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1 Definitions
1.1 Eigenvalues and Eigenvectors
Let A be n× n.
The scalar λ is said to be an eigenvalue of A if there is a non-zero vector x such that Ax = λx.
Such a vector x is called an eigenvector of A belonging to the eigenvalue λ.

1.2 Characteristic Polynomial
Let A be n× n.
The polynomial calculuated by det(A− λI) is called the characteristic polynomial.
Its roots are the eigenvalues of A.

1.3 Algebraic Multiplicity
Let A be n× n and λ be an eigenvalue of A.
The algebraic multiplicity of λ is the number of times λ appears as a root of the char. poly. of A.

1.4 Geometric Multiplicity
Let A be n× n and λ be an eigenvalue of A.
The geometric multiplicity of λ is the dimension of the eigenspace of λ.
This is the same as the number of linearly independent eigenvectors belonging to λ.

1.5 Similar and Unitarily Similar
Let A and B be n× n.
B is said to be similar to A if there exists an invertible matrix S so that S−1AS = B.
A and B are unitarily similar if P is a unitary matrix (i.e. PP ∗ = P ∗P = I).

1.6 Diagonalizable Matrix
Let A be n× n.
A is said to be diagonalizable if A is similar to a diagonal matrix.
There is an invertible matrix S such that S−1AS = D is diagonal.

1.7 Orthogonal and Unitary
A real matrix Q is an orthogonal matrix if QQT = QTQ = I.
A complex matrix U is a unitary matrix if UU∗ = U∗U = I.

1.8 Minimal Polynomial
Let A be n× n.
The minimal polynomial of A is the monic (i.e. coefficient of highest powered x in p(x) is 1) polynomial of least
degree that annihilates the matrix A.

1.9 Symmetric/Hermitian/Skew-symmetric/Skew-hermitian/Normal
symmetric ⇔ A = AT

hermitian ⇔ A = A∗

skew-symmetric ⇔ A = −AT

skew-hermitian ⇔ A = −A∗
normal ⇔ AA∗ = A∗A ⇔ exists unitary U s.t. UAU−1 is diagonal
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1.10 Positive Definite and Semi-Definite
Let A be hermitian.
If x∗Ax > 0 for all x 6= 0 then A is positive definite.
If x∗Ax ≥ 0 for all x 6= 0 then A is positive semi-definite.

1.11 Singular Values
Let A be n× n.
The singular values of A are the square roots of the eigenvalues of A∗A.
The singular value decomposition of A is given as A = UDV ∗, where U, V are unitary and D is a diagonal matrix
whose elements are the singular values.

1.12 Trace
The trace of a matrix is the sum of its diagonal elements and the sum of its eigenvalues.
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2 Proofs of Key Results
2.1 Hermitian/Skew-hermitian matrix eigenvalues are real/purely imaginary
If A is a hermitian matrix, then every eigenvalue of A is real.

Let A be a hermitian matrix (i.e. A = A∗), x be an eigenvector belonging to λ, and x 6= 0.

Then Ax = λx

x∗Ax = x∗(λx)
(x∗A)x = λ(x∗x)
(x∗A)x = λ(x∗x)

(A∗x)∗x = λ(x∗x)
(Ax)∗x = λ(x∗x) because A = A∗

(λx)∗x = λ(x∗x)
λ(x∗x) = λ(x∗x)

(λ− λ)x∗x = 0

We can see that x∗x = ||x||2 > 0 since x 6= 0. Hence (λ− λ) = 0.

Let λ = a + ib and λ = a − ib for a, b ∈ R. So (λ − λ) = a − ib − (a + ib) = −2ib = 0. This implies that
b = 0 and therefore λ is a real number.

If A is a skew-hermitian matrix, then every eigenvalue of A is purely imaginary.

Let A be a skew-hermitian matrix (i.e. A = −A∗), x be an eigenvector belonging to λ, and x 6= 0.

Then Ax = λx

x∗Ax = x∗(λx)
(x∗A)x = λ(x∗x)
(x∗A)x = λ(x∗x)

(A∗x)∗x = λ(x∗x)
(−Ax)∗x = λ(x∗x) because A = −A∗

(−λx)∗x = λ(x∗x)
−λ(x∗x) = λ(x∗x)

(λ+ λ)x∗x = 0

We can see that x∗x = ||x||2 > 0 since x 6= 0. Hence (λ+ λ) = 0.

