1)/3,
but we also know that m ≥ (n− 1)/3, so m = (n− 1)/3. Therefore, n cannot have a prime
divisor congruent to 2 mod 3. We have

(n− 1)/3 ≤ ba− kn ≤ n− 2(n− 1)/3 + 1,

so
ba− kn ∈ {(n− 1)/3, (n− 1)/3 + 1, (n− 1)/3 + 2}

and thus ba = (n− 1)/3, ba = (n− 1)/3 + 1, or ba = (n− 1)/3 + 2 in Zn, with which

b · A = {(n− 1)/3, (n− 1)/3 + 1, . . . , 2(n− 1)/3− 1},

b · A = {(n− 1)/3 + 1, (n− 1)/3 + 2, . . . , 2(n− 1)/3},
or

b ·A = {(n− 1)/3 + 2, (n− 1)/3 + 3, . . . , 2(n− 1)/3 + 1}.
Note that

{(n−1)/3, (n−1)/3+1, . . . , 2(n−1)/3−1} = −{(n−1)/3+2, (n−1)/3+3, . . . , 2(n−1)/3+1},

so the third possibility is superfluous. This yields case 4. ✷

Proof of Theorem G.27

Let A be a (k, l)-sum-free set of size M + 1 in Zp. According to Theorem G.26, A is an
arithmetic progression (of common difference d); since p is prime, (multiplying by the inverse
of d in Zp) we may assume that

A = {a, a+ 1, . . . , a+M}

for some a ∈ Zp. Then

0 6∈ kA− lA = {(k − l)a− lM, (k − l)a− lM + 1, . . . , (k − l)a+ kM},

so there is an integer c for which

cp+ 1 ≤ (k − l)a− lM

and
(k − l)a+ kM ≤ (c+ 1)p− 1.

Combining these two inequalities we get

lM + 1 ≤ (k − l)a− cp ≤ p− kM − 1

or, equivalently,
(k − l)a = lM + i

in Zp for some
1 ≤ i ≤ (p− kM − 1)− (lM + 1) + 1 = r + 1.

Thus A is (a dilate of) one of the r + 1 sets

{ai, ai + 1, . . . , ai +M}.
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Due to symmetry, we don’t need ⌊(r+1)/2⌋ of these choices; more precisely, for any i with
1 ≤ i ≤ ⌊(r + 1)/2⌋, Ai = −Ar+2−i, since

ai = −(ar+2−i +M).

To see this, note that this equation holds if, and only if,

(k − l)ai = −(k − l)(ar+2−i +M).

This equation holds, since

−(k − l)(ar+2−i +M) = −(lM + r + 2− i)− (k − l)M = lM + i = (k − l)ai

in Zp. Therefore, it suffices to assume that i ≤ r + 1− ⌊(r + 1)/2⌋ = ⌊r/2⌋+ 1. ✷

Proof of Proposition G.64

Let
A = [a, a+m− 1] = {a, a+ 1, . . . , a+m− 1}

be an interval of length m− 1 (size m) in Zn. Note that if A is an interval, then so is ĥ A
for all integers h with 1 ≤ h ≤ m; in particular,

ĥ A = [ha+ h(h− 1)/2, h(a+m− 1)− h(h− 1)/2].

Therefore, for positive integers k and l with l < k ≤ M + 1, k̂ A − l̂ A is also an interval:
its “smallest” element is

ka+ k(k − 1)/2− l(a+m− 1) + l(l − 1)/2,

and its “largest” element equals

k(a+m− 1)− k(k − 1)/2− la− l(l − 1)/2;

using the notation
J = k(k − 1) + l(l − 1) = k2 + l2 − k − l,

we have
k̂ A− l̂ A = [ka− l(a+m− 1) + J/2, k(a+m− 1)− la− J/2].

Now A is a weak (k, l)-sum-free set in Zn if, and only if, 0 6∈ k̂ A − l̂ A, and this occurs if,
and only if, there is an integer b for which

ka− l(a+m− 1) + J/2 ≥ bn+ 1

and
k(a+m− 1)− la− J/2 ≤ (b+ 1)n− 1,

or, equivalently,

l(m− 1)− J/2 + 1 ≤ (k − l)a− bn ≤ n− k(m− 1) + J/2− 1.

