{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"%display typeset"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"\n",
"# Tutoriel SAGE\n",
"(Éte 2017, revue en temps de pandémie, un peu à la va vite)\n",
"\n",
"## Une introduction éclair.\n",
"\n",
"Si vous lisez ceci c'est parce que vous avez ouvert une session du notebook de SAGE, ou encore que vous l'exécutez dans un des serveurs dédiés. Comme bien de logiciels, SAGE peut aussi être utilisé via le terminal, mais laissons de côté cette approche pour l'instant.\n",
"Vous verrez plusieurs \"cellules\" où on doit entrer le code SAGE.\n",
"\n",
"On peut entrer du texte en utilisant `markdown`, $\\LaTeX$, ou `html` ce qui est très bien si on veut écrire des équations.\n",
"\n",
"+ Sur CoCalc, ave un fichier '.sagews' il suffit de commencer le texte par `%md`. Les commandes $\\LaTeX$ incluses seront comprises.\n",
"+ La même chose s'applique sur un notebook `JuPyteR` (comme celui-ci).\n",
"\n",
"\n",
"Faites un double click sur ce texte, on trouvera la source et on pourra l'éditer. Corrigez ceci : $\\frac{1}{2} + \\frac{1}{3} = \\frac{1+1}{2+3} = \\frac{2}{5}$.\n",
"\n",
"Bien entendu, le résultat est $\\frac{5}{6}$. SAGE sait faire ceci, et bien d'autre choses. Pour exécuter les commandes / calculs d'une cellule, il faut faire `Shift + Entrée`. Faites-le après la cellule ci-bas, une fois directement, puis une autre après avoir coché la case"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"5/6"
]
},
"execution_count": 7,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"1/2+1/3"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Si on veut une valeur approximation décimale on doit faire:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 3,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"5/6.n()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"ou encore"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 4,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"5.0/6"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Vous le devinez, SAGE sait reconnaître le type d'objets... pour les rationnels, il opère de façon exacte, on doit court-circuiter un peu ceci pour avoir une valeur décimale."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 5,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"pi+1"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 6,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"(pi+1).n()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 7,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"pi+1.0"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 8,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"numerical_approx(pi+1,digits=50)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Deux astuces importantes quand on cherche à faire un calcul avec SAGE:\n",
"- `Tab` si vous commencez à écrire une commande, puis appuyez sur la touche `TAB`, les commandes commençant comme celle que vous avez commencé à entrer s'afficheront. Vous pouvez alors en choisir une, puis\n",
"\n",
"- ? le point d'interrogation après une commande, suivi de `Shift + Entrée` ramène à la documentation de la commande en question, ce qui comporte des exemples.\n",
"\n",
"Faites `Tab` dans la cellule ci-bas."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"numerical_"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Variables et quelques calculs symboliques"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Faisons quelques calculs symboliques. Il faut déclarer les indéterminées, toutes sauf $x$."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"var('t,s')\n",
"f(s,t)=s*cos(s*t)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"diff(f(s,t),t)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"diff(f(s,t),s,2)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"integrate(f(s,t),s)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"f(1,pi/4)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"integrate(1/t,t,1,2)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"factor(x^2+2*x+1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Pour résoudre des équations, on entre la liste des équations (avec deux signes d'égalité), puis la liste des variables:"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"solve([2*x+1==0],[x])"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"var('s,t')\n",
"solve([s+t==3,s-t==1],[s,t])"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Bien entendu on a intérêt à faire `solve?` puis Entrée."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Listes et repétition"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Faire des listes ou des ensembles est très facile, la syntaxe est presque celle qu'on utilise en maths: $\\{n^2| 0\\leq n \\leq 10\\}$ s'obtient au moyen de:"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"Liste = [n^2 for n in range(11)]"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"Liste"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Le $0$-ème élément de la liste est le premier... euh... un exemple!"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"Liste[3]"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"Liste[2:7]"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"sum(Liste)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Quelques graphiques"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Quelques graphiques maintenant. En 2d, pour commencer."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"C1=plot(sin(x),(x,-3* pi,3*pi),color='red', thickness=2)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"show(C1,figsize=[4,2])"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"show(C1,aspect_ratio=1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"On peut créer les objets graphiques séparément, puis les montrer ensemble. Plus haut nous avons crée le graphique de la fonction $x\\mapsto \\sin{x}$ pour $x\\in [-3\\pi, 3\\pi]$, en rouge. Traçons maintant la courbe de la fonction $x\\mapsto \\frac{1}{2} \\cos{2x}$ pour $x\\in [- \\pi, 3\\pi]$, en bleu et pointillés."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"C2=plot(0.5*cos(2*x),x,-pi,3*pi, color='blue',thickness=3,linestyle='dotted')"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"show(C1+C2,figsize=[3,3])"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Disons que je veux calculer une approximation d'une intégrale, naïvement. Pensons à $f(x)= - x \\ln{2 x}$ entre $0$ et $2$. On va commencer par définir la fonction, puis faire une somme de Riemann avec les points milieux.\n",
"\n",
"+ $n$ va être le nonbre de divisions, le pas ici est donc $\\Delta x = \\frac{2}{n}$\n",
"+ Pour chaque $i$ entre $1$ et $n$, on construira $x_i = 0+ i \\Delta x = \\frac{2i}{n}$\n",
"+ Le point mileu de chaque intervale se construit facilement, c'est $(x_i + x_{i+1})/2$\n",
"+ On doit après évaluer $f$ en ces points, multiplier par $\\Delta x$ puis additionner.\n",
"\n",
"On fera les choses avec des listes, mais bien sur, ça se fait avec des boucles."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"var('a,b,n') # Déclaration de paramètres / variables / indéterminées\n",
"a=0\n",
"b=2\n",
"n=100\n",
"dx=(b-a)/n\n",
"f(x)=-x*log(2*x)\n",
"PtsX=[2*j/n for j in range(n+1)]"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"On crée la liste des points milieux."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"Mil=[(b-a)/(2*n)+j*dx for j in range(n)]"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"On évalue $f$ en chacun de ces points."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"F=[f(Mil[j])*dx for j in range(n)]"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"On calcule la somme, en mettant `.n()` à la fin, pour forcer un résultat en notation décimale."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"sum(F).n()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Mais bien entendu SAGE peut faire le calcul exact de cette intégrale (et plusieurs autres)."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"reponse = integrate(-x*log(2*x),x,a,b)\n",
"reponse\n",
"reponse.n()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### COURBES ORTHOGONALES\n",
"\n",
"Un autre exemple : dessiner les courbes orthogonales aux courbes $y=c\\sin{x}$. Pour chaque valeur de $c\\in \\mathbb{R}$ on considère la courbe $\\mathcal{S}_c$ d'équation $y=c\\sin{x}$.\n",
"\n",
"Ci bas on a dessiné les courbes corerspondant aux valeurs de $c$ qui varient entre -4 et 4 par pas de .5 (la dernière valeur est exclue, il s'agit d'une liste) elles sont en bleu dans la figure plus bas."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFACAYAAACGFLQCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsfXd4FGX39klIQHqR3pXepEjvvQhIkyYgXQQJvYMUpUkRRMQCil1RXwsKAgrSLIgU6RBKQguEkF422d15vj/u7/xmdna2Zsts2Pu6uDS7szuz8zxz6n3OCRFCCAoiiCCCCCKIIHSDUH9fQBBBBBFEEEEEYYmgcg4iiCCCCCIInSGonIMIIogggghCZwgq5yCCCCKIIILQGYLKOYgggggiiCB0hqByDiKIIIIIIgidIaicgwgiiCCCCEJnCCrnIIIIIogggtAZgso5iCCCCCKIIHSGoHIOIogggggiCJ0hqJyDCCKIIIIIQmcIKucggsghEEJQcnIyBdvlBxFE4COonIMIIocgJSWFChcuTCkpKf6+lCCCCCKbCCrnIIIIIogggtAZgso5iCB0iFWrVlFISAhNmzbN35cSRBBB+AFB5RxEEDrD8ePH6f3336ennnrK35cSRBBB+AlB5RxEEDpCamoqDRs2jLZu3UpFixb19+UEEUQQfkKYvy8gUJCQQHTgANG5c0RpaUS5cxNVqULUujVRtWr+vrog7OHyZaLDh4nu3CFKTCQqVoyoaVOiFi2IChf299VZ4uWXX6aePXtS586dafny5XaPzczMpMzMzP/7Ozk52duX51OYTER//kl06hTRrVtEefIQlShB1Lw5UZMmRLly+fsKg7AFtbwMDyeqVQvysnJlf19dYCConB3g4kWiFSuIvv2WKDOTqGRJCHSDgej2bSIhICymTyd67jmi0GAsQhcQgmjHDqK1a4lOnoQgL10aa3f/PtHDhxD2Q4YQzZ0LweFvfPXVV3Ty5Ek6fvy4U8evWrWKli1b5uWr8j1SUrBu27YRxcRgnSpWJMrKwtoZDBDwL79MNGECUcGC/r7iIBinTxOtWkX0ww9YrxIliIoUwZrduoVjWrUiWriQqHt3opAQ/16vriGC0ITBIMSMGULkyiVEpUpCrFkjxM2blsckJQnxzTdCdOkiBJEQbdoIceOGP642CCWuXhWiY0esSffuQnz/vRCpqfL7kiTElStCvP66EBUrChEWJsSCBUKkp/vvmm/evClKliwpTp8+/X+vtWvXTkydOtXmZwwGg0hKSvq/f7du3RJEJJKSknxxyV7B558LUbq0EI89JsTkyUIcOyaE0Si/n5kpxJEjQowYIUTu3Fi/PXv8d71BAKmpQkyYIERIiBDVqgmxbp0Qt29bHhMfL8SXXwrRqhWeza5drY8JQkZQOWvgxg0hGjbEw79qlRAZGY4/s38/BEWhQkJ8+63XLzEIG/jmGyHy5ROicmUh9u51fLzBIMTSpVjrJk2EuHvX+9eohe+//14QkciVK9f//SMiERISInLlyiVMJpPD70hKSgpY5WwwQLgTCTFwoBDR0Y4/c/26EJ064TMzZwrhxC0Kwgu4eFGI2rWFyJ9fiI0bhcjKsn+8JAmxc6cQZcsKUbSoc8/po4igclbhv/+EKFNGiCeeEOLkSdc+m5AAwRISIsSWLd65viBs4403IKiHDBEiJcW1z544AWFRvrwQZ8545/rsITk5WZw9e9biX+PGjcXw4cPF2bNnnfqOQFXOaWlCdOgAA+n99137rCQJsWGDEKGhQvTt65whHYTn8PffULC1awtx4YJrn42LE+KZZxC5+ugj71xfICOonBU4exYbrWFDIe7dc+87zGYhpk6Fkli/3rPXF4RtbNqEez5nDgS2O7hzR4gGDYQoWVKIS5c8e33uwFFYW41AVM5paUhB5M8vxKFD7n/PTz8hFN67N0LfQXgfx44JUaAAwtQJCe59h9EoxPjxeHY/+8yz1xfoCNKX/j9u3iTq0gXEkwMHiEqVcu97QkOJNmwgmjePaOZMok8/9ex1BmGNjz4imjIF93v1avdJJmXLEv36K1Hx4kSdOmFPBOE9mEwgUR47RrR7N1Hbtu5/V69eRN9/T7R3L9GYMSAEBuE9XL2Ke16vHu55kSLufU9YGNF77xGNGkU0ciTRzz979DIDG/62DvSAjAwhGjcG8ctdj1kNSRJizBiE6o4d88x3BmGNo0eFCA8XYtw49z1mNe7cAX/g6af9SxJzFYHmOc+cCcLlvn2e+84dO+CFrVjhue8MwhJxcUJUrSpE9epCPHjgme80GpGWyJdPiHPnPPOdgY5HXjmzEn3sMeQdPYnMTCGaNxeiQgXPbeIgZNy5gxB0mzaeD2WeOIE9MXKk55S+t7B582ZRq1YtUb169YBRzp9+CiW6caPnv3vJEnz3L794/rsfdZjNyBM//rgQ16559rtTU4WoU0eIGjWESE727HcHIh555bxtGx5kbxESbt0SokQJlFuZzd45x6MIsxn3tEwZIe7f9845WIEEClklUDznq1eRYx4xwjuGjyShhK50aSFiYz3//Y8y1qwB4dVbhs+lS8hjDx6sf6PY23iklXNUFDbCmDHePc++fRDyQQa358DMbE+GRLXwwgsoj1PXuOsRgaCcTSYhWrdGNYQ3vaOYGCGKFxeiT5+gkPcUzp9Hmm72bO+eh1MTn3/u3fPoHSFCPJrUCSGIunYlunQJLea83cbxpZeIPvsM5wq2r8serl0jqlsX93TDBu+eKzERpJeaNUF80XMHuOTkZCpcuDAlJSVRoUKF/H05mli7Fh3ZDh0iatPGu+fauZOoTx90Ghs71rvnyukwmdDZKzkZ7VQfe8y75xsyhOi334guXEBXxkcS/rYO/IX334d15qvuQklJIBl16hS05LMDSRKiWzeQ95Rdv7yJX3/FXvnwQ9+cz13o3XO+elWIPHlABPMVRo1CeWQwvJ09cDj7zz99c77YWOS1Bw3yzfn0iEdSOcfF4YEdNcq3592zB0L+yy99e96chC+/xD386SffnnfYMHAH4uN9e15XoHfl/OyzIEempfnunLGxQhQpIsTYsb47Z07DzZtC5M0rxPTpvj3v55/jWd+927fn1QseybB2RATRxx8TRUa6X8/sLvr1I/r3X0xKypfPt+cOdCQnE1WvjvDa//7n23PHxBDVqEH0wgtEmzf79tzOQs9h7T17iHr0IPr6a6KBA3177nfeIZo0CROuWrTw7blzAoYPR/1/ZCSRL7eVEEQdOhDFxhL99x8mWz1S8Ld14GucO4fayrVr/XP+q1dBqli61D/nD2QsXIjyJn+Rs954A20ineym6TPovZQqMxPlMe3b+yelYzKhZr1Ro2DFhKv46y94r1u3+uf8J08inL55s3/O7088cp5zt25EN26AmJU7t3+uYd48ok2biK5cISpf3j/XEGi4e5eoalWiadOIVq70zzVkZWG0ZJ06IBvpDXr1nDdsIJo1C0Sip57yzzUcPQoC2pdfgmwUhGMIgUiDwUB04oT/5mePHYsRlFevEhUt6p9r8Ad0zD31PA4eJNq3j2jNGv8pZiLMMs2Xj2j5cv9dQ6Bh6VLcs7lz/XcNuXMTvfYa0U8/Ef3xh/+uI5CQkgJjauxY/ylmIqLWrdFuctEiIqPRf9cRSPjmG7RW3bDBf4qZCHIyKwtzoh8lPDKesxBE7dsTpaURHT/uWv/lyEiiHTug3CMjieLiUEpQsyZR48ZEffviu135zrVriRYsgPf8xBMu/phHDJcuwVtdvx6es7MQgmj/fljdf/6JYe8GA1GxYli7Dh3Q27lqVee/U5KIGjUiKliQ6PBhfQ2L16PnvHIl0bJl8HoqVHD+c/HxiE7s2kV09iwiJ2FhKKtp2BD56759XcuBnj1LVL8+0dtvE02c6PpveZRgNsOYqlABfAFXcOkS0RdfEP31F9H580QZGVi7qlWJmjZ1T14uWkT0xhuIevqaJ+QvPDLKef9+os6d0Vi9Z0/nPnP2LELQu3dDCLRrhw1bvDhRejre//tvoqgoEJUWLgR5wpla2PR0oiefhJDZvj1bPy3HY/hwKMLISKI8eRwfL0lEn3yCCMnFi7jP7doRVakCo+rhQ6LTp4mOHIGx1rMnrPK6dZ27nl9+IXrmGeyLHj2y99s8Cb0p58REGJ7DhxO99ZZzn3n4kGjdOhyfnk7UrBlR8+ZE5cphXe/cgTd37Bh6E0REYOCJs4MXRoyALLh+3fu1uoGMr74iGjoUCrZ5c+c+89dfkIG//471YHlZsCBRZiYckYMHYSTXrAmjbeBA55R0fDz20rhxMNIfCfgz4e0rSJIQLVsK0bSpc4QUgwFlA6GhaO7+0Ue2ByBIkhAHDwrRrx+IEy1bCnHlinPX9eabOMfly87/lkcNkZG4R84SQi5dEqJFC6xFv35YG1trnp6O2uVq1UASnDULa+8IkoSe6a1aOf87fAG9lVItXgwC3927zh2/YwfKnvLnF2LePHT5soWbN1EvnS8f5nD/+KNz57h0CQSjd9917vhHESaTELVqoQWqM0hOFmLCBDxzTz2FdbT1HEkSRoM+8wyO79ABnRqdgav7KdDxSCjnvXudb4R/4wZYnblzo/DelYEKBw5A0BcsKMS33zo+PiMDgsXb7UMDGWPGoEeyM9Ohvv0W7VirV4dSdhYGA6YY5c4NpXvnjuPP7NyJPXX4sPPn8Tb0pJyTk6Fop01zfKzBgHUmQtMJV3ql37wpC/rZs6FYHGHgQCGefBKTkIKwBvcScGaa3rVrUOT586M9sSts+L170ZipWDHITkdISBCicGHf11v7C4+Ecm7fXogmTRx7zadPQxE8+aT7E6qSk9G0nQilN47w+utQCo+KNegKbtwQIixMiPXrHR+7bp0s3FNS3Dvf338LUa4c9sB//9k/1mwWol49570Lb0KPpVQbNmDtHJW9JSYK0bEjOodt3+5eqZUkyWVuvXvD6LWHkyeDvZttQZKEqF8fXfgc4Y8/0L+8alVEJNzBw4dCdO6MyNW2bY6PX7AABnhCgnvnCyTkeOV8/DgexG++sX/cv//CKmvUKPsznSVJiLlznZsrm5gIT3vevOydMyciIgIt/By16Vy2DPd6/vzs19HGxAjRsCHOe/q0/WO/+ALn9fSoUXehF885Kwse0YgR9o9LSoLRXKQIQp3Zxe7dCHt27+5YQffoIUTdusG6ZzV++w17+tdf7R/3xx9IKbRti46L2YHRKMRLL+G877xj/9i7d+HMrF6dvXMGAnK8ch40SIgqVeyHu86fhzBu1gwCw1NgpfHmm/aPmzkThkFwhqmMhASEyl55xf5x776Le7x8uefO/fAhjLTHH7fvERiN2Ft66f+rF+XMbRftRR/S0jCHu3BheLKewm+/odXkM8/YD1sfPoxr3LnTc+fOCejRA3lje0bu6dNYt7ZtPdeKVZKEmDoVa/LJJ/aPHTsWo2Kd4YcEMnK0cr5+HaGut9+2fUxcHMbX1asHoexJSBJIRiEh9gkrt245H759VLB+vRDh4fbD/T/9hPWNiPB856n4eOTSqlQR4sED28e99RZCcrduefb87kAPylmShGjQwH5YVJKEGDIEnpc3Bins3Yvn6aWX7O+LFi1ASAoCOH8eyvHjj20fExUlRMmS6Ljm6W0mSeAehIfbz0FfuIDr3L7ds+fXG3K0cp45E2QDW9ad0YgpUcWLO88YdBVmsxD9+8MLtOdJvPCCEOXLIyT4qMNkEqJyZSGGD7d9zOnTEO59+zpHAnIH165hb7RpY3tdkpORlli40DvX4Ar0oJx5gtdvv9k+Zu1aHLNjh/euY9s2nMMey5+JT3prx+ovjB0LgqotEmxGhhCNG+PZtGewZgdZWchBFykC58oWevcWok6dnD3hL8cq57Q0TJ6aNcv2MTNmwOv5/XfvXktqKkgW1arZDl2fOgVB8b//efdaAgHffYd78e+/2u+npqJXc/363p9wdPQo9og95TtlCpS4ozynt6EH5fzss1gXW0Jz3z5EO3zBsYiIgBdmi3WclYXw6IQJ3r8WveP+fZDyVq2yfcz48TjG2xyLhAREM5s0sR26PnAAMsLbstufyLHK+cMPsXhXr2q///PPeH/jRt9cz+XL8J5feMH2MS1awGp81NG2rRCtW9t+f8wYeM3uMkRdxYoVSE3YEgSXL2MvffSRb67HFvytnKOjoXjfe0/7/Xv3YMR06+a9aIcSmZngkVSqZDsEu2wZ9pKeR4H6AitXgkxnK7X38cfY484wqj2B48dB/IqI0H5fkoSoWVM/fA9vIEcqZ0lCTsRWmcuDB0KUKgXSiC/DIrzBv/hC+/1PPsH7zjYxyYk4fdo+u55DkR9+6LtrMplQjleunG1mao8e2HP+CLPppZRq0SKE+LVK2SQJKYgSJTBj2Ve4cQPXZKuXQEwMvOtHme9hMsGAsTXfPjoa99AR+97TeOst+ymSjRvBLbDXrCaQkSOV87FjWNSfftJ+f8AAMHH9UVs8aBDOrdVoISMD782Y4fvr0gsmTkSoUYtpGxODXNTgwb5Xgrdvg79gy1LfvRt77o8/fHtdSvjTc87KQn34pEna77Ph+d13vr0uIeT8sy15MGwYehs8qmVVu3bZbjpiNiOaV76872uLzWYQ9ipX1jb4EhLAzPdkpYaekCOV8wsvwBLUCp39+KP3ySj2cP8+FPDgwdrvz5qFXLkzHbFyGlJTYaEvWqT9/uDBCItmt67SXXz2GfbO7t3W75nNyJONHu3762L4Uzl//bVtctXduyi9sUfw8yYkCVGyMmXQV0CNP/5wrrY3p6JXL9T2axm8W7fi3uzd6/vrEgJpyXz5bIe3x4xBTb0v0iS+Ro5TznFxIC1oFamnpkJpd+/uX5YfC3ktSz4y8tEoE9DChx8it3vjhvV7zBH47DOfX9b/QZLgRVSurE1Ee/VV8ArcqVffsmWLqFevnihYsKAoWLCgaN68uditZQXYgT+Vc8eOtnkCw4cjnO3pUkVXcPMm1mbqVOv3JAllc7YM5pyMqCg8c++/b/1eXBwcCV+Hs9XYuBHP/tGj1u9xk6mcWK+e45Qz5yG0wsbz5kFx2yKJ+Qos5KtU0WYjdu0KIsujhubNtetj09NhVHXt6v/SiStXsIfmzrV+7+ZNCLqtW13/3p07d4pdu3aJy5cvi8uXL4sFCxaI8PBwce7cOae/w1/K+dIl2+0wudnHBx/49JI0sWYNCGtaTU/WrwcByV9RGX9h8WLbPIEJE4QoVCj7HROzC7MZzO2GDbU95MaNwfnIachxyrl+fUwjUuPCBSjtZct8f01a4OtZudL6vW++gUC7cMH31+Uv/Pef7VKyFStwr/QyvevVV21fT/fuMDI8gaJFi4ptLtBj/aWc581DKkZdSmY0ottU06b6yOdmZaFlZ8uW1kZebCyIYb6q3tADzGYYvePGWb/3zz8wNDdt8vllaeKvvyAftDz899+H0eXMwJpAQo5SztzQXivE0bs3coLu1qKazUJcvIi81Fdf4Rz//JO9OtsZM5BPUW8qgwHCTss7y6mYNg2dh9TNPmJi0OjemelGtpCSgr3x/ff499tvUKzueuHp6chz9e1r/R4bVufPu3+9JpNJfPnllyJ37tzivJ0vMhgMIikp6f/+3bp1y+fK2WRC4wotItjmzRDw//zj3ndLEry2/fsxcWzHDvy/K1Or1Ni3zzYxbeBAKG9/R2d8Ba4VVoeLecRu/fruT+4ymcA/+PlnRFS++w5/Z6fJ0ogR4JyoiWmJiSgDe/11979bj8hRyjkiAiVS6g119Kh7U2jMZgiD559H7oXI+l9YGHJtW7a4nmtMTAQDeOJE6/defhlCLycSHdQwGrFuWgp43DjcI1frUJOSoBxat0YTEa21K1UKTN0jR1wXyMwbUI+mzMyEAHGHcX/mzBmRP39+kStXLlG4cGGxa9cuu8cvWbJEEJHVP18qZx7Hqmb6JifjPrgzDvXiRUwfqlJFe92I0IRmwQKw6F1F164YK6pWFPxb/vrL9e8MRIwYgcZI6r3P41D37XPt+0wmML8HDUKoXGvdcufG/f/sM9cdmzt3wBuYPdv6vSFDhKhdO2cZVjlGORsMEOLqjmCSBAHdoIFrobUDB5DjYEGweDE8ruvXoVTv3kUHqy1bkO/IlQtlPitXuuadr10LBa/OgzPRwZkZ1IEOLkNSdx46cwael6PBIUqkp8OCLlYMa9KzJ9bo2DF4XHFxWMNffkE4tnp1nLtRI9dmQJvNyHU1bmwtEKZPh2JyZRa4EEJkZmaKyMhIcfz4cTFv3jxRvHhx3XvOQ4eCTKW+B0uXIjfvSs/x69dR5kiEyNHYsYhEXLoE4ywxERGPHTvwXuHCEPbjxrmmpE+dwr5ST0Aym1EyZKscLCchKQllSOqpeSYTogcdOjiv6CQJnnHNmli7unWFeO01NO25fRtE3Pv3MXls40a0w2XjePNm156TRYtw3eoy2F9+wXceP+78d+kdOUY52won/vSTa0ouMRFWGBFyhwcOOLdJb91CG8ewMMw3dbbeNT0dzS2ef97ydUlC79hHgUE6dKi21duvH+pPnX14//oLyjY8HNEIZxSD2SzEnj3ozkYkxMiRzpOCOCyoHmpy9qxnano7deokXnzxRaeP93XOmcOJ6sqIBw/gOTkbPTCZ8B2PPQbl+MEHzq15UhIMsZIlQVx6/33nFcqIEVAOaiLU7NmIkuX0HvfbtsFAUc/b5nr0v/927nvu3BGiTx98pls3PIPOrEFkJJ61kBCEz8+cce58CQlwgl5+2fJ1kwmlcpMnO/c9gYAco5yffRbEEyXYCmzf3rkNc/w4lEGhQkJ8+ql7IZKLF6HUQ0NhJTrzHe+9h82tnh+8di28j5zcWjA5GZawuqfviRPOt8SUJAj30FDsgYsXXb8OsxnCvWhRlEo5O8awfXtEZdTr3LChEM895/p1KNGxY0cxcuRIp4/3tXLeuhX3XO21zpgB5ezMcITYWAyfCQlB1EuLNewI8fGoLyeCQedMeikqCs+WuoEFExNtNSzJKWjdWoguXSxfMxiw97UItVo4cgQGTunS7s8EOHECTkju3I5nOTNWroQBri65nD0bEbOcMkoyRyjn+HhtpuWnnzpvBX79NTZI48aYRpQdGI2YiEUEC88RqSIrC952r16Wr8fE2O9VnBOwfbu2Bd+7N/Jhzty7ESNwrxcscJ/AwoiKQoj7scdAQnKEQ4e0vWQ2rLSaXmhh/vz54vDhw+LGjRvizJkzYsGCBSI0NFTscyHx52vl3KqVdenbnTv43c5URVy6BGO4ZElwO7KLH36AUVCnjnPM3UmT4CWrDYK6dXN2xOrGDezZTz+1fH3TJsgbZ8iM27YhSti2bfZLrTIyICeJ4Pk6Sj+mpmLPqBv+nDuXs4YH5Qjl/MEHEPDKB9JsRi5MrfDsff755z1rdb33HvKevXo5/l4mGJ06Zfl6ly7wznIqOna0nqnL+XZHDUeysjCOMzzcdr9yd5CejtRGaKhzPbw7dcI8cKVQuXULe8rZZjJjxowRlSpVErlz5xYlSpQQnTp1ckkxC+Fb5cwCXr1GM2ciF+zIKPnvPzQmqV1bu+mMu7hwQYgKFaD0HX1vdDQUzLp1lq9ziN2Pw728itdfx+9TRhgMBqTXnGk4wj2vJ0zwbPj/3XfxzD3/vOPv3bgRx6rnEDRujChqTkCOUM6dO1sL+G+/dY55uWMHhOhLL3mnFnPPHjwIvXrZz6MZjSj1Ulvs3DXLHVaq3mFLgfXpAxKePaZ6VhbIQ+Hh3glBms0QPs4YCVwNoPa027e3Dh16E75Uzq+/jnSE0ut8+BBs2gUL7H/2/HmEHxs18k7Tj6goML3Ll3c8p33sWIRlle1yb97Ux5Qxb6FhQ5SNKbF1K55FR70VNmzAvZk50zvM6K+/hsE0cqR9eZyRgZC6mpKxcSNkgq/7gHsDAa+c792zDv1KEjZgx472P7trFzbC8OHebZKwZw9C5mPG2N/Q77yDB0TZ3CIhAZ994w3vXZ+/sHo1BLzSgr940XFHKbMZJLLwcO+27ZMkTOoJC3PcW7hDB3QxUq4vN0fw9tQcf0yl0hLwS5diPe3VId++Dc+2Xj3vcinu3IGxW7OmfQMgMhJrtHmz5evt2uXM8a3czU0Z+jUaYcwMGGD/s5wmnDvXuyVLn3+O86grb9RYvRqyURkxvXPHtYiVnhHwyvmttyA8lQ8gl+bYy2MdOwaPtk+f7OcpnQGPi1y71vYxGRmw4seOtXy9b18I/pyGevUQPlZi3DiwLu2lARYvtj9W0pPIysLQhPz5UTpnC1zKoSzHevjQt12nfOU58/xqpYBPSQGZztaAAiEQ6q5XD8rZF5GgK1dQ0taihf3yxuHDcU3KyBaT3XJa16lly5CXV0YKeAyrvf194AD28ujRvqkl3rQJ12RvlGdiIsi76rrntm212wAHGgJeObdqhVpWJTp3tvZilLh7Fw0+mjVzv2OYO1iwAFaduvRGiTVr8BAoy4B27MBGjYz0/jX6ChcuWJchxcTAEtYaWsL44gt8TqvtqbeQmor9VLGi7eENkgTFo96LffpYVxF4C75Szq++iq5tSgG/fj2M5Oho7c+YzbgXhQtnr3uaqzh2DAQ1exVp589bD5vhiFVOmvMsSYgkKPPKkoRSJnvKLCoKhleXLr4tMZszBwaSvWlhc+diLyqjMG+/Da6PM9UCekZAK+foaGvWIdeY2uoGZjSiCL5sWd/PczabETrKn992bic5GQJMaQ2mpeEzr73mm+v0BZYtg9WrNI7mz8eDZitfdOEC2p0OH+77TkDR0ciT9uxpOwXC0RHlrApfGla+UM48wUk5/jErC2SiUaNsf27lSv+VKH3wgeNUSc+e6AOu3FfPPguvO6fg9GncB2Xjud9/tz8uMzMTTkylSr6fKmYyoZvY44/bJvfdvQvjS9lMRSvVGYgIaOWsxTocPx6K1xb5avFiLNyRI765RjVSUyHc6te3HbqdNQuF9qmp8mvPP48SkZyCOnUsLfjkZPxmW40rMjIgPGvWtLwvvgQPpVfXZDMyM62VVFoa8rD2ogGegi+U85kzuAc//yy/xgYlvvgyAAAgAElEQVTIf/9pf+bQITxzr7zitctyiHHjIMTV1RCM/futU2HckMOVLmd6xrx5MDCV3m/fvngWbRm7U6cikqduz+orPHyI2uvmzW2nH8eNg8xX/q7OnR1zjvSOgFbOalLKgwdQ1uqWdIzff0dY2d8e6OnTCJlNn679flQUhNmWLfJr3O/WhQmCugXXIyq9qA0bEBZV1zszJk+GcLWlAHyF+fOxNocOab+/bh2EmZIE1r+/bzgDvlDOCxcixKk0flu1sl3ul5QEr6tNG//2ic/IgEFct662USxJMP6UaYmEBKylK+1j9QpJgpJThvevXbM9y1kIDIkh8v9kqj//RJh68WLt97lxzFdfya8xZ8DbZExvImCVsxbrcMUKKGetXENyMnKG7dvrY5gEDxC31Vb0uedQTsQh1IwMhHz9bVh4AkuWIHTPQtJsBltU3cKU8fPPuFdqRq0/YDSiu9ITT2h3s0pIQOj91Vfl15h9aisf6yl4WzlLEtZJSVj891/7rUpHj8a+vX7dK5fkEv77D8p2zhzt9z/6CL9F2WGuZ0+sd6Dj77/x2w4ckF+bPh2etNYAirg4NPp49ll9DJNYtgzK1lZb5PbtMUmL8fAhjP233vLN9XkDAaucly/HQ885y6wshDa0ZpMKgV7L+fPrQ0gIgQ3ftStYolrtBrl2dvdu+bUhQxAtCGRwzvKFF+TX9uzBb9V68BITESru0UMfQkII5I/z5rXdx3f8eFwzh+GSkhAp2bDBO9fjq1Iqbqmq7I0yciQ8Y62Q4w8/OM71+hqrV8Nb1EprGQyonVWuK3ewC3TW9vTpqARhxyQ5GZyP+fO1jx82DBESX/NybMFoRO67Vi3tyMd331kPvujRI7ANq4BVzk8/jdFkDGbxnj1rfSwPKNCbFXX9OrysKVOs35Mk/MYePeTXvv4avyO77UX9Ca2Qdp8+1mQcxvjxMMJshbv9BY58aE2yOnXKuimJLzwwb3vOHNLm3N79+zA6tOboJiWhJK53b/0YVUJAObVsidawWpUaCxZAaTGvgT0wPURt3AWHtJWjaTdtQqhYK5/OKbSPP/bdNTqDM2ewFlqtYY1GGIlKo58bOAVqaDsglXNUFDbPl1/KrzVrpt00wGDAg9imjXcbjbiLdeuwgbQIF9y1h5mKKSnIu6rbDQYS1BGP6GiEq9591/pY7lutzL3rBWYzhHytWtrlJS1bWhJSfCEovK2ca9e2FH7LlyOCoMXinToVkSq9GVVCgPUfHq4t5G/cwDpt3Sq/1r07mpIEKthY5IiHJEEmavUPZ6OqZ099GVWMBQtgEGpVu6xZg/e41/eDBzBAtGRLICAglfPGjVgElkEnT2Lz/fCD9bGrV2OB3CVSSRLy2+++i3BXnz5oStGjB0Loq1cjBO1uHttoRBvDevWshXxKCqz4hQvl15591jK3Emho3NiSxLdoEZoiqPO3RiO86WbN3DeqDAaQAFeuhAfety8UZt++WMvt261787qC06dhWGgZS5xnZiESF4d96E1Dw5vKmRuPfP89/jYakUYaP9762FOncF/WrHH/fA8fosnMvHngX3Trhh7mzz2HUOzOne5NsGLMnw9DV2v9e/bEM8nKiccrZnfAg7+weDEqIVi+MDNdK+ozezYMLneNKklCbn/LFrREfu45OE3PPIMqhnXrkL5yV16mp2NIUOvW1nLh4UOsqTKS06FD4DYkCUjl3K6dZbj3pZcgKNR5r9u3Yb1Pner6OZKT0c2rTh1s5Fy54Dk88wyEe58+eIALFMD7xYohbOTOuMITJ/Dwa7EiJ01CrogfLK6lDcQcGPcs5iEVmZnI8WkNt9+yBcf+84/r57lwAcq3UCF8R6FCcopg8GD8t0YN3HMirOMbb7g36GDyZOwB9XoYDBjsoMxfdukCBeMteFM5c6tVJg/9+CPunXq0ptmMspc6dVxvWGE0InfYpQuUOxFInKyUBw2CcVWuHN4LD0fY/LffXPfy0tIQ6u3a1fqzPAOe9x57YHqM4DiDevUs69IHDUJJovp3X76Me6okMzqLBw9gBFetinsXFobzdukCY/zZZ1GxkC8f3i9ZUohp09zjALFxodXzftgwRAX4t3EHyUDstR1wyjk2Fg8uh51SUuB5adVQDh2KTeDKwqSnY5MVKwbvfPBgCCJbM2JNJlD958+HoiHCZnR1040di3OqQ4RcJsCsdM6Bvf22a9+vB7z1Fh5+nljE9bFqnkBcHO7FmDGuff+VKyhbIoJinD8fXpwtKz05Gfe1f3+sdbFiUELKzleOkJCAcw0bZv3eggXYm7x33n0XQt4bwx6E8K5ybtbMcs5v794weNTYtg33//Bh579bklBDXqsWPtu8Ocp77HlvkZEwZuvVw2fq13fc/1wNNjCUpEshsF8qVrQcSdipExR5oOHqVUv5cf8+nkGtXv09e8JgcWX/JyWh+qJAARhvI0ZgHWx9h8kEz3nmTDxvoaFIlbhKPOvfH4NN1ExzbqrCUYFbt5wbXqNHBJxy/uADLCg31+fhAuoyFc5XOjPyj3HkCKyu8HB4c66GdgwGXF/ZshD2q1Y5H76JicEG1/Lymze3FAze9sC8BbWAa9cOXAA1Jk2Ct+tsGNFkQrgsTx4I1e3bXR/9efs2zhsejnGDWiE/W+AOVEePWr4eHQ3vfNs2/H3vHv72FnvZW8r59m38vk8+kf8ODcWgFiVSUmCgDh3q/HffuYNIBhHKYVyNlEgSCJ9t2uA7hg513hiXJOzB2rWto26cT+e2kJs2YW8E2hjJtWtRXsoEt9Wr8ZyonQBusOPKLOR9+1BtkicPlK2r7TLT0kC0K14csm/TJucjIFevQsaqvXxJgveuNJabNHE81EOPCDjl3LOnpUBv3Ni6n7Ek4fUmTZzLV5pM8LJCQtCuz53QtBKpqailDAnBtTqr5Fetgld86ZLl69u3W7K033nHux6YNxAfbxka5OlT6jnM585B8Dvb0zg6GvmnkBCUi7hi9Wvh8mU0zg8JgefrjHFlNqPErVUra+HStSteZ7Rti9SIJ+HtUqq338a+ZEW1YgUUl3pm85IlENTOzmfeuROtGcuUAV8kOwQkSYJ3VLgwDDRnPXeeHa5uxBETg9/MDUiYhLpjh/vX6A+0bIkUnBByPwH1zOasLCGqV0fKwJk1yMxEuoYIBnd253HHx8MwJkL429k2obNmIUyuTimxAcL7ddUqHJdd2eBrBJRyTk62HJ/ILEQ1EYxnOf/+u+PvTEiQc1yrV3u2QcmhQ7AsS5d2ziPIyEBYST0sPC0NQmfePPwdEwPl4UpUwN/gVog8jWjOHIS11B5unz5o8GFv9jXj6FGkLSpVci2M6ggmE1IboaG4HmfahXKttrKtpRDyxB82uJjMaCtNkh14y3Pu3FmuhDCbEVkYOdLymLt3IQDVE4K0IElopkOEOeeeHFAQFQWDODTU+dTPsGF4RtUEs759LfsK1K9vu1GOHsFygudSc8hX/ay8+y6Oc6b7Xmws7m/u3EhTebICZudOyISKFUG2dISEBHjd6p7u9+7BsGIODzesYjJjoCCglDPnKNlSmzoVYTQl8cRoBNnHGYbevXt44IoWBanEG7h3D974Y4/Z7qKkBM9M/esvy9cnT4aHweG3Fi0gPAIF/fsjbykEfkPp0tZNPLiLkXKQiS389BMERNu2EBjewM8/g1DYuLHjEihJQli2Xj1LgZWRAaYsG1bXrlnXQHsK3lDO8fGWHAcm46ibeEyYAMHqKKRsMuFYIpQyeaNcx2QC2YgI0Q9H54iKgqe1ZInl69xEhRWFmvWsdzDHgT3RUaPgOSvvR3o60nBanAk1rl+H4VyqlO1OXdlFdDQImgUL2h/5y3jrLRhi6tKq/v3xLPJvrVnTdQ6LvxFQynnoUCEaNMD/Z2bCapo50/KYrVu1WaRqREcjlFOmjHbjEk8iIwMMyVy5rMO4aphMyIGpa7Y5/MbtPleuhOLw5chLd5GeDq+KB0ZwO84TJyyP69gRvY8dRS+++w75v379nPOws4OTJyG8nnjC8QCEv/7SJp9MmmRpWNWpY+15egLeUM7qiMeQITB+lQL+xg0ocHuzyoXAWvXrh+eA8/DexLp1uPYxYxx7eLNnY48yl0UIKOESJeQe+Nyq1BmloQd06ybX2qemIq+rru1etw7r4Whq2pUrIGBVrer9NrTJybj23LkRkbIHgwHRSXXN9u7dWCvuHzF7NowKPfa6sIWAUc5GI6xWbn7OVu2ZM/Ix6ekosxgyxP533bqFUOgTT4BY4AuYTBDIISGWDdq18L//WYflJQlKm38bj8a01ZtbT2BWLOfyBwyw7gj266/W85218PXXUASDBvnOg4mKQqitenXHHnTfvtZheRbqPKpv/nwYlp7u8e4N5fzcc/I86rg4CEy1Eh43DukFe+F/kwl7N3du346N/OQTeFYTJ9r3oOPi4K2pw/LTp0NBZ2Xh8+XLa3f00xs4BbhxI/5mI0uZH05KQs7f3qxrIcDDKFMG3qev2nlmZiLlkTevY3Lm++9b6wKTCUqb2zkfPoxj/v7be9fsaQSMcmb2Nedu+/a1LuXglnT2Gks8eICSjYoVfT8KzmwGGSM83L5FyK07W7a0FCg8IjMxUW7Jp1UjrDeMHg1vSwjc//Bwyz7TkgQF0Ly5fQG6Zw/W9/nnbY+P8xauXoUHXaeOfSIeE9qU7R4lCSE2Zoz++ac2uzu78LRyzsoCa54ZsZs34/4rvcvr12Es2etaJ0kIZYeGusYG9hS4vMtWH2nGwoXW3jOXMrLROGkSDHs9ds9SgntNs/PRqZN1l7NlyxDOtycH792DsVmrlu+bsGRk4LoLFLBO8ymRlYVr7N/f8vVXXsH+TU+HvChaFE2PAgUBo5znzJHDErGx1hNHDAZ4zWomohIGAxReiRKwBv2BrCxYhPny2Q+9//ILHi6lEr9zBwKOmaWTJ8PI0LOgMJvhVbFH8uabWDtlnpjJVMqBCmqcOQPPpmdP/00Vu3gRHm/79vbD6cOHw8NSHrNhA4ySBw9w/SVL2p6O5C48rZy5Jz2nH5o3t66MGDMGv0VrshFj0SLXyxo9jfXrcQ3sSWrh4UMIc3WqrGFDucZ7717LPLReMXYsPF0h5JI+5f1PTMRvtTW2VghEQpo0AT8kKsq712vvGlq1gmK1F3rnihalTL1yxZJhP2wYOEaBgoBRzrVry00BNm6EoFN6MO+8gw1oqwxKktBqMHdu+1aYL5CWBpJR+fK2w6RcDqa2drt1kwcosKDw94xje+BcOYemlIKO0aYNPGdbRkZMDIyQ+vW9w3J2BUeOYO+9+KLt6z1/3noaExuUrBxGj4Y34kl4WjnPmIFwpiTJgk6Zkrl2DZ60vbK3r77C51av9sglZQuzZsG4tRe1euUVhFKVz6XSoDQYYCS600XLVzCbsW5sZCxfDmdA+eysXAmv2VaY2mRC1Uj+/NbcEF8jIQEppVq1bNeZG404plcvy9ebNUPDHCHkvejtnLmnEBDK+fp1S4ZrgwaWReVZWQg1aTVyZ3A7SL2UH92+jQeoWTPbDTM4NKUMf/L0ratX8bkCBVB3qlcsXYoysKwsWWkpSxo4XbFzp/bnDQYo7rJlfZ+GsIUPP8Q1cw2sFvr1Q0MbpZffpw88ESHkQfaOiDjOwFt1zjVqyDm7JUuglJS1oqNHI5ply2s+eRKK7vnn9RHdMZlQY164sHUvAUZ8PDxKZVSDUzG83oMGwXDWK5jjcOCAPORC2b4zLQ3RQ+WUKjUWLYIhwzwJf+PiRaxL7962SV2cV1c6K9y+88EDKPmwsMBpwxoQypnbPiYlyQJeWdvMHZqUhAAlDh3CokRE+OZ6ncU//8CTt0UwMZsRMVCGEtPSICSZGNe/P8KNekXTpvKgi0WLIBiVxkiXLvCIbQnvqVNxj5RzWvWAmTPhNdrKG3PEQDk5jUd+XrmCcF2ePNptFN2FJz1nbvv4/fdYmypVLNtZRkfjmbLlNcfFIdrx9NP6av6QlIRwb926to2K2bOhCJS3sX9/ueaZ+9vrdRDGsmW4/qwsmd/w66/y+8zNsdVieO9eRCFXrvTN9TqLXbtwXbbyxllZ2HPKsrDYWPxWLgXs0MFyLoOeERDKuXt3uV3lokVgbbOAN5sRzrBV8xsbC+u+fXt91ie+9Zb9tnlc93zqlPza2LEgg0mSPAxeSWLRC+7fx7Vt345rffJJXDuD65ptdV1ilrc9D9VfMBqRXqhY0XZHo65dLeue09Mty1l69JBLXVauXCkaN24sChQoIEqUKCH69OkjLtly72zAk8r5zTdhFKWkyAL+wAH5/enTkQfUmgwlSQiJFiumz5GRZ8/Co+eogBq3b8MZULLSuYLi4kXsayL9zTtmNGkiG8QTJiB9xhGczEywmG1xc+7cgVfdrZs+y45WrIBMsdWX4s03oYyVrPSePWUH5o03YBQ701jI39C9clZ6GGzBK4vJWYD/+af1ZyUJYZDixfU7cFuSUK5SuLC2JWs0QhErQ/YHD8q/WakA9Qalh8GKWFkj2r8/DCstgtetWxDuvXvrIySqhZs3oaD69dO+Rq2Q/QsvyHXCHBFCXWc3sX37dnHu3Dlx+vRp0bNnT1GxYkWR6oIU8aRy7tIF/4RA+LN8eVlYx8cjF7lggfZn2eB0VBbnTzCD+/PPtd8fNQoEUyb1ZWTAG+WIVZMm9tNo/sK9e7LhYDDAkVGy1Dklc/689WeNRnBcypb1XmOf7MJshkFbtqx2Z7nUVJSHKRscca45MlLmTgRCtzDdK2dWvleuIAysDtG0bm3Zu1iJd97B8b6sq3QHiYnImbdrp22tMtmNyyJMJmxODoc3b25dRqAHDB4s5+amTEGOnRXx1av4TVqD0I1GkMTKl9d//3DOHdtqFdm6Nbq5MZiZfuKEZehYjdjYWEFE4tChQ05fi6eUc0oKvOY334RyKlZMiLlz5fdXrIDBrGXwnj2L99Td3/QGSUIuvHBhbS7DuXPW3vHo0WjCIUnIwRcp4vuSPkfgSFpsrCw7WRGbzTAMbUUZly5FntmTrXC9gdu3oYD79NE2ipcuRWSEDQxOBS5dir9r1AiMbmG6V84vvghCgxAIpZUqJQt47sikJdwuXcICebIO2GSCZXr9Oh5oT+bSuGxFK4Sbno7NqJxYNXWqrOxWrEC41NvdslwBN41ZsgT/X6qUZdnGlCn4TVr3cNUqzwuJzEw81DdvghjiSaE6cSLYsDyYRAlulsMVAkYjSo+YSVutmnYTiMjISEFE4qwL7es8pZzZ4Lh6Vb7+c+fwXkYG1lLrmrOy0Hqxdm3Pda4zm2Gg3bgBYyApyXORlPh4GLlaM52FQDi0bl35vX37cC+OH0fnKa0+1f7GgAFym9yhQ5FWYfDkKa3WmydPgkPAkQFPwGzGmt26BbnpSXnJ+5JHBysRF4fnUTlGeNQo2bCaOVOuQtAzdK2cJQmhpenTsdBly1qSup57zpoRKwSObdMGi2Gv/tIR7tyBZzdsGKwtHgCv/Fe2LFptrlgBzz47Cx4RAYNCqwZ74UIoYJ4ExIbJ77/jwVLnBP0N7shz7JilUBMCyjF/fu0Z3JcuwfOaNcv9c0sSzrtiBdi5JUpYr1toKIhBQ4Yg1JednH1yMnLPnTpZr7/JhH04aJD8WkQE9o3JBCOrfHnLz0mSJHr37i1ac82cDRgMBpGUlPR//27duuUR5Tx2rNw0ZsgQSwH//vvwzLT26PLluK+ujn1UIi0NgnfSJESE8uWzXrt8+RBWjoiAwnF1PKgS3E/gvfes3+P0Ec97VhqZZjP2FfdM1wMyM+EhvvYawrv58llWcnTtivum3qOZmejYV79+9gz86GhE+QYNAr8kPNx67SpUQD57+XKwqrMjL0eNQuRDPZVKCGvj/7ffZCOZuxHquQRVCJ0rZ5469dtv8oPCVt/Vq9ozZYWQ27m5o6zMZngOXbtCCOXKBUt08mQ8wD/+iMXdvRvTXl55BRZ2wYI4Z40a6OTljnxMS4Ox0aKFdXj77l1sdmbHShJC4RMm4P9Ll/Z8U4vsYO5cCC+zGW1Lq1WTH8Q1axA2VYdFzWakKNw1quLjce+rVMFaFCoEQbBkCRTwrl0IK3/zDfbNyy9jbUNC8K97d6ytOwKDw9Vas5o3b8ZeZZIKG1YHDsifUzrIkyZNEpUqVRK3HNSOLVmyRBCR1b/sKGdJglcxYwbWIH9+CFJ+r3Zt7bDomTPYn+4qq9On0YeAlXH16ij/WbcOZKx9+5C7/+orPAMjRqArFK/zpEnuj3odNw6Gr7rRBneu69BBfi0iQo5YvfAClJpewAro5El5SBCnwjhMr+77LgS85bAwS9Kps8jKQsln9+6yvGzeHPtn82bIy19+wdpt34789zPPYM2IULv83nvuRVoePoSxpO6bIATyy8pZ6iYT1m3aNJwrXz7ICj1D18r5tdeg9DIzoYSUbfOmTgXRSx0quXsX1pSy7MMZSBI2WZ062DQtWkDQ8kxQRzAaIUCGDYPnV6wYrFZXm2YcOWLbkh8xAveAQ7Jz5uAeZGVBAepJUNSrB+GVno415Ik/WVnwFLXWZ9Mm/HYX0qxCCNzjRYsgYHPnxr3Yv9/5TmL37yM8Vr8+zv/UU+7NFx45UtuST00FcWzGDPwtSVAs48ZBUOTNKwuKyZMni/Lly4vrtupcFPCG53zihGw4cOkX12LzRCq10Ws2w8ipVct1L/bsWSh7IuyLV191vnufJEHpLFwI4zQkBDwHV+cLJyUhQqce1SoEDDki1A4LYWlYMdFIL/X306cjIiNJUFhcUy8E0hBlylh7xhcuuBfONpuh6NkQbtoUz5CzWy8zEw5O//5Yt5Il8Qy46rnzHtWa8tarl2UP/4gIrLPZDIeKKyX0Cl0r5xYtsHhZWQhRMCklJQWWl1av3IED4bE5O7BbCAiDLl2wyF27ajO/XcHt2/C0c+fGw+Iqa3XUKAhzNWOSw9fffGP595498txgrRCPrxEdLZdIsXDjqqDPP7f2FIXAPStQwH5jBDUkCV5VuXJQcHPmZC88LUnwPjp1wjV26mS7FlQLbMnzcHsl5s3DnuXSo4UL5ZLAnj2FaN9eEi+//LIoW7asuGKvObwdeCLn/Oqrco3sgAHIITP69oXxqjZaOFLlSv41PR3rFRoKQ+WTT7LHAzAYYNCWK4f+86+95po3xvtU/ayaTDCIeWaw0rCKj7dsp+tv1KiB6ENSEhwEjrLFxeGecASEIUmIClSt6tq9OnMG3jER9rqjCYCOEBkpxEsvweuuUcOS8OsIkoRrKFXK2pHi8DV3J2TH5+hROALh4dqlgHqBbpUzb/ytW2UiA/ezffddvKduw7ZzJ45zNJaRIUl4oPPmxQNnq0uVu4iKguAlQh7GWYMhNhbKWYtR2K6dzE6XJIT/Ro/GAxgSoh1W9TV4jmxCgrWAb9pULtFR4vnnYT07mgfMiI+H4UYEC9mTvX8lCWMtK1WC1//xx8570WzJ//yz5evR0dizzE7nZjo//gimd2ioSRQqVF4cPHhQxMTE/N+/dBdYNJ5Qzi1b4r4mJ0Ogs0cfFaWdRnrwAFGiF15w/hxHjiDNkScPGl14ksiYkgKlHxYGT95WYyI1JAmh2UqVrGtgV63CveDKgfnz8XxmZoKNr4e56jduyP0SuFMW15ivXInrVxv7bNA7O9nOZEIb1ty5kd5wNC3KVZw5A64QEYwhZxXnnTtyakMJScIe4LA385amTpVLqjwt8z0J3Srnb7/FzYuORu6pVi3cbEkCg1LtnaSlgZTTvbtzgjQxURbuL77ovaJ0SYKxULQoHnyeL+oIXAamZlYyS5HDbK+8InfdatZMbj7gT/TuLUTbtrinefPKfZW5a5b6geB6YGdbq/71F9a6aFEoQ2+xLhMToXSIcF+d0XmShHBZtWrWSqdPH8sB8LVr4/u5PS1RP6v88XYXCtizq5yVniBHODhEPHcu9plaYI4diwiAM92yJAn9CnLlQlTM3RyxMzh7Fvc6Tx48S87skchIHK+OyMXGQiGtWYO/mQvzyy/yXHV/V0qwQZyYiJwucwmzsqCQ1A1XkpIQ5tbK12ohLg7E15AQGD/ZIeHZgyTBwcifH8/QhQvOfe6NN7B31SSvd96x5HtMmSKTMZ98Ut9T/XSrnMePB5tW3VWJBbk69LFsGcIUzvQqvnoVyr5IEd+NsIuKgteYOzcUiiOYTMgZPfWUZbhPPadU6YEtXer/2kuDAWSL1avlUCGvyZgxUKrKXLDRiN/YrJlzHYk++QT3sEUL3zWw//prKKa6dZ3LZ549C0HJwpzBrPUjR/D34sX43sxMyz7W7iK7ypnXKzoa+VcuyUlPh3c8bZrl8dw5zFaNtxJpaSjtIUJ7TF/s0fR0pEmIIISdOSfLEbVSYAKayQQFUrUqDBNOLXnai3QV/fohohYXh6gBjyzlXvzqCMKMGTCcnXmG/vsPv/3xx2135vI0Ll9GCqVwYefC3FlZ0Bft2lkaYqmpkIk8Fe/oUfkZnDQJv0uvJVW6VM7MRJ4yRfagmSQycKDcYYlx86acc3SEY8ewyapVs9383lswGBC+JXKup/Lx47BUN22yfP2116AAuayqXj18L3fh0qpj9BW4XvvUKZThNGiA1+PjEVpT9+t96y38Rke9syUJgpMISt7Xnsr583iQS5Z0bmB7RASMSuXUH7MZ+27IEPzNs4J/+cWSzOMusqucx42DgEtIgAHEe/SDD7BGSsPXbIbx2LChY+JdYiI8uXz5bLdq9Sbefx8Kq2tXxwTNjAyss3q6ET9bnK6YNw8Gi8EAjoutbmm+gNGIsO6yZUgDhobKkYzWrS3Z5kLIxqMzvbMPHsR3N2zo+7GRSUmIhObKpU2QVYOn9Kn32KxZUNCpqdi35cpBt3Aa1E2Kh9ehS+V8+bL8IAwdKs/gvHMHD5m6UcfQoSAEOJJJh6CGT94AACAASURBVA5BYLZq5RphzJMwm/FgE8ETcSSMx46FMaHMxd69iw3L1vHy5QgDJSdDYPhzoPi8eVBgqam416+9htffeAMeiZKwFReHh0aroYUSkgTDiwgMeH9ZurGxyMnmz+/YU4qPx7qNHGn5Os91jomRJwaNHSuXVGm1VXQET0ylkiREZKZORYkgs5AlCQbWM89YHs8e2e+/2//euDgMvyhSxL+jWvfvh5Jp3twxr4HLkJStZiUJv4OHJjCrfd8+GMb+nFLF3uDff0OZsTLm8im1surWDZ6/o9D0998jzN+pk/9GtRqNKHkkkqOn9tCnD1j/yjTl9euWLY65gVNSEp5FtfOjF+hSOTOT7uFDy9mpS5ZAMLLHKIRc2uCICLVvH7zrTp300fT87bdx3RER9pXNnTvwOJTtE4UA0YqZs5GRMot7yBD/CopGjVBOxrnxixdlj/H55y2PnT4d62uvj6/ZjHtEJM9C9idSU5F7y5sXe8oe3nvPsvmKEFDaefPKRsu8eVDiSUnwVjdscP/asuM5X7gge/G9e8MIEUIW/NyIQwh4l5UqaZceKXH3LvZoiRLu1dB6GsePw3ht2FC7LzNDkpA2adDAMirw4YdyG10e5DJ+PIyZkBD73+lNvPIKfldcHOTmW2/h9YgIGMrKKBMbgd99Z/87v/0WDsBzz3kvv+wKVqzAdXNJpi1cu4bniJ8vRrdu8vCLP/6Qqws6drSc+qcn6FI59+oF6+/nn3ETz53DBitdGpR7hiSBeFSvnv3Q2u+/wwLs2dNzbQU9ARbes2bZV9CLF+P6lWElLhPg/GWDBoggsNfjjylVsbEQUh9/jBxd7dp4nXOtyvGKN25oP0RKSBLyQkTaPbj9hYwMeJJ58tgvHzKZcA86d7Z8fdw4WPdGozx7l0u41B6qK8iOcuZpPffuWZbhDBsGL0vJB1izBoLbXlro3j0YZOXL+z59ZA9nzsBYaNzYvjfI+XQlH49z79x6de5c9Bng0kHleFBfomlTVIN89pkc8UhLQ75W2RTGZIKsbNPGvrzZtQtKfuhQ53sF+AIrVzqnoNnoV8pAnir2339yaHvyZOzlfPn0pRcYulPOmZnwjletQokQ55c51KSsj929W7tsRYnTpxHO6tzZ/4xKLfAEH3tNAFJSELZXDkw3myE0eXbpq69iQ0ZF2e4E5G1waUZUFAQD/6Y+fSybAQiB31K6tP0oBueYtfrn+hsGAwzIwoXtl+twBEFJamG27//+h3tSuTKMztWrISjc9VSyo5y7dUOJGz9n168jcpUnj2UnpQcP8Jtfftn2dyUmwjstU0a737i/cfIkZEKnTvbv9aBB4AEo9+isWagSSE+3NKzq1nW98ZEnoCyh7N9fJvHx9Cnl/d++Ha/Zqxg5cADckD599Dlid9Uq/AZO6WkhLg57VDl8JSsLMpRfmzYN+5MJfa7UVvsKulPOv/+Om/XPP7BSuayhSxfL6VNmM3LR9qzA69ehAJ5+2n85E2ewerXj0Dx72SdOyK+tXQvv88EDOb+0axe8aKUi9xVGj4ZlzkbTmTNoLqKujz11yvZEKgb/XnXjBD0hKQn3ukwZ2yxuSUI47emnLfdp8+bIDwoBT6xUKbnUzFEe1/b1uKec09MhkNetQ4ethg3x+qZN4Hgoy6SmT4dis5WKMBgwO71IEedrjP2BgwdheDz3nG3v8Pp1PF9K4hRPEvv0U9mwmjAB7Ody5XzPh2Bj6soVy05zzZrB4GJkZiIV8dxztr/rv//AE+naVR+hbFuYMQPyw97Yx9WrsXeVZK/586G009LkyMjBg3h+ORqiJ+hOOc+fj7ATh0L//VeuA1WGmDiEY6ub14MHCKtVqeKfEK8rkCR4TmFhti04oxFRBGXY88EDCJi1ay3JRbNnwyjxpaDgISUzZ4JNzb20V6yA0FDyBLp2xW+xVdqycycU+ssv67fMgRETg9xj9eq2SYbcF15ZQrdtGwRMdLTlEJPsMH/dVc7Mcv33X5nEJ0kwtJSjSG/fxn6zRcyRJDSPyJPHMoWhV3z/PfaZctqbGi+/DE9ZuX87dIABIgSetZIl5UZJ7hD6soMxY5A6+e47WUmfPm2dV0ajG9t1wzExIAQ2bKgPTo49mM2o2nnsMdskw/R0yCMlz+XaNVmPKBuSjB4NboTeoDvl3KgRbujEiXIv7VdeQciWN01mJsodtNokCoEQRvv2EHTc+F3vMBrhSRUqZN3aksFhY+WGHD4cBojZLOfAeNKOC9MGsw2ut/75ZzniYTbj2pTdo7jUyhYh5exZKIh+/fSV77KHyEiQurp2tX3NPXrAYOFQYXIy0jfLlsk5sIiI7BH63FXO7PVxacmFC3LpkJIINmkS1tbW17/xhuxVBgo2b7YftbpzB0qAZwELITsGkZGyB7Z/P4yS7BD6XIVyat/w4fL0sIkToXh4r6WnwzscMUL7e9LSUBZXtiwMsEBARgbKxIoXt91id8sWGMBKg6RrV3m++qRJ6LvAPdK5o5peoCvlHBsrWzalS2PTGY3YgBMmyMdt2QIrkGfMqjFlCrxQVwco+BtJScjNVqmiXe5hNsPCU7a/ZDbtr7/KM2b37oWgcKaW2lPYsAHn/Okn2QvjFAWvgyQhDaEO8TIePoQXWq+evnveauHXX7En1ax6BueZlfWaY8fKTVmmTME+Z4+aW0U6g+yWUtWrB4939GjUOQsB0lqFCrKxERUFkhB3e1Njzx78fj1NRnMGkoRSvvBw2/0BZsyA0cyRkfR0hEfZAC1VCrnoLl3kUitfgFNZP/2E61myBA5MwYKW41jXrweBT8tRkSQYhPnyyV0HAwUsLxo10iZ0GQx4vgYPll/jvhlnzsik2gMH5FbReoKulDPXTjKJ5sgRmbHNG8dgAANUXZbDYNKDM12L9Ihr15Cv691bu2MWby5mCUsSQsTPP4/jy5eHoO/c2beCokcPnHPCBOThJAnWPA84F0KeavTTT9afN5lg1T7+uGvDJvSEdeu060oZQ4difTifx+HsvXvlzne8991p1uGO5xwTg/N98gm84gULZK9eyYodO1auX1fj8mUoh549AyfaoURmJozGUqW0B8fcv4/7oWzrOWkSvFGjEcq9ShUwf/Pm9V2+dv16GMQ//igzkblagzkQKSnwLseP1/4OJqR+9ZVvrtnTOHUKkY2xY7Xf5/njzH9gYlhEBP6/aFH0hWjaVG4OpBfoSjmPHAkrfsYMeM5mM5rKN2ggC/h33rEOVTDOnpUXylO5SpMJ4asff4THvnYtQpGLFuHh+OQThLY8SThj73PVKuv3mAin7Prz+uv43QkJYCOWL5995q8rMBjkHtolS8KLSEy07AgmSQhDNW6svTbLl2NdPcmaTEnBw/vNN1i35csRnly2DPvoxx/hfXiKlar0QrTIUBcu4Dey98zzkQcOxD4rVQp7v1Yt91p5uqOcuYe2cjTi1q1yPlwI5DFz5dIO2aanI9pTo4Z7M8xt4fZteOPvvYf9vXw5jIWVK2GA//qra9EFR7h/H2Hddu20uRDz52Ndmb/CLN+dO2UCJJfrKJuXeBPMsGfjQJJw/cpRiCtWgNSm1abz778RMZgyxXPXZDTimfruOxA+X30VsnLlSuyfL74AqdWTeW02SLQ836wspEAHDJBfmzcPxmR6OkL9derAKOX583qBbpQzD3mfORO55pdeglWv7ISVmYkwhZaFk5aGm1y3rvWMZ1cRGQmmavfuUDpE+BcWhkUtUwYhvwIF5PdCQnDu2bPhEWV3kRcuRKhFPTtXCNlS5ve4Y9g778g5XZ5M44uev3zODz6Qc+LccJ49EQ4haZW9HTqEY5WhOHdgMuH3RkTAyOO1IUKor1QpCODSpXG/+L0CBVBbv2FD9lv5pabi3LVqYU+qMXgw9jcbBNw57cED7PnKlXH9FSu6bmC6o5yZYc/5N0mCF6GMugwbhvumFTqcMAFGWHaZ2UlJ4FQMHozni9cmNBTeTcmSCPsXK2a5rtWqQcDu2KF9v13B4cM4n1aHvYcPEdrmmdxCgDzVpw+MUybSlSplO7XhSbBB/PrruDezZ8uEJ875JyQgChcRYf35uDjIsGbNsldiKkkwOl9/HT0nlPIyNBT3o0IFeO/58lm+16ABDPnDh7MfcZkwAVEErTbAXFbGjXC4adMXX8hEuo8/lqMPeoFulPPZs3L9GudQV6/Gg89zOt97D0pQixE5YQI2hq08tCNkZEChtWiB84eHow7y9dfBHL99W1tYpqWBHfnBBxB0JUrg82XLwkJzl2BhMsECLlfO2kOQJHigrVrJ19SrF4Sq0YjQ8Lx5eCAWLnTv/K5g3jw8hNOnQ7Cazbg+7k8sSbjWJk2s72FsLO5V27buD0O4fl1mqBNBGIwdi4fy77+1PSyTCcbfwYOw6jt2xMNNhBDnRx+5L+zPn8e+VTbMYfA+ZwLSgwfYa2+8IXdv4lAj95N3Fq4qZ27ZyTWf06bJ/b55IMyVKxCkWnWlTKRxd56xJMGw69cP3h0R8ofz5kFoXr+uHdUwGHBvPvsMkaIGDWQja/jw7PWWX7kSMmbvXuv3li7FunJp2ebNMPLu3kVNdOPGMBS4FM2b4DTItm2yQbx4MYxQ3revvoo9rezvLgTue69ekBPuDo9JS8O5GzbE+fPmRce49evBNbl/X9tBSUjAM7l1KyKlpUrh8xUr4vrdnUdvMOD+V61qzVcxGhFZUBKIW7VCGi0tDde+fDnWlpvv6AG6Uc7r1uHmzJkjz0rlXKoQcp3eoEHWn+U8rDPN0dVITcUD+fjj+I7OnVHy4i4hyWSCJRgRAUs7LAy/wZ3xeLdv414MGGCt1DgXzzWxHFI7dw5GQvXq8EKaNnXvd7gCbtlZpQpCbCzguQ6RveZduyw/J0nIUxYv7p4Rc+0ahGFICO7T1KnZi1qkpcGa7tgR11uiBMLh7oTgtmyRc8hqDBgAIgsbIwMHIrydkQHhumgRFLa9RgtacFU580xbzpUfOQIDq0QJWSmOGQOjR+01R0djfw8d6rqHL0kIo3N0o04dRC2yM1jhyhV4rtWrywbWrl2uX5vZDKFdpoy1URcfDwOAc888zGX1apkvs3Ej/uvt8s2lS7HneQSi0Qj5yOmQlBREGbSaxfA4Wi3uhyMkJmJ/Fi2K565nT0Ty3I1Wms0wpl58EXs/Tx5EcdwxGiIjwQ0YM8b6PY4knjyJv3lAyO3bSJ02b+57Qp8j6EY5d+2KHEq9ehC4XMrB/Yu3btUuD4qORuhm4EDXHkSTCaSxkiUhCF9+2fPTSZKSIHQqVoSFPXGi6w8tGx7qUg9JQu65a1f8nZkJJTdzppyzfvVVbECOPHgDzLDn3re7dkFglColC/gOHbRzzbym9jq8aSEmBg9weDiE6NtvZz+kqcbVqxAYYWFQVlu3uqb0JQmexOOPW3sDzNz++GP8zR7zP//A+Hz6aUQSHPWuVsNV5bxlC37ftGl4DjIy8F8eDRkdjffXrrX8nNkMA6ZCBcv6X2fw++/4fUTYu/v3e7aW3WyGQdSsGc7RurVl4x5ncOcOlI+S5cuYMwdGCVdTDBuG0HpCAvYjt5j0doe+tm3hCVasCNnFZEuOGqxfj7VTGzwXL8JT1Irq2IPBAMPj8cfx+RkzPN/9LTERHmyxYriXERGOh5SowSHsb76xfN1oRO6Z15Q5MatXyyHthQsRetdLJ0ldKOeMDNyoBQtwk77+GoqsXDkoUaMRnoa6u40kwdqpUMG1RTx9Gh4lEUpIvD0KzWCAd1KkCB7s995zTSCNGQOLUD2rmsOKzGRnIZucDAt/5ky8/+23nvstarDHMG+ePJSkWDF5fiobWepriIqCpWyLZakFsxkkk0KFIDxff93zSlmNqCgYi0QQ+K4I+gcPYDx07myt2Pv0gVA3mfCvTBmEaJmgNXs27o8zZDV3S6n694fyqlkTe4yNOvYuIiJwn9VRpE2bcJwrs33v34ciI4KX4m0uhCTB6KldGx7eSy+5RtrkngLqftkxMfDuVqzA36wU//wTxkbnziDIjRrlud+iRno60gCzZskEtOHDETWQJMjTMmWsryErC4ZRjRquPTf//IP7GBoK1re3a6FTUkCGLVAA8uyTT5yXl5IEPfH449aOEJfgshwdOhR7Py4OzhNPC9RLCa4ulDNv8DlzYDHFxkIoMLGCHxS1YGQC0i+/OHeerCwYALlyIZTm6y5GcXFQRkTIZ9tq+ahGSgqsvnbtLIW8yYQcCzMROZz8ww/YoE2bQgG4aiW7grFjcS+bNsV1MOuX2fT9+kFoKAkfkoTf74rndf06fj8RzunNaIAWDh8G4S9XLrCGnc2Pc/ctdV6WW3Vy17BZsxD5uH8fHs/s2XKo2Vm44jmbTDJZSLln6tXD+ty7Z918QwgMscib17JvsSPs2gUh+/jj8Gx8yYg1GmFM5M+PZ8gVwTtoEOSQOvIxaRLWKi0Nv6VCBTxjHImYONE9Qp+z+O03rNm4cfI0qrx55cqId9+FQaIeOLJiBfavo9npjIwMKKzQUKSufE2Wun0b5F8iGLP2ptcpcf8+1kedAk1Pxz7knhkcsTp2DPKoSxfcz+wSUz0FXSjnhQtxMzt1gvXJodwLF+R5ssrGG0Jg4QoXdt5CvXoVhKSwMOSm/Bm62LsXD2+RIsjXOAN+IJU9qoWQy144p92oETYyh2pGjkQu2Ft48kmsATPEe/eW89w8hnDbNsvPcD7W0chFxtdfw1uuXNk1b83TyMqCssqVC160s8bVmDG4frXH0bGjTJI7cwb35McfZUFRtKj9gShquKKc//kH55s8GUr41i14Y+vW4f158+C5KFuSGo2yweeM55Weju8nQttZZY9uX+PaNeShQ0JgCDkTkYiLQ769e3dLRXvjBvYAz5WfNw9rxWzpGTPwX3Wky1NgeVm3LqI6yvwph2/ViunSJXj8zjLJL16E0R0eDqXuzyEY338Pw650aecdMXbomNjIWLkS+/zuXRioZcvC2HrzTfzWvn3lcan+hi6Uc/PmuClhYSDB9O4NoSWEbN2oB5/37o3FcsaD+vVXKMIqVSCU9ICEBPxmIjwwznhi48dDYCrJEgYDNhgbKTwL+/JlPLA8ctEbjT14VN6ECRBWly9jDXme7OjRuDZlrfW1a/BilB3fbMFolD27QYNczz95C3//DaPk8cedG1IRH4+92ru3pZDnvc3fUb8+vFdewz595Bm0zsAV5bxyJfZSmzYg9bzzDtYwJgb3uWBB625fa9diT9nqZ6/EjRsI7+bJg/2ghx7pJhN+Q1gYojDOGAvcM/vDDy1ff+EF9BPIzJRb1/7vfzDann0W99JbY05btgRxiSMvLVvKQy6Y+KScn202I31RtapzxK1vv8XeqFXLty2A7eHuXRhJzG9xtJ8kCc9PqVKWBibvbTZS5s6FYXXxIr57/HisnSdr9t2F35VzUhJuxrhxcuialbQQ2mQiZScxR3j7bXx/t26uk1e8DUmSZ+O2b297cAIjMRF5eLUlz+SP6GiEdHLlgnfaujUe4ly53GOyOwIPme/cGdfPU4wePIAnFh5uSSaSJBxXubLj/F98PL43LAxrqAfhrsTDh65dH9dTKnOYkgQFxgzR9eth1XN6Ytw41wSFK8q5Y0c8E7w3mjeXh6qsXo3riImRj4+KAlnG3pAIxuHD8OyeeEKfk6kOH4bQLlfO/vhExvDhEODKHCY3lOGoUOPGUAarVsH4bNZMu7Iku0hJwZ4bOBDPF4+t/Oor7Ke6da0ZxxypcmRIcn9+Nob11kLXbEZKiQgVMI4MjTt34JQpe/sLIZP6EhPl6N433+De9euHv3fu9NrPcBp+V87cbL93b3gOGzZg08XFyb2ilcy7+/fhsThqtZaVhdwPEQSKuzW0vsDBg8h11KzpOFTKJVQffSS/xmUTLDifeQbW9OuvIxfVpIl3WtONHIkNnTs31q1JE5lhPGMGHgylnuDWqo66gF25gtBpsWLaTVj0AqMR95wIzG5Hob+BA6G0HjyQX+MhCv/9B+8gNBQeV4MGqEV1hc3urHJOT4dHO3y4TIAhQiOPzExEO5TlKFwXW66cY6Nq+3Y8v+3aWf5OveHOHRgkefM6Ti3FxkLmqFsG9+uHZ9ZsRlg0LEwehDFoENba0/l1HmrTogVSHwsXIr2XkWEdiRECRnLBgrbbdzIMBsiIkBCkNvRmDCuxYwdSMU2bWtdwq8EyR1nGefcuZBZ3YGzaFPt7wQKsc6VKnu2a5i78rpynTUP+tXBhJOIbNsSmFwJsUma0MgYPxqa3Rw5ITUXuOizM/QYJvsblywiVlirluAH9sGFQXErht3AhQlGJiXK+hR/WgQNBhPDkAydJWLeePWWFy4bUw4fwHpQNUB48wMZ3NGf61Clca82agTNR7MMPoZB697Zvzd+7Bw9s2DD5taws3EeeGNS9OxokLFmCZ6JcOcuuVPbgrHLmterWDR7fwoUwpDIy0F1KXbLINfS2Jokx1q6VQ4N6KUexh/R0yJjQUHiX9sAcDmXO848/5HphJvJt3gw2NIedT5/27DXPmSOXf27ahCgU1zZ36WI5VIbTf2XK2E8JJSQgopUnj3crOzyJ48dhRJYvb79ZjyRhn5cvb2lYvvgiZG16uhxd5RRGr15gp/sbflfO9erJuQRWKj/8AMGs7EMshCxU7I2ki4+HVVmggO963HoK9+/DiitUyH5e7949CFNlGdLdu3hg160DWadAAZCXqlaFJ03kfvc0LTD5pX17rOGCBbKAf/VVWLbKMOCoUdahQTWOHMFvb9xY316XFvbsgRfWvr1975L7ACuJbRs3ymkJTtlwi9auXeFF24OrpVRz5yIHXqAA+oxXrAgOgCTBOOb8pRCIfJQta50vV0KSoOC5VlTPXpcaPBGMSLuXPYMrDCpXtmxK07y5PNuZyZA84/mxxzw/Ga5JExhvXJ5IhMgbz3BWpk241JKbAWkhJgbPb5EirlUG6AG3b0OJliplP31y4waeTS7vFAJkvdBQcC0ePpTJkCVLYh2J3O9W5in4VTnfv4+b0L07BMCcOfAIMzNBBCpeXPZEMjPhTbVta/vhf/gQgqxYMf0Qv1xFcjJIOgUK2C/14jySslXhyJEo6zAa8f9VqyIyUbo0Nt+mTZ67Th5tWKQIBHLFirBGuZGFkvDFoyPtRTGUyk0PZAx3wMZFkya2hzLw2MwaNWTvMiUFhsv06TCsChaE51yxIrwhIueMFWc956efhqJhJj0R9hr3SFe2rpwyBVEQWx2bzGaZkb1mjeNr1CMkCYYsEe67LfkSGQnvcsEC+TUuHTx+XP5/JmU1aYLIkqeQmAiF0qwZuAoTJ+J5N5sRealYUU7fJSZCaSkHPqgREwOZWrasdkvkQEBsrCzz7ZWILV8OA1jpoAwYgOfQbMb/16+PdE61avI6+hN+Vc5s2VWqBMHOFnxCAgSCst6MiVO2au3i41FGVLy4PkkoriAlBTm7/Plt12WaTPAwn3pKfiDZev7qK7n06u238d9GjcAO9xSGDZNbJXI7wCNH5A49XGOZlQXrtmVL2/m3AwfgZfTsqT1cIZBw8iT2YKNGtkOJZ85gLys9tUWLhMib1yS6dh0s8ub9UhBFiu7dr4kKFax5F7bgjHKOi5NJfBUqIATNIz579ZLrnIWAsAsNlcur1JAkKAh1hCtQsXo17rXW4AvG4sUwdLmboMkE4tuQIdi7hQujtKpIEZDuChTwXBkS83OKFME5ihWDQ3PrFhSPcmrY9OmQH7duaX/X3buyYvZ0Z0RfIz4eBkuhQmjfqwWDAUq3fXt5fx85gvu5ezeiC0Ryg51ateDg+BN+Vc7jxyPPSgTyEhGYlGvWWLJFb9/GRrOVpE9IgKIqVkxfU0Wyg9RUPNz58tnupvTvvxCMytAZ184ajXjwJk7Ew9yuHf7riXm7koTvbtoUrS3HjIGAMpsh3HnghRAI2YaGWpZ2KPHnn1jbLl0CXzEzTp/GvW7RwjbjdcYMrC17pPfuCREWZhadOu0Wy5YdEkRCjBp1RhDBaJ040fF5nVHO7N2VK4fGGUWLwhPkUpLt23GcyQQPu359bTKlJMkdqtR17IEMzpvbCnGnpcGZ6NFDFvKbNsHYioqSnYwhQ6D8iJwrPXMG3PecSL7OM2cQri1cWE6nnD2L61m9Wvt77t3DtZUrF/iKmZGcjOqUIkVs6wBuCPT55/hbkrDHu3aF8i5cGPcyTx7Iy3Ll/Jui8atyfvJJCLB8+aCoK1TATapQwdJqGToUoVItTyQ9HV5ZkSJy28GcgrQ0eDgFC9r+bRMnwmLkXC6zuY8exUYrXhwkOg7VOCKbOYPLl/FdlSvDgy5SBN4GcwKYYR0biw1vq6b55Em836aN99tw+hrHjmHd2rfXJoklJYGo07+//NqoURDsmZlCEEWJzp1viHz54BXUqOH4nM4o5wkToFyI5FDuuXNQKqVLyzXp3PfclmLhz3IjjpwE/m1cr68Ge1lcyslpiRkzZG9s0SL8t1AhND3yBBo0kHOsgwbBEE5JwTPENek807l6dW1SXmIieAVlyuQcxcxITETEqlQp2w1gnnsO+5zLarla4tw5cHieeAIcnaeewuvuDCzyFPymnG/cwI+vUUMeEDBnjkwKY5Yj5yuVpUMMkwm1hfnyoTFETkRKCqICpUppN5p/8ADK8cUX8bfZjHs6YIBcL8seTt68nskLvvsuvGEiuc3k2bPwJho0kK3NF1/EtWnlS8+fh+HQpEng5pgd4fBh3PNnntH2PrmPNhszPBAD3u0KkT9/pujdW/bAHPU0dkY5V6+OiEeBAhBUTz0FI+qxx5CXw/fAGFayypVYvx7Xw+0icxokSe5LryV3JAk8mcqVZcOLvdekJBhYo0bhGalfXyaMZQcPHyJKVro08suPPYZoI/eL5ggMpwq1Rl5mZMgRtEBP/dlCbCzkX6VK2s/LkFhRcwAAIABJREFUzZvQF7Nm4e/MTBgq48fLnIs5cxB54H4R/oLflPMHH8gCnmtFT52C4OjYEcdkZaGFnFa+kvNduXK5PtXIEUwmNEP56COQnQYPhodfty4eyBIlsKBVq8r1qJMnIze3d6/nO1ndv49zVa2qzXbm0DEbNKw8r12Ddd2vH3JStWtDqGQXgwfDwsyVCxZ87dpyWJQnLZ04AWGi5VnFxECA1a3ruPGKq4iLQ7590yZ4iT17wvOsUgWCrWxZRGaqVcOaDhgAbsOOHTAYPN2mcM8e3CdmQyshSWD71q8vpxvatWM2bh1BhIlD/JyoCSoGg0EkJSX9379bt27ZVc537uB7qlQB/yBvXoQ+ly3D/zOJbfZsCDCtfCUL/3nzsndf1JAknO+775DXHTlSrgSoVg1rVrIkhG7dupARo0fj2n/4wfPMWklCiVJYmLaiu3xZbm0pBJwNZv/OmQNno1UruQ9AdiND3MSG5WVICBRyrVoy6Ss9Hc+Vcm4xw2jE63nzen6mQEYGIkVbtyL0PmQI1q5mTcjJUqXwr2pVOBo9e4KoumULKmpcGUjiDG7exH2oVUubmLlsGdaOSzV5lvO9e5APo0fjPlerhjJUfyFECCHIDxg2jOjPP4mio4n69SO6dIno/feJWrcm+uknol69iDZvJpoyhejECaKGDS0/v3Il0cKFRNu2EY0dm71rEYLo1Cmi/fuJDh0iOnqUKCkJ75UrR1StGlGlSkSFCxPlz49/JhNRejpRcjLRrVtEUVFEN27gNSKi2rWJOnXCb2vThigsLHvXeOMGUcuWuJ7ffycqWFB+z2gkeuopotKliQ4cIMrIIKpQgWjECBy/eDFRkyZEsbFEt28TxccT5c7t3nUIQVSmDFGhQkQlSxKdOUM0axa++5tviG7exHe3aUOUmIj7Gh4ufz49nah9e1zHP/8QlS+frdtCGRm4H/v347efPo3Xc+cmqlGDqHJlohIliIoXx7pJEpHZjM/FxeE6zp8nuncPn8uTh6htW6KuXfGvXj2ikJDsXeOHH2KPrl5NNHeu5Xt//03UooW8j7//nqh/fyKixlSx4n5q1Kgw/fAD1rNTJ6Lt2+XPLl26lJYtW2Z1vqSkJCpUqJDV6198geeOiGjCBKL33sNz17Yt0YABRFu2EF29ir27aBH2jRJHjhB17kw0eDDRxx9n/77cvk20ezfRnj2QBffv4/WSJYmqVCGqWBFrlzcv0WOPYU0NBjxz9+/jmbt2jejhQ3yubFmidu2Inn2WqEcPPK/ZgclE1KcPfveRI0T161u+P3061u3qVaJSpbBuly4Rff45UaNGRKNGEe3Ygb3266+4d+4iIgLrl54OOWA2Y426dCE6eBC/e/VqoldeIbpwATJLialTid5+m2jnTqJnnnH/OojwDJ08SfTbb/h39ChRZiZRaCjWrVw5yKIyZYiKFMHrQhClphIlJBDdvUsUGUl0/Truca5cuF/83HXoYCkz3MGVK/+PvesOa+r8/ieDsLeAIgiKExDcqBX3qBPr1rqrtdYO7VDbuq3609ZOu2z9WrWt2tbu1lHr3nuPqqDiRmTJTHLf3x+fvr43IQkhkIDKeZ77AOHmjnec+TnnED3xBFG9ehh7Z2fxv5wc8IZmzYjWrQMfCA3F2KWmEn3zDfhSXh5RSgp4g1JZsuexicpCI5AkWDG1asGqcXODBtq/P9xuej2sT39/0y0Fea7o7Nkle46kJMSGwsNxPTc3xHjnzkXsqLjarl6POM6KFXDphoTgun5+sATWry9ZxaCjRxHD6tatMLDrr79wL17onRclOXkSnw8ZAm2Rx6NtJV5H2MVFVJg6eBD34uh6nqtr3KRCr0eM1c2tZLFvvR4u4zFjMB4c4DR8OMb+7NniV4RLSQHwbvFieBdcXYWVOXt2yWuT8xikcQtCxjA3QUGwIHQ6vh5XsiFDTjN3d3hn6tQp3OmouJbzmDGwDJRKWJ7x8WIv8UIOCQmwUo3X/tmziKu2a1eyAiMZGUD0t22L+yqVsDDfess2C1iSYCmtW4f87YYNcV21Gnv5q69KZrVmZQE0FByM+8gpNRVjwjEV27bh3ps2wWrkFd58fUvuaYiKAs/s0AFj9uWXyMeNiRFdxDw9RS9uOfGMjZK6aM+eBXiwWjVcz90dVvD774MHWFO3W04FBeAnX3yBEIqcX44eXfJe37t3A9w1ZEjh6/BiOxxsO3YsrPy9e/H5sGF4Pw66KwsqE+F86pRg8AMHCuCJWi1ycblrzXizbt+O88aMsW3itFok73fpAteQlxcE6ebNpV/VSJKwaN98Ey4W7ir54APb63xv2IDN+eqrhf/XtSvczbm5GDe1Gvdq1Uq0W3RzQ5EQW2nJErhpeX56TAyAMyoVYjy5udi8ptK2Jk/GmFtTE90UpaZCcapeXQDSpk8X3ctKk3Jz4c4cORKKBxHG8KefbEO8SxI2vEYDxUJOV66IfuaMAX1PlM8WLNjKiOC25M9gqWpaUTHnmjUxZnFxmK/PPoNbnXd84+l3xgrE3bsAb0ZG2h6yOX4c7+/qijXQoQMUA3u0/rx6FQKpY0fcy9sbmR68jWlx6eZNuNMbNSos6N97D/vx1ClRK71HDyh07u7YC7VqiUY+thCvB6FUAieg0UBRVyggpBmDguDrWzhMtHEj5trWcpQFBcBGxMWJNK5nnwUWyB788uhR7IOaNQUm6YMPbF93339v2pDT6zEnjRrhdy6TVq2CgcgVK7W67ECPZSKcedcdIhQVadECcSZ3dwitxEQsQONesklJABG1a1f82KBWC2bAJ715c2jw8mo/9iRJgiY3aBAm3MMDcWpbYmUffIB3MO6Uc/Ysrs1TKAYOxEL7+GN8Xrs2mEVJACp9+0LDrFIF8/X229hAPDbzzjuiQ5Wcli7FM9tSMenaNSBh3d0hxEaPhpLmqL7A2dlgUK1a4R1q1EBcv7hrMD8fYx8QULiox7RpjDk7S+zPP0+xHTuOM6JM1qnTXhYVdZ/FxeU+YM6W8oktCefkZDy7RgPrWK0WABiucERHA98hV3S0WghSf3/bvAe7dokSr2FhSFEytkDtSYmJsFp5ClLXruZzYS3RsWNQbAcPNhyf/Hx4V3izCV6cR14i1d8fc2ergFm7VsSbY2KAIXnlFViY2dnwjimV4AtyOn3avKetKMrOxl7lefadOwOo6Kh0R0nCHpfzy6lTbascOGcO3sG4hvquXYagP17+dOZMeCEqV4Y1X5r1IYpDZSKcn3oKbsgqVcDI338fA8FzOQcNghtJLjizsrAwq1c3X33JFHGhHBGBiejdG2ClsqTr16GM+PlB2Lz+evHeSZLghnFyKmyFTZgAS+HuXZHWsWYNNm+XLljkGk3xXVCMQRj6++O5eYUpXlh+xw5o7T4+hXNyt20TTeiLY+GmpECBcXLCO731luXyn46gAweg9CgUsIjWri2ekpCSAiHVuLHhHGRlMebvn8eIVjMiYkQfMaJbjOhVplQWsEqVsF8GDjR/bUvCmVetIgIArXt3WFvBwdgjy5bhf8Zdml56CXNnTWtMOe3YAcWbCBb3qlVl2xM4Lw/PEBkphI253HtzxK2whQsNP+dlNDdtwpz6+cG93KQJlB0+7rZ6jJ57DkKWF/1ZscIwfapLF6xFuSV79y54ZXR08bIhCgrgUalSBfM+YkTZ1464eRMhC3d3HFOmFM/jotdD5nh6Fk6NGjBAyBpeW5srQ+3aQanz9XWcISAnhwtnvR6L198flgh3r/Fcs337CluFkoRYJY+hWktbtiBWw4VyecuDTk+HW9bdHZtv/nzD3seWSG6FyVG1t29jnF55RbjZevaEVtiggWAUxvFga4inZhHB29GoEdLgeNzrtdfwLvI+ucnJQNm2a2d9HDgvD8h3b2+My4IF5S/d6tgxUbO8ceOiO23J6fBhKGXDhxsqK1zR2btXxPY/+QSKQKtW8BoFBJhXcCwJ59GjseeqVMF1ly3DOpk5EwIlJKQwMpUL7E8+sf7dLl4UbfcaNYJAKgvGZo70egjZevUwrqNHF93ZSE5vvYXvybscSRLmp359WKhTp4r9rNHA4vbzQ0liW6h2bYQDWrfGT56dcfmy6FIlF/w6nbDYL1+2/j6//QYjRqEAnsRU6mZZUkoKxtbdHe/2ySfW85TMTChmtWsbhhS5l3bmTKyN6tXx7k2aCFc+UdnIDocLZ57LSYQN0qULFjYvq9ayJZi93A3Dq+FYKuAup+RkEctu0cJyzdXyQLdvIz1CrQaQxFor5c4duJ2aNzfUmmfPxoJLSoI7WaEQpQk9PbG45fWBraUPPoAypVaDSUyZgmsvXQo3rbMzFjmn/Hw8W0iI9Rbvn3+CQSiVsLQtdR8rD7R9O9YYEbRwaxk9B6TI653rdGDwbdpgL7RrJ/ACsbFi35hTUC0J5+rVoew0bQphwRl8crIIRciLUuzfjzU0dqx13o78fIA6XVywJr/9tnwJZWMqKAB+wt8f+2HRIusYvV4PZdfbW5SoZUy0t/3qK7jtVSqEfBQKKMVBQZjb4hJPf+N4lX79wDefegrrJTLSsCQlY/DKKRSw5K2hS5dEjLVLl/KfA33zJpQqhQKeAXMljo3pwgV49rp3N1ybr78ujApenXLOHPzk/M5cCVt7ksOF8/vv42XVaiyGuXPx88cfRS6f3ArZsQMDxF04lkivB7Nzd8dmWLGifDMIYzpxQnScGT7cOsG0bx/cvi+8ID7LysL7DxsGd42PD7R2JydRJL558+I/X0ICXDzR0XjGceNw7fv38byBgYY5ixMmYIFbUyDmzh2gKokA5CnNDlr2JklCpaGAAFhMS5ZYF+ObOBFrW16elVd4W79elNp86y3BJFSqwgCVorpSXb4sGHxoKOKmMTGYz7Q0zOlzz4nzU1Phem/WzDrQz86dEBIqFRido3AcpUH37kExViqhuFjjmcvIgICsW9ewPOvgwQjPZWWJzJM2bTA2CgXGv7jKJq9gxZHDM2bg59atIlQhNz74+uH515ZIq8V5zs5YF+vWPVwdxQ4dEmGDsWOti+mvX4+5kNdP5+G4F15AOMDZmbE33sB5detCgSvNBibWksOFc69eEA41awrXXtWqcGVGRgrkKGOwtoKD4c4pSqu9dEkgkp9/3nY0dFmTXg/tm7v+i+qhy5joUPXNN+Kzzz7D4jp2TIBHunUTsXeVqniuYp0O1oJKBeHctCmu+eqruIdCYej+5Izj88+LvvbatSKWvWLFw8Ug5JSaCibBkd1FAZ+0WhGa4MBA3rUqNhZ7IjgYiHGVCsA7X1/sIVNkznL++mvMD1eIFy3Czw0b4CZ0cxMWv14PK8rXt2iXaE4OFDAiuABLu3exI2nvXghcJydYTUXFx8+dg8AcOlSs18uXoYzOnQujgggxe15EhhshxaFnnoGXKipKpC5FR+P5IiIMC45cugQh07Nn0UbJ2bPYw0olDJ+HSaGSk14PXufpiZDNX38V/Z0FCzAXv/9u+JmTE8ZwxAgop+3aQU45OSEEVNz0zJKSQ4WzTofFo1bD1dmrFxbe3Lki35K3etTpADoKDLTsKpQkIFjd3ZEm8rD1cDZHd+6I2N2oUZYFKU/TcXUVLqmCAmjuXbrAnaNQIAWCMwmi4lVWO3JEfM/JSYCiLl5ESlWtWoKhHT8OxWvkSMuCNitLVOPp398wVv0w09atWN++vkV3k7p9G0ylTRux+Xfvxph8+y0yFtzdsRdq1ICQ9vIybZmbE84jRoB5RUTgu0OG4FrJyVgz8hAHF9xFrY1jx6BMu7jAki+NhiplTXl5wksRG1u0Fc2tWnnjj4kTMcYpKRCo3bqB34WGgsFPmFC8Z+J10ENDoTTxMBLHA3CFKCcHXrGICMsWpF4PFLaLC5S9R6Xs8bVr4HVE8AJZUjYkCQqMn5/A62RnYx8+/bQIUcir85kCS9qbHCqcDx82FA7Dh4PRX7mCRShvAjB9OgbGkrBNS0MMhgiCp7TLwJU1SRKAcR4eUDwsbaTsbMS06tUTuZgcRbp5syjm7uoKa8zNDRa1tbR4MZhWpUq4ZlQUtPh//sHfXAjdvw9XUGysZUT4kSNQHtzdAYR6WK1lc5SaKtbmqFHmu1MxBre2UmnYIrVXLwjQpCQwd17whR+mcBSmhLMkgbErlVB0Bw6E227hQuwZPz/hZdq5E3NsqWAGZ+4aDdbTwxR+sJaOHMH6dnGBILS0NseOxXkc0XznDvbr66+LmgAdOkBZ02hwXWtJHo4gEmGltDTwy379xLljxmBvW/Je3L0rQIwTJ9qWsVGeSZLgRXRzAx+0pFzdvYs5iY8XSvHnnwtvY5MmmDeVCntEnqLqKHKocOYM3scHC6l6dWjxH38M5sEbfm/YgEGy1M3lwAEsUG/v4ruKHjZKTESM2MkJMXVzzOLMGYwrb4LBazc3bgwXDhEWXFCQYK7WUvfuYEJhYVACiOBCatwYLk3+TGPHYnOY6+YiScAdaDSo5iQH1TxqxJUrd3e4xywBE+fOFfmxjEHoKRRg8P37w8rRaKAcqVSmG5iYEs6JiYYMfswYrKM9e3CdxYtx3p07UNrkzMqYUlLgJSFCDeVHpcWnKcrJAaaCA/3Mea5ycqCI1q4tjIMZM7BXzp7F3HMPGD+sBUdy9H5QkEAoT5okQlZcMeL1zpctM3+t3bshjPz9EXd9lOnMGbj+XVxQpMUcv+TKKI8/FxTAA9itm+hLHx+PfeHqahhydQQ5VDj36IEBq1QJL00EyysoSLSIvH4dC6hrV/Nxk+XLof03awbL4nGg/Hxou9wFbI5Z8FZ/3JLdvh1/f/89LDE+7kTY4NY0ntBqBSBFrUaKTK1aoqsSR0tyABOvWmRMGRlIaePM3dq0sYed/v0Xmrizs+kuR4zBLdypk2EYZ8QI/M1Ls8bHY684O5tuYGJKOC9bhnn28cFRsyaAS/36waLOzcU+69zZMPZtTIcPQzGrVAnK8+NC338PN3VkpPk2hOfPw1rmBUoyMsDDxo0TrThdXKC08r1oDQ0dCuERECCAT8ePQ8gOGYJzLl3C8xkXR+EkSUAaq9UAm5pqZvIoUk6OCOONHm2e13BEPU8t5TnOmzbBS8ErSRJhDku7Kpolcphw1ulECUKeA9moEdCCTk4Qsno9kLpVqpiuBFNQAIBFUQP+KNOPPyJ+WLeuaWYhSRDePj4C0NOlC5jLO++IajsuLhhHawBnBw4Iwcx/Ll4MAc1RjJcv4579+5tmEufO4Zm9vApX6nkcKC8P4B4ioINNAY5u3RL1k/V6ATCaPRvz17y52D+uroWvYUo4Dx2K/eXjI2Jyn3+On8uX45xFiyyn3qxcifXSuHHhymaPA509C8+Fj495q5O3uuVjygXir7+KlE5/f8zn888XfU9JgmLG55unTH30EbyM585h/ps1g9JtSlnPyREppZMnl20RmLKiFSugzMbFmVY8ObapcmXsP70e67x5c4T9OEaKlywu7Y5elshhwvngQYES5k0FPvpIpPkwxmsKm2YSd+5gcarVQAU/ajHK4tD583Cj+fmJXsBy4jGpli1h9XLh+tlnWKiNGkFIajTWFUZYuBAMoVIlxL5dXUXhmMOHcY8nnkBpUFNglL/+wv3q1n203dhFkSRh7arVQIKaUkB52Ude5nTSJChj//d/2DtubqL0LS9DaS6VSpJgaXMG36oVYp5t2+KnTof4qpMTYqTGpNUKZXjkyEcvRlkcSk+HIqpUQpkxxX94HfaLFzFWVavCom3RQoSCiOC9KIouXsS5Go3wWq1YASHCvYyTJ2MtmQIqXb8Ob42bm2iG87jSgQOYi8qVEc4xpps3oQh17gzhzPcg53GxsZBTKpXlUGtpk8OE8zvvYGF7eCBY7+uLNBw3N2gsx49jIU6aVPi7R4+C8QcGFi5X+bjSvXtwg6rVptOVdu/GYuIgo4QEIDmffhqLlDOKOnWKvlfHjsINzjts8Z7AjKHwiFJpWqv87DP8r0eP8lflq6xo2za4KsPCTAN4Jk3CXjh+HALc0xNC0t0dTN7DA3Mxf77h94wt5wsXhELMmQtPffr1VwAH69YFytfYC5WRAUu7QhkWpNMB2U4EoWvcBCMzE1ZsXBysVF5Pntdy4E0/iIrOTODhKe4lCwiAkqxWw5XNBYgp7MGhQ4iThoSUv6qIZUU3b8KA0GhMh5Y2bcLcLFiAvzt0QNy6SxfRaIcIab2OIocJ586dxcL09ARwiKdx5ORAk69fvzDIZONGMKNGjRxbMJ8xII+vXAED3b4dE/jHH6hU9scfSJk5cABAtsuXgQB0JBPTamH5EiGB3hjIw+MpW7eK0ptTpog54AvOUmGEggJY21w4EyHdhKdx7NgB4Wuq68vrr4tcT0em2kgSGGVSEiz7LVsQJ/39d8zdX39BQB44AETn5cuOD5FcuQJAnIdH4Rhubi72QnQ0fp8+HXtl+HAoR3ze2rQx/J6xcObCwdUVrjo3N1GWUJLgXnVxKdytKTkZYEEvr+KVJS0NKihAzP3ffyFYduzAfP36K35u2oT53LsXHqS7dx1faGjtWoxl06aFwV1790IJmjED+7FWLVFKs04d4TVcs8byPRISxDy7uwNvEhAgim2EhIjwh5x++AH3aNaseGVJS4NycwFAPHYMxsGmTZg3fmzaBCv/7Fk8W3a2Y/llfj4AkUQwKIzvPXUqlJ/Dh0XryNdeKxzScxQQ0iHCWasVi5Iz+iFDRFrASy/hc2Po+/LlGIzu3e2TJC9JcP9s2IBczUmTgKxs2BDPJkdYWntoNMKlPHo0PAZ//ili6vagzz8HQ0hIMHQ96nRwYVatCkt74EBs6uhouKc1mqIBKnv2CDBEQACYdng4ulOlpgJU1Lq1ofDNyQHgSKEo3CmntEiSYBmuXQslZPRovGtYmHD7Fvfw98f7PfkkLMxPP4UQt1cJ0awsIENVqsJI2xMnhCfp3j1kJfB0Kg4s0mgMASrGwpmnchFh7njMmSsqRIXrZh89CqurWrXi1bEvDuXkIMz11VdgfgMGwPVbtaphXqm1B08Ti4sDX5k2DbzjwAH7KV2HDiFkEBFhWPaUMSiqSiUEFEdSDxki3NMKBYSEOZIk0aec883XXsO6vnwZnisvL8P4vyTBk0KEfW6PEIQk4Z7r1yPs8uyz2Cv162Pv2MovIyLgnXv2WViuP/wAxcseCr18nEaMMNw/+fng/ZGRGL9u3UQf9dBQIbuK2wTGVlIwxhjZmQ4cIIqLI1Krifz9icLDiY4cIZo7lyg2lqhrV6IPPyR66SWczxjR228TzZhBNHYs0aef4rslpfx8okOHiHbvJtq1i2jvXqK7d/E/Z2c8l/wIDSWqVInI15fI25vIxYXIyQmHVkuUnS2OnByijAyiW7eIbtwgSk4mOneO6OxZ/J+IyM2NKCqKqHlzHC1b4j6lQX/9RdS/P1HDhkS//Ubk54fPr10jql+fqFs3ounTcf++fYnWrSOSJCKFAmP8xRemrztvHtG0afhdqSQaNIho9Wqi48eJZs8m2rIFv4eG4pyUFKJevfDZ6tVECQml835Xr2LOjhwhOnyY6OhRjDcR5qhGDaLq1fEzJATrzM8PP729iTQazJtKhXWQk0OUm4ufmZlEN29i3m7cILp+nejff3HodLhHQABR06aYtxYtsJ49PUv+Xjod0YQJREuXYr3PmoU5ISJ6/32iV14h+vtvoj17iObPx365epUoNRVrcOdOolatcH5mZiZ5e3tTRkYGeXp6kb8/UVoakYcH0f37mHsvL6KffiKKiSFq1ozo99/F/davJxowgKh2baI//iCqUqXk76fXE508SbRjB97h+HGMK1971asThYVh/VSrhp9VquA5PTzEoVZjrPiRk0N07x7GITUV+y4xkejSJfy8fh33d3LC+m/SRBwxMVgHJaWkJPCu1FSMY/Pm+FynI2rTBmvqyBGi+Hiswd27wWfy87FGk5NNX/fcOaJ69bBmvb2JoqMxboMGEXXpgj21fDnRyJE4X5KIJk4k+vjjwmuoJJSWRrRvH/g3Pzi/dHXFOgkPJ6paFUdwMA4fH8yZuzt4pkIBnp6biz2bkYE9l5GBe1y9ijlLSsLP9HRxj4YNsb7j44meeAK8uDTou++IRo3CtX/6CeNMRHT6NFHjxkTjxxMNHYr10q8f0a+/Yr8RgY/OmVM6z2GRHKEBLFggXKLcbx8UBGsyKAjaF3cxaLXC9fD22yVze2i1cIu98YaIN3A3UYcOcD39/DNiOPayajnqdv16IJyHDRM9pYmgNY4fD9R0SUuO7tsHDTYy0jAEwFOe1q4FaCUwEBo5R2xXq2b+ms2aCW3fzQ0a5IAB4pryClgXLyLmFhQkKr3ZSvfuYUzGj4drkI9X9eqw2ufPhwVoz8YYBQUIWfzwA9bKk08idsvjuE88AffYrl0lQ8LKtflRo0R4Qq/HOg0Oxl7x9UV4SG55yHueyy3nc+fEc4aGijHcuBEWQWCgYdxzxQqc26OH5YIp1tDFi/CYdOsmLECNBt6kF15APHX//sIx29Kk7Gzc45NPMKb16wur3McHeImPPy5s9RaXUlOxDlxdDTtDXbqE0NHw4aIYUNOm2J8c+WvO7fzRR4ZzPGgQrLYTJ7C3evQQfDEvD/tRqbSuVK4l0mqxlmfMAFqZj5efH9b+jBnoXJWYaN9Qwu3bCKe8+y7ejXdSUygwj+PHY0xLWnRq+3ashfr1EZPmxIHJmzdjnYSFGSK2GzYs2X2tJYcIZ97MQa3GYCiVKETRqxcQwHxgsrPhwlarzeeDFkXp6SirN2iQcE0HBGCSP/xQoIvLmu7cgWLw/PNCWKtUYGALF4LB2ULnzmExhYSIIgU8vcrPDwJcrYbQdXMTSpN8cXLKyxOxFmdnzCOPYfv6AhTD6cQJAM1q17Y99/zffyGk5IyhVi1sxnXritfz2l6k1yNG+/nnUBID092yAAAgAElEQVT4GuNlMX/80Xahs2oV1sBTTwl3bHIy7tG3L9IONRrMI1c0GzUS35cLZ15vnR/h4Zi/jz/G3/KWhx9+iM+eeca2vaHVoqDD5MkAe3Jh3KkTFOzt28tHwZL79/Ess2YhZ5yHP+rWBRZjzx7bhE5uLkIISqVhq9sVK3D91auB+JUjtokY++4709fjPQI0GihR3t5IvxswAHPPhXpGBpQ3Z2fbEdmpqXjmp54SipSvL/jFl18idFTWYEBJgrLz9dcw3OrUEePTuTMK9dia4nf6NJTfmjVF6qlej2yKkBAoKwoFsBo8FViptK9iycnuwrmgQDASJycAv6pUwYASiZzXjAxY1G5u0O6LQ1lZWOgJCeJejRtD09u//+HoTJWYiBrhvXsLizY2FkX4i9tX9fp1Af/nCOqUFAjPbt1QHMHb25BRrF5d+Dq8eD8/goIgkLt3x7W4sNy3Dxu6QQPrqx/Jn/W997D4uVejTx/EI4vTi7asSKeDl2DWLMSreZywTx94F4qr3f/2G5htx47CguXFXT7/HMpsgwZinUPR/axQKlWnTkKp4jHqr7/Gs40fj+tKEp6bxzSLw4T1egi6MWMESC0wEFbqTz+V3Pp2BGVlwdodNUqUpQ0KgsK8e3fxxkOnQ01nIhgejBkqxbwWdqVKQuEdMKDwdfR6sf+dnIRVznPT+T69dUukRMq7mllD6enYX506QRlUKGAUzJmDvfww1ElPTIRS2bGjGM+GDWHYFJdvJCbC4xcSIiobXrmCsR06FDF8ec45t6rtTXYXzhz1xg+FAq5Ad3cgDxkDk2/SBAJj927rrqvXA/03aJAATcTFYWM87FVw7t8HQx40SGhrrVtDw7WW2aenAyDl5iYQt7yd3MKFYNpVqoiFPWhQ4WtwZLdCIcA68+bhs99+wzn//IO5fOIJ61q2MQaX9ZdfQjtVKCBoevcGMM0RGqk96cIF5CQ3bYpxcnPDBt+0yXqmt3Ur5r15c4wVYwCveHggRMPnjB8coMIt5/T0jAfgIw7ki4/H9SIisL70epHDPH++9YLo3Dmg9XlDhrAwoFz37n04lGBzpNPB+n/lFax17m14803rvViSJPbMjBn4OyUFAr97dwiPsDDhFQoIKHyNEycM59bdHcqUn58o8JOcDA9V5cqipndRpNXCWzJwINaEQsFY+/YAPToa1V3alJ4O4F2/fkKx6dAByrG1wLgbNwCUrVQJ3lXGRGe999/HnAUEiLkzlfJb2mR34Tx9uqHlVbUqGEVYGATNjRuwpgMCrMvJS0qCcK9WDdesVw/M8FEt43n/PtydHTuKuO+wYUgnKYqh5uSgDKqzs+gyNHYsmPyoUWIhm2MU3EXJ43R9+kCb5EUQfvkF1+7cuWg0vSSBgQ8bhu8olXinZcusF+oPG12+DGWmdm2MYUgI1q65EplyOnAADDkmBiGHjAzEjtu0gRYvRzZzRsGF84EDGQYMngjeEoUCAkirRSxUoQBzLoqys6FMcfyBtzcs5u3bH26BbI70elijzz4rPEydOkFhtgZbwFsSvvQSrsWrhHFlSI6/MV4LvF+zUglrzt0dKPvAQAj6S5egNISFWac0XLyIcAO3/KKjoZw/7AaMOcrMhIeIhwa8vaHcHDpUNL9MTcUa9/KC11CSEE7y88NP7vYnwp62N9ldOHNXH1+U/fvj93/+Me1OMEV6PXIcu3fHNXie9N69ZR8PcSRdvQpmz8E9kZFgrpZciHl5iCep1WAumZkAVcXFQTjLrbBr18T3cnMFE1GrwSxatYJQSEtDXF+lwqK1lK5y/z7ybRs0wLWqVwdzMBXjflRJkuAuHDcOzFatxj7Yts3y+j11Ct4NHg/jhSd4fJPPG684xYXzrFkZDxg8z8d1doZVmJcHL4VabT7myenCBVHCUKHA/vv++/IRP3YUZWeD2bdoIQyMqVOLDjXx5hQjR8Iq59XDYmMNc9Xl7SYZM4xLOzsD/EUERfjsWcRHa9WyHGPVanE+T53z9UXM+ujRx4tfXrgAz0dwMMYhJgbhAUveucxMeBRcXQHi5eHA1q2xn+T7zt49sO0qnPPzBcLNyQkL29UVOaTnzoHRR0SYt3rT04Fw5oCpBg2wmB/WxuClRZIEV2bfvqK/70svITfQFBUUIFasVMIK37EDjKNNG0PhLGcUXBDwGCpnTuvXi9ZqcmSxMZ09i2fy8sK5PXviu4+ipVUcSk9HrIyDWqKjoWCZC1dcuiQU2AsXENd0c4MlxPMuicBwuHBu2NDQcq5bF8e9e/CkuLiY79es18P92bWrqAg3eTIU6cedTpwA2pxb008+iX1iTuB9+y3255AhCN2FhkI4y+emY0dxvl4v+KWrK4Q5R3wfPQrvVnS0ecX23j1Y7SEhuEazZsj3fpzLrjImXPoJCWJNT5livqhVbi7Ayk5OUEZ545kWLQy9jfZuAGNX4bxzp+FCrFEDx8GD0EYiI03HO65eRWlPT08M0JAhxQdoPC509Sq0Qw5o6dLFNMPQ6YDGVSgAPHv9dYytnMHLGcWoUeJzboGNHSuAfC++aFrQ7t0LC4sDhN588+EAdjmaJAnz1Ls3xtfTE1WgTFlE169DmAcHIx4WHm6YjkcEBsKFs1otLOfq1fFz2zasDRcX01W/srOhNNSoges1alTB2M1RdjbGhnuDYmMRnzTVsej77yFwBw6Ecsrj9Bwp7u4uzuUFf4jwnRo1YMBs3gzvRePGpjMWLl/G2nF3x35+5hkRN60gQ0pMhDfIywtjPGCAadlSUIBSx0olPExjx2J85ZbzyJH2fVa7CmeOXiQS5SJXroQFHR1dGNl7/Dhikmo1tNOpUx9+sIKjKDcXqRsNGwrmumaNoWWr10PzJ0Llsuhow8YIbm7iXJ5bqFTi97Aw1PHlMU75YuaWfIcOAgewcuXj2TXMFrpyBUAvX1+s/WHDYKXJ6eZNjGuVKnCzEhnGwAYPFsKZKMOAyb/6KmKmrq4IJ8kpMxPzGhgorLzHLVxkK0kSBGfXrhjr4GCEbIwxFOvWYV779kVoQ64QEwkLjnct40A+IuSLe3nBajOug3DoEICcKhWswWnTiq7ZXUGgzEykFfIQYbNmmCe5wcHDEUolQnPVqmH/8XBf5cr2fUa7CmeOeuRxy6FDwQTq1xfFIyQJDIMXV6hWDei4kiaYP64kSUAG82YVNWqgEAO3gCQJbkoOUFGpDLXBpCRYBnKcABHSS4gMU24kCa6dVq1E2OHHHytc17ZSVhbWfmgoxrNbN8O49K1bAE8GBUGIysuUKpWpD1KpuHB2cxOtBt3cDMsOpqWhIYOfH64zdmzxU/YqSNCpUyghq9HAHT1pkiGG49dfMc49esDzwdH0RKLTkVxR5hkMnp7IhOD8UJLgom3XTuzvJUsqQn22Eg/jtG0rQkDLlwsviF6PeVUoBN+UA/rsOe52E855eYYummrVUB0nNhZBdkmCm4c3EW/QADGax7HnqL3o0CG403gawMKFEACSJFD0fJPzY948UQ+Yzx0vIjN5Mr6r1wNwwnOT4+IQw6ywtkqHCgrgeYiOxvg2bw4GIklQauvXRxgjJMRQQF+/bmg5q1Rwhbq7i25ud+/CwvLyggX3wguObyjzKNPNm0g18/GBgH3uORHW+eMPfMbxG/yoXRtzLt9zlStDMLdqBcGs18Oy4670Zs0A8HwYcpIfFtq7F7FmIijIH3wg0g7HjIFQ5m2L+VxZ6ktQUrKbcP7lF8MF6OUFl2tKCoru8zzQ5s0RL6tg7PajixeRFuLkBAVp/nyk5syeLWLDckYRHy/+5uUq33gDLvI1awSitE0buPUq5s4+xK0krsA2box9decOmLRxIZmPPjIUztWqwYrbtQtW9+uvQ1C7ucHVXREysh9lZGCf8aIjo0cD0LdhA5QinifOQ0dyhZgDwuLj4eFYs0Yoah06wANSsefsR6dOIbSkUsGoWbQI88nTETlPJIKwthfZTTi3bi1ewNkZjEUeE23VyjLSsYJKn65cQc6fRoP45pw5hnno3GVjXOTijTfg6uH5ul26VPTVdiTx0A93vcXGYj4aNjREj1arJoSzszME8y+/IHzh4gJL7M037VuPvIIM6f591IgOCoIQfvppZEW4uIgqb0QIP/DfnZwgmL/6Cm5WvudM9UuvIPtRUpIwaipVgrIlxwXw8IO9yG7CWc7gw8PF4mvXrkLzK2tKTgba2tkZ1hePT5s6evQQzcYTEkre0KKCSkbbt4v5qlsXe0vMlxDObm6IWXJFbPZsUW2sghxPOTkAIIWEiDRGuXA2dnNHRIj9t39/WT/9401yo8bPD2E8+Xz916G11Mkuwjkz01ALJALga+dOe9ytgmylGzeQgmGsxfPD0xOMZMAANFCvoPJDe/YIlLCYOyGcVSpo+wsW2I95VFDxKS8PyF+u8BoffC57965IhypvlJwMjIazsyG/fPZZ+9zPpn7OjDHKysoy+38fHzw2EfphPvMMUWRkce9SQY6i1FSitWtxyKlzZ/Q0DQsrm+eqIMuk1RbQyZM6+uYbJzp82ImIMokolDw8kmnECC/q1Qv9dCuo/JFOhz7dS5eiLzWn+Hj0GY6IKLtnqyDLdPcu+kGvWyc+u3mTyM3N8vc8PT1JUYxG2zYJZ97UvYIqqIIqqIIqqIKKpoyMDPLy8rL6/BJZzk2bNqWDBw8W+v/du0LzU6mI9Hqi2FiiESOIGjUi4spDdvZ96tatK/3113pyd/co7mMY0LBhQ2nVqm9KdI3Suk5pXKO0xsbSs6SnE/3wA9FPPxHl5RFJkuH/lUrMX+/eRLt3v0CrVy+x+TmseR5rqLytmbJad2fOEH39tUT79ytJoWD/eaoyiagaEV0lIm8KDCR6+mmi7t2JnJzs9yz2vE552kul8Tx5eUSDBq0ihWKYgcXMSa2GVd24MdHIkUQxMfZ7FiLH8BlHX8de43L7Nizm33+HDNPpcG7v3kSffWbecuZysriWc4lizvXq1TP7P14jlghpA7wBRsuWyG+WJMPm8CUlS8/i6OuUxjVKa2xMPcuNGyhh5+aG1BrebcjU0agRQGMKRR6bMKHkObElHZvytmYcve62b2cPejXXrCnqKONI/y/mnP6gJ7RSiWJAH31kfSnOir1U+s8jR20TaVmXLoY56saAsKgokapjrgNdeRqbR3nN/Psvyhmr1QCE8TRgfhRVMMvW51HaqlkQEU2YMMHs/+Ljxe937uDnd9/Biu7alSgujmjDBnVJbm/1szj6OqX1LKVB8me5epXohReIqlcnWraM6JVXoJ0fOGD4HbmVdeQIUY8eRN26HaXVq+ERGTeO6PLlkj9PWVN5mmtL12EM8ck2bXDcvk301VdErq7wUnGKjdX/95uClEqivXuJvv6aqEMHokmTiGrUIHr/faKcHNufpThUnsa3tKi4z3P/PtHChUTh4URTp2IvDR26lXbsgFeKU1SU+P3yZSJPT6JvvyXKzCRq3x7zvnmzwPLY8iz2pEdzzUTT6NGuVLcu0YYNRAsWEPXqRSR3Fjs7Y67s8jw2iXQr6PffDbULX18Ur7h9G+UleclHosPsm2+yK0o+GlFpavtnzqBGrFqNIiRvv420mkmTMAfysoERESgMw//mXaWGD0dBhIULkZivVkOb/PffUnjZYlBpjkt5J52OsbVr4b0gQkW2X34RPdB9fQ332IoVNx6gtYmACHZzg+V14QIKYajVKDqzaJHlVqOPEpXFmklNxT7z94eFPG4c8mb//BNoX8MUONSAkP/t4YGUnbQ0VBbj1lqLFsLzWBr0OO0na+nAAca6dy/4r3aAnn36KUoa8xxn3ieC/isKYy+ym3CWl6NTq+F+CwoCU7l1C4tr48Z8Fh6eyIjwubym6eNOeXl5bObMmSyvBN0j9u5FbjIRXJuLF4vynS+/LFLc5LW1Z83CPMjnrnVr0RRBq4WL7r33UGJQoWCsTx/cyxFUGuNS3ik3F/2Aea5rx46iYM+NG8hvDgrCnjLsx33HQDgrlVC0XF1RyY0xdOWRV4ubMePRL0riyDWTlISiL7xD1PPPi1DQL79g3Hk5XH7UrAllmf+tUkGx8vFByCktTdSx56U/Gzcu3NjGFnoc9pO1tGOH6IFdq5aeJST8zLKy8phOB0NEoUBYVr7n1q2z3/PYTTgzZhgPc3JC44sqVdBdR96TdOdO0WbQXGeXCrKOeM3yNm0wnnXqMLZsmVB6JEl0ppo8GQxcjg9ISoLwNY6DTZ4sWt9xhpCbi5xNXjksPp6x336raHxhK6WloQpRUBAYQf/+qI/O6do1jHVwMCpNyXMtQ0MLd6Xy8MBe69wZuewbN4prXbkCIeLmhv+NG+d4L8ijREeOoDMY7xA1fbph170ffgBTT0iA4JV3FJsxA+cEBBgK6JEj4R1p0kQUkOGtRnkhmrAw1ICuaBRkG2m1qI/NlZ769aH08JrlOh1jI0aAT3KDRn5kZ9vv2ewqnMePNyxoQYSC/lWrQmhcv254/unTorOLpydASxVF+a2jrCx0n+Ll/po2hVYnL4yv14s5+fhjMHpu/RLBwuLEGYVSCWEQFIRWhWo1Y/36GTYo0esZ+/lnUQO6Xj0oBLm5jnv/h5mSktDty9MTa//ZZwsLyuRkAQBbuRLjLK+t7eOzqlBXKu75ePVVdLhydobiJifufg0MxDp46qmK3unWErx/olVqeDiAd8adir79FsJ28GAoQfKSq0So5cwYjBcxn5iPFSsg7Bs1wlzJ6ehRfIe32J0yxbATVgWZp7Q0tM2tVg3j3a5dYcNCq0WNbaWSsc8/xx7hFd64IWlPsqtwljcP5/HM8HAsqpAQ9NI0tZhu3EA9Zx8fLOq+fVFbuIJhFKZLl6DEeHtjEfXta9hmkJNOB6avUKBmL6+3LLe+5PGTIUMM587LC1Yzd8099ZTpEMTu3ahupFCgQtXUqRA+FWRI3ALq1UsU058yxXQziitX0BqwWjX0PA8LE31o+bF7t7CcPTxEV6oaNbAutm9nrGdPzPeffxa+B/eC1Kkj3Kb/+5/1CO/HibKyEHbgzShM9U7n9PXXGP/hw6EYwWUqXKPOzmKv/vab4ZxWr4752LcPIYgGDQytcU7JyWhq4uUlPJS7dlXwS1P077/wHLq7Yy+MHAl5ZEz5+fBcqVSY2/79BY/l8zN2rH2f1a7CWasVLlNePNzdHW3ULl0Cs6le3Xwf2aws9Crldbnr1oVmatx0/HEjnQ4ae0ICGLuvLxg7b01nTAUF0NqVSsST//kH49m6taFw/vJL8R3OSIgwZ7ye7Nq1APtpNGD25kJV58+jNChf0D17Imb2uLu809Lg4ahXD+MZHc3YF1+Y7wt74QIU2vBwKDnjxsEVXbmymDu1GnPMhXPnzhkGTL5ePXhJ0tKwZjQa9Bc2RXo9AEhdu4q19eqr6Gz2uNPZs6hJ7+WFNZ2QYNlo+PJLjOGYMXBLh4SIxj/8aN1anJ+RIawyJyd4GDUajP+JE/Be1akDYWyKMjKQrlWjhlhbH31UUVNdq8V679YN4xsQgFCCPLQqp9xchFk1GhgjvGNY69ZQpvjccRyHvciuwpkxdNDhL6NUAjxEBMT2lSvQIoOD4dI2R5IEa3DAADAiNzdoPFu3Pl7M/vx5dBXisfzoaFg7luIeubkQjE5OiHulp0MpatECC02eayn3YuTkCEbBtfyOHaHB37oF4e3sjAVvyX19/z6eka+DGjXQDcucIvEoElemBg+Gt4Lvg6IawBw/DoZcuzb2ysaNGMOBAw0bvjdsiPO5cP7iCyGcPT0R4nBxgbKUnw/vikrF2HffWX7uixchGHx9cb+OHRlbtcq+DebLG6WnY/3ykE1AAPbglSuWv/fJJzj/+efBo0aOxFw0bmzYcvCjjwy/V7OmofDu1w9jv2sXFLWwMByW8AF6Pfhr377Yuy4uiJvu2fN4WdMXLiD2X7UqxrJJk6LDbffvw4Po4gJj4uZNhBWefBL7lu87pdL+XiW7C+dZs8TLBAVhcbdtCwBLejpjO3acZ15eiUyhuMtcXVuxuLg4dsXCyr9xA8yda4fh4ZiACxfs/SZlQ2lpjMXHr2JEux/Eop57Dq6uojZaZiZiKa6uItY4ahSYxIgRUHI4E/D3L/x9uevU3x+COCAAFoMkgQG4uABwVNRClSQwmJEjYYkTMda+PeKn1qb0FBQUsMmTJ7Po6Gjm5ubGqlSpwoYNG8auG4MXygkZK1P16gHsaE0f5T17MNfclZmWhj3Trh1AlVWqiLmZNQvf4cL5/HlDy5kIWAOFAu5trRbzoFDAai+KsrPh4uZtYN3dsX62bCnfyvH8+fNZkyZNmIeHBwsICGAJCQns3LlzRX5Pp0PI4emnsXeUSjDnNWvMe4o4SRL4ExFSFSVJuKt56qJcsTp/3vD7EyeK/wUGQhDHxUFoZ2cDg1OnDnjpiRNFj8HNmwAZ8kYbUVGMzZtn6AmZP38+IyL28ssvF33Bck7XryOThKeeeXqCX1rTRCQ9HUh6d3c969hxLvP19WNK5e9MrU5l7dvfe5BWyveyvcnuwvngQUMmoVYjnuzpyVjfvhnMz8+PvfjiDFa//n3m4aFn//d/u9ltU4EVI5IkQN+feUaAzRo3ZmzuXAAsHmYNMSUFQJA+fRjTaHSMSMecnTez4cP/sBpklZqKTe3pKXovcybxzjtw2VSpIizngQMLX4OjExUKeDf4dzmwjzG49dzcRGN4aygrC7E43p/YxQVx6m++sRyySE9PZx07dmRr165l586dY3v37mVxcXGscePG1t3YAXT2LJhf48YCtPXcc2j7Z+2a/PtvjGmrVmJMhwzBtaZNM4x7EYk2nvKc1cqV2YO4c+XKuFarVmDSWVkQqi++iHMWLbL+/RITIXy4hRcainWyZUvJ03pKm7p06cKWL1/OTp06xY4dO8a6d+/OqlWrxu6bMP21WiguEyaIvP86dRj7v/+zHmSl1+P7RADZSRLS1AID4SZt2hSKGp8/L6/Ca2LDBsO5JcJ4u7gAJ8IYrtmwITwa+/ZZ/2wbNzI2aJBQyps2Zezll6+wkJDmLCYm5qEVzvfuIYTQvj14lUYDTMz331tv3V6/jiqW3t56VrlyAhs5ciSbOfPif4rtOUYkMT8/MSdTptj3nRhzgHDW6YSf3tkZrthKlRj79FPux/+AMQaG0b49NFVTgBVLlJ0NrXbAAKSPEIF5vP46gDJyxHJ5pfPnIfji44X7pFGjfOblNZdt2XKOhYWFsffff9+qa928iZQAf3+RipOSAqbTvTvilvJUDiLGVq8ufJ1t2wzPCQmBi3zoUAgKHvvasweMIibGOqtQTklJiJPxmLZGAwv944/huitKoB04cIARkUVviz2poAAegbfeEnFkd3cASNasKT5i/aefMAZPPinCFd99h+suW4a9ExMDJVehwJ7iQlEunIcPF8KZz/XKlWDMvMWdJEHYEwFUWBwrWJKwt55/XrgNfX2xNn74oXym9ty5gzzw7du3M8YQnvn6a/AN7moOCcFYWOOZklN+PhRcpVJ4IyQJSqe/v0DY+/sLHE7v3oWvk5Ul9r9KBbxNtWpCKd66FeelpXErD4pRcej+fWBHevbUMoUijxEx5uFxnjVtupHt3Fn+lCxjkiR4DRYuhCfJyQlj1rEj9khx03DPn4eHIiSEsdGjF7NWrVqxa9fA455+GoKeK7v84PNgT7K7cGZMuMPUaoEonDdPz1SqX5irazZr3XowCwgIYE2atGJxcdeZSgVEsS2UmwtAy5gxIh3IxwcDvGQJ8hHLw+K7dg2a3fjxIk/YxQXC78svGbt+Xc/atWvHPvgAyou1wvncOVhH8ji+JEFY+PmhWIhajfiLh4dw05gCR+Tl4VylUlhyHAgRHIyEfc7ATp0Ck65Rw3bw0JUrjL3/PnK0eZy7enVYnmvXmrZg/v77b6ZQKBxW4UinQyz4gw8Y69FDKIN+fnAV//ab7bGo//0PYz1ggEDCX7kCJjF4MNyTTk4QgpzBt27N2JIlS1i9evUepFJlZGSw7783ZCYREWDmn3+Ov3/+Wdx3yRKsg8GDi3bbmiJJgods2jQohRzQFB+PkNM//9g3H9RaOnToEiN6ko0de/uBZ0OhgAU5cya8G7a46bOyUO9cozEsSsGL+fz4IyxdDmzlhzke16CBeDZurS1ZgrkODRXCJzsbe9DZGUpdcWn48OFs/Pip7NtvGQsM3MRcXbMe8MsBAxA3P3q07I0bvR58bcUKeEq5MujqCmNjyZLiGwWc9u+HwluvHkIG9erVYy+/PIkFBR1lSuVNFhExhhEBkc/726vVjkkTdYhwXrzYcFG2b8+Yr6+eEYUxheI6q137Mjt8+ChbsGABI1KxhIRrjAgbpiTuaZ0OVs2sWWAUnOG7uuLv114D0z950jamZA3p9aJs38KFAGnIi7PUqgVL5pdfDBnY/PnzWadOnZj03wBYI5x378Zmjow0BKx88w3utWYNUjqCgqAIuLoK16Q54uhStRpMoFYtIHn/+gufL10qzr18GYpGUJBwtdpKmZlAWD7/vCFIplo1WChz5zK2Zk0+i4p6ig0ePLRkNzNDWVlgTmvWYK20bi3i5RoN1vH8+XjXkjAwSRLYjHHjxLX0erj+Q0Iwtr6+iO/L99I774jryC3nO3cE1sPfXzSe2bhRWHPyUP2PP2J+27cH6rckdOkSgE59+uA+XFg3boz0k88+w5jZq3wodyfv2IF7jRzJWN260oMx8/eHe3flStOpScWhlBQId09PQws2KUlgO378UQCS/P2FW9tclsqbbxqGLlq1who4fx6K2sCBgi/m5UGQKhRQGK2l1atXs+joaJb7n5Rp06YNe/HFiWzfPvDduDjBLz08AJKaNg174fhx+wknvR686/ffodh17mwIoIuMROx+06aSP8P69TA6WrQQOeTOzs5MpXrlP4XoAouKusKILj2plVQAACAASURBVDAi/YM5adq05O9pDdnUMrK4dPQoWkUSFRDRPVIobpBa3YC02unUtq07bdv2Jr33Horz9+rVi9zc3KlBg9X0xhtoPP7FF8VreWeOcnLQyGH/fqJ9+/AzORn/U6nQGKB2baJq1YhCQ4n8/Ym8vYm8vAwPpRINPPR6ovx8oowMtF9MTye6cYPo+nWia9eILl0iOndONBpwcyNq0oSoeXMccXFEwcFE3377LY0bN+7Bc/755580cOBAOnLkCAUHBxMRUXh4OE2cOJEmTpxo8t1++gntAZs1I/rlFyJfX3yelETUoAEK7k+bRhQdTfTUUzhH/1+fhGefxRibotmziWbNwu9KJdHQoUQrVxLt2YPmGWvXEp08icL+REQpKUQJCUTHjhF98w1Rnz42ThYZjoskBdGbb/5OaWmRdPAg0enTjO7dQ/s1Z2dGdesqqHZtoqAgcQQG4qenJ5FGgyL1CgXa9uXn48jNRbP7u3eJbt3CnF24QHTxIhqoc6pWDWPLj6ZNi26ubg1ptWgksnw50bx5RG+8IVqqvvsu0eTJRP/8Q7R9OxooxMZiTtPS8N3Dh/neEn3Wed/YiAiixETRtjUmhsjdnejXX3GdqCiijRsxr0REO3agsH94ONH69URVqpT8/SQJ7S23b8ezHjlCdPq0aLdXuTJRzZpEtWoRVa2KOeOHtzfmjB+ShLnLzcXPnByst1u3MFc3b2Lezp2jB+0YlUq8t1a7g27d+pl+/nkKtWpVmYrTuc8cJSWhiU9aGhojNGyIz3U6onbt0Gjm6FGiVq3AS3btwjosKMC6vHmTTD7HP/8QdeyIc11csGf37SP68EOigACiQYOIVqwgGj5cjPHUqUTvvEM0cSLWjbyphjElJydTkyZNaNOmTRQbG0tERG3btqUGDRrQBx988OC8nBzM2Z49OPbvR9MVPq41ahDVrQteGRyM+atUCfvC1VUcfJ/wPZedjf129y7m78YNse8SE3EOEd41Lk4cTZsS+fiUZMYErVpFNHo00ZNPgofxZ3RyakR6/V566SVn6t8fc1ez5lG6dKkeMeZCCgXRjBmCJ9qVHKEB6PWMublJ/2nQekbEWJ8++Ywolb311iI2cSIskRMnGJs8eTJr2bIlYwxpG05OiL/ZS8vmGvYXXwAp2aMH0n54+ogxOKOow8MD+dgdOsAFs3gxrMzLl827zDIzM9mFCxceHPPnz2cKhYKpVKoHBxExpVLJwsLCCn3/o4/wrAMHGnoAtFqkgISHA2jVvz8sz9q14S7mWIAffjA/Prt2CW9D1ap4t8hIuPEyMnC9tm0NLcecHDwLEbwFtno/jMcl5z9/cUFBAUtI6M3q1WvHfvopnX34IbwPHToA0xAQYNvc8XZwgwcjD3LlSsTTU1Jse/6iKCMD4+jkhLUup2PH8PlrrzF2966wwrjVzmPb8nE3bmIwYYIYB09PhHaIYDFs2oTfFy82vO/Jk5jnsDD8bg/KzYXlvGoVrLQhQ1BDOjTUMI/U2sPFBeu5RQvEvN9+G9bqqVPYDy+88AILCQlhiYmJpfYOO3bAHRoRUThTZNYsWL47d4qGFkOGiBAIbyRjjrKzhdXK5y8hAaGknBx818OjcPjok09w36eeshxG+PnnnxkRFeIvnOfoLLiBUlPBE5YuhQXbrRv4pbz0aHEOLy/wo27dAHj76CPwy6Qk+4B6JQleNyJUo5SHOHNzGXNyOst8fZNZbi7i2fXrM+bjk8VUqqsP9t22baX/XKbIIcKZMVE7mwiCb/hw9AiuX/8nlpuLQYiOZqxnz/5s8ODBD763eTMYS0yM4ytN6fVwr167hs5O+/aBqW3YAETtli1YqKdOARxVWgrE3bt32cmTJw2O4OBgNmXKFINUkIICUSf7tdcKC//Zs7FZd+1CrJ2fx5UIPh+WhE9+vhAGHNnNXbA7dmAMFAq4d43H7q23cN6YMYblPktCBQUFrHfv3iwqKordsdCxQacD4Of4cQjYrVsxb+vX4/c9e5Becfo04u2l9XzW0qVLWO9eXojJyik3FykvMTEQLlOmQBA/84wo2alQgKHJyVg4//STUKxq1sS+i4uDAiJJyGHWaApXSLp6FfvR0xP4DUcS+rxD4B06hFDNli2Yt40bseYOHIDicOEClE5zTFySJDZhwgQWHBzM/i3FwuH/+x/2Qtu2UJzktHMn9tzMmdg74eGoAufrCyHEkdIrVli+R8uWAhjm5oZwgEoFTEZGBrAdcXGF1+1vv+H8uDjzLvvMzMxC/KVJkyZs6NCh7GQJNLK8POylxETwxIMHMV8bNuDg++74cYRUHN3kKCcHijcReKPxupk4kTGlsoA1bDjiQaGmN9/kfLLgAQ90VFlihwnnDz/EQvPyQvDd05OxHj3+ZURZ7N13V7E//rjC1GotUyg+YDt37jT47smTWIz+/o5ByZVHMo45370LzU6tBsjHmPbswWaeORN/9+iBeHH//oYx7zp1ir53fLw4v3JlWMUxMbg/Y1jAKhUYqTEtX44F3aFDyZuZaLVa1qtXLxYSEsKOHTvGbt68+eDIf4jamW3eDCu9Zk3TxXcmToQFeeIEFAw3NwhST0/sHZ5vaQxBMBbOqali3rhiNXUqfq5bB2baoAGuaWxpZWaK0qLvvvtwpiaOHz+eeXt7s23bthmslRwbEXs6nVBux44tLFzu3YMn6YknYJF9+inGb948fMfZWVjCRfUMmDFDgP9CQmCljxgBCzUzE8BOlQpxWWM6eFB0Ldu/37p3a9OmzUObSmUN3bwJhcXVFUBcY+IFfiZOvMJUKjWrVi2ZxcTkspiY60yhuPRAIZZXdLM3OUw4Hz+Ol1epsEiVSjAXN7c85u29grm4uLDg4EWMCNapMaWmAiqvUiHN5mFkFiUhuXA+cQJuvEqVkJtpTBkZws2n1WIjEwEc4+QEYIq3NwQ7z520RPPnC2BRVBSuwZGoW7ZAe2/ZEq5QU6UCt24Fk6lVy7rCCeYoKSmJEZHJY+tDoLVJEta8SgWgi6mx4nmuXPDyEqjvvos5cHYWSO1jxwy/a6o3L6//TIS5a9kSrvR69SBszpyBW3j8+MLPotcLYT5y5MNXZ9vcWlm+fHmxr5WZiUwKzreM+Q/PiPD2RggrOxt1BIYOhVDgKHYi7JOiaOtWAejj3/v4Y8z/7Nk4Z84c4T43pmvXcF+NxrrMl0dZOO/fD0UlOBiKizHdugWjo2NHrPkZM/YzIsbU6lGMSM9CQlIe8Es+9o4ghwlnvd6wi06jRjgWLACzv3QJ53TujIG6davwNbRaUUHnmWfsh7Auz7RmDVzS5tz8koT4lqcn3EuMAYEbHY1YnIsLvs/da/KUGnPEhburK+ZKo0FxhoYNYVVLEhiSjw/Q6KYUpwsX8MyurqKAyeNEubkiZvz666bR3devwzLq0kWgVjUaMISoKFH1iAhjzcMYplKpOE2ahGvwzkZEIm+ayyhec+C330w/+8qVWDexsY9nW8mTJ+Fh8vJCPNQUffUVxpBbZe+8A2b+668C4VupEoSrNQ0TcnNFOEmlQmy7TRvkYHt6Aiuj1cJKDwsz7ZXKywMWgwhZAI8bv5QkKDROTlBUTKVi6vVQVgMDYV3r9eBrrVtDMeWpv1whNmUM2YscJpwZQ2qFszNcLrx/5vbtQsNkTGgx7dubT0/5+mtcp2HDwuXvHlXKyREbbfBg8/HtL77AObyoCI+drFuH+Fe7doaADGuK4hcUiLQrIsxdRIRgPH//jfN4yogpNztjsCZ4cYznnnt8mMXZsxBsLi5IazNFWi2Yb3AwGC9jsFYDA0UTklatsHc0GuwlYzJlOfOqcBoNhEVQENLT+vWDCzYvD0ysZ08ID3OVUI8fh+fD0xPz/LjQ119j7devj1xbU3T2LJTdMWPwd0YGlKFx4yCIg4NFTwCuHFlD7doBaxAaKmoh7NmDOZg0CeckJYmOcZYacGg0jDVv/vi0lMzIQIoZESrYmYt6zZsHd7UxD/v7byjKvB0oBx46kmc5VDgvWSLcoxoNhMWwYXC3KhRgAIzBVapUiprBpujIETALDw/zDO9RoTNnYPm6uGCjmduER49CaeEuSkmCxt60KYA9RFB6KleGNtiggfXP8OST0B5DQ0UTgA0bcO0WLcQzPfccntMcrkSSoEBoNHCvP6o10RnDuy5bBqZct25hN7Scpk8XrR0ZA6BGqYTm378/mLOzMwSoUlm4YQJjpoVzerqIcyoUwB54egIMp1KJ3Ng7d6Akt25tvkhPRgaepSiG9yjQ/fvwzhGhHr059HNuLoyEunVFQ5BZszBXZ85g7nkLVc7krS2YMWcO9gnP8/X1heeQf85rGaxdi/9/8on5a+3bBxS+v79tBUseJpIrkpYyUXbswF566y38XVCAfda5MzIJiMDrgoOhoHXq5Jjn5+RQ4Xz6tKHVNmQIFtm1a7DEevQQ586ZgwVtqS1XZqZoUD5iRMkBR+WN5My9Xj3LqS0ZGQAYNWwo0IR8027dKlLEXFywSV1d4SKzlhYtAjMPC4Ngj4yEtcWBFNw9npMDRSIy0nI6x8GDAPm5u+MdHzUMQXo6Cl1wtLqlTk5//421Pneu+KxXL4xPUhKsLu4S54eptWBKODOG4h+uroi7tWkDhrR0KYQPBxgxBmalUsHtbo4kCYqBkxPCFKZ64T7stHcv9pKbG9amJRo7FnuKj8Pt2zAYXnkFipVKhTEPCwOvswaAyWnnTkNAX7t2CA3evIl5GzVKnPviizjHEgAsJQUpWRzQ9qh1F9Pr0fTC2Rlr01IIJiUFfDA+Xiij3Eg8ehRu8NatRZU2J6fCGSn2JocKZ0mC5q9SwWp+8kks7Hnz4IYlEuAGnQ4B+sBAy5qmJMH15OUFDef33x3zLvama9dE+tmoUZY3EgejeHmJ3Mf8fDD3Hj0Qz+d9ZeUMvjhjZdzAhHc1unQJGmXt2iKt4/RpCINhwywL3cxM5BoSwbqwtQRfeaP16+Ey9vICRsAS3bwJV3PHjiKMw3PLv/0WaHsPD6yFsDDsnUqVTI+rOeH8+uuYj8BACPrOnaHEXbliCDBiDMAza7AIR4+KGt+zZzs+Fc0eVFAgGos0a1Z0yOx//8NY/e9/4rMXXoAATUmBQt2jh1BqPTxMA+/MUX4+FASNBspubCye7bPPoCAplQLtn58PgVKtWuH0LjlJEhQzNzdYl3v2WP885ZmSkqAEca+OJfCiXo/95O8v3PyZmdgfw4cjVY8IYUQeayayvslIaZFDhTNjiAN4e0OD1GjAwENCsLgaNADAgTOe27fhajMucmGKrl5FWUkiWNOWFmh5Jr0e2rqPD9zP5kA6clqyBO8tjwV+8AE276lT0OL9/DA+EREQqgqF5Q5QxqTTie5fdeqAwfv6IsXn6FFc79NPxfncLST/zBz99BM2hrc3XN7luQ2hJbp7V8TUO3UqOi+/oADauRwAKUmILTdogPhWlSpQYDQaMFMfHyhipsiccOalVjn6l+fGHzggAEY8112SEM/28io65JCfD3e8SgWwWUmQ+GVN27cDdKdSwWtXVP39o0dhWDzzjPjswgUoKwsWCLT1xImGDN6Sm9UUdeoE5a1OHbGuoqLgHQsPR8ERTleuYJ9361b0Hjp/HgqIQoFQ1MPqddRqYS17eEAxsaYJCG/pKW+wNHMmFNUrV+ClCg+HS7tuXcypp6fjezI4XDh/9hkYBEci8oFat04AX+SFD7Ztw/mWXG2cuBXt4wNmv3Llw8Xojx4V8dxhw0S9V0u0bx/GUp4SlZYGrXDMGADHvL2F2ysmBpaXLfVhebyycWMs2AkTMNb370MoBQYadiN64QXcc+/eoq+dmiqs6FatoFQ8LKTXA/kcGIjxWL7cOjc9H59du8Rnv/+OMVi/XoQl+B5RqbAXzCk85oRzZia+p1LBw9GhAxjZ6NEQyl5eWB+c0tPh1o2NtS596uBBWHZqNawWa0CG5YVu3xYhg7g4YFmKorQ0eKUaNjQcn4ED4SrNyYGCU68erLmoKBFzLm61ufnzoQQoFPjJvV///CMUYPn+4orYvHlFX1ungwXu4QEFce3ahyu8tHcv1qhCAV5kTU3433/H+XJv0Y0bCK9NngzshbMz2hoTYV37+xuGXB1FDhfO584JLTIyEtbcE08gniJJWMz16xtayu+9J9x81tCNGwK40qKFIfMrj3TjBtxdSiXGxNqU3evXYVm1bGkIzpk6FW6r69eFMrRwoag25OFhWz/SxYtFZzGFAhaCQgFr9+pVLGp5UYT8fDxb1aqmU+NM0ZYtsBCVSriVrP1eWdHu3QC2ESHGbKq7lylatqwwsl2nQ7y+bVvshdatsR94WVK+b86cMbyWpVQqTs2bQ3mIisLYTp0KV3daGtLi1GpDN+7x4/j/qFHWMey8PKwHDw8ws08/LR/d38xRfj5iwr6+OJYutU6R1+uBB/DxMWxcwV2hy5bB+lIqIVgVCgjxwEDwteIST2Mkwhw2bIg57N0b66V+fSiz8jnirnlT9SJMUXKyKO3arp1oM1te6epVEVZr3Nh07rIpOncOvKt3b8O5HjcOHoe0NKEMzZgBfqZWQ4F+7z37vIslcrhwliS4aXx8sKhUKtHG7tQpsRjlcRxJgmXm4lK8hbNlCzQrIigBhw+X/vuUhFJToa25uoJBvPuu9bG73Fy4pUJCDAXY1asYp+nTMW6Rkdh4HTqIVnRE1m9cOfESoERgEp07g1FFR+NeU6YIpYDT9euY79atrUf35uej0IOvL5j9rFnlzxo7dEhgAho1Ml0Iwhxxbwfvq8xp6VJcb/9+uIiJoPgoFFAyAwJg4ZgTluYsZ8ZgCXh44L4qlRDI77+PtRQWVri/MK8L/fHH1r/bjRsQ6AoF1sX335d9y0E5abVQ8mvUwDOOHi1S16yhGTMK4zUkCUItKgrvOmUKvFWLFoGxu7mB31lT8MeYCgpg1QUFiZgqr919+bIAZMpbVep0yJX39S1eNsQff4ie5EOGmE8dKytKSQG/dHbGXvjkE+vXVkYGXNR16xpa2GfOYD+89x7WRmgo1kSDBiLdl6hsgI8OF86MIU83KAiHWo34aOXKAiwxaBAsQnkub24uXLGhocVr86bXA5TDYzZ9+sDaKUv3zfXrKHnp7Y2NN21a8WI+cmXFWGscMUK4lzdvFrFopRIC2scHDMOW/rp6vRCYvFrbDz8IRHh6OqwmeRyOMaCAnZzgkivOuKemIibq7Ax3+uTJ1lum9iBJAoCmVy+8c+3aSOMrjvC5cQPAxZYtDXMmMzOxH55+Gn8/9xzOW7wYY+fvj78HDTJ/bUvCmTe64MpE27bYhxEReH5emMS4qP+kSZjnjRutf0fGoLx07Ihr1qqFFMCyzGvPyQEzr1EDz9SjR/Fj5By0aoza/eUXIbCzs2GFvfIKmHtcnBj3X3+17dmffBIV/wICBL/w9sZ+YExgSeTje+8exj0y0jDUVBRptVASg4OhvAwYUPaI/KQkhIBcXfH+M2YU7530eqDUvbwKKxwJCYgv5+WJWvQ817l9e+w7P7+yCY+WiXBeulTEYFq1wiKeORMDn54OjdDYRcoY3C9BQfhOcXMstVrEo2vVwn0bN4Zl4Kh0AkmCe33oUDBbXkjAFretOTf/sWOGwKyEBFgvH30EJSg8HEebNra/R+/eUKS46/mzz6Bt86IYH36Iz41TfXi5T1vcQzdvwhrx9MS6GDoUQsRRClZmJtYOd1/XqgU8Q3Hdtnl5WOvBwYWR6X37nmVKZR7z8YlhRN7M1VXHZs2Cd4TXNlepYEmbI0vCmXc6qlQJglmhACCGCKBDvR7Kb+PGhoxIpwPz9/ZGsY3i0oEDqBqnUOC958xxbAObixeRxxoQgHU5YIBtbtv9+6EMDx1quO7y8iAYO3fG519+iXflgLDOncHgiwvAlNPChbg3v15UFHiHnx+UjtOnsTaMO4ydOYM906tX8b0XubnwaFavjvu2aYOYtKNKuGq1WJ/9++Pd/P3hMbAF6DtzJsbfODtlxw68Gy8K0749lOYZMzBugYEIyfXtW+LXsYnKRDhfuIBBcXcHUyeCRaJWg7kzBjecq2vhAvG7d0O4jRxpG3PW6zHpXbrgvm5usCB+/bX0u43odHDTT5sGgA0RhON779ne0P6PP8BkuNYspy5dREpTYiLO++ILxPS5S8zdvWT1YT/8ULSza9UK7mrequ7KFShNERGFOyYxhmdWKGzvdMTjo3wsa9aEAnfoUOkL6pwcbOZBg0R1tE6d8Oy2aNGSBJCfRlM4JePqVcacnLQsPn4H+/LLLxnRq8zJSc/27BFpZl5e+N1Seo8l4cwY5qtGDYRCnJzgrm7WDB4VxkRerXH7yvR0WGA1a1oHUjRFZ8/Co+Lujnu0bYuSl/ZIn7twAe56vua9vAAYMm6xaC0lJ0Mhbd68MI945x2RFSFJiAH37ImcdV7dq2ZNWNC2Eo9ne3iI3Pm//sJe4nWzx4+HV8xYeP35p0Do27JHtFp4DLiC6OEB786vv5a+J0Svx15+5RUYYUTCuLDViOKgubffNvxckjAnXBnlNTi+/RbKd7duQiG2VNzFnlQmwlmSoJHUqYOYsLs7FvPAgcLNlpEBzYWX9ZTTN9+I2EtJ6NIloBp5UXoXFzCNWbOEm7Y4VFAAF9CXX4IRV6qE6/IWmVu2lMw9cuAAlImEhMKaMI898eo/r72GzXr2LD4fPFj0yi1OfNSYeCzUyQlxKSIsbC8vgIwYQ5yRqHABGZ0OWryHh6gGZwtJEizn4cNF9aSQEMSKli2Dq7+4bvtbtzCG//d/EMJ8rKKi4Ma8fNn252UMChqRKKsqp6FDRSjiwoUkRnSZ9eyZyubMwVhFReEIDrbMYIsSztOni3S4+Hgc336Lv7mno08fCBRjC+nSJVgvbduWjClnZcFj1b698J7Vr4+UvF9+ETX2rSVJglL444+wJnmZS40GyuqqVbaFcDhlZgJfERpa2Mt1+zbW/fPP429uLW/ahNhmz57429sbYSxbSavFfaKjIUy8vTGX3buDf0oSnsXT03Rcm2N63nnH9mdgDC7hOXOwFrnS06sXLPadO4svQHNyYJS9/z74U+XKuG5AAFD/R46UTOneutW8IbdmjUC9M4YwUlCQwDwNGiT2ii0eo9IgBWOMURnQsGFEu3YRXb5M1KcP0ZkzRF9/TdS8OdHPPxP17k305ZdEzz5LtH8/UbNmht+fP5/orbeIli8nGjmy5M9z5gzRpk1E27YR7dhBlJaGzytXJqpThygwkMjfn8jPj0ijIcrPJ8rMxHH3LlFSElFiIlFBAZFSSVS/PlG3bkTduxPFxRGp1SV7vkuXiFq0IIqIIPrnHyI3N/E/rZYoNpaoUiWi7duJcnOJQkKIRo/GM8+dS9SkCVFKClFyMtG9e3gHW0iSiIKCiLy9iUJDiQ4cwDykpBCtWoXru7gQxccTpacTHT1K5OQkvn//PlHr1kS3bmH+a9Qo2bhotbjOb79hXE6dQoRPqSSqWRPXDwwkCggwfI6sLKLbt3H8+y9+EhG5u+PZO3fGERlJpFCU7Bm/+opo7FiiRYuIXn/d8H8HDmB9fPEF1vqSJXfoxRcDafXqczRrVl2KjMR+qF6d6IknMMac8vPzKT8//8HfmZmZFBoaShkZGeTl5VXoObZuJWrfHvOTkED0/fdYV088QdSjB9HSpUQXLuCdZ83CvMpp1y6ijh2JevYkWrOGSKUq2bikpBBt3ox9t2kT0Y0b+NzDg6hePaLgYLHvnJ2J9Hrsu6wsops3ia5dw9xlZeF7oaFETz6JPdehA65TEsrPx7js30+0cyf2mJyee45o7VqMWaVK4GPnzhGtXEnUtCnRqFEYp9xcrM327W1/lp49wV/OnCEaMIDo2DGiDz8k6toV/Co+nmjhQqJp07AH6tQx/P60aUTz5hGtXk00aJDtz8Hp9Gmsy82bMT55efg8MBBrNTwcfMLVFestLw97//59zPPly+CZOh3+36gR1mG3bvgp36u20NmzRC1bgu/99Zfh9bKzierWxf9+/pkoNRVr5403iDIyMH+BgTg3NRXPW1IeYBOVjU4gUklUKlEU4cgRuGDj43EOTxWQFybhJEkoQadWIye0NEmvh4X43XfQUAcNEmjnsDCA1apXh9YaHw/t8eWX4X7Ztav049h37sA1VquW6TxJXnCEAzd4TP/SJcSD+/XDONWrB3BJSalfP3g41GrEhOrWRak8hUKg7I8cwd+8drOcbt3C+0RElD7A6/59eBi++gpWxFNPYf3Uro37RUTAtVu/PgBLTz8Nq/aHH/AOpQ38+OMPrPHnny+8hnmcNzZWxK8bNMhjRJvZ6tXnGBHclWo1xtK40+HMmTMZUeGWiOYs59xceAQiI+HidnZGhsDcufAacZfoK6/AQ8NrN8vpl1+w1p57rnRDCZIEoOSGDbDwRo2Ca7FJE+y14GBYr7VqwZLt2hVu8oULETM317DDVtLpsLadnU2nNh4/LtpHMgbPCsdgTJoET0jLlrB2nZ1LHjJbvFjEnV95BT8PH8a67tcP53DUvamcXHlYxRj0V1LiHsMVKxAyGzUKHpaoKOy14GD8jIkB5qJPH7zDp5/CjV3a1eWuXkUef/36pr2f06djTngqHO/Wd+sWPHC8JHREBLyDZUVlJpwTE4XbsGtXuDJefVUg5g4cwHkccWyquYVWC9eRi0vpL7jyQunpYOCBgYZ5lZzu3IGba9w4/C1JGNNevUTqE+/J6+yM9I6S0pIlcBcRwV3HGUX37tgQnGmPG4dnM4WuT0yEkhMbaztQprzT5s0Y8969DcFj33zzDXN3d2cazfOMiLFPPkFHDB5jJurOhg+/zQICAADiYRdj/EVeXh7LyMh4cCQnJ1sUzoyBafKym717Y/x54YUFC3BORgZcjJzpGxNvjzhzZgkGpxyTJEH5UCpNlzHlqVN1CNGQXQAAIABJREFU6gjB8tprWOvp6Ri7Z5/F92Ni4MIvKfG9XLcu5sXPD/uaNxPiIDuONDZVWTA/H0aGt7flJiwPM926BYUlLAxYAWNKTMRa580u8vIwX+PGoUocEQwttRrjak0vbHtRmQlnxjCArVpBuPLUEQ4okqeM9O+PATTFxHNzseA8PCwXfX8YKTMT2rePj/nKRWPH4v/couZV1rZvhwYfEACNmaeQlEauNwdPhIeLeOmkSYipy3Oo795FvN04tYrTyZN49tatHYcCdRTt2gXrs0uXwjHazMxMdvDgJebrq2O9e2ewnP9evn9/xqpXL2BEShYUlM/GjoWl07IlGE5RVFTMmTFYNjyWNnkyfp44AWsnJEQIG47r4K30jGn+/OLnQD8sNH063s0cY/75Z/yfAxvT0zGmU6aIlLVZswQA05pqXUURT2Ns2xbC9Zln4FHIyoKgfvllnCdJUOiqVze9p9LTEbeuVMlyI52Hke7dgzJUpYp58F+fPsA7ce8mzyI5exapnuHhhjUhEhMd9viFqEyF8zPPiNSmRYvwc8sW0c2Fu9WSk7HIJ040fZ379+G69PF5dDTC7GygTT09zSsd+/fD3SlvH9ihA1yBBQVQaF58EQL6iSewuUujIAQvJNOiBTb5iy/i74ICuBy7dBHnfvIJnpF7Qoxp927Rjq0kwJ3yRAcPAizTpo35d5owAXPL0cpJSdDU58y5y4jiH+TTciXImoYJ1ghnnj5SowaUNn9/COnjxw09VLxCWZ3/b++6w6OouvdNIUDonYA0AVGKgCC9I70XaYLSERSpgoBILwIiICjY0c/yCVJE/AQUFEUEQUBBaiCQBBJIQnrZMvf3x/s7zuzszO5snw3zPk8eyG52d3buvaef99RRblsUBDG8GqhqVm9DEESlunq18t9kZsKp6N5djBCtW4dIUlwceAZq14ahRYQe3hqY0L8/zhe1JFKE8dVXIR+JqOfyZVzPa68pv09yMpRP+fL2bHPBirQ0VF+XKaNO/XvokG0LKlXX9+oFQ6Z4cZyFAgVgBFWv7r/rV0JAlTM19T/8MBQ1/ZuRAUU7a5b4tzSyUK3KNzUV5Aplyuiffs4ZsrKQDy1SBMpLCWYzDljjxmLIlEJfX34pVm9TCLJhQ1uSfE8xdKhYtUn1A99/L1b/EsGD2Qxrtnlz9Xzu4cPwMjt2DP4xdqdPw5Np0UKdKOHMGShiaV/qlCnZvHhxM//66+85Y9t42bKZvF+/JF69upkTMYIzaFHOubkwhjp0gEE1eTI8CasVRhVV/3KONQwLQ15XCYIAg5kxhFeDGYIg8ik7Gg34yisIixLzlsmEiMNzz+HcFisGz7t4cYSzixf3Ho0ppZPKlsWsgfLlISMTEhBhobQE50g3Sa9Tjnv3oJgqVnQ+fUvvSElBS2CJEupUnjk5MJrathX3N0U5Dh8Weew3bhTTB9KRnIFAQJVzYiJuRI8e2CQLFuAG5+TgEBQvLvYD5+XBElUqDiOkpEAJFC/uWbtQIHH/Pr5jkSKOObbfeMPeI33mGVj1ZjPCzXXqIBdWrhxyKN4UoFu3QnBT7uvRR/GZJKxGjxb/lrw1KY+0HEePIjXRpo1r7D96wtGj2HvNmqnTjdLUqbp1xRByejrnhQvnccZWccYKccbuc8aWcsbu8Jo1r/CQEG39xVqUM+cw/Fq0wJpQWO/HH8X6Dim167Rp2ItK+Tv6PjNmuE8wowdIowByIg8pLlzAOZK2cFL4/6+/xPacTz7Bv02aoPbDW6C5BJ07Q7FOmYIiOasVIdmoKDGFkpWFoqgePdTlZWIi9mGFCtoGfugR9+7BQSld2nHKbtEiGDY0YpNzGKONGuH+9OqFMzFyJO6JUr+/vxFQ5cw5LPXu3XEzqD921y6EiMLDbQ/8jz/i+Y8/Vn+/9HR4YIULw5MLJty+DS+zdGnHobCbNyEwpZOEbt2CstywAZGHyEhU4T7yiHh/vRnCunxZFBT166PiMTISn712LQ6CtIJ23DgYXo5IJ44fh3Jr2lT/Ay/k+O471E506uTYuCD+bOlouw0bsNdjY0ULnmhRu3SBkNcCrcp5xQoYQsWLQ9HUqiX2gjZujM8kpKZCeA8Zov5+giAWHc6aFVyT4Mxm1Ls4y58LAqINtWqJldeCAOFOaZw+feAczJgBRVmggEiq5A0IApQxcbpT8ddPP+Fsk7FFoNz4nj3q73n3LgpOixWz5yXQO65dg3wrV84xFevly4gsSHvN//5bVMCJiZCdb70F2UvEWDTrOVAIuHKeNQthtVKlEA564gmRCnLUKNETJIwYgdC1I37t7Gy0E4SHB7bazhVcvCi2HTgbl9ivH/5OKoNnzUIqID3dtpiHMdzPqCjvt75UqiTyTJN3/OmnYoHMvHni3ycnIwynNouYcPo0oig1auiPeF8N27bhcPft67hlJj4eBsrYseJjZjO+K7Vs9OqFXP7CheJMbyU2OCm0TKWSgqrCO3WCMlm8GOuVlSVybEv5lGk/yekP5di0CdGcYcMCy6OtFWlp8CzDwpzLCfKGpRzjFGk4dAgeXHg47kHt2qIC9XbR1Zgx4njOzZshMyj82rs3Uk10zgUB369KFccGY0YGDIwCBZRJcvSIY8cQ3q9d2/FwD0HAPn/4YdsCuXHjxALkDRvw3b/5Bms2YIC2AkxfI+DKmeaP9u4NK/TNN3GjkpIgIBiDN0G4exeL4siS59zWIp47V9/W/P/+B6H92GPOeYfJGpYObSdlSAxd3bohdLpqFbzZxo3FgQrexDPPwJiKiMAGb9tW9CJmzoTBJR1eQoLfmZCPiYEAKl1a2/D0QMFiQdqAMRR4OcstDhwIL1Qaoqa6i9OnES0IC0OvbOPGooDXOnRCq+dMk44GD4Yy/f13kb3MbIZBLN0vJOQrV3ZOO7tzJ3Kd7du7Nu3J37h5E6Hh4sWdT2i7cwd7efhw28e7dxdz9G+/jbU7dgz3ctAgrLW3aWWppqNNG1RlL1mCtczIgAfNmC3vw/XreN5ZQaHJBGeIMURW9DzX+csvscfatnXOtU30ndIoqjxH36QJFPLs2TCGa9YUWd8CiYAr54wMkWKNiEik+dFOnRB2kW4WEvJKPYhSCALC4iEhUBquDjr3NQQBOa7QUAhiZ4IvPR353J49be8HVYvGx0OQEKd2ixYwekJCULTlbbz/Pj6rSxeE/LZtw+937kD4hYXZhvUEAQKtalVbpa2E+/eRG6VZ1HoTFnfvQjiGhmoLXX79tZi6IQgChHvXrvh9/XoIDaJIffZZ/K61il2rcuYc60ADMD74AN56r154bsMG224JzvH/okVh8DrD0aMINT70EFIVesORIxDC1ao5j1IJAoyqcuVs5Yc0LMo5IhA9e6LKOzISAl+uzL2BhARxbxQoIFbZb9+Oa23aVORKJ7z1Fv7G2Zx4q1VsIxs4UH+1HxYLcseMwXh0Fp1JSECUdehQ28cXLMAapaRg/UmX1KmDv9WiW/yBgCtnztGy0bMnlPLbbyM82LQpnqO+XWk+RBCgdKKitI1aPHAA3nblyurVz/7G3buiZzRnjrYWpwkTYAVLveu8PLFalHNEHiIiECYPCUFemjHPuaGVcO2a6DWGhiK8FBEhsiaNHIlrk7biXL+OeoAXX3T+/haLWEE7YIB+Zjr/8gv2Urly6n3AUty/D2XQt6+tkUFToUhoNmoEj2vLFpyFHj2gQLXCFeX8+uvYS61b4yxt2QKFnJgIw6lUKeROpdi8WcxxOkNsLBQ+DdjQg3FlNkP5hISgLkVLXQPVAEiNKs5x3qgvnPK9O3aIBrEvCSwefxzpIYp2dOyIH+n1Sgu8rFZx6ImWbojduxGJe/RR/RSKxcfjLISGopbG2X4SBJy3cuVsIzipqYhSzpyJ3+fORYSOjK0pU3AO9ECMpAvlvHQpbliHDhBI5GXQpJcmTeyFVGwsQlJqBBdyxMVhg4aFwXIKZE7swAEI63LlIKC1gAS5fGQgjaijKsTGjaHI3n0XG3nsWBxKX0AQ0As4bpxILzlwIELdnItkJXIhtWmTfVWwI+zZg/xrVJT7E628gexsGFKhodhLWgtGxo2DsJNXPLdtC2EuCKIHtHcvIgadO2N/L1um/fpcUc406ejFFxEijImBIqUCzPnz4SlLDSKrFcq8Vi1tpDF5eaBQZQyRK18YiFoRHY37TcJdizF89y7OqHxk4I0bMJ6osnvOHAj4GzfwXadNw7++Go05cyYMg8aN4elt3y4a4GYzzqTcW7xyBQWLcoNLDZcuwVgsUADRAG+1g7kKQYDBUa4czr8z759A90TuAa9YAQciPh574KGHoJDXrcP9GTAARqUeoAvlTAUq06ZBUCQlIRzx8st4nig9f/3V9nXbtrmWkzOZYAgUKICcpvz9fI27d8W8Tpcu2nmlk5OxMeVtEWYzFC8JD+pz/uYbeOXt26Nggqg9fYGJE2Fht2qFQjVaKzIWBg6EMJcebqsVCqhyZe3ecFwcvj9j8Fr8Xc3988+4lwULog9Wq7Dau1fZqPr1V9tK2tmzEd1JSIDgp1z2b79pv0ZXlDNNOqI2qJ07kYMm+tWEBAgr+eS3S5dwD4iRSgv274cQLFIEXrQ/6z9yc0Xu5KpVXWuxHDYMSle+1yZNwlplZuI+RkXByHnnHRj/Eyb4ziDmXKzTmToVRl9yMgyppUvx/DvvwFiWF1SuW4fHtUYPc3PFMa8NG/pfXsbFQaZQ5MxREbAUsbFw9uQTDTMzsW6UmqGCvuPHISt79ULESI28xd/QhXI2m7HJqNfwq6+w2aOi8JzVKnJwSyEIUHJRUa7lk//6C3lsxlBY5muKtowMHJxixXDYP/zQtTDf8OHYNHJyf6qipdDT1KnwyO/fhwClMYVff+297yIHtXPMn49wdUoKDKvZs/H8qVN4ngaaE2Jj4Q27kpcTBHjhpUpBGC1f7ntWsQsXxNaKVq1cGx+XkACLv3dv+/Xu1QsGotWKPU5sblQVPGcO9osrHosryplztP507AiF/MwzotAnIodp07BG8hDfhg2uGcW4NrFAs2FDREB8GeoWBBg+jz4KY2fOHNcIbqitU87pHxtrW0xE9+zUKUQHOnXCuo4f773vIkdmJhwMal/7/nvU7NSsie+dk4NKZCnXAOfwFJs3h5HprOZDihMnkGakXLe3h4zIkZoKeRIZiXPhivwi+tJKlewN/zffhPFEEQ1ic0tKwuOUQtMLR4YulDPnyA906ICDO3y4KNS/+w7PU5WinP0rPl7sTXPlsFut6JeuVAkbfcwY78/tTE1FmLBcOSjLmTNdL0ojIUGUcwSrFdXdVMSTkwOlNWeOqDBXrkQYT0te3l2kpOAziGpy924I9fLlRZKN7t3RCy33mGhNXW3fSE7GvSxQAN73+vXOi+lcxcWLEEQhIQgTfvyx63OGe/fG2ss9Lwphf/IJfqeUxR9/wENo3hxKs08fbZ/laisVYdMmKJpXXhHJfypXFit74+Oxb+WD6q1WCMCKFV3fz8eOIbxMxs6BA971pC0WKGWiuezY0XEPrBJu3oRRMmSIvUyZOhXnjIqlnn4axs39+9iPy5a5t6ddRfv28Cpr1IDRQ5XapFjWr7dVRITLlxHBcJX9ymJB9Kd0aeyJF19UHsTjCe7eRdi5dGkY+vPmuS67KJoqn1SYmwtZT7U5GRm4D0uXigbx3LkwiL09Jctd6EY5k6BYsAA3KCcH3jLlTsxmhEepB1oKylG7U5GcmYlwT6VKEMSdOyNf4YplKYXFggMyfjwsv/Bw5H2Vxu85w61b2KiDB9sLCVLAFPakQpBLlxA6r18fwqV5c/e+hyto3lyk83zuObHamPI91AMtJ0MQBLyuZEn3Gv6vXcN3DQ9HiHbiROSk3OUPT0qCEu7cGddboQKKoJS4pZ2BhITSdKDBg6HwSQgMHIgin8xMCKWlS8X2NFfgqudMjFNUzXvoEDyWEiXEnPKLL2IPyit3b99GhKR/f9c9YEGAt9ekCT63dm0Q16gNK9CCa9cQKXroIbxn+/ba85NSWCwwHqpWtfe87txBeHzJEvyenIx1euMNsSWO6B+1hmDdxbJl2PPTpokRxho1xBoceQhXig8/xDV++aXrn5uais8uVUrslf/sM/cH15hMIJcaORL3smBBXLM73vk//0DhKkUttm61DfW//z5+v3ULe7hlSziHWg1if0A3ypkqHt95R/SY167FYtEhIZ5opfaHsWOhDJ21RqghNxeCuUMHfEZEBKrIFy+GFXbtmn2IURBwbb/8gkM5ciQOBGMQEkuXOmbEcgSTCRumalV76kZicpKOouvWDcU6ZjOE6bx5+HfhQvc+3xUsXGj7mWYz0gbSubJt29q3xHGO71apEoSpu0UncXEw6qpXx72vWBHRl82b0cObkGD/ubm5SGccOADPsEMHeBqM4T5++qn7RYPnzkHJTphg/9zZs7aGZGKiSF5BPewkPF0lsHBVOQsC9te0aWgreuEFVNxLIzXyMK4UdL3vvuvadUo//5dfsFYREXivunURFfn0Uxh5SqQuqamIoH3+Obx8Gp5TvDgEu9qQFS1YtgyRoKNH7Z+bNQufQd7c5s3YMwkJMDKbNIFx+vjj7n++VlBv+pYt+Pf330UyGQrfr1yJ+yo3fMkoLl7c/aK1rCw4Me3a4fMLFkSUYtkyFHpeu2bvgVqtiLT89BM8+6FDYQgyBsNizRrnfctqyMzE3qlb1z59QYaLlACpRQukSTMzYXCtWIHIh3SIUKChG+VMjFOzZiF3MmECLNXwcJFWLy8PbDdKA7AzM+G51anjeX/ejRtQtv37w6tjDD/EJV25MryqggXF5woWhPKZOxferKehulmzsFmUaDy//RafSQQdt26J/apHjoh9j4wpCxlvgzxj+swjR2BkhYaKFjCRzCtVp//8M+7t3LmeXYcg4H7Nng1vnmZO0/qUKQPjqXRp8XHGsMY9e8LbddeYIty/jwjP448r58MHDMD+JsFFBmhyMgR73bq4fncY3VxVzpzDy6hbFwqaBmC0a2fbK/v887hvStGkSZMg3KSMYu4gPR0RsNGjYShI16dQIZy3ChXEcZf0U7s2rm/nTs/rD44cwT5UMmjv3oXxT3OAOUcetm9fGHHFisEYj4oSC1l9CbMZim3xYuzrefNgbDIm9l6npWFvK7Ut3r+P+9yypXuRISmuXEGUp29fKHxam9BQnLUKFZDmIuOX1rR5c/Qtnz7tWf2BICCCFhmpTFFMYWuaWEhtU19/LUYgaXiPnqZ06UY5c44cX6NGEE7lyyPENGAABB0tHg0XlxKYEy5dwiF5+mnvFZtYLNj0Bw9C4axahQ21bBkU+FdfQTB5M0+xZw82CvULSyEIaFVq00b8jsuWIZyTni4KWeJP9kf+xGTCZ61Ygc9+6SV4N4UKiR6XIMB7btxY2XChkaF793rvurKzUSy3Zw8s4lWr4E2sWgXv9OBBeIreynlarRBQJUooh2hPnxaNGM5xTx59FJ4jRTwWLMB+p9yYK3BHOVNNA6VFTp5EBEnaCkRtVmvW2L8+JwdrWrOmd2sb7t+H0bd9O9ZuyRIov3Xr4DGfPOndvvfYWMicjh2VIzjz5uGMUY6dBPyuXWJRGHUqaOl99wb698eZGj0a9SecIwIlNayWL4f3rJRWO34c66qFc0ArzGbkog8dQih59WrIp2XLID937sS982ZrFvHVy4v3OIdsqlXLNlw9fTrWOi8Pjt7jjyNaU7myPvrxCbpSzmThUIHM0aPixqdQVW4uLD557yGBLCElxRYMuHoVwn3AAOWNIiW75xwKoUYNFHhQ3/Hkyf7Pn/Tpg8984QWESgUBYf7atcXv8fPPuHYp9ShBECBs1BRbMICK4tToSfv0AWcvCSZqp/rhB3GoC5HuyKvbtcAd5ZycDGP33Xfhgc2fjyhU0aIwQgkTJqC4Tck7jY7GuvXu7Z154f5Gbi7CnA89pJwrTkqC0S/1iF96SRTwEyfCOKFeWUf86t4EkdVQvvvyZTF6RWcoPR1RD6UUC+dQoIzZDswIJvz5JyJPau2i772H70eRndxcGMEvv4z/0/CXBg3sq9sDDV0p5/h4UTBFRaEH02JBKFu6uWjMndrszlmzsGndKQgJJJKTIbwfeUTZC7FYYCFLpwYdPixWaZJntm+f//Mnb72Fz9y3T2zvohC7NLTetSu+g5IQT02FlVu/vverr32NH36Aknv1VeXnifRDWnU/ejQMK6sV3kuVKtjbISHu8VK7o5w5Fwv6pB7Y+PEwsiiqcP06wpJr1yq/x3ff4fv7I6TrTQgCBHtEBFqGlDBrFowVWpPsbISLibO/QgVE+7p1E6lY/QGaDPf11wjprlple22EdeuwdkoDIgQBa12woGe5+kAgIQHOSOPGygZRbi7OlHQOA431vHhRdPxIhso7YgINXSlnzpH/GjsWeaTq1bF5Fi3C4aCcl9mMcKDaQTCbUSxVqpT326N8hbw8eJ5lyqhPWaHIglSIjBwJZU7D4kuXFqer+PO7k6DYuxfC4bXXcE01a9qGaElJURuRHBcuwAvr2lU/LQ3OcPEi9lqXLuqeY48etkZJWhoE6vLluE8PPYQ2nREjtI+IJLjbSkWggj4Ky166JBIDSVncJk7E36lRG775pljQFixYt85xp8etW1BcUjIWOofXromDLn78EV7zunX+uW7OxRGS06ejA4D2jdSr5xzRjqgo5GWVkJsLA61yZXzfYEB2Nq65YkX1TpiNG2EwSuXgU08hJcg5jJJatcT19HWFvavQnXKeMQOb5MAB0QO7eRPexHvviX9H4V017/j+fRSIVa+u/9nAggCvJSJCvQHeZALrUL9+4mMpKWJeVxAQQh47FvewShX/5k+klb8jR8L75RzKp3Bh20hA//74LmrK94cfEPmYMEFfOSAlJCbC+61bVz3nSopO2rpCQ0Li4kSD5YcfEIKUzp11Be56zr/8IkZfChdGnlAQYEwMHiz+XXw89ptadEAQoMALFNDGvx1o7NwJuSIdbSrHuHFYE2mRaZs2EPKcI1dZoQJawxhzvafaU4wZg7NGHuH16yJtrnSa3+bNtjS/cty+jXRh3br64bBXg9WKfVm4sHr0NDMTBoo0VE0Fcx9/DCO5bFnwQjz7LPg19AbdKWepUi5ZUqyc7NHDtmeXOLdbtlQX4DExsKyefNL9vmV/YOlS9YIGAvXpSQ//+vUQhImJYm/x/v0wSqQzg/2F8eMh0KnF5uJFHHpqFSL8/Te+y9at6u9F7UQrV/r+ut1FWhr2VsWK6rzRgoDWrIYNbQvPmjUTCWTmz0fEhNpj3FVs7ipnkwk51eXLUctBQ2c2bsTaSSvY586Fx69m8JpMIi+4nDBITzh6FIbG0KHqBYEXL8KAkvab0xSjr77C66pUATfzyy9jH/jbmKQJfVev4vtQ2qFNG9tWy9xcGM8DBqi/16VL2Idt2rjft+xrCAIcgJAQx5OjVq6EbJS2ii1ciH2ZmSmSthw/jqgCMRrqCbpTzjk5sIjWrkUYpm5dPE5EI1LlRNaqo/nAp09D8LRrp08FTVXKjgYcpKfDOpfO2LVa4SkT/eWiRQgHk3UYiKHpVPF79aot1+/gwVDaUsE1YgRa5xxRKtJ4OBrGoCdkZEDpliiBPaYGChVLw8NUG7B7t1ixPXo0BErRou63trirnDlHRKZdO3ENo6MRCYiMFNeRc3hVau05hPR0GNJlyrjPO+BLnDwJmdCxo+PirUGD4E1K+92nTUNhXF4eBDtF7xo2hAfmbyQmih0A/fuLDgzNMb5yRfxbeswRPeXx45C//fvrL60kCPB0qb9bDYmJWN+pU8XHzGZEZImU5aWX8Ds5Na5Q0foLulPOnKPntFMnMXd6/jw2SsWKtkPDBQGtA/XqOS7NP3YMi9W2rb4UNOW7Fi50bHHPmwerWJoPOnTI9qDVqwdjZvt2WJWBmF2dlITP/vBDKN8GDfA4FVxIUxDR0QjjywcrSCEI8NQYE3vd9YDsbAj2okWV+9AJJhMMqG7dbB8fOxYel9lsG/Fo396zCntPlDNV/t65I4a2OUc05KGHbM/X6tX428uX1d8vJQUtKlFR6jUUgcDZs6gPaNnSsSw4ccK27Y1zrDtR5HIuhrTj4pxHvnyJJk0wpIO49m/ehNFRurStR2i1og2zWTPH8mbfPqzvoEGe90B7EzRr2lknzvPPw4CUEppQNI96qqtUgYH55puoKdBjpECXynnTJoQkkpLgmdCUkEWL0GsoLUj54w/c9Lffdvyev/2mLwX9xhu47gULHB+UmBhxiIUUAwaIE4QuXsR77dkDT5pGNgYCTz4JQUG92hcvit6htGqScyjewoXtRylKIQji5CQ9KOi0NBiOkZHOCV4oz3funPhYcrLISMQ51pUESXg4XuP+tbmvnGk29zffgCeA9pDUyyfk5MCjdGZIJCSAFCgqynW2M1/gt99wr594wnFPNqUi6te3LfCTeqNUYzFlivh4oGpbXn0VijglxXae+owZyKtKPX8ylJ1Rd+7dCxncr1/gFTQVBTOGOeSOcP48UhE0zpPw1FPiKEhKHx0+DN5/qh/QG3SpnK9cEQXFc89BsAsCClLk+UvOERIsU8Z5IQMp6ObNtY9r9DasVnH6ybx5znNUw4YhYiA1KGJjsQHfeQe/L18uVrOXLq1esOMPzJ8PgZCVJbImca6cv0xLQ9GGfLSbHFIFPX9+4IrE4uMRvixRAj3bjpCaivCnvHdy3ToI0MREsYhvzBgxSuSJl+mJcuYcRXovvigSk1CvbPPm9p0R9DfOZnInJIBYqGRJ7aMKfYEDB2BQtW2rXm1OoL7hH36wfbxlS5HggwT8kSPYv40a+eSyNYEqxo8fh8HUujUeJ6Nd3jPfuzeKGJ3R0+7fD8egc2ffDs9xBJMJ0Rut9Sfdu6MCW2pQEDU0RTZmzEDEIyMisXh2AAAgAElEQVQDhrJckesFulTOnKMFZ8oUkZCEvI8hQ9A6JC3iuH0bymn6dOfv+8cfsOSrVPGcctBVZGfj+kNCIKSdKRmq8pW3eSxciO9LFaSNGqGwhXJggRSCVGhx+jRy5FS1TflLeW6d2H0chYc5x72i/PyoUf4PQ124AE/poYe0eYHTpyPKI+U1tlqhAMkYOXMG3+f770HeUqOGe4aHp61UhOefh7GQmSn2zXIuMoZJDQdBQOFQ/frO2Z5SUxGyL1TI/6FfQYBhGBaGdJkzis+sLKyxvHCKpuRRBGHWLAh4kwlGmKfUs57AYhHnEBMJCe279u1RSyDFP//AUKbojSP89BMMq3r13Ofhdhfp6UgJhYdjDzoDEfjs2mX7+IsvwgnIzcUZrFwZ5436nPVE2SmFbpUzCavcXGw84rQlHme5xb5yJRZRS29vXBxCW5GR8AD8geho5IYKF9Y2n9RqBWtRo0a2oTXKvU+Zgt+pv3jHDhzOUqUCy9KUlweltHIlQmPSzT9unJhrJVgsyE22aKFNMX3+OYR8w4a2xS6+xMcfY6/Ur6+tD/T8eSgD+bAIMjSPH8fv1JdOFINKE4RcgaeeMxWvXb8OI7JxYzxOuVZ5ReupUzA0HRXnEHJyUDDFGIqq/FFslJWF/D5jyA9roYxctAiRDfk4xNGjYZyZzdin1aqh/oXa4JxFUnyNoUORUkpJQTiaUkBU4CdNrXCOtSxcWL3LQIp//oEsLlXKu/S6jvD33ygiLV7cPoKhBJMJxcPt2tnKkfR0RPAomkhtg0ePomCsWjX9tmvqVjkT09TlyzhgtWrhJgoChLm035dzHP4aNRB+03Kzs7IggBhD6NxZqMtdCAKa3IsXRzTAUWWvFDSBS97HTeFE8t6WLoUXnZ2Nw0kjNgOJvn0RPszJwcGgEXtK+UvOxTyYFuuYcwia2rXx3v/5j+8OV3o69gZjEM6OKssJgoBisdq17cOGPXvCKKR9/PDDCNlFRyvfF1fhqXK+fx9GxbZtIo8AecuzZsGQkEcsxo6FZ6UlTSQIUBrh4TBUfdkTfPIk8t0FC2rfV9evw/CT9z3fvYv3oSI5KhY7fBgFjSVKBL6yWcos16OH6C2bTIgEyFsr09PRLdG/v7b3T07GuWYMYWFfRa6sVtQPFSqEmhqtREpr1iDVJ4+GbtmCPU11LS++KA548YZB7EvoVjlnZsKC3bjRtveZc4RCQ0PtwyzkmWgNnQkCNnWxYvDodu70rqC/cgUCmTGEeLXKzMREWKlKrRnSMBURRYwcKbZUaBVEvsS2bTgQKSm4tnr1xOdatIDykmP4cNQNaK0yT0vDaxiDMPLm4HdBQHSjcmV4zNKKXWegfKV82Pu1a2IlO+dimPTgQc43b7bwkBALf+yxFjwyMpJHRUXxUaNG8XgXh9p6qpw557xVK4R0s7Lw3SnPR6Mk5SmWpCTUGAwbpv0zTpyAl1OgAAw3bwr6tDSEmMPC0K+tNWQpCMhXVqliXzC6ahWUM+1N6WCeZs1sRxEGCnfuYH0+/VRU1KSQ6PrllLDkVStNilOCIKCtMSICiu3AAe/Ky9OnUd/AGJSm1n0RE4O9Kk9rknykOQwWC6KO06eL+9lfkQB3oFvlzDmq6Hr0gPVXpgznr7yCxzMzYa0q5XmGDoWwcGUuaEwMPocxCKcjRzzbdLGxYLcKC8Nh/+Yb114/ciS+r/wwUY6SmH+oDefbb0UKOj2wod26JVaEUmibmInI8ydDi5CQoG6QOMI338AzoOk67gxpJwgClGqrVrjGPn20hf0ISUnIPyoNZZF7nnPmYJ+azZx362biJUue4//973/5pUuX+PHjx3nz5s15Exd5PL2hnKm4MDcXZ0la6NS7t9ghIAXtPblB4gi5uUhVhYVBYG7Y4JmSzsxEoWj58gjXLl3qmjdLDFvys2o24wyPGYPfKaT9/PM4nyEh+hka0bgxnIDUVChjohJNSsI9Wb7c9u8FAcVeNWu6Nqzj4kVxjnO7dp6H9KOjEUEKDUXqyNUxt337wpCWjwqmYTIUfaQI3fHj2CsREfro3FGDrpXzunXYVNnZUHbSgpkZMyDs5AUeCQkIs7kzcu/QIQgjxiCE3n5be1V3bi4KDAYPRtiuTBlUAbo6oYb6l5UO/LPPinkvzlG5XKoU8ryBbqGSo0EDXG9Ojjj5hXNce7Vqyjy/FMrXkmOSIjMTHl7Jkrj3Q4ZAUWhtAUlMxFo3bozPb97cNUVDGDUK6yHfM5mZtjlbmh42aRL2duHC9uMYT548yRlj/KYacbACvKGcyQA8dEgk/qF+ZhJu8pGIggBDunp1baF/Ka5dg+IjJT1vHnL2WoxjQUCB58yZkAVhYVgDV/mh799HcdfAgfbPkXdJxiSFtH/8UWyhClTnhxzUKWG1wkCUyoMJExDGlhssFy9CSblKGSsIMGRIXrZoAcY/rdSf2dmocejTB+tWvjy8clfTA9S/rDTprl8/RGhoLz3/vDgxr0cP29GaeoSulTNR5X3/PQQ2YyKX6vXrsLSUilHcFfKcY+EOHUIuJjQU79O4MRZ20yZ4fvv3IwT+wQew/rt1g7fBGMIoGze6N1UpKwvhovbt7YXTnTvwDomeT5qztFgC30Ilx9y58CKtVkQCpAxh69dDiUormTnH8+3a4R6440WlpuLeP/oo1qJYMfQkz5mDPbFnD6IMO3bA8Bs/XlTIYWHwDN0N1VGlqJJR9dZbeH/ywqUCnipG5ZzHhw4d4iEhIQ4VbW5uLk9LS/v3JzY21mPlLAjwQqZPxxoUKSJ6XIKAQrwePexfd+0a8oTu0iBeu4YzVqoU7kelSjB0V69GWuHbbxGF+c9/4BUPG4brZAyCffp096uJx4/HXlHaj02b2grxadNgRFgs+jOIqdjpxAnRsKKcLc2fVhpFunQp9qfWehgprFYo2e7dIS9DQ1FPMHUqzuKOHVCgu3ahh3/GDJzJggVxPU2bwjB2VkWvhKQkGFW9e9uf2UuXENV4/338bjZDHs2ejX0tpTrVK3StnGlaz/TptjeXMHQoQjLy6mRBwISnmjU9C1vcvQthMGoUPMECBbChpD+VKiGvvGIFwsyehMNfegmb5tIl++cWLoSgpH5DEvA//KCPFio5aHbzyZNiLQAVa6SlQRgqDRwgS37mTPc/WxBQNLZiBYysKlXs1y0yEoL12WcRlvVkIk16OizyLl3s199iQcSHaFY5x3crXx57esoUcfoaIScnhzdp0oQ/I+VrVcCiRYs4Y8zuxxPlzDm8rNq18f/hw1EzQNdHrTpKudyVKyHknbXFOUJuLhTxK6/AUCte3H7typVD6uHll5Gz11KFrQYqPN22zf45agukKIrZDGUwfbo+DWKzGem+xYvFiBXNJuAcRkazZvavM5lgdDVs6BnhSHw8lOHIkWIxnnTdChTAvurbF0QpnrYwDR8OY04plTVxItaKijIPHhSdOzKk9UgtK4WulTPnEBSPPor/T54MQUs9zsQOtnOn/euuXIEyGzfOe9ditcI7i4tD9aI3mXMoPyIl2SdkZiJMLuUzpkZ6iwUHMNAtVHKQoFi0SOwFnTVLfH7mTFyzUhh03TpYvd6cx202QwHfvo21Uxt24A7GjYOyV/LcduzAutIQCIuF85Ils3h4+Ds8MrIIDwmJ4QMHitLFZDLxfv368caNGztVsr7wnDkX2d2uXLE3rPLy4DkqDbc3mSD8a9Xybi4vOxsCODHRu+977x7OUM+eykZ1797IgdJzxOX/xx8iB8Fvv3nveryBwYNFfu0xY+Cg0PWTIaKU0/3zTyhPoib1BqxWnLV79+DoeFM+UWRAqfg3IQGGgbSPe+xYRBoFAU6Qv6f2uQPdK2dahBs3OP/1V/xfOrWnQwdsRqUbTZON/NXL7C6Sk+F5deigrDQ2bYJHcv06frda4bETsXvTpvpooZJjyBC0d3GOa42KEg9oTIx6WsJqxb2oWtV3LW7eAhUSKc0DFgQoK2l1OlnwO3fe4vv33+SMcb5nD8x7k8nE+/fvzx9//HGe5EpF4//DGzlnzqEAiQZSybBavhwRHqVoAxnF48d7dAk+hyAgL1umjC1rHYFYpaRpilGj4BEKgkiZqSeDmHPsQ+LWp/oVmv9utcLY6NlT+bVE8uNOOtCfiIvDuvXvryz3KcpI+e/sbEQRiAa6dm141nqH7pVzairyk1u2YCFq1LD1hsmyV7IGBQEKomRJ9YHcgYYgIMxTqpRyZbDJBCUljXCSl33smL5aqOQgZqmEBNswPGHIEHhZSgIuJgYHatAg/Vq416/jGocNU75GygF++6342LPPQjgIAvKpkZEIQZJirlevHr8rL9PXCG8pZ87BF0Ccw3LDKjkZNRbUPSHHe+95p2/bl6C6FKVCIs5hXFSqJEbHsrJsJ6098QSGu+gN8fFibplah6ZNE5+nIjY5KQnnUN6dO+N7B2JwjhZYLKjJqVxZ+RozM2E0Sb8zGdBXrogc8nremwTdK2fOUUDQvTv+TzM5qWDIakVFnhoJf0oKlFvbtp7lpnwFGoCh1m5FOT4pYcNzz4mkLHpqoZIjIQHXtn07rrVWLVuuaUpLqJHwE2OVHrlvTSZEbGrUUPfuu3dHvpaiIZmZsOhJwLdtC8PMbDbzvn378oceeoifPXuW37lz59+fPBdyJ95Uzhs3IsyZkSEaVtIq7blzoaySk+1fKwjwakqVEqM9esKpUwh7qnlPd+4gckCkI5yL/evXrsHTpp5iPaJhQ5Eidvp0Mf3FOfZttWq2NRBSkFfap493Uz/ewuLFiLiptW9R8aU0xdSrF6rJOUfaMCLCvu1KjwgK5fzmm2JPGtFVUq8v56KHpmQNcg4PJizM1prSA377DVEBtQpXMjx69xYfkwv4p59GdaReIWUtW7wYhWDSysxu3VBspyYIZs/G2jmaQRsITJuGtVMrfiJaR2l17Gef4bHoaCi10FAUIt24cUOxsIsxxo+4kHj3pnKWehg0oEPanpiYiBYwtZGfKSnI8T3xhL7G8SUloQCvaVP1NsdZs+AASNuCevcWBfyHH4psXHrEggVQsGazuA+lhtXmzdh7asQ9+/bh+y1a5JfL1Yz9+3FdxDgoR14eDA8pIU5iIuQHpc+kjp7eERTKmQQFcVI3a2brKZtM8GAGD1Z/jy1b8B5UWh9o3LiBit3WrdV7+4jA49dfxcfIU75xA5WI0slPesSiRUgrmM0iK4/UU6bQrxpTj9mMqt2oKM8IRryJbdtwzY5GWPbtiwEt0pB99+7ixKDPP8d7yNt3PIE3lTPnyK9S7njJEnjKUsNq2jR4x2peyJkzyE0/84w+UhMWC9agTBl1chkyOqRV2PfuwRCj9R48WLnqWS+giVlHj4oRKyJR4RxrWK6cY+rK5cvVi20DgUuXUGDqyKN/910ob2kVNkWAkpJgbIWFOR8vrBcEhXLmHB4khUSJn1dquVKey9HEoOefx0IF2gu7fx/f5+GH1a1vQYBH3Lat7eNPPYWcC+di9ahaxEAPoJAoFfG1aGEbCeAcyvfJJ9UF+O3byDE1bhx4Rp/Dh7H3aPCIEs6eta8DSEiwHfP5zDPeGzPoralUcsycifyjIIgG8hdfiM/HxiKi5WjGLuX7aHBNoCAIWLPQUPSyq+Hll2HwSsP1b78NoZ6YCIO4aFF7ti09wWpFKJsicq+9ZpsK5BzXX7CgunEoCIh4RUZiPwcSSUkwdB97TJ0/wmRCREROpdq0qTiHgQxiR/Pj9YSgUc5EamGxQKFJLVnOxZCGo6plkwmKrUwZe9IHf8FkQtFFqVLK/cwEameRRjVjY2EZUmWwUo+s3mC1wuulvuXNm7F20mIOqmD+/nv19zl3DkKzR4/A1Q5cuIB169LF8TUMHoxIjjQi8uabMAyTk8UeWW8rLG97zlR4SOxYLVsifyfFpEmIADkikaAq4Pfe88pluYWVK51fw927UEZytqwnnxQjdUQao2VsaCAxfjwiH5yLEavPPhOfT03FXnZkZGZlwSCuVMn/4yIJmZkw6MuVczzrnAr8pOtC86zJ+x82TF+kMc4QNMqZBooT0Ubv3mKbDmHrVigvR4o3ORk5zkqVvDssQQvMZlQoFyjguIfXakVRh3xAxKpVCLmlpYkELS+95NNL9gomTRJ7DO/dw/eX9nMLAg6gI++Zc3g84eE4ZP5W0JcuwRtp0MDx4PkLF7AH333X9vEnnhAnAFFLII2O9Ba8rZzz8mzTJuRBSluPrl/HY0r9+QRBwAjYsDD7Wbv+wAcf4H6r5ccJr7wCr1jaxUbMWnTd0r2sZ1BKjByAtm3F6nvC6tU4i44U7+3b6JWuVcv/NKW5uWj7KlJEZIZUglpac/58pNRyc7GXiaAlWBA0ytliAW8stW9QJa80pJubi+ZyZz2/d+5gs1Wv7r9qUlLM4eHOBRSN65O2h9GEFWrfoKlGP/7ou2v2FoiRhyrOBw2yH6Bw5IhtXYEadu6EkB850n89plevwpirW9c5k9igQegOkBZZ//mnbV593jzsZW9fv7eVM+fYs1RwmJKCHLK0iplzFIpVrOiYV9tiwbkMC7Mt5vQ13n4b9/755x0r1KQk5fawmTOxVnl5YhRoxgzfXrM3kJVlS1FJRWzSXHtmJgxOaT5aCdevY/8/9ph3ayQcITsbxaKFCiGy5ghkfEk7WiwWnEOqyCf6Z/nAHT0jaJQz5xACdevi/yYTNpaUNYtzeCxSRiY13LwJi7ByZd/TuGVlYQyfFsVssYAooEsX28ep7YhCv6+9Bqsw0HNktYAK15Ytw+8UGpRbw127gg3OmVf83/8id9ivn3ucvK7gzBkIpjp1nHsORKMqHzH5wgsQ6vS96tdXHvzhKXyhnClPR8MkRo4U2/gIN24g9+ysMNFsRq49NNS1MZzuYt06XPu0ac493VmzoJylNSBEwELKWF4/oXf06SOOl83IgAcqr3TeuBHrQcNN1HD5Mhyfhx/2fcQxPR1Rw8hI585HTg7SmfJJcOQQUDfFSy8h0qj3iIcUQaWciS3s2jX8PncuFJS00MFshoDv3Nn5Qty+DQ+uaFHfNaUnJKCyMzISLQrO8NFHyiHPyZOhJMjbathQnyQIapB6YBYLjCJ5tShFA2jmsSPs24d72qyZZ7zYjvC//2FvNGniXDELAuoZ6te39Yizs7FHySOjwipfVMH6QjmnpiL0uWkTfie+abmCmjkT98rZWlgsIBFiDBEEX/TSmkwwiBhDaNOZHLh5E8aFXHHRxCPyyObPR62AHvkSlEBz7ylMP2YMwr/Se56TA6WlZR53TAwMs7JlURjpC0RHgxugeHFthbtvvIFojLx+RxqdI/KqyZN9c82+QlApZymtIOdioYOcDICKqRwVGEnfc+BA/P1rr3n34B04AO++YkXnnjznCDNFRdmH5TMz4XlSe0dMjH2vt95BPb7kgS1YgAMo93wHD0Y4igjrHeHUKdzbSpW8y8NtsWAvhITA+9AyBpGiAVI2MM7B/UvsRJwjzFiokOujFbXAF8qZc4QXqf6BWnOI5IKQlIScnjySpQRBwH0ICUGBmTeNq7g45FcLFBAr451h9GgUtck7Afr0seUQqFfP9XnjgYScLOXoUfsiU87FaKOWkG9SEnLXYWGYLudN42rfPhTr1qypbShGSgqK2uQ87wkJiFKSQUl1A+6MgQ0kgko5c44+RWmhVMeOYmsRQRDQT9qwobbNIwhoLQgJwWF0Z3SaFKmpCKUxhlCt1kKKRYtgfMjz4JQvosKNTZsgfLwsg32K+/dxYDZvxu/kQcoNq4sXYe3ToHhniIsDD3dICLw3T5l//vwTzF+hoQjDa8kLWyyw0tu1s/fSOnTAD6FVK/RA+wK+Us5bt0IYkwe2ejUMDPns3tWrscaOqmql+O47COOyZdFy5UnIURAQdSpRAsaalBvAEc6exVrLe9bv3LElr5BzLQQLmjUT51STYSUfdmYyIZ+sNKpWCWYz2rQYg6KmSKa7SE7GgCPGYKxppZWfMweherl8ff11tIlRO9yKFYjqaDH49YSgU84kKKgVhzwyec6Eqrtd4Zw+fpzzxx/HYZ0yxfWh7Tk5sNbLlUPIdd067ZZlXBxeozQVpkULeC+Ezp2h9IMNXbrYVozKFRfhhRcQKdBq1FgsUAyFC0Mwb97sOivVzZsIs4eGIjTtyvhN6rGXTyiiyA5NzrlzB0aE0sxnT+CrPmcCXTedJVJcZGgRsrORrhgyRPt7JyYiWkKCXqtSJdD89SefxHs8+6y90eDotW3bQjHJazeWL8d+ovdavx4CP9B99q6C+NspQrVmDRwAOS815WhdSbccOIAoV0QEcvauysvUVISlS5dGFO2dd7QbaNHRWA8aZkEgNjupAdK8uX1OOhgQdMo5IcF2iHZODkIbSkpt6FCEqxy1vshhMiHkVro0vIBBg0COr8afbDJBoMyaBQ8gJATFPq5WNY4ejdfLP+evv2wtdvJAlaY56R3U40zrQYYVDYQnJCfDo3I1hBgTA87g0FCs+/TpyI2qpSpoXvegQbiuMmVgULlSZJeUhNcpFXjNm2dbE7Ftm60H6m34ynPmHD3ORObAOdrCGja0F6ZUM+FqmmHvXhR7MgbiiNdfV/fABQEta+vWob6EMXiIrn4mFbtJqS05Fyt9x44VH2vf3r7HOxhw5YptK9i9e1Bqa9bY/23PnuhgUaM1VUJWFtqTSpTA3h4yBLl6NSMmOxv3+4UX4M2Gh6Mn29XZAP36oUBNnh6S10TExuL3Tz5x7f31gKBTzpwjfNijh/j7Sy9BGMtnBMTFYQO88ILrn5GejkrGxx/H4jKGzfDUUwgT9eqFHFSBAniufHlch9aQnhQnTkCpyz0RzjERqEIFUWHIq2eDCbdu2ZIh5OYiyqDUq00Uma54sIRr13DfKlXCe0REQPD37Imfzp1hXYeE4PnGjbHW7nhFEyfC6pcLF5MJ+XDp3pOnZLwNXyrnNWvgSZIH9u23yhX3VitC94895vq8c6sVSnrAAHwWYzBY27TBeevbF15Q2bLiug4dCqXsakg8IwNePoV8pfjmG9vvlpQEg0/eux4saNDA1pMcORJV1/Ko3sWLUJbSOchakZGB1MBjj+HehYaC1atzZ3BS0BCYggXxfFQUhhi5Q8lLXr5Szc0zz4hT3zgX6TtdcdD0gqBUzvIbTgl/pXzQG29go3iSR75xA5bXvHnwsrp1Q7HICy/Agz1+3P3CCJMJBsATT9h7eJmZtpW+nOPz9TzowhmaNrWl2Js3D8pNbgFbLPiejRu73w9stcLw2bQJhUp9+8Lje/pp5Ke3b/eMWIGMKio8kYJoK6nSl6qeN250//OcwZfKWe6Bmc2o8pWObyWcOwcvSt4P7QoyM1HYuWQJuhL69oVhNWYMPLWDBz0rqps3D3lzJQKOHj2wTwk0I9nfJBzewqJFOGNkLFHKT6lAauZMGEae5JGvXkVkc9o0eNJ9+sDTffFF7P+//3a/viAnB0q/Y0f790hKgvKX0sm2bas+v1rvCErlTKEKaTFRy5aw0uQwmWA5NmumzxFor7+ubjxs24bnqEAsMxMHxxOhF2gsW4ZoBoXOYmKUGbU4F/uGlZRfoEHGQ6NGymHzVq1s8+kU8fDlXHFfKmfO7auVV66EglMK08+ciVyn2oCJQOLcOXiISmxR16/bUuRyDq9PXnQaTKDU2Hff4XdBQEpCqTAxIwN9w089pc+e4PnzYeQqcVOsXg3lTL3qt29jLbW0ZuoRQamcOUd4i+gQOReFn9Ki0eQjR1OEAoHoaChb4p2WQhAgDKXfcccOfA93Qud6wT//4DtI+8r79IGSUxIGkydDyHtaEeptbNigXATGOQwteSRn0CBbb8wX8LVyfvVV1HdQioXyl0rGYno6wsY9e+pLyJtMiFLVr68cdifuBArfJyfbdhkEI6hKmyaMcY7C2tBQZWOR2gL1lqf9809EZJTIbsxm1AlIx5pu2YK1U5o5HgwIWuW8Zg2sdsoT5uUhj6E2QH3KFChC6jcNNKxWePrVqinnOoluTtrsP3So9yYZBRINGtgOe6cckpKiy8hAkUq7dvqJfFy+jL00dary86NHoz6BPOr0dOxVpSIcb8LXyploSKX8AWPG2H5XKfbt004q4y8sXw4Br8TVnJODGgjp3PdgD2kT5s5Frp7WKSPDljtBjuHDUego5VEPJEwmyL6GDZULNonOWcon0bGjbZdLsCFolXN0NBbjq6/Ex5Ytg9BUspQyM9Hc3rKl/ziZHWH9euVKUULfvrDuyevIzkZPnzvFGnrDsmX4LlTFbLVibdRYioh325f5Wq0wmbCHatZUznnevQtvctUq8TEiIvFViNfXrVQEalORcjGTwlbr/x0zBkpAD+Htv/9GEZmcP5vw/vtQxNK2zGAPaRNOnrSvon/hBRgjSm2H9+6hoLFrV30YxYsXw6hSqx3q2BHnknD3LiIDgZyE5imCVjlzDktKyqZFglEtJ/vrrzh8gZ5Mcu4chIQagX50NK5TurGIStAZB24w4PJl+57Kt97C4VObkDN1KrzPQM+WnTMH16lWRb5yJfagtI+0Tx/0qvsavvacOYenVbKkbUi4TRvlfnXOUQhXtSpIgQLJA5+RgUrievWUW4UEARX90jxsfghpEwQBEQ7piMirV9XrPTgX58UTI2OgcPQoFO2iRcrPU0Hw55+Lj737ri0fRjAiqJXz8uXwwKQUkPKQohxLl2JDaqH29AXS09Gb2aCBej/hzJnos5Z+rxEj8Jr8gkaNbMkqMjPxndVGYGZn4zUPP6ydZMLboBYbmvQjh8mEvSf1LO/fRwGLPwScP5QzCUIpT/x//2s/IU6KY8eg5JS4CPwBQUAfepEi6rSQlFr5+WfxMWLmC/aQNmH2bHjKUtk4YADkkZp3PH06HAlPWRPdRVISzlTbtuoy/bnnUN8gNRi7dlUuEA4mBLVyJuK7hkcAAB6wSURBVAamL78UHztzxv4xKaxWFKmULu3/UJsgoDCoWDF7onZCairaHubOFR/LyoJgcTb1J5iwciUKvaSh4VdfxWNqBRzR0ShI6t3b/6G2Gzfw2X36qBc4ffKJvZL66CMIeH+M2vOHcuYcHqaUW5uMEjnfthRr19qOzfQn3n9fmSpWii5dUH0vXdsePcSpTvkBSjUD1FalNpQnJwf3pWpV/3uhZjPnnToh963W5XDrFgy/N94QH0tKgteslVtdrwhq5cw5qrb79LF97Kmn1Kt/OYfwr14d1bO+HjkoxbJltr2iSqCwqLQQgzyTYK7SloO4iqVEAgkJ+O7Ll6u/7rvvoOz8aahkZKDCt3p1da/dakXIVM4i1b27/wS8v5TzkiUwMKWRn40bHaclBAFeWpEiMKD9hSNH4PlNmKD+N+fO2YdFKaSttw4PTyAIGH0qZ95r0cJxXv3mTXjcHTv6NzUxfTr2lCPmt+nTYTRLOfVpGperrGN6Q9Ar540bcYikvZY//mjb16eE06chKHr0cJ3JyB18+imuST6WToqsLBwC+SjFfv3Qp53f0KSJPeftxIlgRHNEIbh4sXNPyFswmxFpKVrUsVKhkLd0zF1Skn+pVv2lnC9dsjcys7JQDeyIjS8zE2teubJ/Igl//QVayaeecnzGR40CoYpU8VCVtl6qlb2FJUuwl6VFYDt3KrO9SfHTT0jPjBzpn6jVxo3OOQ6SkyHD5RXn7dsH5+wBOYJeOSckwLraulV8TBCgzNq2dfzaQ4dgVQ8f7tsNt3s3NvbYsY57PqkoSjrMPCUFr92wwXfXFyhQO5zU6r182XGRCue4h2PGQPHt3++767NYUMMQFua4RkEQUCnaurXt4/624P2lnDlHS4t8tOmyZVhPR983Ph6KsG5d383h5hzhzoceAvueo9tx9SrWV64EOnXCT34DMb3t2CE+ZrGg+2DwYMev/eILvHbmTN/2rlN3w+zZjj9n6VJ05xDpCOdYd+mQlmBG0CtnztHLJlfEVN3sbMrNzp0QoBMm+KbF6quvoESeftpxSMhkQl5HPs7tvfdwffnNgudcnEstJzvo3x+kCY5ma5vNqKwtWNCW0MRbsFhQaBIaKk6VUgPNyZXn7Tp39k9Rir9aqaSgmgFpj35KCryy+fMdv/bSJbTp+EpBX7kC/oCqVZ176GPH4lqknmRsbHAzSzlD06ZIMUhBk9X+/tvxazdtwt9Nn+4bBf3ppzCWxoxx/P5qkRqalx5M43TVkC+U8/bt9n2kVisOf/fuzl//8ccQwkOGuD5q0BE++ggbbcQIx4qGrkHpcHTsaDtmMb+hfXt7BUYMW86s39xcGD2hoeKUMm8gMxMGQmioOKTDEbp0QU+6NPoSH+//YQn+9JzJsNq+3fbx2bMRSnY2aODSJZAGPfKId4mBzp5FWqROHefDYa5fh+G8fr3t46+/nn8EvBLWr0fEULpGeXmoqdAy7nPzZqz9uHHeSwkKghjKHjvWubx8803IVqI2JjRqZMvdH8zIF8o5PR3hDSnxA+fi8AFpHlANu3bhPZo29byK22RCXy5j2jxykwlhJelIPs5h9ednC55zsV1FLkj790fblLMCFIsFOXrGwOzk6UD169cxbKNoUeSRnYFG1MlJONasgVevdRrOokWLeJ06dXhkZCQvWbIk79y5M//9999dunZ/KmfO0dssNxxv38Y5UmOekuLaNbTxlCrlndbGTz9FDvKJJ2xDnWqYOBHT5KRFoYIAQ0sess9PiI9XlivvvovHlSiQ5di+Hem2tm09T9tkZyN9pCWUzTmM5/Ll7YeuXLhgTw0czMgXyplzHCZ5H7DVitxYu3baQjCnTyMUVrQoctjuhG3OnEHRS3g452+/re09tm3DoZD3iboq4IMRaWnKhtXZszhoWjxisrojImA50yQoVyAIWIeiReFBqPXsyl/TujWUgXSdiRfdFQH/2Wef8UOHDvHo6Gh+/vx5Pm7cOF68eHF+V4uW+X/4WzmTYRUba/v43LlQklpC1vfvI7pFhqw7l37vHlIQjKESWcvoz5gYKBc5pSrtu2+/df06ggmdOtkbVnl5SAdo8Z45RxtWxYpodfrsM/fk5a+/IsJZuLB2Lu9Vq7B2cidq/nwQ5HhqoOsF+UY5791rO6KPQHNnDxzQ9j6pqSCIZwwtBgcOaCsWi46GJRcWBsv7xAltn5edjbnDI0bYPi4IYDRSo7TMTxgxAh6U/HAPHgxhoTV0duYM3ic0FKExLREQqxUEFM2aYc3Hj9euIGhAgLwr4NQp590CzkCK9ocffnD5Nf5SzmlpCP/KGfmSkxHalnJUO4LVip7UokVxFjZu1NbimJoK5VqiBLgBPvpI+7U/+yzC33JFPmsWOiYCyWbmD7z/Ps6J3LCi3LNW0pHERBihjMEJOnhQm5K+cAGV34zh7Gk1qFNTEWmR55otFnQByDtdghn5Rjnn5YFY5OWXbR8XBIzvkxMMOMOPP4oCu3p1eAO7dyMUd/cuQjlHjyL30akTPIjy5dEM70oeZt06eNnyHubff3fNqAhmHDiA73rypO3jFy5AgMhzgo6Ql4eilbJl8douXfD7778jnHfnDt53/34wVtWoIQoIR/2UcggCPObWre331dSp8Cic5c3Uv0MeX7t2LS9RogS/5wLzg7+VM+fodKhb1/4eLF+OSIYrIzJjYtDWFBYGD2jUKFQInz8PJZCYCM92+3YI9sKF8bdTpmgLYxPOnMF5lZNUWCzIg6sNNMlPSEtDQZ+cq99shlPQqZNr8vLbb5ESZAzOycKFmMcdHY303M2b8JJXrYLTwxiq6d95x7VC3FdfhUEYH2/7ODG8yWVIMCPfKGfOMcy7QgV7q5fygl984dr7CQIU8PjxULyM2f8UKoSCpvffd53QJCkJBsWkSfbPTZqEzauHIR2+BgnFF1+0f27SJAhqpZnBjpCRgRxap04IgSmtXaVKqAo9dsz1kBz1rUvpHjmHcVCmDHJnrmLfvn28SJEiPCQkhFeqVImfdCJpcnNzeVpa2r8/sbGxflfOJBSl04A4x/0vX952hJ9WREdDuNetq7xujCGFtWKFvZDWgq5dUTAmlxMUCclPAt4RnnsOtS7yvU89+//7n2vvJwjwnEeMgFxTWrfISFSK/+c/rheT3boFg0xpcMmQIUgl6Wk8qafIV8qZ8kV79tg/168fKAaVJglpgSDAAjx4EB703r3IS3oS/poyBeE4eW4uKwuPaymqyS94+WUoNfmBTUgAG5XWEKkScnIQptu3D4Ln2DEUfrl7kDMyoNjlBCqciy18jlpS/vOf//AiRYr8+3P06FHOOeeZmZn86tWr/Pjx43zs2LG8evXqPNFB4nbRokWcMWb340/lbDbDsJIOVCBs3Yp74WJdmw3u3YOBvHcvzvWJE57N56UojRJL34AB6IvOTwLeEX7+WdnAFASEqOvXd985EASEzA8cgNHz/fcIXXuSD37mGRh88u2dnIwojZTCMz8gXylnzhFa6d3b/vHoaBRXLVzo/2tSwrlzCLsqbShqwr92zf/XFSicP28/qYqwejVC/2p85P7G/PmImChRVfbrh3C3I6Snp/OrV6/++5Ot0r9Xq1YtvnLlStX30YPnzDnnCxbAmJQbvhYLKt+ffFIfYwdzc9G6pVQgeudO/qPrdAZBAJ+AnM6Tc0QPQkIcM3T5E5TmU2pNfOstrJ0vSW0CgXynnLduhdJTIh+YPx8KWt4b528IAtpQ6tRRDu107py/CPe1omVL5IjlyMlBbtjVPJgv4MjIi4tDDtRbdJ01a9bki9Tm5CkgEDlnznGeGFMuyPr1Vzz3wQd+vSRFLFsGIa7UKrRqFQyuQE08CxRWrECoWGnLTJoEoyvQBEgmE7puGjdW9uQbN7ZvQ80PyHfKmQodlIYnZGSgoq9Hj8AK+Y8+sp8OQ7h+HRarK5Wn+QVEJqM04INmy2ptt/AFBAHGg1p6ZMkS7L3UVNfeNzMzk8+bN48fP36cx8TE8NOnT/Nx48bxggUL8vNamk7/H4FSzpwjjysddi/FM8+gQM+Voi1vIzoayldpbKXVitzrqFH+v65AIy4Ozsy2bfbPpaSgcj3QHSOvv45rlNc1cC5O2lJKZQY78p1y5hxFPjVqKIfSqNghUEI+Lg6tH0qhJM5RFV6ypH+nZekF2dlok1Cb+zt8OIR8oAaof/iheqGMxQKlLSdG0IKcnBw+YMAAXqlSJR4REcGjoqJ43759nRaEyRFI5bxjh3quPSEBBUKBIvYQBPRSV6mi3ANNg3LkudcHBb16wftUcljIYPakLdATXLsGz37WLOXnJ0yAw+VuZ4SekS+VM80oVWMdompCfw9RFwRMOIqKUg6f5eZC+Uyf7t/r0hNmzMA9UCocSUiA8h4wwP+Rj9u3YTSpGVXUTx/ISt9AKue8PBTrvPSS8vOff65eU+BrvPuuY2KRYcOQYgp0yiRQoIr7Y8fsnxMEzC6oWNH/RrHVihRftWrKkar79xGpyk9z7qXIl8pZEGAJ9uyp/Py9exAkXbv6t1CFwtlqtJBUCKaXwqdAgMYRSmfrSrFrF56XTiHzNaxWsClVrKheKezI+/AXAqmcOUfUp0QJZe9UEEDJWr68f43i6GiQm4wfr/z8nTuo9F23zn/XpDdYrZzXrq0evo6PhzMzcKB/9/eaNTjrhw4pP79hA2oIAp0T9xXypXLmXBwkcfmy8vPUUvH66/65nvPnQWnoqO+zVSv/TDHSOzp2dFwQN2kSQl0XLvjnelauRB2AGlkXjeELVNFTIKZSKSEmBrlBtYK4hAQYOB07+qd/PzsblfMPP2w7llSKRYvgfT1ohWByOFN0NPPZX3v85Elcj5xUimC1ovI+P3Og51vlnJODYgYlYgvCK69gA/x/m6nPkJaGjVS/vnqfNU1iCkTYT2/46ivci7NnlZ/PygJBRYMG2niUPcHPP6MCe8EC9b954QXstZwc316LMwTac+YclKuPPKIekTp8GArc1z38NPO7UCEwgikhNxeevFKP9oOG1FQ4D46aA8aNQ6fC8eO+vZZ798DK2LSpOlHJoUP5v04g3ypnztHuUrSoevWsyYSWpjJlvDu2TgqrFTnS4sUdf8aIEdiQ+bGwwVWYzRhAopbf5RyFR8WKIXXhq3t29SrCeZ06qX9GSgo8r9de8801uAI9KGdqnXJUQLRihXuMfa6ACFDkIy2loOjag5xGkmLyZEQ21BRibi7oaitUcI2W1RWYTBgjW66cY278Xr1gnOfnOoF8rZxv3wZ1oyNu5uRkFIPUru06RaQzCAJ4ekNDwXCkhlu34MFv2ODdzw9mvPEG1s4RPeOBA/BqJ070/iFNSoIHWKeO45DnmjXIWXo6Ns8b0INyFgR4PF27Ov6bUaNw3376yfvXsGsXzpyjqJkgYIKZWl3KgwgiAlKr9+AcRB/VqqHv2NtRK6sVBnmBAo6jmTQa0tm892BHvlbOnKPHskYNxzmua9dQIdy0qfdyT4KA0J2W4qWXX0YhjVpe7EFEaio84/nzHf/dBx/gHr/6qvcU9N27oHEsV84xS5vZjPac0aO987meQg/KmXOxsNFRi3ZeHiISJUp4Ru8pxw8/QOkPGeL4zBPf/sGD3vvs/IAuXWC0ODpLf/2Fs9m6tes9/WoQBKSHQkKcR1TGjEH7lKvc3MGGfK+cT57EIfzqK8d/9+efCGE2bux5NanFgr48xuznxcqRng4Bpdbb+yBjxgy0TjnjQ1+9Gvd66lTPq+/v3AGBfoUKzgvOvvjCcW7c39CLcs7LE4eKOEJaGoogixXzjge9axdyot26ORfcffooT9N60HHkCPb0/v2O/+7339Fa2KSJ5xHHvDxEUtToOaWgaKgzuZofkO+VM+ewBh9/3LngPncOQqVqVfet+ZQUMJBp5aV9/XVsNvlcVQPIOYWHayO037oV93zgQPQ/uoM//sAksEqVOL940fHfWq3IeSnRjQYKelHOnGPNwsOV+celyMhAh0J4OOebN7unLC0W5LFDQzl/+mnnwxWIVSqQbHN6hSCA6a1VK+drcfYsokuPPOK+gXrvHiIoERGOw+mEV16BMectj13PeCCU8y+/4DDu3u38b2/dwmzfsDBULroydergQbRtlCqlToAiRUYGwun5aUC4tzF2LIpUVGZD2GD3bkQhqlUD65NW5OWBejM8HEMalHjZ5aB+619+0f45voJeWqmkyMzE3p482fnfmkwgL2EMytWV/H1MDFqzQkKQAtHSojVwIOg6jeJLZezbp70S+soV5J8LFkTNjNZ7Kgig3KxQAQW5WiInKSkorHVnHGsw4oFQzpzjAGsliTCZOF+8GAq6enWEWtSKHwQBiqBnT2zo9u1BfKAFq1fDa/ZV5WN+wNWr8Ii0Tgu6cYPzNm2wFr16IUynFjHJzOT87beRNw4LQ3W/ljwWkdx07Kj1W/gHevKcOUd/eESE9pnLX34JhV60KGoIHBlJFy5gjGjBgoh0HD6s7TP+/ls/gzj0CkFApNFRUZ8UOTlIKYWEoIDyk0/U6YetVjCStWiBdejRQzuJyKuvgt9AD8WX/kAI55yzBwBHjjDWqRNj+/Yx1ru3ttecP8/Y0qWM7djBWKFCjHXowFiDBoyVLs1YXh5jV64wdvgwYwkJePyVVxgbPpyxkBDn752ZyVj16ow9/TRj77zjyTfL/xg1Cut37RrWwRk4Z2znTsZefRVrVKUKY61bM1anDmOFCzN27x5jFy/iPfPyGBs2DH/72GParufbbxnr0wdr37GjZ9/Nm0hPT2clSpRgaWlprHjx4oG+HJaezli1aow99xxjGzZoe01yMmOrVjG2dStj2dmMNWuGs1W1Kp6/fZux339n7OxZxsqWZWzKFMZefpmxokW1vf+wYXj91auMFSjg3vd6EPDll5BlJ05gDbTgzBnG5s1j7MABxooVY6xVK8YaNWKseHHGcnMZi47Gmbtzh7HmzRlbsoSxrl21ycvkZMjLyZMZW7PGo68WNHhglDPnjLVrB2F84oS2DUGIiYGwP3wYQj09nbGICGyWdu0Y69GDsfbtXXvP119nbOFCKBwSPAaUceUKY3XrMrZ6NWOzZ2t/HeeMHTvG2NdfM3byJGM3bjCWkwOhXrMmFOuQIYzVqKH9PQWBsSefZCwykrGjR11bc19Db8qZMcaWL2ds2TLGLl/GedGK9HSs28GDUKS3bjEWFoa1a9KEsV69GOvXD+dQK/76C8ri7bcZe/55l7/KAwWrFUZR5cqMHTrk2mujoxn74gsYQefPM5aVJcrLli0ZGzgQ/7pydubPZ2zTJpzhcuVcu56gRWAdd//i8GGEUr78MrDXkZKCPMukSYG9jmDC5MmoDlXjtvYXqE1ID7lmOfQW1uYcqYMKFTgfOTKw10HjPmvXzv8tON7C7t2Oua39hfh4sJe98kpgr8PfeGA8Z0Lfvoz9/Tc8YC0hUl9gxgzG3nsPHmGlSoG5hmBDYiK83cmTGVu7NjDXkJuL0PgTTzC2e3dgrsER9Og5M4YQ9ZQpjP35JzzXQOB//2OsZ0+sW//+gbmGYAPn8HAtFkSeQkMDcx1jxyIdefUqYyVLBuYaAoEA3e7AYe1axuLiGHvrrcB8/qVLjG3ejDCNoZi1o0IFxubMQWgrJiYw1/DWW4zFxyO8bkA7xo1jrHZtrF8gXAGLBemQdu0QCjegDSEhjL3xBmOnTzP24YeBuYYzZxj7+GPkpx8kxczYA5RzlmLqVMY++QSWWPny/v3sXr0Y++efwHruwYrMTMYeeYSxFi0Y27XLv58dH4+CsWefhXGlJ2zZsoVt2bKFWa1WduXKFd15zozB8+nbF8WVgwf797O3bUOO+dQp5KsNuIZnn0Xk4coVxkqV8t/nco66kLt3US8QHu6/z9YFAhtVDwzu3UPO95ln/Pu5335rTJ7yFP/9r/aedW9i0CDkTvU8WlCPOWcp+vVD25M/Ly8hAcx/joaoGHCM27dB/OGIq9wX+PBDnPUDB/z7uXrBA6mcOce0Gsa0kYV4A6mp4IPt2tWgDPQEgoD+5cqV/Sfkv/lGH4WEzqB35XzzJiZ4TZvmv88cMgS90/fu+e8z8yPWrQPfgK/HRRISEkDmFOhCwkDigQxrM4aQSZcuaGU6d46xEiV8+3njxiGkd/680TrlKW7eZKxePcbGjPF97UBaGlpK6tVj7Lvv9NU6JYdeC8KkWLsWfAA//8xYmza+/aw9exgbMABtPcOG+faz8jssFnAFpKQgD6y1r9xdDBvG2I8/Iv1XtqxvP0u3CLR1EEhcv45wzahRvv2c777TRupuQDs2bnQ+N9hTCALnQ4eCMtAZR7QeoHfPmXPQa7ZuDeY9X15mQgJoX/v0MSJV3sKVK4h8TJzo28+hqOZnn/n2c/SOB1o5cw6qOcbQv+oL3LqFsFr37oaQ8CasVlCmli2rnR7SVbz/fnCEswnBoJw5F43iESN8cyYsFgxTqFjR8wlzBmyxdSvOxDff+Ob9L15ET/Nzz/nm/YMJD7xypsHvhQtjWo03kZuLIRpVqxo5L1/g7l0UGLVp43wSkas4dQp7Ytw4776vLxEsyplzcdymloljrmLhQuRHjxzx/ns/6BAEzvv2xYCZf/7x7ntnZIDT+9FH1WcZPEh44JUz55h41KQJlKi3vDCrFdXgERGYKW3ANzh2DMMPvOmF3brFeVQUJlSpEfjrCXqcSqUFc+ZAiXozNfHZZ1D6K1Z47z0N2CItjfP69TmvUQMGsjdgsSAFUbQo53/95Z33DHYYyvn/cesWZvnWq+f58HBBQNtBSAhafwz4Fl99BYE8e7bnCvrOHc7r1oWhFmwh0WDynDmHQO7bl/NChbzj5e7fjylvzz1npJB8jZgYzsuXx3QpT7eb2Yw1CwvDxCoDgKGcJbh4ETnMBg20zfRVgsWC8WmMcb5tm3evz4A6qEBsyhT1EZHOEBeHwfGVKmEvBAoTJ07kjDH+5ptvuvS6YFPOnGPc4FNPIc+odeyjEnbvRpSqXz+DO9tfOHkS4e3mzd3v/zeZ0O4WFsb555979/qCHQ8cfacjPPooYz/9xNj9+xh3duqUa69PTcUIyC1bMAZy4kSfXKYBBbz0EmPvvw8e56efxlq4glOnwCOcm4tpU48+6pvrdIY9e/awEydOsEoPCLdroUJoeWrVCuMD33vPNYpPzjHhbeBAMJB99ZVrk6oMuI8nn0S709Wr+P/58669PikJjIl79mDq3/DhvrnOoEWgrQM9IjaW86ZNESJbtgzWvSMIAsIxVaui7cZXlYwGnGP3bljzVasil+ksvJmdzfn8+ZyHhyPHHBvrn+tUQlxcHK9cuTI/f/48r1at2gPhORNMJkweY4zzgQORZnKGy5c5b98er1mwwP2IiQHPEB2NaGNkJOerV2MtHUEQON+1CxGqsmU5/+EH/1xnsMFQzirIy8OIsvBwsFEtWYLqRKkAuH8fPXnt2kFAdOiAXIyBwCImBmvBGHJin3zCeWKi+LzVyvm5c5wvXw4BERGB9fV2xbcrsFqtvGPHjnzDhg2cc/7AKWfCzp2clyuHNZk0ifOff0ZOkpCTg/D38OE4mw8/HPiRhgYwGnTGDISnH36Y87VrOb9wwdY4vnuX8/few5lkjPPevQNrDOsdhnJ2gkuXOJ8wAVYhY6gmrFoVPMsIqkE5791rFKHoCRTNaN0aaxQSgjWrVQueNWMoRBo/HuQKgcbKlSt5ly5duPD/m0iLcs7NzeVpaWn//sTGxga9cuac8/R00XBiDEq4enXOq1RBNIsxrOP69cFRTf8g4a+/QNwTEYF1KlGC82rVMMuAMVTnd+mCs2nIS8d4YOk7XUVGBmaanj6N6UhhYYzVqIGpKVWqBPrqDDhCQgJjhw4xduMG1rFMGcaaN8d0q8KF/X89n332GZs0adK/v+/fv58NHTqU/fnnn//mmqtXr86mT5/Opk+frvo+ixcvZkuWLLF7XM/0na5AEHDmzpxh7NYtxgoUYKxiRdQGNGwYuPnCBpwjO5uxX35h7OxZxtLTcc7q1AFla1RUoK8uOGAoZwMG/IyMjAyWmJj47+87duxgCxYsYKESbWO1WlloaCirUqUKi1EZYJ2Xl8fy8vL+/T09PZ1VqVIl3yhnAwYeZBjK2YCBACM5OZnduXPH5rFu3bqxUaNGsTFjxrA6depoep9gGHxhwIABbXjQxlcbMKA7lClThpUpU8bmsQIFCrCKFStqVswGDBjIXzCyNgYMGDBgwIDOYHjOBgzoEGp5ZgMGDDwYMDxnAwYMGDBgQGcwCsIMGMgn4JyzjIwMVqxYMRYSEhLoyzFgwIAHMJSzAQMGDBgwoDMYYW0DBgwYMGBAZzCUswEDBgwYMKAzGMrZgAEDBgwY0BkM5WzAgAEDBgzoDIZyNmDAgAEDBnQGQzkbMGDAgAEDOoOhnA0YMGDAgAGdwVDOBgwYMGDAgM5gKGcDBgwYMGBAZzCUswEDBgwYMKAz/B/AmVCxKU473AAAAABJRU5ErkJggg==",
"text/plain": [
"Graphics object consisting of 17 graphics primitives"
]
},
"execution_count": 9,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('c,x,y')\n",
"F1=[plot(c*sin(x),(x,-2*pi,2*pi),color='blue', aspect_ratio=1) for c in sxrange(-4,4.5,.5)]# En réalité un crée un e liste de courbes, qu'on superpose.\n",
"show(sum(F1),figsize=5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"On cherche une famille de coubes (rouges) qui coupent chacune des courbes bleues, et en chaque point d'intersection les tangentes aux courbes bleues sont orthogonales aux tangentes aux courbes rouges (voir le résultat plus bas).\n",
"\n",
"\n",
"De l'équation $y=c\\sin{x}$ on tire directement $y'=c\\cos{x}$, de sorte qu'en chaque point $(x,y)$ d'une courbe bleue $S_c$, la pente de la tangente est précisément $c\\cos{x}$. La pente d'une droite orthogonale est le négatif de l'inverse, c'est à dire $-\\frac{1}{c\\cos{x}}$. On cherche donc $y'=-\\frac{1}{c\\cos{x}}$. De l'équation originale on peut éliminer $c=\\frac{y}{\\sin{x}}$, de sorte que, en remplaçant on trouve l'équation différentielle $$y'=-\\frac{\\tan{x}}{y} $$\n",
"\n",
"Ceci peut se résoudre sans trop de peine, car c'est une équation à variables séparables, au pire une table d'intégrales donne l'intégrale de $\\tan{x}$. Mais essayons plutôt de le faire avec SAGE."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[-1/2*y(x)^2 == _C + log(sec(x)), 'separable']"
]
},
"execution_count": 10,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"y=function('y')(x)\n",
"eq = diff(y,x)==-tan(x)/y\n",
"desolve(eq,y,show_method=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Quelques remarques:\n",
"\n",
"+ L'option show_method = True demande à SAGE de nous dire comment il a fait pour résoudre l'équation différentielle. Comme nous, il s'est rendu compte qu'il s'agissait d'une équation aux variables séparables.\n",
"+ Dans la solution présentée par SAGE il y a une constante d'intégration $c$, nous obtenons donc pour chaque valeur de $c$ une nouvelle courbe. Ce n'est pas le même $c$ que nous avions déjà.\n",
"+ Le terme $\\ln{\\sec{x}}$ vient d'intégrer $\\tan{x}$. Or en réalité $\\displaystyle \\int \\tan{x} dx = \\ln{|\\sec{x}|} +k$, il manque la valeur absolue, et le $k$ que nous avons ici est la constante ci-haut.\n",
"+ Les courbes de la famille orthogonale sont des courbes données implicitement (c'est ce qu'on obtient quand on résoud l'équation différentielle). On peut les tracer comme telles, il s'agit des courbes $y^2+2\\cdot \\ln{|\\sec{x}|} = Ky$\n",
"\n",
"Trouvez comment ceci est fait avec la commande implicit_plot."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/jcb/Programs/sage-9.0-Ubuntu_18.04-x86_64/SageMath/local/lib/python3.7/site-packages/matplotlib/contour.py:1230: UserWarning: No contour levels were found within the data range.\n",
" warnings.warn(\"No contour levels were found\"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAGECAYAAACcfpFvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsXXV8VeUf/i5ZscE2ujslRepHSYm0CqIIAgqiiICEpLSUhAgC0qKApCAhYACCpEh3j17Auu49z++P55571rsb26j3+XyuuHtPvOe88a3n+33tAEAUFBQUFBQUMhX2T7oBCgoKCgoKLwKUwFVQUFBQUMgCKIGroKCgoKCQBVACV0FBQUFBIQugBK6CgoKCgkIWQAlcBQUFBQWFLIASuAoKCgoKClkAJXAVFBQUFBSyAErgKigoKCgoZAGUwFVQUFBQUMgCKIGroKCgoKCQBXB80g3QNE3u3Lkj2bNnFzs7uyfdHAUFBQUFhRQBQEJDQyV//vxib2+73frEBe6dO3ekUKFCT7oZCgoKCgoKaYKfn58ULFjQ5uOfuMDNnj27iLDhnp6eT7g1CgoKCgoKKSMkJEQKFSpklV+24okLXN2N7OnpqQSugoKCgsIzg7SGQRVpSkFBQUFBIQugBK6CgoKCgkIWQAlcBQUFBQWFLMATE7hz586V8uXLS40aNZ5UExQUFBQUFLIMdgDwJBsQEhIiXl5eEhwcrEhTCgoKCgpPPdIrt5RLWUFBQUFBIQugBK6CgoKCgkIWQAlcBQUFBQWFLIASuAoKCgoKClkAJXAVFBQUFBSyAErgKigoKCgoZAGUwFVQUFBQUMgCKIGroKCgoKCQBVACV0FBQUFBIQugBK6CgoKCgkIWQAlcBQUFBQWFLIASuAoKCgoKClkAJXAVFBQUFBSyAErgKigoKCgoZAGUwFVQUFBQUMgCqA3oFRQUFBQUsgBqA3oFBQUFBYU0QG1Ar6CgoKCg8BRDCVwFBQUFBYUsgBK4CgoKCgoKWQAlcBUUFBQUFLIASuAqKCgoKChkAZTAVVBQUFBQyAIogaugoKCgoJAFUAJXQUFBQUEhC6AEroKCgoKCQhZACVwFBQUFBYUsQIYL3EmTJomdnZ30798/oy+toKCgoKDwzCJDBe6RI0fk+++/l0qVKmXkZRUUFBQUFJ55ZJjADQsLk86dO8vChQslZ86cGXVZBQUFBQWF5wKOGXWhPn36SMuWLaVJkyYyYcKEZI+Ljo6W6Oho698hISEZ1YSnGjdviuzZw3+jokTy5hWpUUOkWjURxwzrBYX04NEjkT//FLlwQSQkRMTXl31Tt66Ig8OTbt2LjbAwkQMHRP77TyQ4WMTHR6RMGZGGDUXc3Z90615sxMSI7NsncvIk55CTk0ipUiJNmoh4ez/p1j2dyJClfvXq1XLs2DE5cuRIqsdOmjRJxo4dmxG3feoBiPz2m8jkySJ79/K7XLlEsmUTuX9fJDZWpEABkT59RPr1E3Fze7LtfdFw7JjIuHEiW7aImM1cJLy8RB48EAkP5+LerZvI0KEUwgpZhxs3RCZMEPnpJ5HISJHs2UVy5hTx9+ff7u4iHTqIfPmlSLFiT7q1LxYePhSZMUNk7lz+v4sL505UlEhQEJXU118XGTtWpGrVJ93apwuP7VL28/OTfv36yY8//iguLi6pHj9s2DAJDg62fvz8/B63CU8lAgJE2rXjwDOZuHAEBnIx9/Pjgr5vn0iLFiJjxoiUKyeyc+eTbvWLgfBwkYEDacVeuCDyzTci16+zf65epZV78KBIjx4i338vUry4yNKlVKAUMhcmExfz8uWpCA0fLnLuHK3bGzfYdxcvUgnauVOkbFku7Gbzk275i4FVqzgfZswQ6d6dnofwcJHbtzl/bt8WmTOH86paNZGePfm7ggV4TGzcuBEiAgcHB+tHRGBnZwcHBweYTKYUzw8ODoaIIDg4+HGb8tTg4EEgf37AxwdYvx7QtJSPv3QJaNIEsLMDxoxJ/XiF9OPmTeCllwAXF2DKFCAmJuXj/f2Bbt0AEaBrVyA6Omva+SLi0SOgeXPA3h747DMgtSUhLAwYMYLHN2vGvlLIHMTGAh99xHnQqRNw717qx8+bB7i5AeXLAxcuZE07swrplVuPLXBDQkJw6tSpeJ+XX34Z7733Hk6dOpXq+c+bwP3rL8DdHahTB7h1y/bzzGZg3DgO6J49+bdCxuLUKSpChQsDp0+n7dwffwScnYFXXwXCwzOnfS8yHjwAKlYEcuQAdu1K27m7dgG+vkC5csDdu5nTvhcZERFAmzaAgwOwaFHazj17FihbFsiTBzh5MnPa9yTwxARuUmjQoAH69etn07HPk8D9/XdaTk2apH9RXrbM0PCVpZtxuHIFyJsXqFw5/Yvynj1Uppo3B6KiMrZ9LzICAoBKlbgonz2bvmtcuEBlqmxZ4P79jG3fiwyTCWjblpbqtm3pu8aDB0DVqoC3N3DmTMa270khvXJLVZrKIJw5I/LGGyINGoj8+mv6CVDvv08ywuzZItOmZWwbX1Tcvy/SrJmIhwfjfnnzpu869euLbN4ssns347sqpvv4iI0l+enOHTLFy5VL33VKl2a/PHrEeRgnEUIhnQBE+vZlLH3tWvJN0oNcudi3+fOLtGpFfssLi0xSAGzG82DhBgYCRYsyNhgSkjHXHDWK7uVffsmY672oiI0FGjak9XT1asZcc80a9s3XX2fM9V5k9OsHODrSe5AROHgQyJYN6N5deYgeF7NmcZyn1Y2cHK5dA3LlAurVe/Y9RE+VSzkteNYFrqYBb7wB5MwJXL+esddt144xrWvXMu66LxqGD6eLfvfujL3uF1/wun/+mbHXfZHwww9c0OfOzdjrrljB6y5YkLHXfZHw77+AkxPw+ecZe939+8mF6Ns3Y6+b1VAC9wlh4UJO7vXrM/7aQUG0nGvVYixFIW34/Xf2zaRJGX9tk4mWc+HCZNcqpA3XrgEeHsD772eOJdqzJ+OOly5l/LWfd4SEAKVKAdWrZw4rX7ecd+7M+GtnFdIrt+yAJxuJCgkJES8vLwkODhZPT88n2ZQ049IlkSpVRN59V2Thwsy5x4EDrHg0darIoEGZc4/nEeHhIi+9JFKkiMgff4jYZwJb4cYN3uOtt0SWLMn46z+v0DSRV19l7vPJkyKZMe3DwkQqVxbJk4dFZ1Q1N9vx0UciK1eyMEypUhl/fU0jp+L8eZFTp1jQ5FlDeuWWIk2lEwArROXJIzJrVubdp3ZtkQEDREaNYjK5gm0YNUrk3j0qQpkhbEUozGfNYlGM7dsz5x7PI+bPZ5nTpUszR9iKkCC3YoXIoUMsbKJgG/75h8VeJk/OHGErwvm4bBmV4hfNiFAWbjqxdq1Ix45kJLdqlbn3iogQqVSJFV527BCxs8vc+z3rOHxYpFYtsrwHDszcewGsHevnJ3L6tIizc+be71lHQAAZxW+8IbJoUebfr29fLu4XLpAlq5A8YmNFqldnqcYDBzK/jviCBSK9e1PI166duffKaKRXbimBmw6EhbGkXPXqIps2Zc09f/1VpE0bpqW0bp0193wWAXDyRkeLHDmSNa7E06cZWpg0SWTw4My/37OM3r1FVq9mecbcuTP/fo8eUcA3aUI3qULymDaNJTOPHGFZxsyG2UzF2GTKurmaUUi33MrwaHIa8SySpoYMYYGLjEozsQWaxvJ1JUs++5T6zMSqVSRk/PVX1t73s89IArpzJ2vv+yzh2DGWL501K2vvu3Qpx0RGpR49j3jwgOM3q9nDhw9zTMybl7X3fVwo0lQW4eZNxjaGDeOmA1mJs2fpWlaWVNKIjKTnoVo1kY0bs/beDx9yXLRqRRemQnwALAoTFMSC905OWXdvTROpWZMu0gMHVEgmKfTvz5j6lStZvzPWe++xMMbly8/OjmmKNJVFGDOGW7ilJ9ivaYxh3b+fvko45cuTQThpEndPUYiPOXNYsWjq1LSfC9D9eO8eQwZpRc6c3LVmxQrubqMQH7t2ifz9N/smPcI2LIy70aSnb+ztSQI6dEjkl1/Sfv7zjuvXRebNExkyJH3CNiLC2C0oPebb2LHcdnHOnLSf+8whU+ztNOBZcimfPctiB7Nn237Oo0fA/PnM2XRzo2tLhG6UihWBQYPStpPG7dt0Z48enebmP9cIC2MB+48+sv2c2Fhg7VoWZs+d2+gbEaBIEaBHD2DvXtuvFxUFFCrE3VQUDGga8MorzCe3NefWbAY2b+a7LFIkft/kzw906ABs2MA+tBVNmrDWclrOeRHQpQvrjIeF2X7O4cNAr15AsWLx+yZHDqBVK2DlyrTVk//kExYPevgw7e1/EnjmCl/MmTMH5cqVQ+nSpZ8Zgdu5MxdUW2KoERHAxImMi9jbAy1aANOmcZHYtAn4/nvgww9Z0FuEg/T8edvaMXAgkD07i74rENOmsTKOLdW+zGYqQQUL8t3XqQOMHAmsXg38+isrFQ0YwHi5CFC/PvDPP7a1Y/58KlNp3Y3oecavv/I92roL0LZtFIwi3Gxi8GBg+XLOnR9/BIYNYzF8ERZo2LjRtuseOcJzVq1K/7M8bzh7Nm0x1KNHuWOWCIVtv37sm61bgXXrgAkTOJ9EqMTOmWNb0Z47dwBXV1aGexbwzAlcHc+KhXvlCgXnt9+mfux//wFlyrBG7IABtEqTQ2QkB2zRorRcFy5M3Qp48IC71owYkbZneF4RHs7J3bNn6sfeusVariLAe+8Bx48nf6ymUTmqVo2L0uDBqStb0dG0yDp0SNMjPLfQNArH+vVTH9fBwVRqRYDGjVkXOSUcPUpFVgR45x3WNE8NzZuz5rmqs0x06ULFM7WKUjExwJdfcou+SpUoXFMSpJcucR9pOzugbl2un6nhiy9ooAQFpe0ZngSUwM1k9OrFRT0iIuXj1qxh8fTKldO21VhEBO+hC4LIyJSPHzCA7puM2izhWcaMGVRuUmON79vH4un586ettrLJxM3qnZ0pOFJb2BctYj/asB30c49t22xjjV++TCXV05M1lm0ViJpGqzdnTqB06dTHwJ49bM+vv9p2/ecZV69SgH7zTcrHhYTQHe/oCIwZQ+FrK/7+m8aEt3fqXqJ792h0jB9v+/WfFJTAzUTcusXFNrWavN99R43u3XdTF5jJ4aefOOiaNk05BnLzJifA9Onpu8/zgshIxp969Ej5uG3b6LJq0IAegvRg/37Ax4eCwc8v+eOio4ECBbhjzYuORo0Yv01JgJ4/TyWodOm08Rni4tIlhgBy56blmxw0jRZXWuLJzyt696YCmtI6c/8+ayp7eqZ/o46gIHqVXF0Zl08Jn3xCLkZa4slPAkrgZiI+/xzw8kq5SP3331Nz7t+fMcLHwV9/0WXcsGHKgrtbNy7smVFg/FmBnmOZUvz7zz+pMLVpk35FSMelS9ywoGzZlAW3bhGnd7P75wFHj7Jv1qxJ/pizZ7l1Yvnyj/+uHjwAataktXvyZPLH6Vb3H3883v2eZdy7R0/cxInJHxMUxH7Jmzfl0IstiIwE3nyTFnVKG9lfu2ab1f2koQRuJuHRo9TjpVu2cJB88knGac1//80J0alT8gL87FkuHEuXZsw9nzVoGuNJLVsmf8zx49TOmzbNOMXk4kUKiapVk3fpP3zIeNSLHGfv1InEmuRifXfvkoRYsWL6vQ4J8fAhUKUKhURy21pqGkM+KY2b5x1jxjBrIrl4aVQUvUHe3raTOVNDbCzQujXve/hw8se98w5QvPjTvUOaEriZhFmz6LpNjvh09CgHULt2GT9A1q6lizol5t7rr3PhfxHdY3/8QYXj99+T/v3OHboqUxKM6cXJk2SKt2+fvELUvz+trafdPZYZ0C2V5EiGERFAjRrsn5Tc8+nBvXsU9JUrJ//ulyzh2Ll4MWPv/SwgOpoKY+/eSf+uaQyLZctGxT8jER4O1K5NV/bNm0kfc/Ag+yY19/OThBK4mQCzmXGh5PIqg4LISK1RI3UyVXoxdSoH36ZNSf+uu8dsTVt5ntCqVfKMU5OJ8cN8+TLPrbt5MxWiCROS/v3aNTLb58zJnPs/zfj885SVjQ8/JFchpXjr4+DECSrCnTolPT4iIxkr7Ncvc+7/NGPFCq4ZyZE6Z8zg7z//nDn39/dnWKZWreS9Tq+8Qqb60wolcDMBujDbvz/xb5rGmGDOnLblfqYXmga0bcv73LiR+HezGShRghrpi4SLF9k3ixcn/fvo0RR2mV1TeeRIWnKHDiX9+5tvAhUqvFgeiIgIuiIHDUr6959+Yt8tWpS57Vi9OuWQy/Dh9FK8SEx/TQNefpl12ZPCwYP06A0cmLntOHiQefPJKTz6GHlamf5K4GYCWrRgDmZSi+XixSlbnhmJwEDGuv73v6TdlzNmcPC+SASdzz+nhZIUCWrPHlqeY8dmfjtiYujhKFUqaWtu1y6Ok4x2zT3N+OGH5N21N25QyHXunDVKSPfu5GBcupT4Nz+/lN3ezyP272ffbN2a+LfISDLwX3klbak/6cWsWcmHhKKj6Z3q1Svz25EeKIGbwbh0KXnt2M+PRJxu3bKuPXr+YFJlJYOCSLkfNy7r2vMkERnJ9JyktPCICAq///0v60gX58/z/ScVE9PDEp07Z01bngbUqcO8zYTQNCqxBQqkzPjPSISG8v3XqZO0stqhA1Cu3IvjgejalYSkpN7F0KFk1qelfsDjwGxm2KdwYRY9SYjRo0k8fBo9EErgZjCGDKFbLKEFpS8a+fNnfUWUjz+mtp4U+7JnT7bpRagTu3Jl8qlAw4Zx0Th3Lmvb9N13yaeaTJvGNvn7Z22bngROnOB7WLcu8W967DCryTC6sppU+ULdA5FU2Oh5w8OHVAy/+irxb0eO0NpPKU0oM3DtGoVqUjXQb9xgWOj777O2TbZACdwMREwMWXyffZb4Nz0u9CQq1YSEUBt87bXEGvmxY08/sy+j0LAhUxYS4vhxxp+ehKVvNtOqLlMmMRHE358Cd9q0rG9XVuOTT+gKTOiSvH+fCuw77zyZdvXsSa/UrVvxvzebWQnpRShS8t13FKoJMy5iYkg+rFo1a1zJCTF7NkNASfEgXn+dMeenDUrgZiA2b6bw+u+/+N+HhbHuaLt2T6ZdAAu1JydYq1Z9sm3LCly4wOf/6af432saWY8VKjy5QiCnTnFBS8qC6NyZrs3HLYryNCM0lPHZUaMS/6Zv1JFR+bZpRVAQlej33kv82/jxZDQ/RUtQpqBaNRI9E2LWLFqSx45lfZsAeuWqVGH7EoaBfvmF8/1JtS05PN8CNyaGwbmYmCwJtrRvT+GVECNHMjfNlkLcmQVNYxGH4sUTu7u//ZYW3r17WdAQk4kNCA/nv9HRWdI3gwYl7epftcq2mr2ZjUGD6LZLmFu6dy/bl97yeGmC2cwXpH+iorKkbxYvpqWSkE3/33/8Pi3bWmYGFi5kHyQsunDrFgXO