Known

Definition.

$$\mu^{\hat{}}(G, \{k, l\}) = \max\{|A| : A \subseteq G, (k^{\hat{}}A) \cap (l^{\hat{}}A) = \emptyset\}.$$

Corollary (G.14). For every group G of order n and exponent κ we have

$$\mu(G, \{k, l\}) \ge \mu(\mathbb{Z}_{\kappa}, \{k, l\}) \cdot \frac{n}{\kappa}$$

Theorem (G.18). Let κ be the exponent of G. Then

$$\mu(G, \{2, 1\}) = \mu(\mathbb{Z}_{\kappa}, \{2, 1\}) \cdot \frac{n}{\kappa} = v_1(\kappa, 3) \cdot \frac{n}{\kappa}.$$

Proposition (G.63). Suppose that G is an abelian group of order n and exponent κ . Then, for all positive integers k and l with k > l we have

$$\mu^{(G, \{k, l\})} \ge \mu(G, \{k, l\}) \ge v_{k-l}(\kappa, k+l) \cdot \frac{n}{\kappa}.$$

Corollary (G.65). For positive integers n, k, and l with $l < k \le n$ we have

$$\hat{\mu}(\mathbb{Z}_n, \{k, l\}) \ge \left\lfloor \frac{n+k^2+l^2 - \gcd(n, k-l) - 1}{k+l} \right\rfloor.$$

Theorem (G.67). (Zannier; cf. [205]) For all positive integers we have

$$\mu^{\hat{}}(\mathbb{Z}_n, \{2, 1\}) = \begin{cases} \left(1 + \frac{1}{p}\right)\frac{n}{3} & n \text{ has prime divisors congruent to } 2 \mod 3, \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor\frac{n}{3}\right\rfloor + 1 & \text{otherwise.} \end{cases}$$

Lemma (I). $ax \equiv b \mod (n)$ has a solution if and only if gcd(a, n) divides b.

Corollary (From Lemma 3.1 (Sam Edwards)). For any $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ (written invariantly), with |G| = n, d 2; s(0)

$$G) = \begin{cases} (0, \dots, 0, \frac{n_r}{2}) & n_r \equiv 0 \mod 2 \text{ and } n_{r-1} \equiv 1 \mod 0 \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 1. For any set A and positive integer $h \leq |A|$,

 $|h\hat{A}| \ge |A| - h + 1.$

PROOF. Write $A = \{a_0, a_1, \dots, a_m\}$. Then observe that

 $b_{h} = a_{0} + \dots + a_{h-1} + a_{h},$ $b_{h+1} = a_{0} + \dots + a_{h-1} + a_{h+1},$ \vdots $b_{m-1} = a_{0} + \dots + a_{h-1} + a_{m-1},$ $b_{m} = a_{0} + \dots + a_{h-1} + a_{m},$

are all distinct since a_h, \ldots, a_m are all distinct. Thus,

$$\{b_h, b_{h+1}, \ldots, b_{m-1}, b_m\} \subseteq h^A$$

so $|\hat{h}A| \ge m - (h - 1) = |A| - h + 1$.

 \Box 3/18/19

Proposition 2. For all groups G with order n, and for all positive integers k > l,

$$\mu^{\hat{}}(G, \{k, l\}) \leq \left\lfloor \frac{n-2+l+k}{2} \right\rfloor$$

PROOF. Write A for a (k, l)-sum-free subset of G where $|A| = m = \hat{\mu}(G, \{k, l\})$ and n = |G|. Using Lemma 1,

$$\begin{split} n &\geq |k^{\hat{}}A| + |l^{\hat{}}A| \\ &\geq m - k + 1 + m - l + 1 \\ &\geq 2m - (k + l) + 2 \\ &\Longrightarrow m \leq \frac{n - 2 + k + l}{2} \\ &\Longrightarrow \mu^{\hat{}}(G, \{k, l\}) \leq \left\lfloor \frac{n - 2 + k + l}{2} \right\rfloor. \end{split}$$

 \Box 3/18/19

Proposition 3. For all |G| = n > 2, with $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$, (written invariantly),

$$\mu^{\hat{}}(G, \{n-1,1\}) = \begin{cases} n-2 & r \ge 2 \text{ and } n_r \equiv 0 \mod 2 \text{ and } n_{r-1} \equiv 1 \mod 2, \text{ or} \\ & r = 1 \text{ and } n \equiv 2 \mod 4; \\ & n-1 & \text{otherwise.} \end{cases}$$