We can divide by δ = gcd(n, k − l) and write

l(m− 1)− J/2 + 1

δ
≤ k − l

δ
a− n

δ
b ≤ n− k(m− 1) + J/2− 1

δ
.
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Note that (k − l)/δ and n/δ are relatively prime integers, so any integer can be written as
their linear combination (with integer coefficients). We thus see that Zn contains a weak
(k, l)-sum-free interval of size m if, and only if, there is an integer C for which

l(m− 1)− J/2 + 1

δ
≤ C ≤ n− k(m− 1) + J/2− 1

δ
.

Therefore, a necessary condition for the existence of a weak (k, l)-sum-free interval of
size m is that

l(m− 1)− J/2 + 1

δ
≤ n− k(m− 1) + J/2− 1

δ
,

from which

m ≤
⌊
n+ J − 2

k + l

⌋
+ 1 = M + 1

follows. On the other hand, a sufficient condition for the existence of a weak (k, l)-sum-free
interval of size m is that

l(m− 1)− J/2 + 1

δ
+ 1 ≤ n− k(m− 1) + J/2− 1

δ
,

for which it suffices that m ≤ M since then

m ≤ n+ J − 2

k + l
≤ n+ J − 2− δ

k + l
+ 1,

from which our condition follows. Therefore, γ (̂Zn, {k, l}) equals either M or M + 1.
To see when γ (̂Zn, {k, l}) = M + 1, note that the existence of an integer C for which

L

δ
=

lM − J/2 + 1

δ
≤ C ≤ n− kM + J/2− 1

δ
=

n−K

δ

is equivalent to saying that
L

δ
≤
⌊
n−K

δ

⌋
.

This completes our proof. ✷

Proof of Corollary G.65

We provide two proofs: one using Proposition G.64 and another that is more direct.
Proof I: Here we use Proposition G.64; it suffices to prove that

γ (̂Zn, {k, l}) ≥
⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋
.

Recall the notations
δ = gcd(n, k − l),

J = k2 + l2 − (k + l),

M = ⌊(n+ J − 2)/(k + l)⌋,
K = kM − J/2 + 1,

L = lM − J/2 + 1.
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Since

M + 1 =

⌊
n+ k2 + l2 − 2

k + l

⌋
≥
⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋
,

by Proposition G.64 we may assume that

L/δ > ⌊(n−K)/δ⌋,

and we need to show that

M ≥
⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋

in this case.
Let R be the remainder of n+ k2 + l2 − 2 when divided by k + l; we can then write

n+ k2 + l2 − 2 = (k + l)(M + 1) +R,

and so

n−K = (k + l)(M + 1) +R− (k2 + l2 − 2)− (kM − J/2 + 1) = L+R.

Therefore, our hypothesis that
L/δ > ⌊(n−K)/δ⌋

can only hold if R < δ − 1. But then

⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋
= M + 1 +

⌊
R− δ + 1

k + l

⌋
≤ M + 1 +

⌊ −1

k + l

⌋
= M,

as claimed. ✷
Proof II: We set δ = gcd(n, k − l) and

c =

⌊
n+ k2 + l2 − δ − 1

k + l

⌋
.

We need to prove that µ̂ (Zn, {k, l}) ≥ c.
Note that c < n since

c ≤ n+ k2 + l2 − 2

k + l
= n− n(k + l− 1)− (k2 + l2 − 2)

k + l
,

and, since 0 < l < k ≤ n, we have

n(k + l − 1)− (k2 + l2 − 2) ≥ k(k + l − 1)− (k2 + l2 − 2)

= k(l − 1)− (l2 − 2)

> k(l − 1)− (l2 − 1)

= (k − l − 1)(l − 1)

≥ 0.

Now

h =
k2 + l2 − k + l − 2

2

is an integer; let r be the remainder of h− lc when divided by δ; we then have 0 ≤ r ≤ δ−1.
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Since δ is a divisor of h− lc− r, we can find integers a and b for which

a · (k − l)− b · n = −(h− lc− r);

furthermore, we may assume w.l.o.g. that b ≥ 0.
Now define the set A as

A = {a, a+ 1, . . . , a+ c− 1}.

(Throughout this proof, we will talk about integers and elements of the group Zn inter-
changeably: when an integer is considered as an element of Zn, we regard it mod n; on the
other hand, an element t of Zn is treated as the integer t in Z.)

Clearly, |A| = c; we will show that A is a weak (k, l)-sum-free set in Zn by showing that
every element of k̂ A− l̂ A is strictly between bn and (b+ 1)n.

The smallest element of k̂ A− l̂ A is

ka+
k(k − 1)

2
− la− lc+

l(l + 1)

2
= (k − l)a− lc+ h+ 1

= bn− h+ r + h+ 1

= bn+ 1 + r

≥ bn+ 1.

For the largest element of k̂ A− l̂ A we have

ka+ kc− k(k + 1)

2
− la− l(l− 1)

2
= (k − l)a+ kc− k2 + l2 + k − l

2

= bn+ lc− h+ r + kc− k2 + l2 + k − l

2

= bn+ (k + l)c− k2 − l2 + 1 + r

≤ bn+ (n+ k2 + l2 − δ − 1)− k2 − l2 + 1 + r

= (b + 1)n− δ + r

≤ (b + 1)n− 1.

Therefore, no element of k̂ A− l̂ A is 0 in Zn. ✷

Proof of Theorem G.67

Let A be a weak sum-free set in Zn. We claim that

|A| ≤





(
1 + 1

p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,

⌊
n
3

⌋
+ 1 otherwise.

If A = {0}, the claim is obviously true. If A contains a nonzero element a, then it cannot
contain 0, since otherwise 0 + a = a would contradict A being weakly sum-free. So we may
assume that 0 6∈ A.

By Theorem G.4, the claim is clear when A is sum-free, so we may assume that there is
an element a0 ∈ A for which 2a0 ∈ A. We have a0 6= 0 and thus a0 6= 2a0.

Let
A1 = a0 + (A \ {a0}) = {a0 + a | a ∈ A \ {a0}}
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and

A2 = 2a0 + (A \ {a0, 2a0}) = {2a0 + a | a ∈ A \ {a0, 2a0}}.

Note that A1 ⊆ 2̂ A and A2 ⊆ 2̂ A, so A is disjoint from both A1 and A2. Furthermore,
A1 and A2 are disjoint too, since otherwise we would have elements a1 ∈ A \ {a0} and
a2 ∈ A \ {a0, 2a0} for which

a0 + a1 = 2a0 + a2,

but then

a1 = a0 + a2,

contradicting that A and A1 are disjoint. Since A, A1, and A2 are pairwise disjoint, we have

|A|+ |A1|+ |A2| = 3|A| − 3 ≤ n,

from which |A| ≤ ⌊n/3⌋+ 1, proving our claim. ✷

Proof of Proposition G.73

Since

A = {a, a+ 1, . . . , a+ c}+H

consists of c+ 1 consecutive cosets of H , and each coset is of size k − 1, we have

k̂ A = {ka+ 1, ka+ 2, . . . , ka+ kc− 1}+H,

and

l̂ A ⊆ {la, la+ 1, . . . , la+ lc}+H,

with equality holding if l ≤ k − 2; however, for l = k − 1, only a single element from each
of the cosets la+H and la+ lc+H is in l̂ A.

Using our specified values of a and c, we find that

la+ lc =
l2n

(k − 1)(k2 − l2)
+

ln

(k − 1)(k + l)
=

kln

(k − 1)(k2 − l2)
= ka,

and

ka+ kc− 1 =
kln

(k − 1)(k2 − l2)
+

kn

(k − 1)(k + l)
− 1

=
k2n

(k − 1)(k2 − l2)
− 1

=
n

k − 1
+

l2n

(k − 1)(k2 − l2)
− 1

=
n

k − 1
+ la− 1.

Therefore, k̂ A ∩ l̂ A = ∅, as claimed. We also see that, in the case of l ≤ k − 2, we have
k̂ A ∪ l̂ A = Zn, so A is a complete weak (k, l)-sum-free set in Zn. ✷
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Proof of Proposition G.74

Using our notations, for any positive integer h, we have:

ĥ A ⊆ {h1, h1 + 1, . . . , h2}+H,

where
h1 = max{0, h− d/2 + 1},

and
h2 = min{h, n/d}.

Therefore,
k̂ A ⊆ {k − d/2 + 1, k − d/2 + 2, . . . , k}+H,

and
l̂ A ⊆ {l − d/2 + 1, l − d/2 + 2, . . . , l}+H.

So both k̂ A and l̂ A are within d/2 consecutive cosets of H ; furthermore, these d cosets are
all distinct, since

(k − d/2) +H = l +H.