Let λ = a + ib and λ = a − ib for a, b ∈ R. So (λ + λ) = a − ib + (a + ib) = 2a = 0. This implies that
a = 0 and therefore λ is purely imaginary.
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2.2 Unitary matrix eigenvalues have absolute value 1
Let A be a unitary matrix (so AA∗ = A∗A = I) with eigenvalue λ.

Then for any vector x 6= 0, we have

Ax = λx and
x∗A∗ = λ∗x∗ ⇒

x∗A∗Ax = λ∗x∗λx⇒
x∗x = λ∗λx∗x⇒
||x||2 = |λ|2 ||x||2 ⇒
|λ| = 1

2.3 Eigenvectors belonging to distinct eigenvalues are linearly independent
Suppose c1x1 + c2x2 = 0, where one of the coefficients (say c1) is not zero. Then x1 = αx2 for some α 6= 0. Left
multiplying both sides by A gives

Ax1 = λ1x1 = αAx2 = αλ2x2

But multiplying x1 = αx2 by λ1 also gives
Ax1 = λ1x1 = αλ1x2

Subtracting these equations gives
αλ2x2 − αλ1x2 = α(λ2 − λ1)x2 = 0

But we know that α 6= 0 and λ2 − λ1 6= 0 and x2 6= 0.
Thus our assumption that the coefficients c1 and c2 are not zero is incorrect and x1 and x2 are linearly independent.

The can easily be extended for the xn case.

2.4 Eigenvectors for distinct eigenvalues of a hermitian matrix are orthogonal
Let A be an n×n Hermitian matrix, λ1, λ2 distinct eigenvalues of A, and x1, x2 eigenvectors belonging to respectively
λ1, λ2. We will show that x1 and x2 are orthogonal.

Since A is hermitian, we know these eigenvalues are real.

We can calculate < x1 , Ax2 > in two ways:

< x1, Ax2 >= x∗1Ax2 = (x∗1A)x2 = (A∗x1)∗x2 = (Ax1)∗x2 = (λ1x)∗x2 = λ1x
∗
1x2 = λ1 < x1, x2 >

< x1, Ax2 >= x∗1Ax2 = x∗1 λ2 x2 = λ2 x
∗
1 x2 = λ2 < x1 , x2 >

We then set these two results equal.

λ1 < x1 , x2 >= λ2 < x1 , x2 > ⇒
(
λ1 − λ2

)
< x1 , x2 >= 0

Since λ1 and λ2 are real we know that λ1 = λ1 6= λ2, so < x1 , x2 > must be zero. Therefore x1 and x2 are orthogonal.

This can easily be extended to the xn case.

2.5 Trace of a matrix = Sum of its eigenvalues
For every square matrix A there is a nonsingular P such that A = PJP−1 where J is upper tringular with its
eigenvalues on the diagonals.

We know that trace(A) = trace(PJP−1) = trace(PP−1J) = trace(J).
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2.6 Gershgorin disc theorem part (a)
Let A is an n× n matrix.

Define the Gershgorin Radii as R′i =
n∑

j=1
j 6=i

|aij |.

and the Gershgorin Disc as Di = {z|z ∈ C, |z − aii| ≤ R′i}

and the Gershgorin Region as G =
n⋃

i=1
Di.

(a) Every eigenvalue of A is in the Gershgorin disc

(b) If the union of k of the discs is disjoint from the remaining n − k discs, the there are exactly k eigenvalues
(counting multiplicity) in the union of the k discs.

Proof of (a): Let λ be an eigenvalue of A and x 6= 0 be an eigenvector belonging to λ.

So Ax = λx for x ∈ Cn. Let |xp| = max(|x1|, . . . , |xn|) and we look at the p-th entries of Ax and λx.

(Ax)p = λxp ⇒
n∑

j=1
apjxj = λxp ⇒

appxp +
n∑

j=1
j 6=p

apjxj = λxp ⇒

(λ− app)xp =
n∑

j=1
j 6=p

apjxj ⇒

|(λ− app)xp| =
∣∣∣∣ n∑

j=1
j 6=p

apjxj

∣∣∣∣⇒
|(λ− app)| |xp| =

∣∣∣∣ n∑
j=1
j 6=p

apjxj

∣∣∣∣⇒
|(λ− app)| |xp| ≤

n∑
j=1
j 6=p

|apj | |xj | ⇒

|(λ− app)| |xp| ≤
n∑

j=1
j 6=p

|apj | |xp| since |xi| ≤ |xp| ∀i

|(λ− app)| ≤
n∑

j=1
j 6=p

|apj | = R′p since |xp| > 0

∴ λ lies in Dp ≤ G
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2.7 Results pertaining to positive definite matrices
2.8 Min poly divides every annihilating polynomial
Let A be n× n and let p(x) annihilate A. Then the minimal polynomial, m(x) is a factor of p(x).