PROOF. By Proposition 2,

$$\hat{\mu}(G, \{2, 1\}) \le \left\lfloor \frac{n-2+n-1+1}{2} \right\rfloor = \left\lfloor \frac{2n-2}{2} \right\rfloor = n-1.$$

Let $A = G \setminus \{\xi\}$ for some $\xi \in G$, so |A| = n - 1, and $(n - 1)^{\hat{A}} \cap 1^{\hat{A}} = \emptyset$ is only satisfied if the sum of the elements of A is ξ . Thus, $\mu^{\hat{A}}(G, \{n - 1, 1\}) = n - 1$ if only if there exists some $\xi \in G$ such that $s(G) - \xi = \xi$. In other words, there must be some $\xi \in G$ such that

 $s(G) = 2\xi.$

1 s(G) = 0. Then $0 = s(G) = 2\xi$ is satisfied with $\xi = 0$, so $\mu(G, \{n-1, 1\}) = n - 1$.

$$2 \ s(G) \neq 0$$

- i $\underline{n_r \equiv 0 \mod 4}$. Then $\frac{n_r}{2} = s(G) = 2\xi$ is satisfied with $\xi = \frac{n_r}{4}$. Thus, $\mu(G, \{n-1, 1\}) = n 1$.
- ii $n_r \equiv 2 \mod 4$. Since 2 does not divide $\frac{n_r}{2} \equiv 1 \mod 2$, there is no such $\xi \in G$. For all $A \subseteq G$ such that |A| = n 2, we have

$$(n-1)^{\hat{}}A \cap 1^{\hat{}}A = \emptyset \cap A = \emptyset,$$

so $\mu(G, \{n-1, 1\}) = n - 2.$

□ 3/18/19 (rw. 3/27/19)

Proposition 4. For all |G| = n > 3, with $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$, (written invariantly),

$$\mu(G, \{n-2, 1\}) = n - 2.$$

PROOF. By Proposition 2,

$$\mu^{(\mathbb{Z}_n, \{n-2, 1\})} \le \left\lfloor \frac{n-2+n-2+1}{2} \right\rfloor = \left\lfloor n - \frac{3}{2} \right\rfloor = n-2.$$

Let $A = G \setminus \{\xi_1, \xi_2\}$ for some distinct $\xi_1, \xi_2 \in G$, so |A| = n - 2, and $(n - 2)^{\hat{A}} \cap 1^{\hat{A}} = \emptyset$ is only satisfied if the sum of the elements of A is ξ_1 , WLOG. Thus, $\mu^{\hat{A}}(G, \{n - 2, 1\}) = n - 2$ if only if there exists some distinct $\xi_1, \xi_2 \in G$ such that $s(G) - \xi_1 - \xi_2 = \xi_1$. That is, there must be some distinct $\xi_1, \xi_2 \in G$ such that

$$s(G) = 2\xi_1 + \xi_2.$$

- (i) $\underline{n \equiv 1 \mod 2}$ or $\underline{r \geq 2}$ and $\underline{n_{r-1} \equiv 0 \mod 2}$. Then $0 = s(G) = 2\xi_1 + \xi_2$ is satisfied with $\xi_1 = (0, \ldots, 0, 1)$ and $\xi_2 = (0, \ldots, 0, n_r - 2)$ (if $G \cong \mathbb{Z}_n, \xi_1 = 1$ and $\xi_2 = n - 2$) which are distinct since $n_r - 2 \neq 1$ mod n_r for all $n_r > 3$. Thus, $\mu(G, n - 2, 1) = n - 2$.
- (ii) $n_r \equiv 0 \mod 2$ and $n_{r-1} \equiv 1 \mod 2$. When $n \neq 6$ then $(0, \ldots, 0, \frac{n_r}{2}) = s(G) = 2\xi_1 + \xi_2$ is satisfied with $\overline{\xi_1} = (0, \ldots, 0, 1)$ and $\xi_2 = (0, \ldots, 0, \frac{n_r}{2} 2)$ (if $G \cong \mathbb{Z}_n, \xi_1 = 1$ and $\xi_2 = \frac{n}{2} 2$) which are distinct since $\frac{n}{2} 2 \neq 1$ for all $n \neq 6$. When n = 6, take $\xi_1 = (0, \ldots, 0, 5)$ and $\xi_2 = (0, \ldots, 0, 2)$ (if $G \cong \mathbb{Z}_n, \xi_1 = 5$ and $\xi_2 = 2$). Thus, $\mu(G, n-2, 1) = n-2$.

