Known

Definition.

$$
\mu^{\wedge}(G,\{k, l\})=\max \left\{|A|: A \subseteq G,\left(k^{\wedge} A\right) \cap\left(l^{\wedge} A\right)=\emptyset\right\} .
$$

Corollary (G.14). For every group G of order n and exponent κ we have

$$
\mu(G,\{k, l\}) \geq \mu\left(\mathbb{Z}_{\kappa},\{k, l\}\right) \cdot \frac{n}{\kappa} .
$$

Theorem (G.18). Let κ be the exponent of G. Then

$$
\mu(G,\{2,1\})=\mu\left(\mathbb{Z}_{\kappa},\{2,1\}\right) \cdot \frac{n}{\kappa}=v_{1}(\kappa, 3) \cdot \frac{n}{\kappa} .
$$

Proposition (G.63). Suppose that G is an abelian group of order n and exponent κ. Then, for all positive integers k and l with $k>l$ we have

$$
\mu^{\hat{\mu}}(G,\{k, l\}) \geq \mu(G,\{k, l\}) \geq v_{k-l}(\kappa, k+l) \cdot \frac{n}{\kappa} .
$$

Corollary (G.65). For positive integers n, k, and l with $l<k \leq n$ we have

$$
\mu^{\wedge}\left(\mathbb{Z}_{n},\{k, l\}\right) \geq\left\lfloor\frac{n+k^{2}+l^{2}-\operatorname{gcd}(n, k-l)-1}{k+l}\right\rfloor .
$$

Theorem (G.67). (Zannier; cf. [205]) For all positive integers we have

$$
\mu^{\wedge}\left(\mathbb{Z}_{n},\{2,1\}\right)= \begin{cases}\left(1+\frac{1}{p}\right) \frac{n}{3} & n \text { has prime divisors congruent to } 2 \bmod 3, \\ \left\lfloor\frac{n}{3}\right\rfloor+1 & \text { and } p \text { is the smallest such divisor; } \\ \text { otherwise } .\end{cases}
$$

Lemma (I). $a x \equiv b \bmod (n)$ has a solution if and only if $\operatorname{gcd}(a, n)$ divides b.

Corollary (From Lemma 3.1 (Sam Edwards)). For any $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$ (written invariently), with $|G|=n$,

$$
s(G)= \begin{cases}\left(0, \ldots, 0, \frac{n_{r}}{2}\right) & n_{r} \equiv 0 \bmod 2 \text { and } n_{r-1} \equiv 1 \bmod 2 ; \\ 0 & \text { otherwise. }\end{cases}
$$

New Conjectures, Propositions, and Proofs

Lemma 1. For any set A and positive integer $h \leq|A|$,

$$
\left|h^{\wedge} A\right| \geq|A|-h+1
$$

PROOF. Write $A=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$. Then observe that

$$
\begin{aligned}
b_{h} & =a_{0}+\cdots+a_{h-1}+a_{h} \\
b_{h+1} & =a_{0}+\cdots+a_{h-1}+a_{h+1}, \\
\vdots & \\
b_{m-1} & =a_{0}+\cdots+a_{h-1}+a_{m-1}, \\
b_{m} & =a_{0}+\cdots+a_{h-1}+a_{m},
\end{aligned}
$$

are all distinct since a_{h}, \ldots, a_{m} are all distinct. Thus,

$$
\left\{b_{h}, b_{h+1}, \ldots, b_{m-1}, b_{m}\right\} \subseteq h^{\wedge} A
$$

so $|h \wedge A| \geq m-(h-1)=|A|-h+1$.

Proposition 2. For all groups G with order n, and for all positive integers $k>l$,

$$
\hat{\mu}(G,\{k, l\}) \leq\left\lfloor\frac{n-2+l+k}{2}\right\rfloor .
$$

PROOF. Write A for a (k, l)-sum-free subset of G where $|A|=m=\mu^{\wedge}(G,\{k, l\})$ and $n=|G|$. Using Lemma 1

$$
\begin{aligned}
n & \geq|\hat{k} A|+\left|l^{\wedge} A\right| \\
& \geq m-k+1+m-l+1 \\
& \geq 2 m-(k+l)+2 \\
\Longrightarrow m & \leq \frac{n-2+k+l}{2} \\
\Longrightarrow \hat{\mu^{\prime}}(G,\{k, l\}) & \leq\left\lfloor\frac{n-2+k+l}{2}\right\rfloor
\end{aligned}
$$

