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Abstract

We propose a new method for causal inference based on homological descrip-
tion of the shape constructed from a sample from the joint distribution.

1 Introduction

The fundamental difference between correlation and causation is hard to identify
given only finite sample. Although performing an intervention (controlled random-
ized experiment) can explain the difference, usually it is expensive, time and labour
consuming. Therefore there is a need for context agnostic methods that will allow to
draw conclusions on the causal link.

In the literature there can be found several algorithms for detection of the un-
derlying causal link using statistical analysis of the data. Usually it is assumed that
the underlying causal structure takes a form of a directed acyclic graph (dag), where
arrows are interpreted as dependencies. The value of a node (variable) Xi depends on
all nodes (parents) Xik such that there exists a directed edge from Xik to Xi.
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The existence of an edge indicates the dependence between variables, however
there is no clear way to asses the direction. It turns out that the noise present in the
system (or in the measurements) has strong impact on what can be inferred about the
graph.

As dag formalism provides only qualitative description of the system of dependen-
cies, one may try to asses the systems quantitative properties in the form of partially
ordered set of equations (variable assignments). These equations may be used to
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model functional relationships between variables. The poset called structural equation
model (sem) encodes more information than the dag itself. Usually sem is denoted as{

xi = fi(pa(xi),Ni)
}
i

where i runs over all possible nodes, pa(xi) = {xik} denote the set of parents of the
vertex xi in the dag and Ni are jointly independent noise variables with possibly
different distributions for each i.

Examples of such methods include additive noise model (anm), which assumes
that nodes are sums of functions of their parentsxi =

ik∑
j=1

fj(xij)+ni

 .
and linear non-gaussian additive model (lingam) which assumes that all the functions
fk are linear and the distribution of ni is different from the Gaussian distribution.

The standard approach is to use a function from a fixed class to model the
orientation of edges. Strong assumptions are imposed on the possible class of
funcional dependencies and this allows statistically test hypotheses on the direction
and if certain confidence level is obtained a decision on the direction of the arrow is
drawn. The addition of the noise variables Ni to each node is natural from the point
of view of applications (e.g. measurement noise) and, significantly helps in the step.

In this paper we propose a not-standard way of estimating the graph structure
without relying on regressing the functional dependence. We use the Delaunay or, in
higher dimensions, the Vietoris-Rips simplicial complex to approximate the graph
of the function. Then we create different filtrations by projecting the complex on
different axes and obtain persistence homology diagrams of each. We combine these
diagrams into a single confidence score which is used to infer the orientation of the
arrows.

1.1 Motivation

Suppose that a sample drawn form the joint distribution following density p(X1, . . . , Xn)
of the random variables {Xi}ni=1 is given. The task is to recover a dag G consistent
with p(X1, . . . , Xn), i.e. a graph such that repeated sampling from each node Xi con-
verges to the initial joint distribution. We will use the following assumptions without
implicit invocation.

1. the observed data has been generated by repeated sampling from a dag G;

2. each sample noise (ni) is drawn from jointly independent distribution with
density pN(n) =

∏
i pi(ni);

3. all random variables are continuous;

4. the probability density functions pXi of each node variable and pi of noise have
the same support;
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5. each probability density ni and pXi has at most one maximum, i.e. Xi and Ni
are uni-modally distributed random variables.

The first two assumptions are common in the causal inference framework, hence
we will not comment on them. The third and forth are natural in the sense, that we
do expect to observe the noise across the whole domain of the input variables. This
assumption is similar in spirit to one of , where occurrence of noise and non-linearity@@@REF@@@ non-linear causal discovery??@@@REF@@@ non-linear causal discovery??

of function have to coincide. We discuss the last assumption below.
In the following we will restrict to a simple case of two variables X and Y and

the task of inferring the causal relationship between them. The generalisation to
multidimensional setting is possible and we provide additional details whenever the
two settings diverge.

The motivation for this method is based on the following simple observation.
Assume for now that pX is uniform over an interval and X and Y are 1-dimensional.
Suppose that Y is a stochastic function of X, and the trend function is regular in
some sense (e.g. is smooth). Under the uni-modality assumption, a sufficiently dense
sample from the joint distribution would have the large scale geometry (e.g. its shape
observed from very far away) of the graph of the trend function. This is especially
visible in the case of data generated by lingam or anm models: a scatter plot of
sampled points {(x, f (x)+n)} will approximate graph of the function f , with error
determined by the noise.