□ 3/18/19 (rv. 3/20/19) (rw.3/28/19)

Proposition 5. For any G with $|G| = n \equiv 0 \mod 2$,

$$\mu^{\hat{}}(G, \{2, 1\}) = \frac{n}{2}$$

PROOF. Write $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$. By Proposition 2,

$$\mu(G, \{2, 1\}) \le \left\lfloor \frac{n-2+2+1}{2} \right\rfloor = \frac{n}{2}$$

If $n \equiv 0 \mod 2$, there is some $n_i \equiv 0 \mod 2$, so we can take $A \subseteq G$ to be the set with all the elements of G whose *i*th element is congruent to 1 mod 2. The *i*th entry of the sum of any two elements in A will be congruent to 0 mod 2, so $2^{\hat{A}} \cap 1^{\hat{A}} = \emptyset$. Thus,

$$\mu(G, \{2, 1\}) \ge |A| = n_1 \cdots n_{i-1} \cdot \frac{n_i}{2} \cdot n_{i+1} \cdots n_r = \frac{n}{2}.$$

$$3/26/19 \text{ (rv. } 4/4/19)$$

NOTE: This means that by Proposition G.21, $\mu^{(\mathbb{Z}_{2}^{r}, \{2, 1\})} = 2^{r-1} = \mu(\mathbb{Z}_{2}^{r}, \{2, 1\}).$

Conjecture 6. For all positive integers n_1 and n_2 ,

$$\mu^{\hat{}}(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\}) = \begin{cases} \mu & \text{if } \exists p \in \mathbb{P}, \ p | n, \ p \equiv 2 \mod 3\\ \mu + 1 & \text{otherwise.} \end{cases}$$

When n_1 does not divide n_2 , $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \cong \mathbb{Z}_{n_1 n_2} = \mathbb{Z}_n$, so by Theorem G.67 (Zannier; cf. [205]),

$$\mu^{\hat{}}(\mathbb{Z}_n, \{2, 1\}) = \begin{cases} \left(1 + \frac{1}{p}\right) \frac{n}{3} \\ \left\lfloor \frac{n}{3} \right\rfloor + 1 \end{cases} = \begin{cases} v_1(n, 3) \cdot \frac{n}{n} \\ v_1(n, 3) \cdot \frac{n}{n} + 1 \end{cases} \xrightarrow{G.18} \begin{cases} \mu(\mathbb{Z}_n, \{2, 1\}) & \text{if } \exists x \in \mathbb{P}, \ x | n, \ x \equiv 2 \mod 3, \\ and \ p \text{ is the smallest such } x \end{pmatrix} \\ \mu(\mathbb{Z}_n, \{2, 1\}) + 1 & \text{otherwise.} \end{cases}$$

When $n \equiv 0 \mod 2$, clearly the smallest prime divisor of n congruent to 2 mod 3 is 2, so by Proposition 5 and Proposition G.18,

$$\mu^{\hat{}}(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\}) \stackrel{5}{=} \frac{n}{2} = \left(1 + \frac{1}{2}\right) \frac{n}{3} = v_1(n, 3) \cdot \frac{n}{n} \stackrel{\text{G.18}}{=} \mu(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\}).$$

Now we should consider when $n \equiv 1 \mod 2$.