/PlZ0AizmXNFnztRUVmihf37b9KKur8/a7KnZVvLzMA//7B9CfsgNpYek48/zoJGmM2GrEmFAJJegWsHpGfL4IxDSEiIeHl5SXBwsHh6eiZ90Pffc+d1Ha6uIu7uIp6eIt7e/OTOLZI/Pz9Fi4qUKCFSvLiIm1ua2vPggUiBAiIzZ4p8+qnx/bVrIuXKiQweLDJ+fNqe8fZtkT//FDl2jBvQh4dzw/KyZUUaNBB5+WVukm0rzp0TqVRJZMIEkS++ML4PCuLjT5ggMmhQ2toomibi5ydy+TJ3pL51i58HD9jowECRkBDuAB4ezuOTgosL+8fLSyRHDqNv8ubliy1aVKRYMZGSJXlMGhATI1KwoEjnzuwfHZGRfJdVq6Z9g/GQEJHdu0X272c/RUSw2aVKidStK1Krloizc9quV7KkSKtWIkuWGN8DvGa9eiJLl6atjQKI3L0rcumSyM2b/Oh98+ABOz4khJ/ISJHY2KSv4+zM+eDpyY+PD/smd26RQoVEChcWKVKEDfX1FbGzS1Mz69dn9+/cGb/pjRuz+SdPpm3z+fBwblr/zz/sm6AgzpsCBdgvDRqIeHjYfj2zmWPEy0tk7974j9e6Ndt49Kjt17MiIEDkyhUuEtevi9y5I3LvHvvm4UORR4/YNxERHMRJwcGBa1r27Ebf+PqK5MnDvilYkHOnVCmRfPnS3Dd9+nBu3Lgh4uhofP/ppyIrVnDa58pl+/ViY0UOHGD/XLokEhXF4ZU7t0iNGiKvvZbm6S1duojs2sW2xO3XkSNFvv2Wr9TVNW3XlJAQkatX2T83brBvbt/mjvdBQeyf0FAOtqgo47zff+fATfayNsitpJB+deDxkKb9cHVGSno+RYuyQsKwYcD69VS/U9D2p09nvC3hjjBdulDTsrVqkKax5GOjRtTu9b0769cn6apGDRKgRBiXnTQpbRWJ+vShZppww+ZOnWxgXYaG0hScNo0PVrkyTff0vuP0fvLlY3b7559zy5dz51LU9nVX/4kT8b+fNImWfVoK3x84wBxZR0des1AhFlhv3pz1eLNn5/c6GzotXoO5c9nnCevPjh1LgkiK/RwVxcbNmUM/bI0aRmOy8pMzJ6m9n3xC1sqxYyky8q5c4Wk//hj/e90lmFQaSnK4epUxVw8Pnps7N1NVmjdn2CBPHn7v7s5NK9JSLUonSSUkdentTLFmcGwsD1iyhBOwXj3mpmV137i7c1x88AGLDh84kOK+keHhrAWfsMzo2bMMgXz9te3vLyCAbObcudmUHDnYJ40bk8Ogb0jv5MT6AWkho127xrU34W5BehgpxUIcmsaBsHIlJ2yzZmSRpvcd//Zbim19vi3c2Fhq7iYT/z8ighpJSAi1lMBAkfv3qaLeukVN8+pVai9JIV8+kYYN+WnWjJqj8E1XrCjy0ksiq1cbh589y+/nzBH55JPUn+ncORrkf/8tUru2SK9eIm3a0NiLC5OJ2vvy5SI//kiFduJEkfffT12BvXuXRvznn9Oi1bFrFx/pwAFaASJCDW7PHpE//hD56y+RU6eStlCdnOgVKFbM0Krz5mXDvL2psnp4UBPPlo3H29vzxZnN1N4jI9k/wcHU7IOCqJreu8e+uX6d/XPvXtIP5u0t8r//0Vxq0YJuBcvLePttvtuTJ43DAwLY5O7dRb75JuV3JkKj49NPRdaupVXcuzet0RIl4h9nNoscPy6ycqXI4sXsq2HD6FGIayEkhdhYjpfixUW2bze+v3aN3/3wA7V5EeE7O3CAZuGePTSxoqMTX9TenuO0aFFaoQUL0vrJnZvWkJcXrSM3N/aNs7PhNtE0XjM6mvMmNJT9ExDAF6L3zY0bbKSfX9IP5uEhUrOmMW+qV6dlJiJjxojMmMFL6U4ls5memAIFRHbsSH1Mh4aKjB4tMncuh0Hv3uzzMmXinwvQClq9ms6ve/dEPv6YnidbrKpWrTiOzp0zvBexsVwWevQQmTpVjPd27Bgbv3cvJ2tYWNIXLViQ86ZoUaNv8uThg+TMafSNqyvnjYMDH8ps5s0T9k1gIPvn7l1aZH5+tNKuX09+7larJvLqq7TM6talu0H4nt55h5ZoyZLGKR06cLhduJC6F8dk4vwaP563796dY7hqVesQsOLmTZFNm0TmzeM7fvNNkVmz+FpSw+efiyxaxEeNa3HXrs1l6NdfLV8AvPiuXZw3e/fynSWFXLk4wYsW5WDMn9+YNzlz0qPg5saP3jdubilO9GfOwtWRqaQpf3/mBMydS5W5ShWqdAm1mZdeAoYPx6EfLyap3Lz1Fks4pkbG0TTGqZydac3u2GF76OzqVVqnIizwbUsKydChVHbjWl8mE/McP/0ggpZJixZsUMJnLlSIJt748azecfly1uYUPXrEcjOLFwOffkprytU1cTuLFAE+/RTBOw7AxUXDlClJvwNbyDgbN7KGq68vizPYGjoLDGRs1t6e2vzly6mfs2YNm5+w5Gb9+kCTRiYe0LGjYcbF/fj6kp45YgSPO3MmRQsmwxEeTkvup5+AwYOZVOvpmbidPj5A9+4w/7oVRYtoibZI1NO3kqvCFReHDtE6cnfnkLTV2xMRAUyeTCdAsWIpF8XXcfo0PRAJ00369AEKFNBg2vobacu6GRf3kz07afIDBzLP6d9/s7ZYdnQ0PUFr15Kd1ro1B3VSVvBbbwE//YRWr8Widu34l9GzGpYsSf2WN29yS0N9g5b7921rqtnMIZQnD1/b2rWpn+Pvz6GWsAIVGdYa7m85zCLlxYsnfuZs2eie6tOHAft//sm0hO/nmzSVkYiIoDt19Gj6QOztrR3WR75FAcd7ME2aal3BbR2YkZEshCHCwZLebeA2b+Z6W7x46i7SwEC6iqyDMyYG2LgRA0tsRC65jxhxNAZjsWIs27J6deLciKcF0dF0j02dSv9hHDf3UnkfdmLGzU+nWBOR/f25rgwdmvJlNY2pQiJkaaaXVPbPPyyj6eVFPS4lmM1kTDdvHqcRe/diUe1FfA4paPRNrlykMS9dSrfY01iFwWQiDXvePOCNN/gSLO3fLfUhAuxtP8NK7TeZmCJly448a9awrnLNmuknJF69Si+rkxOwYEHqx3fsmECJPn0a/7z5NUSAP6VhfAHbvj016f/+ezq3sNE0vrhly4zYl6X9D8QXjhKDOTWWsaSTRcts1YpGQWo69l9/kaRYqFD6c5UfPuT7FmF9g9QU3YkT2Y9W4uH16wgY+BWcJBqz5DOjb5ydySCdNInrRhamJzzfLuVz50T27aOJ7+REl6ZOmvL1pWsgR440EwlEhG6I7dvFtO4XKbBprnSRFfK1DKZb7t13pdWVWXLpnqecOZO8hyEigqSL/ftFFi6M4y5MJ65fpzfV358ulNq1kz924kSRceMgV75YKAWXTRDx85P/pIpUk/9ke4lP5bUe+UXatYvnmk0ToqLYEH9/uvBDQ+lWi4mhK8xspuvS3t4g5bi5sT9y5mTf+PikjRWmIyKCbvB166TJT91EM0P+lMZ8jpYtZajnXJm7ubBcu8ZhkBTMZrr0lywRGTeOBIz0vAYdISEi7duzr1et4v8nh7VrRTp2FPln5DapvWGwyNmzEiLZJa/cky+958jQnkH0t1Wvnr73ExtLl3BgoOHCj4xkn8XEcFkS4QNny8apC1c5AAAgAElEQVSPuzv7JkcOvjRf38Q+QVtgMnFOrl8vPRfXkj8ia8sVKSF2IiK1asmPteZIl1nV5ehRPl5ymDZNZMgQkXffpeve4gVNF2JiRPr3pytzzBiRL79Mvq8ZJoLM//ik9Dr9mcjevQIRKSmXpaHLQVncfT/7pl69tLHmdJjNBjFHJ7VFRPATG0u/rKbx3Ts78+PhwTXNy4tuUF/f9N0bEPn3X5GNG2XuImfp/2C43JH8kksCRMqVk0PtJ0utr9rIypV0NSeHDRv4e716Ij//zGmcXgB0Kw8cSNLjkiXJE+hCQ8nfe7/pHZmlfSaycaOIpskbsl5u2heVo+/O5MRr1ixtrDkdmsZwo04G1dc0vW9MJpGWLel+TgbPt0t5wYLUg9zZstGKq1eP9cvGj6c1d/q0TdncO3bwMkdHbGCmtQiOSHWIACtrzkq23llYGIlR7u6pWz1pQWAgH8XDIwU3WVgYQkZNRU67IAyQ6VaGiTZoMMoWi0oy5zARNI2q5PbtJGB88gnd0BUrJu1GTM/H0ZEJzLVqcZeFkSOB5cvpjrNhm6VbtwA7Ow2LPz5C96ZFc3eXUAwr/COwe3eS55nNJNXY29OFnFGIiqLGbm9Pt2mSiI2Fee48VHA6j+ay3XDzffAB3mnqj/LlbbRi79+nmTFvHl1p7doxNJJRZB17e/r8Xn6ZLsjBg7mrwP79iRl5SSA6GsiZU8Pwd67wpTg5IVYcUFIuok32P8h0ScZin24ZsiNGZJxRr2ncvUkkhQIomgZs3IhOObajsFxHtDjRX9q+Pb589xI8PTXbPFTBwbSsFi0CvviCz//yy7Qw43jOHuvj7c3+bt2arqzvvqOlaqNft3ZtDa3qBrHuqGU+t5ZNKOdwAaY585JdG9ev5yvp1CljDcfVq2m9vv12Cs6CAwfwZbEf4CrheCCWcf7qq9j4+V6IcElPFZGRdE+uWAF8+SXXndq1yVB1dEz9ve/aleLln2+X8vbt9AW+/jpdCHXqcOfxIkWSjoEl/Dg7M7H244+58iZRG7FbN7pYNA38zz//oGPB/Sgul2ESe06gXr3iLUIxMSTDeXhkTnH6sDCOEW/vBINM0+h+tLiORslYuNuFIWDmD1Zf9vjxXN8ThZeCg6ldjBrFd2nLwu3oyHuVLUu6aKNGLHfVpg0FQJs29B02bcpgT9WqVH7iuB2T/djZkVbdrRuFypkziVbfr7+mPmUNx5w/j5HVtsBdQuEvPrxO+/bxEkA1jaFhOzvOuYyG2Uy9ztExCULjrl1A+fKACNbIWxABDnzyg/UBNm1C0gtHVBQH0sSJpHgWLJj6+3NwoEu6VCku9g0a0I/dujWv0bYt/79ZMwaQq1WjX9zHx6DPp/QpXpyCZPp07qWXwAf566887ORJyxf37mFV21UQAf6VqvyxTp1E+/DNm8efhg7NHA+6LnRnzkzww6lT1GRFcEbKQQRY+voaq/9SZ8QmijeaTFQQZ840dki3ZWznzMn3Xa0a79usGf25bdty7rRuzf5q2JD9V6YMY8dJcU0SfvLn57UmTqTSmUB5vXyZh61aZfni0SOcHrQUIsAy6cofS5dOlJz7558c1506ZQ6tY/16Lqd9+iTo+1u3GK4QQYB4w11CMbzyFuuWQdHRZEUnKqyiaTSIFi6khl2hgm3vz9OT61SVKly3mjblOtamTaqVNp5vgZsaIiMpRPfto8kxYQIX8Nq1k0+pKFGC2d6bNiEyKAKenlSEdFy5wkExd/gtTg79vLx5gfXroWlUGh0dk66fm1EICqJuUaAAN1THjRtWKw8iQLFieDB/PVxdtXi741gn20qNi924cQbzIalFu3x5Cq2hQ8km2bGDg/jhw8dbEWNiuJgdOsRVbOpUvvcGDZIX9nnycFFbuRJ4+BBVqtD40hEWRiWkX49gKlH6M7m5MdXJbMbMmfzKlnje4zxay5ZUbI4eBd/Vu+8az+HjA/Os2ShT2ow33jDOi4qiLjJqFBiznTmTk93FJelFu1gxKpuff850oS1bKOEePHi8ogmxsdxi6tgx5sXMmgX07cu2JCfss2fngrRgAeDnh86dub7p0DTqW81ejQHGjGGf6M8xYAAQGYnt2/ln376ZF67WNMYLRSw7ekVG0nqPO1aGD0eb16JRvnz811ijBqc87t7lIt6uHVf65IRekyaUHjNmkJl39Cgn6+PEe81m5uCcPMmcqu++I1GrVSuWLEtKWcqWjW2ZNg04d86ahhYebly2a1egYEEN0bO+i0+26twZCAzE+fN81KZNM7fM4/ff87bjx1uedd48w6Nmbw9064ZBPR/B0zO+o6VbN+oI2sNHXB+6dk0+/cfbm0rmhx8CU6aQLHDgANejxzTbX2yBmxI0jYyKNWu4YNWqlcilsCFbJ4gA5+b8bh1lffpQHlgH65497GnLObNqrIAI52Nm484djqlaJR4gysNi0bm6UnhZ2Kt9+9JosVq0J06gVv7raOX6e+KBWKwYa9zNm0d/tQ1u3UzD3bs0k0aNYjJfAqFz2qESRIBf+v1pfbg5c7huWh0VJ0+SAGc5Z2uV4bC31zB4cOY3PzycC3ThPJHwL1DZUGA++8y6u8X333N9tLKbr1/H+9VOorTzVWgJ+yZXLrLHp09neaonuVVKYCCt9a++omaRwGMRLq5wtw/H+Jb/WF2cep6rdcs1P794SsilMi2Rw9OE11/PfP6R2UwdMru7GWfLvWG0PY435O+/+ZW1NnpgIL7p8Dec7GIQJDkTW0QtW1Kh37kzcbJ+ViIkhAbGrFnc8igOUUr/lM92CV0qH7cy0a5f59JntfqDg6mVWNzfAbnLoWT+MJQrZ1M04bExdqzl3VcdZbS7Zk2ru+TOHeoQEyZYToiIwPbBv0MEOO5YPf7zurjQSzBsGDWsW7cylXyoBG5aEBLCGfbpp0ChQuggP6OKHLNaV/59x8LVxZx4P9XISGDECOyzrwcHicXAPCvImc9smM041GU2skkkest3tNwTUJivXydtftY7B6lUiGC2fApHiUGgawFq6QsW8MCnGVFRdI8NGwZUqICRMg45JIhxNnd3mD7oheIFo9GpU4LzNA34/nv4uZSEtwSglctOmP7+J8lbZDRujF0KX3mAZvIbTMVLMd0pDiIjgVy5NPRpeY2ueBFsk9cgAvznUB149VUK2CTc6U8VTCZab+PHA7VqYY10gAhwSUpwJe/YEU1fDkK1alrix/j1V4T4FEV5OY3SdhfwcEXW7P4RsmoLKtifQSm5gIc5iyXawFrTGOesVzmYPlRnZ9yWfLATM5bK+9Smxo2jh+Zp3opL05guNHMm0Lw5zjhSUd0srbiuNW2Kz16/BG9vDaGhCc49dAjmMuXwmmyDj/jjyujlWdJk8/GTaO22CzkkCJddKpBDkkAL690byOMTi6hefQEvL8SII7wlAMNkIkNcQ4ZQu0tvWkg68fyzlP/+mzRhnc3n4UE2n68vGX3u7umin4aGQHLnhoytuV2GnO8h8uCBjJUvZYp8ITffGii+X37CShgWPHwoUqVslBQKOi67Tf8Tx9w+Ir/9xgzwzEBkpEjXriLr1skC6SW9ZYH8ssEsbdvHYZaGhorMmyedR5eQg1FV5KKUFgdHe7nT9H0psH2RLFsQLe/3ypa++5tMBkv50SOyYXWWckxMfJayzoJ1dydD2dub/ePlla6+AUTKlYyR2l5nZWloB5HLl2WdvCkdZJ0ceaWPvDztbRbIsMBsFnm1ZrhcPREiJ0wVxNs1ihn4TZum79ltaeCXX4pMmCC/S2NpbrdTRg6JlbGT47zr2FiRFStk3KAQmfywl/hJIfGxeyix9RtL3qO/yke9IF/NSGu9Ogs0jUxLvW8ePiTTMiqKhRT0qW1nR/qvi4vRNzlzct54e6ebtv3G61HidzpYjuRtLXLkiJyQSlJFTsiqIkOl08yaZMfHuXa3tyNlw3pNDplflnL2F0Xmzxfp2TN9z24Lli8X6d5dLqO41HA4Jq82c5R1W92MJgEimzbJL0P2S/tL0+Sg1JSaclikShWpF7xFPIv5yNY/0kmbBoyiPIGB7J/wcKO8o85S1tc0Z2cWx9BLoubOzbmTHva6iIwdGinTv3EQ/7rtJduf2yUEHlJAbkv/HMtl/BRnVtfJZozTryfFyuDhTrJdXpPXZIdIv34i06enj8FuC3bsEHnzTXkU7igvOx4XjxJ55OBx1/gs9f375fzIH6Xc7nmyXLpKV1khUrSo9PReL3/6V5TLN5zTN3QBrplxsy/0krWKpQxWtE4u8B03tlShAhm2ffuykv+uXalWRPjxR55+/TqAmBhErN4EX6eH+FRmG7Gnbt2AW7egafT25cgBXP/7JksiitD3nBm7NkdHG/FaZ2doP6xA27Z0Hd+5A2rcs2czViGCQ1KDLpqua+iqBcO2rVqlcp+ICFouK1YAw4eTQlizJmOpthBrUvu4upLU07gx47fTpjEO6eeXokV3+jRP37IFgKZB270HNb0voKH8aVy7RQtrPb5x4+gd27M9nDFPPa6VSpm2dMFsJqNbb8f48Rg7RoO9vYVVrmmMMZUoAYjAX3zgIhEYX3eb1bf84Yfk3qRo1MbE0PL9+Wfmjnfpwk4tWNA2tmVqH2dnkg8bNGCxhwkTGIe8dClFn29ICF+ttSzg8eP4oMxeFLTzQ6xY4qRVq5ILAGDDBn61dJGJD67fP2Elk4yCvpOCCPDhh1i3OhYi/BoAvSgWT5BZ7FBCLqNziX+secTffEM2bYquVbOZ7tqNG5kL2qMHY4bFimVMqVQHB5I36tZljHX0aNJ8T55MNcBasSJPAQBcvYpvmmyGo8Tgtlhcz4UKsSqFpuHwYQ6lIYM1VhHR79+tW+Z4XHbvNkJHjRvj+O6HcHKisQqAlnrr1tZ2tJCtqOJ1Bdou5hHrYYsEPLz40DS6lbdtY2y9d28GpsuUSbrATsLPC89SbtuW8ZMmTehSrViRi44tA7tAARI9pkxhukOcgHn79pQtOpYu5SmXNp4iU0e/hpsblr2xCSJx6rAGB1tTiJA/f8ZuI6RpXFxFyHyw5Bz5+5O31bR6IMzlKxrtK10aWLYMNV8xo2lT4zIzZnBNtb5ePaa9ZAlrsVaunDqjz96escXSpelia9SIgq5tW77Atm0p1XWWcuXKtjPIvb3J3Bw9motzHFr16NEMm+lFlg4e5Cm/LrrHCaS3284OBzpMh729htGjLSdHR9ONrgvdnTszrm8AMux0hcyys3lMDMmo5UtGIbJ+M+MZc+UCvv4avbrHIH9+Y63UF44jR+Jc99490ko/+4wDM6kqYXE/dnZ8hyVKANWrGyxlnUGus8h1lrLOIE+OBBT34+7OcwYPplCJI330faH1OHpAANfQiSPCmecTp+/vt/4AuXxMaNs2ThbA0KHGfZYty9i+0SexCMNGFqHRowfg7mbGjdZ94s1rDBuG6WND4ORkFEW5dYs/L4/rXX34kC7poUP5nm2pca0zYatWJc9AZ5C3a8e506YNwwwNG7L/SpakRp3adbNlY8bAJ59Qsbtzx9rMc+d4yC+/8G+zmVO34xuxjPnGIRlF12mICiUiUK1aHBm+erUxt5Laa/FxcPiwMTZatbLedNIkpv7t7zDTuLeDA/Dhh9ix2A8iRvZfbCynVDyORng46dXjxvEdJ1V9K+HHzY1pQpUqkUmvM8jbtVMs5WShaVS3z5/norpwIXuiTRsO3qRetIcH0LYtwmYvhmuCcoF6kXQrDh4E6tTBfckFbwlAZ+9tvJeOgABa1iJc9CxEmcfGqFHGoItroUVFYUe77yACfC8fcnLOm2e1RnSL/cwZHn7jBv9e+cVxTs6iRZN+J76+XFx792Y8ccMGpkHcu/d47JaICFp0u3dzIRwxgmkmyVH3nZ1pCU+bhgqlouPlEnftyrXL2pyLF4EOHRAtTigvp1HD+Thid8ShjEdHc1ETYXpGRsXb16832rtokfG92YyT/RfBSaIZY3Jx4QJgCZodP85T1q/n4Vw4NAx65xbHbMWKyY/XWrUoMSZNorV76BA9BI9DJY2Komtn/35aO+PHU8mrVi1pxrS9PRWu0aPRoWkQqlc3rJ8pUygDrA4lf3+gXz9odvZoKxuRy+4B7n+boPr88OFGn9tS/9EWHD1K01SEeatxLLTgJetQwP42Wsqv0OzsOdYtgiooiIZP3ML5depoaFU/mOye2rWTzq3VUw47dyYr+8cfSWa6du3xmLAxMdwp/vBhEj6nTGH/166dfH58uXLAoEEY/8E1eHhoVi7kb7/xZ2vqYmQkPRlubhgjX8JRYnD8s8Xxqdo6jVjEtvqPtuDKFUOZePXVeHHX2L8PoFa2YyghlxAmblRKzp0DwC7Ukyh09O4NFCkQA23mLArKpBRTPfvizTe57ixdSqF8+XJ86nY68OIK3NQQEsKR9vXX1FzipKKskzcgAlyq2RmYPx9H/wqJpxlaoWl4p/ZV+NgFMBHb1ZWdp+POHUOQ2VRtIhXohXgTLujnzzNnTATdZAlyOIfj3rn4Aj46mhbwx73NJBN0744a9kfxhqwzrunoyIk7dCgtl5s3nwxZJzKSC+TcuXxvhQtb23hWyrIvivUHJk+G/6m7yJYtaQ/k2C6X4CgxOCEv0eKbMMF4nuhoCgkRWt+PS3w5fdrY5ql/f+P7oCBqxyKYKMNgLyYc3pi4hGadOkDjxho16M8+Q2/XZSgqCdjKVarQwv3pJ7p2n0TfmEzU2pYsYRigTBlr+yLEBe4Siok5pwEjRsB07iKKFAHefz/xZdZMvQoRYINYvA09exoLrdlseCEKFLCGQdKN4GCrCx/t28cfAx9/DIhgo7SFCPDzpMTeqJ492YyYc5eBkSMxM9dEOEsUHkkcAVemDD1DixbZ5NrNFGgax8Xq1RyD1arFC/1UkuN4J9t6htYOHkTLlhqqVEk8jE7tugsnuxiMFEvd0yZN4lnKGDHCWC8OHHi8NptMRiZBjRoG+16vVGJvjwtSCi4SiUFvXk10up6ZcPu/+8D06fizTG+IAIflZaNvChQg8W3OHCpwmZh9oQSurTCbabmNH493fH5DJTlu7bAPHJaikHsgYo/8F++UrVt5yIpvAuk21Tt45EhjFB84YGjAGzYkum10tGHo7dpFN2KSxnBQkFE0Pa7PZO9eIy3D1xcBP/0GX19mXMTDw4cY02w/3OzCrQvFZBkCV7sIhPXoS3Z2VhZbTws0jUrFN99gfPEl8JAQRApDBlPsvkA2+2j4b9gbb+U4e5bK7fBB0Vwx9b7p0MHQYq9cMayChHuUgUPi0iXqZbt2sSsDApJoX1SUkRrWqJEhvM+cMfYly5YNsfMX4eWXNVSqlEC+R0Xhx567IQKcEwqwndIEIsDxFkPpSrZlF4YnBT8/YMkS/PLKRIgA56V0PCF2dOof8bwhoaFcA9u2sRSz1oVCtWq03gAKybJljXeaQCpoGg/dv58OrH37+HciHUTTmLstwnCGPrn8/em5EeH9v/wSb7QzI0+eBPPPbMbx6Uw5WStvAiLwkwKc91Wn03MWp7DKU4egIODnn3Gh7WB6UYSenctSHHZixqKue+IJIJOJEYuyZTVEzVti5EsXLGi1LGE2cx6J0PuSQLnQNDrADhzgvNm/n9GqJHUQvayYhwcPArgovv++MWffew/jR0TA0dHw0Ok3erR1H9wcIjHOnqGcWHGAtwRgRJEVvPa5c1mqmD5zAjdN++FmAqKiGIIZOyAImDIFD8vWgquEY7xYtLoWLYADBxAZSeO1WTNLf5rNhrtXhC443XWkx6Xy5AECAuDnR8O6UaPk+S3ly1P5PnTIcn2diFO2rHHdLVsMF1/dutbFavlyfrVjB7hQDxoEuLvjtuSDvZgwz3UA8NFHuLTyMEQS7wH6NKNSJeCdNyKBhQthqv0/FJWr6CrL+MCvvAJs2ADNxHh1iRJxvFPff2+4FGvVMjRpPehoZwfs34/gYBpvTZsmH4rLm5du7F9+sSwiX3/NH/LlMwTjyZNGvKhYMWvs5/BhfvXdd6CCM2kSkDcvosQZvvIA/RxmAx07InrjVnh5xYk9PwPo0gUoX9ZM13aLFnhNtuMVsQTYS5QgyTEmBkOGcNha86V37jQ8TKVKGZtonD9vEFk2bEBkJD2zCRxS8T65czNqtHq1RY7oWxM5OBhbNN26ZYSVPD2tyba3b/PPDz8EO3bpUqvQryd70ED+Ylxp5UrUqmFCu3ZZ+nofCxMnAu7uGiI2/gZ07oyBjjPhLQGIEBe6cydOBEJDsXAhX8u+fZYTz541FB8fH4NYEBBguIG//hqxsVyO3nsvydRfiLArGzUib/XBAzCFUV+/9C2agoMNQqiDg7VCTVQUu6xhQ0Aza+Tv1K5Ng0gWopDcgKlmHWDuXLzfMQLly2f5K7Y0/xkTuDpsavjixdTAvLy4uBUvTrdbw4aMB/btS1+jHtuyIWt7yxb2taVqGL6ZpcHRwYy7bXrFiy1+VXopHB21xDv3LF5sHPfuuxTEUVFA+fK4IKXQo8RuODlxnL3+OlmPu3Zxbbl2jUb2Dz/QW1eokMWTWDocv0hbuhf//JP3WbvWkNatWsXTUjUNqF/XhPK57iPWPU5RggoV0LrSdVSvalgblSsjce5qUtC3/9q6lTNm6FBKnebNKehKl+ZM8/ama9XFhX2TPTtXx6JFqQ3Xr88ybb17c5KvWEET8sGDVDVRfTNzvbye3leH3pwSL7a4qeTnEElUmY7eAAtzGw0aGO/s/fdxT3Kjf4E1cHGh7H31VRIzd+zgY1+9yljrzz/z0fWwasH8Jix27cMynzrV9cQJYzGqXj2RWdz9fTO83SMRmLtsPLfXFw0PwsvTbHU0vPsu+ydVmExs4I4dFGojR5JZ3LIlF6UyZWih+PjQknB358fDg31TqBA1vP/9jzGyDz9k3HHRIo63VFjj+vCwVskCjT47Ow0LX99gvHMRnC3yGhwdzBg3NsH1rl6lBaoLZ31LmBEjECZuGOc9E7lyaRDhI40ezajH6dMMN585QwfSqFFWkjG8vDSMzDEbwZKdzwPQsi1XjgcULZrAZAK+na3Bzk7Df4XbGH2TIwdWt10JESPpYNIkDu9UvZO6Kf7nnxTgY8fS49KuHZXk8uUZMtH7xs2NY9nDg9/lz0+BV6sWlf3u3emNmTeP/W3j9pnVq9MoBbgceec0Y2CDI8Y7F0GwTzHk9gjHe+8mqFLm72+QQOPWq120CLHigAXOn6J44Vh9icGQIeQjHD/Obj11ijrV11/zERwdARcXDX3yrsMtyU/tVtPYMN3r4OFBoRoHesx5ZYmRRt+4uOBwuwkQsWQtgONCJPVd1QBw3dG5ChMn0rB5802W26xUiWPE15eamJubsf4mg+db4H73XdKqVEqf/JYOHjqUo8K61xPRvbulRJjGT9mylN0A6F/s0QN3HArCQ0IwwH4mCR4JA+1bthjCcPhw1sXofguOEoN8chvTvnhgU6EgkwnY+qsZTbwOQQRomvcEJ/zhwwYLu3PnxL6abdvwb97XYSdmzJOP6KrbuhXQNGu9Xp1sN24cx3a8/PDwcAqnqVOZClS+fMakmqT2yZmTA71/f2odly/HW+hnzOBj6wn6er1+TQMrGg0fjigPH5SQS2gmv0Hr/F5iV+zRo4YbuXVraNExmPdVEDwkBJ7yCKO730g4JJLF8ePA22X/gwhQyeU8/vrdRK1AN79q1Eis5B07hrvlX0V2CUYf+ZZK4vLlQHQ0rl6lsNerlK1dy8vonjYA7OsjR5j21b07+zYjUk1S+7i7c9H/6CNaHadOxSPT6IuhJXsGo0dzXIWGgpb8N99Ay5UbTWQnSsglsrUTsvevXzdc8CVLAoGBWLciAvnt78BZotCnwSnbFlGQN/f5a6fhKuHIbfcAq5dHxc8eKFgwce30q1cR06wlysg5NJZd0HLl5hwIDkZUFOXfwIE89OxZXsZaiQrg+zh1iorKxx/TN2sLY/lxP9mycSJ06UIN/tCheMQsPz8e9tNP/Pvnn/n3uXOgsP7xR6BkSXwhk+Aq4fAr1zTxzighIdRCRTi+r13Dvr1mVHC9Ajsxo0OhAzhyxDbvrb8/ML7bZfiIPzwkBDNGBiI22my4/j09E+f2BAQAPXviTVmL/HIL4S7e7Iy7d61lQ1u35qHh4UbBPSs0jevJypUsJZpSCdmUPqmkEj7fAjckhJP2wgW68Pbv5wtZuZI096FD6eOoWzd5P4cINeqePWFavRY+3hq++IKX/+sv/vzXX/Fv2+OtYPg4PUKQ5DAWh4R0cUsKwkmpiDJ5mU82ptSPjD1+9pntL2LzZmgi2JztLZQoEots2TTMzzGE1m7r1vEZhMHBFMCW53rffQ1yeUbi0UNjFsTG8lV88gn/1heOzVPP0QqoUyf5dCAPD5pc7dvzGSZN4nNu2sT0pGPHeMHLl7mYXbnCle/UKbK6d+3ibJ8zh6ZIt25kHhcpknxeb758NMGXL0eDOtF4/XW2+9496gDffhv/dU0ZGQIHOxPOCDcJQJ48zLmLiz17ABcX3JL8aFzwHESAXmX3IFByMhXDVvj5AS4uOCivoE65QIgAg3IvZ/WratXiC9voaKYMWd7tNNdRsLcz4+S/8ZWlFi2MdLTQUCBbNg0zhtyledC4sRFTS/hxdqbl1qoVvQcTJlByb9jAAXz0KK25y5cpwa9epQJ5+jQF+B9/MLawYAHHQc+efBclSyY/Hry8OAbnzkWvd4KtucMmE43mnj3jv67t68MhAmxytqTVublxLMQdwzduAEWKIEzc0LnAXxAB2r50BVelKH35tvIMLBvv+kkBdHjpLESA9/L/Qf6Cr68RjwTY6CVLrGkpmxzaQwTYuja+Ij1gAE+NjuYppUoBH3YKpbXZtm08Sz7ex8GB77FZM8N7MG8eNao//qCAPH2a/XH1KufO5cvsr3//Zf9t3EhBPimXzW8AACAASURBVGEC68u2bk1FOCnWuC6EGzcGpkzBdyP84OioWWPTzZpxmsfFlfMxcHY0YYzrJJ6v17iOy6iOiACqV0esOGB47oWwt9dQ66VQ/CvVeI7uFrQFrVvjoXihz0t7YGcH1C5wnXtBOzrGqf9pwa5dnMciuCpF4WQfi4lD41ss8+eTKqMnHLRtC9R5JYbKbJcuJA0kt/4XLkyvaLdu9A59+y3XqZ07GYg+dYrr2NWrqbo0nm+Bm1Y8esQXuGABV4MqVeJR+v+WuhAB/qkzEFi+HO91ijF2CrLgv/84Fud8q3Ex04u5Z8tGizvOwavf/BluEoZKcgJn1p01zABPTySuo5YMLLtkYMAARAZH4+O8GyACvOv5KyLvx3k3Z88ajFF7e2DAANy6EAY3tziJ4xYMH053W/jOfcCnn6KUw2X0lARbHebLx3tPmkTr2Aa34mMhPJwvd9kyCvM6deJR+gPEG/ZiwoISU4A5czD1y1Bkyxaf4BIUxDTSTz4BNXQ9LUuEVnMc19vh6XuRT26joNzEzomHqRzogiWVXDsrPvqIx9erB7NJw7S6G+Ek0WjguA8BJ28bx927x+fR29KhA6L97qNEicTFR3Sr9syG88Dw4Wjl9gfqy+74fZMjByXzl19yDF6+nLkFiGNiKKBWr+Z2c6++ajCyRaCJIJ/cxgDfH4CJE7F10R2IxDeSzGZj8xXt0mVaGPrztGsXbz7c3HYKVe2OwV1CsaLzdmhR0YblO3mybW1et876rrRHwfjh/d+RXYJR0u4Sc+l1hIbSi6O3pV49aBcuokEDyrO43lq94Mra7x4AkydjYO7lyCN3YZY4yqKbGwOVgweT7Hb6tJEwnhmIW2RjzBjGqRLk674m2/Cq635gyBBc33IKdnZxCn1Y8OabXMrCrz+gkaKfX6eOQWQDEHDiFho77YGDxOKrSqtgitUMRvmgQba1WXfliAAXLmD/5L0oJDfgLQH4c0gcN7LJRMVcP7Z8eWDPHvTrxyXU3984NCSE+tLoweHA3LlYWmYS7MSMu5InvlJasyZzsJctozKTwURRJXBTvxH9QgMGYEiOBcgl92ESewRLdrhKOL6qtibeytG6NTVbqxc3MDBe9RN88AFgMmHGDP75bqE9CBdXBlFiYniyiLUoQooIDDSEzokT9NOJYLVrN7hkM6N+fYvA2bjRSBovWDAeVX/0aOoCOg8F9+7hyiDm6y4XFtAYKNOQ1+4uzG91pFV07drTUbs3IoLa/YgRWF54JESAO5IXmgjKyDm8U2A341iWtg4fTleSNYskMpLCW++bFi2A0FCsW0fDoFbea7gnuRlmCAw0iulbYwgpQGfX6S6QX34BRLBP6iCXVxSKF7cUjjpxwkhr8vKi0LLgp5/4tbW7wsIQNXcRfByCMEimAiJYJD1gLyY8aNSRXpvTpx9vJ6CMQmwsLeOvvsLRKh9ABPhTGgIiaCcbUNn9ErSVq6wWks5dsuZ8ms10i+vju3Jl4MYNHDpEY6ZwzhCmczk58T6LFxuLbmrQNMN1PHIkLUc3N1yW4iiTOxA+PnSG4e5dzksRWlZffWVVXI4e5dfWXaViY4G1a1Hb85R1H+O98j/230s9Gf87cODJpAMlhL4t3ezZCGn+FpwlCrOE82CMfAl3+3CEfL3AWvVGf9Z4xTw2bzayH/LmBfbvx61bdKL4esXgL3uLe3nZMiNomi+fbYrf4ME8vlkzSsqCBREg3mhS+AKcnCyu7/Bwzld97vbqZbUu/f0pcPv1i/O8u3bho2I7UFBuwiT2hoJecBwXht9/z5LNWJTATQPKl9fQrV0QMHYsFuZizuQtsVRfqV8fh6b/DRGGPOJB0+jys1jLEypy389hwwDtzl1j4H77Laz7w730UupCTS9dWakSfSW6+2j1auzfT0W2cpEgBNhZYhENGybagDo4mJ6uT96zbFlnifc1ll2oZ78P6N4duycfSGSRPG144w2gZtUoYMYM7CvTAyLA72KZ9OXK4e7MVXBz0zB0aBInb9xoZbuuKs4dgzp1AiIDw410nq5dKRx1D0FqxTB27DAWo6Agw6oYOBDXrvGy+X2jcN7NsvdrqVLxC6OAMqdiReDVejHU5C1VnvrJTOSWe4hp8ybuz98Ae3stkUXyNGH0aMDL04yY+Ytxt35HOEgsvpU+1kU4espMFC9mTrqU6P791nS3/d6tkN3dhNq1gfv3NKM4SblyjOHpPIKLF1NukL7Vj6srvQuWfW7RsCEC/c2oVw9wyWbGX3k78XtfX4sEjo/33gPy5tEQMfkbq9K0WLrDTsy4UbMDTPMXwtfHnPSYe0pg5QHM2QLzWx1RRK6hhywyFMDhw9GicRTKlk1CVl66ZGUHXnapgKJ5I1C4sOX1f/WVIWQDAw13emqV2yIjjbmyaRPd1iJA8eKICY6wZgMtKjXZ8Bjowec4mDgRcHLScGX6RmspXb2E7c4SHwFff42GtSLQokVGvUnboASujdAZsHq1n7p1NTR/JYj+f8tEby7bUd71Ckx/7E76Ihs2YJQ9GXMTyhibvlvJXZ6edM3pglNPU0gO+kIxdapRzrFePaugPj1tG3LJfVSVfxHYuW/SbMV79zC5xjo4STSui8XSqlEDqz76CyJsTmws+UojR6bz5WUyIiPpwfzqK/7dowdQtEA0zH37WS37T2U2ctg/QtD3a5K2AA8exFqPbnCQWHTx+gUmf4svOm6e9M6dhus3bmGRpKCnafXqRVeeLhgsFt3dbcdQwf4M8shdFlBJKrk6JAS/vLUivvJQsiSOf77cuh4B7PJU614/QVSvTq8sQL0zWzYNQYO/svIm5srHsBMzTg5clnSVpRs38E/xzsguwajv/A/CTllYYnEVmR9+MNJFrIWak4FeqapzZ5qoIhxAFvZZ5LlraOq8G+4Sin/yv0nBkhDR0bg8+gc4SKzVOkSuXAgdMg4e7maMG8fDunVjtz+t6NKFuj3A4S0C7O//szXVZ5/UgQiwpt2Pceq8xkFYGG7Ufw8F5SZK213AjTWWHa+iokj4E6HG1bs3/z+pKidxoZe8K1SILl09jGNhJGsBgfg411rYiRnLXHsnqQhB0xC+ahPyODzAB7LQKpi1T/qgbLFIaw2CWbMSlK/NAjzfAnfZMgqxuPT5mjVJ9ujenSbmvHkcaVeupOju0DsnJIQcLIshSfj5Yd87czgwxUL4aNs2jp+WmG3Z12CKo2XCd+lisEh0F9d773GWirCNyUGvvWhnx8Gou1b0PLhffgEcHHBSKsInWwjq1NHiM42jo5kSlT07wsQNueUePiiwje5PTUNUFIXssGE8vHNnG1JQgoJIfvrhB4NC364dqfwVK9IKyJ2bmrOHB//NmZN9U7o0iUTNmvG9DBpEi3/LFkPqJwM9/efMGYZc3N1hbJEYHIzrw+bDSaLxlVjynWvXTkTg2LoVcHTU8K7rBqbwNGpkLP6627lBA2od+mKdHDTNyNlatcrwYKxZw9/PnQN8fPBAfFHG7QaKFTXHK9QDTeN5+fNDE8ErchA13U5AW7feqixUq2bZ7ByULy4uqVSdCwvjAvbzz9wEom9f5oE0akQPSfHitMa9vDhnPD35//nykTRYpQoF2ttv0+qYMYNx0JMnU9zi7PZtxPP6VKrEUuMAgJgYRM1fivwOd/Ge/MADy5RJRIo5dw7I4WVGfbcjLN9XooRRvFgvml+ypOEdql8/hReB+EqTXulN3+z14UOgbFmEiyvqux+BZ3Yz/v03wfl791oFUjdZgrwO9xExd4n1PXTtCiu3Q998IUWjOyqK73HjRrajf3+GL5o0Ib22VCn2Tc6cxtzJkYO+9SJFODEbNmSgtW9fvpNVq9jfKaQ7xMbS8NRrurz9Nh/LWjdg40Y0yn4EleQ449B58tB1H8fz5u8PlC1jRlGXu9zgwMPDKLepV75zczPcytmzp+y6bciwA8aNY0BfxBgwMTFAw4Ywix0+zPYD7Ow0qwFkxZkz1spUX8vncJQYXB/0rXUP4smT6dgIDmZkLN46nhRiYuh52rqVC/iQIezgZs2YZaCnO/r4cM7ohZuTwfMtcNOaFuTmxpzRnj05GeNUIWncmO8YoIKcI0f8daZRI6BS+RiYP+5jaGWenryOpmHtWsrGgQNBAa8fM3s2L3DkiOGuXLHCcDMmh2nTjMVFr2Klq24XLxox265dcWC/GS4uZNVrGjgoq1UznrtGDczoexUODvGV+Y8+oow0m41UAWvRnIAACvVhw6jA5MmTtned1o+zM1XxLl3IXD1yxCqEe/bkeqtphoIcN1WmTx/A18eMsFGTjffi6MiOjIrCyZP8uk0bIPbfE0bstXt3XtTPz3BXzpvHfwsWTN7lr7ueXV2NYicVKvBF3r9vxGxr1MCNM6EoWJDrang4WCKveXPjuUuUwK4x+yBi5BECRsm6e/eMovPW30NDScAbP55SOU7py0z52NuzAzp2pLdl927r5FiwgO0MDDRqQsfNf54/n/m45yeuNSql6cpocDAePCAfqkIF4NG5OKVQq1Xjwh0aali5OjHCwSH52uRhYUZfzp3Lf318+PJjYjjRRYACBRBy/jZeeYXr6a1bIKkyblWy3LlxafQKODho+OYb4xb65hIHD/J2Li5xjO7ISLq0p083JFxqm4A87qdQIQ7u0aM5LixCeM8e/qyXIHB2jp8q88cf/H3TiEMGt0SE682tW4iIoP2SOzdw8WSkkRZUsCDXB24azO969TLGYSIpaUFMjJHCphMYXF2N8E3//vzOwwPm4yfRsSPf7cGD4Frw1VdGzN/VFWFDxsLXx4zevY1b3LrF4ao7qPQlBQANn//+47jo2pVKZmqbgCT8vNBpQY8e0Rw9fdqgz//yC7W0iRPJRmvVij6f5HIVfX3x6K0P4OhgxreTw2AykUH+8cfGbfT0IGst5TNnOBIt1zhWvx9cXRkXtHoz4y4Olh19rNqdThoQSd7foZM5Bg0yBNLVq9SWq1rigvXrW4WSHqsZ9dphw2WdMyfTdsxmRERQif7gA+MWeqhrzx7gUUAsHB3MmNN4Q/LF8i0LlZVCP2IElR6dQn/oEDX5CxfIGLp4kdLi2DFaDVu20CsxdSonV7t21N6TS3Xx9ITWpi3yeYXh855cRJo3p4Kr4+5ddu2ECZYv/PwM1qQI7ld7DUUKxqJy5ThE2G3bDDeybvnoOYDvvGMs2Mnt8jRxIn9/7TW+YxGq0ZpGASjCBcySA3ziBB+xU8M70Hwt1adcXGimR0ZC02iU1a1r3CIggHyh2bNZWad4wSh8/PJhHphcTnSuXPz93XeZEvfNN2Qr7dhB1/nx49TmL140+ua//+i227aNiuDMmRxzHTtSOdWt94QfFxegcWO0LncJ9V+m6T1wIMOhOm8oNpbCVC+4gIcPaaFZ3n1ksXKoXSkUefJYtsEE2C49P3LAAH6nxwvLliVpSoQWXlLQpWGhQoalq5t4ffvyb3d3a8Lw3buUHy9XCEdEiTjjvmdPq1B//306aXQF3GTi359+yr9bNQpFvWI3qbEnl6bj5UUv11tv8f1On873vW0byzodP87+uHiRc+f8eQ6cgwe5yK9aZRSc0VMd4yowCRWkGjXwea39yOcbDXOsGQsX0iCIQzhG48ZcSjQN9PZMnWptv5YjJ9793w24usZJiQ0JMTgPrVvzRH0RcXAwWPtWF0cC6IqqpycFngjjQ4ChSYvQWgbfd506QG5fE25WiUNMbdnSWj9h0iQujXFz55s1M9aIoX1C4OsRAVO7N5Pf3MHNjZK5fXsysSZP5jq1ebOR7njmDPsmlc0Nnm+BmxaYTBzEa9YY22hZiDRr5C2IANfti2HXy0MhAhz83UhTaNaMciGewWMyAdOmIcA5H4rKVVRzOY2IU5eN3zXNYL3mzcsVVB9URYoY6US6MI6LwEBjMHTvzn/12IhOMvDxie/SjonBpBrrqRhIG0qmuLMLNJqdnIzBaY41o2jeSPQsywpMjWWXlYFpXeA+/JBW34EDtqcypRVmM5WJzZuppccRZP9KVYgAf0gj3K3eEvZ2ZiyYZoyJIUNosCYqIrZuHWK8fFFX/kYeu/u4sXJf/N+/+cbQsK9eNWouOjkZ7v/ktofTi63rgr10aY4H3XPh5GTdixcAPSBvr4UIMFmGcDAl2Cd582aeamXxAmjdIBi18l0DChfGpzIbReSasZlB0aIcXzNmcAwlWeQ5A6BplEq7dnF1e+MNjmfhZgWuEo6pMgixZSogr0cI+nZ9ZD31B4sXWS+GYcX+/UCRIughi+AiETg06v/sfXd8FOX2/tmShPSEhBBCCb1K7x0EpIQiRXoTEKSLglIEBAQFRJEuSFNURBQRBQsiClKlKb2HFkoIIT2b3Xl+f5w9886WoNwL+v3de8/nMx9lszs7O/O+pz7nOVtc/y4k5SYTO2r376uxge2dDFB9+3q/XhmPKAhXq1WRLsu9c6MgOzxrG/wpHd3pY2iFCnvsybNn2YYZe77HPpeMyIA02J6oiuU0CGay4w45I/H8+dnxmjWLjeW1a48P9Z+UxNc7fz6Hcs4MgUaEEnQOg2kZEBODJoXOoVmt+/p1CDL5U7dBTTh1CqhRA3NoLP+960bXaz96VAUvckMEazJ6tHIuvP1eGY9Yv75ysvfsYQddKDzdgCR3vjuEIparqEX7kBUaxYvKcO6UFFYVI0eqz3y8NBlEwPlqz+itnnuptjL2Mvbzyy957z9C1P//DO6DJDsb+Pln9KlwCBXzcOH2WVqJknQWmn8AMHgwDq0/m6tD7XAALeskI9KciHgqzE/+l1/UG9LSFI3ciBGcIpOIQVIx8+d7nnj/fv5bTIyu3LB1q0I9uCuNlBSgZUtoRHiaNiHMPxOXL3kueFmcLwxltC+KFcMkmoFQuodM8sO7AePha7YhZfVGD7Tz3y52O3DwIGY034lgSxqyyQfv0Gj4UhaSLJFAly5I+vJnBAXlgkwG8MqQe7CSDXuoDnvgUmMFeNNKxqF1a/63cAJKbUm8b6MkJanoWFJoq1axUhejoIfbcBlI/ypNh4kc+P5rT+CQw8Fp1bjWds7QVKuGT6gbKw4qjm2+7UEEHJ+20Y166h8QTQNOncKWIVtABJyyPoFv6SkQAQeJZ+86Pvsc5cppiIvzfooPl6WBCFhN/fieuY97GjCAXy9RgveR1NalVJIvn3dF2bSp6/7q2ZNDbsnauD9TJ3m+ON1L5nh3Kvv0AQoV0mD77EugZUsco0ogArZQHBIsPMxgbY9tnG37p1vqrlzBydfZ+f46T2dcpYIwkQOrqD8X2VeuxDOd7ChRwjusZd/uHFhMdrxCThKM/v1d253EWfXz48hv0SL+t0zfInJtkhURgyxpfSkox8Xxv5980vWCNmwA/PxwkKrD15SN53t6twXTpzNV5I1N+4Du3ZFhDUYQpWA6vYocsiDcch+vNvqZnerH2a+Of9Dgzpo1CzVq1EBQUBDy5cuHDh064LRbW8SD5O9CKdvtHCxOnAhk/n4WIX6ZmBK5WF84XWk9ivvfQM4uzzFUkjX+7uNElWIODHQdWSWFEquVI2xJu1SqpCJYd5GmRXmPFJSd8HedJgpgK1qrlp4aSfp4G2Jj2XZ4tATevo0pdb5DAKXxOEEinAqsDiJg45RjuHjODqLcSzD/hNSpw1gRXL+O6oVvoWP4T/qzmUaTkceUiVtrtnooX+namTPTptLFFosrguL0aVXD+eILVVeSFocyZTwvSIAiMu7NauVnINFujRoKAGazKeYvkwmOBYvQooXrjANdUlPxQVc2YMeoIkCENGsoAi0ZmNHzBDLvpiMgwPsYwn9Khgxx1tbvJaNn3YsoGxgPzUkCISMu94z7wgOZfPo0b5O+fTUm0hAlPWGCMlbJyQqYNmaMokTz9VV1ene0k82mIiUZVLF3rxouERHhmgmYPVt999ixGDbUAT8/zny6n/eP178EEbCOeuqfqRh0AV1rXgTu3kX16n+Rk/xvkrlzOTuccS8Lc/odRx5zNpL9OAV9lkoy7Wu7bzxAV/fvM76uVi3Atni5qj+3b6/WtaapDELHjpwBEXIKCRD27fO8KCE7kcERs2erEoDV6kp+/MUX6rvbtcN78zO86yZNw70N3yPEkqr3roMIvSO+Qbn8idCuXEWPHpw6/zvkHzO4LVu2xOrVq3H8+HEcPXoUcXFxKFKkCNL+IrPH32VwpQSxZ4+aH37qpAbs3IlzrUfwdB1yGsmWLdmDBafJfH2BF190nigjQ3luoaGueTTnPFS0b89fJIpDPHZ3mTGD/ybRcd++6uKCg5XSyM5WgKqICL2Rdu9eXr86w1RKCoN7AgORSHkRSKmYHLmEES/p6ahRA/rkE8ki/1+Q27d5H69apfTt558DOHYMqYNeQF5KxEhyettVq+rZhYQELm+1bOm0w3a7Qoabza7pCmkhKVyYo1eZ8COHu2UURLNEx40bs3IRpfH77/w+TVNRmtXKThQYMxUZqUpgyMnhlH1UFGxkRRG6jF7+n7MyunMHvXurQKBduz8H6P5domlczh8zhpeXv7+zbevKFWgTJ6Ga5QiaktPZLF6cHRWNkfSVKvFv0isUgkQmcp30vnWrMp5XrigDLA6me3ZIMkPCglWlCtdPxEAbW72MxtY52ECurVw5JwGRpnE90elctaKtqGI+Bu3lV4ALFzBnDgd5ycm8vcLDH3sA9ZelWTPoPaiVKjnr6ElJwNy5GBy0DvkpgWlmIyM5cnA6RX36sIo5L9Ux40QyARkCHNmKkT10SJVZxBF1753VNJUBkn145YoKIox0t9u2KYepb1/AbofmJLSKiDCM5t29W18Lr9AbCKFk3O8zHDh8WK9KHDumKnluFbbHIv9nUsq3b98GEeFnbzVLL/KXLvzOHa4pnDjBAJfExIceJP7yy6xj7XaOpIz2b8gQICoiBxl9hyhvy2pF+phJKFfGgcqV3Vjb0tJUOjIqSoFuTp5Un//lF1dEoK+v5zVL3VbSz5s2qWhXahyapoAHgYEerBVznM7ezpm7Vb2YCKheHSPbXUJkpKaj9+fP5/V99y4r0IIFHzIrpmnsGsfHs5d67BhvwqNHuT3n/HlOUT+gvcSbSA0wIUEhx+V+M4pXQ/ywN10I4rVu3dH6yUzkz686SwCw5R04UN1zaa9KT1cTU956i8FC8vyIVDOsiNAACm3krFkMEiFy7UGUOZ9mswFtxyIDJJaMu+hKP1miBBb02geLRdOzxmJzDh9mxO+DALpeRdPYIl6/zsXIY8f4uRw9ys7B+fOswf4EDOIuhw7xde3YoRSazALYsYP//f3QL1zR7Q0aYMLgRPj6eokipafOPYyR6TEvv8yeoBhSInjUEqRtSAzzK6+ofuk6dVQWxMkKBiLoDbVOOXmSnYeRvZNU369zPfwwaD2IOGkFsC0XmsS9e/lt3tpGcxVN4/t+8ya3D/zxBz+XQ4f42Zw9y1+SlvZQGzI1lZf4ggV8SiK1BBlkqGFW1yOueqh8eaybcgZEDEVwka++UmUUmboEqOxNhw4q3ScRrtt91dsc5TxPPaU2eGioCiL271dZimeecdGNt2/zcmrdLAta/2fVtfv74+rg6bBaNR0DmZ3NiaoJE/jUZrMaCvKXxWbjLz13jm3MkSMPbMMC/g8Z3HPnzoGI8EcuBNdZWVm4f/++fly9evXPL1ya2t2PsDBGM7ZowVbz7bdZc7k0Q7KUL8/BT3Iye6vz5vHriYns2OkO94ULOgL1JZqLPKZMnPjQvYEPfCJBEdesqfK6gwfrSscx5TUcoBp4yzQWfWgtmtZOQ/ny7FnXrAn0jPoer9EUfEVtkeYfqXp2goP1fjO8/jq/ZrF4kvMDcNy6gwYRJ1GCzjG1ZIkSrMg0DefPs6KQEZQ3b/Jpli1TqVgJ1HRJS+NIbuVKhqN27swXGx2tvNG/cgQHM8iocWOOAGfN4vSRFzrJbt0YrK1pbBOFDN/h4FPo6Nfbt/k5m0xYS31ABGwZ7waSkg8Kijg2Vm3y5cv5tVKlgLffxkkqixXh4zCMFqFx4QuoUIEd8Zo1gTYR+zCW5uATnz5IpLysyUSJyE3btk29ZuwnEcnMxPOV9yCQUnGJYtltX7AAyM5GejoHHcOH81ttNnYIx47lgIDIS19hdjZbsA8/ZM+ke3cucRQunDtq1tsRGMigmwYNONSZOpXX3qlTHqHbtGmsJ202jrzr1FF/a9+eS6aaBtb+r70GBATgN6oGC+Xg9Va/eA8FpcYXEKBAZ+KdhIYCa9bgOhXA6uARGEEL0LzgCT0irVEDaJ7/GEbTO1gbPJzv6/r1yhmT3t+zZxVaVecGNIim4Z1Ov7BvTA3Yck2cCKSmQtPY7zWyFzVrxskOKU0JINplzZ05w9cybRrf1wYNOOrPDZ3v7fDzY0+4bl3eGOPHs8E6dMiDq1lu2blz/La8eV1Hc+sgw5wctkJRUbhKBRFCyehVar9358uoayV6PXVKRbnffINUCsTXFIeXaC46FvkNtWvzPi1fHmhSMREDaQVWWgfjFJWBtnKVcnSFH/vePYWLaNXKK0nKN6/uARGwmIby+wYN0j3rXr14+YqNHjyYUfLSBeAxv1jTWO9s3swZj2ef5TpymTK5T3n64QfPe2OQ/xMGV9M0tGvXDg2M/RxuMnXqVBCRx/HAC1+7lhV+RMRfX7wxMbpHFr/tBIi4pWbVKl47AvydNYt1lXtG8eDbv8BMdkabWiz8oNzBG/Hxql1EduD16zhnKYNxNBsFwnhqSgCloS79im514zFqFEeXAwYADf32IYpu8j4zZ+PpsB34kZpCmzCRz3X4sIqYdbJXgxw4ABQujLNUEnkoAy/U2OXRjN6xIysqufSWLTmYyMzkWzlnSipvrMGD2doYhjzkevj6srMTHc3KITqarYWB6P6BR3g4X8jMmcj5aRfCwjRMmaIytjKKUqK+3W42OMq4iQAAIABJREFUNeH73xFuSUZPcoZcAwd6NuEnJ6saUlwc34DUVNwJjMVMmoAKBRLZESc7ytEJdMv3I0aO5EBp0CAgLuRnFKMLIAJM5EDTQmfwCXVDVnMnOujyZZWZGDTIMzK5dAmoVAkpFITCFI8WBX6HlnjX5S1TpvAtE+T18OF8O+12Z19ht2x2Ul58kQ3rX3F4zGZWIvnzcxG5QAGO4oOCcp/UZDz8/XmBTJgAbNuG2jXteOYZvkYfH9Vdde4cn86dqCv7XDwqBl1EFToMG1lZsbkjq3NyVImkaFHOmjgcSC1ZBctoMGoWuq7f97J0Ep1i9mDYMO4we+45oJP/VpSgc/olVy14C4toGJKLVeHnbMRB1K/vCXJITATi4mAnM+rRbpT0v4b0P1xbwyQokzG677/PvzchgRV+1coOVsqTJ7NTKensBx0mEz+bfPnU3smfn9fRX3m2Pj6cWh01CvjiCzz/bBZKlOCfXKQI+6IA+z6hoZ4zBrTEu+hQ5DAK0HXco1D2KvScskGk3h4aqivK7Gd6YT11RfOoY/Ax2UAEFKZ4tAzfjwED+LtGjwZ6VDqOSnQUJnKACCiWLwUzaBISI0orAy9YixIlPNsls7N1h2woLUaAKQPxX7iO8JOsi8zLlkzLvn3cyRcYqCHrl/2s3Fu1+uvj+WQ2cYEC/3/Mwx02bBhiY2Nx9QGDRv+lCNddbDZOM584wYjeVavY4HXpwm6Wm9FYToNgoRzc6zUczavcRtPGdv00BQu69qzK61WqAFUq2WHr3kedq317T69QGmPNZlz67CD692clHk53Mar6LvxCDZBDTqMpU7vlS5zXeYZKYV6zr/EE/Q4ioGL5HHz1RQ60Sk6l4a3f7f33VX24VCm8NeYaTCbPVJfUriU4ZodDw/UxcxEX8rOqvxmP6GhOs40axRHZl1/yKr969c+Jwe121s5nzjBxwrp1HPn07s0ZATfFIsTw+5tNwIutTiAqn0MPilq25IjG3ZZ17gzky6fhzugZyojUru2JuDa0NtyZsRSjRgH+lmz4Uzp6xe7CZmsnZjwiYkVoFGd6/hrF4P0qC9HQwqQVhfNlYOVKIKddR/W97h76zz+rTR4Vha1TmMN69WrXtyUk8O2QbIt0tPw05BOML/whIum264QaUYINGzLF3ty5zBK1bx8jmlNTH5yS1DR2RM6d4y/75BNWSgMH8u9wc2bvUjjMZMfKCvOwuvd2mEya7qiOGsU/0X05vPYaM30dmfy5csBKlPAYAI+kJH0yUObIcZgzBwgPyISZ7Ggf+APWxU7kzAKRa0H7zh3deN2jUGzIPwJPh++EhXIQlicTr70GpAxx9rTny+fBEoezZ5Uj5ueH0xPXIk8eTWE0nJKdzT676AameNawqPsufFR1LojAjEzuzkrt2hxBzZzJ0e6uXWzUnE7FA59Naio7cvv383OdN4+JAho18hgJqBEhli5hRPQG7B66DkSqy2npUu804QIP2TjlmCqlhIVxe5ZR7Ha9ZmqPa48VyzXExmSDCGhIP2NR4w04Q6W4da1oUdfPOtPP9ykY24K6YECJn5CHMuBvzcbw4cDNJc6LsFg8AVe3b6sOAiLcHzERMTEa2rf3vF1Nmqhsi90OFIh2YHTrMzja8mUQAd9Tc9dn4+PDSr1HD16kH3zARvXMGc4mPmRR/h83uCNGjEChQoVw8SFbGR4LaCo1lRf6nDlA69boZPkS9Wg3blIUzGTH8oDRwMiRWD/7Mog806pvvskL9rffwBth+XLVk9awISstg2T2HoQJNBM+lI38URoW9DmADMrDeRZjXdWY67h40XVBDBkCjQg/PvWmjsl6ir7FqbDabkVKKIIAcQKSk/U9UrGia6lY0zhF2ryJDZg/H0nl6sGHsrGARmARDYMPZSOlYj1OH3/+uaeCetSSnc3Ge8ECoEsXTPB/B5F0G3YyoTDFY5hlGdC7N06uYiPlXmeSspzeV/jjjyrLUKKEB1+uY9ESLKARCKV7CAl2YNrga6zI/fxc2xuIXPuPpb5EpNd7j8e2QddnNBAB5egEfrU01MF1unz8sXIqqlXTm6F792bd5u4T9O4NFI11wL5yDbSGjVCULmIQLdf7CvcV7sLG9cMPudzxOFtRHA4ubq5YAfTvj08jhoIIuEoF0Yq2ohH9DLRpg+QPNiMoSPPg5D5xgnFjul/5+++KUSokxDNq2LYNm6kdClM8LBYNQwdm43KQs9bdubO6/8bJQUKqIM6Bs9XkmrkwXnguDXn8HIiha/iUnoG2dZvr9+3bpxyh2Fi9wDx7Nu93Y0s1wHrA11dDwqqtQIcOaGXahsb0ExIpL0zkwMrwl/gBLl/O6+AhcSUPJZrGz//jj4Hhw3GyaGsQAd9Qa4yi+Yiha3DUrgtt5SpUKOdAp06uH793jwO39u2dS+jaNWXczGZP8NPx4zhkrYkadEDfAseq9eP3v/SSejYWi+vvlswCEWcXgoJwhyIwfVA8wsMcCKb7mEsvwT7VrfZ79aoaOxoerrdDSjzjBo/Q+9n3LD0K9OuH0ZaFKEDXkUNmFKIreMFvCaf3FizgTOBD4kr+TP4xg6tpGoYPH46YmBic/bPpHl7kcaOUbTYgJETD9P4XsLTJJ7BQju4516E9aBr6G+f2nd7npUucYn7pJbcT7dqlUojVquk56N9+A0qXtMOXsvAaTUHarHe54C4G2jgftXRpdT7Jg4gnLswuGzdCO3MWX1o7ozidh5+PHQsXGvSsIJuJGFhl8JoPHuSAz6WcePYsPmy8AkTAKeIFHWf6Gg3yHsf5OdzD5yR8+UekenUNPZ+6g739l4EI2EkMnnmeliDaehvZy9fotauMDNbfrVq52Z3Tp9Uc1agove3g0iWgUSM2kENoKW4PcrajSK+m9HJK2l6cxYwMV0MsgKcFC4CsLBwq1B51aA9M5MALLxhKaxs2qOzKM8+4ZEPu3GE94tIdduMGDvRj7u5NxDXniTQTYdYUpM9bivBQu0tS5O+WZ/treKJUJu5MXQirKUevp71NL8CHsnF9wkI9H65pnD0uWdKt1HjnjgJEBQTo9YH79xVmMI624EzNXnwSof0TNCwRWwqR7dtV+o9I0RA6w6BLTZ9FB9oEciaGdODZ7t3KSFevbpjtyDqiXDnnDF9ZV/fv496sJQgwpWM6cW/wKuoPEzlw45X5qFs5DZ07/3N9uPPmMSgq9e3liPG9g1FOFP8OagIiYMczS1zgukOHchLHJfmYlQV9bI9Q0YLvxyuvAGaTA5XoKPaEt+EoUBCazd2iR6EPy8lxZfoTatMiRQBNw92B4zCCFsBEDtStoynf+Nw5VectXJhrxk7RNB79W7iwwR+22eBY8wFK+17CM8S4l71Um3939/cwsN0tlCv3eJ/NP2Zwhw4ditDQUOzcuRMJCQn6kfEXZxI+boP7yy/8HA8cYOBDi+Ya8O232P8kM01tpnZKqW7ejC5dNBQsmMu84sOH9XYSrXoNvLcwC76+nPY8MeNzpfDT01W/poEaEmaz8rRWrVKvCzLZauXo2clcldGsLUaOYIPRti2QPGWe+szMmV5/7+DBHEzc3HuRvW+zGVnki3x0CyMj1gFLlmDtUiYjuHaN8UODBz+WW/+nIu1Aa9ZwXTs6WoP913242/9FBFAappGTvzgmBli5EjOmOeDj4zH9jiUhQXnXRYvim3V3ERbG+3jHW4fU/T1/XiGLpbVBUvNC1n7tmrrPRlq9Gzf01hZ7/hjMm5kJX1/OLFxds11RMQ4c6DV9KJTge7be46KXE+hUl35FU79fgVmzcPTbBBBxCaBbNz73PyGaxrf9pZcYPmA2Azd3n4P9lYkoar6shhSEhQGzZuGzDzP16/aQrCylfIODcfSTkyhalA3Aqjl3oPnlUWkLyavnzaucF19fZQk/+USlCIkU//KmTVzCcD7nz969jrAwVtT7PrmoWlVatPDKpCZt9Gvfd1IfOt//HL2HGPMN2F58BUm/noSPDxMvTZ/O++yfGovbvDnfUikZ7foyEXjzTXQK2IbydJzTvX5+wMiROLr9DsxmVX93EYdD8UqbTLi24HM0aMBL+Y3Xc2Ar59RNkyZxFC/nlftOpHLZZ8+6OrBCW/vii2zpnfts94JDKFGC79+Xa+4pY1uqlIHkXcmlS5xwenGMxnrT+f53aSSsZMP1bmOg7f4VRYtqGDxYtdD/2eTNf0f+MYPrDQBFRFjtXrDKRR63wZ04kbNIgtAV7FGvXkDx2BzYx76iI9V2UiMQAR/O9Hzoupw6hZy8URhEy0EEDH2eJ/LAZlNR1vz5qodC4POijCV/LaPeiFT7Q5MmvErkvc6G/2++AcICs1GejuMiFVVoPy+SGJ+GvHnS0d+8Rp0/Lg4T+1xBSIiG1FRFcD5/PtfinA7o3y7CP3HtGmfehbN29mxO5d2cslhPycdTYfibMjDumUu5n/DWLWglSmI2jWMnpVWOinBateIv69VLLQa5PwYEJgB+RvI3ibRKleKwTFCNzineBw4AhfNnIYpuMtq1Z89c60H2rBxUK3QTVcxHeZIREVC3Lta/uF9fGprGXzVggAL4PS42xweJtJl8/z0Hkc2b8+uCjD04dYvOd5xGAShsvop2Va/mvpDS04HGjbGROiGA0lCtQpYi0po6VTlAmZkqnS/96UTKA1640NWBFaOblaVYp5wE6fHxQN3q2chjysRn1Jn/nltblKahe93LiDLfZkAREVC2LI5O3ggiBdBp04arStIK7A7o+ztE2oFk/8bEsN2MjwfMZg1Lhv2hty1qRGhi+RlloxJhS8/FO3A4gCFDcJCqI4puomC+bPW7Nm5U9zgtTRlHqYMTqbqP1HskypXnuGeP6mt31uPv3wc6Pc0EPNNoMrQSJV2yDu7yxuCLsFAOTlJZ3RG+N3keAgI0faKYILVv3XIdbPA45B+v4f6r8rgNbrVqrANXrOCHcOsWZ7l8fQ2TP+7dg/3lCahiOoLatBcOk4U9Oi/ua0YG0K7eHVjJxnR1xj40gdTHxPAXGQFCEkVJr4eQJRApQz17NvchivEVOX0apwKqoQSdQz7/FK/kLgA4vChcGEtpCIiAX2u9oDOS82ZkQAXALR716ikksDum5e+Qfv04uJeg5hdnF0mRItzCBYAV6bx56OrzBaLpBu5TMOci3eroAOuNMc/eY4ecZsDRroMyAAJtNJnYmohyNrbTOI2oHikZDa5wTTsVsR7BJiXhdkxlNKUfkcecha+/zKWOd+QIUK0a9lAdEAGrC09mA69psNk4ayrEYhMmsOKQMv8Dx449Jpk7l/Xl5cuuvY2tW3PpG4DOK/1q2EL4USbOU3G2zLkMg5j/JkfB3egTpFetp8BmaWkqAv32W5UmlmdkDFfEOBOp3t+ePYEtW5SSl7bArCxkVqmD7vQxiIA3J6d59weuXwfi4nCNYhBEKRgTtJzTLk7HqUEDtR3XrOElJA0KU6b827f6oUXql6dOsaoRLomJEzlqTE0Fr/vt2/F5CXY+t1IrzuK59fGL/PiDA0HWDNShPbhdoJJq27DblX5atkwx6MmMXCJFcWrElsgRE8PPQ/aZtNtoGrT+z2IGTWIfqXuSdz81NRUYNAhZ5ItidAFtrVt5cTozqIMH81fYbGqK1TffcHlabyd8DPKfbXBPn2Z3f906Bvbs2MGAh4SEByL/bt7kB/DBB5x+adqUX587l+2fkQZ0hXO+8b6m49ViqVHDJX957x57twEBwLbRBvL/777jN2RlMeyZiN0roUUzHjKY1lgHEcO8Z48CAAlKID1drzneqdce9etpCA52QyNnZ3Paxnk+e2xxVC1+D7Vray4K5umnVd+k8O+fPes2diz3B8Vv3r2bw5z16/mZLF/O/127lr3h7dvZyF+//kDkn6axkZF2ggIF+FGK3hS+CkCVuz9o8YGKRgsVcplZabNxBt1kAha9dFF52StXqhMJEGfkSA6n5TzyHAQuLMNPjc7Q2rWK3/ftt9WPcJJhZJUoj47tbLBa3YjiNY1DEclahIWhS7ULKFhQcwm2Jk1iZZmWxpULsT0VKninenaRjAw2cr/+ytrm00/5maxcycfq1RyibdvGwKH4eO8D4g3SvDkv30WL+NLv3uXUnnsrUHw81xJfbbJLKdWgIJeboGnKTo57PgVauBNxq1OkQU346dJFvdkY4Qqiafhw9Zr0cs6bp3h6jb0wkyZxlBcRickjkkDEgC4Xo7thgzL2vr54vdkO+PhoLjTWksU+fly1R737Lit0Y1+yV7HZ+Cbt38/pgg0b2GqvXMl7Z/VqvldbtjCrxoULudSzlAwdyvZOymW7dnFiIDLSlcgpMxMoVkxD6yeuKLCY1coK0KA3P/+c9WHLZjlIK+XMtj31lHqPEI1UqKCgzkY2KalJCVmMMcAYPlyxvNWurW6+9MSbzXh/zHGYzbw9Xer/e/aoso/JhE+bc1ZRCEkA9mOJdOoBlCnDzvqUKX+BEcxu51T34cOstz77jG3MypV/Slf1n21wcyO+kPRF6dK84SZMYEPgJFcQo3LqFK+zxYtVyk5GzvI1cKmud2/nC599pgxfYCCweTPu3+d6Wng4rwMAytsrWlSlqqQ+WKaMioiMka5QXAkiz+ity+8sVkytlOefV39PSEBqqmr727UL7PnL1BsxJunpOrZk40b1O4XO9Oef+Tf7+bHtaNWK69sAOHL88UeuY/XoweeWe/Gwh8XCSvGppxgMs3o1PwyHQ8/afvedq5ferp0rC5jDwd1EOoHQrl0qnWWxAAsXwp6joVs3vs26nheAR0iIio4knI+KUhveaHAnOvufV650/Q1EyhPw8VGemtThrVbgwAHk5DDfgdnMf0JKCmtlOVenTkBCAs6d49MYy/CXLytjpmmsZwYOZD9KZwTLyODF9+67bIXr1/ekqHyYIyaGQ7chQzh6OXQIsNmQns5rY/58/nOrVnyNRqdApG9fXpqpqWCHTCbKEPFDtdl0nN+sWc4PiUNjMintKeGJj4+CphqV+k8/8fu6d1evGZ1TcWjEQT54UD075yYQlsdXXwW0HLsrv3ONGsCJE0hP59vSo4f6jdnZ/BslAxEXx7desmZJSWDA0JEjfB+HD2fvPibmr/U+ezuionjR9+vHz3vXLiA9HZrG6mb4cNd0svQNG/ENb7zBt+XUKbDHJExpRPxQ793DRx/xb+jWzemD/fGHSgXLUN3kZNXitXmz59zf1q1ZXxlbl8Tgbt7syqQHcMQrpCRO0vDNm3nNdezoBD0vXaq+p0gRYOdOfSxvlSquhrRePaW/Jk7ky5AZwXv3Qh/CgQ8+YFBCixasY3Mbf0n0/wfxxb8if+nCv/mGV3nz5rzSy5XjBfkgkoZChdCr6C5UK5qI1QtSYDLxcxZwhJF5cvx4jlpdOmKuXdNRrGmmIDQofh2hoW486qmpil5OlHVKivL0pUjpPvw4IcGTJKJXL1XLnTuXz3X4sNqwwqADVnhNmgCB/g7szecEfeXN64Gdb9mSfRHJjIsHKOTrHToAtWs58O6w0/C15CC1SoMH39PgYHata9Zkq9+6NVvINm3UANsnnmAL8aBh3OHhmFthFfx9bNj+EYOEdu9mu2g2s84SWb+eP2IcZ4e0NL3fz0Em9C/zKywWzZXw3G5XKck2bfjH22wK7CHOkLH3VDx1IcGXIzpaRWCSp7pyRSFl33hD/1pnOQwmk4ZPi4xVRsQFas5RfXCwa5tQ69as92VN5s2r4eu3ToIIOFGt94MVRJ48rESqVeM6WevWvGfi4li5NmzInkuRIg8mWciTB1urTgQRsGftWZjNGpYv51sXHe06T+PoUV6eUqYAwNpyvMoSLSqzAESeDIA6UMcIPxXHUfp0jNf1xRf8HneELJGKwKpU4fdkZ3N/HBFbEoOIHzal9Cfq8y+/7NLaItmu3wx8C6++qpyNtWv57/s+ZmKUjZWnP5j4wseH73ulSvxsWrbkNdmunWKiqV6dLamxHc3LeU5X7c527M2TiInRdEe1Vi32a0Vu3+ZLciHZ0jR26p366auiI2GxaOjXzy0SfP99/r7AQJWeF+rMTp1cU/1EvOeF89Kd8UyiniJFVMQsTlPNmi5fvGUL9zr3Lv+b6j/v1s1lJqdQ1BshQgKXOXVKVY6+/fA2Qv2z8FrZTx7slFqtnF6rUIH1V4sWvGeMD9+L/Gcb3NzEZuNC148/cu5r8GB+iFYrHGRCJN3GRHodcfQ1GoQcBZYuRdeO2ShXTum+Gzd4jXtQtQFATg7sAwejHW1GEKVgb+9FnqAQ8daN8Nk2bZy7eoqn4iZy5ZOVY7ITkevnxygZ41g5L+NJ0nceQAPrHuSlRJwq1tow2VvJkSOsEI0GjNPpGhI3/oQP6i0FEXTyiS3kTMsVK8be8MyZ7JX+/vvDz8i129lp2b2bNdjo0az0nRuyOX2PVrQVI+ldFPS5Cccbs/Hai8kIDFQ0pjYbB7NeR79pGjB7Nl6keTCRAx/VftezD/LkSeXsSJ+hUG8OHOhpeIRgREbEySFs6kQKhit8zfXqeeStHJevoFfwZvhQNr4N725IiShJTGTH32jABJB0aM3vONR9DoiArygOfpSJt8nZLhMVxZD1KVM413n4MCukh0G9aRpH6fv3s9c/fjwrGmdEOYrmowhdxvv0LEzkwK1Rr2PjO/EgcuVGdnfoXGTzZqzzGwAiYEyBT6Ddc6u5p6aqdL2E+jL+rUoV5XzKsWoVv8fY5ylrVYywgAmFDjUy0pNCLjUVb8Tyul9iHeHZfwpeRuXKcSlZbquk09e8mYB742bCl7LxDo1GGTrFs2iJ2INq3hwYN47Txvv3c13rYeewJifzc92wgdPr7dpxKEuEhTQcPpSN76kZiIBd7efg6AfHXHwSgFH/wcHep+fhyBH8FN4RfpSJTgFbkXPSrZ1T01R3hdQzBEVnsahZ3XKEhysQqKT5iXg9CS+2ICIl4jGbPadA5eRgfb13YSY7htJiaNOme13X3brx7ZBMS1YWP+rRg9KgzZmLor7XMJQWozN9hrr0q3IEGjTg61i+nPPxV678y1Mo/jsNbm6SloaDS7hh+5tiTO4wn0bhFuWDD2XjnRrr9JrQsGG8XjwGmztl1EgNFrODQQdErjNQAdcRVi1b8r+l/6N+fVdaMSeq00OZEKlm8o4d+byCjMiTx9OYHjwIBAUhicJQ3v8CYgvbvdFHA+A0eXS0c3HevYtbE+fzPaDRSKIwWMmGRYEvo0jgHYxueerxE1/YbEj/5Tf4WXMwr9gCFKSrGEXzkUMWFKIreC72Wy7aahqWLWMl50GA7xQBrC4wO7l5e/f2VG7Tp/PfihdnTSq59shIFQXJ0bgxf0bqu3LIBKLoaD7H2bMqgnc3pleuAMWLw0ZWxPlvR1CgI9frnzOHT3P6NIC0NOQsex8FfW5iMC2DRoRidAFDfFaiRdRRtKoQ//cQXxw/jjJRdzG4yFa0NX+NhsS5uRb0HeqG/MEpB5tNL0/kNuJx61YeOtHfdx1HK7VqeW4yyQCFhvLfEhOVgyTDJeSQ+rrT8Og1+jZt1LO4cIHPI0jydetcvy8jA2jaFBoRRvsugdmseRAqiMj227YNrJQ3bUKL8ANoQFw4bUtfoYFpN0YV+QKx4fehHT32eEcIaRpw/jzaVb6MxvlOYLTvYhSg63CQCSPpXeS33oHt3SVAejquXOHbI+hddzl9GggNtqO5/25kkS9HeO46RkJJ4wYUveWsjbsc8jdxoiSClef17beq4ZlIkYgbf58TSPq+5TkQ5Y4ruXiRfeXZs52f+/lnjC35BfJSIrLIFy/SW4imG1hW7A2YTQ7c+3afBw/1vyv/M7huMnMm77vVq/n5Xnn1PbwZNQ9+lIm7xLWfC/X7wGpx5NplM38+f3bJEqhhzESevMZSlCPiXPXly8qLM7IZlS3rPa0RGKhG/i1axEpdjPMrr7h+1+XLCp355JO4cjodBQpwoOUNB3PpEke0Mxps09NeXWgDKphPQBs2HM1rJKF5Mw0DB7oS+jxO2ebEmwkY5acXv8KWCq+ACPiNGJiUXrE2CoRnoHdv7wZmyxa+vWPGgENDSbcOHuxqlNLSVHS6fj3fW6k1CZ+vHBUq8Gd69nR9XQgyhA2lj5Pu0z30vn9fPbfixZF68gqqVGGn351hCmBQS5HCDnSrfFJ3zKbSVARRClK6DcKLT59HdLSGOXM4C/OIyXK8yqVLylb5+mp4p+9hnG/xPIiANdQXIIJWJBY1i95CndoOr/b/9GlOv7ZtC+QcPKLud9OmruGww6FIRaZO5dc6dlT31vgMBA4spRj5bztnSUUGoQpSVp+q4JTsbOUYBwfDsXc/unTh++rOMAXwRxs20FCx0F04ijFwZz11BRFwutFzWPXcHphMmgv48HGLzcY6bcYMIDZWw7C28cjsNRDhdBcv05u6Izmo+mHki3R4HXhz9y5jWMqVA5LP3lIkMOXLezpEgj+QKQ4CzJT17+0w4j0k0xcQwIt3zRr+d0SE5ygsKUOYzcCmTRg/nm29+xAvkeeHaIgIzsL96rw3T1EZ3uIlJ2H3WCY+kY4mI47lUcn/DK6bNG3Ke/HppxXgpnhxDb1b3eGchNmMPrQW0XQD6W27euyYrVv5gbswTolnZzbz/EijSE2qc2f+tyheYdkh4hSLtxpNyZLq9ePHFQLCPfROSVEbpFIlnfh7714ODJzth0oyM4HXX8cL1oUIoWQkURhQuTK+fel7EPHnFi9mWyVlm8cd4AJsJAsVYl8iIoJtYNu2QLXymfwjAgLwJr0MH8rGhSqdPJodT55kxfP004agYv16VfdbuND1C6dNU164pimKI2EBE2MdHc3vF5IGedZiMPbs4XUi32OEUjsczHZExF69E6h15Qr7R/XruznZDgfw3ntYHvwiiIDf6QmgWDFcnbQUZjNH90JqIEr9T3Acj0RkNKDgwS5l+YJOAAAgAElEQVRd4hJnWKgDGROmA1FR2EJxIAK2F+jNeUyDYUtOZpxA2bIGXvojR1SN031yj7AUhITwWpeoV9a5HCNH8kKRf8t+kYldM2bweheiEndOUEmD+vvr85TT0/njRYu69TprGrB5M/bEcr10PXUF8uZF1thJyBtmx7hxnKo1m7k6JCX6xy3u6+H775XTenrSB0Dx4jhDpWChHLwTMJEfpiHqttnYr8+b1zCz4OpVFYU2b+5aljl7Vu2NXbtU2F+ypHccgLFViEgFEXFxfE8F5W/APABQGUEiHQLvcLDvFRjoxSE6eBBXa3WCH2UyC5ifHzBkCOpXTUeLFvzZ6Gj2D8qWVdPHHqX8z+AaJD2dDdDs2fws3nqLF6esGwA4/u1VmMiBxSZnm4GPD9dRs7Nx6RLbOhkyo4umqdpdRIQrdFxgtxYLvy7eoCwyORo39lyo8p7ISDVjisg1fa1pSqEXKODG0aaAHnrLxrZt+ga4SVHwN2dias+zgKbB4eD+9QEDFKmSlM/WrHlkjyFXKV+ev7tsWbZ97mCp5EtJCMuTgRFWw0YcPBi4dw/377NCL1/ey8hKmdXp6+sKekhMVAp6xw6lOIytEqKMAVfUtzhOPj5sMaV/2j26FSiun59Hr+PevfyyvvGPHtV5bG1kRTFrPDpWv6wru3bt2BDY7WpkX0yM5/SXxyEdO7Jz0K0bL8vsbL4GAedoaemoVugmGvnsYTYjIvaWLl2Cw8HXHhqqs2sqMc6mNaZ6jVHu669zWljut3F0Wp8+XI+VfwuYUBT/8ePKayxc2DWSNn63G4/p5cu8DHRbc+2aYokjQiufH1A+/x3YU7gL4YUX2KZnZzPEonVr/m+7do/+WbiLtLpMnsz3ODubbZo+nC0nB93qXEZh6w0eOi+6xcmgNmoUL3WPQThHjqiMgbtDJPqud2+OSuW+S/uj8ejUyfWZSPp44UI1CszPz7WwfPSoKiO4levS0ngfFCvmDIhTUlRnCBFGWxYi1C8DSWe4Ti/ZzEuX2G+PjWU/7XEQ+/zP4BpEZr0K2PTSJVYgRrBU9+78QLKPnFAsRETIrFQL1ctnoGjRXAaAZ2crA/nUU65PUkgSpk3jmgURHOERuEhFsdPaDOuoJ5Y0+gTv0XN4nwbga2qD41QeGZWcAIWnn2ZNJZGV0aCLMvHzUxSEbjJkCKcB93WZqzZBTAzw0UcY84Kml8oAvsSAAI5CatdmRVu1qqE16jGJzHoV27h5M5dZjWCpGTP4Z14/fFNteCJoBWLQpWECQkNzSeFpmlKWxYu7jv4SlGVcHNfynOjkBMqPX6gBPqVnsJiGYukiO1ZETcRG6oSDVB0pjZypzRo1WFGIcd67V517+3aliATc4yby+NZ1NbRVBAUB77yD1e/ngEhhSAQ8deQIY05KluTukIoVH8kjyFVycjjQnDqVL23GDIUJlPHWYrt+2prBGR9RrgEBmNLhCEwmz+EzuggYzd/flWnl44/59agoFyR5UqXG2E818RW1xYqK87Fw8i28TwOwnrriANXAfR9nqUBm1IlzZCz+Xbmi0pxjxni9rB07+JGMbXNCtbBYrcArr2D/j6kg4kgSUNihzz/nKpOPDxvCoKA/bW3+t6VuXU6gVa7MVQ8hRhHE7okTvAzfW2Lni5PfYrHg8x6f6bbPq2zapHSGsdFV0Mf+/ryfnDS0qSUq4yBVx0bqhDXUFyvpWaxo9gk+pu7Ya22AW5QPmtm5zs+eVZzNffuqc2dmKmdLn6rgKhcv8uNrVy8RjlhDfbhXLyT8dg3+/tCHaKSlsY82ZYqCakgl0EDP/Ejk/zuDu2jRIpQrVw6lS5d+5AZ33Di2M+KlJyWxApdum9OnvbQzbNgARERgCC2FH2Xit2lfez03AH56An83nsSZDrtRsAYWz8tES9N3CKMkFyfQYnbATHbX1ygHVekQxjY5iF39VjDtn3H69Y0bqidReuO8SPbvp1Ev4DAK0RWuU48erVsxIXsRIIVElcuXM7jT31/4jB8vLmflSr73r77KRjY9nW2jMEulpHDKywVTsXMnUKoUVtBAEAEbe2zM/SKTkhT9nE5XBd2RuUlRWPH6TXSO2IHCFO/xHCwWzeU1EzlQkY7h+fI7sW30Np7xKu0nACsNac5/QO5Ku5OI3gV/RCCl8hCJzp31/H1ODqN927bl99psbHtGjWLjJY+dCLmC4x6FCE5GWslPnODITVqVHA5W9kIgA4Dz+40bYzs9CRM58Hr1L3If4Wi3s5NKxKUWeYZOI5tO/lj/6h94ruA3KE/HPZ6Dr4/DI6gqQpcxsORP+GzyMSRTCC8qYSHTNJVRqlUrd4uYnY159ZjCcSu1YtyFYYRYmzacjZHsbJ06vD3j41VgRuTaavioJTmZnYKZM/m7NmzgSDc4WKF1e/Tg4F7/mbduAd274xLFIoyS0DnfTmg3cqdPxNChyoERXgFnL2EOWfDdS99heMWdqEqHPHSYtyOC7qCj/zYsezsNCXmK8otGkOG4cfxa/vyeaHIRTcPX/TaACDybvGhRlxB93Dh2diRofu45LldlZrIeGTtW0WA+Svn/zuCKPI4It0oVjtRCQtjASA+1KKt+/dggu4NQNq5g4/geOeuxEyfmDukXRFVgIHDxInJygE/WZqOBlafIWC0OtAg/gBk0CVupFU5TaZ696oTPO8iEaxSDXVQfy3xGoB+tRv68PHOyAF3HpKf/UFljaVivXj33EWC7dgHh4bhGMQg3JaFz/QQPmzRqFNtt0Udt2rBukaBakP3u4wofpXTtyrqvZk22OcKWI6RRc+Zw1OBOPH7qcAYCrFl4jpzkIJ07587Is3u3ijj37IHDOSu8U/5dsFAOzCYH6uc/h5fpTWzM+xxOUlnco1BOkZ47By0gEHcoAr9RNayMnoBBtBwlo5J1JTKs9m+qBiYo6AIFPIdpi5w+DcTGIpUCUdZ0Ck8UvIv0NNeHI2V7qVe99BIHeikprFCEo8G9NPkoZfp0Dor692cHICGB982iRfx3IRlylkB1uZ1gR4HgFDSjHxiRXLWq50hJkUuXVHrf+WP27gUGlP4FwXQfRECFyAQMpmVYW2gijlBl3KBo5JSrCHz3HexkRjKF4DeqhnWRozGG5qFc1B0QAXkoA8+W/VVVE6QeHBjofdA6wEapQQNoRGhN3yAqMBU3r7nuMeFN/vhj/rcMo79yhbdkly78rLy2Fj4ikQD01VfZgNy7x4ZFWsdPneJrWrLE9XO2bA11S95CrOkyc0QXKZJ7uHf/viKCcbKAnT0LjK67H/mJ++WL5UtFf1qF5UFjcJCqI5HywkZW2MkMbcBAJFMIjlBlfG7ugqk0FQ3yn9GDjJZBu7DlKy5pYc8etUdzQ0ZlZ+sArQk0E1ZTDg7scG1PvHOH98f48fxveVbbtnG5qkwZhed5lPKfbXDXrmVLER3N4VCdOpyCGDaMDd+2bXr6Vco8Qkl85AinTKXkduECKxF3j+f6dfaIOnXUoE2YqNy0nj29Nxo6HEDjxsgkPyyttUrHCzxZ6AxWUz/c7dBf1fWMJBDt2zN7lDsxhJ8fHDt/wR6qg2HW9xASosHHB3i+TTziqTC//8gR7/dn82YVcdepozsORlZD+Y1+fnxZgFKgf/zB2biePfnv0oGB1FRewatW8Q3t0YMjhrJleWOGh/NqDwvjQlixYhwOtWrF+e05c1hTOJm/HA6+x8Jj/uGHXBItWpRvZ3o6R3bugWJWFjtRZcsCaQtXqZpPgwZeCrlOGTAAGhE+KzMJ5cpx1FqhYBIW0TDcqdpCkSXIvFY59u93ZQdygn20H3fgiKU6xtMsREXkwGwGurdPw1E/HtTtrZ8TAFtQAfKUKIE/PjsFf3/Vlihis/GlSMu1DGb5/HN2UqpV42yeHrTbbOwZffgh59D69WPNUqkSK9XwcLaeoaF804sW5ZvYvDmn6adPZ1qu06f10K1RI16ekZGswObN41t99y4HOlWqGBjJnKJpHJlHRgLX1/+iSAZKl859XIszJNwe0RWN6nOkVCw6HVNpKs7lq6vYTgTMQ8Tr7dNPXZ9VAecA+E2bcClvNcyi8SiSn/ma69ZxYEf+7ioE9SbXr6uxmCEhuPnBd4iKUjwpRomLUxTaKSlsw6dP51MHBTGgV+eYdjj4vm7YwKjpgQM5sq9WjbMvERG8Z4KC+NkUKcKp1SefZAMzcSI/18OH9ahg2DAOPBs35usT0jSpLvXpw2VV9+6X8eM5O753/WX1WyMiPIe/izjxDccsVdGt1T2YzUBUhB0v0Ns4QDWh7T/A5zASk1itDIQyAt1EH61bh7uVmuA9eg61irDRLldOw9qS0zmTZ0wxGyUlRfEQWCywLVyGmjUZYe1OCTBunMLcyfTNzp0VVGP0aP57Tg74DRcv8h/nzmVlExfHD69oUY62Q0P/NF3xn21wFy9+cO7CsCnX134bRMCz3VJRpAinxYjUtI/Bg9UEPRGHg/dDgQKGev7q1ape16OHR4+dpgGfzb6AonQRZrKja6v77FkLEa6fn3JLjTMiIyIUkbDx2uvX55VBBPTqhZQU4M03HIiwJMGHsvFKzR+9B3SffqoWf7t2+g8bOJCVgnutc8QI1sX377MDmTcv29JJk4DwcA3NKt1G69gTHKU8iHXqYY+ICBypPxxEwKjeibBaNVy9yikx6QiZP5/9Cnfu+zFjWPHr/sbu3ao+Va+eV6P765e3Ud10CERAy6o38fPPgHbtujM/aVJKXVqs5JBdajwsFtXSUK4cMjJ4SRYNvAUioH/UN7h9y0uK+8ABVQqoWlVPmwnviTvqeMkSvuXyzGrWZGMmSNSBra+hcMg9aHXqerKX/TtHQADSGrWGj8WOUc/cABHr4yeeUMRa0splLO8BCmy3ZYvzhXPnFPlBbKzXQQanj2Whrf92EAE1C1zFpk2AIyNLgaQEuWxk1goL86R4lXsgnmNwMHIybPjyS6BWEf4dcX4/4PhBLyluo7E1RH2SwnevdUopU8glBg7knyc13dHdb8Jk0pDYoIMr2OvfPXx8gLp1USr8Nvo9dV1n/urcmWv6mqaA8+7X/NNPfAoneyIrt1q19GfuSt/Gcvs28FzR72AiB4r5J2DZMqfNF3apd97xrruSkjz3DJFCq1qt0G7fwe7dQPs6vG8qmY5hx2deRmGlp6vujuBgnav+zBm+7EGDXN9+4warWOFPeecdvm1Xr3IyZXhvHmiyt8HYv06Fum2b53UZ5D/b4CYns8d47Bgr2y++4Dzx+PGMjCtfXjcOg2g5ytNxFKHLGBH5CV5psg/hYQ5kZbHDrTdMG0QU4Lffun0vc43xH4cN093eGzdUi1lc/oNckxO0kaYpRilR0nIOAZicPOlJ0zdmjPLov/qKz/X110ilQEzzfR1+fhqKFHHLvuzcqZRO//4u6ebUVAbb1KzpmoWWsZSyOIc/b0dMeAb2N+GpIs/RewigNG6IJ+Lf0qwZW+q5czmvtmMHt8ScPMkK9vRp1jx79vC1r1zJua8ePdjQOH/32/QC/CgTTelHtPDfhQ87MJDjwgXe1DExHKgZxYk985zlefCgMmaNG+t1w3v3FP10zQJXeKB9hQrKYZLZw4KmcM80CMey8XjiCUXMLrmrI0dgIyuW0RCEh+QgPJxR1noF4swZBdapV8+lvcvh4GCmUCHXrq/MTLb/olCWLHLAYnbgbOfx8KFsDCZmSDpDpfi8ISHM3jV4MD/QdetYwe3fz8/mzBk+Tpxgi7FtG6/JadM431a7tg4e20YtQQT0prUoZL6OA12Z6WrrN7zmGzViXW2M/C5c4I97tKNducKhCBFnPZxerM3GX221ArH50vApPcOzcCX9bLzH7lSJsnG9GSRJ6z/9NJ8nJQVaRCQ+pWdQPPI+LBZejnr0d/u2QtDGxsJlUgF4qfv5KaCYSJMm6h78upuzJjs6L0Jpy3l0c04k+pScvat58vD97duXf/SaNWzN9+3j9MWZM5zmPnGCHbPt2zmqffNNzg41bKi3o12mIiAChjuHt59oOw4+Vgfmv82LbdAg3qbGEpkQeTVq5FYVS01VdfTwcN3R0DROlYeGAuGhdiykEcghC18roPZLvXouKG4QsaIRT8Wdd32Zk4Wrbl3oX1S3LvZRLdSPYWrMAQM4i6IvkrZt1fo2tt5BdWO4E5YMHcpZlvR0rhJYLBoWt96CDoE/oD7tQgglYwZNUmumcmVeb5Mn857fvJn3yO+/87PJbYyjU/6zDe5fkdRUaD/tRGzYPfSI+JadFHoKMXQNw2kREBeHkR2vIjxccwmIzpzhvTFyZC7nXb9epRinTcOGDbwP8ud3Gj8h7zSbVZ1IGsaFrlEO4V125+olUunnkBClGSSlMnYszp9XYOp+/YCUg6eVwenUySvLzf79fFnuxB7PPw9ERdqROfoV7A9twc4GtUARuoyuAV+BCPhp8o+Prik3Kws4eBBty59Hg9DfYaEcLKHn0Zy+RyPaCdSrhyWDDsFs1lzaSaSkJL11HnLwoCJB790bP+/UULAg6+qFCwH7nSQVCUvKVxi9nn3WNfMghyBgjEePHuo8AvqQXt5u3XD7tvrnU08Bt87cU9FT7dpeaTHj4/nS3TNqXMPWcHXCYiQVrgQ/ysQcGotWtBUNffbAasrBkj57Hh3rlN0OnDyJsc2PICbPXRSiKxhBCzCcFqIAXUdOhcr4dewXIHLtqHE4eHkWLZoL62dCgmIdatgQx4/YUK0a+zcTJwKZGZqKtqTGIaS4FSt68vWKIXZ/rWxZtU8WL+bzyDMsVQpZaTm6kX/iCeDIAZsCUhUq5GFsAfbdypfn6ojRWRXnb8fYb6A9UREl6BwG0Pt4md5ElOkWygRdxZAGx1lp54a1eBjRNODCBax49leYTQ608f0e9WkXFtEwWMmG2wWr4MbYefD11Tz2+IgRHN15LV2np+ttaShaFDeO3dZ5Rp591ukfSYuPUDtK/yARD4kxPoOQEKXrjExT+fKpNjoh8JHRX35+cFxPwPLlvLXy5we+/05TrG558niCBZy3pF07djCMXSQXL7KRfXfgUaBhQ8TRFtShPVhJz3L9OO9+NCkRz0b1ETDI/M/gghcXEdciQ4Id+GrYVhABB6k6blIU8lAGphVazgUQZ02xYUNXUJ5XWbwY6eSPPrQWRJzOceEolXBXEAwSMrds6TpBQyDwRjIMOYRUo0MHPoekpq1WvRamaZzpDgzUUMJ6GUepEium3FChYJSen59hikh8PM52nwwTOfAePQeNCGWs59CrwhGM6nELMTEaIiPVLIZHJdJyIhPy9k//FiZyYJV5IHLIgqJ0Ed2DvmL0kNO6Dh7MxtMLTbSSHTtgN/tgGk2G2eRA48ZupUNxZKTAJlpT6mbuz+GFFzxfE/7lyEg2UElJqkZlIOX4/nsgKkpDAb9E/ESN2cHKDTwElQDRDVlyMlLGTUcYJeEF4r6p7j4bUS78BpaNOQ2zWUOtWopb5VFKlSqK3Gnra/sQ7puKl60MV25LX6G85RQcb72tKyup8rinmF3kxAkgJAQfUi/4W5nD3KVFWRgcChXi+5qYqMoY7mxfRC4tYnpmp00b9f9nzvBCkzKBod/36FEOavwsNiyjwdCCgh84BHrfPvazpbMB2dnQ3pmPKtbf8RTxGppqfR3B1nT8MH2P7veWLPmvP4PcpGtXNv7+/hrmDruIOtEX0daHc/wTaCaC6T7ujZmms3dIKvnddx9w0tu3gRIl8BM1RpTPXeTPr+mJNQAKsu7rq2jShApV0JXGQ3SacTB99erK8RSiIOG9NrQhXL/OjqrJpGEivY4csy9cL8ZVrl1jXaKPrXQ4gI8+Qp/QL1GY4pFNPlhvYtKSX6d+B5NJQ69e/FP+JHD9y/I/gwvFklOlCmcLunVjnaqdPoNJ1bchkFKZbckZiiyZzHUej0ZwN7lyBagWGY8ASsMHoSOg3XKDsAvU1s+PF7IYy9BQV7J1d/YcOaxWjqKM3r6ETMY5YU451+FFVKVDCDClY+OqB9+39HTeAw3q2eGY+KqunDrTZyjtfwX2TV9h5gw7/P15TxBxRFmr1sPc+T+XA06sxZNPsvJ4/XVOR6acTcAnHT8FEXCEnPeqalVsn8P1V3fUpbvcuwc8VfoSTOTAVPN02Pe7Tfm4dUul70+dYmSzpPbdqR2JVL+g8RCUuJQNxKGSIppBboyZgya0A2ayY8awGw8MQsVbj4nRkPzGEt05m0KvIcCcgdvzP8K2L7NApPyEDh3+wpzPh5Q7d/jcTz/NikzaYk/uu4/fX/4QRMBactL5FS6MS+9sQmCghiFDHnze7GxgeNtLfFtpNTKWu0GsMzMV7aYoZCF9Mc5WlUOiLiI15UmeTaFCfEMltRkZ6dEGlLnhKwylxSAC+ja5/Kf0umPGAHnyaDj37jc6iYzQOx4avRbnDjGq+qOP+GcIK2V8/EM+gAeIw8E/RX6mlETXf5CNlBXrEWpJwUs0V480095ciGLFNDRs+OCZCZoGvD3hNiyUg6b0I269NNvzTTLAwF0nyeQsb4exvmuk50xKUiMYLRYPL9px/CTesL4KC+WgSfF4lWLORaTy8/38Ezp97gkqByJgVdvPkXHumh54162r7Pz33z/kA8hF/mdwwYtSSIKWL1e9t2lprMtGD0rjlKKvL65QIQTTfQyueiCXcScse/aww1yksANHijs3vHuTtpG2bMkS9rKFucXILOWOiJUjOlrxLG/dyhpQ0p1GggVAB2KlmwLRtRm3Q0yd+uDN9fNbPMhhITlZtZo0wb6lh0HE5fD4ePbmV6xgH6FdO8Ocz0cks2dziis0lEG1pUoxslJuXfOmds59h4QgnfxRjC6gcfRpOJJzQSGDs6rlygFhYRp+qOtMaRUv7unGCt/uhAn87/r1dadLVwDyLITNy3iIZ79uHV+w/Fv6ZUSOHgUsFtjJjCkdeYJLz54P5k2/sv0MgsxpGE7OSQzlyiFxzRYEBmqYNImXUlQUK/9atVT29E+mhz2UCPi3YkWOpuLiWNcCfP2xsRpsS98HChWCRoRm9AOK5LmF+ydzLzkkJXHQ4+MDLGn7DbdchYR4NhILI1v79vxvyUh4Y2QTTmsitb+EhrNPH/68GGp3xqTr1/USzLpWH8LPj0HuXqfpOCXtwk0UD7iBxvQTtztFRyNn6QqUKKGha1d+T716HGT37ctb2GRyHR3378qxY2qpVqjAez04mJNa8+bxOLurK7/ThweMpHfhb8rAuU1/5HpOm42vlwgY2/YU12otFs/pPdJWVaAAf0gQcrJv3I88eVyxKbLvypXj8411jqt0T9FkZ+sUnT/XeBERERpKl2Z4SG6ipabhyZhTiKVLSKVAvimvv46ObW0oU4b14cCBrHJnzuTlkj+/3u30b8t/vcGV+ccyPGTePDYaN27wOjGbuTsFALRz5xGX/wBi6Bo3y9ep4xVNuXEjB4QNGjizKseOqejInQNRmAmkb0I0o1Fx5MmjWkSMR4UKqk6ckKBomKpVczXsSUkKkPXKK9A01Qjfq5cXv8Fm05vLh9JiBJrSEL/8W/2cjRrxT9c0jjybNuW2FMm05jYJ5l+RVq2UMySsSz/+qNJfTiAicOcOxlf7Dn6UibNUkmtCXtCU+/ax51+ihDNdnpSkauRCdC8iqNfYWP6xkr6XOpaRF1aemzGSkvTxmTNcN5ZnaUQ8ORzqfE6FsmEDdMWe6A7G1DSGZfv6Yj6Ngokc2PvKJj10HTOGI9m0NLYd0dGcyQsOZsfFHfj378jgwSoTuHgx75/Fi3m/WCwG9GtmJtZ1YWL4b+kpNqAbNnic78oVroHmzevMuNvtnF4k8szYnDypnJ6EBAWHllSk8RDeZLn/sneIGKiXkqJ6fN3ANujdm1+vUQPIzsavv3KJsUSJXFjLNm0CIiPxIzUFEbAs7iu9WL1smUKTS4+/gHkqVHi0bG3z5/PyzJuXyzwlSnCgabNxUK9jABwO/PbqFzCRA/NoDH/onXc8MjBpabwXfXwMnWwymalKFVclkp2t9NWXXwK/OkfdxcR4zvMmUs9YdNmTT/J/Bwzg65D6rrSMiMgY07x5gRs3cO4cP/6ICK9bnx2D0qVxgYrBn9IxsvwPeulGMuFffaWG0EuPe5MmfImPQv7rDe5vv/FNrVWLDUfDhuz82u28SMUjBRRd3aaxuxQYJiTEZSDBmjW8qbp3d8tMvfEGvz9/fle0iBSQLRbWrsJUIItQDm8DtOU9+fPzucRIuxdhZLZkmTIuhf8NG3gDxcUZgrubN/kmOL/j/qAXUSDa4eJcbtnCf961S9UTBYwYG+s5QetfFZuN92ejRqrPVuZRx8W5ZmZPnGAnedqzlxRjlMXiMqHp55+5tluvnpshk/Egfn6uKauMDIV6/fVXxf0ptT6jV27kUZawj4g9r5wcRRHpbjgkxxUU5AI227NHTQLUJwZlZrpMXLG3aYcalbPxxBNK312+zOtv8WKVjheO9xo1OBv+qKR4cVZGFgsbcquVI78XX1RGH2D/IioK6NoqWaUbiRjM5EyxHD/O/aCxsQbcAMAbVOqz7v1Qcq633lKTtqxWtTflEEYvo1IXZ+ncOVUTLlXK1dAYR80ZDPHFi7yVoqMVGBea5joPuXJlDOx4F2Fh6vkJmvy55xhd6+vLasHXl21MTMyjY2vr0EFVpcRR3bFDGREhqXE4WPdVLJeDnI7PqOvv0kXXU4mJfKsDA90ewa1bKrUv7Qsigml49ll2aOS+i3NrPAQsKjV1cYbee497+ojYITL2N8osQSIGqDrl7l1ek3nyuHWPrFihnnnBgpg39BxMJteMT926rEKFM37QIF46TZrw5f9ZuvqvyH+9wX3zTV5Iwm1KxHwZ0qInYI30dFb2enP75cuqbuTstxRAyKBBXmpl2dlq47svTmk5+eAD9cXSkyiLRAA4xkPS0S1aMDRXDCqk1ZUAACAASURBVIARYihEqWIh3eS77zgYa9gQSDlyXhmrkBB9PpVkiCSadDg429O+Pe+lgAAO/iwWjsokE/Tviui7EiXY+w8LY29deqTXruX3CRNfqVLONOz9+6q27VTsP3zngL8/O1Ue6FhNU2nHXr1c/yYRzgsv8I/NrcfYfYSinK98eTa4opiMWiApSQ1C8Ohf4t+ZPz+fIuGPOwqBKwwsmobDh/mfxkEqXbty5Gm3s8ffty/ruQYNWG89ihGfwsdbowY7RPXqsRN0/z5H05KFB9gB0/2JnBzFLkMEdOiAo3szEBnJ28ArBaXU/sqXd42kli7l16tW5UUp9VnZT3K490zLM8yf33W4x+TJ6tzONhQQGVA2Sm7e5K+JjAQO78vmdSPnf+klICsLd+5w8GVsWZs1S0E2OnbkLfzUU2os7KPg7rXbea/Uq8dZ3eefV/iyihVZh4lIi/KuXc7fvHCh0jlVq+L674koV45/p3vwD0A5K0FBrl6sDD4uUIDPK6kQafsyHvJ8xYBKFHz4sAJaSeuWiADhGjf28FKysrhDyM8P+OZrTbV/yXkSE5GTw/eidm1VVhO/+7ff2HcKDeVLk+XzKMb1/dcb3GbNlN0aN44VUkoKL9ZGjdT7Jk9mB8ylPmAoasyll0DEKb1cvVTj4GxjoVOg8Z07K6JVUQqSAnNvFTJ6gmPHKrIMd7ijGB73BWuQvXuBkCA7GvrsZRrJUqVcwgwxaKVLK2UtY9hOnmSbVKYM3y/J3j0K7l6pochPJGIjNGAAR0OSQVi71ksApGlcuCLC19QGfuZstGqp5Q7MPnxYOSZGzSITAQoVUp6GMVKSQxwkOaRe1amT4o0LC3Nt+5A2CXdDYpDTp4GYaDtK+17ENYrh0HH7dpf3vPQSr1sB3ciAlc2buZUzKIidQBnU8tNPD/MUvMuKFbxE/fzUz/joI65q+Pio+RkHD/Kt8vAn1q0D/PxwmKogr/U+qlVx5B5BGB2T5cvV68YpQLduKavljuaXFjA5pAOgTRv2EETRGxtoP/uMXwsIyHUx370L1KzuQJg1BfuoFns++tgtFheD5vyMvz/bAMmYTZzIvrLV6lne/1dEsJdFi7Kxz5uXE2eSdZfn780hAMCebr58SKD8KON7AYVj7J5TnEQ0TYXSRo7KzEyVpj92TAHXvKX8J05UjqS85ufHe0KUs7HAfeaMeq+RY9kg2dlAh/YafM05+Iqc/bmvvuqinAWzKo/MbuesTY8eirbWqUJQuLCXvvF/Qf6rDW5mJj/X6tUZCFyxImMnJLISsojz5/l9XjlPNQ2LmnG/4SSaAW3BAwZcOhwKcSw0SYDK/QUH80oR5UKkvE2p9XpT8mvWqJTlsGHqvOfPK8N9+HDu13XqFPaGt0YQpeDJwH3IuOTZkvLHH66RVFYWO68DByoE5MiRSnflxlj4MNK8OfsUFgtHA5Urs+7z9VWzGJKSuKYm1Ibu8vULP8CHstGBNiFr+IsPztlJurZlS/VaZqZKKx84oIaRuzfqG58ZkYqOxo9Xz04APgCnx6Qf2m30m4vcu4dz5dujMMWjhOUiru30RISkpHB6s1s39Vq9euwkScVCKhVhYY+Gu7d7dxWsjB7Ndik5mRMkgkOy2zkCrlzZe3vp8f/H3nuHR1Vn/+NnSia9kAAhEAiE3kPvvVfFRZqoqKiIooIogqyIFVxQVhFXFmxYFhGUVREEpKOCSJNeQ68JJCFtMnN+f7xy5v2eO3cmE2S/v2c/7nme+8xkcufOve9y+nmdj3dwPF3l5rSNM3oMCdw2R/ITBCdRSPbTl1+qmKKxFteIriVuzUcfVchhtWurteFy4W8i37i+Tk4nX+83nNvTRo6lTN45z5f5e1y2DdUYjBkDq+n6dSwjwf6vUwdy6Y+SQGsSKWfC77/D6dKihXrMBx5gL5e3Tpd/OsL17Qc5ic7ykdSeAcvUPF652FhvXHDZK7NmKcml19vKIbkR+tGiBbQ2UW71m5R9Kl07/FDhExP5L7SEQ6iAl402b0V1991wPomy99Zb4Dfp6bB++/bFGEml0h+lP7XAlVrqmBjVB/7f/4ahWauW2tf9+kG2mdViiUdlfOviPp9Wq39QbWaViKP3vHO5FHTYunXmZSeS5aQfYv5t364YhM68ZSfrAsRIly55sqA3Vh/FERFu7tnT3O04fjwYq9SrzpgBAXv+PISv7IOUFGzmP0L5+VCQ69aF8AgLQ5xwyhToJdJI4YknIA/NjJANG/C925qeQrceGUd/dPy4UlB0354UAb/0koKjMsaijLB84mJeuFBlXert3yT+UKOG/1Tx3FyP8DgR35QrJxVy/frmsSSJpQuUqxhoO3aoLjWRkWD8rVsHHvuSSJZrWhqEbt26yEqWpS26nXh8zYyQkydhcTdMzeaMsOKSkMGD/Y+F+KqJvOHzRNF84gnFuPWSOmHY+t/C9F9/XQEsPP20uqYADsfF+W8s4XZ7ciOuhyRw89rXuXx5k36+DBelbuUfOKD05EcegfOkUSPMza0o3erfH+zAbkcsNy1NhUIXL8Y5YlQI5odOGRn4TvkEJx9I7KQEoD/3kK6g6F3JpH1Unz4qpd0s+VMPl4mm8PDD2DtE3rWGgkcpfM8fFZfgFZKdh7Q8ziEh5qU958+D/48Zg7+zszHtTz0Fb4PdDiVICkX8wXwHS/+3Be6JE/DbrFoFv+nZs14b+vnnVX7F3XfDvbJ/PzaHNDWXBCEz//1XX0Ebuv9+ZrfLrRZOZKT/1jl6/8033lCfi7SaNEmppRqjcI+6j4tatPZdrETwc8v54qq+ckW5o/0VDDudKiOwenXmy5f5xx8hREeM8OV916/DkhKcXHGPvfQSQpyJiWDA9euDp3mR1NOtW4eBW7wYc/Ptt9j96eleFo5eoiwVG4cOwZCUyo0DBxT+uZF27MBG6tq1OE9Mmg4QmWbIekjieRMmqM/kuwMGIAhH5FWq5SbiIke495yIArV+vXJhCvC7261c02+95f9eRAuMi2PetYsPHIA23ratr/InllRaGhi204lbHDkSjMNmA9+rXh3vRWHxTOyBAxj0r76CxbJ0KRTHzZvB5LSEFSk5iY9XIe7vvoMglxZ8mZm4V73TodDFi1Boq1UrVpRWrVKM1mwyhSQRRzqKMCvA6GbNVCdxgxXlLj48n4my9PnnykLWlWSBIHzySf/3InCRVivz0qV8+TKmtHJl83raRx7BepRucn36YK4kgfeuu5Q+4VW6lZeHSoiNG8GMli2DVb58OT7bu9crKUGAYmrVQsxemorcfz8Eu9OJ9ZGWhiEzCve8PFS/xccXs7DDh9X6ve8+/x4iycxKTlbhEamfjYxUEt/obRgxgt0dO6m/JQ7/7rsqmUr3Bkq8V29DaqRVq5RQnjGDCwuVwukFoFJMc+awVwLVpEkYw+PH4WDUS+y9SreKijDZmzcjN2PpUv/tAovp/7bANcO3dTggEUaN4g41znGNlAJOSsJGefhhMPOEBChzeXnw6ffo4bvONm3CYh48WFu0TqfKJq5a1bv8Qyexbpo0UZ8tWsTpVJk/qzqZpwzYzYNoKadZdnIyneIwyvXcfggVcBm6yrXpAPegVfxw1Cf8zn3b+Gdqyc605up6IhiaNPG/SUSwR0Zq6ZawjiwWb6VfSFD0JF764IOwbjdvxud/+QtzmTj0Hz0++hXsXqO71d9hsYBTDB3K03tu5shwdIRp1w5JXcJPpRyjXz8MsxFx7cQJKNItWhj6Ewg8o+wmMxINSwdA2LyZz1EF/j5+BL8+bAffTR9xC8dOrkGHuSxdYjsVYhgpmyvQOa5FB7kz/chjaS7PffIwr6NOfCO0jLqe1DRFRvq3oGSgLRav4PTPP4Mn9e/vG/aV2K0kZr/5JhSS3bvxOmIEs9UKLN/lgz+G50MCu8Ec1aox9+/Pb/RexQ475njoUAyVKEjSjGD8eDye0fNw/TrCcomJBvhAqY+x2fx3XDl8WI2JzF96OmdSLP9g7cWv3HeY76cF3M2+nmvSIY6iLA4htK60kItjKZOr0nFua/+Z76cFPPPBw7zC0pezKEoFnc+fV8mH/hClfv5ZxRC1oOuZM1iPder41qJfvgzlXiwpCcP8+COUIHGChDlc/Hqv1Yih+Ku/NzuSkpi7dOFt980rVlTdPHgw5M7eveBVossIW5SOQUIuF2RcWJjBK7FmjRJgYokYKS9PWa+ff+65YG5cEq+njvzmY0f5fstC7karuRYd5Bi6xmHWfM96jKbrXJWOc3PLdh5Gn/FL9x/nZVF3I29hyxZcr7BQ8ZIVK8zv4/hxFarRFIScHCiEZcsasuCZPQlU7drh9DNnsATmzMG8tGiBuuXKiQU8svkBBHlr1vTFtSfyya8w0n+dwC1VA/qlS+GSk9ZjWobpDQrnECrgsnSRB0T/yETMKz84yzExKsPylVcwpsbMwSNHIJQ7djRxvV696kGX8WlPIXTlCnNICOeTg7+Zd4pHjWKuUsnpmbPksrkQprb5/Feazn+ncbwgdCy/v9DN86Kf4Zn0NI+n2fwXWsKNoo5xiBXfjXbkcb9+zG++4eb0qh1NVDKNBIKIyNTik7a9RgPM7Ybwa9AAioZ0Pfl0YR5XL5/FfcoCLMNKRbyA7ve1+urUwcrv1AmmWvPmYCx6TSsRd6YfuRod40rWs2yzFPG8585w06ZKsZUKHWNpXmYmLI3UVBNl0+lUmeU+6OzaORUrchFZee0LG/mxx5hr11QNzCPDnNyatvJ9YZ/y0zSTX6HJ/A49wv+kB/hNeoKn01/5KfobD6F/cQPLXg6xQWlwWAq4Uyd4Aw70LQZt8Ae5dOyYihubxBBXrsS6NDM47rkHTCUjQ8sYnuTifi0ucrMyR5mIOYEu8eM0x3tuYmPBRFq3hmnUvj1M5tRUn4YAA2g5V6XjHGfJ5EoRV3ns7Wd58GC3Jwxz6BDuz+i9LyyEPhobq/r3ei0sMZeTk/2jp/TsyW4i3vnA2zx9OnOzZm7PrcVEFHIL+oUH0xc8gWbxLJrAc2ksz6fRPJ9G89/oKZ5Mr/BIyyJuQb9wdDgUJTsVctu2yKnZ/OhnAKvw53cXCDYiBLINE3DoEAzCrl19Q9JS4793L75Wvz7zwIFunnrvKY4NyeEK1gtclY5zL/ree27CwiCVW7RQwfmWLaGc6hCwRDyTnuZQQqvB5mWOcs+0C/zKdCeHhUHoZ2VB2TGr+Z0wAbqMdDbyIrHoHQ7f7gxCxWUeB9o9wK+9hoTUUCsUnjB7ITcL3cOD6QseT7P5dZrIb1Wdze++nuWZm2fpVX6AFnAH2sDx0QWex6pRw82PPsq8YcZWtOZLTDRPChBgACLMn4E5X70K52Jqqi9wiShA4skcNgzT/Mmr6VD6Q7dxCh3nJDrr7S0JCYEimpYGie0niUvov07gCt3UjRcWenoarh7xvmfMetEKrkIn+R16hK1UxOmLNvCF826OivL1Kl29inVeq1aAuqxNm9SEGNy5bjcMnLsrreUYQnPyunWZxz/p5mVRd/MlKqsSOUQIiaJw5owvcP64cVxQvwn/RK341RF7uXt35lAHBEQby1ZeODfXN/Ry44Zyu/ntvgCD0GLxBbKQHK+FC5n51CnuVuUQt7Jt46n0IsdQJsdSJle0XeAR1X9GCvFvv/nvPyvkcsHKWLmSc1/8G4dYCjmBLnN72sB2KuQVxV1pVkxcy878Iq5fH4Jf53cFBXBplinjq8V66PhxFfs2AY3dvZt5XNPNnsbZKSmIFCyu+CQfo2rsml/sOjNrYGA8atfmwocf471Un9/qsoxvuw1Y3UTMTelXnj3+NJ8/bzIO7dvj+x06+A3oST2lB7O3mM6dg3x84glmvnaNJ7T7ictYMvhDupuJmBvRTq5qTecGcadgCm/Z4t8To9OlS8zr1nHRnLchHCznuSutZiLmr2gg28jJc+9cz5yXx/37Y9yMnofHHoMg9guJKq2qiEwlQno687Q793EKnYCAjXHz0KHMHzR9iw9QbXbNeD349oMWC7v//hYfopr8bv23Pc3giZir0Eme1Os3c8QiaYVZqZLfcduwAVtXcBuECgrweD17Mrtz8/ifI9ayhVy8gnozEXN3WsXlLJc4wpbHBTPfxEBdvlxycW5GBszV+fO5d8VdXNl6hivRKejbdA9Xsp7lB5r+xnzlCj/3HOS3MRbpT8H2kDQwJoJgMSirly4xvzHpAjej7VBMI93cty/zmwPW8i5qxM4Bg7whG4XxiWvEUDvtXvQJn6UkXpL6DD/6qIoCVKBz/GjDDeaIaRLz9dt9Ad6vcuWwtYwKUd++EMb5OU7e/OJaJmJeRrdxON3g/rScQ4o9WfvHzYPWe/p0qQPufy6Bq9GUKWBMDoeby0Tk8aSqn3N92suDCBl3jyQt47hop1dpWUEBiqATEgLDhzGzSliqUYM5P5/z8hCWkEqe2knXeBpN499TB6jvCODE2297L0xxowjeq37MnOmNNsXM16e+zp/QCO5TbhtbLFCCJ07UQLGk4Dg52U/LFpDLhcTPiAhfi2TYHQWcFHmNc+yxvJwGMBHz5+XHMRFz+6Y5nJiIeO/NFPKvXavtyeQs7p+0nYdbPuOadIhdZOF5SS+yxeLmX7eri7vdsPgcjhJ7QKtsnvBw5hMn2O2Gh0qiAUnlCnk8zeZfbG3YfbXY0hpW3JR8+vTgGDoROKsAYhQX5+fN/5iX0iC+I2Y1OxxgzPfco/Xs1esaBeLMD02ejKnXcFeYmXnGS4Vss7p4f0wrPk5V2UIunhc5kaNC8rhr8+scFgarsIRwkykJUAwRc9cmV7lq1CV+zj6Do+k6Z1EUr0oYzkTMX/zLmxFJtzV/HkkPCfo/EfPmzex2Yz779cPHUVFufjD0Q15N3bhgbXGtjYRPhg41r/M0OwSBgsjj0nLt+Z03UnseY33PExbp1QtheGZWmUZEJj05vUlK1Ywh6a+X4brflbuXcymMy9IlfsI+lxuWOcUdGmZ4Lm/S8KZEEqCY+Hg3t2mYzeH2Av4oFntyNzXk9PDaHGYv5OcmeVuHK1ZgbJ96qoQfOHVKKavFiHkHD0IhDQvD3hsU9QN/SXdw3ofFYBQSpC5XTikrciQlqVCCnoQYGqr2WXHNkis3n7dGdOPxNJsrlQNOeJs2wO92OhmLWSoHjFqogTZvxr0aPUT79jHbrC6eXeF1dhNxE9rBfek7Hpq8metUuu6xfUrCaQ9Ef1qB26YN9pzUjYpytHbQ27w/NI1t5ORZ9BTSbTMz2e3GW4fDD2yY7w0yJyVxHoXyW/1XcVISJmvQIAgUd+Y1ZcGKOSZJV8Y2VgKYYcbsBcGqalX12wIV+N57fPQoNlKZMgg7jbozm485ijNojf5YE7pxA2NUtWqxG8btZv7oIz6e0JwdlM8v0lQu6tiFUyvk8Ijhbm7cWHVPI0ISWmlp6lQIeTFW3nkHMZQ5fVdxZmwKJ9Blvo8WAmvu9GlmVjrKxx8H8QNuN3PnzuwiCy9q/w9PDluzZtjAhYWskKLEJS9MfcQIXyQjf4csGCKlcUs3mylTOCMDictS3dW7ZxHvqFDcQSpQNnUxuVzIQo2O1kLw69ZxfvV6XI2O8W30FXPduty/yWlOa+ziu+/2LhcOYvp9aNYsLFubDaHwSZOYE8u7+NGOe7goOYUb0m5uTxvZ3aIl3AW4JbbbS4FANno0u4l4Zd0nuW1bKAcNG4I3Z2ezqi2fOhXniz+wZk34MQPNiQjzJk3UPhGkIql1HziQc3MhUwRDo2NHN69u8ATciffdF9RjiF7rcdHu28fu5i24K63h2nSACyum8OQe2zk2xs3TpkH/Cw3Fq54nFCxJs3vR8wcPZm7X1sWd615gTkvju2gRJ9J5zqrWyBMDPXwYy7l//8C46h4qdi3/VrYHD+iDUFaFCmgqcuUKq/qzESNwfl6e4nNG/hUZ6YGQ9eoWlJys9on0D5TM8aQkdha4eNky5T2uXZv58y7vIRSQlhZUi0PRaz1J1adPM992Gz9C73AcZfCV2FRe2H8ZWyxuD1JbSgpkhiSN3gz9KQVudjYYgM2GfdewoepH73YzD+iey9UiL6pm6lWq8LvPHNcVuxKpqIh54YNbuSKdYRs5+d5h+b7YqwKOIGqw1BoOHuxdrC+ZlJJZoR+yiCVz89IlxVQ0qMAbN+A2qhCWyTZy8pikr/nK5eDMz/R0KKhdOji5sP8gz28/Fb+QI8OcHhhnux2VGaGhUC5stpsr5G/XDr9XsyYE7+TJ2JvXrjFPGJvHkSH5fC6kWHLExvLGaWvYbg+cVGqkH+Ye4jRCI4YBXbJ440aDNS7oNNL2UJKpGjZUJRAlHY8WN32IiQE308u/NDPc6USeSe3yVzH9Yd/woV3+WyfqlJ0NoVCtqpsvPzDJ89ufxT3CRMybNxR5wvWyvBITwWT1ku1gqV8/OFzEUyMlxvv2MX8wHy63nyOKUbbsdj42YS7Hx7u5W7eAvT68aOeqi9zdugZWTO0r/O23hrmR7DlpnShti4hUHNjfIQpQnz4qNi3JUXqziWJyu5EQ3LwWwj9tLVv5l2+Dcw243WDOUVFu3v/sR57f3h3Zhq0WF899o4DT07FXpPdCWppyeZaWXn0VPyGPOGOGEvjbfoHi8s/YpzxjkXXf41y3jotr1zZkrQegY/vzeXjkciZirhV/md9/3xAqlXBafLxyt0pGvlnPaOFpOiCGpFATqY7xYoxI1lkx/forc9+O2diatJu/eu1A0F61KVPAKv/911881vFFawWODsnjxx/K49xceDPHjcMWbtUKym3ZsjcPwfmnFLh6vlBoKLAJxFUgtbmLFzN8D9Wr81ZqzSFUwI922B3U9TdtUpbz8Ljv+AhVN7dYJFu5fXv8LX3uGjf2Lm2QukIzHFLJvH3sMVxDeqQ1auT7ewcO8A2K4Fk0gWOjnFymDG4hmJ7XGz8+wXYq5HH0dwzajBmccaGAy5RB7s+1a+BfkrVfuzb23KBBQQ2Zh3JylDKUlAQvYYUK8NCfOAFm8tJLDNO5ZUs+QxU5kc5zp0pHuDCv5HjKkSOqUUy7+H28hdqYQO2wSvlNSICgFCxDh8O8L7HZIS5LmV+pp4mI8A0g5eSws1wSf0D3cpX4LA4JgaKhw8f6o5M7rnC5kAzuQmvRwWXMGHZlXOMmTaC8FBVBeRk2DMwiLQ2Mo7QQnFJyYrdjeTVujByerl2R1Z+cDF2Rz55lvuMOzqIork97uUbUOb56uuSGohcuYCosFuY6CRd5OQ1gd6PGvqbX6dMYR6tVSQrJtpZWcP4OKZWTkhO7HZpARoY6xwQJwt2+A39PvbhxuTNMhPsMBk0t+1Iu14s5xbXpAF+naAQKz5zhUaOQ1JudDZ1OYAYbNsRj3UwP1h49sFxFUUXHJsxb+/a4dlFmFvNTT7GLrHw7LeNoWw4f2GCCfGGgvDxY7CEhzBXjc3k+jWZnRIxvcpvTqbKEpQxO+n6b9cMVniaJpkRYUFIjtX8/pFvFivhbr8EWeuAB3kJtuGvZXUyEcTBtLGEgV2ER31bzd46lTD5KqQj/7NvHM2ZgWRw6BIM9NhZlW8nJ6ha1oo5S0Z9S4E6ahAUpGJmPPgpGIiULrVopDeb84SyuGHaV29EmLqAQlNL4UW+yslTotmXL4oQ1yW5JTPRNaT5xQjGOq1cVnlhkpHfzAn/9cB0OFVucPRvXFIYzcaLvDQpow2238cWL8HhaLGCcxm5+XrRuHXNUFL9LDzMR8wfPq5Ka2bMhHPfvh8WUmAgmL4X3ZcoE6aoqJsk+lkOHdLz3XlxfhFB+diG3rpTOleg0X6DyqEnyAxRcWAhHQlgYdJlly5jd24o7+NhsvvHSggIFTbdvHx5C/hYEnZIOQT4SX6p0eOjZ0/cGZ83yMJ7c64U8bRr0mipV/GSNCh06xFytGm+gDmwjJ08ZopILxNO6fLkqERo50ht7IBCAkJEkWU6WnoTkli5VzQuE0bldbh7S/BhH03U+QLWxnv38mMuF/K24OAiMd99ldl68qpiu2QCIC1IajsucmDWg1w+JQcrciNYhyq4ZnJBYbQ4HF506y//4B+4zKgoeHL/rOzOTuV07PkQ1OYau8W2NjrGrCLzj5EmlPMo8PfaYd7J+CRUmXiTL1WaDYLjtNlz/b39T6KSezlrM/OLIQxg+6m/owuBL69ZhWEJC4MW/keNWvnYd6EJIYBxffBF/i6cnUD9c6WZGpGrhLRbsZ6nnDQ/3zcQ7f16Z9Js387ffIvwVGgr5bjzdQ04n8/DhfI1iuAYd5sZlT3PuNSjBeXlQVAYNUs1A5NbDwvD3zUJw/ikFbsuWELjVqqnarMcfV6WPmzfjvMJCaIZJSW4+99xcb6vSIHS//x7KWmQk4omeTVhYqLTvRYZG2szKlbJiBXaNZCTrVpS/RJD4eAVjJ/ns0nzAmNSRlaVcaFqa6LZtUOysVigiPvJqyxavHr0PjMjl8HCF65Gfj3EcMAB7lgjZmTrGfyBUSSM9+yz2VXw8mFqrVgjL7d2L/acj4zz8MPbaLy9pwAm9evnssu3boVRYrZg6L6tRUL3Gj/e9Gem+JGCrgtUr2Zb+GhnIIUlwkikkiFVGb4fLpTwaGhbv0aPKOBg61CQr/tgxxahSU3nmUxeYyDuJqnt3hEouX8aaHzVKCUwir0YrJdLrr0OoSiXK0KFg7hcuwArQY7QS91ry4n6V9Fevnk+/wVOnVCzuvvsM5RqCsdu1q+/NSAcsKRaX2KExE9afwBVwC3HByG+ZIXXcdhv+p5VxZWTgz+Jt4ZtEeeWKWi9xcfzNq3uYSPVkZ8aSi4lRQCADB2KNJyaCsUuIOhjSCyNE7wgPx200boxkTyEJh05//IqKDVSo4GMWXrmi9Pd27QxlyZL0Ur26r8Yhky8oKBJ3EK+C2SGAF0RqvKtUwfeln64ZYp6E1LQyrhs3MJ0hIWCdiPiwBwAAIABJREFUPpU6hYXqXkJCePdr33F4OKZe2LrYST//jKVSrx74UfXqmDNja95g6U8ncK9fVzXrNptq8rF3L7waErJjxl6221XdtWchEWGDM+SYMLHu3f0klkqAxqy2TzTyl1/G3yIwhQsR+QcnSElR//vlF2Ux22y+2cdS7a5jxhaT04n4T0gIjGlPP2mBayKCYMpDXKNRI1xGKn2kimndOjCf1q0hiyRRS4zvYKhlSzCb6GilKH/9NeYlNVV5YqV5wj//WfzF1avVpi2GCCwsRB6M1QreZ1pKIIju0dG+YybAIA89hL/FKurdG69mhe/6IcluP/6IMRfhaExBFSCMmBgfP6LbjShBXBxc7B6P2vnzyg3XsCHzpUvscoFplymj1qFkFS9cCAGRlASGnpKC4TKExAJSnz5g4pUrQ88LD8eynTABupx4YnfsgECXKAcfOaLWaatWHo3n88/xXJUq+bHmTp5U+QjGjSVYlm3b4m8RAFJnXZLAlZT0Z5/F9+VvYxr1sWPqHkxqzdauha4UHg724HYzFD5RhMuX9ySPPf88LiX67qVLWHYTJsD5YbdDsFWpgj3Qrl3wc/PSS9i/ZcviEatUgbCUDjiy5E6fhuDo27dYTl69qqzVypU97SnXrMFaiY2F98HHis/JUbzBOHnSqzgsDBq5oIFJuZvx0K1bIlV+JAJb4DeNGkhhoXI1m4C3798PXmSzIQnN6WQ8iEDXORwepBYRsMJPiorACzt3xuMRYW+Jsllaz53Qn07gSmWNuG4aN4biNG8eNoPUdMt5OvwtM6v6BiLe8doqrlEDm2bhwgCB9AsX1A8aIR/FlSio5dLIXNq7EYGbSbKNftSrp6ysc+fUqmnVyvceJCMzQMr87t0QTHY786znr7O7fLHPvWNHL0Fw6BBuSer+3W4IyubNlfBt1w77KDy8RIxxDxm73/XqBfeQlOrJntq/H8LCB6/5xx89ptvxJ//OrVphs02fHiBhR28d9tln3v8TbpWWhr8Fq1csVwNYh9cRGqpcogcOKGUoJMQXk1ZajfkDSmHkv0mO3diHnJzXovgeUlO9gokZGRAAzZopb8WwYRBq4hLu3RuM1GKBBRAMOZ1KVkm2fUgIrulwKO/htWu4Jf33mRnmUTG3yuw/ku8agSSeIUP8Y1wws8o6FoVUSOBMHQ5oYWK2icXm75CwgHShkY0rmedGd4woywEaCefkqFDSoEFuzhhW/EdcnJertqgI2zopSSkn06djqezdi/EdMEDJd7s9uBg+M64bFgaBK46ZrVsxHHLrEsutVMngSbh40YP9XVivMT/7VAFbLBh6AeAyJXloyUgWcrtV3GLTJgVDV7WqGn/9MPb+Fq+TtEWUhBhjaOHrr5VS4yeU5HTCtWyzgQUenfiuWjeGeroxYzAXopj/+984deVKsFqtTbgpKw+G/nQCd+JEjLWArxOBrwr4PrPSAvv1M9di3JOe5b/TOHZQPjetl1dyTS6zcifqGL3Mqm+kcD4B7jQm5giD0A95AJsNu1mCasZ0XWFOVmuJmR4FBczPTESt4G30FWfWbWMKPyiC9d138bcYaYsXQ9Aa9YVgErNEybHbsYdCQxEb7NABSrjLBeOhcWOE3kyTSt5/n5fTAI6jDK6WmBM4Ni0k7kSjn0gXkvn5yqwWiyCQwBVPBRFieQLe3ry5928UFKgkkxL65rndcKmH2gq5GW3n4zGNTbNDduzA2Ek7saNHMaYzZ4IZy7KRIyBTLSbJIRPvUEoKvEP33afi6m43hjA2Vqv51mnzZt5mb8MpdIJjQvN40aIgsj3Fcm3Y0HcwxNz49Vc8NJGvtWQ8ZM4kA2b9etysLrx1ksEytN0zo2XLmOPC87gKneTNlvamZvu5c+A9vXphPWdn4+/774cHIjERYyy36dVy0g/l53vjfbRsCRkl3UAld2nKFFzbtKzx9Gk+Xq4lt6Sf2W5x8owZQVhwsiikp6lO4haeM0fto9BQc5hX8RjJ4mrXDq/Tp4NxyMMZF9Wg4ooJMwxaA23dypyalMtRlMX/oiHebR61cWzeHI6prCwssXbtwHrnzgX7TEzEsrNaTXFzSqQ/ncBNS4MGabWiqqBaNeVOPX4c89uhA/ajIdzEzNggf7kDAukJepPzGzYP3FZMSPrVVqvmzWUuXsTnFgskyNSpatfoi1KCeWaaYXIyriWaoZE5SIlLoK5BOs2erYRWcoG5K5aRJOVwKFAMaaf33HPQ1u12ZbGagYYbaeJEfCc8HNpoWJgS7N8Vd9d6/HHsWx9oQMbcSVnf7bSMM2OqBJcVJMw6PNzb+nS7VTH9jh1gzkTQzkoSuJJZ7nDgOpL9ZWyqKVpGUlJwqDUrVvAOasLV6BjHRRX6bUwl0Q8xCh57DHJddIbEROURNBr2ZjRjBvhhfLyqnlm8GJ8J4ylu0OI3yWvBAmaHvYhb0U980pYanImQkaHG2VjULenm8+bBBSBM2wB36HWI+SjMPT1deTKaNvW+vp7UaMQCNKM9ezjdVo3b0Sa2WV08Z465QiGJgVJi+tZb+AlhEU2bYtmFhEBIlkSyLENCoNxarVDMatVS1YKrVuHR/ZV3//ADc3xMIafSUf6FWgRuGSnkdqscFGN+iiixDz8M/ijjb+wbTaTCaoLeptfAi3s6MtJbA8jNVRnnZszASFevclZiDR5Bn8AmecJt6vU6ehRjKIULEhv/8EPsF8n/sdsDthj3S38qgZuZ6d2pKyQEsqhMGZXwMXWqfy3w+HGshago5mULMxQWXDBV6tnZinEYrRK5zm+/qY7VkpksEsusvrBFC/XKrKwq482LReYPV1mnQ4c8C/n4K59xs2aQGWb1x3l5uHS9elj/0mf973/HGDZoAGvHZoN1VRLpXdXKl4fW37gxjH23W7l43jZpOZyRAReYzcY8a2YRu5sUewTEbRGI3G5l8RhB0cU/99FHiG8Rqdit3jDbeEi8qlIlXEdco56gczFJ6VAwRbHZ2R6GlTl2iifvZ+pUX2vE7YYBUKYMEpMuXsS6nTABYa9GjcA4bLaAnmwPde+uFNX69WFBjRyJa+XlITEtJER1ctIpP1+VUT78kJvzBwzGH61aBadkiAVkhG0SgJgHH8SPyNjrIAqBDrsdvy8IFUZAC0nW6dix5Ht0uTyWmXPAIJ4wHi7ze+81z5SdPBljv2ULbr1qVcxXhw6qs6Po3SXRtGm4VlQU5jUqSkW+duxQVnXPnubrZOZMzGuvXswZT76gNDK/2LUaCViIUfoI1JbEYYXHSV6Dfkj1hAhQEcqrVytlSHickNR2VqoUXFFscTc2d63a/PbsArbbsUV9oFVZReZEEe3XD0tqzBhvXU7K60tDfyqBK+nxkqEcFoZMwfBwDPz69WAqxnARM8KDkqXmCcuImzA01IN4FJAkPmvMKRfm/MknyuKRRSfulMce812oYuH2749dLdqEbtWdO6c0ezOT3UiSrNW9O7Pbzfn5KsT47LO+C+z33zGOkiAjyU23367yZCwWXC4QZWSo2xcPq9TJb9kCt2dCAmJcxv11+LDCcfd4ZX/5xQsisESSlFMjHJKM+8SJMKEDCVn9kCScxo1xw8Jw9B6eeiKVXrPhjySJq2pV5pwcdrshgywWuHKN8b6rV6FHdOoEuTJtGuZqwgTvUFrlyoF/trBQ8UIZ0pdfVuURublIomvWzNfZc/485KrDoTlezpxR5rXEJAKRQHG2aeP9uTTgFWYs15SYn79DlFjpISnZeXq7TGZVahSMtiglDpGRHqDijz8Ga2jZ0guDhpmxlCRBKjNTIR/Jmpdtb7OVHMeV/Cwi7IEHH1R70OXCUqxQwbe8OCdH5QFOnlys++TlKaCKYDQx8Q4Z40YCeyUKp8C56QAXcowfr/iojCERrFuJod9zj/fvTihuACJx3kAkloDF4vGvb9kCp1KVKr69GNxuGN3SVGz3bnxVnI+JiUrn9kCyBkl/KoH7xBNqr8XHI1ktIgKCJDMTg9+xo6/SLf1Eu3c3KH3SOofIf+cXnWQ3DR7s/blItGnTYOXqUkc43bPP+i5UYSwPPKC6WkdHe0skYUqS+BOIJBDrcHhlhbrdyO2yWKCFGxmAwCp+9x28hBaLal0qCzMsLDDSkOQ/2O2QJ02agGkMHKiSTSpW9PXsrVsHK652bZPSDCkdadu2ZC1Y/Hl16nh/Lr5ZyfySrMiSDgkBdOsGRUc+1wPPUl8YEeE36cNDx44pLmxI9vjqK1yiaVNfxr5+vUIyunYNYzVqFD5LSFD7IZC+KBDCoaEQzmXKoKoiORm3PX48/mf0+O7bB6dLUpJJSEH8z2XLlgxzdOqUEpR6htW+fcrUYFalVSUBkwhDF0ASETC60lNQoM4ryWUphZtEPj7b7dsxThUq+GbJnzyJW7/rLqzxhg1x60lJWPsifwLpYrm5SgeUJH0x2HfvVq2cjdc4dw7rJTLSBOJT8I9tNr9NADzkcilepT+gjv6Vl6eSOsxQ2sRTYWw8ce2a6hP+6qvevys5LcHEQyTUZhDap09DH46J8a2ivHYNfKhNG+gRI0ZAd2jdGstMnJVvvlnyz+t0swLXTv+F9P33RG43kcVClJFB5HIRORxEzzxD9NhjRNeuEX38MZHNhvPdbqKnnyZ64w2iJ54gmjWLyK4/ucVC9MorRB07Ei1cSDRpElG1av5voFMnvG7YgCVlseDvmjWpiGx0dlcmnWxUhc7ScMq8Fk+ZFEfXnQnkIiZe35bcVIHcZCU7FVE0ZVP0+SgqS42pQlY7qrD6CqVQGYpPraKuS0S0eTNe27cveYBefBGvo0cTVa3q9ZhPPUVUqxbR8OFEHToQ/fvfRMnJ+P+jj2Js77uPaM8eomHDiL74AudnZxNduUKUn0+0fTtR27bmP712LX6nqIjo1Cmidu2IPvuMaPlyotdfJ1q/HueULau+s2AB0SOPEHXujN8rU8Zw0enTiT79lGjrVqJvviEaOND/s3fqRGS1Eh08SHTuHFHFivi8Th0qpBA6uyebTm8kumAbThmUQxmUQFkUTS6ykZusnlcruSmGsijmWEWKoUpUMT+Vqqy5RFUolmLLh5ElIkL95po1eO3ShSg0NPDcvPYaUWEhUY8eRH37ev3r9tuJtmwhGjCAqEULjFmLFuqxnnuO6IUX8NWnn8b7bt2Idu/GI7vdGN+RI81/et06zE1BAdHVq0R33ol98u67RD//TDRnDvZG3bre3xk0iKhyZaIVK/DqRWPGEL3zDtGhQ3idMsX/s1eujIsfOIAL33EHPk9JITdZ6GxWDJ1fm02XrAPpEmXRpdOt6Tr1pjwKp0JykIMKyUGFFEoFFEoF5OAQiqHzlFRQmSr+VERJR/KoAtnIXqeO+s1t24hu3MCCa9gw8Ny89x5RejpRpUpETz7p9a/mzYl+/RVLr1MnoiVLiPr08dw+zZuHce/Xj+jVVzGHI0YQLVuG8bZY8Mg9e5r/9E8/gY+FhGD9169P9NFHREOGYG6ffZbo8ce9v79vH5ZQURHYQ1qa4aJt2xL17k20ciVuauFC/89uteL8FStwsWbN8HlCAnFUNF3MiaCz352nc85edIGq07WMmnSNnJRH4eQmK441rchGiRTrzKZYyqRYuk6xIXmUuCuGUvddp4pkIWuNGuo3r18n2rUL74Wn+qNNm4hWr8YAvfCC17+Sk/Hv4cMx/nPnYlkSEcXGgv906AC2OG0almDnzljzQt9/7zPl/xkqnVy/dVSqfrgaXb0Ky8tigWZfr57q2SllYhqEKuflwd1isZjHDL1INKgAre6YmTk/n10hoXyQavEnsy/w+PFQ/KqWy2EbOb2UuxAq4PJ0gWtYjnAd2s/1yl/iBrSHG9JurkP7OZlOcYw1y0dZLOfI5A4d4FaaNYt5ZZ0nOJNiTevUvEgsa7vdt3eXRrt2wcpJSvJ2p1y4gLhr374IA9tscGmJBWWxeBf9G0lCOxER8E5VqgTN/6efcK3nnlPnulzeOUgBMXrFM2B0R5pQUZPmvJ/q8KLHfuIJE/As1VOcbKUirzG2kZPL0UVOpaNciw5yHdrP9WkvN6TdXJf2YW5s2Wwhl9f3oq3Z3KABPCuvvML8TfsZfJoqsfu1GYFv7MoV5ekI0DlD3LcREd6haKcTbs2aNTFP5cr5gmWZ9UcVMpa29ukDg+7KFVgBxtbCH38MC6BHjxKMVwmWJSeXmMbufvAhPkqpvOT2T3jKFKyt+vWZwyjXZw/E269xNTrG9eh3TqPfAC9Jh7kKneREOs9lLBmm+61BAzcPGYIyki9GLOMjVJ3dd5SAcOB0qtjJe+/5PS0nB+EQm807p9HtRtlWbCws3rZtYXVZLMqKMiZo6ySVanLcfTe+u3MnriP5FUJr1+K3GjUqIQomVq7DYQp16UUvvcSXKYG/6zSTX3wRvSWaNmWOtN7wujcLuTjWep1T6ITXnkmrcI7r016uTOmelqX64aB8rpWSx717A7hm0TN7eC/VZ2fVGoHvi1kBoUgtvQkVFSEZkwieat3D+dJL4GEbNiiku7g4lUsZHl66Dn1/GpfysmXaxFvgTSpbFp7YuDjvXtJXr8JTHBZWAqyekJT2RET4JBrcuAF3xcSJiKVF23I895Gaitjbs6PO8T/oIV4ZP4wPHmTOjq+imhyLm0XqdfWjWjUuoBA+PXsxb7t3Li+mO3l6y295xAgs+IgI1Zy7bvV8vv9+bHZTcA5B7xg+vMTHPX8e8bqYGO9WeBJ+njsX3tyEBAWFRuS/p7fufYqMxNxYrWAaNWpAiIhQLSyEcLBY2G8WqM/Nil97tzcWdmEh+MrLL8PzGxmS7zU3/foxTxjv5vfsY/kH6s4HVqXzta6DMDfiRvN3tG/PRWTls2Nf5p+eXsqL6U7+W/33eexYrC294VBy2TwePhzea2lO7kUy92lpJT7wjRvwftvt3grkoUNgDmPH4nJ2O+SElAqXL29+vYICMH6LRQG4E2EdPfQQ5kuqNdxulRB///1BNCvIz1f15Yamy04nPJRvvIEwRtkoJViTkpAA9OijzHMqvMbfUR/eNW8Ln+v/IBeSXZWV+DsqV+YisvKFe5/h3+b9xN9RH367wsv8yCPYo3rJe2J0Dt9xB8BbfvnFRC+QWEi5ciWGBZxOVbr6/PNqKjMyoHN07qxgHps3B1OXRDV/XTQlH9LhwPxUrAhF9ZlnMG96WbEoQj17mlb6+ZJM9vTpXh+73VhPb78NdpGapARrfDz27+jRzLPq/JO/poH869RlfO7JmWgeb5bQNm2a199FZOXMJl14/295mBt6lCeMzeOBA70h5iPtedyrF7zNW7earDcJOVgsQYErS7b4oEEq0a2oCPu1cmXwI5sNCmZEhMpn8AAFBUF/GoEr4TzRSiRztksXLHYJDZ06hZBOQoIJJJg/citsUfc783j3bqCZde+u4jAVK0K4vtb237yauvHVRzST7dIldXP5+d5xDhEWEozRD4knLl+O+ASRqjVgZteuPXyYavBHYQ/xmIfdHnhDIuQujBsHIZl34ZrKogmqcBV1al27QqDqpSmPPYbPVq8GE2jaVBlndrs5T5JERDnKlcPjjBuH2zp0COfduAEhGBJSOkhCTw3000/zmTMQbH36qBBddDSuO2PYb7yWunBmCwPIgcT4fvgB8XeRUIGYumSQv/KKCqppJUHunBucTlX4K7qNJ47N4Vat1FQnJsJSWbyYOeu6WyWcBLCgdHI6FSSfngckvTK++goxxaZNvcGy0tN9ryWYBXK0bAllRJonCTBTUZFKuH7ppVJ0UxEPxIABnJkJb9OIEcqCCA2FEJw66jSvoN58obzB3BM0kA8+UJtcBIW/o2pVvD7zjKoKkPoZZma3my+VrcsrqDdPufcMd+qktkdsLJbAggXFuYmytsywy01IEt2IoOOKkPjxRzDw118HQ9ex/InM2+/m5CimHxaG79lsULQsFu+kbmkwH5QiJCSFvFWqcNY1tMR7+GE1fCEhUKKfeCiXP6NhfIyqsfu6Vo8rqenTpin+JV/WD7P8lD59gOxFBJeXtqAy+47g9dSRZ/bf6NX0KSICy+Gtt4qddOIG0+EDS6BvvsFYdu2qSovT06HM3HMPlpix6iyYnDqhP43AlaoPhwPyrHx58EIiuFmYwdgrV8aaECYfDLndzNvHfcST6DWuHn7GI9T79ME627dPWy9SCKnjw7rdypI9ccLbhyc7ykzgShH5xo0qK/ajj9R1pXOQwN8xksOWLsVekDyPqNACHkqf8+JK4wFMHiTl54P52Gyq4ig3F/KhSRMIX9kMcpg1hxesj5AQ3JPNprI258xR992+PTZVCb2/fejA31fxazSJWzrQjs9mw/DPmGGwWqTmz7DBPfWeCxcqT4A/uE05BDBh7lyVAf3CC+qa4sIvW9bz0Y0bwEp45hlluYQ6XDyAlvMH9tF85ViQPdQYty/wwtJvw+3GoyQlwSqQFopyy2ZVY5KZSaSM+nfega7XsyeuWVCAJCqbLfj2lULn1x/kN+kJ7mxZxzab2zN0U6fCe+5R0K5fVzeSmakuIEk1M2eqbFcjcpHxEGn24ovKJ6vXR4sCLLXxjGf86ScYe23aYOysVjd3tq7nd+gRPr/akOpaAi1ahPXet69y+U6ciM8WLMDPC8ACkQaTqZGx0UdCApSVKlVglRUVYX7EgAzQd8WUblzN4y8i7uE76EsOcyCsUqsW7uWbbwxWt2TbC8oGs/rhhx5SUJx6yx059Mb0siBHjgRjJvJNZBShvX49M2P//vILlkCPHkqJbO7Yxa/QZN4/J4gKAI02boSAbdFCFXbI7b/3HuYoNVUZEkFEqzz0pxC4ugEpczphAmTcU0/hnJ07YVnVreub6emPTp4EDxU3RwJd5tH0T/5+SbZ/75KA25Yr5/25XGTzZoUlqh/S3FI/RJrt3q3qdvV0RGEmfuIXbjfKel6q8SE3oR1MBGtv1Cis9WBqzIqKlDyRxiG//opF/9RTWJS6MTh5su81dHCgmBjstapVYdm4XPAKN2oEqydIA9zTo1cSuSMoh/9CS3jR9GP+oQT15hE6/JKYi6++qjqfmBXw64dYxR99pBBx5s1T1xTrIUDj0+PHmWd3+47b0Sa2kIvtdijrX30VHNYKs+qBO2oUGNPZsxjHO+6AzlC5sooVDhjg+30R/DYbvIE1a8KNGBuLGOCNGyiTdTiCw0pghmW2aBGEv9XK7LAUcB/6jufdtTlQ+oBi1voiECtmwgTF4PWC7kACd9YsZRULNiWzMutTUvzeyuXLzAse3sY9aSXbyMkWi5s7d4bFr+sDgWjVKijmnTrBmsrPx63Xrw/PW/nySv5Ur+77felgY7OBfdjtWGrR0dDbXS51zowS0gSE8vPhsRo+XHmAmtM2ntXmSz5+PMAXReFfuFB9JsXAAwcq17u0aNMPsYSJlOExbpyK8evGSVaWOtfPRs7MZP70tXQeTF9wJGV7lsQbb5QcjhbasQMsul49yAO3G3uvXDkYCLohERISHJIe859E4Eq5rGiNiYlgJA0aYIFt3gwG0rx5yYAyublw2XTrBgU4KgpumjVrmJ21il1/gQK/2dnqZvR4rxTTLV2qOiroh1kvSVHlTpxQC1nPZJIiu0DdA/LzPfUER749yC+8oBKYkpPh7TGF6dPI7VaWkGjR06apdnDiVifCAtbpwgXvvWa3q81+7BiO1FRYVCX1oCwqArPo2xdMyOGAYFm2jDl3wBBfxmpGYvbrtbtS8/f004rBm7nG9EMGcelSVTq2eLG6ph7sDETFqDvn317Cb72ljLeyZWEYBAOy88knChknP1+hd913nzcQTGys9/fy833LjiW5ZNEiJES1b4+5KqmVnNsNt+ndd3tX5bz3HnPGszPxQUmuP6lj14PT4p+9917ghBOVjKcsyu28ecolrNfGC6MX0AZ/VOztuPLIVF6wABa/1Qolc8QIjElJSuumTQrB6OpV6M4hIcpwl8Ni8UVP1N3O0dHeTq7CQpVAZezHYEZ79kDGiSu/YUN4AI++WxxUNmtbqJMootIMghlrnwi8TaxVMxQw/WHFd//Xv6r5vOsudc3t25XgDkTFeQ95PQfy8uXwxAl/GTAAYaySKvEOHlQez6NHwavKloXnMiTEu5Y9GCQ95j+JwJW6dlm4vXqBkezYgbCcaJmBLrV3L5BGpLa+Y0e44LzcKqJOloQaJJq6HiQW2KB589Ti1Q9h+mbH5cuKM+rmudSqSc9QMxLssvLlPf4mtxu39sgjcCNaLFhk334bOCNP4kTjxsECa9IE7ntBNCICQ9KzJsV1LHtNQIXmzUNCW1ISLCvTRK9iOncOcUPpZd2iBZiMV/6axOqk9tIfmTF1Kb4fPVrFY/XsDbND5liQz4m8pZL40f1h7TEruEIDtOCePfAeiOegSRMYFsaeCDp9+y0YTt++SAgRK7VSJe/OaLoVs2GD+jw+HtZtQgKsqAsX8LtxcYG9DteuIaYm6Ek1a2I4vawlAU+IiAgcYJR6dT2JR7pg9e+vaqbNwBX0Q5SlDz5QQC96Fr8oQ0bkKZ3cbhVW0ACPz56FNSlpGKmp0HcDWb07doCRN2iAtSygIq1bK+WEyNPYhpm9Db3QUAiAuDjoD7m5MCrt9sC5Drm5WDcS8k5MhLz0asN37Zq518dIsvl1PHLpOlK9uuqcIVl6+iG8T9YAEQSm4LTqrTOD8Awxs0rD15IYrl5FOETSK8qXh6EQKFs7PR3LqUIFKEOSb9Kjh7chEQwEJ/OfROCK1ibF/jYb+Ob332PQ+vQxZ1ZOJ6wjqdlOSoKX1m8tuIBMGDFZjSSF+XrRtjCTl19WwTfd/HjoIUhBHRRfDsFjJvJ+EEE3CoRZO3u2WvQmdOMGws5iWVWtCoZy6ZL55USujRkD60sSK3RLSQdk18tTbDaMcffusGYTEyGrzOCQxWIaPFjhLz/wgJ8WfMzzr7KHAAAgAElEQVQIygt3CqTaCoSmngkhIA1DhsCtLJw0EFMXj8PGjSq5Tb85YfRmPZKFJLW+cWPTfxcWQpeSyoeEBLjs/bllV62C9dWjB2R5pUrK8y3HW2+p8yWjVo7mzSEY9u7FvCQm+iR+e2j3boQaIiMxr4MHqy6FPuRyqbTtQCa79D7VEZBkz3XooAJtJc2NhAP+9S88FJE3mIjESJ5/3v+9CM6y3W7aRcPthpNkxAjsgYgIXNafl2b/fiyTGjWgjDRv7rvV9aY8AnMqS7paNbg709NhUISF+aKUCp09Cz4mKSC9esEY9avrSFwhUMxAXMY6BKM0yE5IUBnDEviUdb1/vzLNiZSGMX++asunK6UCHmTWt1jI5VJM3w9D+P13lWNisyEHYcMG8/V58aJSLrdvh8EdE+ON01G3rv/b0en/vMA9f9570SYlISnj668xYAMG+PLf7GwobLLg27ZF9mSJcTNBxLHZApsbwtQl6MmsYPvGj1cWlS6lxK1ibGpgtXp34xC6cUOdE0i9HjbMd1H7oW3bsM5DQ3GMGWOC7sQQ0BYL9svLL+O9vs8efFCdK/vLZoNVEBMDr0P58nBrGWMuhYVQciU2W7cusJtLjJu53YrDBDLJRNl5/HH12QcfKM4kQdGSmLq4zrZvVw+pD5ZYYdIc1YwkBh8EfN3hw3AxR0crBrJpky8DWbcOt9OpkwLX0r18egKIrH+bTekMCxZgzJOSTNvD8pYtSolKSkIkJKicCPEs6DFAI0nnoN691WdSR9OokYodlRRfF+/DV1+pedCz+QYMwGeBfLGSkBgE2PG5cxgHyVXo0gX8x+huPn4cCm1qqsryr1ZN6d1afp2npavIfCLsi+7doXxKIqhO27aBjdjtEDTjxgVVLaOMgUBmnHgpdFfv2bNqAQmP0nna0KE4T8emFAv300+V5avDf4oW+Ne/+r8XyW4uCd6O4dV8+23lkWjUCMvMKBOuXYPhEBuLualYEftDjH+rNbjs75sVuNb/B9gat4S++kq9j4ggunwZiEh33gnEly+/VCA/Fy8STZ1KVKUK0cSJQBnZsQMoPsOGAZUqICUnEyUkAPrl4EH/55Urh9crV9RnsbF4zcoiiozEex0xKi8Pr0VF3tcKDwecExFRTIz6/MIF9X+5thnt34/Xxo39n1NMLVoQffAB0dmzRM8/DzScWrUwltu3q/Puuw9IRB9+CHCg5s0x9kLffYfXc+cA5kOE3XboEBCtRowgqlCB6McficqXx/+zsohmzyaqXp3orrswhD/8ANScxx8niosr4eYtFoWCs3ev//PkB/W5iYrCa25uEIugmJxOvDoc6iH1+bl4Ea9JSf6vceAAXktCOiKimjWB+HT2LF5378b6bd8eIFtuN87r3Jlo1Sqi334j+tvfiO69V90eEVCRmIEMduoUPnO5gMJ2xx34TlYWwNJq18b/mTFXXbsCISw9neiTT/A6bRoAmEokeUZ5ZjOqUAGvMnZERNHReM3JIQoLw3t5WH8k/w8NVQ8vc0wEJkFElJjo/xp79uC1adPAv0WY4mnTMB6ffYaxvf12oEJ9+CEAxIgAUrd+PcbzwQeJxo8nOnECfxNhSWZl4f3q1Xi1WoGMd+edQF776SegH3Xtiv8zAzCqQweili0Buvb660RnzhC99RbWTYkkvEF4hRkJMtvly1gwRGq9y9/+3gtv0ykyEohSRN6bW+ZG9qkZ/f47Xhs1AsJUAIqJAcrg/v3gJ1WqED3wAFFqKviNsNbYWOyb+vWJ/vIXyIf0dIw/EZaUjkB1q+m/RuB+9JF6n5eHhTlxIqDWliwBPzx6lOjhhwG19ve/E40aRXTsGNGiRUHtJ0UWC1G9eni/b5//8+Lj8Xr1qvpMFuf16xCScj395ol8BW5YmFoVwnyIiC5dwmv58t7X0cnlIjp8GO91WLsSKCEBSHzp6UT/+AdQ1lq2BELhypXY5CNHgrn8618QjjduqMV57hz446efej9G+/ZgAsnJYOBly2KIpk4Fut/kyfiN3bux+Hv08P9optSgAV5lQ5qRYEfKxiZSCtCNG2oDCxf0RzJPOoOR6xQWKmYiypcZydyIZAuCoqPBQA4cAPwmEdZ648YY76IiCMU1a8Bk9u7FLYjS6XRiP6xZox4xIgLyaNcuDMH69WDUzED0a9cOUJHXrhEtXYpr3nVXibzOm+QZDx3yf46MldncZGcrZci4R4wkAjckRAlcuQ6RUrZ0HFEjyf6WNRUEORyAEdy6FUp8rVpQTqtXh5KUkwMetH499srnnxM1aaLYARHR119j6WRkqM+ioyFAt2+HsO3UCXPzzTdErVrBsHA6oSAfOQJBHkgH9yHhDYGUobJlsRndbjV+kZFqg5rNiSilusCVRRcerrQLXVEVnik81IxEMdCxRksgqxX85Jtv8PVevcBvqlQB/7l0CbexciXk+LRpRLfd5n2NBQuC/rlS03+NwP3tN7xaLIAH/uILYLx+/jmE6t13Y68vX45BPHUK2MlVqtzkD4rKePKk/3NEY5MFReTN1EVT16VJQQFedQZOhF2cm4v3uhkpOzIhwf99XLwIddtmw04vJYWFET30EIz5L7/ErffpA+b++edEgwdjvH/4AcxFNzx++MEbotVqhRxMSQFmsssFaOqUFKI334TGf+IEFKhGjUp9q6DUVLyK6WZGAsgsAlEelAhjVVqBqz+0cE792oFM8/R0vAbC5/ZDVitweTdvJtq4EQrLyJFYnvPmwaBcuxbLNCxMLS8iovnzgZMslJuLJeJ0QhikpoJ5N2sGDFoieC127IAVbL0Z7hDM3AiTvXZNfSZrPi9PCdxgLdyQEMwpkZpj/fo+4NwaydxUrx74t/xQ27bgOb//Dmv06aex1l94Aaxgwwbc3oUL3rLqnXdgKOiPUq4crrNqFZSfpUthKAwciMf64QdYvoMGKZz4UpHgGJ886X/d2+1Kimdm4tViUfNjJnBlHvTFJ9cPDYUGQuStDAnPDKQxnDjhfd+lpLp1id5/n+j4caL774cylJJCNHYs5P3330MRWrsWS1LY9IoVN/VzQdF/hcBNT1dKlPw9ZAiss3vugTG6fj2sqpMnodEE2mNBkSD6nznj/xxxX8mCIlLMOC/P3DSQBzEyE4dDMQ1dFTZzxxjp7Fm8Vqhg6MpQOrLZ4Gb55ReMZ6VKcAs3aIDHWbIEQlkf27lzvY0ZZuyPTz4hevllKEfz5sFdfPIkwPGDck0GInHfirvdjMRLoCtDYv4VFARvtoliJPPlcChJJNeOivLPAXNylOfiDzy4xQJ34ooVsFBbtyYaNw7ju2YNPr9+3Vsv++wzzKNQdDQee80azHHDhpjvuDgwnS1bAIZfKm+DkcQlef68/3PE0snJUeMrglKfm5IErjB1u10xe715hMyP7jEykqyhQCGBIEiaDRw9CoXo9deVp23JEiwRXY/euRP7QighAdt45UroKo0aQdFNSMAcbtx4E54gI8ncFBR4m9ZGEl5jpqwGErg6k5a5CQlRlq/O14RnBpob4b0+HTNKR8nJcCufOoUGIEuWQGF98kkoPi1aYKnoLn/9UW4l3TKBO2/ePKpWrRqFhYVRs2bNaNOmTbfq0jRjhnrPDOuroADdMbZuhRZ/9Ci63egK7h8iiTMFYuq6NSukW1HChPVd4k/ghoSYMw1ZmHpsykjidg4UqyoFWSxwZ33/PRhz9epgIpMmQXDqj6tPs90OYdukCY7334fGn56OZiWBvK6lIon76C5JI8l46TcrllNhoZqbkixcmScRDHrs10xzN5LcY1hYYOZSChLPw+HDiCFOnQpBOWwY5k4e7dw55TSxWMBHH30U1uxdd0EgbN6s4rZ/iJkL6XPjb2z1tSw3KOPqdHq3+QpE8n9J1dGvU1Skgqr+5odZuU1v0eIUIZueDoY+fz6s4PbtITzl0ZxOCF0i6G9OJ1zE998Pd3XlylCA1qwpuZFO0BQaqrRl4RlmJOtUFEX5LhHG1Oj6MBO4Qjab4ms6c5Z9qWshRpIYv/DiP0jx8dgrJ08SzZxJ9O23kCGVKoFf6bbKF1/ckp/0oVsicBcvXkxPPvkkPffcc7Rz507q0KED9enTh04FciuVgj75RL1PTobba9cu+NqPHEHctqSuaKUmcXXoi85IOgMXEu28qMicgwnjNjIj8fXp1yAyd5UZSc8IuMXUsiUW5q+/IgQ0e7YK8xB5K7xxcYibfPmlWtjTpwcO09wU6Qk2/kjmRndzCbdzuW7SX0reu9KMkRjJLC5/i6h6dXSUO3YMnoj583FLZvlgUVHKvd+oEeZT4ra3lOQ5mb2VHZ30zSpjqI+r7I2SlCEhfZ/JHOvz7o855OUpYXGL56dcOXh40tPhiVu+HBaWmXyx2/Hz06cjZLNtG5Rdfy0w/xCJdyEQX9M9QULCk8z2jsyTMUxGpLQJ/RpEimcGYtzBuJ1vgiIjiSZMgKt59mx4d7Zt8w71T5t2S3/SQ7dE4L7xxhv0wAMP0OjRo6lu3bo0Z84cqly5Mr2rB5BukoqOnKCcHCYiTGpYGDICDx5EFlqwyaalJjN3sZHMBK4wjpIErpEsFvU/fUHLtQM9aDDa4h+kZs3ANH77DULYjBcyE730EpjM1KlBZBzfLMlz+mPoROZzI8xYn5tgmbqcV9q5MYvL32KqXJno7bcR8nrwQfNzcnKQ2bx3L2KDkuh9y0m3Jv3Nj9Wq9okwdd0lH6zANTtP5ke3tvyFD2RuiP5j8xMXR/TXv0L5fPVVc/lSWIgQwc6dSJCTHsj/ETLzyhnJTODqe8efwDXzSOh8TZ9jMyFspGA8SH+AIiLQH/3YMeSXgCXgWY4dcxMfP3HLf/MPN6AvLCykHTt20LPPPuv1ec+ePWnr1q0+5xcUFFCBNpFZeozNhCq1qUhEFiJiGtIvm8ZPjSaHI3BFyC2h43FE1IQopxbRb37OORaLc3LrqHOOxhR/VpvoRBm8dzuIqJg5y7n59YhIW0j51dT52TXV9c6Ux2cZVf3fR3oCzsmq4f+cW0h//Sviic88o/aSNHiOiYHX4T9KZ8KIqAmRK8L/854sPqcoWp1zJByfOePVWBcmEVGAhDShQ5HFvxmnriefFaT4v49DEcW/Wen/ydzcdRdRx45gJJIPVKEC0SuvwH1WWKgSEP8zZCGiJni7xx5gaJsQURHR3hCii0R0w6a+dziKPHNHASyxolgiuq7mgYhot40ogoiytevtshKZ8fVMwzm3wqUegLp1Q2ndpEmq/C48HJZtt26QV//ZuSGigvpEFIox82c43qhNRLnggXI/hQ2IKBbf4ybk4WdEiu8UNSKiYn4uPO9gBJGrMRFlE+0PIxL7Rc7dH0ak6T1eVNSIiDJxjf9QTFWoXTuixYuJXpycR2u2hBORhR6fFkVvL7rFP1Sqql0TOnv2LBMRb9myxevzV155hWuZ4HZOmzZNzFWvw18Bcf6B40yk+sH+7/jf8b/jf8f/jv8d/+lj+9f+kV5uFvjiD1u4QhaD+5SZfT4jIpo8eTJNmDDB83dWVhZVDpCFFlqnGoWHq0S3xETE0lNSiEaPJurZ8w8l5vqnlSuJnptC1KIlilTNaMMGognjke75YXGh8KZNRE8+QVS3HlKoJz9LFOIgchZrhPXqozB40CCiU+nqWilVEYyeMpmoeQsE54hQAPu314l69PTOHtNp1Srf791iOnwYMXNJob92zdeDFBeHz8uXx6MPGnQLk9h0OnKEaNhQovgEhRzg75wy8cg8IUIc4q4RRGXLAZlj8rNEFZKILgTIqBX64EOi+0YRRUVj3ongZhl1L1FSRQS6g72PW0xXrqA2d8kS5XHQPelEcJ/ZbPCi9u+PutE/mPxpTnl5RO2LA8ObNpu7at1uohbN8X7NWiTyZGURdemMzxa+T/TA/UTRMUTZATxgsXFE168RLVhINPoBfLZ+AwKi+n1s3uKdIVuae/2DlJODBJxPPsH78HDfKJXDgYSq8+dRbzt6dClxA0pD/fphvX/0sf/a47vvJtq/j2jO3+G60r/38SIsHpeWvNGmLcoVunbFfBApnvfxIhSUZ10n+nKpKo3r3p0oM4No8Rf+y3769yc6fw68NQjQmNJSYSHqdT/8EAmGCQmqPLhSJaJ6Pf5oOYUJlUo8m1BBQQHbbDZeZuis8/jjj3PHjh1L/H4wmoI0xCYCPNrAgarzXY0aQOwLuhlzsPTuu/iBQJ1PdPxXIcHZa90aOJJE3ujYrVvjPL05vTyIIGrrwPwC6j5woP/7+PZbnFMS9vNN0K+/YgiIAE83cSKQ1nR4aDlsNkCwDh+O94mJwC7PybnFNyVt18x6nQlJN5LkZPPPBNLPDNPa7PjpJ7xGRanr7dqFzwJ1PDl+HOeEhf3hxzbSqVOA9QsLAxTkww/jVoydgYgAA5icDFQ/Oefuu9FY4paSYLBaLP5b7OTmqhuTfa/33pT5NetIox+CMS6NO4hUpwun0/czI7ndwQH63wRdvQoYyDJlAO04ahTQJ6WFogyRvI+LA+y3wB136ADM7NL0vQ2KBJt4/37/5xR3tvICSxdM0B071JjJ0acPztH7dwrP+/lnhUeuA3YLLKdf0HRWg6G3Kr0FlJMD6PmKFTEHd9wBiFR9PvR25Gb0/xu0o8PhoGbNmtFqg6WxevVqanuL0uz08LDFAmOibFnEQRo2hMJVuzYsMKNmf9Mk5UCBSm3M0G30zFWzjGRJEjAmHjid3qn3QnLtQMlbUtKgQ+X9QfrlFyiYzZsj8/jDD1E3+M470NLlkVq2VPlHLheMvjNnEIvq3x9zV7Uq0WuveZfE/iGSUptACEJmUH96ZqTMTUm1MDJPkvBhNjeBElDkHvPzA2eGloIOHMCaT02FZTtlCpwcX3+NZSSPlpiollRREazbRYvgpXjzTZQD1atHNHToLcyJkHKTsmX9Z4Lra1lH7SKCu0pcJyVlksv/LRY1j/p1JJnN3/xYLKpwWYcA/QN09iwQ8FJS4JC65x7spW3bwFIkV8hi8TbsrFbskQULkDiVnw+UpFat8LfOQm6aCgoUmEWgMihZp2Z7x+HwdW3JPJglQLlc5klYwSQ+SolZoNLMUtC1a8gcT0lBHL1nT6DdFRSgvFQf42HDbslP+tAtyVKeMGECLViwgN5//306cOAAjR8/nk6dOkVjxoy5FZen1FTvuaxaFRi/b70FN9ru3RAMDz2Ec2fN8q7ZvimSomsBwDAjsxpZyXwMDzevS/MncAsLlf9Vh0iTlPhADySAChcu+M+CDoKYwbi7dUPW5PHjYOj794N/3n47SlFkzxIBtUUHt3I4IGzHjgVTP3oUBfwvvAAX5qRJCqfjpklAFQLV55mBHsiGdzhKhg0UEkEr81VYqBiODuDgr2Y0Olrdw7lzwf2mH/r5Z7jp69WDJ33GDGS/3nYbjqgobzyDIUOQQCWUmQlG36sXUe/eyM58910IhEaNcO0dO/7QLapnFJAFMxKGHhmpxlcvf5O5KUng6pqeWRmYGfiJkWQNBQLqCIIOH4YruFo1CE1JWnv2WZRsXbnifWv168NzK5SRAfnSowcUpV9+AbJUWBjmNi3NO2RwUyRzExoaGLlOeI1ejiM8yQzgxUzgytw4ncqdr2eFC88MpIQK7z192v85QdClSwre8eWXIUyPHkWkcPJk7CX9URMS/nPVL7dE4A4dOpTmzJlDL774IqWlpdHGjRtpxYoVlHITMIP+SHC33W6UPwwdCiQdQZr64gvAovXsCY2/ShWALgQCigpIkmpbtar/cwQ6Tp8t3eoVJqKrTqLtGRduYaG51meG12ykChWwQlwulZpaCnI6IVjT0sCIs7Iwnnv3gll88w2YcceOEMI6H/zLX1CoL5SbC2G9dy8Ye5kyYOrHjxONGYNFXq0acK4DQSEHpOPH8RoIt1PmRq9N0pm6bmoEIkkQ0OdLmI9+bR2m0EhynwJVVwpiRk1m585EbdrAuhW4uqeewjLt0gU6l9vtzShGj8aYC4WHY/lFRQFM4eRJpA0cOYJr/v47FNd+/QAheFMkcxMoQCxagQ5ZpiuqYk0Fa+EWFiqmLnNMpOYnmLk5dizwb/mhHTuA616nDvABXnkF9bYvv4zt2KUL5Fflyt65JqNGAUxGyG7HsNSqBaH788943bgRKQOJiVCgGjSAlyJYfdGL9H3jb90XFanxEt7DrObHLGFG5kGveZLrFxSYe4KCMSQk3nuTc3PkiEJjmzsXe+HkSbwvVw6QmWvXIpysL5E+fW7q54KiW4Y0NXbsWDp58iQVFBTQjh07qKOuWt8Cuuce9T4iArWEr78OwTByJNZJvXpgHCdPEj3yCNE//4k5u/de1RQkaBLg7Pr1/Z9jhnOsA3ULY9YFrjAG48LNzzcHdBCX9sWL/v1KNht2KlHg7kYmtz9rFlxbI0fCKPnxR7i/7rwTl128GO9vvx17x2ZTt1GuHJj3ww+raxYVYRFPmqTAw69fh0CYORPK6owZOKdhQyzuH38spctMJHWguTEDrteVIWHqwQpcnfnLdRwOxTgCIffI3AQC9DdQXh46OjVpAhSp/Hx0zNq/H+5khwMhlW7dMH8tW0K5lMcKCcH49u6trpmbC5nfvTtkXefOEOAhIbjmgQNI7jlxAqAL7dohZ69UMHfyjIEaNchY6W5NPQRgBoZhRjpsk5myKnMfyF0sayhQkxIDOZ2wNjt1goKycycUyRMnoOTHxMCY7NIFBtw998Dro9/