In particular, if we can learn that the shape of the empirical density {(xi, yj)} is
close to graph of a non-injective function yi = f(xi), this excludes the causal direction
Y → X. We assume therefore that there is always a causal relationship between X
and Y and this allows us to conclude that the remaining possibility one is the true
causal structure. To asses the non-injectivity of a function without regressing the
function itself we will use tools of computational geometry (i.e. simplicial complexes)
to approximate the graph and then algebraic topology (filtrations and persistence
homology) to produce a non-injectivity score.

We note that the assumption above is limiting and even may be misleading since a
true causal connection between X and Y can be a non-direct one, i.e. there may be an
unobserved confounding variable(s) Z , driving patterns of X an Y simultaneously.

T

X Y

In high-dimensional setting we provide a similar framework. Given X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yk) we can embedd the empirical distribution into Rn+k and ponder
the question of non-injectivity. Note however that in this setting it is possible that
some directions are injective, whereas others are not.
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Example. Consider set of points in R4 generated according to model
X1 = U(−1,1),
X2 = N(0,1),
X3 = X3

2 +N(0,1),
X4 = X2

1X2 +N(0,1).
We may evaluate “non-injectivity” by looking at different projections. It is clear that
when looking at triples (X1, X2, X3) we will not be able to apply the argument above,
however triple (X1, X2, X4) reveals that there is a cause of X4 in the set {X1, X2}.
Further projections on (X2, X4) and (X1, X4) reveal that it is X1 responsible for the
non-injvectivness of X4.

The paper is organised as follows. In the next section we provide a very quick
informal introduction to computational algebraic topology. We recall basic concepts
and provide related examples to ease the effort of the reader. Next we prove basicpain?pain?

facts about expected behaviour of topology of simplicial complexes. This theoretical
results (section 2.3) serve as a backbone for further experiments with data in section 3.
We use both simulated and real world data from . Other existing methods are quoted@@@REF@@@ Cause-Effect-Pairs, CE-

Benchmarks
@@@REF@@@ Cause-Effect-Pairs, CE-
Benchmarks and comparisons are made in section 3.3.

2 Algebraic topology

2.1 Informal exposition

We will only treat triangulated shapes, i.e. objects given as a form of triangular mesh
in Rn. Usually it is enough to specify set F of vertices of the mesh and a list of
maximal simplices (a sets of subsets of F ). E.g. to specify triangulated surface in R3 it
is enough to specify vertices of the mesh and list of triangles spanned by triples of
vertices. Union of all vertices, edges and triangles forms in this case an example of
simplicial complex defined in the next paragraph.

An common example of 1-dimensional simplicial complex is a graph. In computa-
tional geometry commonly used is Delaunay triangulation on the set of points, which
may be defined as dual of the Voronoi tessellation, or the triangulation of the convex
hull on F which minimises the shortest paths distance (or maximises the smallest
angles in each triangle). These triangulations exists in any dimensions, however they
are computationally feasible only in dimensions 2 and 3.

picture points, Voronoi Cells, Delaunay triangulation

Missing

figure
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Given such regularly structured objects one can try to assign some well behaved
fingerprint, or signature in the terms of an algebraic object. In purely mathematical
setting groups and rings are natural choices, however these objects are very hard to
compute with. Thus computational algebraic topology usually settles on vector spaces
over the field of 2 elements (integers modulo 2).

Homology of a triangulated shapeX is a sequence of vector spacesH0(X),H1(X), . . .
is meant to capture qualitative information about geometry of the object. To keep
the geometric intuition we note that H0(X) is a vector space with basis the connected
components of X. Similarly if X is a graph, H1(X) is spanned by linearly indepen-
dent cycles of X modulo boundaries. The void in 2-sphere (approximated e.g. as
triangulated icosahedron) results in non-zero H2(S2) and similarly Higher homology
groups capture higher-dimensional features. Homology groups does not depend on
the particular choice of triangulation (or even tessellation into non-triangular objects)
as long as certain regularity conditions are satisfied.

While homology gives some information about the geometry, this is usually very
hard to interpret without additional information. Usually one resolves to look at
persistent homology which contains information on the evolution of a geometric shape.
Imagine a situation where the geometric shape undergoes a change over time. We
would like to capture information about geometrical features that persists for a long
periods of time as this brings some robustness. We might be interested in the time
needed for two components to merge, or the time required to fill a cycle – in some
cases this can be close to its simplicial diameter. The underlying intuitive notion of
time-based evolution is made rigorous by the concept of filtration.

A filtration on X, is a stratification of X into increasing sequence of sets with well
defined “steps”. For example distance can be considered as a filtering function on a
graph. This filtration arises when we initially accept all points and then in each step
we add edges which are shorter than certain value. Instead of choosing an arbitrary
threshold for the distance it might be more useful to observe how geometry of the
graph changes as we incorporate more and more edges.