Proposition 3. For all $|G|=n>2$, with $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$, (written invariently),

$$
\mu \wedge(G,\{n-1,1\})= \begin{cases}n-2 & r \geq 2 \text { and } n_{r} \equiv 0 \bmod 2 \text { and } n_{r-1} \equiv 1 \bmod 2, \text { or } \\ & r=1 \text { and } n \equiv 2 \bmod 4 \\ n-1 & \text { otherwise }\end{cases}
$$

PROOF. By Proposition 2,

$$
\mu^{\wedge}(G,\{2,1\}) \leq\left\lfloor\frac{n-2+n-1+1}{2}\right\rfloor=\left\lfloor\frac{2 n-2}{2}\right\rfloor=n-1 .
$$

Let $A=G \backslash\{\xi\}$ for some $\xi \in G$, so $|A|=n-1$, and $(n-1)^{\wedge} A \cap 1^{\wedge} A=\emptyset$ is only satisfied if the sum of the elements of A is ξ. Thus, $\mu^{\wedge}(G,\{n-1,1\})=n-1$ if only if there exists some $\xi \in G$ such that $s(G)-\xi=\xi$. In other words, there must be some $\xi \in G$ such that

$$
s(G)=2 \xi
$$

$1 \underline{s(G)=0}$. Then $0=s(G)=2 \xi$ is satisfied with $\xi=0$, so $\mu^{\wedge}(G,\{n-1,1\})=n-1$.
$2 s(G) \neq 0$.
i $\underline{n_{r}} \equiv 0 \bmod 4$. Then $\frac{n_{r}}{2}=s(G)=2 \xi$ is satisfied with $\xi=\frac{n_{r}}{4}$. Thus, $\mu \hat{\mu}(G,\{n-1,1\})=n-1$.
 $|A|=n-2$, we have

$$
(n-1)^{\wedge} A \cap 1^{\wedge} A=\emptyset \cap A=\emptyset
$$

so $\hat{\mu}(G,\{n-1,1\})=n-2$.

3/18/19 (rw. 3/27/19)

Proposition 4. For all $|G|=n>3$, with $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$, (written invariently),

$$
\hat{\mu}(G,\{n-2,1\})=n-2 .
$$

PROOF. By Proposition 2,

$$
\mu^{\wedge}\left(\mathbb{Z}_{n},\{n-2,1\}\right) \leq\left\lfloor\frac{n-2+n-2+1}{2}\right\rfloor=\left\lfloor n-\frac{3}{2}\right\rfloor=n-2
$$

Let $A=G \backslash\left\{\xi_{1}, \xi_{2}\right\}$ for some distinct $\xi_{1}, \xi_{2} \in G$, so $|A|=n-2$, and $(n-2)^{\wedge} A \cap 1^{\wedge} A=\emptyset$ is only satisfied if the sum of the elements of A is ξ_{1}, WLOG. Thus, $\hat{\mu}(G,\{n-2,1\})=n-2$ if only if there exists some distinct $\xi_{1}, \xi_{2} \in G$ such that $s(G)-\xi_{1}-\xi_{2}=\xi_{1}$. That is, there must be some distinct $\xi_{1}, \xi_{2} \in G$ such that

$$
s(G)=2 \xi_{1}+\xi_{2} .
$$

(i) $\underline{n \equiv 1 \bmod 2}$ or $r \geq 2$ and $n_{r-1} \equiv 0 \bmod 2$. Then $0=s(G)=2 \xi_{1}+\xi_{2}$ is satisfied with $\xi_{1}=(0, \ldots, 0,1)$ and $\xi_{2}=\left(0, \ldots, 0, n_{r}-2\right)$ (if $G \cong \mathbb{Z}_{n}, \xi_{1}=1$ and $\xi_{2}=n-2$) which are distinct since $n_{r}-2 \not \equiv 1$ $\bmod n_{r}$ for all $n_{r}>3$. Thus, $\hat{\mu}(G, n-2,1)=n-2$.
(ii) $n_{r} \equiv 0 \bmod 2$ and $n_{r-1} \equiv 1 \bmod 2$. When $n \neq 6$ then $\left(0, \ldots, 0, \frac{n_{r}}{2}\right)=s(G)=2 \xi_{1}+\xi_{2}$ is satisfied with $\left.\overline{\xi_{1}=(0, \ldots, 0,1) \text { and } \xi_{2}=(0, \ldots, 0}, \frac{n_{r}}{2}-2\right)\left(\right.$ if $G \cong \mathbb{Z}_{n}, \xi_{1}=1$ and $\left.\xi_{2}=\frac{n}{2}-2\right)$ which are distinct since $\frac{n}{2}-2 \neq 1$ for all $n \neq 6$. When $n=6$, take $\xi_{1}=(0, \ldots, 0,5)$ and $\xi_{2}=(0, \ldots, 0,2)$ (if $G \cong \mathbb{Z}_{n}, \xi_{1}=5$ and $\left.\xi_{2}=2\right)$. Thus, $\mu^{\wedge}(G, n-2,1)=n-2$.