aiBHgTTpEcW4uBHPjxjAcNm/G/zp2hLX788+AJLznHiyp+fPNG/T4JWlaEKgZwJUr2IwWixq/3Fy1Qc3mRCxbPTFN9lVenvIE6Z4G4ZmBICalgUyg7kYGYgY/GTgQS3DxYvCi9HTIiwoVMCd9+wLJa/p0X+zk0aOD/rlS038FljIR3JJCN25gvj79FFbu0qWwsoQxVKwIpn7qFJj8unVYxF26YAJKjPOeOYOFZ7MF7r5jFkvU3TGiFQYjcPPylMDVtT4RuHl5gV1jwjh27/Z/TjHt2oVFVakSsEU7dcLXvv8eYyR75aOPwBhGjEAsaeNGMH55nJ498ZqS4v1YSUloHLF4MeR/z55Kg4yJUSgvixbBk9etG4AY/vnPwKFqIsKPS7FioO4HEs82Y+q6wC2JZJ4KC7072ggFE2cSBheESX/qFNyQlSsD2CU5GVi6P/0EpUfk/tatEJz16mEO58/3NrgbN1aY8+Ldtdkw5+++C+ZTrhyErsgaux11vL//jqYG0hUnJQU11kGF0uQZAzF1mRu9NZseNxQrNViXckGBOVBNMLkN4joLwpd+4QKAXapVg7XJrNb4Qw+piFB6OoTkjRto7PHmm1CKRD+IjlbQza1bq+vbbBj3Bx+EIO/dWyXEE6l47s6d+P+YMVgfTz+tjNeAJFZHIEVVXOvlyqkbFn5ktaox1z0+8t4sEzw3VymluhkpPDOQoipZ1Hv2lGjS5+dDQU1LAz85cQKu/VOngBql98vo1QssZOlSWLspKd5pA/8RhK9i+q8RuElJat4EBXH3biz2pUuBgnTnnd4eJWHux44Be9bthv8+ORm+e7+LVBoiNmoUuFRAYgs6KL1u9crm1+N7kZEwTYw4wG63+q2CAvUgkZFKGwwUy2heXGahN7TVqKAAzKFDB1hNq1YBwOL0acTDjbJr/nxYPfffDwEwdSoWs24Q6i6xVq3wWlSEPetygbGvWaPcnvreCgnB93fuhPZeqRIs5UqVUEXgVzYdO4YLORyBayfMYok6VJy+UAKR+Gjz8szdYBJnChSYlvv89VfTf7tcmI877gAz/8c/YMUcOYIEwU6dvMd940YwjbQ0eHjGjYN805fUkCHqfd++6nfS02EdTZiAayclKQQqIasVIYR168DrBgyA4lqlCubs55/9eCR0ZSjQ3JjlR+iKqphtJVm4IpALCswhC2XuA8XO27TB62+/mZqLzHjekSPx/K+9hvHctQvzMGSI920ePgzcZGaM3/PPw6o6csQbJEZo6FD1PicHXonx4+Gpa9MGHqC1a73vSeb9yBHs0YULIdD794fS7DfOu20bXoVXmJHwGD0cqIdnZIz0eO3hwzj05FFZsDk5in/pyR/CMwPF/GrVUuvBT1bfvn0Yr+Rk8KrKlcFz9uzB33pZ4tWrEMYHD2JMlywBu754UbHoWrVK2Y6ylPRfI3CJwBiIsKCuXoWG/+KL2Ahffw2m1bevryEYEgJBu2EDJmj4cAiDGjWwoL/6ymDwiC9HVz/NSCS2HucV91V8vNr8OneKjIT/zyyepyPP664WiTMFahUoEk9Lt2NG8sXYsWCsw4aBOXz5JX5+yhTz/s9vvw3h9+ij0ADvvRf748AB782sRw1GjMCr1QoNvnp1KEEHDmDcL1wAozHCa1ssqn/liRMQHl9+CcbTvj20Vq8wj7S/ad48MA6rbGRdGdITqczi62Ykuy83V5mQOuOQWGUg3HCZmz17vOb1wAEoM1WqwJo5fBjjfeYMPARmHeNWrsSabdkSrrDnn8deyM31NjAGDFDv9YzLmBgwoVOnVKZy5cpQiHbt8v29hg1R2n3mDITN1q0QBHXrAqrQ67F37wZzDg8PbEXJl/Q4r54PUVqBm5/v3YdaKJikm6pVsTmcTq/A9blzCLekpeF5f/oJXrOzZ6GMimGs0549WOMxMSjHX7IEOlZKircs0nMeevVS70ND8bsWCxSi5cuhbPXtC/5mpOrVcY9nzsA7dO4czq1aFQaFV9vbrCylxbZs6X88hMfo+RF6zF2MCF0q7dwJ/62ePCr7KjvbPBNceGag+KzVqnjwxo2ej3NyoGS0aQMj+JNPEBM/eBBKZLduvpGiixexxk+dgiJ05Qqu0b69tz1k7I17y+nmq5luDZWmnunTT1WdVHw8c1ISSsYaNfr/2Pvu8CjK7u2zmx6SkBASEkIoEekldGkKhI70KqAoKFIEpCoiAOgAACAASURBVAgKgorSVRAFVBBULFgQUbDQRem9SYfQYoBAAqRskt25vz/Onn1mZneT4Pv+83v5znXNlWQyOzvzlFPu04DcXE7HK14cqFeP0/oKoqwsYPlyoGFDvl9EBOf7bt0KOKpU45Pff+/9BpmZ6mHS0tT5xo353OrVwMCB7rmDr73mOUmSCLh4UeWyHT6s7tm7N597913vz2OzAUFBABEubzyFGTNUqm9cHDBpEnDiRKFDjDlz+DPjx3MO4BtvcM5mnz5AcLB6ZHMRsdRU99dp147zC69eBc6d4zzeMmUKz/3MywO++w5ISuLcuMBA/v6ffgJyu/Xhm7/+esE3KV9e5XQKjR/P5yZMAF56iX+X67wdCQn884cfODmSiPOvhV5/nc8NGVLw81SvDhAh7cPvsGQJ0KiRWncjRgB79xaec/nllzy2jz/Oqaxr1/I9nnrK+MjFihnvlZPjnjf93HN87o8/gNu3gfr1ee9s21bwM9jtnBY5cKBaDy1b8l66M8W5eDp3LvgmLVvydZ9/rs7Nns3nBg0C5s3j351j5vWoUIF/LlnCyZREwKJF6p6ff87nWrUq+HmcA3hv9GR89hnQujWPTUAA0KsXp7nb7QXfYvduXut16wI3bwJHj3LO7aBB7jm3168bP6tPN7ZaOT+aCFi5kvla7958fsWKgp9B0/g5hg9X6bb16wMLFwI3Vv7GJypWLPgmL7zA102apM798AOfe+QRYPNmxYDN8yEPTuTiRZg2Tc3ngAHqnnv38rmYmIKfZ+5cgAi5Hbpi3Tr+ipAQHs/27ZlF5+YWfIvkZOaFsbHMA9PS+PcWLfgx9Xxt9+6C7yX0b/Nw/08JXD1TJ2JBMGECM6FXXuFrDh/mPOtKlYBLl4r2DMeOcUEA4b1xdAWjaCE2rL7rfTIPHuSLIyON54VB//WXqs6hP4Sx6I+QEP559KhiMhs2qHtOnsznnn/e46NoGi+kGRU/QUPaDSJeRE8+ybnrhTELgGsUTJjAX/Pqq3zP/ft5bMeMYeYTHa1y3sePd79HVJRiLqVKMV+NjeW8eE3j2gLVqwMlS3L+fFHoyhXec5IDH0630Z++wDczziIjw8uH8vJU9Qd9QYNnnuFzM2YAI0fy72XLFszUq1RRwqFbN/598WJ1zy++4HMFFHm5ehX4oM2PaEWb4GOxw8cH6NSJlQqbrWjj8N57Sh7l5/NeiIri+5QtC8THK0WnTRv3z1erphh66dKsaDZrxjLr3j2uP5GUxPNsqmHjle7eBT79lOWZxQIEWXLQldZg+aBtBSu88fH8MPpysKIAjRunlNLatYumDL39NvDss/z79OnqnlIQo3x5r4+SlgasHLETvekbBFuyQMRFEJYuBdLTizYOW7fyFm7aFMjI4OVXpw6v9XbteL3LvomNdf+86AoWC89lyZIsZMPDefna7ar4T0E6t55sNtb5u3ThdWG1ONCCtuC9Jqtw+XIBH2zThr9o2TJ17qOPlCL144/8uxSz0B9Dh6rf/f355+jRSvFJSlL3vHNHXetloDMzgZ/eu4DBtAwRdAtEQNWqbATcD28vXZrX+dmzzId69WKF5PnnlV5AxApSfn7R7vtACFxAFTwJCGChGhPDEyDaOmC0pgoqqGImTQN2jvoKL9BCxAekgogr+PTuDXzyCd/XZTmsWMEP0qKF8QZSYeXCBaBJEzWbouLOn+++UKVizvbtrF6btX9h6k2b6sYN+Pln4MUXWWklAooF5KEXfYuVZV7G3TtFL1GTl6espPfe43M5Ocyk69RhjTk01PjIW7e630cM8aAgnhciZTF/8glfk5bGzD40VM1XUenI/M2YSm+gtt9x1wZp04Y1+GPHdIWNTp50DojJ1GvfXjGTp592aldxBTN1YfoffKAYit663r+fz0VFuU7ZbGwIvPwyoy1EgK+Phrb0Gz70HYl/ztwt8jtrGitARKwQaRofnTqxAjRzJi8tfXWpJUvc7zNpkvp/eLiak+Bgnl957j59WDh8+OF9TAyAy1vPYS5NQBPaAYtFg8XCy3XmTLYaXIzs7l31IPoKULIAZ89moUukBs/bIRbu9OnAlCn8+4gR6p7Xr6u9l50NgNf6rl3ArFmsI4kgbGjZg5n0MpJ/vQ+GAeCbb1i2tG6tKqpNmcLzsXw537tECTU/gwa530PkkTyqry8wdapRWdU0Xk9EfP/7qUB143IOPgp+Ee3oV/j5OkAEJCbymti82aT0xcbyl+zcqc4JijN0KGtYRKpSlP4YM0b9Li88cCCwaRNc0lJPouw6GYGmAadOsVLRpo2S2Q/7nscUehNHF2y+r/f+809e67VrcwE0gCtIEXEBv6Ag1tmEZTdsWPR7PzACV4wUi4UHzNeXFdxHH+X5E2UpJYXh5shIYM+eIj6MprGEIYK28H0cPsx7uUEDtTHLlGFk5KNWq7CP6iFnpM7Uu3lTLTibTVlHRMr88CRwRYtYu1bBMrNnu27rOHQEZ6givg56BhPGa2jYUK3n+HjWftevB3L+SVerp4gvnZXFzNvPj6sdCo0fzwt+40b+mZiooBcfHxbIZpJKl3oDpGVLnrPQUNZBALaokpIYKv7ppyLODaAk+vjxSE4G3n+fN6aUy4uMZCP03ScP4C9qgrv1Wxo/L2behg2s5hIZy9F5Oho04J8zZjAXJFISCgAyM5FK0VhLnfHKmCy0bKnGKToa6N+fGertWxozHBH4RSC7nbVwIrbyhcTg+O47Vmzq1OE5EZ3u9Gn3e/3xh/G1KlXiV3v/ff5bqvg5HFwukogV2SIzOBF4nTrh+nUW5l26KPAmLIyFx9TBV/AjdcGVqDrGe7drxxeuWKGsVcHdvR0CSU2cyBoCEaNKTtIcGv6JrI4N1Bozh19Gu3asgxHxc3XqxIw3JQVA9+78Dz2UWgjNn89jPmCAgjX/+IPPzZjBa99cOXT1avf7XL2qWITVynpGiRI8v6LrCTkRVgwbVnRrDKtWuZhXepodX37JzyxLPzCQ0Y4JI7PxHfXEFYpjxUhIFuFrrwELFvDvnkqiikagPzp0YCkqg66b9Dvt++AvaoL3emxD795K1gcE8HJYsAA4cwZKAevRo8hzs3Ytv1eLFnAhYRcuMB966ik2vM1GxMyZRb79gyNwZRES8eJs2pQXzt9/sw+qf3917e3bbGQWK1bEcpxbtqgVePOm4V/p6WxRTpjAfhEr2XmT+DhQqxZ/79RnU7CCBmF7ia64fBnILqGznkRde/ttj5q6gyy4ufAr7B30Ab6h3pjVeC2GDuUFExamuiWVLZ2Hvn2ZURgsbiER2AMHFvq6N26wy9k8Plu3MtOYN48NBqkHK0K+Xj3P9xN9w2Jh4ScG/s8/M29s2lQxiZwc3j9Wq5GheKXr15VkPXjQ8K+sLNbUX3uNxyvQJ9c1Xg89xN8z+RUNH/uNwEZKwtlNychs3RUakXJ2eTuaNYOdrEgb/Qb+nvoVfqO2WFjzYwwfzgxVLHkiIKaEDd26MVM8dMhDKWEx9+vVK1SS2WysE1itbCkJnTnDAv2553h+fHxYCRTBFhHh+dY2GzN0i4X3Sd26fP1PP/F7xMcrZVXTWGCIblGoSyI3V0GMev822KLcuRN46y0GGKJCs13jFR3N5156Cfiw9BvYSEk4ufRP3O76NM9N06YFz03ZstCIkDFkHM4u347N1BLLSk/F2LGs0ImLgwgICchF+/asx+7e7aH2+urVfGGpUoU6BR0OFQ4wcaKa5/R0Hkepg0zE41yihFLYTWzFRQK0WK0MKfv58Zi98AKzo+PH1bXLlvG8d+xolIteSTbitGlu73H4MNcV7tMHKBut5iYmhsdw1ChgUfVF+Ikex4Epq3F93Gw4yMIbyzwfHuJTsus1w+nD2dhISfiEnsHUCdno1k2BE0SAvzUPTZuyrrN+Pe9nAx07pgbn3LlCX3fpUr60Z09lGNjtrFSUK8e38/dnIy0gQM3Nvn1FGEsnPTACV5i61cobtkoVZiRz56qgqi++UNeLBefjUwTGLpCj3oLxRLm5yPIPx25qiCVvXMdzz/EmK10i220NBlAOYukaqllOoA4dQJ3S//BPOoDadAgV6DzCrRmwkMPwuXC/e6hTh426mTOB3yuPwk2KNJqhnkggTl9fVp290IkTvOhLleL4BaFbt3jzt2jBa9vPj5VUMdDF8vFGoviGh/OY16rFC/3PP3nO3nxTXWu3MyROBIwdWwhjFwuqCLhPbp1GOEI18dnwXRg71ilQSue7jbEv5aEk3UBFOoN6tA8NaA8a0B7Up71IpIMoTxdQ3Pee25z6WfJQvToLxKlTgW8eeReXKB7a7DkFP9jNmwqB0EN2Hi5r1owvXbtWnc/PZ6OvYkW2yiIjeW70z9arl/evlwBBsYTr1ePj4kUWwv36GYX1smWKcTkRWc8kG6906UK7iGhDn8dlKoMfe3yGqVNZaFSooBRYFxMmG2L9byKBzqEaHUc92ofGtAMNaA9q0WFUppOIsabCl/IMn7OQAxUraujenfn/6v7f4yw9BEevPgU+F/LylIkl/g8PZLPxOFks7MpwvZcG9O3L45iczGMt3gjRExMSvH/9kCHuhmFEBEOh1aszWqdHlX77jS202rVRsE929271EIKreqMZM3CNYvFDs7cxZQorqlWrwm2M/SgXMT7XUYlOoQYdRW06hHq0D43iriCRDuIhOotS9A+CKdNt78SWzEPr1qywfD7hCA5TLeQmVCn4uQCFgOhdBibSNIV+mxXFWbN4zrZv57GOimLFpnhxZWMVGTHA/0GB+8EHH6Bq1aqoVKnSfT+4KFeimfTowVpkRgZDJWFhzESE7HZm6DJfHnnCzp18gY8Pe9cLIulmUrKkkUPNmYNsCsSJjhPwyxe38AX1x0IahTdoKsb4vI/htAjDG+zln7QII+gDvEwzMafUO/iInsPqHl/gwILtuE3hjOHqSaIHR48ufIAkmtbLtRs38kKrWZOZg5Cm8VhGRHCw0qBBLJATEtiKElmhD/w10/DhOmUjQBncGzawL9LHxx3tfv99nsvu3T1otwAzCsECC4voSU9XC+PKFXV+61bkkh/OxbfAxo3AF2UmYRENxwyajIk0G8/TEjxHH2EofYih9CGG0yK8QjMwt/JSLKUh+L7J2/hj6WlcoPLILxVn/E7B+QqLzgWUT0Q6rJjo5Eke76god5n8+us8frt2savD35/5UHS0UogKQqunT1dzExzMgkOGVBpbmbukrF3Lrpv69b3ob/n5CqrXByx5IwkK/O47dS4rC3nki7P0EP5YdxffJkzC+zQSr5dfgZdpJsbQfDxPS/A0Lcdz9BFG0vsYS+/g9eDZWETD8U29Odi8wY4zPlWQQwFGCSRYenR04fi4oE/x8R59Jtev89YKCHBPYBDf4KpVKnq8Tx+1bIl4C3sjQX1DQ3n/ifU1fTo32QkIYBepno4dYzdabGwBTXckcNOT89jbtfrILE2DPTQcKRSDfd9ewJqm8/ABjcD0ku9hPM3DaFqAEfQBnqclGJy4H8NpESZa5uJNmoIFNBqf+w3Gtq0azif2gI38jfOenq60v5SUgp9N0Ed/f48RU9nZ3KWMiNEZ/VQfOMD74+WXGd328VHR43K0bl348Ojp/5zAFfo3D/7CC2qeJKIvKIgZekYGW1nNm7tbTEuX8sAnJTHc7CJNU6kKhaV3AGxyiqTXk/iepk1jTFFMPVGhiDic2qz2JSaq7/77b/49LMy4amRH1qlT+PNt3Kgknkn9/egjXnDt26vOaPrxIWJ07fhxllsSzCsM3d+/YMRNmI2fH1CjBjOEhg05oyA3l/2GFSu6Q2E//cRCoF49Dxr7sGF800aNCmeaEkVpzluSdoudOvHfhQVLydGxo9qReh+93uSTiPVixQrPUThzRpk8v/1m+NfGjbxcqlVT/m6hHTt43qZNYxQiLAwYPFhBkKJjnD/v/atFTwwMVNGwSUlsxeTns28rJMQdtTtwgBWu2FgPoQGLF/NNS5QwbSoPJM5Kq9UYMCVrPjSU51eijx99tOC5ERxd2mNKzIQ+wj83V4WiHj1a8PPl5KgI6jlGtOLQIR6zUqWMwdUAj1dICI+fw8GK7GOPMQJRsaL6+h9/9P7VkoGhD4B76ilWjG/fVq7TX381fu6ff3hPBQd7uL9Yt1arZ8e+nhwO5V7RQ15pacY1L3zS3F6USGVTiPtMjjt3VIrkrFnG7xXe9/XXBT8f4JVHp6YyfwkKMspzgB+5alVmm7m5jELExzOCJ5H9FgvrWvdDD5TAlZazwcG8oAMDGZosVowHf/t2XmMzZrh/dutW5g2VKunWoOSZedGe3KhVK75ejykByrJcuZKdEUQqEk8WoViq+kOiMR9/3Jg0qc+t0DOrwhibpilm5QxztNmU9TlypDt8cvKk8g0CHHxUvjz/1Acktmzp/nV6EqXValVuvTff5J/r17O8CQnh/WeWnQcP8nBFRemioPX9N4sS1iwvaXYLSCTQ+PH88p6axno6JE0iMZEfWPIP9XlNDod6WX0PUW8kQSAJCUBWFjSNN7zVyharOd0pLY2ZQ5MmjM5MnsxzJb2J5VFjYwvWR3Jz1TKUIRUIbvlyVoISElivMaNAqans7w8I4OUNgK0SweTef7/w95Zor0aNjOclMKN+ff47LIz/Fkezt0NeokIF/pwEPs2fb7y/wJHz5hX+jBKFGxLiMum//da7MpiXx8w+IYHlirRZFnemXvYUtm0fflhdGxzMaFxwMFtmDge/RqlS7nm8WVkM+0uwlsMBnuwaNfhmRbFuxUAIDjZOvgjt0qX5b0EoKlVynw9Z17IoJXrw5EkFrzz9tPF7xaf07LOFP6OgkBaLy6TfsYMfLSbGqCcIDR3Kj3PihHpFeZSYGDU/RU1TFHqgBO6tW8Y95+vLRmd4OPNVgJmSr6/nSTh3jpXh8HDgp8/TVbje5MmFf3lmppqlU6eM/ytZUs2eNI6XRS/MQZ8cLodEwjZowPcRIW1WpeVehXVHBthqcGLAyXO/QYMG/NgffeR+qc3GGmDlyvx6sscWLGC5VLMmj5XV6q6geiJBGEURfvxx9klKrJBkOXlK5L9xg/UZHx9gwTt2aPWdY/PEE4V/saapsfv5Z+P/WrRQX5qczL+L2V6Q8G3WjH9KI3tRtszYrTjhCsINhe7edWkxmS9OcUG7L7/sjspoGiPVJUows79+nRXLl15iI712bWYovr7uvMwTiZFgsfA8NWzICJGgqLt383BIXruebDaVTTVuHJDXo68SlEVJ9ha0wKwJi2X07LMsKGTsJd+tsMPXl79fosgHDzbeX5KY9Sl83sjhYAlKhPzuvTH5FQ5Y7NfPs7tj2jQF8+fl8SM//jjHe+n3Qc2ahX/1qFEMfsTEsLIbGcmBREFBnI/7zz8q99qsWDkcKn2sSxcgfcJb/EdUVOFVgAClIXTpYjy/cqVx7CSF0dPciLIrAlfQgk2blFJlVrZ++UVdW5SQeCdurFWthoXv5MLXl8dan24vJMrP0qX8d6dOrNSMGGGs2xESUrTlq6cHSuACSvZYLMzIq1Thfeznx/7bvDxmJuXLe9YsMzKALp15M71I78JWrY7nXBczCWZavrxxgdy4oR4oM1NtfhGmcnTq5L5Q69dXiw5Qubjm4A3ZFB07Fm2QZs/Gr9QOJegWypfJ8+rnGTOGx02Cf1u1YkV22jRm7n5+SiYVpRLL+PF8fWCgqtojPkIJAnrmGVaAPeVJ5+erKNAn6EvcCY0r3McDKBU2MNDIHTVNMYr9+5VfT4JkBOL1dEjkS0AA30cezBy88fPPfD4uzkN4sgdauxYnqCqq0zEUC7Kbg3td9M47Rv1h7Fg2ACV3My5OGZn61G1vNHMmz01kpCom8u23fE5cd1Kb5Zdf3D+vaWxA+vo48AjtxEVrAo97YZSRoRRVfcgtoIIVFy1izilKkMyZp0NQIFmYly+rvDSxlIXOn1fX6qvCeaNDh3DFWhbN6Q9YLQ7MmuVZFgiSJq5rccnIY9StqyKOPRWKMZMAbWFh6rU+/piFw7BhfI0sM8mXN9O6dUB4SB4eorM4TLXcosY9kqYpON6szIsUHzrUqAx5KhjTvz//lHmuWZN/fvopm5gi3fT7IytLBYcUBvkDwM2byIyugCfoS+bdL3qOyTl9mr+qf39+PXGnrFjBnoumTZlN+PgYMsmKTA+cwB07luc1OlohTz//zNrhU0/xNRcvsluia1fPG0abOg3v0Sj4kw11q2ZzzldhJLmgL75oPC/J3VI6TbzyAjPL4SmZ35n7C19fYyLkuHHG75B8Nh8fxvgKoLw84NXJDljIgY60DrdqPMoJsCYS5iCIoLh/V69W0crymMHBRYvkEzQ9JIRlWkgI79uWLVl+ORysk1StyoqTxwjYlSuxivogjDJQIToTu3YV/r0u5tCtm/H8pUtqfHNyVNESkTgFCVx9vmFGhtIcBI0QstmU5Nu+vcDH1DRn0QlfG6rTMZwIb+LR+bp7Nz+yMOurV5k3vf46KzKidMqhjxHzRoLKie8qPp73y3PPsXy7c4fnp1MnZVV7erDdfs1Qni4gPDC7aJWpBKqtVs24GfXK0N69yh/uqZKR/pA5E3/HH39wsKMoR2YuLHOtz7HyQuvWAZHB2YijK9hufcxjvcvr1xnKbN6c90RODj9K375s6JUqxdtUZIkZcPFEt24pPcJiYRnYtKlK/xL+JAqyx1T7lBScj2mCRDqIAGsu5s8vgv63b59SVM18WKqrzZ+vkCF/f2POlRwSMi/agqR1TZ/O8yGC2Byg0KULny9CDvShQ0C1cvdQjO7hG+rtESbLyWE+U6kSg0niYatdmzNVrFYVw2C1unsgikIPnMD96Se1t2RxduvGSrLFwhF8gNII3ZziUgaGCAfeXI+KFVkwrFxZALJx44ZaNGat/t13+Xz37vy3YHcCQYoE8lRooXp1BTn/849iTo0buz+DWMwF1Hg7fpyVEB8f4M0JGXCUjFbPopNup07xI/Xtq6rZNGjAiJpo202bstAMDPQaWOtGd++q1yFihScmhv2yRCrC89gxvq9bxcrt212c6sLIt/HII853ebMA6EfTVCCHy8noJHmZWrX4bxHMAhcXJHADA1VwzqlTylry93dHRCQC2UsJToAZddeufNmQQfnIquPMkaxUyeCcu32bZb3en/rssywE9+zhj3TsqOrKPvRQQTOiKC9PBfFIZLi/P+djBgaqVM20NGZKEuzmolOnXK6T9A5PoEd3RomGD/eozylq25a/VJ8XBhjH02ZTEKMej/V0yEuItr18OUsW8f+a9+cbb/D5du28PmJWlnIpduqk4WYPZ2WxyEiD+8huZ4UnOlpBmQsW8HgeOMBz8vjjag9Yre5yzBslJvJaf+ghZSDu2cPKb79+fE1uLq+LcuWMsWe4edOlhWU/XAsvjuB89JYtCwlNkbiSvn2N5zVNJZpv384uLiJG9/Q1Eb0ZExL/IBC/BEitWWP8HsmBjonxGnSYn68QzFq1gL9HLVYCwFRkYdgwPi3l6CUn+uefWcnXGxGelkpR6IETuPqIch8fXoxWK2uBFSowUxOaOJGvcaWzLFumPjx2LAAWEgMGKAHhMQVCopPN1g2gPiz4klTB0Qtcb5Gx5cqp/+3dyxqgmCFSL05Iom2rVnXTDOx2Dq709+d/uxK59+xRQqNjR84jzuK9WbmyihiWdb9lCzOUevX4ESIiePyKEnMi1LAhz0dEBAd0iKBt25Z5qQhOcXW7cqe3bVPP2rUrYLcjP58RequVdRBRpgy0YYNSasxrSeoaSmBG376K+co4F8TcJQ9t61Yec1GazPlRUti9eHGPZvuaNfzRkiV1POfaNWVF16kDpKVB01h5DA9X6W0nTiht/IUX2MCIj+ePBgcXKOPdqF075pcSiBUYyL75l15iF4LI/d27mcG5gJYLFxSUWLcucPcuNI2V3KAg3nebN3v4wsuX1X4zW/KCjYty+ckn/Le+LKqnQwJyxP0iTmfZb+ZgBbF+LRZ4grL++ov9ewEBrMtqGlgCi4Irle+hSslu2sSfzchgmTx4MAdt+/iwolq2LI+t2W1ZEI0fz595+GGe75gYXrYCV4vb59IlVr46dXJasOnpCimLjXWN8+bNPM9hYazHuxkTWVkqk8IUNe9C1AICWLmUTAlRVM2HuGjkkDQjaR4hAQBTpxq/Jy9PCfZVq9zG5MwZVvysVp5mmw380hIkFxDgenYBoGT6HQ7mY40bq+3Zs6cCoyIiiuYBMtMDJ3AB3vOy0Rs35kF8+WUVlCMwZF4eb4C4OA033vxQLYhRowwrUNNYKMTE8AL98EPdZOTlqSCATz91fxixrtav52tFvdWnNniK7CPineMM1MDq1fwg8l36FAceMMVsdFG7hw/zGFgszDjd3NHbtrm0Ui2pNQb1y0FQkBJedjsL6TZtlLtlyBCjpXo/kXyvvMKCv1w5XtSPPMK8UZqESMyRpnEcWVAQcOjtTSrgolUrtyiVv/5yJuI7c+oM/xY/oKfcY1FpJXpCGJMwBP1LejqEwcgulo1ujiBzOJTw1EFdV64oZK5zZw/1B06fVhBdpUp479XrboZA586sw924wTqF8C6BLD3wKa80Zw6PYWQkr5c+fVg4XL/Oe0g/hJKO8sOsUwrmrVTJLRDn3DlOhSFid5+hHr3EMzz2mPvDSH1qwc2lPKAEWHk7JMFVBlZS9CTtzhw4Baj51vnfMzIYorVYeP+4dbK6fl1h9yVKYOP8Y7BYjMVfJLDpyhW2Stu3V8IyMLBosZhC69apJWm1MtoaGMgepEqV+N7ma2dNvK2sx6got8CIjAzl4erc2VijwIWmlS/vLnmkXKbMm3T9EbdaQYqQKMxEvCcAVUfUE1Q2bRr/T1cv3mZjGycoiHVecwwpcnPVdwQE4PR7vyIkxFjARWTB9u2qkEdMDCs0FYkHUQAAIABJREFUoaEKkLxfeiAF7oQJPL9iHA4ezEwkK4sX/qOPqoG/cioTJQPuoDVtQD75MHbkBTu+fVsFnTZt6ox0lpC3qCh3aSY+QquVsbgzZ9Ti08MsghGZD39/ZXUJVCw7ZOJE9weU1iE9euD6deZZVivD6gUVpcCGDUBwMJbRYBABn7+Z7PqXWJr79jEkExPD4/fww2zlhIffnyYoBqcYjwLVnTnDgYaxscp4z75nR53YFFSg87hFEcxlvASw2WyMSgYEcCrGr7+CNQEZf7MFpcdQpcOB/F0YU5dDGIyEwEs9bD33E5LyjRUrIudePubO5Y0dE8P+cq/uihMngPh4/EHN4Ut5GNNdYYDbt/Mtv/qKeZYk7utjigpx6RtIIGlZejI3a9Ywg5PAQ8BZDKX+JRSndJyhiozneQoJBQ/t4sWsEJQsyZZv/o3bCuY1J0kCSgmVJFIJKpQAnMIEruybatX48+JrquKhepH4NAICoKX8g88/Zx0iOJhdTl7dFbduAQ0b4jxVQAlKQ7vql2HP54m8dInX4quvquZEI0YYQROxhItCd+4oF2jt2mzoBwRwIJsE+upRhFf6XYCV7NhErZg36dt6muiHH9jvHBTEeygnW9WO95h+IPXGpVmHQM+eUhvl0Nc67dxZ7UubzZivbm6Tde2acu3s2oUNG3hp+PgwCOnVXZGbC/TsiTsUiqp0ApUiruNOGvtgsrNZkezenUEWHx9WJoU1+/h4Dz4rjB5IgSvBOUSsBUoA6aefMsLgshL27gWqVMFmagkfyseLzfcXKQR9yxaVdtY/Yj0uUjnP1XQE5m3SxPhgtWoZi4ZKxKsnaFkeXpi6qGbmilMAcPw4cskP79BYhIXYER7OlkghVfUAAHu/PIMAiw1D6UPeee++i7u38xEdzaj47du8GMeNY63/4YeZsd9H3XAArPTI/ilXjvduiRKsJF28yIz+jTfAUF+zZrhI5RBJN9E2/gTstsIjs86cUehh6+jD2E91jf02hUS6CHZ08aKSNGKSFXaIgiMt+CQaulgx90G/dw+OyCh8Qf1RLvIufH2ZP3ltJaij5L3XEeV7Cy1oC/LIDxg9Gtqdu2jUiPU2u52BlJ49mbfWrs3CvEaNwu+tp/x8Foq+vrxE69Zl60463sTEOEtxp6YC/fohg8JQmU6iSshlZFwtyFHLdO0au7MtFqBayev4ldrxQ5o1NolItlhUKoEEQYk/3NshSlMfZ39kPz+eC32hBnM6jKYBjRtjE7VCg5hLro8XWBrRSfdSM1EjNBkV6QxXguvWDUhNxZNPspvg7l1e45UqMRuoVo0Zup9fIWUxPVCjRqyjNGvGQyPFGiTnNzERsN/NAiZPRr7FD23od5TwScf5Pz0rQnq6e5cRMF9foHx0Jr6g/nAEFXOP3rbbVSEMKXkmypAkb+sP4Wl6fteqlXIPnTzJ4y+ws6fi9k8/jYOUiMdj9oGIt6dH95GJHLn56JxwDGGUgVNUiRfzmTOYPZvf8/RprgwrjQv0yHdRAqM90QMpcO/cUdBL/foKzpF8z3YtclAxNBW55Ax0Kl0a7794DkSFN3MWys8Hlg7dixhKgT/ZMPyZHLcgO1d0nuQXigXUs6fS7okUNOWpT64EdUglpOvXld9LZ1HYbCzfywbfgJXsGBG3BjdvFCF/DeyXjo0FGtXLR06bzq7vnhz1MQL97bh0iTV9Pz9GeCQgrUh1qD1Qs2Yskxo0YP74wgssvHNygAmjbCjmZ8M/geX5OUJCsHHiBpefpiikacCP755HNeJ2fb3aZrjD3m+9pbRtQOFwNWoYuzkVdEi5reLF+UsdDmVe/vmn66vsdrZiE0tza8fuQb/g9NGiNbzNymJjo1xZDTefHOv67u8in2craYPDFUEuyJ64PkRHux/q1IlfQZakVKf8+2/go8X5IAL2hrZyWSinRyxAeLiG9u2LnrN44PebeNT6JzPPajewYYNJz5V6iNINQy8spTKRt0OCFzt0UExdoFTRknV1xzWNFeik2jdBBDSy7MHW74uQIgTlLgwJ0XBi/CcuTfJg6KOwWDQsXpiHS5dUYJ8sr6iooqX+mumVV1jplZKd0ir4+++BnTs4SG1FiXGusbj1xEg8lOBAjRqFBK7p6O/DuehabCOIgKqR1/HJJyajUwKkwsNVaoJ0u5I9pT9EGOvdZomJKqhN8gEFOhw50vA8x4/z/iUCHqbTWPXmmSJ3qnr1VeZT6ybvcPHbG76xCPPPxqihNthsPJbDh/PrNGrESyYy8t/5b4EHVOACHJwTHa1iGz74wIlK9F+IY0ENYCU75tMY3sDOgJRnn+X9WkD9eEX37gFxcbhHxTAjaTNKluSN1b8/Q31axh21+WXDSzsrc7sqCb7xpCHOmqU0RP3LEQFLl+LCBb5dVBQvrn6d7+GEn9NiNkf9eaCsLOZr8fFOH6LDASxdiuTw2gigHEyhN2Fv0x7lY7IxcKCGunWNKcRuvq0i0NSpjDwIyvT224DFomF5719wu8RDiKBbbGm3auXCMIXxF9ajAQBz0datYScrljf60KVct2rFIIPdDoUqiNNYxvmJJ1SwSGHHkCFqjgWylmoVr76KjAyGT6UWQFJLO/6Mcvp5TSUCvb1Gv37MZF2I4O+/w1a+MirSGbSjX4HERHSpfw01a2h46ikVk1fE6XejefNUfnVYGPsZo6M1vNDqOOwVKqIWHUYT+gtaYh1XVZ/ff2fltig5pQCAYcOgEWFtpQmoX58FRf36HBeVmQkVaChOTtEoKlZUwVDeDlFG69ZVbfy++YbvI4U0unVDbi4HrQtyWrOmhjWVJnI3IimrVgiJLuwqnXj4MLTaiUiijahCfyOvXEVMbHsIxYtreOstVlT9/FjJLKjRhzcSdwwRK61NmgDNm2l4rNoNoGFD9KWvEUvXkFmmMk++puH4cRYi3bsXUYg4syp2RnREl47cnCA2lqHr9HQoX7iERttsag/IgMghZc+IjOWy4uNVgWPZB6LwxsUhP9eB1asVUlWuHLC8yVJ2+QmkUwgJzO5CxC9eBNq3xyh6D2GUgZuRlfFFrzUG2VC+PPOknj3vf26EHliBO2kSL7TAQA0RxWyY9NC3SKBzGEBcIeX56NUID803ICa5ueybjYkpQu6igP4JCUBODjIzGb4V2Vm1dAbm0Xicr5CkPiOBUhIkIIcExsii0x/i+yNyOeTuTJ6N76gnOkTvc7VVGz1aJ/yEsZQr5x7NrCOHg92QwcHuIfD9e9pQKigDd63F8SN1ARHwbdyLIAKa1stGqVKFlwz0RlJvnAionZCBjqUP4nHLOtSkI9CI8G7UDFitGk4cNwauPfkkMy23IAkzSehmQABw7hzy89nCFEWhdHQeJtJsHPetDS3NmT8hDMCT0uPtaNdO+eKdTD3v4xX4ndpgUMRaBAWx4OrZU1fZTHJ9Q0MLxSylFZ65IP7ct3LhY3HgeHADXKRysJADH4RNQoifDUmN7iEgQDOgsfdD0lSKCGhRNwMVi1/HlIC5CKU7uEsh2BzRA0TAqi+NTE+KNhWKEO3bZyjJqWksSNq1Y1kZGqrh+YAV2EGNYd+8jT8jFTf69PEeYGg+JIyXiHFDcP/oPdQAo3w+QMlI7hDVvj2UhS1OcaJCHaySUWb2JP3yM3c3WltiEDIpGOF0G+P93kO9qGQ8Uv2O6/Y6AKTIJO6YoCCgWyu2+pZEvAIi4DDVwoWAKvD3ycdrk43uDCkj7hwG73T1qmoG61RE//5b6ZWBgUDvsF+xhrrCtsKp+e7axddHRiqnvxyxsapspwR7EvGNZJ85y6Bp2Tk4EvwIptHrKBNtAxErFF984cwISk1VIcQLFhT4GgcPMk+TtEah06e5MMvskgwFNaYdSLJsRt+yO1E57i6IGDn4N6id0IMlcB0OXjS//YbfnvxC8UX6FeXoIubROPhZ8pCy4jekpjgQGuoevJqayg71WrUK8K/t2qU0aVO0sMPBe7V37J8IoBwQ8b1eeVnDb6G9cIdCVRi9ODP1XWwkvFSO0aORVz0Rh6g23nn6KFq1Avx8mVk0sOzF8sU57qXlMjNVVKwzvckTSQCguUCBlHBcuhTAhQtoVeYUGlt3YRq9jjDKQHG6jVif6xhYeQ+bCcePF16NS9M4yGTLFuTMXoAAay78yIautAa+lIcfqCuIgM0TfoHtXh4SEtyDFm021llKliyg/WVysmIapiRrTWPX7ci6O1GC0kDEwMGIEcCP8SPxD5ViRkPkXmjd01GlChzPD8cRqolFSavRrx8QEc5z8xCdxYwXUtzjiHQlAtGihVdtXTrbSVyKUGoqv94LLwBIS8NLjf9EuCUdn9MAVmDoEMr6XEHdyGSOJt23r0Cly0UZGcDOnbAv+RjhfpmIsaSiFTG0uI46wIfysajHJiAzE1268PLS+yD1CJFXYZKZqaL2zbmdYCNkau+TiKMrTj1UwzPPAF81eBeXqQy3OTTvD2+HxQJtwXu4QnFYmfg2Bg5Uem0sXcNLbQ9LNo+RRozgi8qW9Zoku3Mny4w+fYxWY34+Q8aPPgpomVlY0nOjM3CpJYiAVrQRJS03EeyTg9z5iziSsShO/MxM1og/+wzNY06jjM811KTDCKAczKUJKGO9iiGJ+4DUVEycyMLGnL4oervXDoOSc0bE69NkDqekAHNeuonadAhEQPEwB3r1Apb02ICTVBn2zt3cXWJVq6rqbWbUaOVKpFEJ/FhxPMaOVX0pwigDQ6rvNLe2ZhLhHRxsCqlWdPEi61r16rmX3Ozenac1+04e9r2xHkTAV9QXQZSFTvQT/Ijzk4+PXcaBdNev37dF8b8tcH/8kT3o9esz3KRjkveoGHwpD9GUiseLbQER8PvSZISEKE1v1izWaMylj48f5/WRlOQh3zo9XcEj3op/37oF+PvjHhXDd+9eRv/+QFSk6usZH5WN1rQBI62L8RZNxns0Csv9n8fKzzUsC3sRb9M4jKH56E6rUS/stKtxeoBPHtq3B95fqOFC2cf4Zt7q9umtZQ/YohiB5vK1msaaZc2aLAukx/NXSzNRMfoOOkTudt7WgeX0tIHBoUwZ1i4efZTziFq04JtVqmTsR0aElrQZMZSCR/z2w8dix+KXk1Gzpiqn9v33yujXU1oaT3Xlyh6q8dntCkVo0sSzMLPbgTJlYCN//PzyXxg5EkiooPrhlonMQmvagGcDP8ebNAWLaDg+oyfxGT2JJfQ83qGxeJWm4wn6Eg0te1E8iLVxX0s+HnmE/UaH2kxgaNJbj07pFk/kXvABjAD4+XF8kHm/DxnCMStpaezVCA8Hxr9oR7dG15AYdg5EDkTQLUyguca5iYpiH+Zjj/HCTkrickhVqhgLyBKhC/2IcnQB4XQLpQLTMbbnJfTsoblSvKWxkXnt5Oby7SMi3Ks0AlABT6VLey+l2KED7GTFXwMWY+JE5R4kAiJDbWhJmzGEluENmoqF9AJW0CB8Rk/iI3oO79EovE7TMNjyCVrRJpQMs7k+W6cOu162Dv2KoUldmomB7t1TAT5Smk5Hp0+zMde8ubuOKcV19u1jeVWlCtC9u4ZXB15EmF8WYigF5ekCuwL0wicsjF+0aVPeM23aMGZco4YxupcIr9FrCCG2xtpFH0CDh9Iw641cBAZyfYuMDFZIzfWzNY2zFnx9vfTRkAI9fn7eI5qdkPGJxkMwbRrHIPlYmK8F+uahbsAxPEmfYTK9hfk0BisSpuPThXfwKT2FJTQMM+gVPE8fogVtQWwJNTdlymgYOhT49bVdyCU/tow97V2HQ+3vZs3cmPOtWzzmCQnu0fnbtvHHJK//iSf4us9f59idJv57UYHOIYZSeO/KERTEzKZhQ64UUkgN2/9zAve++uFKzor+sFqZI/fvj8blU1CpvA2lSmmIi2N//JgxzF+ysnjDlCvnuV3ptm0svwcO1Cl7drvK64yPN5Vz0ZFEJ9eu7TqlffElTlElfFp2Kl5+/Bi602pUs5xAFF1HIBkb1Beje6hKJ9CWfsOQkFV4d+B+/ElNufqQkERh1K/vXQsTiCc01KBV/PQTD9OwYe4flZKOsimHDmX+KKX/+vQBwsNYQCU/NZUZhD4ArLCjfHmge3dMT9qGoAAHrFYNLVsyA5PaBmfO8HO1asVTac4UOH2amUqjRqZgEPEvhYR4710sFYsiI1031v7agWQqi+/Cn8Wkx4+hJ32Hev5HUJJuGJpsW8mOULqDMnQZj9I2PE3LMfO589hKjyErsISKTJZynqGh3qNVBFq2WlnCOunYMR7Otm3dA50PHGCGLuU2Fy5kyProUV6rjIqzT3R9v894bjyV2vN2xMUBbdvi3dbrXShKz57M/8QNIDUQxo1jHcpcyjo9nZW1MmVMiLnkdZre10DnzinkSCCMy5eRStFYY+2ON546h170LRr47EcMpRj2jYUcCKRsxFAKGvrsRy/6Fq89eR4/WrohlaLVg6akqPwabwEIf/2lUKePP3adTk1lWVy1qvvWv3mTFQ3pECfZENu28ZKXtNBAfzvmJP3OwUSSi1OUuYmMBJo2xba+i0EE+PhoGDyY/7VvnypSAhgFv57y81UsmUFubNumxsTc6UzIZlPCX6SWw4G7EWWxkZIw/4VzGGJZhsa0A+XooluTeSvZUZJuoLblMPrQKrz6VDK+KjYEyVRWFUbIzVXKn6doZVkjgmA9/7yLgWVns74SGenecTA/n9dko0bMyyUVaOFCzgBs2BDw9dVQtpQNA+qc4EVftqxai/qjEFfD/zmBK1SkBz93juHZn3/mRXPxooFLTZ6sYP8BA5j3nDrFe2nJEr5G0F1zP0n5n8XiFEwOTeWZBQXBM+YB1fiSyFiCSfJnX3pJVTjSTWjeU0OQ3bQ1HGSaZItFVcOxWlXlgBs3FLzmrT1dXp7SCCtVAm7dwvbtvDl79HBXIrOymDlID4Rbt1Ru3osv8n6rUoUZjqFkoKYx/LJnD2+Ub75hy3vVKi7YsXUrS1EdtCm5iUSqxoHUeZDGOseP88aYOdP91fbvZ8bRpo1Tbi5apG745ZeexwNQxSn0XbvFAfn44yp4Shd9ZCN/5PqHGDVf6QC1bZt7v1B9OclFi7w/i1SpiIwEjh/HmTM8xomJ7mimprFSX60aMxC7nTX0fv1YUbFYeN4qVOAxM/QVvnGDu5Vv2sRz8tVXfHz7LQu/48cNFSkku6lECZX2umkTw3Rt2/I16en82M884/5a167x8FWp4jRkN29Wa7WgZvSSAqfPY9b3exahrUsxySU/5JKfcW7EX7hqlSoF+dNP6p6SB2quSa4nibj18QF+/tlVsCkmhr0WZho2jHmNVOPq0IHnUda5NOUQAemiO3fYUbpxI8M6X3/Ne+e773jQ9+83SHebjfdvxYo8F8HBvGSHDOHXzs93FzB6ysxkwRQR4Ux9uXBBKWWeemMKydiXLq0syyNH+JxE9REZUMZ88kHeoGeR16yl4muiYHz0kSo1p48gE0jfkxUktG6d4p3vvov8fN7WQUHwWFv9/ff5ctmeL73Ec3XxIlv8EiBtsZhKattszHu3bOH18/XX7j0QTfS/LXALIQluDAtT8RO//srzXKkSL0bpMf/QQ57dkGJ1jWmylze1xeIexaIniaYIDVVRK/q+qJs3q/qx+sNTSL3AsAcOKBhb301a8kAlZcgTpaa6GNBflQcjJIQtSk/vOnUq7xepcDd3Lv+dksKMRuRDmTJFDuT0Srm5vE/LlGHXUWAgf590IhL+/+KLfJ2nILYtW5iP92p0GfnkrCjw2mvevzQ5WWnyesxTClhMn66a2uub/cp86v+W1KHly1XqwzvvqHsuXKgUHW/hoboSgRdKNkCZmDxUrep5T3/zDd9OQgYEct+3j9Hhli1ZAalZk11w/wlJdlOdOrzsHnqImZLUeJEcRbGkPLW6FBSiQdV7SA8uzR90luT0SHfvKu1Y70eQ1KtRo1Sta2k4oFdK9X+LsjR3rlq0+gL4Ukg9IsI7AqFpDCkT4W5ASTSqdgclSnjOzzx4kB9BYnmk8uGKFWyExcfzNFerxq94vy3fzJSUxPcKCGBBk5io5J2wJon/MneLBHhvJSYCpUracTbuMaXQeOozCPCCEMVFXwhDYOh27VRYsKea8MKniFTcyrBhyq+lX7CnTqn59GbUAByfQQQ7+eCJJhfh6+u5EcSNG+x2EeRBltnEiWx0+fhwOIFUJi1K2/OC6IEWuNnZvCjr1WNGVKUKR7pKKplM0IkTrOl4DNXXNCxuv5b3LM2C9vY7Hi5yksOh0k30IYES+hkSwlqTHuaTBTh3rvtClVXw2WdKEOj7qp45oxbnkSPen+vYMewo3gEhdBctQvYhM/mm2yVnz7JwlceWipWDBimEdNw4pcB+/bX3rysqtWljLKWWmMipSf7+ChzIyOA9LFkIZloz9g/4UD560zfIGzqy4CAH8SG2bq3O2WwKEt+9W1WZMvk13VrCNW7MP195RUWk6At137unBEhBLWFu3cLlyq1Rni6gou8FpOwwJ3PzreLjjUp/kyYMXqSk8BIYO1bJkPspGeiNevdWRvqIEfwq9+6xHiJWbX4+z1mdOp67RR387ChKWG6hPu3F7RbdCw6sE5TBrKCIcP3uO1U9SsZeDnOAm1i4I0cqLaFqVXVPu10psAVZ3Hl5yGzXA83pDxSnDOz/0F2z0DTV41bAtREjeItnZPB8CDBWpYpxifxbeustlWI8cSL/PH2a10MTnddp4EBetp48X9f3XERl33MoRxdxqVxzr1XCAKjWo2FhxiAvUTTnzlVRxxL9pD+mTHE/17AhR3aJwnRTx5MkY8Dc3UtPmgbHyFF4mpbDh/Lx/fMbPF723HNG5OG995jXX7nC49W2Lc+VKJf/KT3QAhdgbVByrMeN44WamclwS8uW6rpJk9jKMlQAzM93mcbvEqfETJtWAE8XMyQszBgUIv1qpZYYkfIRSY1gCRnWH5Ko/9JLqoNApUrG75SKOr16eR2DXbuA0GJ2POq3A5kUzMxHF+araQyBlS2rlFzpL330KJfGlBRIQcvvp2SgN5o5U8Fs8vonTrCQL1tWMXFp4GTohqZprqYRa6gr/Kz56NpFc/P3uujIEaWc6B1YYu2ULm3U5M11lPVpDUQKpejZU6VGlChhNF+kMkHNml77F16+DFSskI/yfldwmcowhzS5CMaNY7hMCqvI1/34IxvVAQEMy4uLzWNQzH3Sxx/zcAUGqlTKH35QqIfUfd69m69zK4X3zTdAUBAOUW2U8M1AvTp272lKolURcQ1IIX3Bi9RUlTSrr0NO5I4+iLLUqRPfW5RafViyVLMPCfG6mO/cAR5rbkeITxZ20iN8H1PHKemxIK699HRGaKZO5VhFWdtSXerflgzUk8RTlCvHBkRICOsNUr1SyrimpPDQDB9uusG+fUBsLK5QHCr4XkbZuHyvIQ/QNMVA9SiBzaY276FDCh72lLYlAlfQJeF7eXmq1rO+3+7Jk2r/eYJPwNtp0FMaLOTAl/SEUp50zHnvXuPatNvZG9G/vyosJ+W84+NVb+H/hB54gTtzpmqWLoP79ddKNkr+aWYmD3qnTs45u3JFFbe3WoGPP3alA44Z4wElzMtTi82sNcui+vRTBTkLA9dDLOaFKgu9XTtmHLJg9SWtjh5V13twYPzxB8v/5s2Be/tPKag0IsJleUmengQzaxrLiA4dGCUIC+O95ufH6M/9lgz0RiI4YmIYeitenFFDKa0qPbIdDlaQatRwuo/u3VNQoVOTWv+THQEB6pkNpGmqJZg5HcUJG2LUKL6vninoD3P1KWmzWL06z734cfXSLi1NMX+JdNLR6dOqs8/5PTc5AE7WxJIlgKbh4EF+pNmz1ed69WJt3OFgA7BXL0ZRmzVjYegNGbwfksZU9euzfKtTh/VFvUARGj6cGfvVq2CuJhuNCOjYEYd3ZiEykpezRxeYmOeVKxsjTyUosnZtnkNxsZghZXOPXGHWkiiuLz0opGmqgMzQoW6PdPMmI2PFiwN/bbYZC/NPngzk5SEtjWFz/ZKaOVO5YXr25HHr0EE9clFKEhZGeXk8FI8+ynrKwIHMeux21he7dFHXzp/PQmf/fuc7L12q/Ok1a+LKgeuoXNnQ9MhIopgEBxtLYkqLnZgYvq8gBvoCF3JIzQL5XhHUhw8rTdtcI1b2d1KSm4WTnc3v6OsLfPWlplwNRGyApKcjL4+XTWKi0nWF9e7bx3EpxYpx2IBkLBXkKSwqPfACV7rQNGjAPPeRRxg1zM9nK0of+S9G5I8v71KMslgxQ1rNkiW8gPv3N0WlS129qChjxIpwLquVF6xUmTL3iPTk1xWBGxPD95Km9WbmLQFZ1aoZQnpXreLNn5Skc1VdvaryQIlwZ/gkxJV2oEMHta4lwnLrVoXIiUsyLs5z451/Q3l5rJ03bsyCZ/Bg1ZykRQueM3mmQ4dY8Lw1NFlVF7FaDWOxcSNbgi1amLrSiEbh72+EMLKzlXX055/K6S/Wlr7SvAhDOcTU9/fnxSRVxAYONL7kYmd/zrAwQzugAwd4qVStqsuZzMpSsCkR7N16okFiLmrUUHDlhQv82osXK7+dxIs1buy58c6/pYQEHkurVTUvuHmT5z8yUik26eks83q1v2ts0TZ2rMviP3KEl/FDD5kCyA8fVkqOOXJRWvHNmaMagfj4uOd0eoIxZe7On1elIitXNjJviWiyWAz+witXeF6io3UFYRwOhd8618MzPdIRHq6mNTubx+G55zh8w99fCeDWrXm+/02hGE/UoYPSFwSN37VLBb9LcTvJDa6fmI/8vgPU83fp4oKHU1NZIYiMNDU5uXlTub/M/rZxzhKSgwaxtSLokRkJEiVX9orwKSJWqKTBSHCwUVO8eFFdv3q16/SdO7zGg4I44cBFixapOS9XDnOGX4TVagxQa9aMWajoB089xY/StCk/vremVWtiAAAgAElEQVSkk/uhB17g2u28Pzt0YIYxfz4zkJQUhuP8/JT7QruYjPalDqIsJeMeFWOhaI4xB7uT/P1ZRqangwNwRHszRyk4nfsu/FosI32BfH2dQ/1Ro4ZayKmp6l7mvrtpaUpIvPoqNE1dOnCgh1zi3Fw204kwjBYjxHIPyStUq5FWrVS2Ufv2vCAHDFBGnpQ//W9Qx45Kr5AAtW3blNB3dUC5fRsT629GAOXgND3MG9tDesmff7KxWb26M5o0I0MF0ZidmxJ5VLYsM1SxzKQkoL4Bvbk7dXCwcgecOaOqhQQFGf1cdrsS1k5H9A8/8McbNDC6rgDwoM+dC/j64gMaASJgx+R1LkhFn9Y2dixP+4wZ/LXh4e6FMv4TGjpU6TbCzxYuZBkmQh8AkJuLr/r/DCJgPTnzTkzQK8A8tHJltgp373aOjYy12SUikUc+PrxZZUF4sqAEapa9pGfqK1Ywl5bz5kAcKcXZqBGQl4fdu9naK1vW49ZnaCwiAluoBcuMbutdmoco42fOsCyxWlWthsREj7U+/jXNnctrqEQJ1uHLlGGdLzeXvSOuLoSahp1T18NCDrxN43g858xxg+hu3WKL2d9f14NaSmy6oCUn6fvUrl5thKrEuaw/pMSb8DLhgUOG8HqXIj3mCjxSMS8qCkhNxaVLPNXFi3vpfrZnD5CQgHOUgCDKwthaG10bTAyvNWvU40rg9WOPMQ/6b9ADL3ABRiuE5y1fzrJx7lzmi2FhwISR3GEDgYE4TxUQTJl4oc5fHiSVos2bmbFXetiBkw870wz0ZqKQLLb331ftWIiMfih9AVz9EROjYOpff2U8TrS+PXuM3+OMEsy2FsOQLjdAxPE8BWnU22btBBHwATlD8du2xf4VR0HEfOXaNZVCFR7OQTv6zKT/Bs2bx8IiLIyFRUICo0maxpurdSs7R0NGRCCLgpBA5/BYqb+h3fb+ECdPsq+mZEkNm5q/7tJ63SJSJTlSWh0KgiBogx5e7tLFs0JExDCApikmLzlnQgcOAFYrNCLM7HcERIxQFgT9XttwHKHWe1xTmgioVQvpX/+KkBANU6bwUoqO5ijupk3Voxda9vI+SHKya9VipK5bN9VPoG9foEIFDfnLPwfKl4dGhNa0AeUDU5D1d7LXe6al8fMGBgLLezm7Z7nwaB2J/1si8CWK3+y/1TNwIgU7t2unLDBAQcLmymtXrriC5j7ruAoBAWxYFxSjkHPuKh4OvoJmtJ3TXcqUQf4nnyEhQUPv3nyN1H4ZOFB1CPrww6KPfWEkbpe2bXkZTp7MezQnR+pha7i6covLDB5D8xFoycHZb71H/ubm6nrB9/qb381qdec1kqpVqhR/SCAWcduYD6lxKn9LRSppnSjWcp8+xu+x2VxI0taGE1GypIZy5QqOD9Uy7qB17DGUo4tsNIWHA/PmoWfXfFSsyDre8OGsoMyZw+uwVCnP3U7/Df1/gQvWxH19eWEOHMhKbbVqgHbhIiY33IhidI/7rTotmfkTroKIQ+sLorNngWolUhBGGfg6bKh7B3EJh/b35x0sCY5hYSqaWc+4zYevr9LApazPk08q09VEZzqOQW06hEBLDpYvLLg9SHY2B0I1fcQOx/iXXHBMX/oaCUEpyF//O+bOcSAgQCGy7dq5G9f/KUkAd6tWzMzfeIN55r0LN/BNn+9BBOyjeq5x2jhjD4g8pzvo6eZNoG2VZFjJjpnWKXDsNFWIuXFDQVDHjxv7BnpiHALb6w8JFBG/hHSDSkx003RuvTgd3Wk1iIDXhqUWWEhe09hfGh2t4fZrC1zRzrNoEvwtufjng++xbg0X5Ni0iQ2H7t15WXmJzfpXlJbG9+7WjWWiCOBjuzNx6JVvQAR8Qc5E3dhYnJ35LQICtALTWwEWCkPac/nG5+gj5CxebrzAZlN5zgKnCFStg9xdR48e6nfxD0rP1rJleUAloig62q2iSO7XqzGO3gYRMLh1svfAOye9+ioLtL9nr3VlEqyiPiAC9k/4GsnH74GIEZuICPUo5pbM/wk5HGz4yatLJsE3X+bjzmdrUNznLl6iOa4xyZz+DiqU1/DYYwU3MdA0YNZLXPa0Pf2C1NEz3C8SqF9S8KQCR0H9cPW97/T9ptPTlfbg6+tWX1w7egwLfMfDh/KR9PAld0TIRBLE9sucoy4ee5Iqw0IOLO3yE2yXryMiglGBpk2Vruatzsb90v8XuFB93/v25Vq3617c4GLk1ykKQZSF12OXsGTRNNjt7A97+OFCelZ+/DHuUCj60tcunmwoOCAJ9oLvSFuKtm2NaScSjaz3f8kh1ZO6d+d77NvHf+uwcE3jWg+hIRoe9j2PI1STVewCOMfEiWzpuwpQnT+PC71egpXs+IBGQCNCdb9T6Fv9GF7on4ayZTVER/NC/W+SQP7ClHbO4DKcn/k8AztZUZHOoGfQepawTn/goEEsgwpsMLF9O+w+/niVpjPzaG8yopwRzi4sSVqxlCnjWQEyF2YnUhU7oqKYi6WlKdeCLoBt+3YgPl5DhO8drKGubH6be7LqSCLEXUEct24ha+wURNF1PE9cxaxPwBrUjLyGjyedhdWqoXHj/07KiZnq1VNdJn956wAiA+5igt8CgAgdaD1qWE/AMWuOy1yfN4+FtLdaLAB40YWHYxkNRoBPHmrX1oztEyVwoHRp1iBu31YW0oAB7vMglQtEuSViy1gUqLNnWciKP3LVKtdXnTzJS8DPmo/3aBS0sOJesGSmvXv5UVzQfU4OtNlzkOhzBG3od4AIM/xfR7CPDeun73fpZYZCMf8l6teP58fPT8PC8cl4JDYZHf15Hb9MMxFKd5AxcrLLXBehXKClnZYGVK6M36gton3TEB2tuaqLAVB9pP38VPUuMR7M3YKIWKoRqZZZRKoUL5FyxIrk0wWIXLmigIrxNA/5PgGeKxQ5KTWV/dBPPOE8YbcDy5fj6dDvUZquwkb+WG3tCSJg+/StsFg0PPHEfy/QEPj/Apc3xI6dKBuegX7RXIx9M7VAabqKkfQB0Lo1Rne9iIgIzSAs//6bJ8Jry7HVq13RkNqUV/Hpp4wWly/vlNsHndasxaI2sGjn5rw0ybf1lIs7fTr/DA9XELfgh5Mm4dIlFYTZrx9wZ9cJlVfat69HdVYatpgrOI0cCURG2JE1bBwOhDwKImA9tUcZuowBIT+CCNjw+o4ChcV9UX4+cOQIutS8gGYRx+FLeVhCz6MFbUEr2gTUr4+Ph+yCxaIZ6l3fvs28uG1bL5D5oUMqsKZPH/yyXkNsLFsbK1YAjtsZKqpY0hEEwhw0SPn79IeU0tQf/fsbc3gBZQn3749bt1TOf7NmwOUjt5VTtFkzj7v8yhVWJgYMMJ5fsIDL+V0YuxDpsVURQDmYR+PRiX5GU7898LPm4/1B+zi46L8RmaNpwLlzmNThCKID0lHGehWjaQFG0wLEUAryH66K7aO+BZGxiJPdzsuzQgWT8il044bywzZujEO7bahVi4XYxIlAdpam8mwlUEcEcPXqyrrSH1K5TX9UrargZ4H4JVe0cmXkZuVj5kxVKvfA7jx173LlPFZAyM7ma+vXNxrJ4l7eNHottEqVUYlOoT99gTE0H6Ut11Cx2DUMe/QEKxr/ttGqma5cwbKhe2C1ONDC/y+0pg1YQs/DSnakRNdGyuhZ8PfXDNHtAOsmXhtV5eQopT8+HqmH/3FVsn3uOac7VKB5geolEVxvHMgRFqZ4nT6wLTpaYdfS5FoU3qAgaP+k4pNP+OOlSwPr12lK0QoO9tg/VdMYqY6KMkbCJydz2cZ3nzwANGqErrQG9WkvltFgWMmO9iX3ocXDV9jtY66l+i/of1vg3rvHYZsnT7IUWbeOcZxp01j6JCa6tNzBtAzV6ShiKAXjSqzApOY7EFHcDpuNF5+fn7ESI6Dkn1v5zN9+U5r0s8+6GNy5c0oja1fqIE5SZVWxQdN49RCpUEKBNEUTl1qG+kU7dqwKUJAKPGvX4h4Vw8yA1xESoqF0aWMBKmzapO45dKghNzQri3lRnTrG9XXtGhtnUkt/9Ih8xBTPxu6mnH88gt5HAOUgmwJdGxLt27NG8t57bI7t2MEOlnPneFAvXGB4Yf9+HrOVK1mBGDSIg1Scgm0+jUEA5eAx2oIOgZuxouO3sFg0JCezkR4bqwsCcdKvzvrv+rRNACxspUhF06aucpJpaWrPNo1Pxg5qzFFgMjaSurWArTe3eZDoF/1Rs6ZiQFIxZP9+2MmKT2kQoiLyEBbGLi7XFPz9txLSjz5qqOGoabx+Spc2ttaz2ficINcfLbbDatVwpvM4BFAOnqWPQAScIqe/v2RJDk1/4QVe1N9+y5Fohw4xrpmczMe5c8xotmxhoTZrFqenNW/ugrE3UhLrbvQ1yluTsb/HW6yIreM136wZB73rZfy5c+wWcMu2uXZNdSMoW9ZleeXlscckIACoGHsPP1MnaP4ByoKSQggTJ7rn3Pr5qfZ95vMiYCXlJCMDWkQJ/EZtUSU2HT4+vHxdek9qqlIGEhLchO6YMfyMEgEs1KKFCjL860+uZb2xy3sob03GAFoJImA1OUuKhoby+D77LI/3119zdPzBg2yJX7zIe+fsWY7g3r6dAyrefZetv6QkFz+4RPHMgugj+FIezncYiQA/O+bN4cX27LN8qR7oSk/ntZSUZJL9WVlKcy9e3FWJzeFgYK54cSCiuB2LLSNgJ6squSWtRh95xAjtE7FyKU1UzIVkpN68NJFwpmntoQZ4rAw3FHj6aV28SG6uYq7h4W79RGV76pU/gLdAZCSLips3WfgubL0WnYM2ohn9gTDKwJs0xSXs0bAhu+3efJOjqn79lffIqVM8N4V0RfvfFrj6+rkFHdHR+KruPBABA7reRcWKnHNGxLFGAGt+MTHG8XQ42LdoaG7y5ZdK2Pbs6eY00zTgx3fPowKdhy/l4Zlutzm/TeqO+vurjHh9q7ESJfgLzdHKzZop38iTTyIrC3h7ngNRPmnwo1yMqveX5w5fX3yhNM8ePVwvNmIEyzkz0xgzhtdxRgav7ZIlmRm9+ioQEa6hXWIKWsf9zVZGUVukFeUIDcXhBs+CCBjZ9wb8/TWkpLAiK8JfmqKbIeRhw/g6V5rJnj1qYzds6LH12eZv01DDchxEQFLN6+yn/+cf9TySoG0uUSfVdvSHr69SnqpXR24uy61qYZdBBPSJ2oKUax6szR07lNBt0MCVj/ChMz7KkO7gPG+xqFr7TZuyriPV9J5pcwXxobeh1anr1pXpPzr8/JDdqAUCfPLwfGeOazh4kPUMiW9Z74x72rrV+MzCT13vcuGCsnLKlPEI2546mouWQRzI17h0MtavBxw5uapil8yNXhkKD1cDJ4fsT4lCDwuDlpuHDRuA5hV4bpr578GRPR6Y5+XL6jkrVHAtLkk7nT/feLkEpwv8P2QIG8gSrjG69zVYLQ6kN+/sGTn5t4fVCtSti0oR1zGwJfvDP/uM56VGDeZDUjfeXM5b/P7S+x23binoNzDQfTLBVuPg8ptBBFQudhmffOIE3ORzb79t9NMSMWJw65bxnMzd77+71hjS0rB/P9CraQqIgBqWY/jtaw9VUjIzFfpRvLgrS0Gab5nLzV6/zq8jQMnChbxlL17kPumj+rOvelfD0e6pZt6OAiBt4H9d4K5YoWLjy5Rhs619e171c+cyk7xwAdA0pKbyeEl99BMnmCdLO7gzZ4xNDYSuXuXbd++uQXvtdTXwPXt6jmJ2OICkJGRTIOYlrkRcHF/escIJfEO9kdnlCdVZ3By5N2qUMffTuQG0rduwj+phuN9SFC+uwdcXeK5dMi5RPF/vLZte8peIgObN8dNKblpttgpTUlRPaEAFSR09ypt3wAAe5rlznR/IyOD8mw8/ZEndsydvhIQEFlRSaSQ4mDX6uDgOdW3ViusCvvUWa/ZOiE1q944axd/73XdszVWsyIzj7l1GgF980fjc9+6xEl2vHmBbtlIxtEaNvPcZHToUDrLg+4dfRq1abI088tB1LKLhuFG7tUpqNEeOS0kl+VuCc7ZswTmfSphMb6FUyXwQAW2bZ2O3vxP2l+odZtq/X1nilSvj77VnEBzsbhXm5fGjiICTPhZffcXzUqsW60AuBCA7m9GeZcsYan3iCWZ8VaqwMifpTIGBPE+lS3ME4aOPsmY/ZQpHnhw54lrfSUm8rcLDOXPq7bd5Wd2+zfNTuzbHmelJrPXYWODG2p1KkUxI8NrLFHPmQCPChog+aFiP274lxGZhLk3AlZKJSuDqGXtcnIqalUP+/+OPSClRHQtoNCrFZ4EIqJPowLqSg7guuhlvFbp8WUH/ERG4/f1mxMezJWtGhLt2ZaPYbuf1GBLC+2j6dF76PXrwcgTAyvnRozy+r73G4/3YY6oNX2goz4+fH98oJoY3QbNm7B6aMIERvN27XRH3I0fykIoPXxQg8YkPGMBDZDbMJk1i1rFvzRWFOoSHe29m7Oyytc/aEF1bMB+Ji8nHyzQTx6m6yrvR7xE/P14sEr0vAt25gG/UaImlNATNEq45t5yGFQnT2YKW4sdmyshQQt7PD/kffYJGjXiYzEkIr7zCw3jrFq/HWrU4FEYKYIwdqws0dDhYo/3+e+bPgwbxoq5dm/dIRARbwB6UET39bwvc+6RatTi4t1gx5vmLF7PMk+Difv2YuZkjPX9YwQtsGQ1WUtubL0as7qAg4OxZ5OYCny3LQ32fg8ynA/LRKXIXZtAr2EStcIHKI498XfCXRoR0Ko59VA/L/YbiKfoUZaK5d2QcXcHkbidUoSlpGN2okfeK6Fu2AGFhSKEYlLSm4fFHbrq5+MaOZYVR4JvOnTmQRJi7xEKYUJz/KonMrl2b50EsCsm3mzaNh9QcCL5/Zy78rfkYTU4ouHNnL85DMKOSKkTbt8PhYOWiY9Re+FA+fK12tCh9ClPpDayLfAp/UxVkkbO7yZkz0IKLIYPCcJyq4atY7llcOSadjSjKwAuN9yvdRyroxMV5L5B//DgQF4dsCkQNy3FULZ3u1iteajZIi9KXX2a+eOcOz5kUafrqq3817EWi2bN5zwwYwML9n39434hyKnLQ7Fq7dsWBqGKZaEe/cYpJjRrea/ZevqyUmBUroGkcd/ZkxZ3wp//H3neHR1Vtb6+ZSS+UNEhCIJTQpUvvVZAAUqUXFZQm0hSpUgSRJkgTEKlSVEBA6QrSEUF6CJAAoUN6MpNk5rzfH2v22efMTBC9oP7ud9fznAeSTCZnzt571Xe9i/d/hZC7GE0zsC7iffxGlSRN6a5dUIiQSPlwnsrhu+D+GE0zULNwAgxkgxtlo0vUrzh40J76Fg/Vz0/P2qaVu3eBGjWgEKEtbUU+r0zEX9efMYGwFzCAlSvZ3sTHsxPYsSM76+PG/eVH/4cinOMPPmBblpTEdnrIEP55TIwTPwwA9qWqFXuMEoZrSCU/3qe5Oe5paRJnYm+rungRGFD9NPLTE/YZw1LQj5Zjhd9Q/E4vIYnyyglO/frBTJ64QZHYaYrGRzQejUIvw2iwwUhWNPI9gW+/UVjviqkLRM6pHiFms4qHGUeTYTJYceyAHt366BEv76hR/LXAmu7Ywc58uXKM03raUKK/Iv8zuBoZPpwD4c6dORgWbDCzZvHPRdZXN6Jp61agQAG8SV/Ah9Jx/qNvXb43AP1gce1cSbsHfq1gHUyfZEFzwx74U4q6rwxkg497FvJQMkyUo3PWK9FvGNHwFHa//iV7ftrJQAkJMjXpmOvSSPaZC6jnfQoF6S4eUAjXwuyFq/v32ZBNmCDfUkT6s2bxIR4xggPX54X3cCVLl/Lf/fBDPigZGXzG33yTf56YKA2MKkePAmXLYj4NBhGwpcvXud9kcrJMFWoRSfYZrA8pCAsn3Ee7wIMIpEe6NfCmDPj4KPAks+77kXQDb5X5BVve2cXKX9s9n5kpx8jlNogeAB4+RP/wHfCiTJynchyR2r0Kq5VBOkIp5OSwMh08WJJiCUzdH0wN+49EGBaRmLlyhbehGPJis7Et1UW5sbFAs2bYTc1gIBumVdoEJ29CiM0mW0Xq1JFrmJMDBAUhkfJhw9hz6BW2B2GUoM9QUg58vKxOM6XD6TY6FTmBr0acw2MK4OhR6BKbTUZJtWvnDpaxWDCnxgYQAdsomn9HM0O3dWuOboWDXq8eP4Pbt/Vr80fthf+JCMZXgenbvJkD4cBAmYDr1YuDNLXj4vFjoHdvxFJx+FIaegb/COV2Qq5/Q6VmjIyUa2jvO7eQB7YO2oO3yx9CBToLA9nUNfAgC3woHT7uWbq1CaRHaOW9H1/MTccDTzszlbbXV3QEhIbqOem1oijY3m09iICp9CGHuBo2jNGj2UkU+M6335aRfkAA/9zD4/lwW2vl/5zB/VMD6P+kiNnjol3y+nU2vuXKSdBHx45cg7GcvyqJEYiQXqYaXorKRFRULsQP2dmS5KJRI73iF6xSEyaoaDxrvkBcoZLY7dYKy+gNzKu7GZ/SCCymAdhInXCKqiK1vL1e0b49H3QifUgOyPqVtzf0vRVS3n2XwQKHozXgksKFgc2bMXKEopskOGUK+wwpKZzJatOGvfVu3Z7HCuQu8fF8WwKz9P33nHXz85MB66RJ7ADcPf+YjZg9faUEh+C1WneRL18uvY6KIsFNRYro080ij/3KK3wafX1hIwPiqTAOUj2sph74jIZg3mwr5gd9hI3UCb9QHTypZ98bL7/M1k6UB7Rk6wK+SsRpRBci+ga/iP5eRt958wILF2LtKqtOF4ky8pkznEosXJizkpUqPY8VyF2sVlZSY8bI+auifiywAKJcemivhVMios7v6Ylxr56G0ajoh09oRaRQPD318+9E6BwUxNbDnoJPqtQQx6k6VlMPLC63APM+fIDPaAg2UwccoVpIcI/k3xO5XjH2SOuUxsVJZ1VLyq+RY8c47Tq8+XlJWOPhAYwfj5M/8YB1QagVE8M//vprTnKZTJx+9/N7LuDXp0rt2pwhEtmhCxf4XkRdOTaW72feHBt70gLnYDRiTTvudf/881zeXICeiPTNqiKF7OXF58kOOkwpXhmHqTY2UifMp8GYS+9iTv0tWEU9scetJW5QJBSj/axcuyZ5BbSDlQUcnIg/mAvU/bVrnOlpU/shbOERMp3dty/u/34fPj6SWC49nZd63DjOCIt4iEg/pfN5yP85gyvkRUS4aWlcVhATVmbNkmhX0dVxcf89GMiGhcbB0sCNHg2YzeoiR0c7BFKKwvQlRPwCLeZe7H6TiV1fUUTW0tEJI639mkhyHgoSVkGDp609KYqMDsLDnVJ269bxj9SU0tatanroAQXDx5iJsd24zm2zsRPbty/bEDFpw2BgwN6LllKlGPhQpgyXUG7dkvR4AJB8KwX5vDIx1H2RfEZ9+gCPHyPR3nFTrpzz8Ha1/9ndXe9JJyZKkNGePVK5CNIFUU/39ubXa/mURV3Kw4ONgRiCoGWOByRdpJeXE63gyZO8D/v2teuUU6dUju1sckNx93hEV7mtlguio/nHisJLPWQIBwEibfYipWNHqdhffllyU4iMgy3Tgorhj9DI47B8Rs2aAbGxsFp5ewcHuxjerh0mvnKl/L6YzEDEnpbgJHdzk4aSiBX2w4fya/FeAqV/6ZJ0SosU0deLhNdApJ/BCz6qoaFc5sjOBiOWRUMyEVp57EGpkERYMxgCPGaMZHpq1ozhCo0aSYzIi5SJE7nEKBxUs5nXqnlz+wusVvRpGIeCbg9ll0H58mpEOHQoP1an3unzGkfDMUsjetC7dmWDK5674xxpYTTFWSGSHLELF8rRR15eejLjX3+V508Fj7BkZLBzUaKEPfhJStINMxnmtgB5PM14EsvvJygcr1/n4Dk8XP77vLithfzP4DpI/focuLZpw4fJauVz2LftYz68bm7oSasQSneQ0eI1pxEaO3fy3tJOS1E9dINBN+gAgJwCJIgrBMmFlqIub16ZitZeUVESZHDxokTEBgXprUpystzEVaqoNcOzZ9lW9OzpsLEyMoAJEzDKNAt+lMopt5dfxu4xP4GIz8Dy5eqQJBA5M++9CBkyhNdi7FhWINnZrLCqlrfwCcmTB5NpHDzJjITyLZy4lEXHTXS0pqT93Xcy+pwzR/8HRY60QgV+QPZRjGo/pjjwYniEloHKZJK9vMePcwbC1eBsq1Uq6ogI1SG6d48PfI0aDvwkViuwYAG+8HkXRMBZqgCULImEyStgNCpYvFhywYqxhc+LJedpsmQJf2QxM/zWLTb0AfltME+cDoSHYyu1ARFwILgzl1E0m+7RI86wV6igKWmfPy+Np+MMOTFJxN+fFbGYWiPOj7iGDGEjKr72ttfcRZvXxx9zxCScKMdBzqIDwM9PJStJT2d/OCLCgeJRUYDNm3G8EJMnrKfXgZAQ5IybhLCCVgwaxBlQk4mD6ec1ju+P5PBh+dGE7yCMzI1p64FSpXCdisJEOZjjNYbDO43jkZ3NSbiQEE2scOeOHETQsKE+TL9+XTo0P/8sHdXixfX84+ISADRxNW7M/0ZHS9SdC8OqpruI1EK5ojAOx9tbnwwBABw9ioTKreFJZkyiCaxTBw9GvWqZ6tChwoXZdyhbNndc1n8i/zO4DjJlCp9xQZR/Z8oKTAldCG/KQDLx4b9e/XW4mWxOfblCpk/n312xArL/QRdG2uX6dZlaO3BAPwtXjPogkukTx8vPT27ORYv4kAjDqh1wL/6WYNJp0QLxV8wIDWX764pF5fZtwMvThvHVd6lKqiNtQjnTJSjvDUfruomoV0/BG2+wjvs7RJxb0TW1e+QefF9xHIiAX4mj/ZSS1RDob8Gbb7h2TX/4gR/vBx/YvxAKQBA0C8nMlM9r7Vo2dEIpO1I7Cs5X0Q8qLjHQQISY3bq5jnKTkiQndsmSSL96BzVqcATlCkNkNgOFwm14/aULqrIE1fQAACAASURBVFGfRmN4j/YcjBEd4hASoqiZmqeyoT0nuX6db3/9ejuz0RtnEdOSnQIxj1QJC0eViAeoW9vmMnK4cIHtZ9u2gO338/L516+vR/zbbHIak0AciShJSwtIJD1f4bCKjIVgeatWjX8uCqpi1J8Qi4VH+dgdX9up02jXjt/GFWevogBNGttQpuATWAsVAYiwnV4FEXC64XCseOcUDAYFa9fKAPtFS3Y2P9cpU4CSJRX0a3kHGX0HIS8l4UOyc1Dnz483Kv+KkGCby1L6gwdsXytVAlJuPJYOS6lSzmN0xDkQIbQYmOyKBUxc2rYbsYa+vvz8ly/nr0NC9OUeRZE8yyYTsGOHOonP0W8SMvAdBfl9LUh+iQk8rlBJfn3pSTgxngdsCFB7bg0E/4n8z+BqxWLBqWVnQATsLDkMbpSNz2kg7lAoTJSDhVWWqzW4AQO4ZOTqzysKMKC/ApPRhh/JTsUiUEdaEYT3wr0Sqa1ataSyEQqdSCoZ7SVS0GKairBG3t7OdDHHjwPe3nhMASjtHYdikdZcSdj79eNbSEkB8PAhHoycCXfKwjwaimTKAw+yYG6e8Yjwe4JhrWKeH7tUbmK1Iv3YOXiYcjAvagGK0zW8RUuRQyaE020MiNjBNVGbDfPmsVF1Ob8TclLSErdB/J8uXZxR3MJrEmnGAwf464AAPc+1MAgAF0613xdprLAwfn/R+EjkPDg7Lg4oUgTZ5IZW3gfg62PjGaUuZO5c1i8xMQBSUmCb/zmKud9Eb1oJhQhFKA5ve36JVmFn0KTsnT/guHwOoihAbCyKBqZgSLEdaGnahYbEz6sR7Ud9/9NcjLZY1BKNIwGBEM4gKxjs9QWjWKtUcVboonabJw+n/RMTpePqyKUsEI+CVEa8rlUruRZxcfw3hDHWUDsC4JDWzrD0vtc8GAxKrvcvPt+2bWBLt3EjWuU7gmrENc1X6Ac0MB7Ee0W3oFC+NCiXrzz/vKWj3L6NNpVvoUGBS/jAay4C6RFyyITBNB8FTQ+Q/ek8IDUVcXGctFH7bx3k3Dkgbx4bGvschYU82AA6giIEtSORbFsQpS9HBj2tThMAQiIONkTr1p497GyJoMOx989mU+u8i9wYHJnb/cfHs3/98cfgZ753L0YX3YT89ARm8sRImokQuo+lJWfBaLAhcf9vz5d8HP+/GlybjXOgR45wDmzwYD5Qnp6wkQFB9BAf0lQ0p11o7H8S+OwztGtlUTOLAOswT89cxp1ZrcgZOBSt6Xv4USp+ff1T50O1fTtvIDc3aRnElAztwGQiufkEmkt7ifYSb2/Z+CioHV0MMMjYewS1TMcRTA9wNaqVy1zwhQusi7RA6pkzAU9PBU/W78Lq6gtABPxM9UAE/CCcilKlOIqbNYtz61euPJWv2aUoChvvU6c4TTR6NDskdgahxrQPr9J2jKYZCDY9hnXSFEwYkqgDT1ksfH5dQvoVBcq8zzCE5sNANmx8+VNn1EpMjFTMoqdDpP779HFOi3XowK9xVCjt20sAisjrCmrHevWcENPKjTj08dsMN8rG7sCu+mGddklNZUdIm+4SiORD88/gRLuPQQTsombwpTRMJzutYaFCfD/TpnE69sKF3FHBT5PUVFakGzZwUfDVV1Xn8C1ailJ0GcvoDRjJiocDxuHrj2+ASIJ3FYWXs0yZXHTZDz/gC68hfAzCVjgb24wMybMrGAtEFqlCBancxbViBb/G0VktVkziIkSqUjBPhYQ4o19TUjA9YiGIgNnu77ucRm618p8RM1UBLi0bDMDyjxKQOHQi3CgbC2gQytM59KUV0olr1Yr3z/r1DG4UZ/nPSEYGr+u2bbzOHTqohmwBDYI7ZeEg1QURcOCVT/D7l8zlrJ16N3AgV7Bcgn8vXMDBoPbwJDM6e38P28XL+p8rikR3C9ozwSBkNMpoVBvVCv0lRvARR9sq/7XgThZEGCaTc2ohOxvf1ZgBA9kwlOZBmT7D5bPr0YOXVpQssrL46yF9UqFMmYoi7gl4mxahA21GLbIPlhFZxOHDWRecOMHh/l90kv67De6uXVwbbdWKD1fFiqx4RHHe1RUSgu4RB1Gl8CMsncn0bo8eSQSzAE8BnCnx8XFI+927p1KMpZMPqkfcRUCAou9RTU+XxAli7lNamqwvCSSTUOyi9icolrT327OnVCaiBimayoighX6azfwofL2tOBloN5LBwU7sKG3asD4SWTwxkFl0y0RHA7Vr2jB/wAV4GHOQXq567s+TiFMBpUuzU9O8OfcHd+zI/0ZH84auUoWVw9NYqvz8MKPkCvh4ZOOX9TdBxKjCmzdlPVmIoNfVtVyYzYxAIoKNDOhe7Cjc3RU9HsZmk3yxgow5J0dmHMTAeLFWRJLCRoTO4goLYw1GJCk84+PlGoroy/6MRblwbbidt9nDg7MemsM9ZgyX7bWsgu3aSfagUaOA4GAFe2edBRFwulxPGcm5uvLkYUepZk1OnbZty4a5fXveCE2aQGUOeBpLlbs7vik7HkTAqVUXYDQqWL5cgqe0E4LETHHtesFqZeVr3+ufFmXj5lS2Ec8zLEx6WKL88vHHzpSbYji5SAtrrzlz+F8xU9BikdkkB2dVlAsnFF8rf3/cOF1mREAotDpizBg2YOnpog9XwZkNV0AErC/z0dPZpXx8+LlXq8b336YN67OOHfn/zZoxnqBkyaczIRmNuFKe68o7p/+OQoUUDB7M91ejBgPwhTx4wL6tLpBUFL55+/p/Gz4ERqOCN990SAyJ/mUfH+nIC5R/27bSGIurXDk5MU17nogkPD8yUjqmYoJJrVo6Z3XXLg4GOked5n5uYfA1/fZCJQqAJSBr2hcuyJ/vXnkHeb0t+KjkGslg5ury9mYnoXJlPiOvvspr4zhP2UH+uw2uK35bcZlMvJhNm3JadtUqjsgURZ3Gcv48n/8VKyR4SsvZm5TEtkT93tatss7n7Q1s3ozERD7PAQEaYgixCQsXlu6WONFRUTK1rI2kKlbk14lan7gKFpQefvHiciMKgE9YGPDgAdLS2K55e3OWBjdu6FOjI0YAFgt++YW/1NZABFT+55+5hOLhwcF2dDT7MQDYK/nxR2YM6dCBow3BKPU0Y5zbVbAgIzUGDuTn8fvvgNWqUuLt28c1JaE4Xn1VluMAfgxVq2p4fE+ckPVtoxGYNQvZWQrateMkg5pFFFkEPz/JeCTad4KDZT1Ji7YUBOviZ+JvEMmxb56eMloT+9LdHfjtN9hsXKJQFUJysq7lDK+/Djx6hLg4fhstUYJwNhYt4s8ZGckA0VGjeI6nzQZWPD//zNare3d+UI7UlH/mCgpipdenD6dBjh0DzGa153PJEl66Vq34HkeO5P2vZTPq3p2XOD0d/JybNJHv//bbgMWiJgxUv0Q8SyKZMTh/nr92c5O9R1pFKYBz2lSzME7btkkDffUqv05LfmInIBdcNaNGAUp2jmQTIWKDFxODjAwGuWlHtooISgRpr77K0a+wSw8e2F904gSjp956i99PpL//ypU3LzuvXbvyeu/fD6SkQFH4vLz7Lt9PWBjvjRUrWMdpyb0+/pi3ZmysfS9qa6+NGwOPH2PVKn5M3bvbMxWXLkmHTIwKTUmR3NZbtjg7Q6+8wr+sdRZEMLR9uwTMifz97dsSFW0PLrZs4V959VV7Mk3Uk4g4ajhyBIrCVZ9y5fRZlbp1GWYBcNwTFMTHhMjuNFmtjCxdtox1dv36vMhatizHa+9ePE3+uw2ugPx/+SVHjT/+yLWz+Pin5uYfPOBnt2oVP2OhOKZMYYOlzXItWGD3WltqJmFUrKhr4BJGN08eYN/o3fJ1O3fyC7KyJOJvyRKZWtZeohdQq5iEMTt+XG7a7dv5dWlpKiVbYv22qFlDQZ48LiI+zYxKW/EoVItKQtWq+mxn584cBCmKdDyvX+e97zhRSCeKwob4/HlWfJs38xssWcKtOEuW8GZev55TCEeO8Ml