Persistent Homology is the rigorous way to capture these changes. We postpone
the definition till the next section, and analyse the following example.

Example. Consider a noisy sample of 100 points drawn from a circle in the plane
of radius 1000 with noise N(0,300)2. We build a full Delaunay traingulation X on
them and filter edges (and triangles) by distance between points. The filtration comes
from limiting the length of edges we would like to accept. That is we have a function
f : X → R which assigns to every vertex 0, to every edge its length, and to every
triangle the maximal length of its sides. While reconstruction of the original density
would be quite hard, the existence of a long-lived cycle indicates that the underlying
density has “circular shape”. Whereas it is not possible to reconstruct the actual shape
from this homological information, it is enough to e.g. claim that the density is not a
simple Gaussian, nor a sum of a few of them.
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sampled circle + alpha filtration

Missing

figure

In the next section we provide some definitions of the tools of computational
algebraic topology. This is by no means a rigorous treatment of the theory. The
interested reader may have a look at introductory chapters of standard textbooks on
homology theory or modern books on topology for computation .@@@REF@@@ Munkres, Hatcher@@@REF@@@ Munkres, Hatcher

@@@REF@@@ Mrozek, Zomorodian@@@REF@@@ Mrozek, Zomorodian

2.2 Language of algebraic topology

Simplicial topology We begin with a definition of a single building block, a simplex.

Definition 1 (Simplex). An n-dimensional simplex σ is the convex hull spanned
by standard basis and 0 in Rn. When we speak about simplex spanned by points
(p0, . . . , pn) we only mean a (abstract) simplex whose vertices has been only labeled
by the points.

Spaces in simplicial topology are build out of simplices which have to interact in a
regular way. Given a family of simplices we would like to take a union of them, but to
make the forthcoming theory easier we should require that the intersections of every
two simplices is again a (lower dimensional) simplex.

Definition 2 (Simplicial complex). A simplicial complex Σ is a set of simplices {σi}i∈I
such that whenever σi and σj intersect, their intersection is again in the collection.

Example (ε-Čech complex). Suppose that a finite set F ⊂ Rn is given. Fix ε > 0 and
consider the following simplicial complex Č(ε):

• we add a vertex vx for every point x ∈ F ;

• for x,y ∈ F we place an edge between the the corresponding vertices vx and
vy whenever d(x,y) < ε/2;

• for every set of (k + 1)-points V ⊂ F : if sphere circumscribed on points of V
has radius smaller than ε/2, we add the k-dimensional simplex spanned by the
corresponding vertices.

The Čech complex, although very useful from theoretical point of view is hard to
compute, as it requires computations of spheres. An variant of a similar complex
which is easier to compute was proposed (independently) by Vietoris and Rips.
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Example (ε-Vietoris-Rips complex). Suppose that a finite set F ⊂ Rn is given. Fix ε > 0
and consider the following simplicial complex VR(ε):

• we add a vertex vx for every point x ∈ F ;

• whenever d(x,y) < ε for x,y ∈ F we place an edge between the corresponding
vertices vx and vy .

• for every set of (k + 1)-points V ⊂ F : if all the pairwise distances in V are
smaller than ε, we add the k-dimensional simplex spanned by the corresponding
vertices.

Note that this simplicial complex is abstract in a sense that its vertices need not to
be points in Rn and its edges (or higher dimensional simplices) represent similarities
between its vertices (e.g. subjects). Commonly used for clustering ε-neighbouring
graph is a special case of the Vietoris-Rips complex when we limit construction to
k = 1. In the following we will use the Delaunay complex in dimensions 2 and 3 and
Vietoris-Rips complex in higher dimensions.

@@@picture VR-complex@@@

Missing

figure

Chain complexes and homology

Definition 3 (Chain complex over of X). A chain complex

· · · ∂n+1-----------------------------------------------------------------------→ Cn
∂n----------------------------→ Cn−1

∂n−1-----------------------------------------------------------------------→ ·· · ∂2-----------------------→ C1
∂1-----------------------→ C0 → 0

is a sequence of vector spaces and linear operators, where each Ck is spanned by all
k-dimensional simplices present in X. The linear maps ∂k are the boundary operators
(assign to every simplex its boundary as a linear combination of simplices of lower
dimension).

In more rigorous way we may define ∂k : Ck → Ck−1 as follows. Since this is a map
between vector spaces it suffices to define ∂k on basis of Ck and then extend linearly.
Let σ({x0, . . . , xk}) be a k-simplex in X, i.e. a convex hull of the points x0, . . . , xk. Its
boundary ∂k(σ) is a linear combination of all of its (k− 1)-simplices

∂k(σ) =
k∑
i=0

τ({x0, . . . , xk} − {xi}).