This proves that k̂ A and l̂ A are disjoint.
Furthermore, we see that

k̂ A ∪ l̂ A = Zn

if, and only if, the inequalities k < n/d, k > d/2− 1, l < n/d, and l > d/2 − 1 all hold; so
A is a complete weak (k, l)-sum-free set in Zn if, and only if,

d/2− 1 < l < k < n/d.

✷

Proof of Proposition G.82

By Proposition G.81, we may assume that n ≥ k + 1. For i = 0, 1, 2, . . . , k, consider the
subsets

Ai = {0, 1, 2, . . . , k} \ {i}
of Zn.

Consider first the case when n = k + 1 and k ≡ 1 mod 4. Note that every k-subset of
Zn is of the form Ai for some i = 0, 1, 2, . . . , k; to prove our claim, we will show that

si = k̂ A = 0 + 1 + 2 + · · ·+ k − i ∈ Ai

for each i. Indeed, if for some i we were to have

si = k(k + 1)/2− i = i

in Zn, then
k(k + 1)/2 = 2i,

which is impossible, since n is even, 2i is even, but k(k + 1)/2 is odd.
We will now show that in all other cases, Zn contains a k-subset that is weakly (k, 1)-

sum-free. Assuming that there is no i for which Ai is weakly (k, 1)-sum-free yields that, for
each i, si ∈ Ai, so si ∈ {0, 1, . . . , k} and thus

{sk, sk−1, . . . , s1, s0} ⊆ {0, 1, 2, . . . , k}.



375

Observe that
(sk, sk−1, . . . , s1, s0) = (sk, sk + 1, . . . , sk + k),

so we must have si = k − i for each i. In particular,

s0 = k(k + 1)/2 = k.

We consider three cases. Assume first that n ≥ k + 3. Then for

B = {0, 1, 2, . . . , k, k + 1, k + 2} \ {1, k, k + 1} = A0 ∪ {0, k + 2} \ {1, k}

we have
k̂ B = s0 + (k + 2)− 1− k = k + 1.

Since k + 1 6∈ B, B is weakly (k, 1)-sum-free in Zn.
Assume now that n = k + 2. In this case, we have

6 = (k2 − k)− (k + 2)(k − 3) = k2 − k = 2 · k(k + 1)/2− 2k = 2s0 − 2s0 = 0.

This can only happen in Zk+2 if k + 2 = 6 and thus k = 4. However, in this case,

A2 = {0, 1, 3, 4}

is weakly (4, 1)-sum-free in Z6.
Next, assume that n = k + 1 and that k is even. As we have seen above, we have

sk/2 = k − k/2 = k/2,

so Ak/2 is weakly (k, 1)-sum-free in Zn.
Finally, assume that n = k + 1 and k ≡ 3 mod 4. In this case, we have

s(k+1)/4 = k(k + 1)/2− (k + 1)/4 = (k + 1) · (k − 1)/2 + (k + 1)/4 = (k + 1)/4,

which means that A(k+1)/4 is weakly (k, 1)-sum-free in Zn.
To prove our second claim, first note that if n ≤ 2k + 1 and |A| = k + 1, then A and

k̂ A cannot be disjoint, since |k̂ A| = k+1. Suppose then that n ≥ 2k+2. We will consider
two cases depending on the parity of k.

When k is even, we set

A = {1} ∪ {±2,±4, . . . ,±k}.

Then |A| = k + 1, and

k̂ A = 1−A = {0} ∪ {−1} ∪ {±3,±5, . . . ,±(k − 1)} ∪ {k + 1}.

Since k + 1 < n− k, A is weakly (k, 1)-sum-free in Zn.
When k is odd, we let

A = {0,−1,−2, 4} ∪ {±5,±7, . . . ,±k}.

(We simply let A = {0,−1,−2, 4} if k = 3.) Again, |A| = k + 1, and

k̂ A = 1−A = {1, 2,±3,−4}∪ {±6,±8, . . . ,±(k − 1)} ∪ {k + 1},

and A is weakly (k, 1)-sum-free in Zn.
We can also observe that if n = 2k+2, then A is a complete weak (k, 1)-sum-free set. ✷
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[26] É. Balandraud, Erratum to “An addition theorem and maximal zero-sum free sets in
Z/pZ”. Israel J. Math. 192 (2012), no. 2, 1009–1010.
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Mathématique, Geneva, 1980. 128 pp.
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