
Known
Definition.

µ̂ (G, {k, l}) = max{|A| : A ⊆ G, (k̂ A) ∩ (l̂ A) = ∅}.

Corollary (G.14). For every group G of order n and exponent κ we have

µ(G, {k, l}) ≥ µ(Zκ, {k, l}) ·
n

κ
.

Theorem (G.18). Let κ be the exponent of G. Then

µ(G, {2, 1}) = µ(Zκ, {2, 1}) ·
n

κ
= v1(κ, 3) · n

κ
.

Proposition (G.63). Suppose that G is an abelian group of order n and exponent κ. Then, for all
positive integers k and l with k > l we have

µ̂ (G, {k, l}) ≥ µ(G, {k, l}) ≥ vk−l(κ, k + l) · n
κ
.

Corollary (G.65). For positive integers n, k, and l with l < k ≤ n we have

µ̂ (Zn, {k, l}) ≥
⌊
n+ k2 + l2 − gcd(n, k − l)− 1

k + l

⌋
.

Theorem (G.67). (Zannier; cf. [205]) For all positive integers we have

µ̂ (Zn, {2, 1}) =


(

1 + 1
p

)
n
3 n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor;⌊
n
3
⌋

+ 1 otherwise.

Lemma (I). ax ≡ b mod (n) has a solution if and only if gcd(a, n) divides b.

Corollary (From Lemma 3.1 (Sam Edwards)). For anyG ∼= Zn1×Zn2×· · ·×Znr (written invariently),
with |G| = n,

s(G) =
{

(0, . . . , 0, nr

2 ) nr ≡ 0 mod 2 and nr−1 ≡ 1 mod 2;
0 otherwise.



New Conjectures, Propositions, and Proofs

Lemma 1. For any set A and positive integer h ≤ |A|,

|ĥ A| ≥ |A| − h+ 1.

PROOF. Write A = {a0, a1, . . . , am}. Then observe that

bh = a0 + · · ·+ ah−1 + ah,

bh+1 = a0 + · · ·+ ah−1 + ah+1,

...
bm−1 = a0 + · · ·+ ah−1 + am−1,

bm = a0 + · · ·+ ah−1 + am,

are all distinct since ah, . . . , am are all distinct. Thus,

{bh, bh+1, . . . , bm−1, bm} ⊆ ĥ A

so |ĥ A| ≥ m− (h− 1) = |A| − h+ 1.
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Proposition 2. For all groups G with order n, and for all positive integers k > l,

µ̂ (G, {k, l}) ≤
⌊
n− 2 + l + k

2

⌋
.

PROOF. Write A for a (k, l)-sum-free subset of G where |A| = m = µ̂ (G, {k, l}) and n = |G|. Using
Lemma 1,

n ≥ |k̂ A|+ |l̂ A|
≥ m− k + 1 +m− l + 1
≥ 2m− (k + l) + 2

=⇒ m ≤ n− 2 + k + l

2

=⇒ µ̂ (G, {k, l}) ≤
⌊
n− 2 + k + l

2

⌋
.
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Proposition 3. For all |G| = n > 2, with G ∼= Zn1 × Zn2 × · · · × Znr
, (written invariently),

µ̂ (G, {n− 1, 1}) =


n− 2 r ≥ 2 and nr ≡ 0 mod 2 and nr−1 ≡ 1 mod 2, or

r = 1 and n ≡ 2 mod 4;
n− 1 otherwise.

PROOF. By Proposition 2,

µ̂ (G, {2, 1}) ≤
⌊
n− 2 + n− 1 + 1

2

⌋
=
⌊

2n− 2
2

⌋
= n− 1.

Let A = G \ {ξ} for some ξ ∈ G, so |A| = n− 1, and (n− 1)̂ A∩ 1̂ A = ∅ is only satisfied if the sum of the
elements of A is ξ. Thus, µ̂ (G, {n− 1, 1}) = n− 1 if only if there exists some ξ ∈ G such that s(G)− ξ = ξ.
In other words, there must be some ξ ∈ G such that

s(G) = 2ξ.