7



Causes and Effects of TDA Thursday 11th February, 2016 20:06

As such chain complexes are not very robust: a small change in the geometry
of shape we approximate with a simplicial complex (e.g. addition a new point to F )
may result in completely different chain complex with no easy way of comparison.
Therefore we define homology which nullifies these changes.

Definition 4 (Homology of X). We define k-th homology of X as

Hk(X) = ker ∂k
/

im ∂k+1

In our setting homology groups of a simplicial complex are vector spaces. As a side-
note we provide connections to other graph-theoretic notions: the graph Laplacian
can also be defined in the terms of boundary operator: L = ∂1∂T1 . Higher homologies
capture more complex information about geometry of simplicial complex, e.g. one
can define higher Laplacians using higher boundary operators.

Filtrations and persistence

Definition 5 (Filtration). A filtration on space X is an increasing family of spaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn = X.

A practical way of describing a filtration is by specifying a (filtering function)
f : X → R and setting Xt = {x ∈ X : f(x) à t}.

If X is a simplicial complex we would like the filtration to preserve its structure,
i.e. we would like each Xt to be a simplicial complex as well. Therefore we require
additionally that filtering function is increasing on every simplex, that is if τ is a face
of σ then f(τ) à f(σ).

It is easy to see that for a complex with finite number of simplices filtering function
is equivalent to an increasing sequence of spaces as in the definition. Vietoris-Rips
complexes come naturally as examples of filtered spaces. By choosing different values
of ε we create an increasing sequence of simplicial complexes – the function which
assigns to every simplex diameter of the set of its vertices is a properly defined
filtering function.

Instead of fixing (e.g. learning in some way) ε and analysing the ε-neighbouring
graph on F , it might be more insightful to look at the whole spectrum of possible ε’s
and observe changes in geometry of the arising complex as we increase the epsilon.
These changes are captured by persistent homology. A very similar concept for
Delaunay complexes is filtration by α-complexes which we will not describe here.

Persistence homology The changes in geometry are best spoken of using the lan-
guage of Morse functions which we describe in visual terms in 2.3. Below we provide
some motivation behind the idea of persistence. For more rigorous treatment of the
subject please refer to ??.missing ref for theory of persistent homologymissing ref for theory of persistent homology

An n-dimensional persistence diagram is a multiset of pairs (tb, td) ∈ R2. Consider
the case of n = 0. 0-dimensional features of Xt are the connected components of
sub-level set {x ∈ X : f(x) à t}. A 0-dimensional feature emerges when at time tb
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(birth time) a new cluster of points is added to Xtb that was not present for t < tb.
Similarly when the cluster merges with another (because we kept adding points) we say
that the 0-feature dies and record the minimal time td (death time) with this property.
Obviously td á tb and we add point (tb, td) to the 0-diagram of (X, f ). The longer the
feature lives, the more prominent it seems to us, and the further is the corresponding
point from the diagonal. If the feature persists in the last stage of the filtration we
say that it is of infinite life. Note that in the 0-th persistence diagram there will be an
infinite life point for every connected component of the final shape X∞ = X.

Of course such diagrams exist in any dimension. The more formal treatment is
as follows. Suppose that a k-cycle z is a generator of Hk(Xtb) and this cycle is not
homologuous to any other generator of Hk(Xt) for any t < tb. Similarly if td á i is
the minimal filtration level in which z becomes homologuous to 0 we say that z dies
at time td.

Definition 6 (Persistent homology). Persistent homology of a filtered complex X is
the bi-gradation on the homology of X given by

Hi,jk (X) = im
(
Hk(Xi)↩ Hk(Xj)

)
.

Technically speaking persistence diagram in dimension k is a multiset of pairs
(tb, td) where every pair corresponds to a generator z in the kernel of the map on
homology induced by inclusion Xtb ↩ Xtd . For technical reasons we also include
points on the diagonal with infinite multiplicity. These diagrams provide a natural way
of comparing two filtered simplicial complexes. We have a natural notion of distance
between the diagrams and, in certain cases, robustness to noise.

Definition 7 (Bottleneck distance). Let D and D′ be two persistence diagrams. The
bottleneck distance (or matching distance) between them is defined as

d∞(D,D′) = inf
f

sup
p∈D

‖p − f(p)‖∞,

where supremum is taken over all bijections f : D → D′ and ‖ · ‖∞ denotes the
standard supremum norm. Note that since we included all points along the diagonal
with infinite multiplicity, matching some points to the diagonal is still a bijection.