Proposition 7. For any positive integer $w \equiv 1 \mod 2$,

$$\mu(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2, 1\}) \ge 3w + 1$$

PROOF. Consider the sets

$$A_{0} = \{0\} \times \{-w, -w + 2, \dots, w - 2, w\},\$$

$$A_{1} = \{1\} \times \{0, 2, \dots, 2w - 4, 2w - 2\}, \text{ and }\$$

$$A_{2} = \{2\} \times \{-2w + 2, -2w + 4, \dots, -2, 0\},\$$

and let $A = A_0 \cup A_1 \cup A_2$. Observe that A_0 , A_1 , and A_2 are disjoint, so

$$|A| = |A_0| + |A_1| + |A_2| = \left(\frac{w - (-w)}{2} + 1\right) + (w - 1 - 0 + 1) + (w - 1 - 0 + 1) = w + 1 + w + w = 3w + 1.$$

We can recognize the elements in A_0 , A_1 , and A_2 as arithmetic sequences (with a common difference of 2), so we can easily write

$$\begin{aligned} 2^{A}_{0} &= \{0\} \times \{-2w+2, -2w+4, \dots, 2w-4, 2w-2\}, \\ A_{1} + A_{2} &= \{0\} \times \{-2w+2, -2w+4, \dots, 2w-4, 2w-2\}, \\ 2^{A}_{2} &= \{1\} \times \{-4w+6, -4w+8, \dots, -4, -2\}, \\ A_{0} + A_{1} &= \{1\} \times \{-w, -w+2, \dots, 3w-4, 3w-2\}, \\ 2^{A}_{1} &= \{2\} \times \{2, 4, \dots, 4w-8, 4w-6\}, \text{ and} \\ A_{0} + A_{2} &= \{2\} \times \{-3w+2, -3w+4, \dots, w-2, w\}. \end{aligned}$$

Notice that since $-4w \equiv -w \mod 3w$ and $-3w \equiv 0 \mod 3w$, $2^{\hat{}}A_0 = A_1 + A_2$, $2^{\hat{}}A_2 \subset A_0 + A_1$, and $2^{\hat{}}A_1 \subset A_0 + A_2$. Now we only must show that

$$A_0 \cap A_1 + A_2 = \emptyset$$
, $A_1 \cap A_0 + A_1 = \emptyset$, and $A_2 \cap A_0 + A_2 = \emptyset$.

In \mathbb{Z}_{3w} , $-2w \equiv w$, so we can recognize that the elements of $A_1 + A_2$ continue the arithmetic sequence in A_0 and since $2w \equiv -w$, the elements of A_0 continue the arithmetic sequence in $A_1 + A_2$. The same is true for $A_0 + A_1$ with A_1 , and $A_0 + A_2$ with A_2 . The three sequences are the same, since they all contain 0 and have a common difference of 2, and repeat in 3w terms (because $3w \equiv 1 \mod 2$). Because the sequence has 3w unique terms,

$$A_0 \cap A_1 + A_2 = \emptyset, \ A_1 \cap A_0 + A_1 = \emptyset, \text{ and } A_2 \cap A_0 + A_2 = \emptyset.$$

NOTE: By Theorem G.18, if w has no prime divisor congruent to $2 \mod 3$,

$$\mu^{\hat{}}(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\}) = 3w + 1 = \left\lfloor \frac{3w}{3} \right\rfloor \cdot 3 + 1 = v_1(3w, 3) \cdot \frac{9w}{3w} \stackrel{\text{G.18}}{=} \mu(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2, 1\}) + 1$$

Proposition 8. For all positive $\kappa \equiv 1 \mod 6$,

$$\mu^{(\mathbb{Z}^{2}_{\kappa}, \{2, 1\})} \ge \frac{\kappa - 1}{3} \cdot \kappa + 1.$$

PROOF. Write

$$B = \left\{1 - \frac{\kappa - 1}{3}, 3 - \frac{\kappa - 1}{3}, \dots, \frac{\kappa - 1}{3} - 3, \frac{\kappa - 1}{3} - 1\right\}$$

and consider the sets

$$A_{0} = \{0\} \times \left(B \cup \left\{\frac{\kappa - 1}{3} + 1\right\}\right)$$
$$A_{1} = \{1\} \times B,$$
$$A_{2} = \{2\} \times B,$$
$$\vdots$$
$$A_{\kappa-2} = \{\kappa - 2\} \times B, \text{ and}$$
$$A_{\kappa-1} = \{\kappa - 1\} \times B,$$

and take $A = \bigcup_{i=0}^{\kappa-1} A_i$. We can see that $|A| = \left(\frac{\kappa-1}{3}\right) + 1 + (\kappa-1)\left(\frac{\kappa-1}{3}\right) = \kappa\left(\frac{\kappa-1}{3}\right) + 1$. We will show that A is weak (2, 1)-sum-free. Notice that elements of B form an arithmetic sequence with a common difference of 2, so any two elements of $A^* = A \setminus \{(0, \frac{\kappa-1}{3})\}$ will sum to an element whose second coordinate is in