From the Euclidean algorithm we know that p(x) = q(x)m(x) + r(x).

Substituting x = A gives us

p(A) = q(A)m(A) + r(A)
0 = q(A) 0 + r(A)

Therefore r(A) = 0 and we conclude that m(x) divides p(x).

2.9 Roots of the min poly are precisely the eigenvalues of the matrix
We know that CA(x) annihilates A and therefore mA(x) is a factor of CA(x).

We also know that the only roots of CA(x) are the eigenvalues of A. Therefore, every root of mA(x) is also an
eigenvalue of A.

2.10 Hermitian matrix is Positive Definite if and only if all its eigenvalues are positive
(⇒) Let A be positive definite and λ be an eigenvalue of A.

Ax = λx⇒
x∗Ax = λx∗x = λ||x||2 ⇒

λ = x∗Ax

||x||2
> 0

(⇐) Let A be hermitian and let all its eigenvalues be positive.

Since A is hermitian there exists unitary U such that U∗AU = D where D is a diagonal matrix composed of the
eigenvalues of A.

We want to show that x∗Ax = x∗UDU∗x for all x 6= 0.

Let U∗x = y = [y1 . . . yn]T . Since x 6= 0, we know U∗x 6= 0.

So x∗UDU∗x = y∗Dy = [y1 . . . yn]

λ1y1
...

λnyn

 = λ1|y1|2 + . . .+ λn|yn|2 > 0 because λi > 0 and at least one yi 6= 0.

Thus x∗Ax > 0 and A is positive definite.

2.11 Trace(A∗A) = sum of square of moduli of eigenvalues of A when A is normal
Since A is normal, there exists unitary diagonalizable matrix U such that U∗AU = D is diagonal with the eigenvalues
of A.

We can write A∗A = UAU∗ UA∗U∗ = UD∗DU∗.

So trace(A∗A) = trace(UD∗DU∗) = trace(UU∗D∗D) = trace(ID∗D) = trace(D∗D).

D∗D = diag(λ1λ1, . . . , λnλn) which means the trace is the sum of square modulii of the eigenvalues of A.
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3 Statements of Theorems
3.1 Schur’s Upper Triangularization Theorem
Let A be n× n over F. Then there exists a unitary matrix U such that U∗AU = T is upper triangular.

The eigenvalues of A are the diagonal entries of T .

If A is real and all eigenvalues of A are real, then U can be chosen to be real orthogonal.

3.2 Cayley-Hamilton Theorem
The characteristic polynomial of an n× n matrix A annihilates A.

3.3 Gershgorin Disc Theorem (include radii, discs, and region)
Let A is an n× n matrix.

Define the Gershgorin Radii as R′i =
n∑

j=1
j 6=i

|aij |.

and the Gershgorin Disc as Di = {z|z ∈ C, |z − aii| ≤ R′i}

and the Gershgorin Region as G =
n⋃

i=1
Di.

(a) Every eigenvalue of A is in the Gershgorin disc

(b) If the union of k of the discs is disjoint from the remaining n − k discs, the there are exactly k eigenvalues
(counting multiplicity) in the union of the k discs.

3.4 Necessary and sufficient conditions for the diagonalizability of a matrix
3.5 Significant of a matrix being normal (A is normal iff A is unitarily diagonalizable)

4 Problems - LOOK AT CLASS NOTES TOO
4.1 Proof Type Problems
Similar to those on problem sets, homework assignments, class tests, and those done in class.

4.2 Computational Problems
1. Finding eivenvalues/bases for eigenspaces

2. Illustrating Schur’s Theorem

3. Applying the Cayley-Hamilton Theorem

4. Eigenvalues of polynomials of a matrix

5. Computing singular values and related computations

6. Jordan Canonical Form and related problems (e.g. J form ofthe power of a J-block)

7. Gershgorin discs

8. Computing singular values and related matters

9. Eigenvalues of a polynomials of a matrix
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