3RYlpF5uNDcn777PyEIpD9KBqW40FG9Xm6FXyEBYsaPc4WLKzOZgxGIBlY+NkxKGdUda5M39v4EDpLIn10loEwQlHJDMYq1ZJgImApCqKalCzS5ZDnx7ZMBgcCFUUhVOdQkkFBqJL9RsIDVV0xFRjx7JOS02VBBR793LSQwxsyXVtkpM513vgAGuuNWvYeVu0iK8lS/jcbNvGGyc29g/T0PXq8Uf77DPenklJsgdV9KQCvMweHgomNTssI34fH92LFIV7JYmAMYNToQTanVktu4kgQWjfXnYDCMeKSHq52vq6YEWaMwfquBvtXMnRo/k8BBfAmIHMIjdsmEMWce1aaUy8vPDxKz/D3V3BtWvyJSKCuniRn4NAJffo8Qy90ZmZ/Lx/+YUL22vWcEpg8WI+O0uX8ve+/Zb7dS5f1k+0cCH9+7O/LozKsWO8nHnz6j9+ZiZQqJCCji/HS8pNk4kNqSak3biR/ZzXonNgKV1RGmTxGtHMWrq0xJZojavIDIkeeK3BHTJEXQfUri0fvvB+TCasH3sBJhP/uk5lHDwoU9RGI7a8ugxE+kSeIDHavJnfumhRfj7jxrFzmBsxHwD+Y9evs97duZP3wooVvDZ/gJf47za4/4FUrcpO4rx5fFCSk7kFwMNDk+ZKTUX2+MkoZbiCxrQPChnYnXdRt0xNBVpUT4QbZWMV9dSHKQISXbAgW3ttylv8X4Sc9pQoiCTQ4NNPJXiqSRP5vhcu4LpXWZSncwj0Ts8VhIOtW4HQUCyjN0AEHKkzSq2TJCTwWRP13Oho3v/CmL1IOsfcRCgsEY0fOcL+U3i4ZJ5CVhawYAFedd+NwhTPFIzdujnXBMEGe2APZvaaQmOhvNJSHvCzZ+XzPntWtgRpU/uiCVloMiKZlu7fX/b5ahlUHj1CUsHSaEJ74W7IxrrVuZzwkyeBl17CEaoFIuDLyI/YoioKLBaOoESU//77nHGJi9Nvmb9Tpk2TjIgGg2ydbdpUwxlsswEbN2JU/mXwpgzEURH2bHOZMzv7Y6Zu7EVfIbOCpk8qM1O2Xu3cKdPGgsCeSAIHRa1QnDMiDs8E96Gvr+zxMZthKV8V3Wgt+1OTM1yX7G7eBJo2xT0qAH9KwRD/lew82r3V+vU50geko3rrFidKnvfc6GcRYfNiYvgeBHh+2DDeNyqa/dAhrI7iOdEHqR5b6SNHXL7n9u8VeBqz0JAO4HGBsvIZWq2y3WfhQslDoB3DJ6aPiPY77VWoECsfUWISHMWKAqVbd0yn92EgG3q/luI6dkpOBnr2RBa5I4pi0NxtPysx+97p35+d9exsWeLYu5d7yLt0eS6P26X8z+DmImPH8ia8eVOvOHr1AopEWGEdO0E97AL2/+3Ma7m/YWwssoNC8QaxtzX8PVaYyMmRIJDZs6VbXKAA/yt6PQVZ7sSJclOKyKlxY47aRTRkf+2ePUB+XwuKUywuUWnnPlONJManIMg7DT0Na+T7t2+P8W8kwM+Ps0PadPKIEYzletEAS1ciUv5377LuFPXBadN4ysejaUtVZySWisPDkIVxXa7m/oaPH0MpVRofEdcgO7TJluhzkW3o0kXPGEUkU0uiCHzunPyZAK6VKsXhjUi3rVsHgEs9JSMykJ+e4Geqz+FoLrSTNks2qkfcQWXDGVmjatgQ60Yy//alS7wOxYuzwyF6pHNjvXuRIpTXTz+xwRH1QZENPj55t7pvU8kPYYa7aFc5PveNZDYDTZtiHXWFF2WiajmzBN9PnSqzCWazdIK0vbgiIhfRlojWiCRDlagB2wmGExKA+jUs8CQzNlFH/iC5jV1TFPSsfQ2Bxid4Qnbj/9JLuDhti87pEY6qIGByIpH4GyQ1lYOHBQs4uIyMVAHm7MyNuKACyWxkQE3jcZQv8ADZabkAHxUFGDoUh6gugughioaZZYZJWPf8+TnbJoID7aB5wa4mMkMiuBBZpuPHZWaicWMAvJxdOjK97TiaDFvJ0k/tkJj51lUYyYpzVJ7fJzwcSVMWwMdHUTF3H3zAuv7ePb2ufxHyP4Obi4jo6cQJPm/NmyvATz/h11fGggjYQvYaW8mSwKZNiI5WUKhQLjz058+rXrVSqTLmzLDA3Z1LLTGffCcPf3q6nBmp7cM1GqX7KaJh+8EGEZ+i1FS1TmVpHo1RIxUYDKzwEkdPl7+jAepoZcgQzpDdPXiVU6gGAyzkgRC6j0HBG4Hly7H6C+YKvm0fIPIiGsOfRcRkp9Wr2XEuUkSBcvo3POr/IbwoEx/TB/yCkBBg8WKMG2OFh4dmTJ9WHj5U2ZtQqBC2LH8MPz9WRj/POyMVdEyMrO8KL10oCIGSSUiQz1k4TER8w3bjYAsrhNkf8/pXqgRcXbRXGoB33nFpeAS5yM/fPeECnP3v1qFf0MjrKDB7Nn7bw/zOu3ZxCV3wGP/dYrPxY3//fTn849GpOFjHT0IxUxy6k91b8vcHJk3Chi95So9LHvqsLOnw+Prit9XnUaQIp/zWfvYYirePdGIEI1FAgCwfuLvL5ylQdKIMIyLjbdtkusbdHduW3EVAAEc/v6yMlXXEVq1cNqwLLv1ln1t4je1p5oH0OUKMD5H1wQSk/HZNdVQnTeIU7oumc8xNGjfmjyI+8vHdycCcOWjp8zMq02luxXJ3BwYMwG8/3hdwB2dRFF2aPm7mJlSpwvHBtMlWWMvbU8wffCBpZz085AQsIgnovHJF7wgJpPnIkRzx2NfsyMIziIpi3/WbZYkSR1GmjMtuCzHvYthQO2WlvTY+j4bCjbJxt+doKKd+RfHiDAATWyS3+RnPQ/4Rg5udnY3Ro0ejfPny8PHxQWhoKHr27Ik7f+KTvmiDm5MD5M2r4KN+8Vjc9BuYKAcPiJGqtekwGvmf5AKAPdl/4wbXd0eOdHij48dla0iFCmrK5fRpIKq4Dd6GTEyjMbBMm8XWWnh3InVJxEAqIeKkCIMiPMbvvoNy6TJ2urVBGboIDzcrPvnEfnuKIikEyZ7K0Sj2c+d4r+sQoRcuYE2dxSACLhP3wEUbt6N24GXc+Ox7juifMqfhRUulSgp6tHqC/X1Ws2NEzFP9Bi1DuNs9ZH++VFWQGRlc0mnVysGeXbsmB4oHBqrtWTduAPXqKTCQDUPoMzzpO4JfL0Bmop1EZB/ERJnMTH1aTIw1W7gQMJtxKqwN6tIhEHFUrlYe1q2T0XL37rpo6v59Lnv16aO575s3cbYnz2/+hthB+5CmIb9bKjI+X4E8/jbVe/8npFcvoGJpCx5MWQojWbGU3gKIMIeGwZ2ycHfELK7tg9ejcWPexrpKTGKixCtoZrA+esQYMiLgVdqOm9Xa85uIkooWCSsYwADZOyVAN2IN27UDAMTX74lOtBFEXINWswM//STPZM2aumgqJ4d93urVNcmJxEQkTpgLH0MGJtJEgAhrqRuIgFtjl6BGxUx07PgPpIXs8umngLeXgrSFq1DA4wmGGRis+QO9AiLgSIfZOn7NIUPYwOlKk9nZHCITSVQp2D8aM4YxLbXoCE7mbcoLJtD7gqRHXAKplZOjL6OJQfJFigCKguQ+72I4zYKBbKhZQ8GVK/b7uHJFGt3ISCePun17zsKpJsJige2L5SjpfgNdiDOJv1ElEAG7u32FXq8+RoUKL3Zt/hGDm5ycjKZNm2Ljxo24cuUKjh07hho1aqCqgOc/g7wQg2s2c0g7bx7Qti06um1BLTqCRxTIJBiew4EBA7Bh2jUQOVOHTZvGhkudYrVqlUxz1azpBGpI6z0II+hTuFE2IovYsKjvSeYyLV5cD8pp21b+kqD0EZeds/RE68kqAVJDOoBz+eurSk0V0WdIxBD71FRYrVxbK13aGatUowbQrEEWMHMmkotVZrILehcL6R24UTZSqjZiVMv27S+e+CInh4FoS5YA3brhfb8FCKH7yCYTQukO3jXOBzp3xrmFbNAcuQtE1kpl1jx0SCLKixTRTXkBAOvS5ZhN78GPUpE/nw0zhiQgifKyYtBmH4j0aQ1tm4cdDHK1WAv06sWzdcvReewzNXf6e/jqK+nh16jB+XKw/Q0MdF7KN94AwsNsyFm4FEqNmoiiGPSlFThk77M8WawLR8MbN7L3/yJz/4rCzsuqVUD//lgfwgxTdygUzWg3GtF+oGlTJC3bDF9fBRMn6n/90iX2XURJD5cvS0fS11cHcgMA7N2LbRSNMEqAl6cNI4Zm404eO1BKME4RSQYwQNbixXl89VWACAmmwhg9OB3eXjaE0h2soe5Q9u7T/73Dh2VEXLy46pjNns32xrFdeuZMBoTdX7oVaNkS7WgLatJRPKJAGMiGL4NHcWvDV1+xkXiRY7YAtpbffAMMH46LUW1BBPxILTCEPkMo3YG1cjXYFi1BVHGb2r0mJDmZkzWCVwf37slyiSsS9cuX8Yt7I5Sj8yBiHMz5an349cIpIuIshDbM1/ZJ160L+Poihfwxc/BNBOSzwpsy8CmNgHXqdP3fi4+XeyUoiFM8kHN/HfWAaOc9NPdXoGtXfGicjgB6DAu5owDdwyifBZwpXLKE98xzTkX8a1LKJ0+eBBHhprbB8Cnyl25cUdjduXaNiyjr1zOlW7dunN9zaGFZTv1gJCuedBqAlpXvoU4tjmazszk7IUB2QiwWe0tjdSusvfvJ92rZ0jnXLGocBgMufnUSXboARrIihO7j3SqH8DPV53F7RHqaxqwsNWUWR0WwsPlW1KBjIAJKFrdi6+ZsKOXs9YquXZ2fwaJF8nOWKYPZo+7BYHDGRBw/LjNuALB6FRuM2wM/xqt+P7ES1RodIkZ/tmrFKNKlSxkWeOEC1z7/iLFFUThCjIvj9OCmTcz21K8fGyCHfsWDdtKNEw1G4b1m51EgxKYiCxs1ck6pKgrX0QoWVPB49Ccy7VilimrcVDl/Xu0LvD/+cwwYAHgYs+FLaegXuR8/urdmph0RMWmNmd3jfkwBWFn5M7xi2gMD2RCSz4IlixXktIyWkZjjYd63Tyr20FDsmXYSRM467d49tvvT7bpHoJN/7LUOH4atRBA9lLVecQUHM6ho2DCuZ37/PadZ7tx5NqViNnOO7tdf2XuZPZtR2/XrO/WAqoal9CdY3nk3DAZFfcSDBrECd8QVjh7NvZSXZ2yVadwiRSR2QUhysgrGSRkwCpMmAf5eWXCjbHTy3Ynvio3g+a1EkgEMkAMMDAakkS+2hfbH6wG74U5Z8Pe04MMPgdR+7/JrChRwHqx86ZJEnnt7I3byenh7K2rLj5CcHPaVRUYiKYk/1+x2h7C2/HQQAXepoH5t/P3ZiA0YwNHgN9+w43/r1rMRx2Rl8R4+e5bX9fPPGcLftKkEiNkvhQiFKR5DQ9bjyFsrQSQzu/PmsePjmGgUtAA/fHJOtiz5+zvzwlutamYup3krLPtCQVhINoiA2nQYXzZbj3tUQK6tVux0kJnkhX152qFP0Z/gQ+lwM1rx9tvAnbkbZVbJEf15754sCxEhbeQkREYqaNrU2c9s1oyPvKLYcQ9FrehXPxZnGg8HEbCfHIbEeHmxg927Nx+4jRvZAYuLY53+Jx3Zf43B3bt3LwwGQ643YrFYkJKSol63b9/+4xtfs4aNQGgoK7KnEQCIKyiIDeSMGbi9nWkeN26UKEPhD0ydyjrZEZhyeM4JGMiGmTSS/97kyc4Y84QEWcsQxBf37iHWrTSG0jyE5+fRXnkoGbXoCPo2uI533+WXDhgAtPLahyIUByLAZLDiFf/D2EptGMgFMDJDfFZdr4ldjh4FwsJwlUrAizIxrMYRp4PdoYOcXgZwLbhOHda73t7AzLFJ/N59+sjU6R9d/v6cBi9cmEEUhQsztDh/fpmefdrl58eNcxMnImfPAeTLp2D8eNm0LgIhATzVDv4BgLs/XUF+UzK6kZ28oEcPZ0coJUX2OjdvztFHejru+ZXABJqE4kHcJuJOWahKp9AjZDeGDuVU2sCBQMe8e1CcYlm3kw31wmKxgvrC3NzOn3zjhmwncSTkBzjiKVMG6eSD4hSLhqGXoSQl614ydiw/CjEG8r33+LHm5HAffveOFnbtBw/mbzzLvvf25r0fEcGGJTKS/x8Q8HRyBnG5u7OXM2IEsHUrqle1onNnBoW7u0uUuyjnaVuEACDz2h1E+SagFh1hR7NuXechvo6DHpKTAZsNyVHVMI+GomLB+3wmKAcV6Qw6hh3Be+9xPXnECKC7z7eoQr/CjdgIlC/4CLPpPaQUr8yKMyODGUSIGF7s6CQ+eAA0awYbGdCQDiDS+z7SLunpUwXrpEDvf/klB4IJCZytqFTByuHX++/z83oa0Yu4RO0zPFyenYgIdqKeRkYiLqORA4oBA4ANGzCgdyZKlOCtXbgwtz0D/Dj9/Z2nESpJyWhe6CLCKAGJlI8zB2peVyOibOXvryrKrNd74Rtqj+Yhv6m3U5KuoE3gLxgyhBNkw4cDXStcQE06Cnfi2bhFg1MxhcbidlAlVjqKIokvSpZ0Prdms4qEfpsWwceYiWtb9SlI0cMvgGwiqNi3j22pj48Cy75fOBPYuLF+6lRul5sbr01oKDsRuc6YZPlXGFyz2YyqVauiu3bwt4NMnDgRROR0/SXiC29vTkM0aMCey4wZ7K3Fxzt5LOXLcydOairrHcHT+fAhnxURZeDWLbVfcwR9Ck8y4+JKB40P8BuJMW5VqkhDJxh0ataE7aMpOEEvY7phDLrTGrxcPgPlyrFjX6kS0CbwFwynWdhG0Uj0CZfV/rx5pRYWbRBubi6bsW137qF+wHkUo2s8HL1UKU4NKwpiY1lJCFaW+/c527l4seSAcJoTmZTEadrFi9kCREdzzTMg4OmN4o6Xpycr+1q12CBOmsTGIybGKfXWtav0VqOiZFRhtbJOUmf0JiZyMcpkUutp3w5zARPVHurwcJkmF0C1YsWgzJ2Hs1QBn+cbiz70JeqEx6FsWb7lSpWAJvlPYxjNwVq33rhDoWz9bpGitQAAIABJREFUxecXTPXffy+/t2iR831kZGBQhYPwpgzEUBRb0yVLgJwcpKezfyKYgKxWPutDhrCj78qYISODvZLly9nytG/PXnvBgs5kBH9kVMPC+He7dGHNvHo1t5A51CMmTODANyeHs7d16siftWgh1w2ZmdzM7e+PX6gODGTDnJZ7XGdERo2S51dEOWKiRZ48wKpViKXiWOI3Av1pCZqEXULp0nzUo6KAOoGX0Y+WY6HfaFyhkmwdRU1XtJ1cviy/52quoc2GxR32ggjYS034XiZNUkGNtWpJMgWAg8xGjeTsCzGDVZWcHM6orF7NnlSXLvywIiL+HGmM0cgGuEoVrku/9x6vt2i21YjoWb96lT9iUJBMcowcyWokNdW+uVavBsLCcJvCkZeS0K34MR2DkypiNBWRTMnExEhnb8cO3KMC2EBdMJjmo1Whs+q5KVkSaFD+EbrTGixwexdnqQJsK1fJ+qxAbT15Ir8XHe0yM7Nn7M8gAhbSO3zGBg5Uo6Lu3fUTGMX4SquV18xpVKLNxp9h0yaZCa1b9+mMeP8G4ou1a9fC19dXvQ5p2Beys7PRtm1bVK5c+ak38Zci3AcPONo7c4aV3d27f3p0ysiRsv2lY0d9w/pbbwEFg60wvzlYHg6jEeZBI1CmlBXVqjnojYwMOWw+MFCy28TEyAjvp5/0jfseHs4bS5DiCw9s2zbZCiHInW02ObXD39+JckwQWx2Y8JMeUVurFt5ufRshIYqK3REkBo8fc1mwcOE/mUmxWrkIGRvLyuXUKVYEJ09yWvPSJa4zpaT8qTcWqa6EBO6W8veXyzt3LuDmpuDmsDkyTUsEpd1raNs8A8HBDmVnm032Crq7q6PYkJkpUcmffCIZiwRTk52NSBVBkiEoAmfMYMo3Ij1NmRiOYDI5QXRFnenzYbES1EUElC6N+b1PwWRSVFyLwAIdP856zmD4k+V0m40XNi6OvaiTJzk1cOIEr9PFi+yI/kluXxE9HDwo27hEO4+4571Dv2fHRny+6tXxbo9H8PBw0d+tdZ61hTkBfhoxQs5grahByGpFUDkKfMSYMZLiq25d+fm0c3AdmPAvXmQbO6DTE/0IzbAwHH13g25L3L3L9mbZMvk8fvnlmR8hr01SEj+4Cxf4rJw8yXvz11/5e9eu8dr8iTpwWhqrlc8+k21c9tInbt/mczOn91m5h4mAqCis/fAiiFxM0fnhB6m/tB6FmAHdurVUOELXOKL64uOl40DEmQxhxPPnl/3zR47IjEu3brrsYXIy2+MmdS2wdesh793PD7cGzYDJpGDePH5tTg4f4eHD+ffc3DgT/8yiKOzIJCTwpjhzhs9McvJTf+1vMbipqamIjY1Vr0y7VszOzka7du1QoUIFPP6TTYMvGqUsRICCT5+WIzgvX1KAo0cREz0CBrKpKEw0bKhqipMnWZeqc3EtFslq4++vR1q0a8fff/VVOW1DoPZcUdKIUWIildunj/MEFfE3xYi4kBDV6P72G7+9Wn9KSuJ8tbc37lMIPMmMaaHzuSHNYkH16nKiXIkSMgX1T8uTJ5JDWbAZbd4M4PJlpA0cjfz0BEPJftDLlePcETgSDAhgO6goYGUllLXBIAcWALLvOTyc/6AjJaJj2lMwUYnn3qiR5It1d5eDKsTgTvF9Oxn+w4ccRDZtatehWVmsrAIDkUMmFKXr6Oqzlb+XlIQ+fTjzoSjsC2jpLf9JEYxgI0eyH+Xlxb4H7t2DMukjVHE7i6a0RxrANWsAmw1mM295XdZQO/dUO2h6j/333dxYYQt2oRo1+N+5c/U3JayeiGCrVpW9I0T6dZ8yRf5NO52a2cyNBmXK2AHwisLG385cFU3bUNoUA9v4icCtWyppTmIibyMR8f8bpGlTVkeKws+6Vy9w5PrZZ+jl9y0i6CayyY1vevp0IDNTDToCAzWwh9275fPr3l06LY6TsYRzIsgw1q7V35Ci6Ck5TSY2ZiLFryXj/v57aeDfeguw8bjH7t112WxmULP3fA+nWchHiUh7cxhw4YI61en0aXYgiPT0li9K/rGUsjC25cqVw8O/gHD9uwxudjbvg0mTAPOVeOTxtGBCgSXqxuhIm1DC+zasB5xTlFOnsv7esylRMg/5+OjdXMFOZDJxpCdSywK154qfT4R2FSpID9Bikb+jRXIkJ3Mdz65o0r7bg5Il+VtOeIy7dzGu2o/wpTSu1RDhat5q7NV+dAlXr9hAlPtotX9C6tWzOwMPH6JakYd4LfCgujaTaAK8DZl4sGybUx1dOE/zZuXICT5Go2zGBzgiF6mjTZvkoEwBEtK2awkRrxGRqbs7Ww47KhY1a8p7ycqSEbHRCNsXy9GiBaf4nNoKk5OxsdNmEAG/ESuRTI+88HfLwIRuV5GVloW8eZ0Dh39S+vXjZA3S0/F67Zso6xcPxcgp7I3UCUTAryPXO5FKXLnCpcnevRU9Q9SIEVKhp6ZKENOQIbKX091dZn4c4cNZWTI6EhmpkyfZEyDilKy2k0BrdMeOxZDBCjw9XczBtVhwfiKvzUrqra5n9bxX0LbqLSAlBdWr63mW/2mZPZsfRUZKDib3vApfNzPSfNiZ/J1eYpvYbrMsUdnl0SOuRDRuDFiXr5SGr2VL/bQTMW+4TRuuSYkSiph8JjJIWhHoZ2GUZ82SNSx3d+h4MzdskAa9Qwcs+YzZyNavd3hPRUHS2h3wM6ZjDElGq+7Bu1C6wBMo9+6jVy+263+H/CMGNycnB23atEGhQoVw9uxZ3Lt3T72ynsKjq5W/xeBarcCxY+hS7hyq+vCYqd60ElEUA8XDE+jTB6dW5ZJmAXv5zWulINj4iOt5efJwyCwkM1N6cG+/zYpHKHNBT+fopQPSUw8PlxHXrl1yGCeRnjg0ORlo3BgKEbob1sLXIxsxV5zTg2lp9vrg22ZWQoUKYSJNhD+lIJO8MM9/HDyM2Uhfv+0PeVtfuCgK8PvvmNHqIHyMmcg0+GAODYMHWZBkyA+0aYMnm/bB11dxrpvZ5b03UuBmyMFRqsmHV+t1K4qkCmzWTD96TPRI9+3r/KYi7BaRm4icbt+WhkCbprRa1UET02gMDGTD7h3OtSlFYdq5Jo2sXCcvVw6bqCOIgBiKwj7v1myMJ293SQLwt4q9TWjLO7tBBMR6lMWP1IINLFUBatZEztoNKFZMydUIrVrMhBiryZ4FcOgdV1PBkZG8cUXLm3Aug4Jcp1lFSadmTf63Z082FCJb1L+//vUffwwQYQtxO838Gc7kFwBHVxERCrLWbgIaNkQsFQcRsJE64b57IRjIhq967uMy0j9Bz6aV+/dxaSYPW9/p2wlxVIS3KfVkD2nxYrRomoOXXnL9CH/aZ4XRYMN4+kimdrV6W0zUcnfn3knxtQZJ7LLuIbJDol+3bFl+VqIvt0UL/Q2tWwe4u+M0VYaHIQvv9HBRWwYfNw8PBXc3Hwbat0e60R++lIYpNBZWgxuC3JMwpuFR9qRe8Nr8IwY3Li4OrgBQRISfBHjhD+S5G1ybjRGkW7eyV92smYomXUddQQQkUDh2VRjFjvEe6fk1aaIBgWjfb/58PPSKQBgloIbXGZjPapB9iiIjK1FQFOCnwoUlwbor1Nvjx3LjinquUP6C/SUkRN/akJWFT6t+DSJgA3Vmz9MhHTpvHgfaIiWj5FhRPCwDfUscAvz90Zx2oTntkqnXihVZQa1YwbmZPzv79llFUbhXYfdubnZu00Z1NC5QWRDxTN475ZvDYFCw/FPpDIwcyXbOqbSyfTuyAwqgFh1BIWMC7n99QP9zMYHJ05MjXVHscnOToDdXCHBAGmRRKihThveDqEl5eOhRZ4qCnV1WwUhWjKPJ/P6ivm8XkT0VtTYoCto2SES1kHigYEEMpXkoRLeYKYiIgR19+nBh6tgxTff/C5AnT7hYO3s24wbsezeNfOFBFsyhYcgpGoWCvikY0kOuzaJF7Js4USifPAkUL46etAo+lI7THzrMnhVFbiJOG6alSXKZNm34XxezoAHIWdMC7ezuzufkoMyMOI6r/H3KNvhSGjrQZiiRRZ2isxs3+NyI2RQAMH7QY+TxNCOjRAW1vfAhBUlHrFMnjuD273dusn6ekp7O97toETdv2we5K0SIpBsYRAuA4GA0DI9B46rJqhITTHvaWbkAOMqsXRvTaAyIgG86rNcrvvPnZRZh9mz+niivDB3K/+bJ49qwifNRp458jxMnOPMnvnZI4TzeeRzFjHGoRidhCQjlyFfz3pmZHJFr4RPrFjwBEXD9pbYqR/kRsgc4gYFcc542jWvTz7mH/V+BUv4r8kw3npbGtZ3YWFZwR47wQ1yzhilXhg9nxGbFirKu43jlzYvENr1hMtqw5JNk5ORwVmTgQPlnBAhEnasaEyNTyEQ4WXMIvLwUdO2qWTtBaG80yqhXMOtoG8QdUjqqCE9+5EhpGG7e5B0mUsuayR0//ggYjQrGNDku68PBwWzkFQZIhYXJudGAHjaf/sQCD3cb5tX/1nlEoLiMRlb0LVqwIZ48mZGSW7aw43D2LKf+4uK4dhYfz0QeFy7wH9u7l+9n3jxGwHbpwvU4DehJd/n4QHmlJSIDkjGoJ1vUxo01IwPBtSYPD81Uo3v3ZBqXCLfLtUDB4By8/LIGzLlXQ7coolFRb+3cWaYjXXJFQqYiW7aUdSkxlkSklsuUUYEgFy6wbxdd/R6s+YPUz4bp04GsLCgKJzxq1JD7R7TbzJ0LKFYbioaZMbDKUTbWBoNrZHh4OD+cPn3YqVyyhGvHP/0kwWtxcbyPbt5kS3LxIqdm9+9nnMDChQyM6dGDU4BiTrDj5e4O1KuHV0rEolF17lccOVLSFwOc0AkP19jG1FTe+/ZnnxFRCtXKpCEsTBO0X78ugTdiasMnn/DXUVEyY2TnrHYS4bkULiyj3An2drq33+av/f1V9pqHD7k0XKlUBtKLlJXO5qBBqhPzzjv8uQTzo2i3eestAIqCNg1TULfILTY8uSGPQ0LY0HTvzs93wQJ+3vv3swNy6RJ/9vh4Pjs3bjCi+rff2On49lsGlk2YwIa1cWP9CEntZTAAFSpgSNUjiChggZJjtc/q1c9ZbtyYS6CKAi4+z5+vtiHZ/POiS814eHlp2u/S02WmQESjgnLTaJTPt31712sj+nby5pUjAQXZgRg2bDCoE9EyM9m3DQ604kY5zYS1115Ti8xz5vB20majW7Xi8wQAY95JQpBfJqytop1n8oorXz6Ozrt0YVj3nDncW7RrFzszly7xH4iPz51z2y7/3QZXpDKe9fLw4B3Wqxf/7pkzqsHSzvd8/31eA/FsFYXta5UKOVDeHSYPla8vKyibTcU0jR8PVnCi9iEg77/9JjeUaPotXjz3zyaUTKNGEqkprOWlSxLI8OabOHncBj8/dtysVrDh0zK71KmD+SPiYTTqA6vBg9kIW62Sp0P9+d27nEcfPZpPZm5G8XldJhN751268IY/fFiNqAcPVlng1L5HDTsdBgwAgoMUZEydIw2gycTK3cyE676+XHaynrsoX9Ojh4yuxXqJPRUenrvnKxSHj4+cL1ehAiuge/ckMrdWLSRczUBkJC9Haio49SzWkwgoVQq7p5wAkSa6BQfgRiMvgxgJq/48MZF7PcePZ6PvQH7wQq6ICI7op07lCNTuvSxcyI8uKUnOdtACuxcuZEfw8ifb9HNgu3QBEhNx9y7bjcqVgbTrDySrUIUKbOEyMqTRFxSCRqPLqVAA2AkXa7lgAf8bFMTaOytLppwLF0b69fuoXZvt+82b9ucqslJEQFgY4md8DXd3RR0BC0ig5ZEjfHve3sw+BYCfy/797Ex16qSfnvOirgIFGCE1ZgwDMOzPRgQKZ87w3vPx4eUTIoL+rRNP6wdCNGwIxMfDbGbDVaAAEB+jAYWGhnL2TChGIg4xBaht82bXa5OVJYOBtWvlGRJMHALfkicPbBcuoWNHfrbHj9t/d+JEubZ+fsgYPx0FQmy66PbuXT76Cxfy1+XLa4KMrCx+s7lzmT+0bNk/1zbneEhdyH+3wV2xglMR/v6cKihalA1q48bsQY0YwdHUjh3sLT6FcWf2bA4i09MlPkPtTrh/Hz/1WA4i4DuypxFfecUJ9iZs5Cx3O7m+CHltNultd+3Km5Po6QNNBYzeYJA8ZgaDbP/ZvBkwGnGJSiPQKw21ain6djyLhSNQHx+YyROhdAe9Cu1TKacsFs7SiVZEwW+RqygKgyMOHeKoduJE9rRbtuTQrGRJPpn58vEpcXfntfHx4bWJjOTd37AhK9shQ/ihf/cd11aekq4WuIrz51mf+vnJ7iikpeHGhJVwo2zMIPt8zapVndqkfvgBMJkU9PdbyyxN9erJvykGjtetK0E8apNvLs9CGNUNGyTRhSCfPn8eyJcPjygQZXxvIiJC0UUW6uDhkBAoRKhJR1HT9xyU77erRv7ll2XfoBiJ99SMfmIie+OrV/Mv9O/PlKF16nDdrlAhSXLh6cmXtzevTUQEK5/69Tl6GDSIa/zr13N7isuJHSw3b/JHF2QDlSvzWwAAcnJg+XIdItzuoCvZgYDFizu1SZ09C/j7K2jge4p7xiMjJUz200/594oV45yuWKeniThrK1bI0s2CBfyzx4+BqCiYyRNN/Y/Bz9emzqZQZd8+1fD3o+UIMT1C2tJ1aujesycH24oipyS54olQJT2dswgbN7KSGDiQ4cD16/NzL1yYHVofH14fDw/+f/78bNxKl2bL17o1e5eTJ3OP2LFjTx0ZlZXF2V1xVrT3DUUBdu5Egzy/yaEGgYHs6WnqqA8fAkUjFZT0vc04FR8fSVsn+FS9vPRjEF0MgVBFoJmnTpXrJPgms7KAunWhEOFdn6UwGBSnrjycPcuHgwizaDjcKBs3xnyh1pQ++YS3dmKiHGPpCn+jitnMnuKWLezQDRvG99OgATt9YpqGnx9/zgMHnvJm/+0G9znK1at677xWLQUtaiYz4MWOZG1M+1De6ypsP+52/Sbbt+ND0ww+36U/lxtPjIPx92fDL6LTP2raEyAeUTsj4ujIrpTPf/w9wigB5ekcE/C7mqp8+zY+e3kNjGTFVSqhKqyNQ34BEd+OaNr/J2Z4PouYzXyOBQnJG28ARcKzYRsxSgWhDaTPkc+YjMTP17l+DqdPY6X/EBjIhgF5v4btoV1RaVm7fvhBeuzLlj39pkT67O23JQNP+fKqU/do5wlUNpxBCN1HTJ2+rvv3kpKwq8NSEAG7yU6UXaYMzn+wVme/a9RgZrB/q1SsyP4twMGDu7uCx2PnqMZuCfWHgWy4MHSp65RcQgIOR/WBL6WhscchZJ6zp/KTk2V0u3IlM4MRacLJXGTMGH5dz55yoLmmn8RyIRbRHj/CizLxc3g31/0iZjNiPlgBE+VgLr2rRnYpH86At5eMeEXZ9N8qr7/O+BOA/Qgi4OjoLWoHxAFqCCLg+zbLXAMlMzNxrfFbiKCbiDJcRcIGu87KypLZiLFjJbakZ8+n39CqVfy6yEj92bMTSigPHmJY8BoQAYt8hvNrHMVmQ/rKTQg2PsabJHWr8t5wlCpqURlvFyzggPhvMiEA/mdw/5SUKgX065gCzJiBL0InwEA23CZ7JFOjBo5MPaCPfIUoCtc/3NygEGFEia0gYj2s3H8g07Fz58q5ndph5bmJUBaVKnHEK1pYvv0WR46wrakY8QT3BHdrs2ZOHm9qKuusPu2TWTvY0+HNaRdqm44DAwbg0JxTIHKN5P+3SNu2QJ3qWcDnn+NI+bdABOwjO9qxRAnc/WQ1fHwUjBnj4pd37lRrU19GTIDBoKB3byArxSxrUl27crFVZBK0OWtX8sMPatoRjx/LNf7gA3W8YUg+C373qq4aUl2hCbz8NWoAtaplQxk1Wr3H4TQLQfQQWR264t7yHSDSt5D+22TcOCB/PgU5K9fgQZOuMFEOPqeBajo3a/IMFClsc41YPnlSbSU5mDcaPl5WNGgAJD5RZC2+ZElZ1P7DcBIyV+rjw6lP0RHQtCkSnyho0ADw9LDhx+CeMiXr2GIE3hKFwm0wT56p3uMK6gsD2XCrXjfYvvwKIcE2l4RV/xYROM3by3fB1r0nIgy3MIAWq9GoMnwEGtSy4KWXXPipN26oWJLrHqVROIQpI69fh8w8FCjA+18MCnEApDlJZqY8Kzt2SORyVBSyU81qu/zCyJlq6thVivqTT9ixi5uxQT3Dh6k264XSg4DPP0eLBmY0afLcHuUzyf8M7h9JRgYDLd5/H6MCVyCE7sNGBqSQP7wpA9Ne+prriXbj+MornOFRG9yTk/UTTHr0gJKdo6aX+xXdDzN5stHMzpYsU89Ce/L4sVQy58+r9cJvfXrA28uGevXsmKtNm2TUXKSIjvx74kS20+pQ74QE3Bw2BwayYQX1VRV8QcN9Zm9ZteqfbzsRkpXFoIwpU7AsciqMZMUjCoRChFJ0GV0LHmCAhT0F9uGHnCVVm/azsjhnLgBGTZoAKSlYu5Yfa6OIWB4qXqAAI0kFc86zhJMWiwTiHTyoshedoJcRGmBGRITdLvz6q6xdBgToCOFFQ77aSZaSgux5CxFseoz3aDZAcsDGo+bduL585co/33YC8DM/fx6YPRsnXh7Ej4G4z7I1fY+XfS/yXrJHtMuW8WdVt6aiMAhIoFPLlgWuX8fhw/yYyoQm4joV5RBF0GwR2Rt//0AURYIOJ03iZ+btjXgqjLKhTxAQYE8uJSTIXncPD84k2ffSuXN6+lNkZQHr1qFenjNoRoyiPkY1OFFVaTCnI3/7zXV25e8WRWGruGQJklr3gBtlMxUiET6kqchnTIZ5xjy11ivAk7ohGrt2SWR4cDDw88+4cYMrAgF5snHA1FRmggSXZIECz8b8MXw4v75lS9afoaFIpjxoHhkDNzd7c0BamgSZEjGQw15TSUzkW1MJemw2YMcO9IvYjUi6oepvD7JgXsQs3gOHDjmPS3sB8j+Dq5WMDEZrfvUVp0CqV9ehCsXos2MvDwG++AI9OmehRAm9fjt9mg/iokVgD00057u7c71Y8+JVHbbBk8yoTKdx9Zvf9TM7n/VzidaTkSNhSbFgcIFNIAI65tmNzIea2tq5c7Kh3GQC3n8f9+My4evrTBk7eTLg66sgdet+KG++heLGG3iLHHipIyM5HzV7Nt+3I+PS85asLAaDrV/PyOyGDXWowntUgCfURH4EzJmDmeNS1FqNkKQkdp4HDgTXegQFoEj9ag7cwU9PIIAeowjF4einv3BaUQAyXEQ7LuWNN9Q0v82q4LM6G+FJZtRyO4n7ZzUtW3fuqHUnEAHdu8Ny5zGKFWNQs1YEeO381+eBkSPRxns36tIh/dqEhEgA044dDMR6kUbYZmMF/t13XON+5RUda5CNDChA9zAygGv7382/DSI9fWNODtvUBg0AJS4e6qxJIkYras5DzLbLKGGIRV5KwuYeW9lRFelLLXrpaSJQjAEBQFoavuu3HfnpCYoabuDKVs3oxJQUecaIGP8RF4foaC4ba2Efouy0bs59YPJkjAlciiB6KKd+EXHRtHFjTrN++y0j3V8k/ZSi8Prv3Mk1l3btJPmE/WpCe9HC6yfg3Xdx5WseMiBq7kI6deIyf2bCE4kxIeJ9q3rrwJMLd9HE4xBMlIOZL62GNUeRAYeWLeppEhsrM0mxsTgy9QCK0TXko0TsH6PhKs7OZtCmuJeKFYFjxzB8OKtQbVdkaioniD4alQbMmYOvS44HERBPheXve3szdmP4cNYz588/91bH/26Dm57Omy0ujr3YU6e4qP3NN2wRJ07kzdOoERuQ3Ej2CxUCevVCzqp1CMhvU9OSAo3oWGrt0zEVgR4pPD9VGCfH0TV2FN4ZqoiokCR4ewOTS63lebiDBj37g7Br4H3erVGuVDY8PBQszPM+gxzat9c3iiclSXJ+IryTZw3y+WbhyWOpjG02vl2B7BNZ1B3Tz3GIWLVq7sTdAQF8AF9/nY3i7NncnvHjj5yPvniR06a3b3OYmZDAdbOYGPb+Dx3iz/PFF9xa078/e7klS+aOFgwKYhTOF1+gbnWLaqDu3dOjEYV8MoFHfsUaouTvOyIvjh4FfHwQR0VQKyQWRiPwXoV9SCF/NgTPKvHxgIcHLlIZNK70GETAkMB1PNqvenW9U2WxMPzdXrOa7TseJqMNl37XA/mio/kRAwIBq2DmsATue2rSRD/IW3v5+nIWpUMHHt02cyZHmDt28Oc9d44V3e3b7ADcucOK9OpVBq0dPswIoJUr+W8NGsR5/HLlct8Pvr5cV507F292SkKJEgoURY63dKQI/XGLGUTAFk87X7WXly6qBMB7plgxJFMedCjAOIPOVWJxkyLY0XBFrO9KrFYgKgo3KQJdK10CEdA++JDMaGhbvhSFW6jsWaI97q1ABGz4Sl9vHjmSj4Dg8y5XDujTIYXBXC1bSvCco57x8OAXt27N3uD06Qzo2raNn/uZM7wON2/y5797l9dGcJMfOcIGdc0aXtf33uN1rlQp94k3bm6MR5gyBZ+NiIe7u6Jux3r19AMYACD2ihVuJhtm+E6W7zFokL7mbjYDNWogh0wYGfglDAYF1cun45zBniVwHLX4NGnVCqnkh9FV98FoBGqFxeEaFeNn5chNsGOHOn0tlorD3ZiDqWP0AxtWrNC3PXXqBFStkM0ReOfOube3mUyMJGveXLY6Ll0qWx1Pn+a1iY/ntfkDA/3fbXD/bFsQES9c/frs5Xz9NXvumuigVy+J1rXZ2MtVcQDx8cDbb+OOexH4UhqGG+bwKXRUAnv2yMh55EikpgKjet6DO2WhCMVh6Uf3HAd8uBRFAQ7+ZEN0voMgAuoEx/CePnpUKt6+fZ096K1bcSa4GYxkxWx6j9GAe/cCiqICJw4f5pdOm8Z6U4dlSUlhhMXUqWzsSpT4cxOB/url68tFzYEDGQl96ZL4YCIdAAAgAElEQVRubebO5Y8ttkSbNhIQgsePgUmTkJE3FIUpHq3pez51jnNPz56VbF8tWiA7PQszxyXDmzIQSI8w7c0bTr+Sm1y8CPQrdxwmykExj1vY/aN9+oioUdWu7ZzJOH4cT0rVQj5KxNu0iJ2NDRuAnBzcvMn2eMkSfqlLBKzZzIv36aeMpC5X7s+3NvyVy8OD07R9+zIO4ddfdftOkKAJnTthAkchqan2e168GAgLQ3PahSiKQVatBs6MGLdvS8rMokWhPHyEdSvMCDY+ggdZ8G7Ds45l8FwlLg4Y9co5eFEmChrv46svsqAkJsmsR5EiusgNABATg5wGTVCOzqMuHYISGsZZq/R0mM2sOkQQd+0av42OOMJqZeMpSCgqVXq20Yf/6WUycfqgSxfeF7/8okMKC7Tuxo38tajrXroEVnKbNgFlymAwzUdeSsKDknWlghCSni5BawEBwLVrOHpEQRnvOBjJit5FfnKmxMxFEhOBmW9cQQjdhxdlYtroZORk2WSwkC+fs/F+8ADo3RsdaDMK0S1k+AYzOM5OKlK7Nt8ewNvNz0/fAgVF4QMrspu1aj3beD7H6//rtqBly9iT8/bmFFehQrzxatXi1MqAAcxcsno1R1fPwOkslJzgoP9khgIPdxsedXpHl36eVmw53NwUZxadNWvk6zp14g2dlQWUL4+rVALtCx2HwcBr/dprfDaPHWN8wrVrHIhs3swdTUL3lInMxHrqylHtQTun87p1EuHXrp3OYioKUKdmDsoG3ke2l7/cLFWqoEO1eJQpbVPtWPXqufep6yQ9nSOh777jQ/3eexzpNmzIiiUyUsLn3d3ZQLu5saLOk4dDnqgoNv6tW7PinjiRXdN9+56J8UV0Sgk+VbFWp7rO1s0N3Rw5EkQcFOjk6FEJ7qhdWzJhvPEGblM4+hfcCi8vBSYTp3pnzWIn9/JlOTRkxw6+7SpV+G3CCtowy2ssR7UC2XT6tDS6NWo4kZsMHmiFn2cW7gdo5gxHRmJc8+Pw91fULpy+fdke/6FkZbFV3r6do63Ro9kYN2vGGYuiRTk69PfnNTGZ+BK8xAUKcDmienUmNOjVi7MdCxeygrl+/Q/TollZfATF7IFbt7j/dknr7bro4lxocxgNNsyd48ApePOmLIkUKSJBaxMnIo18MSVgNvLmVdRHOmMGb5vYWF6bq1fZp/zoI96SfMYUjM0znwfWi1T0/fvyYJUo4WT0P1+gwGBQ8GtYtM5JX/vaNzrnZ9YsDvyf0jHFYrOxxdu1iyOnsWP5+bZqxamM4sW5j9rfn8+Kmxufaw8P/l5QEHv9VapwhqN7d3by587lA3Dx4jOlRStVYnsM8MuDg2wY2uCMTNUT4VHe4gjwyUTf3g516CdPJPDMx0eOOly1ChbywHz34QgrkAMi9mc++IBv7dIl3gfXrvFazZ/PiQBPT6Zi7Bu8HbeoEH9TUSTTBRHvS/swEiGH7JWV1UXG6Zz0C69PAZEEs27frtfhuYqi8OY5cIALx+PHc1dKdDRvstKlWW/lycOOk5ub0z05yn+3wX0BYjbzPv9oRAowdy4eVWgMTzLzwHki3vQ//4zMTNYLrVpp+tq0ZOidO0sjKNpGgoKAhw8RF8eZi7p1c5/LHhbGa79nj/39BXyvXDlZWPruOxnpNmzIygSSV2P/fnCEN3Qo4OWFBAqDiXKwwO99YMgQ3Pr+DIhczFf9F0u1akDHtlnAqlWwNmyCIhSHPmSnjKtUCdiwAUqOFY0bs15VddGqVfJZVa0q23TElAODATh4EImJjGdr0CB3YpqAAPalNm2yl4UFOb6YOARwCl2ATkqWZE8KDMo1GJjbAykpbCGCgpBF7ihA9zDItBjo0QPZP+5DQEDuPNH/RunVCyhT2sbpuHbt0MawDRXpDDuKhQuzxrVY8M47fMb+X3vnHR5V8fXxbyoEUgghdER6FaSDNBGp0kFAioqo9KoUBZEiUn6WIFXKi4WiojRFFESKSK+CVGmhh1BSCCm797x/fHN3UzbJJtmSMp/nuU9gy72zd+bOmVPmHFNs3q5d5uxSZcuahe1//5mDAX/4QR4/ppbWqVPKddkLFOB8uXx5/HpK34bi7m52+wQHm2MvChRgIg+hslSwYLy7JTqaAjJ+EdAUu+UF7ODFf/xRGtY3SOfOjr7DGWfGDBFvb02itvwpMmCATPT8RPzwkPue/fy4inz0SJbE123Rt9rKhQvm7F7+/ly0ilBN1RdSs2dLbCwfpf79zWvapIe7O93bn34aP1WdOWN2V+hpVB88MO/VdXeni0P4nFWrxjWh0aDRHB+fu3koFkgR3JaYpi1Fli2TN/pGS8WKzoktzHYCd8GCBVKlShWpWLGiYwWuptFfMmeO9AncJjVwwjRS+rmulrLed8W4P7GfVt/rvXbxQ0pefWSNG2f2S+l1/BLadBIQEUHryfbtXDj+/XcK8Un375tHcsJZ+M8/zdGyRYrIo/U7pEgRC5VLQkNlygt/ibdLBH2VgHyOUeKJaHn09jhOOmmkLXMqly+LLFkisyqtlHyIlMegNJyNCZLHNUbuffdHoifs9Gk+r1MnxZj3CAL0S+pqyZUrZvPy+PHJLhkby1Xynj3Ulvfu5VeSPchRUWbtrHVrc6TqyZPmAgdeXhL3f9/Is8/SMptIYYyKku/f3CaAyGkwveA2vCiAyLGOU7iwSikFaFbg7l2R1atlU2PuQf8X1Ny3oJ0AIgdm/J7oBz98SPnavZvGxYpuqXnmGbOZNyLCPNE3bZrsphsMVE537OAOrR07qH0mS8avaVwdAdT09YXW7dtmrc3VVeSjj6R/X6P4+5vWrSQuTk7/71fKfNDkeR0luFCt/wUFuiksPgsSESGyYYOc7T5JAJGNYC7qKygtLjDKsj5/JlLTDQYuamvWFIlb+a15bilWzJQOUzTNnBegSpVk0b+64rh7NxV73RJhURHXF6u+vmYHbHS0+fyAyBtvyKwPn4ibW5I6ypomYRv/FG/3KPkA9D3HwU0KIUQmlPmOG3EvXbLt/UyDbCdwdeyu4UZFccU7fz5tLQnSzq1HFwFEztfuLfLFF7Lv14cCWNhipmnSo+F1CXQJkVAUpAZl2kcgfHL1iVi352QGvWwfkLjM3OnTpsnpLXwp+T2iJfh04vsWE0PL1ZBBRs5QfftKY9e/6evUz5knDzXlDz+khEk08ziQuDg+3MuWUd1IUKT9PCoIILKh1AiRadPk3vHrkidPfC3WJEzuf0XcESsnEB/UMWWKeUaOjTVPuA0apJqFzCpOnjRrYwmF9717Jt/XpxgjrjDI4Z+TO4mbNxdp2lSjf2HwYHk7z0opg0vmYgWurlzejxnDoMDgYOcs4TWNs+eqVdxDmSCF6BPkEW+Ey3SfuSLjxonh5GkpXdpy0aXv/hcsgMhmxOfIffVVs98xoZAsWtSc+i+jPHxo1mh79jTft+hoU0Tub2hNRWtacLKvjxjBBULMybMi48bJvIJTxQMx5qBJfbEwZAjNRRcupKtgvM3QNI6L9esZoNewYSL/fjWckv6ea+lq27NH2rfTkhdlEZHDW++Jq4tRZiI+gUizZvSv60yLryLk5pZ28p60iIszZ5xq1Mjs5jEa+by6uMgllJG8Lk/knZ7J+2bBgvjSuoduisyaJTvLDRRA5CAS7AooU4bja+lSSmw7bg/K3QI3Opqa0a5dXIlOmkTHfEqBJnnzirRvL1GfLpL8+YymhPiaxhWfXqRdROina9FCbqOI+OO+9Pf/2bwCFKFpRN/jV7p0qinY0sWECTynh0dif0JUlPzWYb4AIkvwNn12K1aYHny9jKtexObGDf7/61FHabtOspUgkW27VSuapRcupCA+fZq/LzMTflwcJ4d9++iUnTaNuY1r1bIcFevuTk3no4+keoUniYrFvP46b7FpC+SVKyL9+0s0PKU6/pFaHv9I7M+/Jb52r/hIWT8/21Wm1reiJF0QGQxyZcw8yYdIGYkg2kNnzzaFu/77b7ylZK3p4xIYqMm4Xtd431MqJlGwICfDIUNop9u4keaSkJDMTfgGA7W2I0cYUDBnDsdIw4bmSNykR82aIu+9J71bhUrNmuZxMXMmTfOm7VsPHoiMGyeam7u0xa9S0uW6PAz6KvFY0id0D48Ets1McuCA2X8zbpz5epomEV+ulqddr8oL+EM0N3em94uP9wgPp/KVMKFKs2aatG/8iJYmvZhE0vuhBwAOGMCo73XraO26eTNze3WNRi7iTpxgfwcFsf+bN0/Zllu2rMjIkTKl3yXx89NM8kb3dZo2WMTEMAra21sm4mPxQIz8M2xJ4vbqRQaAxMpFZrhwwWxpat06kSps3LVHWuT9W57CVYlAfkZnx0fOaRoV7B49zKcaPlykRJFYMc6eS+XBks9ODwB85RWOtTVraL4KDs70wjtnC9xt27gS7tqVUS7NmzO4oGzZlCeGhEdgIPcUTp9Oe64e7y88rSkCVji2XF1FLv16lgEp+kOWJ4/8X8f1XK3rhdsjIsyrtiJFkpViyxRGI4OVdDNMvE/l4UO6EF+sdU+0Cgkm6GrVRNaskaZNmGFH54svOJ+ZJkJNo01uMX2IUqVK2pHJnp4MVKtenWko27alyfbllynQXn6ZD8hLL3FrVv361FYLFkz73N7efGD0hOwJxsGUKZST+sRx+DC/smnFPW6JSbB15nC3meLmppkjFmNjzdqTh0eyvL6ZRk8r6Opq8ksZDPTXly4eI2ENEuw/LVZM5IsvZPBbcVK4sPn37NyZZCIU4WSwahX32tSqlXZksrs7z1+lCgNRWrWic1Pvm169OFN16MC6wA0bMtVa4cJmE29KR548/PyoUVxkJAhG/PFHfkTfdXPnDrtj7vQoTm4J9u9eazVQfH2M5uTymkbrin6dpUtt2zdfJthrnqDY/cCBIvm8jHKx9VDz+z4+IlOnyryPI8XNzWzpvn2bQ3fFigTnDQmhQ3/sWGppaUUmu7lROFaqxPvYsiX7pnt3auC9e7NvOnViEFujRgwGLVYs5aCPhP3+7LP8UStXJsqYpheX0Ie8wcCF6mv9DIze1PNOAxJdt7FUK/tYatVKIIPWrzdff8IE2/bNvn1mx3zXriYXxGef8aUdHT83j0sPD5Fhw2THqlsCmGO4DAYaREaPTnDesDCaJidP5hyUYPyleBQowHmqbl3OQR06MLK0Z880tz7lbIGre/jTmhwqVKC3ftAgagJbtqQZFasrK5cuiYjBII/X/yYBHo+ooejn7tNH5OpV0TT2SUCAyPWDN82FmAsWTKz12oroaHPVkzx5RPvue+nbN0G62JgYhlHGh70fw7MCiPzQf7MpjL5ZMwYHpkp4OB+EFSs4mXTpwodZX41m9nB35xPfpAk1gZkz+VBfupSqhnbyJL++dauwDw8ckAYBF6SVyzbzuVu2NOVhnTiRz+jhPVHmJAeenqYyYDbFaDQVnBdAZM4c+WiGJq6u9AWL0citCfGVVUJQSPIiSmY022byYQ0bRtdvqgaEJ09oHvv2Wwr5Xr0Y9ZrSfsP0Hq6unOAbNWJk7JQpfCj+/TdVLSAykhqtycR/5oy8Xnm/lHS5LrGIn6yrVzfde11hWv2tMbGvfcYMW/RGchJuJRw6VH783iAAg6xEhIv4+BB0A1ylrMsleaX8IVPI6+LFlJepGqwMBoa2f/ed2XLTsCFXxGktZqw9ChWKjyDswQH+zTdceSZQGpKiaZwKTdV1goNldstt4olouY34oLWiRdkpRqMcOcLf+sFkjZJPXyT37Wsfk/kff5gXy23byul9TG4zZkz8+6dOmYvVA9IZG6Wqb7Boe/4S0TTTQjXVFLWaRqvnhg0cpG+8wcmwTJm0FzOAKedzSmRU4LqIiMCJhIeHw8/PD2FhYfD19bX8oX//BXbuBNzdAQ8PwNubh58fEBjIw98fcHFJ9/UjIwSBgYIZTX7Hu+feAm7exBRMw2cYi+udR8B/ygigdm3T50NDgWerxqDco6PYEdcM7gEFgK1bgXr1MnoLUufxY6BPH2DzZizCEAzDIqz+VkOffq7mzzx6BCxYgL4zKmNfbB1cRAW4e7rhTrsBKL55MVYsMWDA2x4Zu350NHD3LhASAoSF8YiMBGJjeRgMgJsb733evEC+fED+/OyPgAAegYGAq2va10qCCFChTByeDzyD5VF9gDNnsAp90R+rcKr2a6g+ux/QqpXp8zExQNN6T3Dv3H0ci3sG/nmeAD/9BLz0UsZ+uzUNnDgRmDsXe9EYLVx2Yfw7Gmb+z9P8mdhY4P/+D9MmRmFO2GBcRykEuD6CsVVblDq4Dj1fcUfQIs+Ur5EacXHsm3v3OAYePgSiothn0dFsH8C+8fJi/+h9U6AAULgwDze3DF2+R8cYXPsnDIef6g7s3YtTqI4aOIVVJcaj76d1gJdfNvW7CNC/ZzQ2bAAOG2ujqss5YP58YNiwjP12a1i6FBg8GNelBGq6/4uWbT3ww2Yv8zShacCPP2LDhP3odvVzHEI91MMRoH59tHz0E1yLFsb23RnsG4OBz8z9+zwePWLfPH7MMSHC67u7A56ePHx8OKcl7BvPjF3//Xdj8OWXwJ1mveDx2894pPmgFK5jpM9XmPmxCzBwIMdEPDM+NODD6a74Fe3RFr8Dgwezf9zdM/b70+KXX4CePRHxxA31PU7ArXQJHDmVF3nzJvjMn3/i/JTVqPL3MizHm3gDK4GKFTHEfy223ngGV657ZGTK531/8IDPTUgIEBHBIzKS/WYwAF26AKVKpXgKq+SWJdIlnu2AU7YFRUUxWvedd0TKlZOu+EkaYD9XNgEBcuetyeLpqSUP0ImJEZk+XXa7PS+uMMikwktt5xdMDYNB9vf6XDwQIyMwj1rv5cuJPnL1KsvSzeu515RfdiGGiDti5b5PaZqvVq7M2pGWItSq9u+nybFWLXkfH4k/7nP/a968EtN3gJQqGpO8WImmiXz9tVzJV1X8cV865dkq2q7dDmnytUlfSiDuSjPsktiK1ej3T0BUlEihQpoMa/sfLTCA7EALrtI9400Q8+fTPpsV8ienhB7hP3euSPPmssaljwDxafVcXUW6dJHWdUKldm0t+c/4/XeJLFxGquGUVHY5K+Erf3RIk6NW/SR1XY/IU7gqDwIrWky637SpJo2rP6JVxM1NbqKYuMAoyzGQLpQ5c2hlcEaAVHq4dImafadOcsKzngAiW9CO81rz5jKm3Vnx99eS7yk+dkyM1WtIe/wi/rgvl99f5pBxqB09Jj28fhEfhMm5fLWSlQwUYd36YoGxEv36IJH8+SUObhKIuzIOcxg788EHNCllNhgyneRsk3Jm0GPXN26kSaZ582TBOmvc+wsgcnnBLyZH/htvMI7IFOi2f3+i4s2znlktgDk5gz25e5cu1Ebl7khMvngzb/78TH4QP9DGjOH2uYiI+N98+LA0KX5J2ub5M7m5pFIl/sAVK2i3dfBgTcT9+1z8zJhBwaNvT4g/TqOaACKbhm8zbfUICqJVyOS2OnvWJMgEkJ+rTxSA1lF7ExlJ63vpIlESUqS62YT+7rsmf/SXX9JKZ8qedOGCDKx1VMp6XDNHJ+tHiRJ0YSxcyAAgZ27hCg/nno/PPqNvK0mwThh8JK/LE5ndfrdps+3vzPdv8rfJ7duMdov/zrmy7cQ7n0G6d7e//NI0Wnm98hrlaLmXzW3v2dMUEX3oEF/SSyTK3bvyeZdd4ukSIw+QxKVSsCD9jnPnMkDT2vST9uDJE5qWFy2i6VcvCh9/aIBU9bwgfasf5/Mh+qKccR0iwsH7wQcmE+uDguWkbNFIqVUr9VK3tmLWLDZ3fbUECS6aNDG19/ZtWp71cp0SESHbxm4VQOSwa/3EfePtzUCsDz/kHiUrkh9lhtwtcA0GPkCHDvHJmTuXCSSaNzcnJUh6lCxJf+IPP0jE7QjJly9xvnQ99/BXs26ag28A+s7WrhXNqEn//pTdmY2YT43wcLqKixaNn9MuXTJvGAdEKlaUh19vEm/vxMkT9GxN335tpH928mT6/iwFMXl6mlPUTJnCSO+dOykhMvvkGY1cMZw4waCooCDuv2jVKtEWrWQTW/fu1MhDQqRGjcS7rSIj+ZGRAyMZ0KNn/Mqbl51oMMjHH/MlfZ+9PTAY6FrLn5/rFgkNTVxRqnBhMS5aIhUraIkKEz15wpiOyZPMe8KlWbNEGc4SHZUrc6J/7z0GGG3bxsC3R48yp4loGhc8//7LCJtFi7hQeOklBiRaGiteXgyai9/72LMnd8okPGX16iLtW8dxpkwY1Dh0qMjjx7J+PRXioUPtq0jpcW1r1wrNDKNGmX2r3t4iU6dK5/axUqFC4gDdevUYEyjXrnHhY2EhaDqefpp788eO5d6VrVvZp6Ghme+b8HBuQt6+nYvj997j+Epp94W7O8fRzJkiJ07IjOlasjrxr7wiUqaMJnGLlyXesdC9u8jdu3L8OMfzSy/Zdx2u+/Q/+EB48+fNMwdTubuLvP22vD88TLy9E29Nf/NNDk3tXihjJHr3Tjlqu2hRBgoOHcqMXZs20fp0926mV3s5W+AmjVJ+/nkGElgbCevmxkE6cCCjJs6eTfYw9OnDAEHTy0eOSKeSR6QCzksc4gf3a68liqKIjmZTfHyS1zSwBVFRjAny9ZXE+UuNRppf4gNnPsL74ukSI7e/+MGkkn/8MbeLJjMfhYYykGXCBD6c1uQZzZePK+gaNbgCbduWkZU9eiSOUu7QgZpmgwbUogMDrQtQKFeOHRAUZNF0N3s253mTQnH5snxY/1fxwmO5ByY7l/btE21+1zSuudzc7GOFMBi45c/NLVElPrJli2lP8QZ0FkBk/6i1pr2H69ezyWfOJPne48fM7PDhh5zkAwPTjlLOk4eLx2rVaP7Uo5R79KAm17OnuW9efJHBUVWqcLGTkoBPujDt0oXCc9++ZHsb9bSbpvEZGmpKj3gE8Xkx69VLFuGydGmCCdcO6HkWPv00yRvHjnF8AnICNbio7vyTaS+6XuAmWe4a3dUxZw7vZ8mSad87Dw/uXqhShfc9YZSyHkXevTtfa9OGUebPPMNIOmtyMwcEsL8//JBzZBKNW88DbarrHRkpx8atEUBkNeITTpQpw61MCebD337jY/vqq/apQrhpE4f1W28lmYavXuX8Dkg4vKUAHsjYmn+Y0nLGxHC6T1YL22jkvLFgAU0aCdJYpni4upojyOvXZ2Rzhw6UMS+/nMujlBOG+ad2A0uU4M3r3ZtP8tdf8wGzwiy3ZQtPc3z6Zk5cgBxBbQFEVtX+VFLK2B0RwWepQAHbbSUU4bPz/POUdbtTckWGhcmj8TPFH/dlOOIL3hcvLtr7k6Rq+Wjp08eKC+kl2TZtYu7kN9/kxFCxou0Ssru4cBtK7doUBOPHM9nF/v1WlS80aetjjvKBdHGRewiQfIiUKSVX0I5pQZvQhaKLiylznE0wGGgccXVNRZjHxIgWNE+edT8lzyPerO/rKzJkiHRv+UBq1bLiQro7ZNs2agBDh3JhUbWqddvhrD0KFOBiqlMn7gdetIgWDitKNcbEiAQEaDKudzAnu7x5xQBXqYhz0in/dkZXp6BN6LWkp061rab7ySc8b4ouBaNR5LvvpIfvb1IW/zGq2sNDpHdvmT7gknh7a9YZdkJD+XAuWkSfTpcuvI/xFW9scnh7s7/btOE+3KAgWiOsLNXYoIEmnZo/ZL/G5/1+CT9LZbfzYvhsXor5mdes4fju1cu2+SO+/54GtW7dUhHmu3fLrKeXiAdimIMZEGnXTjZO2CeAKXtq6kRE0CWzfDldiT16mE2F1hRoyfVRyrt2MWLO3Z0RyvnzA76+QKFC5mjYjETUhYUBv/+OuB83ofi6ILyOr/A/jGc0dM+e6Bi8ABdDCuDff1MO5gwLAzp2BA4dAr75BujZM/3NSEhwMNCtG3DxIvDrr0Djxil/dsYMYOZMweWxC1F85Uzgzh2cQE3UwglsqfwO2g8sBnTtCpQrl/6GiDB67949HuHh5mi+2FhGySaMUs6Th1HKXl6MhPX3BwoWBIoU4f1MLzExwO7dwLp1aLJyIHyND/Ar4iOOW7XCGJ/lWLmjFK5ccYG/v+VTaBowaBCwfDkwdy7w7rsZCmY3ERnJoPEtW4Cvvwb69Uv5sxs2sB93v/szmm0cC/z3H8LgiyK4i5mFv8A7gyKB7t2BGjUy1qioKEYp37/PQfjoEfDkCSOUY2LYf4A5glzvH39/c4R/4cJ8Pb1oGnDwIPDjjxi2tCY2Rb6AaygNN2hArVr45rkleG1hfRw7BtSqlfJpZs4EJk8G3ngDWLIkY8NEx2AAxo0DgoKA998HPvoo5dt6+jTwzDPAskFH8ObJEcCBAxAAVXEGdb3+xbdv72XfNGqUsXklJoZ98+ABj7Aw9k1UVOIoZTc3c5SytzfnNF9f9ktgIOe59CICnDoFbNiAeV/mxbjbY3AXReCPR0D58jjcbRbqz+2BNWuAV15J+TTr1wO9ewMtWwJr1zJ4OqOIAAsWAKNG8ZorV6YcgB0eDpQpI+jd5CYWylBGNIugO37EFdfyODZgPqOIW7ZMFGltNXFx3G4SGspnR5/THj82Ryl37qyilG1CTAxV0ZkzqcklMKsNxQIp4X5bDNM+MkXz6kEVSQs5JyU6mlZRgAuqjK4Kt22jpaN06ST5RC3w8CGVk5EjEzTiu+/k3TLrpBBCzPshAZq1hg+n/dPOAQUZxmCgj2XePGpbegpFMOLaDXESMmSKKcHI7dv8SFqJ/41Gc+Kubt3MaXbTy8mTtNz6+FioUGThmjVr0sJuemH7dllZf5G4wCg3kMB/XaIEVebVq6nOZ8VIZU2jaW/FClqQEmhx+9FAAJEd7T+hVqFpEhdHy17Xrmmf+uuvzWVdMxr0f/Uqv+/qSstiWvTuzfwPpuf06FE53m26AAkiewFqhb16MWhB8EAAACAASURBVBfAv/9mzb4RoSVkzRq6zRIEUN1CUXGFQZbVXcJBG69Wtm/P0IC0TMbbtnGOKVeOxsKM8PChOYfP2LFpu09nzKCnxJRl8uJFCR3BNJtBGGnuGy8vmoE//ZTzhj3s3ymQs03KGT85zZbLlnGzff36ltMJVqok8u678vdyFrD+88/Ep2nXjvIqjcploml0dbm70xWTtL5yaty6ZQ7mbNXKlLciVaZOpdU34U4fg4HuueEDIjnztGxp2Q+o+03nzmWgh5UmKpvx+DGf4G+/5VOoO8OTtrNYMZG335aQ9X+Ju7tmjrCMZ+JExlpYYf2U9etp1S1WjMmcrP25ERHMFurpyX5NsxyYmIsT7dmT+PUXXxRp0TSODejc2bLZvnhxmienTaOp/+LFtAefLYmJoYN53Tr+8PbtLZtJfX1F+vQRbf0GKVfWmCyXsh4YY81EvXcv4498fenZsDY4Oy6OcU0FClCAWhPAeOYMrYqLFyd+ffRoptqMXf8zI3/10osJj4AARsO+9x7to6dOWVU2z2YYDNwSuHkzC8Gm5E/Om5eL1pUrpdXzsdK0aeLTHDzIj61enfYlL11iTKWbG2PqrK2voWlMzPXUUwwStCaWIpkSEc/ChSLu7prcXb+XpnVLvzl/fqaFHTuWq7gjR+wWbp2zTcpGI80A+t/Hj3lERNAk8OABzTe3bgE3bwKXL/O4e9fy+QoVApo359GmDVCxIgD2WsWKtCJ9843540ePAnXrch/9W2+l/ZuOHQOGDqXFrXlzmjQ7dOC+9oRoGs3Qy5cD335La9/cudyTnlaeiNBQoHx5YMAA4PPPza//+SctLfv3Aw0bxr/48CETh+zYwb9nz1o+qZcXT1q2LFCyJE0qRYqYzfa+vuakI56etP+5ufGHaBrNaLrZTDdx6n1z+zZw4wZw9Spw5Qpw/brZ5JkQHx/a0Js1A9q1A2rWNNkFu3bl148fN3/8wQOgTBmaJBPeh5QIDgbGjmU+jMqVgREjmJ8hMDDx50SAM2c4DpYu5c8aP56mykSb8y1gMLDZxYoBf/xhfv32bd7WL78E3nwz/sUnT4C//gK2bQP27OGPMxiSn9TDg26Bp58GSpc2942e9KVAAZqJvbxoIs6TxzyIjEb2TUwM+yY8nP1z/z43/t+5w/64ds3cP0Zj8jbkzcsH4fnn+dw0aGCyAU+dCnz2Gbtat/LFxdFsW7IksH172lbzsDDe36VLgaJFgSFD6J4pVy7xd0XYxO+/BxYv5rAaMAD49FPrzJ4dO9JLdfas2ZoeGwuUKAG8+irPY7pvBw8Cv/3GPjpwgOb6pLi5sU/KlGH/lCzJH1CkiNm14uvLG+PlxWfH1ZWHwcAbFRNjntP0vgkNZd/cuMH+uXwZuHSJjU2KqysH3Qsv8Gje3GSOXruWbpALF4AKFZLfhzNn0h7TsbG8L9On08L+1lt85qpVS96v9+4BGzcCixYBJ07wMV68mLcoLT74APjkE/7UYsXMrzdsSCv75s3xL4gAJ09yYO3ezf4JD7d80hIlOIjKlAGKF+dRpAjdXQULcs7Jn58TsO629PBIdRLO2SblhGna0nvoSfnHjOESK43kAh9/TEtF0lVc374MOEyzEHU8RiM1Kr3OsosLYx/atWNQoh5opStxc+akz9Q5fDi1gaTW4X79GCCbqvb28CEDjT76iOayKlXSjoa1xxEQQDvg8OHcv3PiRKpmIT0Je5K8EjJ9Og0XCdLJpslffzGOQt8lUqoUleyXXmKTihbl635+zIGvVxSzhmXL+N0jRxK/PmsWFY9UNYTHj2ka+ewzRnzVqGG74LX0HN7e3Anw5pu0lOzfn6qf5MIFfs0UERvPpk18PT2prC9c4E/X6xQHBtJQ06UL/5YoYVbi3ngjxXhGi+zYwe8mjULWLRKpZmiNiaFquGQJQ2wbNLAuyt/Wh6cn/RX9+9NCtXu3ufqOBaKiONckje49c4aP/dy51t+/27fpwtGV/8BAc3r11q3N9TdcXGjt3bHD+nMHB7PPk7bz3Dmec926VL5sMHAv58qVtGamVuTBmuO331K5WDbUcBcuXIiFCxfCaDTiwoULqa8Uli6lmqjj5sYVibc3Na+CBbnSL1GCx9NPc0VTrhxX/eng1i0qDwsWcIWtExxM7Xf8eK7y0sPly1yEHT5MLcdgYLPLl+dC9Lnn0pdd79w5oHp1YNYsBonoPHrEVeGHHzLjYLqIi6N2c/EiNR19VX3vnjnAQA8uiIlJ+TyurlzF6ynq/P25mixalCvLMmV4lC+fXK1MA4MBeOoparoLF5pfj4wEKlWiYvzDD+n72XfvUrk8dw747z8qMH5+HANNmlCZS09cRkQE29KiBbB6tfl1Eb7eoAGtGelC0zgAL17k3+Bgc988eEAtVddaU+sbwNw3Pj60XOgpBEuV4s196ikO9OLF0x3I1agRu3zr1sS/+4UX2MSTJ9MXfxQeDuzdS8Xy3Dn2s68vNaUmTYCmTdMXyKNpQJ06vAV//53453XsyLFw6JD15wPAH3j7NjXPK1f4DN26Rc00JITWpUePzEFTqeHlxTlN75tChfjslCpFrfnpp6miliqV7nScw4ZR67x2LXEfDBsGrFrFsZ+exzEmhnGs+/bxZz9+zFvx1FO8xy++mFhDtYZ+/WgRungxsTVw0iRqy7dvp62JJyM01GwZ0Pvm5k2+/uABLQl6wFRCUfjHHzQVpkDO1nCjo6n+RUby33b2NXbowAjypEycyBVYwpKRzqBDB26fS+rnWrSIK1a7Z280GHjxsDCWIQoL4z6mmBi7981771HrTJq7/dtvuTBN6n93NGPHcowk1bb37GH7TBmY7IXRaO6bR494hIU55LlZvpyaTdLffuQIf7utqrxllK++YjviC2+ZuHWLz82iRXZugKaxH8LD2ScPH/LfT57YPeBH74Nffkn8ekgIlfRhw+x6+TTRfcrLliV+3WCg9WnwYDs3QO+byEg+M2lk/VBBUzZk40Z2ftK9z2Fh3E768svOaZeI2az6ww/J36tTh+bqnIyemGDVqsSvaxrN9M8849j4ooT88w8nbr2+ckJee41xalk1yNUWREQw7s1SMotXX6UHwZpgQHvw8CFdNz17Jn9vzhwrTP3ZHL3Wd7duyd+bO5fjNj2meVtiMNA6X7Nm8nWHnh/BHomFMoMSuDYkNpb+2hEjkr+3ejUHgD0qvqVFeDiD89q2TT5xnzjBdm3c6Ph2OZrmzZkYJimHD1PD+uQThzdJNI0BkpUqJXd1hoVx+5KpVm8OZsgQhk0kXfTcvUu/n6kmroMZNIiLgaTWKU3j9phXXnFOuxzJvHncQZE07iM6mmEc9es7dGeNiS/ic/ZYijDv2JG1WLLaQlUJXBszfjwniKRmW01j0pennrI+gMpWjBjBidvSXsWhQxno48w6BI7im2/4gCbI5Ghi9GhqK+fOObZNK1awTX/8kfy9+fOpQcTn98/RHD+e8sJv+XK+l55AGlugm/Mt7c/Va6s62xXhCEJDGW9laUG6dy/vw7x5jm3T1avczTN0aPL3goMZ1OhsV4QllMC1MefPWzZdinAbnJeX5UFiL/bupfb22WfJ3wsLY1CpI6rjZAUeP6bfKVlO1fj3ypenedlRq/VLl3j/X3st+XtGI7VeS6bMnEq9ety6mxRNM9cAd9TjHhnJ+9+okeWECz16ULvLahqUvejTh64NS/diyBAKv/i8MnZHV15KlrQ8HqZMoVXCmUWZUkIJXDvw4oucPCw9jAsXUiBv3mz/djx8yOQxjRpZ9k9+8QVNRfEVx3IFo0bRJ5g0eEqEpikXFyZQsDdxcdwW8fTTlicNvVxd0gQYOZllyywHT4mYFydJk2TYiwEDaBWKr/iWiJs3aXmYP98xbckK7NuX8jat8HAuVuvUsW3+5JSYP59tsZS1LTaWPvchQ+zfjoygBK4d0AOUkkY1ilAId+zISd+epkJNY5CWn59lU7LRyL1vuUmDEmHwlIsLTbmWeOcdLkKSFKmxOdOn0+yVUoajjh0ZDJJbNCgRulp8fRnVbwk9A9W339q3HXrk+ldfWX5/6lRqdBlN9Zkd0TT6RF96yfL7R44w2+3YsfZtx9GjNG+PGmX5fX1fdBpFe5yGErh2wGjkii8lYXbvHgNE6te3rGnZAr3ySbJyYfFs25b7NCidDh2YF8KSMIuJoUWgVCn7pY7++WcK/ZRM+Zcu8f3ly+1z/azMO+8wBsJSPgZNo/ndyyvj+XnT4uxZCtP+/S2/HxNDDWrQIPtcPyuzYgXHpaUYCBGWjgUslJ20EaGhNGvXrp1yVszGjZmAJquiBK6d0ANegoMtv3/kCCeOXr1sr8Vs2MAHIyVNQYQaVEpCJ6ezfXvqe1uvX2e0eYMGtk+peuYM/UudOqWcjF0XOnZK55qluXqVmv/ChZbfj4rihFu6tO33jd+5Qz9x1aopBzZ+/TXHjjV5sXMaUVGsKzt6tOX3NY0pmr28bL8dJyaGfvxChVIW+AcO2Ffg2wIlcO1ERATNuRMmpPwZ3fwxbpztBN+BA/Q9de+e8oR+5gyvmxs1KBHe66pVU69Ic/gwNZ1OnWy3P/e//2jZqF495eCfyEim0xs3zjbXzI707EkLUUrj99o1pmmsVs12+3MjIpiRslixlFN9ahr3a6dkVs0NTJ7M5+LBA8vvR0XRQhQYyPFuC+LiWDUoT57Ua4e//DLT0zpji5K1KIFrR8aOTdk8phMUROE3Zkzmhe7+/fSBPfdc6trRgAGc+B1ZrCSrsWQJNamLF1P+zJYt9Of26JH5bVNXrnBLWMWKzCubEkFBtIxktNxcTmD/fj4Tmzal/JmzZzmp16mT8uRvLffu0b3j45N6aUs9kC03bAVKiTt3KPhmzkz5M/fucZyXKpX5yOW4OO51dnengpISly/zebZ71q9MogSuHblyhYMgrT1qeuTywIHWlxdLyoYN1GybNEk9HD44mMENzkjykJWIiuL+4zfeSP1zGzfyfrVokXFt6uBBXqts2dQD5WJiqLk5K8lDVqJRo7R9cSdO0MRZuTIn3Ixw7Rq/HxiYvLhFUlq1ojk7N7phEvL223S5pDZX3bjB+1q4MLcmZoSHD5msx91d5McfU//syJEMRM3qbhglcO1M//6cRNPSJr/+mivH2rVT17qSEh1N86OLCzWxtAbc6NHUurPiHjVH88knfJjTqha0ezcn5KefTt/kYTBwsZU3LwXInTupf17PKXzmjPXXyKno1YLSqg19/jwDafz9LactTY116/i90qV5ntTQ/YNr16bvGjmR8+ct1wVOSkgIs6i5u7PWe3pcMwcOUEsuUIABnmldJ39+y6lBsxpK4NqZs2etG5wijLwsV45h7+PGpR4lGxfHCOQKFaiBzZ6dss9LJzSUWnB2GJiOIDKSq2Jr9uxdvSrSsCEn3TfeSH2CNhq5X1H//PDhaVsuDAb6LS3lrM2N6Dl8X3gh7c8+eED/HcA98GkF7Jw8Sd88wFiH0NC0r9G2LRNdZGX/oCPp3ZuJJ9Ia17GxdJe5uLAY/datqc9TV65Qg3Z1pU/dGpP0+PHco21NPzobJXAdQO/e9N9Zsyk8MlJk2jQKRnd3TgyffMJEGb/8wr2Bw4bRpAOwTm6qtTgTMHEiz2uv7S7ZkZkzucCxZk+0wcA0f0WKcAJp2ZK1ar/7jmUwv/qK97hSJfZN3bop77NNir738/DhzP2enIQeVGjNPdQ0ulWqVjXf+ylTqMVu3Urt98MP+TrAhe3atdaZh/WkD0lr9uZmzp2jUPziC+s+f+gQ/eQAlYRx47iv+rff2Edz5tBt4+bGSGRrNeK7dzmnvf9+pn6Ow8h2AnfBggVSpUoVqVixYrYRuKdPc4JOj0P/3j0O5saNOaAS1jguX575kdOzF/HmTYbrT56c/vbnZMLCaLZKT5mxJ0+4J7FNG66sE/ZNsWIi/fpRSFjr64uOprm6S5eM/YacitHIiO7nn7f+XhoM9Pd160b/YcK+CQzk6z/8kL4guNatGRGdlgUpt/Haa4xNsNZvqml0ybz2Gt1sCfsmXz6m9VyyJPUg06S8+y6D3e7fz8gvcDzZTuDqZCcNV4SBMIULZywXrNFIgXn7dsYLHwwezACT3JQdx1pmzaI1IS0/niU0jff06tWMB7wFBVFbUL7b5OhZ25LWY7WW0FAGCmY04O2vv3j9desy9v2czKVLfG4yGoD55AmD1u7fz1ggWnBw9lMiMiq3XEQSlrl3POHh4fDz80NYWBh8fX2d2RSruHEDqFABGDsWmDnTsdf+7z+gShVg1izg3Xcde+3swJMnQOXKQJ06wPr1jr12eDhQrhzQuTOwfLljr50dEAFeeAEICQFOngTc3R13bU0DGjYEjEbg8GHA1dVx184uDBoE/PQTcOECULCgY6/96qvA778DFy8C2UAEAMi43FJDL52ULAm88w7w2WfA9euOvfb48UDRosCwYY69bnbBywv4+GNgwwZgzx7HXnvuXCAyEpg61bHXzS64uACffAKcOQN89ZVjr716NQVtUJAStikxbRoQG8u/juTIEeDbb4EZM7KPsM0MSsPNABERQPnyQKtWwKpVjrnm9u1A69bA2rVA796OuWZ2RNOABg2oUR08CLi52f+a588DNWpwQTRjhv2vl53p149j+exZx2hSkZG0ejRqBKxbZ//rZWf+9z/gvfdogahWzf7X0zSgeXPg0SPg+HHHWj0yi9JwHYiPD826q1cD27bZ/3pRUcDQoUCzZkCvXva/XnbG1RX44gvg2DFg/nz7X08EGDwYKFUKeP99+18vu/PJJ9SkHOUSmTQJePCAFghF6owaBZQtSwuaptn/eitWAHv3AvPmZS9hmyns4E9OF9ktaEpH07i3sHTpjAdAWcu77zKZxrlz9r1OTmLkSEZMppQg3VboSfDT2tSvMLNsGe/Z9u32vc7evdxV8Nln9r1OTuKPP9g39k6teOsWc9S//rp9r2MvVNCUE7h8GXjmGWDgQGpV9uDQIZrDZs4EJk60zzVyIpGRQPXqNP1v304foq25cQOoWRNo0wZYs8b258+p6AFUwcHAP/8A+fPb/hpPngDPPkuz9d69jnEt5BQGDeJ4Pn0aKF3a9ucXAbp2Bfbvp08/IMD217A3yqTsBMqWpSCcPx/49Vfbn//RI+CVV4DatVVUcnrx9gaWLgV27GCAm60xGoG+fYF8+YAFC2x//pyMiwv75s4dYPhw+1xjwgTg6lXg//5PCdv08r//Af7+9LfHxdn+/F9+CWzaxL/ZUdhmCrvo2+kgu5qUdYxGFkL398944nVLaBrLzvn52d8smpMZN45Zb/bsse15p03jnltbnzc3oZvjV6yw7XnXruV5U6rFq0ibvXu5N3fsWNue99gx5iQfPNi253U0KvGFE3nwgBVkatWyXZWLWbOyfhHm7EBcHAteFy3KgvS2YP16+ganTbPN+XIzb77JCdhWhc6PHWMC/D59VDWgzKKXHLVVoYe7d1nqr04dVvnKziiB62SOH+eD3qaNdbmWU+ObbzjQVXEC23D7trmGbVqVftLi77+ZFadnT5Ui0BZERbHuc8GCmc/QdeECs8DVrWv/QMbcgKYxvamHB2sIZ4YHD6iQFCliu4WvM8mo3FI+XBvx7LP0S+zcSb9rTEzGzrNqFTBgAA9Hb0LPqRQtSl9ueDj3Mt+/n7Hz7N7N79erx+QNKolC5vHyAn75BShRgvvaz5/P2HkuX+b3CxYEtm6lD1+ROVxc6ANv1YpBTrt2Zew8YWFA27bAtWvcRlmypE2bma2w6ZQxaNAguLi4ICgoyJanzTa0bAn8+COwZQsHaWio9d/VNGZJevVV4LXXgGXL7BNZm1spXx744w/g1i0mxjh1Kn3fX7cOaNeO3/31VwoKhW3w92dqPz8/RuSnd2Lft4/94uHBCb1QIbs0M1fi4cGx/9xzXGymN9HPxYvs0wsXuFugRg37tDO7YDOBu3HjRhw8eBDFixe31SmzJR07An/+yUw6NWpw9Z7WxqurV4H27YHJk7lRf9kyFVlpD6pVY/Ypb2/m1l24MO0ozIcPuU2iZ0+gUyf2pz22seR2ihUD/v6bEfkvvsjnIDo69e/ExgLTpwPPP88c4wcOMAGJwrbky0clom9foH9/WvDu3Uv9O0YjsGQJrUGaxueudm3HtDdLYwt79o0bN6REiRJy+vRpKV26tHz++edWfzen+HCTcuMGa9wC9FF9/33i0lMGAyMBhwyhj6RoUZU8wVE8fsxgHRcX1rxdsiSxb9doZCnG999nYXtfXyYCUEE49ic2VmT6dD4TxYqJzJ7N6k/6vdc0kYsXWWe1VClGoE+ezNKICvuiaSKrV9Pf7ufHHQAnT3Iu07l5k/Wka9bk3Pf66zmzspnTgqaMRqO0aNFCgoKCRETSFLjR0dESFhZmOq5fv54jBa4IB+iWLRS4ACf44sVZNFuvjVukCIunp6d2pMI2HD/O2p2uruyLokVZo9jPj//38WHGqps3nd3S3Mf58yIDB1LwAlz4VKxoro3r7i7St6/Iv/86u6W5jzt3KGwTPieVKnGBpNfFffFFkQMHnN1S++G0TFOzZs3Czp078fvvv8PFxQVPP/00Ro8ejdGjR1v8/NSpUzHNQjRQdsw0lR6Cgxm4ExwMPH7MQJ6GDel7UuZj5xIaSt/fxYvsG39/oH599o8yHzuX8HCamo8c4b+9vYFatYAWLZjTXOE8njyhqfjgQZZdzJePwaPPPUcXQU4mo5mm0iVwV69ejUGDBpn+v2XLFvTq1QvHjh0z+W7TErgxMTGISRDCGx4ejlKlSuV4gatQKBSKnIFDBG5ERATu3r1r+v+6deswadIkuCbYH2E0GuHq6opSpUrh6tWrdmu4QqFQKBTOwCECNyn379/H7du3E73Wpk0b9O/fHwMGDEClSpXSPIcSuAqFQqHITmRUbmWqCmFAQAACkmSf9vDwQNGiRa0StgqFQqFQ5BZUrhyFQqFQKBxApjRcS1jjt1UoFAqFIrehNFyFQqFQKByAErgKhUKhUDgAJXAVCoVCoXAASuAqFAqFQuEAlMBVKBQKhcIBKIGrUCgUCoUDUAJXoVAoFAoHoASuQqFQKBQOQAlchUKhUCgcgNME7sKFC1G1alXUq1fPWU1QKBQKhcJhZLoAfWZR1YIUCoVCkZ3IqNxSJmWFQqFQKByAErgKhUKhUDgAJXAVCoVCoXAASuAqFAqFQuEAlMBVKBQKhcIBKIGrUCgUCoUDUAJXoVAoFAoHoASuQqFQKBQOQAlchUKhUCgcgBK4CoVCoVA4ACVwFQqFQqFwAErgKhQKhULhAJTAVSgUCoXCASiBq1AoFAqFA1ACV6FQKBQKB6AK0CsUCoVC4QBUAXqFQqFQKNKBKkCvUCgUCkUWRglchUKhUCgcgBK4CoVCoVA4AHdnN0B3IYeHhzu5JQqFQqFQpI0ur9IbAuV0gRsREQEAKFWqlJNbolAoFAqF9URERMDPz8/qzzs9SlnTNNy6dQsvvPACjhw5kuHzhIeHo1SpUrh+/XqGo53r1auHw4cPZ7gNtjhHZr+fFe6Ds++jLe5BZttgi+9n9hxZYSzY4hzqmcj8OdQzQWw1Fg4dOoSIiAgUL14crq7We2adruG6urqiZMmScHd3t8m2IF9f3wyfx83NLdNtyOw5bNEGwLn3ISvcRyBz98AWbcgJ9yEr/Ab1TNjuHOqZIJkdC35+funSbHWyTNDUsGHDnN0Em7Qhs+fICfchK9xHW6DuQ9b4Dc6+B7ZoQ1a4j7ZA3YfMXd/pJmVboRJoEHUf1D3QUfeBqPug7oGOs++D29SpU6c6/Kp2ws3NDc8//zzc3Z1uKXcq6j6oe6Cj7gNR90HdAx1n3occo+EqFAqFQpGVyTI+XIVCoVAocjJK4CoUCoVC4QCUwFUoFAqFwgEogatQKBQKhQNQAlehUCgUCgeQowTu2bNn0alTJ/j5+cHHxwcNGzZEcHCws5vlFAYNGgQXFxcEBQU5uykOJS4uDhMmTMAzzzyD/Pnzo3jx4nj11Vdx69YtZzfNoSxatAhlypRB3rx5UadOHfz111/ObpJDmTVrFurVqwcfHx8ULlwYXbp0wfnz553dLKcza9YsuLi4YPTo0c5uisO5efMm+vXrh4CAAOTLlw/PPvssjh496tA25BiBe+nSJTRp0gSVK1fGrl27cPLkSXzwwQfImzevs5vmcDZu3IiDBw+iePHizm6Kw4mKisKxY8fwwQcf4NixY1i/fj0uXLiATp06ObtpDuP777/H6NGjMWnSJBw/fhxNmzZFu3btctXic/fu3Rg2bBgOHDiA7du3w2AwoHXr1nj8+LGzm+Y0Dh8+jKVLl6JGjRrOborDefjwIRo3bgwPDw9s3boVZ86cwaeffooCBQo4tiGSQ+jVq5f069fP2c1wOjdu3JASJUrI6dOnpXTp0vL55587u0lO59ChQwJArl275uymOIT69evL4MGDE71WuXJlmThxopNa5HxCQkIEgOzevdvZTXEKERERUqFCBdm+fbs0b95cRo0a5ewmOZQJEyZIkyZNnN0MyREarqZp2LJlCypWrIg2bdqgcOHCaNCgATZu3OjspjkUTdPQv39/jBs3DtWqVXN2c7IMYWFhcHFxcfxq1gnExsbi6NGjaN26daLXW7dujX379jmpVc4nLCwMAFCwYEEnt8Q5DBs2DC+99BJefPFFZzfFKWzevBl169bFyy+/jMKFC6NWrVpYtmyZw9uRIwRuSEgIIiMjMXv2bLRt2xbbtm1D165d0a1bN+zevdvZzXMYc+bMgbu7O0aOHOnspmQZoqOjMXHiRPTp0ydX5JANDQ2F0WhEkSJFEr1epEgR3Llzx0mtci4igrFjx6JJkyaoXr26s5vjcL777jscO3YMs2bNcnZTnMbly5exePFiVKhQAb///jsGmsdpLwAAA5VJREFUDx6MkSNH4ptvvnFoO7KlwF29ejW8vb1Nhx4M0blzZ4wZMwbPPvssJk6ciA4dOmDJkiVObq19SHoPdu/ejXnz5uGrr76Ci4uLs5vnMJLeh4TBQXFxcejduzc0TcOiRYuc2ErHk3QMiEiuGhcJGT58OP755x+sXbvW2U1xONevX8eoUaOwatWqXBnPoqNpGmrXro2PP/4YtWrVwqBBg/DWW29h8eLFDm1Htsxi3alTJzRo0MD0/8DAQLi7u6Nq1aqJPlelShXs3bvX0c1zCEnvwbp16xASEoKnnnrK9JrRaMQ777yDoKAgXL161QmttD9J70OJEiUAUNj27NkTV65cwZ9//pkrtFsAKFSoENzc3JJpsyEhIcm03tzAiBEjsHnzZuzZswclS5Z0dnMcztGjRxESEoI6deqYXjMajdizZw8WLFiAmJgYuLm5ObGFjqFYsWIW5cNPP/3k0HZkS4Hr4+MDHx+fRK/Vq1cvWdj/hQsXULp0aUc2zWEkvQdvv/02OnbsmOgzbdq0Qf/+/TFgwABHN89hWBoLurC9ePEidu7ciYCAACe1zvF4enqiTp062L59O7p27Wp6ffv27ejcubMTW+ZYRAQjRozAhg0bsGvXLpQpU8bZTXIKLVu2xKlTpxK9NmDAAFSuXBkTJkzIFcIWABo3bpwl5EO2FLiWGDduHHr16oVmzZqhRYsW+O233/Dzzz9j165dzm6aQwgICEgmWDw8PFC0aFFUqlTJSa1yPAaDAT169MCxY8fwyy+/wGg0mrS9ggULwtPT08kttD9jx45F//79UbduXTRq1AhLly5FcHAwBg8e7OymOYxhw4ZhzZo12LRpE3x8fExjwM/PD15eXk5unePw8fFJ5rfOnz8/AgICcpU/e8yYMXjuuefw8ccfo2fPnjh06BCWLl2KpUuXOrYhTo6StikrVqyQ8uXLS968eaVmzZqyceNGZzfJqeTGbUFXrlwRABaPnTt3Ort5DmPhwoVSunRp8fT0lNq1a+e67TApjYGVK1c6u2lOJzduCxIR+fnnn6V69eqSJ08eqVy5sixdutThbVD1cBUKhUKhcADZMkpZoVAoFIrshhK4CoVCoVA4ACVwFQqFQqFwAErgKhQKhULhAJTAVSgUCoXCASiBq1AoFAqFA1ACV6FQKBQKB6AErkKhUCgUDkAJXIVCoVAoHIASuAqFQqFQOAAlcBUKhUKhcAD/D2U3wZ09bokGAAAAAElFTkSuQmCC",