1 s(G) = 0. Then 0 = s(G) = 2ξ is satisfied with ξ = 0, so µ̂ (G, {n− 1, 1}) = n− 1.

2 s(G) 6= 0.

i nr ≡ 0 mod 4. Then nr

2 = s(G) = 2ξ is satisfied with ξ = nr

4 . Thus, µ̂ (G, {n− 1, 1}) = n− 1.
ii nr ≡ 2 mod 4. Since 2 does not divide nr

2 ≡ 1 mod 2, there is no such ξ ∈ G. For all A ⊆ G such that
|A| = n− 2, we have

(n− 1)̂ A ∩ 1̂ A = ∅ ∩A = ∅,

so µ̂ (G, {n− 1, 1}) = n− 2.

�
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Proposition 4. For all |G| = n > 3, with G ∼= Zn1 × Zn2 × · · · × Znr
, (written invariently),

µ̂ (G, {n− 2, 1}) = n− 2.

PROOF. By Proposition 2,

µ̂ (Zn, {n− 2, 1}) ≤
⌊
n− 2 + n− 2 + 1

2

⌋
=
⌊
n− 3

2

⌋
= n− 2.

Let A = G \ {ξ1, ξ2} for some distinct ξ1, ξ2 ∈ G, so |A| = n− 2, and (n− 2)̂ A∩ 1̂ A = ∅ is only satisfied
if the sum of the elements of A is ξ1, WLOG. Thus, µ̂ (G, {n − 2, 1}) = n − 2 if only if there exists some
distinct ξ1, ξ2 ∈ G such that s(G)− ξ1 − ξ2 = ξ1. That is, there must be some distinct ξ1, ξ2 ∈ G such that

s(G) = 2ξ1 + ξ2.

(i) n ≡ 1 mod 2 or r ≥ 2 and nr−1 ≡ 0 mod 2. Then 0 = s(G) = 2ξ1 + ξ2 is satisfied with ξ1 = (0, . . . , 0, 1)
and ξ2 = (0, . . . , 0, nr − 2) (if G ∼= Zn, ξ1 = 1 and ξ2 = n − 2) which are distinct since nr − 2 6≡ 1
mod nr for all nr > 3. Thus, µ̂ (G,n− 2, 1) = n− 2.

(ii) nr ≡ 0 mod 2 and nr−1 ≡ 1 mod 2. When n 6= 6 then (0, . . . , 0, nr

2 ) = s(G) = 2ξ1 + ξ2 is satisfied with
ξ1 = (0, . . . , 0, 1) and ξ2 = (0, . . . , 0, nr

2 − 2) (if G ∼= Zn, ξ1 = 1 and ξ2 = n
2 − 2) which are distinct since

n
2 − 2 6= 1 for all n 6= 6. When n = 6, take ξ1 = (0, . . . , 0, 5) and ξ2 = (0, . . . , 0, 2) (if G ∼= Zn, ξ1 = 5
and ξ2 = 2). Thus, µ̂ (G,n− 2, 1) = n− 2.

�
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Proposition 5. For any G with |G| = n ≡ 0 mod 2,

µ̂ (G, {2, 1}) = n

2 .

PROOF. Write G ∼= Zn1 × Zn2 × · · · × Znr
. By Proposition 2,

µ̂ (G, {2, 1}) ≤
⌊
n− 2 + 2 + 1

2

⌋
= n

2 .

If n ≡ 0 mod 2, there is some ni ≡ 0 mod 2, so we can take A ⊆ G to be the set with all the elements of
G whose ith element is congruent to 1 mod 2. The ith entry of the sum of any two elements in A will be
congruent to 0 mod 2, so 2̂ A ∩ 1̂ A = ∅. Thus,

µ̂ (G, {2, 1}) ≥ |A| = n1 · · · · · ni−1 ·
ni
2 · ni+1 · · · · · nr = n

2 .

�
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NOTE: This means that by Proposition G.21, µ̂ (Zr2, {2, 1}) = 2r−1 = µ(Zr2, {2, 1}).