2.3 Theory behind the method

Below we quote several results which we will need to justify the method described in
section 2.4. In the first part we assume that we deal with perfect objects (manifolds
and smooth functions). In the second we will show how to reconstruct a simplicial
complex from a finite noisy sample drawn from M which is close in homological
properties to M .

Suppose that f = (f1, . . . , fk) : U → Rk is a smooth (at least C2) function defined
on a compact manifold (possibly with boundary) U ⊂ Rn. We will consider the graph
of f , i.e. the manifold defined as

G(f) =
{
(x, f (x)) ∈ Rn+k : x ∈ U

}
,
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Figure 1: A graph of mixture of gaussians. In this the case sub-level set are Xt =
{(x,y,p(x,y)) : p(x,y) á 1− t. Critical points of f are points where tangent plane
is parallel to the XY -plane. Note how topology of Xt changes as we increase t.

filtered by the function πj ◦ f = fj . It will follow that if fj is an injective function,
then there are no (non-diagonal) points in persistence diagram (of any dimension)
of G(f) filtered by fj . Therefore, later on, we can conclude that if the persistence
diagram of a noisy approximation of f contains points far from the diagonal, this
can be attributed to non-injectivity of the function fj rather than the noise or the
manidold U itself.

Finally we will show that one can reconstruct a shape close to M and presistence
diagrams of some filtrations on M from a finite, noisy sample drawn from M .

Morse functions and filtrations In the case where U is a manifold, the geometric
features that took part in the definition of persistence homology can be characterised
using notion of Morse functions. Consider the following example.

Example. Suppose a mixture of gaussians T ⊂ R2 is given as a set of points
(x,y,p(x,y)) as depicted in figure 2.3. The (inverse) height function f(x,y,p(x,y)) =
1 − p(x,y) is a valid filtering function. The presistent homology captures exactly
those moments when topology of the level-sets changes.

Morse function of mixture of gaussians (with level
sets!!!)

Missing

figure

We say that a C2 function on a manifold f : M → R is Morse if the gradient Df
has only isolated zeros (so called critical points of f ) and at those points the Hessian
matrix D2f is non-degenerate. We note that Morse functions are dense in the set
of all functions on M . It is a standard fact that critical points of a Morse function
correspond bijectively to changes of the topology of the sub-level sets and those in
turn are reflected by changes in homology.

We set the notation for this paragraph. Let f = (f1, . . . , fk) : U → Rk be a C2

function, where U ⊂ Rn is a compact manifold of dimension u, and let G(f) denote
the graph of f . Let πj : Rn+k → R denote projection on the j-th coordinate.

Lemma 1. Suppose that fj is injective and that πj : G(f) → R for j á n + 1 is a
Morse function. Then πj(x, f (x)) = fj(x) has no critical points and hence persistence
diagrams in any dimension of G(f) filtered by πj are empty.
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The above lemma is a folklor knowledge, but we provide a proof for completeness.

Proof. Suppose that there is a point (tb, td) (possibly td = ∞) in `-th persistence
diagram of (G(f),πj). This means that a cycle in homology of G(F)tb is present
that did not exist for t < tb. By Morse theory this means that there is a critical
point yb = (xb, f (xb)) of index ` in π−1

j (tb). Again Morse theory tells us that there

exists a local chart ψ : Ru+k → G(f) around yb such that πj(x, f (x)) = fj(x) can be
expressed as

πj(ψ(y1, . . . , yn+k)) = fj(xb)−
∑̀
i=1

y2
i +

n+k−l∑
j=`+1

y2
j .

As ψ is a homeomorphism its fj responsible for the (local) non-invertibility of πj ◦ψ.
Thus we arrive at a contradiction as f is smooth and injective hence (locally) invertible
by the inverse function theorem.

Even if πj = fj does not satisfy Morse conditions, one can find a Morse function

f̂j : G(f)→ R such that f̂j and fj are close in the sup-norm, since Morse functions are
dense in the set of smooth functions on every manifold. Note that we can estimate the
persistence diagram of fj by using f̂j instead with precision related to ε by Theorem 5.

Lemma 2. Choose n < j ≤ k and adjust fj to be a Morse function f̂j such that

‖f̂j − fj‖∞ < ε. If fj is injective no persistence diagram of G(f) filtered by f̂j contains
points of lifespan greater than 2ε.

Proof. Suppose that an `-th persistence diagram of the function f̂j : G(f)→ R contains
point non-trivial point (tb, td). Let yb and yd be the critical points responsible for the
point. By Morse theory there exists a flowline γ : [0,1] → G(f) of negative gradient
flow connecting yd and yb. Moreover while fj ◦γ is increasing, f̂j is strictly decreasing
when restricted to the image of γ.