Proposition 5. For any G with $|G|=n \equiv 0 \bmod 2$,

$$
\hat{\mu}(G,\{2,1\})=\frac{n}{2}
$$

PROOF. Write $G \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$. By Proposition 2,

$$
\hat{\mu}(G,\{2,1\}) \leq\left\lfloor\frac{n-2+2+1}{2}\right\rfloor=\frac{n}{2}
$$

If $n \equiv 0 \bmod 2$, there is some $n_{i} \equiv 0 \bmod 2$, so we can take $A \subseteq G$ to be the set with all the elements of G whose i th element is congruent to $1 \bmod 2$. The i th entry of the sum of any two elements in A will be congruent to $0 \bmod 2$, so $2^{\wedge} A \cap 1^{\wedge} A=\emptyset$. Thus,

$$
\mu^{\wedge}(G,\{2,1\}) \geq|A|=n_{1} \cdots \cdot n_{i-1} \cdot \frac{n_{i}}{2} \cdot n_{i+1} \cdots \cdot n_{r}=\frac{n}{2}
$$

3/26/19 (rv. 4/4/19)

NOTE: This means that by Proposition G.21, $\hat{\mu}\left(\mathbb{Z}_{2}^{r},\{2,1\}\right)=2^{r-1}=\mu\left(\mathbb{Z}_{2}^{r},\{2,1\}\right)$.

Conjecture 6. For all positive integers n_{1} and n_{2},

$$
\hat{\mu}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)= \begin{cases}\mu & \text { if } \exists p \in \mathbb{P}, p \mid n, p \equiv 2 \bmod 3 \\ \mu+1 & \text { otherwise }\end{cases}
$$

When n_{1} does not divide $n_{2}, \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \cong \mathbb{Z}_{n_{1} n_{2}}=\mathbb{Z}_{n}$, so by Theorem G. 67 (Zannier; cf. [205]),
$\mu^{\wedge}\left(\mathbb{Z}_{n},\{2,1\}\right)=\left\{\begin{array}{ll}\left(1+\frac{1}{p}\right) \frac{n}{3} \\ \left\lfloor\frac{n}{3}\right\rfloor+1\end{array}=\left\{\begin{array}{ll}v_{1}(n, 3) \cdot \frac{n}{n} \\ v_{1}(n, 3) \cdot \frac{n}{n}+1\end{array} \stackrel{G .18}{=} \begin{cases}\mu\left(\mathbb{Z}_{n},\{2,1\}\right) & \text { if } \exists x \in \mathbb{P}, x \mid n, x \equiv 2 \bmod 3, \\ \mu\left(\mathbb{Z}_{n},\{2,1\}\right)+1 & \text { otherwise. } p \text { is the smallest such } x\end{cases}\right.\right.$
When $n \equiv 0 \bmod 2$, clearly the smallest prime divisor of n congruent to $2 \bmod 3$ is 2 , so by Proposition 5 and Proposition G.18,

$$
\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right) \stackrel{5}{=} \frac{n}{2}=\left(1+\frac{1}{2}\right) \frac{n}{3}=v_{1}(n, 3) \cdot \frac{n}{n} \stackrel{\text { G.18 }}{=} \mu\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)
$$

Now we should consider when $n \equiv 1 \bmod 2$.