Conjecture 6. For all positive integers n1 and n2,

µ̂ (Zn1 × Zn2 , {2, 1}) =
{
µ if ∃p ∈ P, p|n, p ≡ 2 mod 3
µ+ 1 otherwise.

When n1 does not divide n2, Zn1 × Zn2
∼= Zn1n2 = Zn, so by Theorem G.67 (Zannier; cf. [205]),

µ̂ (Zn, {2, 1}) =


(

1 + 1
p

)
n
3

⌊
n
3
⌋

+ 1
=


v1(n, 3) · nn

v1(n, 3) · nn + 1

G.18=


µ(Zn, {2, 1}) if ∃x ∈ P, x|n, x ≡ 2 mod 3,

and p is the smallest such x
µ(Zn, {2, 1}) + 1 otherwise.

When n ≡ 0 mod 2, clearly the smallest prime divisor of n congruent to 2 mod 3 is 2, so by Proposition
5 and Proposition G.18,

µ̂ (Zn1 × Zn2 , {2, 1})
5= n

2 =
(

1 + 1
2

)
n

3 = v1(n, 3) · n
n

G.18= µ(Zn1 × Zn2 , {2, 1}).

Now we should consider when n ≡ 1 mod 2.



Proposition 7. For any positive integer w ≡ 1 mod 2,

µ̂ (Z3 × Z3w, {2, 1}) ≥ 3w + 1.

PROOF. Consider the sets

A0 = {0} × {−w,−w + 2, . . . , w − 2, w},
A1 = {1} × {0, 2, . . . , 2w − 4, 2w − 2} , and
A2 = {2} × {−2w + 2,−2w + 4, . . . ,−2, 0} ,

and let A = A0 ∪A1 ∪A2. Observe that A0, A1, and A2 are disjoint, so

|A| = |A0|+ |A1|+ |A2| =
(
w − (−w)

2 + 1
)

+ (w − 1− 0 + 1) + (w− 1− 0 + 1) = w+ 1 +w+w = 3w+ 1.

We can recognize the elements in A0, A1, and A2 as arithmetic sequences (with a common difference of 2),
so we can easily write

2̂ A0 = {0} × {−2w + 2,−2w + 4, . . . , 2w − 4, 2w − 2},
A1 +A2 = {0} × {−2w + 2,−2w + 4, . . . , 2w − 4, 2w − 2},

2̂ A2 = {1} × {−4w + 6,−4w + 8, . . . ,−4,−2},
A0 +A1 = {1} × {−w,−w + 2, . . . , 3w − 4, 3w − 2},

2̂ A1 = {2} × {2, 4, . . . , 4w − 8, 4w − 6}, and
A0 +A2 = {2} × {−3w + 2,−3w + 4, . . . , w − 2, w}.

Notice that since −4w ≡ −w mod 3w and −3w ≡ 0 mod 3w, 2̂ A0 = A1 + A2, 2̂ A2 ⊂ A0 + A1, and
2̂ A1 ⊂ A0 +A2. Now we only must show that

A0 ∩A1 +A2 = ∅, A1 ∩A0 +A1 = ∅, and A2 ∩A0 +A2 = ∅.

In Z3w, −2w ≡ w, so we can recognize that the elements of A1 +A2 continue the arithmetic sequence in
A0 and since 2w ≡ −w, the elements of A0 continue the arithmetic sequence in A1 + A2. The same is true
for A0 +A1 with A1, and A0 +A2 with A2. The three sequences are the same, since they all contain 0 and
have a common difference of 2, and repeat in 3w terms (because 3w ≡ 1 mod 2). Because the sequence has
3w unique terms,

A0 ∩A1 +A2 = ∅, A1 ∩A0 +A1 = ∅, and A2 ∩A0 +A2 = ∅.

�
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NOTE: By Theorem G.18, if w has no prime divisor congruent to 2 mod 3,

µ̂ (Zn1 × Zn2 , {2, 1}) = 3w + 1 =
⌊

3w
3

⌋
· 3 + 1 = v1(3w, 3) · 9w

3w
G.18= µ(Z3 × Z3w, {2, 1}) + 1.