Therefore∣∣∣f̂j(xd)− f̂j(xb)∣∣∣ à ∣∣∣f̂j(xb)+ fj(xd)− fj(xb)− f̂j(xd)∣∣∣ à
However

sup
G(f)

|fj − f̂j| à sup
γ
|fj − f̂j| ≤ f(yb)

, i.e. that locally, around yb π̂j can be expressed as

π̂j(y) = π̂j(yb)−
∑̀
i=1

y2
i +

u−∑̀
j=1

y2
j .

Note that since yb = (xb, f (xb)) locally |π̂j(x, f (x)) − fj(x)| < ε. Similarly there
exists a critical point yd of index ` + 1 such that in its neighbourhood

π̂j(y) = π̂j(yd)−
`+1∑
i=1

y2
i +

u−`−1∑
j=1

y2
j ,
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and locally |π̂j(x, f (x))− fj(x)| < ε.
Since the cell attachment at yd kills cycle created at yb there is a negative griadient

flowline connecting yd and yb of length at least π̂j(yd)− π̂j(yb) > 2ε.

Approximation of manifolds by simplicial complexes It was shown by de Rham in
[] that the homology of a manifold M can be approximated by the homology of the@@@REF: grab the reference from JANKO

LATSCHEV, Vietoris-Rips complexes of met-
ric spaces near a closed Riemannian manifold
@@@

@@@REF: grab the reference from JANKO
LATSCHEV, Vietoris-Rips complexes of met-
ric spaces near a closed Riemannian manifold
@@@

Čech complex (the nerve) of a sufficiently fine, well behaved1 cover of the manifold.
Suppose that a noisy sample F ⊂ Rn of points sampled from M is given. Of course
points in F will not necessarily belong to M , but their expected distance is bounded
by noise. We investigate under which conditions we can use Vietoris-Rips complex
build on F to approximate the homology of M .

Definition 8 (ε-approximation). A finite set K ⊂ Rn is a uniform ε-approximation of
M if the Hausdorff distance dH(K,M) is smaller than ε < r(M), where r(M) is reach
of M .

For a proper definition of reach (using distance to medial axis) please refer to . The@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation...

@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation... reach intuitively means the maximal radius r such that thickening of M in the normal

direction by ε < r does not change the topology.

Theorem 3. Fix ε < 1/8. Let M be a manifold and let K be a uniform ε-approximation@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation...
also: Niyogi, Smale, Weinberger: Finding the ho-
mology of submanifolds with high confidence...

@@@REF: Chazal, Lieutier: Smooth manifold
reconstruction from noisy and non-uniform ap-
proximation...
also: Niyogi, Smale, Weinberger: Finding the ho-
mology of submanifolds with high confidence...

of M . For a radius α ∈ [7
2εr(M),1−

9
2εr(M)], the union of balls

⋃
x∈K B(x,α) defor-

mation retracts on M .

Therefore, if we are given a finite sample F from a manifold M and we know that
the variance of noise is not too large, e.g. locally always smaller than the one eight of
the reach of M , we can approximate the homology of the manifold thickened by noise
by performing Čech construction (the nerve of the cover of F by open balls). This is
however unsuitable for computation, so we ’sandwich’ the complex with Vietoris-Rips
complexes by the virtue of the following theorem.

Theorem 4. Let VRε denote the ε-Vietoris-Rips complex of K. ε′-Čech complex can bemake this precise, ala [@@@de Silva, Ghrist,
Coverage in sensor networks via persistent ho-
mology]

make this precise, ala [@@@de Silva, Ghrist,
Coverage in sensor networks via persistent ho-
mology] sandwiched between Vietoris-Rips complexes

VR(ε) ⊂ Č(ε′) ⊂ VR(
√

2ε) (1)

for all ε à ε′ à
√

2ε.

Note that the inclusions above need not to be a homotopy equivalence for any
ε′, however if the complexes on the both sides of 1 are homotopy equivalent, they
capture perfectly the homology of the Čech complex sandwiched in the middle. To
achieve this one would have to assume ε < 1/10.

The summary of this section looks as follows. The Vietoris-Rips complex approxi-
mates homology of Čech complex which is the nerve of the open-ball covering of a
noisy sample F . If the noise variance is bounded globally by reach of M (or locally by
distance to medial axis), then the Čech complex captures the homological features of
M . Therefore to estimate homology of M it is enough to estimate filtering functions
defined on Vietoris-Rips complexes.