$$C = \left\{ 2 - \frac{2\kappa - 2}{3}, 4 - \frac{2\kappa - 2}{3}, \dots, \frac{2\kappa - 2}{3} - 4, \frac{2\kappa - 2}{3} - 2 \right\}$$
$$= \left\{ 2 - \frac{2\kappa - 2}{3}, 2 - \frac{2\kappa - 2}{3} + (2), \dots, 2 - \frac{2\kappa - 2}{3} + \left(\frac{4\kappa - 4}{3} - 6\right), 2 - \frac{2\kappa - 2}{3} + \left(\frac{4\kappa - 4}{3} - 4\right) \right\},$$

whose elements also form an arithmetic sequence with a common difference of 2. Observe that the sequence in C continues the sequence in B (without the term $\frac{\kappa-1}{3} + 1$) and has

$$\frac{\frac{4\kappa-4}{3}-4}{2}+1 = \frac{2\kappa-2}{3}-1$$

terms, while the sequence in B has $\frac{\kappa-1}{3}$ terms. The full sequence, $(0, 2, \ldots, \kappa-4, \kappa-2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \mod 2$), and because

$$|B| + |C| = \frac{\kappa - 1}{3} + \frac{2\kappa - 2}{3} - 1 = \frac{3\kappa - 3}{3} - 1 = \kappa - 2 < \kappa$$

we know that $B \cap C = \emptyset$. This shows that $(A^* + A^*) \cap A = \emptyset$. Now we just must show that

$$\left(A^* + \left\{\left(0, \frac{\kappa - 1}{3} + 1\right)\right\}\right) \cap A = \emptyset,$$

or equivalently, that for all $i \in \{0, 1, \dots, \kappa - 2, \kappa - 1\}$, for all $x \in (A_i \cap A^*)$,

$$x + \left(0, \frac{\kappa - 1}{3} + 1\right) \notin A_i.$$

Observe that for all such *i*, for all $x \in (A_i \cap A^*)$,

$$x + \left(0, \frac{\kappa - 1}{3} + 1\right) \in \left(\{i\} \times B\right) + \left\{\left(0, \frac{\kappa - 1}{3} + 1\right)\right\} = \{i\} \times \left\{2, 4, \dots, -3 - \frac{\kappa - 1}{3}, -1 - \frac{\kappa - 1}{3}\right\} = \{i\} \times D$$

The elements of D also form an arithmetic sequence with a common difference of 2 and the sequence in B continues the sequence in D. Again, the full sequence, $(0, 2, ..., \kappa - 4, \kappa - 2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \mod 2$), and because

$$|B| + |D| = \frac{\kappa - 1}{3} + \frac{\kappa - 1}{3} = \frac{2\kappa - 2}{3} < \kappa,$$

we know that $B \cap D = \emptyset$. Considering i = 0, we must show that $\left\{\frac{\kappa-1}{3} + 1\right\} \cap D = \emptyset$: recognize that $-1 - \frac{\kappa-1}{3} \equiv 2\left(\frac{\kappa-1}{3}\right) \mod \kappa$ and since $\kappa \equiv 1 \mod 6$, $\frac{\kappa-1}{3} \equiv 0 \mod 2$. This means that

$$2\left(\frac{\kappa-1}{3}\right) - \frac{\kappa-1}{3} = \frac{\kappa-1}{3} \in D.$$

Since $|D| = \frac{\kappa - 1}{3} < \kappa$, $\frac{\kappa - 1}{3} + 1 \notin D$, so we are done.

 $\Box 4/23/19$

NOTE: For all κ with no prime divisors congruent to 2 mod 3,

$$\mu^{\hat{}}(\mathbb{Z}_{\kappa}^{2}, \{2, 1\}) = \kappa \left(\frac{\kappa - 1}{3}\right) + 1 = v_{1}(\kappa, 3) \cdot \frac{\kappa^{2}}{\kappa} + 1 \stackrel{\text{G.18}}{=} \mu(\mathbb{Z}_{\kappa}^{2}, \{2, 1\}) + 1.$$