Proposition 7. For any positive integer $w \equiv 1 \bmod 2$,

$$
\hat{\mu}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) \geq 3 w+1
$$

PROOF. Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{-w,-w+2, \ldots, w-2, w\} \\
& A_{1}=\{1\} \times\{0,2, \ldots, 2 w-4,2 w-2\}, \text { and } \\
& A_{2}=\{2\} \times\{-2 w+2,-2 w+4, \ldots,-2,0\}
\end{aligned}
$$

and let $A=A_{0} \cup A_{1} \cup A_{2}$. Observe that A_{0}, A_{1}, and A_{2} are disjoint, so
$|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|=\left(\frac{w-(-w)}{2}+1\right)+(w-1-0+1)+(w-1-0+1)=w+1+w+w=3 w+1$.
We can recognize the elements in A_{0}, A_{1}, and A_{2} as arithmetic sequences (with a common difference of 2), so we can easily write

$$
\begin{aligned}
2^{\wedge} A_{0} & =\{0\} \times\{-2 w+2,-2 w+4, \ldots, 2 w-4,2 w-2\}, \\
A_{1}+A_{2} & =\{0\} \times\{-2 w+2,-2 w+4, \ldots, 2 w-4,2 w-2\}, \\
2^{\wedge} A_{2} & =\{1\} \times\{-4 w+6,-4 w+8, \ldots,-4,-2\}, \\
A_{0}+A_{1} & =\{1\} \times\{-w,-w+2, \ldots, 3 w-4,3 w-2\}, \\
2^{\wedge} A_{1} & =\{2\} \times\{2,4, \ldots, 4 w-8,4 w-6\}, \text { and } \\
A_{0}+A_{2} & =\{2\} \times\{-3 w+2,-3 w+4, \ldots, w-2, w\} .
\end{aligned}
$$

Notice that since $-4 w \equiv-w \bmod 3 w$ and $-3 w \equiv 0 \bmod 3 w, 2^{\wedge} A_{0}=A_{1}+A_{2}, 2^{\wedge} A_{2} \subset A_{0}+A_{1}$, and $2 \wedge A_{1} \subset A_{0}+A_{2}$. Now we only must show that

$$
A_{0} \cap A_{1}+A_{2}=\emptyset, A_{1} \cap A_{0}+A_{1}=\emptyset, \text { and } A_{2} \cap A_{0}+A_{2}=\emptyset
$$

In $\mathbb{Z}_{3 w},-2 w \equiv w$, so we can recognize that the elements of $A_{1}+A_{2}$ continue the arithmetic sequence in A_{0} and since $2 w \equiv-w$, the elements of A_{0} continue the arithmetic sequence in $A_{1}+A_{2}$. The same is true for $A_{0}+A_{1}$ with A_{1}, and $A_{0}+A_{2}$ with A_{2}. The three sequences are the same, since they all contain 0 and have a common difference of 2 , and repeat in $3 w$ terms (because $3 w \equiv 1 \bmod 2$). Because the sequence has $3 w$ unique terms,

$$
A_{0} \cap A_{1}+A_{2}=\emptyset, A_{1} \cap A_{0}+A_{1}=\emptyset, \text { and } A_{2} \cap A_{0}+A_{2}=\emptyset
$$

NOTE: By Theorem G. 18 , if w has no prime divisor congruent to $2 \bmod 3$,

$$
\hat{\mu}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)=3 w+1=\left\lfloor\frac{3 w}{3}\right\rfloor \cdot 3+1=v_{1}(3 w, 3) \cdot \frac{9 w}{3 w} \stackrel{\text { G.18 }}{=} \mu\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right)+1
$$

Proposition 8. For all positive $\kappa \equiv 1 \bmod 6$,

$$
\hat{\mu}\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right) \geq \frac{\kappa-1}{3} \cdot \kappa+1
$$

PROOF. Write

$$
B=\left\{1-\frac{\kappa-1}{3}, 3-\frac{\kappa-1}{3}, \ldots, \frac{\kappa-1}{3}-3, \frac{\kappa-1}{3}-1\right\}
$$

and consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\left(B \cup\left\{\frac{\kappa-1}{3}+1\right\}\right), \\
& A_{1}=\{1\} \times B \\
& A_{2}=\{2\} \times B, \\
& \vdots \\
& A_{\kappa-2}=\{\kappa-2\} \times B, \text { and } \\
& A_{\kappa-1}=\{\kappa-1\} \times B,
\end{aligned}
$$

and take $A=\bigcup_{i=0}^{\kappa-1} A_{i}$. We can see that $|A|=\left(\frac{\kappa-1}{3}\right)+1+(\kappa-1)\left(\frac{\kappa-1}{3}\right)=\kappa\left(\frac{\kappa-1}{3}\right)+1$. We will show that A is weak $(2,1)$-sum-free. Notice that elements of B form an arithmetic sequence with a common difference of 2 , so any two elements of $A^{*}=A \backslash\left\{\left(0, \frac{\kappa-1}{3}\right)\right\}$ will sum to an element whose second coordinate is in

$$
\begin{aligned}
C & =\left\{2-\frac{2 \kappa-2}{3}, 4-\frac{2 \kappa-2}{3}, \ldots, \frac{2 \kappa-2}{3}-4, \frac{2 \kappa-2}{3}-2\right\} \\
& =\left\{2-\frac{2 \kappa-2}{3}, 2-\frac{2 \kappa-2}{3}+(2), \ldots, 2-\frac{2 \kappa-2}{3}+\left(\frac{4 \kappa-4}{3}-6\right), 2-\frac{2 \kappa-2}{3}+\left(\frac{4 \kappa-4}{3}-4\right)\right\}
\end{aligned}
$$

whose elements also form an arithmetic sequence with a common difference of 2 . Observe that the sequence in C continues the sequence in B (without the term $\frac{\kappa-1}{3}+1$) and has

$$
\frac{\frac{4 \kappa-4}{3}-4}{2}+1=\frac{2 \kappa-2}{3}-1
$$

terms, while the sequence in B has $\frac{\kappa-1}{3}$ terms. The full sequence, $(0,2, \ldots, \kappa-4, \kappa-2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \bmod 2$), and because

$$
|B|+|C|=\frac{\kappa-1}{3}+\frac{2 \kappa-2}{3}-1=\frac{3 \kappa-3}{3}-1=\kappa-2<\kappa
$$

we know that $B \cap C=\emptyset$. This shows that $\left(A^{*}+A^{*}\right) \cap A=\emptyset$. Now we just must show that

$$
\left(A^{*}+\left\{\left(0, \frac{\kappa-1}{3}+1\right)\right\}\right) \cap A=\emptyset
$$

or equivalently, that for all $i \in\{0,1, \ldots, \kappa-2, \kappa-1\}$, for all $x \in\left(A_{i} \cap A^{*}\right)$,

$$
x+\left(0, \frac{\kappa-1}{3}+1\right) \notin A_{i} .
$$

Observe that for all such i, for all $x \in\left(A_{i} \cap A^{*}\right)$,
$x+\left(0, \frac{\kappa-1}{3}+1\right) \in(\{i\} \times B)+\left\{\left(0, \frac{\kappa-1}{3}+1\right)\right\}=\{i\} \times\left\{2,4, \ldots,-3-\frac{\kappa-1}{3},-1-\frac{\kappa-1}{3}\right\}=\{i\} \times D$.
The elements of D also form an arithmetic sequence with a common difference of 2 and the sequence in B continues the sequence in D. Again, the full sequence, $(0,2, \ldots, \kappa-4, \kappa-2)$, repeats in a minimum of κ terms (since $\kappa \equiv 1 \bmod 2)$, and because

$$
|B|+|D|=\frac{\kappa-1}{3}+\frac{\kappa-1}{3}=\frac{2 \kappa-2}{3}<\kappa
$$

we know that $B \cap D=\emptyset$. Considering $i=0$, we must show that $\left\{\frac{\kappa-1}{3}+1\right\} \cap D=\emptyset$: recognize that $-1-\frac{\kappa-1}{3} \equiv 2\left(\frac{\kappa-1}{3}\right) \bmod \kappa$ and since $\kappa \equiv 1 \bmod 6, \frac{\kappa-1}{3} \equiv 0 \bmod 2$. This means that

$$
2\left(\frac{\kappa-1}{3}\right)-\frac{\kappa-1}{3}=\frac{\kappa-1}{3} \in D .
$$

Since $|D|=\frac{\kappa-1}{3}<\kappa, \frac{\kappa-1}{3}+1 \notin D$, so we are done.

NOTE: For all κ with no prime divisors congruent to $2 \bmod 3$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right)=\kappa\left(\frac{\kappa-1}{3}\right)+1=v_{1}(\kappa, 3) \cdot \frac{\kappa^{2}}{\kappa}+1 \stackrel{\mathrm{G} .18}{=} \mu\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right)+1 .
$$