1i.e. all sets in the cover have small diameter, their pairwise intersections are contractible
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Estimation of persistence diagrams As we do not have access to manifold due to
noise in sampling, from now on we will assume that the approximating Vietoris-Rips
complex X build on the points in F is the ideal object which persistent homology we
would like to analyse. We introduce new filtering functions on the complex that are
suited for detection of non-injectivity. The persistence diagrams of these filtrations
will serve as a description of shape of F despite sampling noise, due to result of
Cohen-Steiner, Edelsbrunner and Harer.

Theorem 5. Let M be a manifold and let f , g : M → R be tame (e.g. smooth) functions.@@@REF Cohen-Steiner, Edelbrunner, Harer:
Stability of persistence diagrams@@@
@@@REF Cohen-Steiner, Edelbrunner, Harer:
Stability of persistence diagrams@@@ Then for any dimension k

d∞
(
Dk(f ),Dk(g)

)
à ‖f − g‖∞,

where ‖ · ‖∞ denotes the sup-norm over functions.

Suppose that X ⊂ R2. We endow it with four different filtrations. Let σ be a
simplex in X. We define the filtering functions as follows.

f↗i (σ) =max
x∈σ

{πi(x)}

f↘i (σ) =max
x∈σ

{−πi(x)},

where πi(x) denote projection of x on i-th axis. Note that it is enough to evaluate πi
on vertices. We will denote filtrations induced by these functions as X↗i and X↘i and
refer as increasing and decreasing, respectively.

2.4 Algorithm used for causal inference

Again we will restrict to the 2-dimensional case and provide necessary modifications
as we proceed. We will treat the first coordinate as (values of) random variable X and
the second as Y .

We propose the following algorithm for assessing the non-injectivity of a function
without regressing it first. Suppose that a finite set F ⊂ R2 is given. We build a
geometric simplicial complex X on the sample and introduce four filtrations (on the
same complex) by the filtering functions which are given by increasing or decreasing
projections on different axes.

If F was sampled (without noise) from a graph of an injective function, the approx-
imating complex would have similar shape. Note that graph of an injective function
(filtered by projections) have empty persistence diagrams, except one point of infinite
life which corresponds to the fact that plot of a continuous function on a connected
domain is connected itself. We disregard the point of infinite life and measure the
distance between persistence diagrams of different filtrations on X with an empty
diagram to produce a non-injectivity score.

It is easy to see that if the complex has large non-injectivity score when filtered
along OY -axis, the (functional) causal direction Y → X is implausible. Similarly for the
OX-axis and X → Y direction. If both scores seem large the most sensible would be
to opt for existence of a confounding variable T such that the observed sample is of
the form (X(t), Y(t)). However we just compare the two scores and choose the larger
to be the driving factor, while absolute value of difference between scores serves as
confidence score of our decision.

13
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Non-injectivity score Suppose that a finite set F ⊂ R2 is given. We create X, the
minimal connected subcomplex of the Delaunay complex on points in F . We do it
by first constructing the full Delaunay triangulation and then we continue to remove
the longest edge as long as the graph is still connected. A similar construction for
Vietoris-Rips complex is possible as well if F ⊂ Rn for n á 4. Suppose that the
multivariate random variables X and Y have dimension nX and nY . respectively. It is
worth to limit the construction of X only to max(nX , nY )-dimensional simplices for
computational reasons (we do not expect interesting homology in dimensions higher
than the dimension of the domain).

As the score for non-injectivity hypothesis we propose

hX→Y =max
{
d∞
(
D0(X↗2 ),D0(∅)

)
, d∞

(
D0(X↘2 ),D0(∅)

)}
hY→X =max

{
d∞
(
D0(X↗1 ),D0(∅)

)
, d∞

(
D0(X↘1 ),D0(∅)

)}
.

In the multivariate case we take maximum also over all projections (in the ranges of X
or Y ) as well as over higher dimensional diagrams.

Noisy sample The above method is heavily influenced by outliers in the data. Indeed,
a single outlier can force us to accept very long edges (or triangles) in the complex X
which will engulf the features. To remedy this we propose the following procedure
inspired by persistence.

@@@ outlier engulfing feature @@@

Missing

figure

Instead of choosing a fixed number of points to be removed as outliers we remove
them, one-by-one analysing the geometry of the arising complex each time and
producing non-injectivity scores.

The outliers are found one-by-one using knn method and stored in list. Then
complex X(n) is constructed as described in the previous paragraph using all point
from F except the n-furtherest outliers. Non-injectivity scores for the complex are
computed.