Proposition 8. For all positive κ ≡ 1 mod 6,

µ̂ (Z2
κ, {2, 1}) ≥

κ− 1
3 · κ+ 1.

PROOF. Write
B =

{
1− κ− 1

3 , 3− κ− 1
3 , . . . ,

κ− 1
3 − 3, κ− 1

3 − 1
}

and consider the sets

A0 = {0} ×
(
B ∪

{
κ− 1

3 + 1
})

,

A1 = {1} ×B,
A2 = {2} ×B,
...

Aκ−2 = {κ− 2} ×B, and
Aκ−1 = {κ− 1} ×B,

and take A =
⋃κ−1
i=0 Ai. We can see that |A| =

(
κ−1

3
)

+ 1 + (κ− 1)
(
κ−1

3
)

= κ
(
κ−1

3
)

+ 1. We will show that
A is weak (2, 1)-sum-free. Notice that elements of B form an arithmetic sequence with a common difference
of 2, so any two elements of A∗ = A \ {

(
0, κ−1

3
)
} will sum to an element whose second coordinate is in

C =
{

2− 2κ− 2
3 , 4− 2κ− 2

3 , . . . ,
2κ− 2

3 − 4, 2κ− 2
3 − 2

}
=
{

2− 2κ− 2
3 , 2− 2κ− 2

3 + (2), . . . , 2− 2κ− 2
3 +

(
4κ− 4

3 − 6
)
, 2− 2κ− 2

3 +
(

4κ− 4
3 − 4

)}
,

whose elements also form an arithmetic sequence with a common difference of 2. Observe that the sequence
in C continues the sequence in B (without the term κ−1

3 + 1) and has

4κ−4
3 − 4

2 + 1 = 2κ− 2
3 − 1

terms, while the sequence in B has κ−1
3 terms. The full sequence, (0, 2, . . . , κ−4, κ−2), repeats in a minimum

of κ terms (since κ ≡ 1 mod 2), and because

|B|+ |C| = κ− 1
3 + 2κ− 2

3 − 1 = 3κ− 3
3 − 1 = κ− 2 < κ,

we know that B ∩ C = ∅. This shows that (A∗ +A∗) ∩A = ∅. Now we just must show that(
A∗ +

{(
0, κ− 1

3 + 1
)})

∩A = ∅,

or equivalently, that for all i ∈ {0, 1, . . . , κ− 2, κ− 1}, for all x ∈ (Ai ∩A∗),

x+
(

0, κ− 1
3 + 1

)
/∈ Ai.

Observe that for all such i, for all x ∈ (Ai ∩A∗),

x+
(

0, κ− 1
3 + 1

)
∈ ({i}×B)+

{(
0, κ− 1

3 + 1
)}

= {i}×
{

2, 4, . . . ,−3− κ− 1
3 ,−1− κ− 1

3

}
= {i}×D.

The elements of D also form an arithmetic sequence with a common difference of 2 and the sequence in B
continues the sequence in D. Again, the full sequence, (0, 2, . . . , κ − 4, κ − 2), repeats in a minimum of κ
terms (since κ ≡ 1 mod 2), and because

|B|+ |D| = κ− 1
3 + κ− 1

3 = 2κ− 2
3 < κ,



we know that B ∩ D = ∅. Considering i = 0, we must show that
{
κ−1

3 + 1
}
∩ D = ∅: recognize that

−1− κ−1
3 ≡ 2

(
κ−1

3
)

mod κ and since κ ≡ 1 mod 6, κ−1
3 ≡ 0 mod 2. This means that

2
(
κ− 1

3

)
− κ− 1

3 = κ− 1
3 ∈ D.

Since |D| = κ−1
3 < κ, κ−1

3 + 1 /∈ D, so we are done.

�
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NOTE: For all κ with no prime divisors congruent to 2 mod 3,

µ̂ (Z2
κ, {2, 1}) = κ

(
κ− 1

3

)
+ 1 = v1(κ, 3) · κ

2

κ
+ 1 G.18= µ(Z2

κ, {2, 1}) + 1.


