This is not an exhaustive review. In other words, this does NOT cover everything in Chapter 1 and there may be more (or less) of these concepts on your Unit II Exam.

1. The graph of $f(x)=\left\{\begin{array}{ll}\left|(x-2)^{2}-4\right| & \text { if } x \neq 2 \\ 2 & \text { if } x=2\end{array}\right.$ is shown below. Using the graph of f answer the following questions about the differentiability and continuity of f.

Figure 1: Graph of $f(x)$
(a) Determine all of the x-values where f is NOT differentiable.
\qquad
(b) Determine all of the x-values where f is discontinuous.
\square
(c) Determine if $f_{-}^{\prime}(0)=f_{+}^{\prime}(0)$. Does this mean that $f^{\prime}(0)$ must exist? (The same argument can be made for $x=4$.)
\square
(d) Explain why f is not continuous at $x=2$, but it is differentiable at $x=2$.
\qquad
\qquad
\qquad
\qquad
2. Use the limit definition of the derivative to calculate the following derivatives. Remember that the limit definition of a derivative is $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(a) $f(x)=x^{2}-5 x+1$
(b) $g(x)=\frac{6}{x}$
\square
(c) $h(x)=\frac{x+2}{x-2}$
3. For the following functions, find the equation of the line tangent to its respective graph at the given x-value.
(a) $f(x)=x^{2}+\sqrt{x-2} ; x=4$
(b) $g(x)=x^{2}(x-5), x=-2$
(c) $h(x)=\left|(x+3)^{2}-7\right| ; x=-2$
(d) $l(x)=\frac{1}{x+7} ; x=-6$
4. Each figure below contains two graphs: a function and its derivative. Label the function and its derivative correctly using prime notation.
(a) Use Figure 2

Figure 2: Graph of $f(x)$
(b) Use Figure 3

Figure 3: Graph of $f(x)$
5. Using derivative rules, algebra, or other methods discussed in Chapter 2, find the derivatives as indicated.
(a) $\frac{d}{d x}\left(\left(5 x^{2}+8\right)\left(x^{2}+3 x-1\right)\right)$
\square
(b) $\frac{d}{d x}\left(2 x^{3} \cos x\right)$
(c) $\frac{d}{d x}\left(x \sqrt{1+\sin ^{2}(x)}\right)$
\square
(d) $\frac{d}{d x}\left(\frac{\sin \left(x^{2}-9 x+2\right)}{\csc (2 x)}\right)$
\qquad
(e) $\ln \left(2 e^{7 x}-\left|x^{2}-9\right|\right)$
6. Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $2 x^{3}+x y-y^{4}=20 x$

(b) $\cos \left(x^{2}+y^{2}\right)=x$
(c) Find the equation of the line(s) tangent to the curve in part (a) at $x=-1$.
7. Consider the vector-valued function defined below that models the position of a particle in threespace.

$$
\vec{r}(t)=\left\langle-\sin (\ln (t)), t^{2}+4 t-1, t\right\rangle
$$

(a) Find the vector-valued function for the velocity of the particle.
\square
(b) Find the velocity of the particle at $t=3$. Leave your answer in exact form.
\square
(c) Find the equation of the line that is tangent to the curved traced out by $\vec{r}(t)$ when $t=3$.

Final Note: Be sure to study other information from Chapter 2, the True/False questions at the end of the chapters, and the labs associated with this Unit.