To add more stability to scores we standardise data prior to each removal. This
produces real-valued functions hX→Y (n),hY→X(n) of non-injectivity scores over the
range of removed outliers. The hope is that while outliers can induce fluctuations of
scores, these should stabilise over time (i.e. number of removed outliers). To produce
final stable non-injectivity score of sample F we integrate the difference of scores:

S(F) =
∫
i∈O
hX→Y (i)− hY→X(i)

14
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3 Experiments

We use python for pre-processing and Dionysus C++ library for topological constructs@@@REF: Dionysus@@@REF: Dionysus

and calculation of persistence diagrams.
Both simulated and real-world dataset consist of around 100 pairs, each containing

between 300 and 16000 samples from joint distribution. For each pair and given
threshold t > 0 we perform decisions based on the rule

X → Y , if S(F) > t,
Y → X, if S(F) < −t,
no decision, if |S(F)| à t.

Since prevailing part of the examples were 2-dimensional we implemented only
analysis of H0, even for multidimensional pairs. It is highly unlikely that analysis of H0

alone can reveal much about such examples, hence it serves as a proof-of concept. It is,
however, possible to examine high-dimensional pairs using projections on appropriate
combinations of dimensions.

In the pipeline there is no re-usage of the generated complexes and boundary
matrices which allows for greater parallelisation, at the expense of memory. As the
homology computation algorithm has worst-case complexity of n3 it is plausible that
the re-usage might prove useful for larger pairs. In our experiments simulated data
presented no significant computational difficulty. Our naive implementation was able
to process each simulated dataset (i.e. ∼100 pairs) on quad-core mobile processor in
less than 10 minutes. Clearly the O(n3) complexity and naive implementation takes
its toll for larger pairs. The running time the same when subsamples of size 2000
were drawn from experimental pairs. For processing full size pairs about 6 hours is
required.

3.1 Simulated data

We used the same four sets of data as in [? ]. The sets of data consists of 100 pairs
(samples from joint distributions) in 2-dimensions, generated under different schemes.
Nodes without parents (random variables) are drawn from normal distributions and
mapped to the domain by a Gaussian process function. Functions mapping nodes are
sampled from a Gaussian processes as well. At the end Gaussian (measurement) noise
is added to both coordinates.

sim is generated using simple relation Y = f(X);

sim-g has approximately gaussian distribution of cause and follows (approximately)
Y = f(X)+N , where N is drawn from Gaussian distribution;

sim-ln is similar to sim but the noise is reduced, hence the sample is close to
deterministic relationship;

sim-c is confounded using rule X = f(Z,NX), Y = g(X,Z), where Z and X has similar
influence on Y .
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The shapes of the joint distributions and more details can be found in [? , Appendix C].

@@@ Accuracy scores for simulated data

Missing

figure

For all of these datasets the noninjectivity score clearly obtains accuracy signifi-
cantly better than chance. What is worth noticing, the performance is clearly based on
non-injective functions relating X and Y . In particular all cases where non-injectivity
is visible to human observer were decided correctly. On the other hand, the injective
cases which seem close to an injective function seem to be decided purely by chance
(as expected). Their confidence is similarly low, hence it should be easy to choose a
threshold t for the decision algorithm. In the sim-ln scenario 52 most confident pairs
were decided with accuracy 92%. For the remaining 48 pairs the (normalised) decision
confidence was below 0.05.

3.2 Real-world data

We used the Tuebingen Cause-Effect Pairs as available in [? ]. The newest version
(0.9999) contains weighted 98 pairs to counter the dependence existing in the pairs (a
few of them were drawn from similar experiment or gathered in similar conditions).

Out of those pairs we excluded four:

• pairs: 0047, 0070 and 0071 violate the continuity assumption (variables are
binary);

• pair 0094 does not satisfy the unimodality of noise assumption.

It is interesting to note that in the case of pair 0094 uniform subsampling of 2000
points allowed the algorithm to pick up the right non-injectivity feature. This suggests
that some of few arbitrary choices made in the algorithm (i.e. the number of outliers
considered, the number of nearest neighbours in knn, uniform measure in the score
integral, etc) can be better tuned.
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pair0094: full and 2000-subsample

Missing

figure

We note that in some of the pairs marginal densities were not unimodal as well,
which in the case of significant or uneven noise may lead to answer driven by (observed)
sudden changes in noise rather than the “trend” itself.

To minimise the potential influence of data gathering methods (i.e. one of the
variables is heavily quantised) we also align points to rectangular grid. We do not
expect significant difference in accuracy score. This is indeed the case: since quantisa-
tion introduces small error in estimation of filtering functions, we expect persistence
diagrams (hence non-injectivity scores) to be close to each other by Theorem 5.

3.3 Comparison with other methods

4 Conclusions

References
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