"text/plain": [
"Graphics object consisting of 37 graphics primitives"
]
},
"execution_count": 11,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('c,x,y')\n",
"F1=[plot(c*sin(x),(x,-2*pi,2*pi),color='blue', aspect_ratio=1) for c in sxrange(-4,4.5,.5)]\n",
"#show(sum(F1))\n",
"F2=[implicit_plot(y^2+2*log(abs(sec(x)))-c,(x,-2*pi,2*pi),(y,-5,5),color='red',aspect_ratio=1) for c in sxrange(-10,10,1)]\n",
"show(sum(F2)+sum(F1))"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Notez que les listes F1 et F2 sont les listes de courbes, donc d'objets graphiques. Ainsi, afficher la somme des listes, affiche toutes les courbes des listes. Probablement ce n'est pas la chose la plus efficace à faire...\n",
"\n",
"Que se passe-t-il si on laisse tomber les valeurs absolues?"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Voyons maintenant quelques courbes en coordonnées polaires. Habituellement, on écrit $r=f(\\theta)$, si on donne l'équation explicitement.\n",
"\n",
"Par exemple, $r=\\cos{\\theta}$ est un cercle, car en multipliant les deux côtés par $r$ on obtient $r^2 = r \\cos{\\theta}$, ou encore $x^2+y^2 = x$ ce qui équivaut à $(x-\\frac{1}{2})^2+ y^2 = \\frac{1}{4}$"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAASYAAAEJCAYAAAA5Poo5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzt3Xt8zvX/x/HHDrZhM2NsMyMkh0aYyGFfclg5U4ockq8UppIkS+JLTJL8qk1OlRCSEVqyTggh7EuIHOc0zGEHs/P798f13cVsuGbXdX2uz3W97rfbdWvX5/pc78+TePkc3gcnpZRCCCFsiLPWAYQQ4nZSmIQQNkcKkxDC5khhEkLYHClMQgibI4VJCGFzpDAJIWyOFCYhhM2RwiSEsDlSmIQQNkcKkxDC5uiyMCmlSElJQYb5CWGfdFmYUlNT8fb2JjU1VesoQggL0GVhEkLYNylMQgib46p1AGH/cvNyuZZxjaT0JBLTEklMS+RS+iXSs9PJycuhlHMpSrmUwt3FHW8Pb8p7lKe8R3l8PHyo5l2Nsm5ltf4lCCvTVWGKiooiKiqK3NxcraOI/8nMyWT7me1sOLqBLQlb2HZ6m1WOW869HKHVQgmtFkrXh7pSv1J9nJycrHJsYXlOepzBMiUlBW9vb5KTkylXrpzWcRxCWlYaMYdiWHVoFWsPry3Wd2v51KKGTw2qeFXBv6w//p7++JbxpUypMpRyKUVOXg5ZuVlk5mSSkplCcmYy1zKucfnGZU5dO8Xxq8c5lXzK5OO1CmrF0CZD6V2/t5xt6ZQUJlGIUoo95/cQ+Xskqw6tuuu+1byr0bNOT7o81IXmgc3x9vC2Uko4l3qOzac2s/bwWmIOxZCZm3nHfRv5N2Jok6EMbDgQL3cvq2UU90cKkwDg6JWjvPPLO6w4sKLIz+tXqs+gRwbRu35vavrUtHK64jmXeo4l+5awcO9Cjlw+UuQ+nm6eRLaP5KWQl3BzcbNyQnEvUpgcVJ7KY8GeBby8/uUiP3+63tNEtI4gpEqIlZNZxrWMayzdt5QPtn1Q5GVhn4f78EmnT6hUtpIG6cTtpDA5kJy8HGZum0nEzxGFPgutFkpk+0haVWulQTLru5F9g6hdUYyNG4ui4F+Bbg91Y06XOQSWC9QonZDCZOeUUqw9vJaeK3oW+mzCvyYwrvU4ypQqo0Ey27Lx2Eb6rerH5RuXC2xvX6M9i3oukiJlZVKY7FRCcgJPf/M0f577s8D2ae2m8WarN3F11lVPEavafGoz/WP6cyblTIHt87vN58UmL2qUyrFIYbIjSilm/zGb0RtHF9jeu35v5nWdh09pH42S6de209v41xf/Ilfd7DsXWi2UmD4x+Jbx1TCZfZPCZAdy8nJ49YdXmfPnHOO2CqUrsKH/Bh4NfFTDZPYjMyeT4d8P54v4Lwps/+X5X3i8xuMapbJfUph0LD07nb7f9mXdkXXGbUObDCW6S7RcqlnQz8d/psPiDgW2Le61mAENB2iUyP5IYdKhpPQkwhaHsTdxr3Hb5LaTGf+v8Tg7ybhsa7l0/RIdFndg34V9xm3zus5jaMhQDVPZB10VplvHyh05csThCtOVG1doMrdJgX4487vNZ0jjITJOTEM3sm/Q+evO/HbyN+O2L3t8yaBGg7QLpXO6Kkz5HO2MKTUzlccWPsbBSweN29b0WUOPuj00TCVul5GTQa8VvdhwdINx23d9v6N7ne4aptInKUw2LCcvhy5fd2HjsY3Gbd/3+57OtTtrmErcS3p2Ou0WtWPH2R3GbfuH7ye4crCGqfRFCpON+mTHJ7y64VXj+5hnY+hVr5eGiURxXcu4RnB0MGdTzwJQ17cu8S/H4+7qrnEy2yeFycacTj5NtdnVjO8j20cyrvU4DROJkjqcdJi6UXWN72d2nMkbLd/QMJHtk8JkI5RS9Ivpx/K/lgNQo3wN/h75t4x8tyO3nwUnjEogyDtIw0S2SwqTDdh9bjdN5zc1vt/67620DGqpYSJhKZk5mTSe25hDSYcAQ7+zuV3nylPV20hh0pBSii5fd+GHoz8AMKDhAL7q+ZX8IXUAvyf8TugXocb3x189Tg2fGhomsi1m640XHR1NjRo18PDwICQkhC1btpj0veXLl+Pk5ETPnoVHv9uzv5P+xnmys7EoHRl5hMW9FktRchCtq7Um991cnqj1BAA1P67J1M1TNU5lO8xSmFasWMGoUaMYP348e/fuJTQ0lE6dOpGQkHDX7506dYoxY8YQGhp61/3szds/v029qHoAPBf8HHnv5lG7Ym2NUwlrc3ZyZsOADWx6YRMA7/z6Dk7/cSI9O13jZNozy6Vc8+bNadKkCXPm3BxEWq9ePXr27ElkZGSR38nNzaVNmzYMHjyYLVu2cO3aNdasWVPkvpmZmWRm3pzPOSUlhaCgIN1dyl3Puo5npKfx/c4Xd8ogWwFAVm4WFd6vwPXs64D0VyvxGVNWVha7d+8mLCyswPawsDC2bbvzUj6TJ0+mUqVKDBky5J7HiIyMxNvb2/gKCtLfk4yfjv9kLEoVS1ck650sKUrCyM3FjbS30/ik0ycAdPm6C12+7oIObwGbRYkLU1JSErm5ufj5+RXY7ufnR2JiYpHf2bp1KwsXLmT+/PkmHSMiIoLk5GTj6/Tp0yWNbVXjfx5Px8UdAYjuHE3S2CRKuZTSOJWwRSObjeTc6HMAxP4Ti/NkZ5IzkjVOZX1mmxvj9pu2Sqkib+SmpqYyYMAA5s+fj6+vaRNtubu74+6uv96ySinqR9fn76S/AXnyIkwT4BVA3rt5NFvQjD/P/Un598s7XBeSEhcmX19fXFxcCp0dXbx4sdBZFMCxY8c4efIk3bp1M27Ly8szhHF15fDhw9SqVauksTSXlpWGV+TN9csyxmfIUARhMicnJ3YN3cXCPQt5cd2LtPq8FXO7zuWlkJe0jmYVJb6Uc3NzIyQkhLi4uALb4+LiaNmycIWvW7cu+/fvJz4+3vjq3r07jz/+OPHx8bq8f3S7o1eOGotSaLVQ1EQlRUnclyFNhrB/+H4AXl7/MkPXOsZcT2a5lBs9ejQDBw6kadOmtGjRgnnz5pGQkMCwYcMAeP755wkMDCQyMhIPDw+CgwuOsi5fvjxAoe169OuJX2n3VTsA3u/wPmNbjdU4kdC74MrBJL2ZhO8HvizYu4DfTv3GkZFH7LrPm1kKU58+fbh8+TKTJ0/m/PnzBAcHExsbS/Xq1QFISEjA2dn+Z1b86r9fMWiNYXKw2H6xdKrdSeNEwl5ULFOR7AnZlJpSiqNXjuI82ZmcCTm4OLtoHc0iZEiKmczcNpM3494E4K/hf/Fw5Yc1TiTsVf2o+saxdulvp1O6VGmNE5mf/Z/GWMGYjWOMRSlhVIIUJWFRB8MPGmfFLDOtDNezrmucyPykMJXQgJgBfLj9QwCS3kySaSyEVXzX9zuGNDZ0TvaM9CQlM0XjROYlhakE+n7bl6X7lwKQFpFGxTIVNU4kHMmC7gt4pdkrAHhP9+bqjasaJzIfKUz3adCaQaw4sAIw9FEq61ZW40TCEX3c6WPeavUWABVmVCA1M1XjROahq8IUFRVF/fr1efRRbceYjf95PF/99ytAOk4K7U3vMN1YnMpNL2cXsxPIU7limrNrDiNiRwCQGpGKp5vnPb4hhHUMWz+MubvnAui+K4Guzpi0tvrQamNRujDmghQlYVM+6/oZYbUMs3y4TnHV9cwEUphM9HvC7zz1zVMAHH3lKJXLVtY4kRCF/TjgR/zKGsao1o+ur3Ga+yeFyQQHLx00zs/859A/qVVB/4OMhf06/8Z5wDB9c59v+2ic5v5IYbqH5IxkHo42dJjc0H8DIVVCNE4kxN05OTmRPSEbgG8OfKPLucSlMN2FUory7xsGGEd1juKJB5/QOJEQpnF1diVlnKHT5Tu/vsO6w+s0TlQ8UpjuIv9MqWPNjox4dITGaYQoHi93L46/ehyA7su7cy71nMaJTCeF6Q6mbJpiHCi5ceBGjdMIcX9q+NTg+37fAxA4K1A3T+qkMBVhx5kdvPvbuwDcGH9D4zRClEzn2p3pWdewbmOzBc00TmMaKUy3ycjJ4LGFjwFwYMQBPFw9NE4kRMmt7rMagD/P/cmSfUs0TnNvuipM1hiSUnqqYW6b6e2nU7+SfvuBCHG7K2OvADBw9UDOp57XOM3dyZCUW0T8FMH0rdPx8fDhyltXzNauELZi/ZH1dFtmWAgk7908m52eV1dnTJZ09MpRpm+dDsDFNy9qnEYIy+j6UFe6PWQoTC0/t93loKQwYeivVPuT2gBsH7IdV2ezLbcnhM1Z+9xaAP448wfL9i/TOE3RpDCBcZXc3vV781jVxzROI4Tl5d9v6hfTzyanSXH4wrT51GZ+PvEzACufWalxGiGsw6e0Dwu6LQDAb2bhhWm15tCFSSlFmy/bAHD69dMapxHCuoY0McwZnpaVxtrDazVOU5BDF6bh3w8HoM/DfaharqrGaYSwvqQ3kwDosbwHuXm5Gqe5yWEL09UbV42z/S172jZvAAphaRXLVGR86HgA2i5qq22YWzhsYaowowIAa/uutdm+HEJYw3vt3gMMkyEeTjqscRoDhyxMccfijD93q9NNwyRC2IZ9w/YBUDeqrsZJDByuMCmlCFtimBf54hjpSCkEQAO/BjT2bwzAh9s+1DiNzgqTOcbKDV03FICBDQdSqWwlc0UTQvd2Dt0JwJi4MZpPj+JQY+WuZVzD530fwLbHCQmhldd+eI2Pd37MiKYjiOoSpVkOXZ0xlVTjuYZT1e/6fidFSYgizH5yNgDRf0aTnZutWQ6HKUxJ6UmcvHYSgO51umsbRggb5eTkxKywWYBhOl6tOExhajCnAQA/DfxJ4yRC2LbXW7wOwIajG0jLStMkg0MUpsS0RBLTEgFoX7O9xmmEsH3f9P4GgKbzmmpyfIcoTI/ONzzF+3XQrxonEUIfnnn4GQAOXz7MtYxrVj++2QpTdHQ0NWrUwMPDg5CQELZs2XLHfefPn09oaCg+Pj74+PjQoUMHdu7caa4oBaRkpnAm5QwAbR9oa5FjCGGP1j1nWIsuf1ogazJLYVqxYgWjRo1i/Pjx7N27l9DQUDp16kRCQkKR+//2228899xz/Prrr2zfvp1q1aoRFhbG2bNnzRGngPzf1PzJ2IUQpun6UFfAsICB1Z/QKTNo1qyZGjZsWIFtdevWVePGjTPp+zk5OcrLy0stWrTIpP2Tk5MVoJKTk++6X2ZOpmISiklm+WUK4XA+3PahYhJq8JrBVj1uic+YsrKy2L17N2FhYQW2h4WFsW3bNpPaSE9PJzs7mwoVKhT5eWZmJikpKQVepuj7bV8A5nada9L+QoiCXn/M8ITui/gvrNobvMSFKSkpidzcXPz8Cs6C5+fnR2JiokltjBs3jsDAQDp06FDk55GRkXh7extfQUFB92xTKcXqvw2Xby+FvGRSDiFEQU5OTrzQ6AUAondFW+24Zrv5fXtPaqWUSb2rZ8yYwbJly4iJicHDo+jFJSMiIkhOTja+Tp++92yTC/YYpg0d3GiwCemFEHeSf8Ux8oeRVjtmiQuTr68vLi4uhc6OLl68WOgs6nYzZ85k2rRpbNy4kYYNG95xP3d3d8qVK1fgdS8vrTecJc3pMseEX4UQ4k7cXNzwK2v4u3zw0kGrHLPEhcnNzY2QkBDi4uIKbI+Li6NlyzuvW/XBBx8wZcoUNmzYQNOm5u3ElZSeZPzZ3dXdrG0L4Yg2vbAJgE5LO1nleGZZQG306NEMHDiQpk2b0qJFC+bNm0dCQgLDhg0D4PnnnycwMJDIyEjAcPk2YcIEvv76ax544AHj2Zanpyeenp4lzvPcqucAGX4ihLnU8a0DQEJygsm3aUrCLPeY+vTpw+zZs5k8eTKNGjVi8+bNxMbGUr16dQASEhI4f/7mWunR0dFkZWXRu3dvAgICjK+ZM2eaIw4/HTcUJBl+IoT5jGo+CoCoXZafDsXu5mPKX5u920PdjCuOCiFKLjs3G7f33ABQEy1bNuxurFy3ZYY5vL/q9ZXGSYSwL6VcShl/Ts1Mteix7Kow3bouVnmP8homEcI+LX96OQBjNo6x6HHsqjDlrxM3qc0kbYMIYaeeffhZAObtmWfR49hVYQqPDQdgXOtxGicRwj7d+jQuPTvdYsexm8J06z186bskhOXk9wSf/vt0ix1DV4Xpbss3rT+yHoB/N/q3tWMJ4VCGNB4CwJTNUyx2DLvpLuA7w5fLNy5z6c1L+Jbx1TihEPbN6T+GS7rcd3NxdjL/+Y2uzpju5vKNywBSlISwgjdavAHA0n1LLdK+XRSm/IUG6lSso3ESIRzDxDYTgZsrW5ubXRSmSb9NAuDDMO3XXBfCEXi5ewGQmZtpkfbtojDl91/qVNs6I5+FEPBwpYeBgrN5mItdFKZ8lrgJJ4Qo2jv/egeA2X/MNnvbuv+bfC71HABNq2izMJ8QjuqZ+oa156ZumWr2tnVfmGZtN6yz/k7oOxonEcKxuDi7WKxt3RemD7cbbnh3q9NN4yRCOJ6q5aoC5h+eovvClE/uLwlhfa81fw2AFX+tMGu7uvrbfPuQlJy8HADjROlCCOvq36A/AIv3LTZru7oqTOHh4Rw8eJBdu3YB8NuJ3wAY2HCghqmEcFwBXgEA/HryV7O2q6vCdLuVh1YC0K9BP42TCCHMSdeF6Zu/vgGgkX8jjZMI4bjy7+/eOoNsids0W0sayFN5QOFVgIUQ1tM3uC8Afyf9bbY2dV2YhBDa6/xgZwA2HN1gtjZ1X5jq+tbVOoIQDu2JB58A4Pt/vjdbm7ovTJ0elIG7Qmgpfw40cz6Z031hahnUUusIQggz031hahbYTOsIQggz031hCioXpHUEIYSZ6b4wSVcBIbTX2L8xABk5GWZpT1eF6W7LNwkhtPNY1ccA2Hdhn1na01Vhun2snBDCNuQXpj/O/GGW9nRVmIQQtql5YHMAdpzdYZb2pDAJIUqsVoVaAPxz+R+ztKfLwpS/eHBV76oaJxFCALg6uwJw8fpFs7Sny8KUkpkCwAPlH9A2iBCigEvpl8zSji4LU/46VgGeARonEULcylxzf+uyMKVlpQHg5ealcRIhhCXoujB5unlqnEQIYQlSmIQQNsdV6wCmyMjIICnp5vrop86dAqBUTilSUlK0iiWEuNX/RqMU9XfSy8urWMPHnFT+s3cbFhERwfTp07WOIYS4T8nJyZQrV87k/XVRmG4/Y/r8j8+Z+MxEIlZGMC5snEltPProoyYPZSnOvsXZPyUlhaCgIE6fPm3y/yTJff/7S27r7usd6Q3A6fDCuYt7xqSLSzkPDw+qVr3ZmTKg0v+6Cbhh8v84FxcXi+x7P/uXK1dOcpcgh+QuWdsW+zV6GP5TnNx3osub32XcygBwPfu6yd8JDw+3yL73s7+l2pbcJSe5739fc9LFpdztftz7I082eZJ+i/uxdMBSreOYLCUlBW9v72Jfb2tNcluXXnM7/cdwqZb8eslz6/KMKaC84VLuasZVjZMUj7u7OxMnTsTd3V3rKMUiua1Lr7kBXJWrWXLr8owp6WoSlSpUotmnzdgRbp5pFoQQJeP0HyceKP8AJ147UeK2dHnG5ObiBkDS9aR77CmEsIas3CwAKpetbJb2dFmY8p1PO691BCEEN6c7CfQKNEt7ui5MN7JvaB1BCAEcTjoMwEMVHzJLe7ouTEII2/DnuT8BaFqlqVnak8IkhCixXecMvcMfrWKeFYx0VZj0sHxTdHQ0NWrUwMPDg5CQELZs2XLHfefPn09oaCg+Pj74+PjQoUMHdu7cacW0NxUn962WL1+Ok5MTPXv2tHDCohU397Vr1wgPDycgIAAPDw/q1atHbGysldLeVNzcs2fPpk6dOpQuXZqgoCBef/11MjLMs4ZbSW3evJnYeMPv4QM+D7BmzZqSN6p0KDk5WQGKcaiM7Ayt4xgtX75clSpVSs2fP18dPHhQvfbaa6ps2bLq1KlTRe7fr18/FRUVpfbu3asOHTqkBg8erLy9vdWZM2dsOne+kydPqsDAQBUaGqp69OhhpbQ3FTd3Zmamatq0qercubP6/fff1cmTJ9WWLVtUfHy8TedesmSJcnd3V0uXLlUnTpxQP/74owoICFCjRo2yau47iY2NVUzC8AK1evXqErep+8K0/fR2reMYNWvWTA0bNqzAtrp166px48aZ9P2cnBzl5eWlFi1aZIl4d3Q/uXNyclSrVq3UggUL1KBBgzQpTMXNPWfOHFWzZk2VlZVljXh3VNzc4eHhql27dgW2jR49WrVu3dpiGYvL3IVJV5dyRdl0cpPWEQDIyspi9+7dhIWFFdgeFhbGtm3bTGojPT2d7OxsKlSoYImIRbrf3JMnT6ZSpUoMGTLE0hGLdD+5165dS4sWLQgPD8fPz4/g4GCmTZtGbm6uNSID95e7devW7N6923iZf/z4cWJjY+nSpYvF82pFF7ML3M2vJ3/lrdZvaR2DpKQkcnNz8fPzK7Ddz8+PxMREk9oYN24cgYGBdOjQwRIRi3Q/ubdu3crChQuJj4+3RsQi3U/u48eP88svv9C/f39iY2P5559/CA8PJycnh3fffdcase8rd9++fbl06RKtW7dGKUVOTg7Dhw9n3DjTpvyxNPW/wSOebp6kkWaWNnV/xvTjsR+1jlDA7XPOKKVMmodmxowZLFu2jJiYGDw8PCwV745MzZ2amsqAAQOYP38+vr6+1op3R8X5/c7Ly6Ny5crMmzePkJAQ+vbty/jx45kzZ441ohZQnNy//fYbU6dOJTo6mj179hATE8P69euZMmWKNaLeU3yi4R+o3vV7m61N3Z8x2QpfX19cXFwK/at38eLFQv863m7mzJlMmzaNn376iYYNG1oyZiHFzX3s2DFOnjxJt27djNvy8vIAcHV15fDhw9SqVcuyobm/3++AgABKlSqFi4uLcVu9evVITEwkKysLNzc3i2aG+8s9YcIEBg4cyIsvvghAgwYNuH79Oi+99BLjx4/H2Vnb84tVh1YB8HS9p/mSL83Spu7PmGyFm5sbISEhxMXFFdgeFxdHy5Yt7/i9Dz74gClTprBhwwaaNjVP57TiKG7uunXrsn//fuLj442v7t278/jjjxMfH09QUJBN5gZo1aoVR48eNRZSgCNHjhAQEGCVogT3lzs9Pb1Q8XFxcUEZHl5ZLKup8gtTh5pmvAVR4tvnGsh/KtdhXgfFJNTxK8e1jqSUuvkYeOHChergwYNq1KhRqmzZsurkyZNKKaUGDhxY4MnL+++/r9zc3NS3336rzp8/b3ylpqbadO7bafVUrri5ExISlKenpxo5cqQ6fPiwWr9+vapcubJ67733bDr3xIkTlZeXl1q2bJk6fvy42rhxo6pVq5Z69tlnrZr7TvKfyO3du1cBatasWWrv3r337G5y1zbNmM9q8gvToh2LFJNQ7/7yrtaRjKKiolT16tWVm5ubatKkidq0aZPxszZt2qhBgwYZ31evXt3Q7eG218SJE2069+20KkxKFT/3tm3bVPPmzZW7u7uqWbOmmjp1qsrJybFy6uLlzs7OVpMmTVK1atVSHh4eKigoSI0YMUJdvXrV6rmLcmtXgVtfd/szcy+6nI8pf4a/C5cv4PeJH0Hlgkh4PUHrWEI4nOzcbNzec8OvrB+JY0x7+mwKXd1jun1Iioer4enV6ZTTWsYSwmHFHIoB4OWQl83arq7PmJKTk/H+yLBkjJqou1+GELrXcmFLtp/ZzrnR5wjwCjBbu7o6YyrKE7WeAODolaMaJxHC8Ww/sx3ArEUJ7KAwvdr8VQCid0VrnEQIYS66L0xPPvgkAB/98ZHGSYRwLPsu7AOgR50eZm9b94XJ2Un3vwQhdGnCrxMM//3XBLO3bRd/q9vVaAfA/gv7NU4ihONYe3gtACFVQszetl0Upv978v8AeHXDqxonEcIx5Km8e+9UAnZRmIIrBwPw28nftA0ihINY/N/FAIwPHW+R9u2iMMHNRTCvZ13XOIkQ9u/1H18HYGyrsRZp324KU3RnQ3eByN8jNU4ihP27mnEVgHLu5SzSvt0UpsGNBwMwdctUjZMIYd/yHzK1DLrzdD4lpavCdLflm6TbgBDWMWStYZ73Bd0WWOwYuvrbHB4ezsGDB9m1a1eRnw9uZDhr2nB0gzVjCeFQ8he3rFepnsWOoavCdC+R7Q33l55f/bzGSYSwT3vP7wWgkX8jix7HrgqTn6dhzuRL6ZdsYspRIexNt2WGud5XPbvKosexq8IEMLzpcAAW/XeRxkmEsC9KKc6mngWgpk9Nix7L7grTh2EfAjD4u8EaJxHCvizeZ+hUObTJUIsfy+4KU+lSpY0/X7lxRcMkQtiXQWsGAfDRE5afyaPEhUkpxaRJk6hSpQqlS5embdu2HDhw4K7fiYyM5NFHH8XLy4vKlSvTs2dPDh8+XNIoRhv6G57K9fm2j9naFMKR3fqPfFm3shY/XokL04wZM5g1axaffvopu3btwt/fn44dO5KamnrH72zatInw8HD++OMP4uLiyMnJISwsjOvXzTOc5IkHDbNa/nT8J7kJLoQZPLvyWQDWP7feOgcsybIteXl5yt/fX02fPt24LSMjQ3l7e6vPPvvM5HYuXryogAJL2NxN/vJNycnJd9xn0OpBikmo6J3RJucQQhQtf4kmaynRGdOJEydITEwkLCzMuM3d3Z02bdqwbds2k9tJTk4GoEKFCkV+npmZSUpKSoHXvcztOheAEbEjTM4hhChs4Z6FAAx6ZJDVjlmiwpS//vrta677+fkVWpv9TpRSjB49mtatWxMcHFzkPpGRkXh7extfpixD7e7qTqBXIHCzU5gQovheXPciAJ91/cxqxyxWYVq6dCmenp7GV3Z2NgBOTk4F9lNKFdp2JyNHjmTfvn0sW7bsjvtERESQnJxsfJ0+bdo6clv/vRWAJvOamLS/EKKg3ed2A1CxdEXjOo7W4Fqcnbt3707z5s2N7zMzMwHDmVNAwM3lWy5evFjoLKoor7zyCmvXrmXz5s1UrVr1jvu5u7vj7u5enKgAVC9f3fhzSmaKxaZoEMJeNZ3fFIA9L++x6nGLdcbk5eXFgw8+aHzVr18YzLZIAAAOS0lEQVQff39/4uLijPtkZWWxadMmWra885QISilGjhxJTEwMv/zyCzVq1Lj/X8E9rO1rmJe47ZdtLXYMIezRmZQzxp+reVez6rFLdI/JycmJUaNGMW3aNFavXs1ff/3FCy+8QJkyZejXr59xv/bt2/Ppp58a34eHh7NkyRK+/vprvLy8SExMJDExkRs3bpQkTpG61TGM7dmbuJdrGdfM3r4Q9qp+VH0Adry4w+rHLnE/prFjxzJq1ChGjBhB06ZNOXv2LBs3bsTLy8u4z7Fjx0hKSjK+nzNnDsnJybRt25aAgADja8WKFSWNU6T8vheNPrPsiGgh7EViWiKpWYa+iM0Cm1n9+E5K6a8HYkpKCt7e3iQnJ1OunGn3jZz+Y7gZf/6N8/h7+lsynhC6V/mDylxKv8TmFzYTWj3U6se3u7Fyd7Jl8BYAHvz4QY2TCGHbTl07xaX0SwCaFCVwoMLUulprAK5nX+f41eMapxHCdj3wfw8A8OfQPzXL4DCFCSD+5XgAan1cS+MkQtimTSc3GX+2xAq7pnKowvSI/yPGn2VxTCEKa7uoLQCJb5g2csNSHKowwc3f8McXPa5xEiFsy6c7DV16Hqv6mHGaaq3oqjDdbfkmU/l5+tGxZkcAIn6KMFc0IXQtJy+HV354BYBNL2y6x96W5zDdBW6Vp/JwmewCwLW3ruHt4W3uiELoSsM5Ddl/cT/T20/nrdZvaR1HX2dM5uLs5MzKZ1YC4PuBr8ZphNDWnvN72H/RsLquLRQlcNDCBNC7fm/AcAr73d/faZxGCO2EzDM8fTv6ylGNk9zksIUJ4NKbhk5kPVf0JDs3W+M0Qljf8PWG5c461+5MrQq2043GoQuTbxlfprabCsBDnz6kcRohrOvktZN8ttsw+ZvV5vI2kUMXJoC3Q98GDP+Tfjz6o8ZphLCeGv9nmG5o+5DtJk/saC0OX5jgZt+mJ5c+SVZulsZphLC8/KW+Oz3YiceqPqZxmsKkMGHo25R/SVdxRkWN0whhWZtObmL9EcOl2/f9vtc4TdGkMP1P/iVdWlYac/+cq3EaISwjMyfTOOzk5Gsnbe4SLp8UplukRaQBMOz7YQWmFRXCXnhMNSwoMLXd1AJz4tsaXRUmcwxJuZuybmWNy4sHfRREbl6uRY4jhBZG/zgaAE83T+MVgq1yyCEp9/Lv7/7NF/FfAKAm6u63R4hCtiZspfUXhjnJsidk4+pcrAWSrE5XZ0zW8nmPzyntWhqAp1Y8pXEaIUrmyo0rxqJ0KPyQzRclkMJ0R2lvG+43rf57NVE7ozROI8T9UUoZnzR/3v1z6vrW1TiRaaQw3YGzkzNX37oKwMgfRrL99HaNEwlRfPlFqXud7gxuPFjjNKaTwnQX5T3KG6fjbfl5Sy6kXdA4kRCmGxAzgKsZhn9cv+urr4HqUpju4RH/R/iyx5cA+H/oT2ZOpraBhDDBnF1zWLp/KQA5E3I0TlN8UphMMKjRIIY0HgIY+oHo8EGmcCCx/8QyInYEAJfHXsbF2UXjRMUnhclEC7ovoElAEwB83vfROI0QRdtxZgddvu4CGJ7AVShdQeNE90cKUzHsfmk3AMmZybT/qr3GaYQo6MjlIzy20DAgd9u/t+nmCVxRpDAVU967eQD8cuIXnlv1nMZphDA4de0UdT6tA8C659bRIqiFxolKRleFydJDUkzh5ORE5juGG+DL/1pOv1X9NMsiBMDhpMPG1XMX9VxE14e6ahvIDGRIyn3KyMmg9FRD7/CuD3Vl3XPrNMkhHFt8YjyN5zYGYHGvxQxoOEDjROahqzMmW+Lh6mE8c1p/ZD1tv2yrbSDhcDaf2mwsSqueXWU3RQmkMJWIm4sb2RMMixhsOrXJ+IdECEtbsm8Jbb5sA8AP/X/gqXr2NaZTClMJuTq7kvuuYXqU+MR4ykWWk35OwqIm/jqRgasHAoYnxU8++KTGicxP7jGZiVIK58k363zWO1mUcimlYSJhj57+5mliDsUAcOb1MwSWC9Q4kWXIGZOZODk5oSYqGlRuAIDbe25cun5J41TCXiilqD67urEopUWk2W1RAilMZrdv+D5GNDUMB6g8szJ/nPlD40RC77Jzs3Ge7ExCcgJgGPtW1q2sxqksq8SFSSnFpEmTqFKlCqVLl6Zt27YcOHDA5O9HRkbi5OTEqFGjShrFZkR1ieLz7p8D0GJhC2Ztn6VxIqFXZ1LO4PaeGwC1fGqR926eLse+FVeJC9OMGTOYNWsWn376Kbt27cLf35+OHTuSmpp6z+/u2rWLefPm0bBhw5LGsDmDGw9m37B9ALyx8Q2azG0iN8VFsaw7vI6gj4IAGBYyjKOvHrXZVU3MrUSFSSnF7NmzGT9+PE899RTBwcEsWrSI9PR0vv7667t+Ny0tjf79+zN//nx8fOxzUGwDvwakjEsBYG/iXpwnO3Px+kWNUwlbp5Ti6W+epvvy7oBhiMmcrnM0TmVdJSpMJ06cIDExkbCwMOM2d3d32rRpw7Zt2+763fDwcLp06UKHDh3ueZzMzExSUlIKvPTCy90LNVHRuXZnAPxm+vHtwW81TiVs1eX0yzhPdjbe5E4YlWAXQ0yKq0SFKTHRsLS2n59fge1+fn7Gz4qyfPly9uzZQ2RkpEnHiYyMxNvb2/gKCgq6/9Aa+b7f96x8ZiUAz6x8Ri7tRCGrDq7C9wNfAJoFNiP33VyCvPX3Z90cilWYli5diqenp/GVnW3o9Xz7da9S6o7XwqdPn+a1115jyZIleHh4mHTciIgIkpOTja/Tp08XJ7bN6F2/NxfHGC7l8i/t/rn8j8aphNaUUoR+EUrvlb0BWPb0Mna8uANnJ8d9aF6sDpapqalcuHBz3uvMzEyCg4PZs2cPjRvfHI7Ro0cPypcvz6JFiwq1sWbNGnr16oWLy80nC7m5uTg5OeHs7ExmZmaBz4piix0si2vQmkF89d+vAHgn9B2mtJuicSKhhRNXT1Dz45rG9xfHXKRS2UoaJrINJer5rZSiSpUqvP7664wdOxaArKwsKleuzPvvv8/LL79c6DupqamcOnWqwLbBgwdTt25d3nrrLYKDg+95XHsoTGCYbTB/Yi+A468ep4ZPDQ0TCWtRSvHst88a7zfKDBUFlWjlu/z+R9OmTaN27drUrl2badOmUaZMGfr1uzlPUfv27enVqxcjR47Ey8urUPEpW7YsFStWNKko2ZPmVZuTPSGbRp814sClA9T8uCZP1XuKb5/51mEeCzuibae30erzVsb3u4buommVphomsj0lXpJz7Nix3LhxgxEjRnD16lWaN2/Oxo0b8fLyMu5z7NgxkpKSSnoou+Tq7MpfI/5i19ldNFvQjJhDMThPduaX53/h8RqPax1PmFF2bjbBc4I5cvkIAM8/8jyLeha+3SFkEK9NUUrx0rqXWLB3gXHbhTEXqFy2soaphDlM2zKN8b+MN74/NeoU1byraZjItklhskEX0i7g/6G/8X2zwGZsemETHq6mPcUUtiP2n1jjqiUAH4Z9yOgWozVMpA9SmGzYz8d/psPimx1Qn3/keb7o8YVDP0bWi51nd9J8QXPj+04PdmLdc+scYpybOUhh0oEFexYwdN1Q4/tp7aYRERqhYSJxJwcvHeTh6IeN7yuXrczBEQepWKaihqn0RwqTTiiliPg5gve3vm/c9lmXz3i5aeEuGcL6Dicdpm7UzXXcnHAi4fUEqparqmEq/dJVYYqKiiIqKorc3FyOHDniUIUpX25eLr1X9mbN32uM24aFDOOTzp/g6lzih6yimG6/ZAP4O/xv6vjW0SiRfdBVYcrniGdMt8vKzWLg6oF8c+Ab47aq5aqy+YXN0knTCm6/vAY4OOIg9SrV0yiRfZHCpHNKKT7e8TGjfiw40d7iXovp36C/dNQ0o7SsNAatGWQc+Q8Q4BnAzqE75ZLNzKQw2ZH4xHhC5oWQp/KM2xr7N2ZN3zXSZ6YEVh9azVPfFFweqX+D/izsvhB3V3eNUtk3KUx2KDkjmeHfD2fZX8sKbH+79dtMajtJVm8xwYajG+gf058rN64U2L7ymZX0rt9bo1SOQwqTndt1dhdhS8K4lnGtwPZp7aYxpuUYKVL/k6fyWHlgJf1j+pOrcgt81q9BP+Z0mUM5d/mzZi1SmBxEnspj1vZZvBn3ZqHPXmj0Au89/p5dLwdUlIycDKJ2RjEmbkyhz/o36M9HT3wkU5BoRAqTA8rJy+Gj7R8x9qexRX4+qvkoRj02iurlq1s5mWUppdh2ehuRv0fy/T/fF/p8RNMRRHaIlDMjGyCFycEppYg7HsdbP71FfGJ8kft0e6gbrzV/jcdrPK6b4TB5Ko9Dlw7xZfyXfLrrUzJyMorcb2bHmQx/dDhlSpWxckJxN1KYRAE5eTnE/hPLtC3T2HF2xx3361K7C90e6kbn2p2pWq6qZt0SlFIkJCew9vBaVhxYwdbTW++6/4uNX+SV5q/Q0M/+lgyzJ1KYxF0ppTh46SBz/pxD1K4ok75T3bs6j/g/QoPKDWhQuQEN/RpSu2LtYvdMz1N5JKUncezKMQ5cOsCBiwfYfmb7XQvmrbrX6c6LjV+kY62OMjODzkhhEvfldPJp1h9Zz7oj6/jx2I8F+k5ZW/sa7ekb3JdedXvJYFk7oavCJGPl9CE7N5sL1y9w8NJB9l3Yx74L+9h/cT/nU8+TnJl8x/s9t/L39CfQK5AqXlWoUb4GD1d+mPqV6tPYvzFl3cpa4VchtKSrwpRPzpiEsG/6eMQihHAoUpiEEDZHCpMQwuZIYRJC2Bxd3vxWSpGamoqXl5fMNySEHdJlYRJC2De5lBNC2BwpTEIImyOFSQhhc6QwCSFsjhQmIYTNkcIkhLA5UpiEEDZHCpMQwuZIYRJC2BwpTEIIm/P/XK8YTfDG3D0AAAAASUVORK5CYII=",
"text/plain": [
"Graphics object consisting of 1 graphics primitive"
]
},
"execution_count": 13,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('t')\n",
"polar_plot(cos(t),t,0,2*pi, color='green').show(figsize=[3,3])"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Finalement, les courbes paramétriques $\\mathbf{r}(t) = (x(t),y(t))$ pour $t\\in[a,b]$"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP0AAAD+CAYAAADxoQNSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJztnXd4VFUThyc9kAZSktBBQIoQivQmvQVEQAGlFwUpXxBEmiQICNIFIghSpQQUEJAaOogUIfTeW0IkSCppu/P98XNJIWXLuWWT+z7PPkk2d+fM3nvnnnPmzJmxYWYmDQ2NXIOt0gpoaGjIi2b0Ghq5DM3oNTRyGZrRa2jkMjSj19DIZWhGr6GRy9CMXkMjl6EZvYZGLkMzeg2NXIZm9BoauQzN6DU0chma0edSmJmioqJI23qR+9CM3ko5evQodejQgYoUKUI2Njb0+++/m/T56Oho8vDwoOjoaIk01FArmtFbKbGxseTj40OLFi1SWhUNK8NeaQU0zKNt27bUtm1bpdXQsEIUMfpXr4guXiR6+pQoIoKoQAGiIkWIypUjeustJTTKuTDjfIeFJdCzZ0n077829PKlDa1enURERHv3EpUsSVSwIFGhQkSurkQ2NgornQN58YLo0iWiZ8+IoqOJihUjKlMG597RUV5dZDX6P/8kmjuXaM8eori4N/9vY0P03ntErVoRdetGVKWKnNpZP3o90Y0bRKdOEZ0+jdeVK0Tx8URETv+9DCQTEdHHH6eV4eSU8gCoWJGodm2iOnWIqlUjypNHpi+SQ7hwgWjNGqJ9+4guX874GGdnXIMvvsB5lgMbOTLnPH9ONGQI0W+/Eb37LtGnn8KwixdHz/7vv0RPnhCFhKDnCQ7GCKBxY6Jhw4g6dyays5NaS+tDryc6coSoWbPvqGrVgXT/fmGKisLDs0IF3EQ+PoYePIlcXRMpf36mfPmYbG0jqXTp4nTtWiQlJLjTP//gOhl+PnuG0di5c0QJCUT29kRVqxK1a4frUa2aNiLICJ2O6NdfiWbOxP1cuDBRhw64l2vVIvL2JnJxIXr8mOjePaKTJ4l+/hm/9+uHTjFfPomVZIm5do25VCnmggWZ16xh1umy/0xiIvOmTcyNGzMTMVetyrxrF7NeL7W26kevZz5/nnn0aOaiRXF+iEK5du2n/N13zPv3M798mb2cyMhIJiKOjIzM8rjEROazZ5kXL2bu2ZM5f360WaoU85dfMh8/btw1zeno9cxBQczly+P8tGnDvH07zl926HTMy5Yxu7szV6zI/OiRtLpKavT37uHGrFSJ+f5982T89Rdzo0Y4kS1aMN+4IVRFq+HBA+bp05krV8a5KFCAeehQ5hMnmImIt27dapI8Y40+PYmJzMHBzEOGMHt5QZcSJZgXLmSOizNJVI7hwoWUDqp9e+bTp82Tc/MmzmWpUszh4WJ1TI1kRh8fz1yjBnPp0sxPn1omS6/HU7NMGWYnJ+bvvmNOThajp9q5eZP500+ZbWyY8+Rh7tGD+Y8/mF+8iOaQkBAOCQlhIuK5c+dySEgIP3jwwCi55hp9anQ69PSffspsa8vs6cn8/ffMUVFmi7QqEhKY/f2Z7e3RQ+/bZ7nMBw+YCxdmbtaMOSnJcnkZIZnRjx3L7OjIfO6cOJmxscxjxuAGa9QIJyincu8ec79+zHZ2zEWKMAcGpjWmQ4cOMRG98erTp49R8kUYfWpu32YeNIjZwQFTgIAA5ogIIaJVya1bzNWqweAnTcIDQBSHDuG6f/+9OJmpkcTor1/HxZ88WQrpzEeOMBcvzpwvH/Nvv0nThlI8esQ8eDBupsKFmefNk2bYLNroDTx8yDxiBLOzM7OrKx7SYWFCm1CcLVsw/y5bFv4OKRgxAufvyRPxsiUx+p49MTd59UoK6eDFC+YuXTCPGjPG+of7oaG40E5OmK9//z1zTIx07Ull9AbCwpi//prZzQ0PgOHDLZ/mKU1iIhyoRMydOxvnMDWXf/9lLlSI+bPPxMsWbvT372NoMn++aMlvotczz5mD4X67dtJeBKlITsZ3yJuX2cODecoUZonsMA1SG72BFy8w4sufH99v8WLr9PaHhWFKaWeH6yXHStK338KPI3qaJNzoR43CBY6OFi05c/bswVD/nXcw17IWrl1jrlcPTroRI2AgciGX0RuIiGAeOBC9ZL16zJcuydKsEK5dg0Pay4v52DH52n32DH4x0XN7oUav08HpNGyYSKnGceMG1kgLFWI+c0b+9k0hKQkX0smJuVw5eW8kA3IbvYEjR5grVIDPYupU9U/LjhxBJ2bJsrMl9O6NVSuRIwuhRn/sGJ7kStzEzMz//MNcpw6ziwvz3r3K6JAdV64w166N3n3UKKxIyMmiRYu4YsWKXL58eUWMnhnLuePH4xw0bw5/hhrZtAk9bdOmmGMrwd69sCmRq2BCjf5//0NPr+ScLSYGARL29szr1yunR0YsXw6nVoUKCKpREqV6+tTs34+1/cKFxaxxi2T5cviKPvlE7HKcqSQmYqTxzTfiZAo1+ooVpfE2mkpSEnOfPuhJVq5UWhv05n374ok9cKA6ItfUYPTMcJC1aoVrNW6ccWGrUvPDD7hWgwerw+n40Ufwg4hCmNGHhuJEbdggSqJl6HTMn38OnX76STk97t/H3oE8eZhXr1ZOj/SoxeiZca2mT4dnvH595sePldNl+nTcM6NHq2evx48/YuQqKtJRmNFv24aT9fChKImWo9djfZiIecEC+ds/eRJD19KlmS9elL/9rFCT0Rv480/mYsXwUuJ8zZqFe8XfXz0Gz8x8+TL0OnhQjDxhRj95MvNbb6nrZDFDn1GjcNKWLpWv3U2bMH+vX1/azRPmokajZ0Yv7+ODiLf9++Vrd9Ei3CMTJsjXprEkJWGlZ948MfKEGX3nztgkoEb0euxIs7GRfvqh12NDEBFz9+7SRiVaglqNnhnD2NatMaRdtUr69pYvx/X68kv1dVoGataEX0gEwoz+7bdx0tSKToc1T3t77NiTguTklACUSZPUewMxq9vomeHQGzAA53LyZOnO5bp16AyGDFH39erfn7l6dTGyhBh9fDxO3PLlIqRJR1ISRiROTswHDoiVnZiIba92dvL0TpaidqNnhhFOmQLD799f/FbTzZtxvfr2VYeXPivmzoUzWMSDSYjR37mDCxMcLEKatMTHY4nIxQUJOkSQkMD84YcYRVjLrj9rMHoDa9bg3HbpIm5Jb9cu7ATt1k39UYHMuK+IEIBmKULy3j96hJ/Fi4uQJi1OTkRbthBVr07Uti3ywFlCfDxyxu3cCblduojRUyOFXr2QX3H7diSRTEy0TN6pU0Rdu+L6//KLdeRfNNiWwdYsIdcZPRESE/7xB1IQt21r/omMi0PSw4MHiXbswO9qJzAwkCpVqkS1atVSWhWT+OADoq1biXbtwoPVXMO/cYOofXuiGjWIgoKIHBzE6ikVJUrgpwijFzK8nz4dy3XWRmgoc8mSzO++a/q23NTThMOHJVFPUqxpeJ+aPXsQD//JJ6bPww3Xu3JleXc0ikCnw3QkMNByWUJ6+ogI5Eq3Nry80HM8ekT00UdESUnGfU6nw5Dz8GEMOZs0kVRNjVS0bk20di3Rhg1Eo0YhF7AxxMZiJJaUhLoL+fNLq6dobG2h84sXAmRZLoIoJgaVUayRSpUwbDx8mOjzz7O/iZhRmGDzZqKNG4maNZNFTY1UfPQR0aJFRPPnE33/ffbH63SotXDtGqZ1xYpJr6MUeHgQRUZaLkdIhZvoaCI3NxGSlKFpU6IVK9B7lylDNHFi5seOH0+0dCnRypVEnTrJp6NGWr74AgU5xo1DQYn+/TM/dvRo+Fx27IAD11pRldFbc09voGdPovv3ib75hqhUKfydntmziWbMQBWSvn1lVlDjDQICYPiDBmF62bHjm8cYRgSBgajOY82IMnohjrxmzRByau3o9YgCc3BAxpTUGNZJx49XRjfRWKsjLz3JyVi/d3ZmPno07f927cKeeDVHippCp07MbdtaLifXz+lTY2NDtHgxUcOGWMd9+BDvnz2LoX+3bkRTpyqro0Za7Ozg2KtbF466S5fw/s2bRD16oHefOVNZHUVhZ4f6hZYixOgTE+UvtysVDg5EmzZhLf/DD4lu38aw8d13MY/XijaqD2dnom3biEqXhpHfuoV1fW9vonXrrCP4xhhsbY1frchSjuUixD2B1ELBgkS//46KreXKwdC3bdNKNasZd3d45hMTicqXxyht2za8n1OwsVFRT29rm7OMnoioSpWU35s0Qa+hoW6KFiWqXBm/e3rC+HMSouxMM/pMMKz/VqiAcM09e5TVRxTWGoZrDL/9RnToEJZd791D3fechOqMXqcTIUkdHD6MtfoJE4guXyZq04aoe3fMFa2doUOH0tWrV+nMmTNKqyKUixeJ+vTBdbp9G4FWQ4cS/fWX0pqJRTVz+pzU04eG4sZp0oRo8mT4K9avR8juBx8QRUUpraFGep4/x7UpX55o+XLMfRcsIKpVC5tzwsOV1lAMr16J8StpPX0qkpOxzGNjA0M3eH09POAUevIES3c55QGXE0hOxlJqTAycr3nz4n1HR6Jff8X/+/bNGdcsLi7l+1mCEKPPmxcKWTuTJhEdP46Yei+vtP975x08CHbsQCSYhjoYPZro6FHM50uWTPs/b2+i1auJdu8mmjdPGf1EEhuLpWRLEWL0bm540lozu3YRTZ9ONG0aUePGGR/Tvj2Cc6ZMQdIMDWUJCiL64QcYdGY7Hdu2xYNh7Fgia3djxMWpyOhdXbHpxlp59gxDwPbtib76Kutjx44l8vXFMP/+fTm008iIa9eIBg7E7rmhQ7M+dto0JM3o3l1Q7LpCxMaqaHhvzT09M24eGxvstLPN5ozY2hKtWUOULx9CdePj5dFTI4XYWJz7kiWJlizJPkrS0RH7758/N277tFpR1fBe2O4fBVi2DJFcy5dji6Yx5M+P/fSXLxP5+Umrn0ZamGG4Dx5gHm/sno8yZbAleuNGzPOtEVFb2IUYfaFCWBaxtiforVtEI0cSffYZhuymUL06tm3+9BOSK2rIw9KliKdfupSoYkXTPtutG6Zl//ufoFxzMhIfj47V2I4pK4QYvacnlLKmIX5yMm6AIkWI5swxT8aAAfAFfP45en0NaTl7lmjECCTQ+OQT82T88ANGBwMHWlcnZYg18PS0XJYQozc8fZ49EyFNHmbMIPr7b2zLNHdbsI0NkjOUK4cUTrGxYnWUAmsNw33xAvP4qlWRxMRc8ufHVG7fPowWrAWDbYkweiFJNK5cQYKJP/8UIU16rl5FRtVx48TIu3YNWXH79BEjTw6sKYmGXs/coQNz/vzM9+6JkTlwIK7Z3bti5EnNjh2wsSdPLJeV63p6vR5Du1KlEIwjggoVkHxj9WrrdRKpmQULEBS1Zg2umwjmzCEqUAC59awhWs9gW4UKWS5LiNG/9RZCVq0hxnnxYqITJ+C1d3YWJ7dXL6J+/TDfvHZNnNzcTkgI0ZgxWCUx1dmaFe7uGOYfPozkKGonPBwPKRHFOYTF3hcqpP6e/uFDBNcMHpx51J0lLFyIteOPP8bmCA3LiImBx71yZfhgRNOiBR7WX32l/g7r2TNB83kSZPREUEjNRs9MNGQIYgqkuIGIEDixaRPRnTtYFtKwjGHDiJ4+Rbitk5M0bcyZg05r5Ehp5ItClUZftKi61z6DghBf/+OPMHypePdd9PjLliEKTMM81q2Df+THH6XNgFOoEFKbr19PtHevdO1YSliYOKMX4r1nZh46FDXh1EhkJLOXF1Ily4Fej1prrq7Mt28b95nAwEAuVaoUOzk5cY0aNfho+nzOqVi5ciUT0RuvV69eGa2jmr33t27h3PXsKU97ej1z06bMpUszx8bK06aplC7N/PXXYmQJ6+lLl0aKIjUGPEyZgmgmS9Z3TcHGBjHhnp4IIsmuRt7GjRvJz8+PJkyYQCEhIdSoUSNq27YtPTTk4M4Ad3d3Cg0NTfNyFumZVIjEROQ08PRELy8Hhuv19Cl2WqqN5GSMokWtXAjr6Q3FIMLDRUkUw5UrzPb2zFOnyt/26dNoe+zYrI+rXbs2Dx48OM17FSpU4LGZfHDlypXs4eFhkW5q7elHjUKxkTNn5G97/HhmJyf1rd0/eADb2r1bjDyhPT0Renu1wIywzVKlsKdabmrVwv77779HDfuMSExMpLNnz1KrVq3SvN+qVSs6ceJEprJjYmKoZMmSVKxYMfL19aWQkJAsdUlISKCoqKg0L7Wxezcca9OnE733nvztjxuHZTEl7pWsMGzhFtXT52ij37yZ6MABxFtL5f3Njq++QoHMnj2xtTM9z58/J51OR57pvDSenp4UFhaWocwKFSrQqlWraPv27bRhwwZydnamBg0a0K0sMndOnz6dPDw8Xr+KFy9u0fcSTWgoElu2aaOcJ93VlWjWLKItWzJ/SCvB3bv4WaKEIIFiBgzAw4N5xgyREs0nJoa5eHGEbyrNkyfMBQowd+wIp1Ha/z1hIuITJ06keX/q1Kn8zjvvGCVfp9Oxj48PDx8+PNNj4uPjOTIy8vXr0aNHqhne63TMLVrA2frsmbK66PXMDRrAKZ2UpKwuBsaOZS5RQpw8YT09EXr7O3dESjSfOXOwtjl/vtKaYCffypVE27cjIjA1BQsWJDs7uzd69fDw8Dd6/8ywtbWlWrVqZdnTOzk5kbu7e5qXWpg5EyOyX34Rs3XUEgyZdK9cgXNPDVy/jlBvUQg1+goVoKDShIdjmDZ8OJInqIEOHZDWadSotNtwHR0dqWbNmhQcHJzm+ODgYKpfv75RspmZzp8/T95WWIbn1CnUGPj6a0TIqYEaNbBtetIkoogIpbVBWLepuQOyRNyggfnbb5kLFhQp0TyGDcNUIyJCaU3SEheHYWOVKszx8SnvBwUFsYODAy9fvpyvXr3Kfn5+7OLiwvfv32dm5l69eqXx5AcEBPCePXv4zp07HBISwv369WN7e3s+deqU0bqowXsfHc389tvMtWszJyYqpkaGPHvG7O7OPGKEsnokJmIFaPFicTKFGr0alu1u38ZJUotvIT0XLmBb7+jRad8PDAzkkiVLsqOjI9eoUYOPHDny+n9NmjThPqn27fr5+XGJEiXY0dGRCxUqxK1atXrDJ5AdajD6zz5jzpuX+eZNxVTIkmnTsHyo5BLetWuwqUOHxMkUavRXr0LBw4dFSjWN7t2ZixZFr6pWZs9mtrFhPnhQOR2UNnrD/vAlSxRp3ihiYpi9veWLDMyIrVtxnkJDxckUOqcvW5bI3p7o6lWRUo3n778RY//tt+ouKz1yJNH772OJ6uVLpbWRn/BwzJnbt0d+QrXi4kLk7499ABcuKKPDtWvIvCws7p4EO/IcHLA5QgmjZ4YzqFIlot695W/fFGxtsZkkKir7nO05DWYYul6PqrLZpa9Wmv79kQ5t3Dhl2jd47kWeJ6FGTwSjU8Log4MRUDF9OkYbaqd4cSzfrV+fu3bjrViBuoBLl75ZOkyNODigWMbu3Ui4ITeil+uISKz3npl50iQEWciJTsdcrRpzw4ZvBr+onR49sNLw4IG87Soxp799G3np+vWTrUkh6PVYYahdW977KzkZjs5Zs8TKFd7Tv/su9v7KmYlkwwai8+cR46724WJ6AgORukmuyqpKZcPV6TDtKlwYYdHWhI0NEq+cPo1RilzcvIn6dTVrChYs9hnCfOcOvI27domWnDGJidhr3KmTPO1JwcGD8ObPni1fm3L39NOmMdvaMh87JktzktCsGUaUcvX2a9fClv79V6xc4T196dLILX72rGjJGbNuHTb5fPutPO1JQdOmiNQbP57o4kWltRHPuXPwgn/9NVHDhkprYz7+/hhRytXbnzuHiNJ8+cTKtWEWn/aiRQvU3Nq6VbTktOh0CE+sXFn6tqQmIYGodm0M8c+cEZupNyOioqLIw8ODIiMjJY3Df/UKw1NnZ6KTJ1FM0ppp3hyhuefOZV/s1FKaNiUqWJDo11/FypVE7Zo15enpN25EPbqJE6VvS2qcnFBt5+ZNogkTlNZGHGPHYmvo2rXWb/BERAEBWLOXurfX6/FgqVFDAuFiZwtg40bpw3F1OuZKlZjbtZOuDSWYOxfnbv9+aduRY06/bx++y/z5kjWhCM2bM1etintQKm7fxrnbs0e8bEmM3qCwqPQ+GWGI8zcx5Fz16HRwGBUvzvzypXTtSG30ERHMRYpgn7yUxqEEx47h3tu+Xbo2Nm1CG1LkF5BkeG9wPkg1xGdGGqrmzYnq1ZOmDaWwtcXe+8hI682db6gxEBeH7yL13FduGjbEa/p06RLBnjtHVKyYNPkFJLkcNjaYi0hl9H/8AS/qN99II19pSpTAWvbq1fKuC4ti/XoU/Vi8GDduTmTcOKK//iI6elQa+WfPSjSfJ4m890SoPxYUhFJSImEmqlMHjq+jR60vGMdYmIk6dYLH+/JlMYULUyOV9/7hQ5STbt8ey6k5FWaiatWIvL2J9uwRK1uvR33IUaOk6dgkG3jVrYtc3Y8fi5V7+DCWtCZOzLkGT4TvtnQpboDPP1dnPYH06PWILHRzI1q0SGltpMXGBisTe/diKC6S69cxvTMycZLJSGb0DRrg5/HjYuXOnUtUpQpRuozRORJPT+Rp27oVS14ikDIMd9EiokOHiFatQoBWTuejj+C/El0b8cQJ+EFq1xYr9zXifYMplC+PcleiuH4dHs2VK8XJtAY+/RSbch4+FCdTtPf+xg3mPHmQqiw38eOPCC++d0+czP79mX18xMlLj6R+1YYNxfb08+ej9+vRQ5xMa2DhQuRkHzBAncN8nQ7D+iJFpKsIrFZ690ZBVJHTmRMnpBvaE0k4vCeC0V+8KCY7zPPn8GYPG6Zc4QqlyJ+faPly5AxIn0JbDcybB4fjqlXINpObcHFBUpCffyaKjrZc3osXmNNLuRQtqdE3aoSe6a+/LJf100+QNXiw5bKskdat8d2/+oro9m2ltUnh6lU4VUeOtO7NNJYwdChRTAweepZy5Ah+Nm5suazMkNTo334bw/FjxyyTk5CA4VOfPtiAkFuZNQvZZvr0wZBaaZKTMawvXRrBUrmV4sWJunZFbIWlOREOHcL5LFlSjG4ZIanR29iImdcHBSExh5+fGL2sFVdX9CZ//aWORBTff48gklWr1J2IVA5GjkR1p507LZNz6BB210mKdD5CMH8+yv+mLu5gCno9Nje0by9WL2vGz4/Z2RmrGeZiqff+wgXkhM+uDHduom5d5qZNzf98eDhWp375RZxOGSF5VHTDhhie//23eZ8/dgzOwNzey6dm2jQMKfv1U2aYn5iIKcY772CrqQbw80NPbW66bEPiTal7esmN3scHEVrmZhJdsgRptZs3F6qWVZM3LzaynDwJz7ncTJtGdOkSVlNy20pKVnTpgofxggXmff7gQdzrRYuK1Ss9khu9vT0KO+zfb/pnw8OJfvsNYag5OeTWHBo0wDxy4kQURJCLc+dg9BMmSLchxFqxt8fyXVAQwmhNRZb5PMlg9ERELVsi4CA21rTPrVqFcMQ+fSRRy+qZOhVe3r594Uk3BkvCcBMSEIxSpUrOyu4jkv79cZ5M3Wz09CnRjRvyGL3kjjzmlBp3piTV0OmYy5Rh7tVLOr1yAidOIAzU1IKd5jjyxo6F8+7iRROVzGV06gTnsylZc9etg42EhUmnlwFZevoKFRCiacoQf/9+5FbLrcE4xlKvHtGXX6KWupSVhU6eJJo5E467KlWkaycn8NlncD6fPm38Zw4dQnUokTXrMkOy/fTp6duXKCTEeM9m586IPLtwQZvPZ8erV5hfu7lhGmVMWS9T9tO/ekVUvTqKchgrPzej0yEwrXlzhE8bQ9myRG3ayLMlWbZERi1a4On37Fn2xz55QrR9O3p5zeCzJ08e+D/OnkXUnmgmTiS6fx/ees3gs8fOjmjgQOMdenfu4NWihfS6Ecls9EREBw5kf+zy5ciT3rOntDrlJOrUIRo9GsPvy5fFyT12DMuCU6eixoCGcZji0Nu5E4Uy5TJ62Yb3REijVK0a0Zo1mR+j0yH2uE0bZI7RMJ74eAzz8+ZFqK6DQ+bHGjO8j41FnIWnJ1KT2dlJpHgO5cMP4Zc6fz7rEWubNrjvg4Pl0UvWPKXt26Pkb1ZRZAcPIs3WgAHy6ZVTcHbGMD8kBE43Sxk7FktJq1ZpBm8Oxjj0YmMRuNa+vWxqyWv0vr7YF3/mTObHrFmD8E7JUgXlcGrXRs24yZMRNWcuBw/CqTRjBlG5cuL0y020aoU4ip9/zvyYAwcwDcixRl+3LrJ8/vFHxv+PjibasgXBOJoDz3z8/RHO2acPUVKS6Z+PisKctEkTJC3RMA87O6JevVCLLj4+42N27sRDVc4Hq6xGb2dH1LZt5tsPN2/G8pDmwLMMJycMyS9efDN9lTEReV99hRHZihU5r1CF3PTqBQ/+jh1v/o+ZaNcueXv5/xqWl/XrEXn06NGb/3v/fdQJ0xDDhAnM9vbM58+/+b/MIvL27sX1+fFHmZTMBdSuzezr++b7Fy7gXO/bJ68+sj/HW7dGj79rV9r379+HQ6N3b7k1yrl88w2iIfv2NW6YHxmJ9eXmzbVISJH07o2CGP/8k/b9nTuRY0/K1FgZIbvRv/UWMn2mn9evXYsT0Lmz3BrlXJycEFBz6RLRd99lf/yoUUT//os4Cc2nIo5u3fAzKCjt+zt3YjOa3NuTFZmxdeiA2Pq4OPzNDK99ly5ICaUhjho1iMaPR3DN+fOZH7dnD4x9zhxp87PlRgoWJGrXLm18yosXiKWQfT5PChl9p05w2O3di79PniS6dUsb2kvFxInYzNGnD7LepOflSwzrW7YkGjRIfv1yA717I3vU9ev4e9s2dHa+vvLroojRlyuHnVpbtuDvdeuQLUSWvcS5EEdHePOvXs04a+2XX2K5VBvWS4evL8q3G3r7X39FingvL/l1UWxBpnNnLGO8eoXsOB9/rC0PSUn16kh88d13aQsu7t2L1Ftz5yLVk4Y0ODkhTXZQEIb2+/ejFp4iyLtYkIJhuWLsWPz86y+lNMk9JCQwV6vGXKVQQ27vAAAgAElEQVQKc3g4luy8vCK5TRvTEj5omEdwMO71oUOZbWyYnzxRRg9ZN9ykfdhgmH/nDlGJEliy04aW0nPhAtF77xH5+UXR7Nke5O4eSVeuuFOxYkprlvNJTkYymX/+QZZoS4vAmItZu6OZmaIFFO5q04YoMBCeTRF1wDQyJyEhgRISEqhAAaL//c+RZs+GR8/fP4rc3RF6qyE977+P+byvr7hz7ubmRjYm9Jhm9fSGbZkaGhrKY0z2o9SYZfTpe/qoqCgqXrw4PXr0yKjGa9WqRWfOnCE/PziR+vTJPFe44VhjEH2sud9LCV2zO9bQ0xMRjRjhTFu3xhNRcRo06A7Nnp19gUA1f7f0mHLd5Na1a1fsmx8yJGVfhKXfy9Se3qzhvY2NTYYn093d3SjjsLOzo7x53V9vvNmxAwkzHB0zPtbYp5hUx5ryvZTWNbtjf/+daOtWovnzn5GfH9HPPxegQYPcKbuM2Nbw3dJjzHWTU9fIyJSqtLt2YWprYyPN98oKRRbJhg4dSkePopjFzz+nLGFkdqwpcqU4Vun2RR0bEYGY+g4diDp3RjD+u+/qqU+fzLd+itZBrmOVbj+jY3fsQHDUihVEDx6kREhK8b2yRMQSgDk51IcMYS5ZEktFFSuqM7+9pUUe1UaPHsz58zM/fcr86NEjJiLev/8JOzoyf/210tqJQ63XrWNH5nr1mBMTmfPlY/7mG9M+L+p7CenpnZycyN/fn5yM3DnAjKdep04Y3nTvjmHnq1citBGHqd9LzWzeTLRhA9HChUTe3vT6O1Wt6kABAciie/KksjqKQo3X7eVLBEJ17YrchR06pESkGouw72XRI8NMzp1DkML+/fj7+nX8/euvSmiT8wkPZy5UCJVXDEE4qXuNpCTmWrWYK1RgfvVKWV1zKkuXohLR06f4e8sW3PM3b8qviyJz+u3biTw8UvYRv/MOAkbWrlVCm5zPsGFIRrp4ccYBUPb2iM2/exeVcjTE88sv2NDk7Y2/W7dGvYKtW+XXRRGj37EDgTmpUzT37o39xekTDWhYxq+/Em3aBE9xVps7KlUi+vZbotmzseVTQxz37iH6rlevlPfy5oXh//67/PrIbvRPnqASS8eOad/v0QM/0yca0DCf8HCiL75AngJDIoesGDWKqFYtZNpRm3/FmjEkiOnUKe37HTrAj/L8ubz6yG70f/yRkiAzNQULIqFAVoUwNIyHGQZPRPTjj8btazAM8x88wB58DcsxJIjp2hWGn5p27fD/PXvk1Ul2o9++HfuI8+d/83+GRANSVl/NLWzaBI/9jz8SFS6c8n522XArViSaMgWlrP78UyZlczCnTqEQa+qhvQEvL6KaNTPPDi0ZIryBmzdv5latWnGBAgWYiDgkJCTD42JimJ2cmOfMyVhOfDzWkceOFaGV8ej1evb392dvb292dnbmJk2a8OXLl7P8jL+/PxNRmpenp6dMGmdNWBhzgQLMH32U+TFZrfkmJzPXrctcrhxzbKyEippJYGAglypVip2cnLhGjRp89OjRTI9duXLlG9eJiPiVTMsUQ4YwFyuGc5oRkyZhzT4pKXMZR44cYV9fX/b29mYi4q1bt1qkk5CePjY2lho0aEAz0idZT0dwMKp5dOiQ8f+dnDC3X70a2xDlYubMmTR37lxatGgRnTlzhry8vKhly5bZ7iSsXLkyhYaGvn5dsqSkjCCYEddtawvnnTnY2WGY/+gREm+oiY0bN5Kfnx9NmDCBQkJCqFGjRtS2bVt6+PBhpp9xd3dPc51CQ0PJ2dlZcl3j4ojWr0cvn1lZMF9frOGfOJG5nNjYWPLx8aFFoupYW/TISMe9e/ey7OkHD2YuWzZrGYY1/G3bRGqWOXq9nr28vHjGjBmv34uPj2cPDw9esmRJpp/z9/dnHx8fOVQ0iXXrcP5++y3r44yJ7po9G8kesuhIZad27do8ePDgNO9VqFCBx2YyPFy5ciV7eHjIodobrF6Na3H7dubH6HTMnp7MY8YYJ5PU0tMbS3Aw6ntlRfXqmOcsWyaPTvfu3aOwsDBqlUoxJycnatKkCZ3I6vFLRLdu3aIiRYpQ6dKlqXv37nT37l2p1c2S0FCsyXfvDo+9pfj5EdWrR9SvHwotKk1iYiKdPXs2zbUiImrVqlWW1yomJoZKlixJxYoVI19fXwoJCZFaVSLCPdy8OdHbb2d+jK0tnNq7d8uiEtqUq6G7d5Elp2XL7I8dNAi7kB4/ll6vsLAwIiLy9PRM876np+fr/2VEnTp1aM2aNbR3715atmwZhYWFUf369SkiIkJSfTODmejzz7FTUdQo0M4OW5+fPiUaN06MTEt4/vw56XQ6k65VhQoVaNWqVbR9+3basGEDOTs7U4MGDejWrVuS6nrtGtHx48ZlF27ZErUJsrjdhGKy0a9bt45cXV1fv44ZmfMnOBg3kTEZb3v0QLTSihWmapc96fVP+q/0S/r9yMyc5R7ltm3bUpcuXahKlSrUokUL2vmfC3b16tXilTaCtWsR9LRkCVGBAuLkli+Pfd8LF6KSrRow5VrVrVuXevbsST4+PtSoUSPatGkTlS9fnhYuXCipjsuW4TqkX5vPiBYt8DOznaaiMXk/fceOHalOnTqv/y5atKhRnwsOJqpTB+G32eHujiHq8uVwJImsjZ5ef0NiibCwMPI2xEgSUXh4+Bs9Sla4uLhQlSpVJO9BMuLpU6IRI4g+/dS4m8xUhg1DuGi/fuiRLNjKbREFCxYkOzu7N3p1U66Vra0t1apVS9LrlJCAtfk+fYyrXlO4MJGPD2xEjuKtJvf0bm5uVLZs2devPHnyZPsZnQ51uI0Z2hsYNIjo4UOifftM1TBr0utfqVIl8vLyouDg4NfHJCYm0pEjR6h+/fpGy01ISKBr166leXDIATPRZ58ROTtnnn3IUmxtMep68QJRe0rh6OhINWvWTHOtiIiCg4ONvlbMTOfPn5f0Om3ditwFAwca/5mWLWH0sqSptcgN+B8REREcEhLCO3fuZCLioKAgDgkJ4dDQUGZmPnkSXszjx42XqdcjVXOnTiI0zJoZM2awh4cHb9myhS9dusQ9evRgb29vjoqKen1Ms2bNeOHCha//HjVqFB8+fJjv3r3LJ0+eZF9fX3Zzc+P79+9Lr3AqVq0yb7XDnL3ZS5eirZ07TVRSIEFBQezg4MDLly/nq1evsp+fH7u4uLw+77169UrjyQ8ICOA9e/bwnTt3OCQkhPv168f29vZ86tQpyXRs2pS5YUPTPmOoFpxReEh0dDSHhIRwSEgIExHPnTuXQ0JC+MGDB2bpJ8ToMwuA8Pf3Z2bmKVOY3d2RPMAUAgOxHdHM72Y0huAcLy8vdnJy4saNG/OlS5fSHFOyZMnX34eZuVu3buzt7c0ODg5cpEgR7ty5M1+5ckVaRdPx6BGzh4d5CUjMMXq9nrlNG2Zvb+aICNPbFEVgYCCXLFmSHR0duUaNGnzkyJHX/2vSpAn36dPn9d9+fn5cokQJdnR05EKFCnGrVq34xIkTkul25QqMd9060z4XF4fAtXnz3vzfoUOHMrSv1N/TFGTZT9+4MfMHH5j+uehoPCzkjtCzBlIb4IsXxn9u0aJFXLFiRS5fvrxZWVgeP0YE2aefmqhwLuGLL7DunpBg+mebNWNu3168TumR3Ojj4pgdHJgXLDDv835+CCmNixOrl7WzfDl6lD/+MO/zlqRe+uUX4wKAchsvXzK7uJieBsvAt9+ik8ssZFcUkq/Tnz5NlJSUkjDDVIYOhQNpwwaxelkzjx4RjRyJLbBKlDo2rBIMHoztuxpgzRp47gcPNu/zTZqgAMbFi2L1So/kRn/sGJbp3n3XvM+XLYuIpYULZfJsqhxmeIXd3LATTglsbBAPQIQ4f+26EOn1CIrq3Bmlq8yhdm0s8RnSZEuF5EZ//DhR/fqWrbWPGIF0wdpWT6QM37cPwR/58imnh6cn0m9t2YJNJbmd4GCimzcxMjUXZ2eiunWt3Oh1OuweatTIMjktWyIyTKp1aGvhwQOskw8Y8GYSEiXo2hXRk8OGISNSbmbuXKIaNSy/15s0ITp6FCMHqZDU6C9eRGHKhg0tk2NrSzR8OHqVR4/E6GZtMMPYPTyI5sxRWpsUFi1CDzVoUO4d5l++jNHXl19aXnm5cWP4sKRMJCOp0R8/jg0g2ZVMMoa+fRH+qdQ8VmmWLEFU4/LlxoUyy8Vbb2HKsXs3dMuNzJ1LVKwY0ccfWy6rXj0kjD161HJZmSGp0R87BoMXka/A1RU535YuJfr3X8vlWRO3bxONHo1ddNltTVaC9u2J+vfHisL9+0prIy9hYUTr1sHvlDq7s7nkzUtUrZq0hUckM3pm9PSWznFSM3w4MuosXixOptpJTkbuQG9vpKdWK/Pmodfv31/a+ajaCAzEaNaYLbTGUq+etGnIJTP6u3eR1MHS+XxqPD0xzP/hh+wLLuYUZs1CcsXVqzHaUSvu7tiUc+iQ+Wm6rI2YGCQeHTBA7EpK3boY3UmWGluqqJ9Vq5BqyZQQUWO4dQtys8hklWMICUE0o8gwZEvDcLNj6FDmPHmYb9wQKlaVzJnDbG8vfm/I3buIeNyxQ6xcAzbM0vhchw7FU18KL+RHH2Hd/vp1sXvt1UR8PPwhdnaIanR0FCs/KiqKPDw8KDIy0qJa5+mJjcXe8MKF4dPJydenTBksnYp2YDJjOjdwINHUqWJlE0k4vD93DrnupGDMGAx/lCgJJBeTJiHYY80a8QYvJS4umIqcPKmupUXRrFpF9OwZ0dix4mXb2GCIL5kzT4rhQ1IShnhz50ohHTRtyly9ekoV1pzE0aOYwnz/vXRtSF3DffRoZkdH5gsXJBGvKElJzKVKMXfrJl0b06czu7khW65oJOnpr11DLTSpenoiom++IQoJUaA6iMRERyPNUoMGymapsZQpUxBF2bNnznO6btiApcnx46Vr4733cC/cvi1etiRGf+4cflavLoV08P77WBmYPDlnRYJ9+SV2rq1ebd3zYWdnJOu8cSNn1cXT64mmT0eRiqpVpWvHYDtnz4qXLYnRnz2Lp7ybmxTSgY0Nkb8/at/JXQBQKv74A9Ft8+bBSWTt+PgQTZuGiLVDh5TWRgxbtmAkK3XlnwIFiEqWTOlARSKJ975BAygs9e4rZvT2Oh2CGSyNe1aS58+x/bhmTRi/1N9FKu99evR6FHy4fRt7MTIqXGot6HTo3YsWFZ+wNSO6dEHJqwMHxMoV3tPrdFhOk3I+b8DGBl7uU6fkuQhSYag/l5yMnt6aH17psbXFVCU62rJtp2ogKAhL0FIso2VEjRro6UV3y8KN/sYNFO6rUUO05Ixp1QrLG5MmWe/cfs0aot9+w6YamTNoy0KJEohc27DBejMgJScTBQSg+Grt2vK0WaMGenrh+xlELwesWYNoon//FS05cw4cQJu//y5fm6K4fZvZ1ZXZzMSmZiP1kl1G9OiB7L1SZzeWAkNOwkxqs0rCw4eW5UHMDOE9/fnzcELJmdWlWTPMGydOxPTCWkhORhnjQoXkSxASGBhIlSpVoloi9jub3Dacu337WtemnIQErBJ99BF2wMlFsWLYbyE8qlXsMwRpmTt2FC01ewwFNdaulb9tcwkIYLazY5YwDXumKNHTM6eMymbPlrVZizDUX7h6Vf62a9dm7ttXrEzhPf3Vq0SVKomWmj116hB98AGCdv4rT6dqTp5EAMvEidhKmVto1gxBR+PHS5/1VQTR0ejle/YkqlhR/vYrVRLf0ws1+uho1J9TwuiJiL77Dnnk1L61MzoaaaRr1cpZgSvGMm0a0Tvv4ByoPVpv1iyiyEg8oJXAYPQindRCjf76dfxUyugrVUIygylTkGdMrYwYgai7tWuJ7E2uG2z9ODkh28zNm9IHuVjC06fYNOTnhxUIJahYEfv2Hz8WJ1Oo0RuGIRUqiJRqGpMnw0Gm1JM5O377DTu0Fi4kevttpbVRjipVEM46d6744BNRTJpElCcP0bhxyulg6EBFDvGFG32pUtheqRSenrhIgYHSbFawhMePUVa6a1dsqsnt+Plhjt+nj/pGZpcvE61cCcNXMhFpyZJ48KjW6K9dU7aXN+DnB+OXYq+zuej1uLnz5iX66aeUqDtmpoCAACpSpAjlyZOH3n//fbpy5UqWsgICAsjGxibNy8vLS4ZvIRZbW4x64uKQMEJNwVVjxmDp2dwSVaKws4NNqdbo795FGSqlyZsXTr3Nm9VTFWfuXKKDBxGS+tZbKe/PnDmT5s6dS4sWLaIzZ86Ql5cXtWzZkqKjo7OUV7lyZQoNDX39unTpksTfQBqKF0duva1b1ZPwdNcupPSeMUMdCUyEe/BFrf3p9dInzjAFnY65Rg28pK4Cmh3nziHX3ejRad/X6/Xs5eXFM2bMeP1efHw8e3h48JIskgD6+/uzj4+PRToptU6fGcOGoT77+fPK6hEfz1yuHMpGqyVBy5QpqNwsCmE9fVgYEmeoZUuorS2qr5w7h7pvShETQ9StG3bQpd+oce/ePQoLC6NWqZLZOzk5UZMmTejEiRNZyr116xYVKVKESpcuTd27d6e7d+9meXxCQgJFRUWleamJWbMwjO3WDXn2lGL+fIxYFyxQz8an0qWJIiJwL4lAmNEb7jk1eaTr1UMe9vHjif75Rxkdhg3D0k9QEJaqUhMWFkZERJ6enmne9/T0fP2/jKhTpw6tWbOG9u7dS8uWLaOwsDCqX78+RUREZPqZ6dOnk4eHx+tX8eLFzf9SEuDsTLRxI5ydw4cro8OTJ1j1GT6cqHJlZXTIiFKl8PPBA0ECRQ0ZVq9GeGVMjCiJYggPZ86Xj3nAAPnbXrsW52T1asPfa9nFxeX16/Dhw0xE/PTp0zSfGzhwILdu3drodmJiYtjT05PnzJmT6THx8fEcGRn5+vXo0SNVDe8NrFqlXDj1p58yFy7M/PKl/G1nxePHYjfeCAsNuXsXHnMll+syolAhOPW++AIe4rp15Wn39m14fnv2RIUaIqKOHTtSnTp1Xh+T8F+8cFhYGHmn2lMbHh7+Ru+fFS4uLlSlShW6detWpsc4OTmRU/qhhgrp3Zto/36cuzp15HMMHz6MgKEVK9RVK5AI260dHcVtsRU2vH/wAGuKauSzz7A3+Ysv5NmFl5hI1L07kZcX9pEbcHNzo7Jly75+VapUiby8vCg4ODjVZxPpyJEjVL9+faPbS0hIoGvXrqV5cFgrNjY4Z15emN/LsY8iPh51Ahs2VGf8hK0tbEvYvnoxAwbm1q2ZP/xQlDTxGHbh/fCD9G19+SW89X//nf2xM2bMYA8PD96yZQtfunSJe/Towd7e3hwVFfX6mGbNmvHChQtf/z1q1Cg+fPgw3717l0+ePMm+vr7s5ubG9+/fN1pHtXnv03P2LM7hyJHStzVpEtpSYhedsbRsydy1qxhZwoy+ShXmL74QJU0ahgxhzpuX+c4d6drYuRMPF2OXLvV6Pfv7+7OXlxc7OTlx48aN+dKlS2mOKVmyJPv7+7/+u1u3buzt7c0ODg5cpEgR7ty5M1+5csUkPdVu9MzM8+dLW96JGYbu4MD8zTfStSGC/v2Z69QRI0uY0RcsyDx1qihp0hAVxVyyJPP770tTRODJE5yHdu3Us8abGdZg9Ho9s68v1qgfPxYvX6djbtQI6/KvXomXL5KxY5nLlBEjS8icPjER2VyLFBEhTTrc3FB37PBhhMKKJDkZc1BHR4SWqmWN15qxsUH8u5MTtuGK9scsXYp6e0uWYMlQzRQujJ2ZIhBi9IYlZWvwIzVvDqfNmDFiEw5OmIA03Bs3YsVAQwwFCyKV+rFjWIURxd27RKNHYyt2s2bi5EpF4cIIzomLs1yWEKMPDcVPtff0BmbORP51UZs8tm+HzBkz4AHWEEuTJsiIFBAA47cUvZ6oXz88nK2lyKahIxERZCbU6K2hpycicndHfvkDBywP0b13D8s8H3xg3bXn1M7EiXig9uiBqaQlLFhAdPQo1uSlrMIkksKF8VPEEF+I0Rv2QltT9ZJWrdDTjx6NFF/mkJBA9PHH+N7WMo9XMhuuJdjbI3gmIcGy+f2NG8i3MGIEUdOmYnWUEpFGL8R7P3cus4uLCEny8vIlc7FizK1amedtHzoU5ZiNWY9XG9bgvc+I4GCU8U61gmk0SUlY9ipXjjk2VrhqkpKQgOXLFSsslyWkp4+MVF/oojF4eGB4v2+f6XnnN25Edp4ffpCnhJcGaNGC6Ntv8TK1cOmMGURnziCnQd680ugnFY6OGFGqZnhvrUZPRNSmDdHIkURffYUKuMZw4wamBj16YCVAQ17Gjydq2xbDfGN3nh0/Dkfg+PHWm3I8Xz6UubKUXG/0ROgBfHwQL5/dNvPYWOS4K1YM67zWMI/PadjaEv3yCxyyXbtmH5//4gXRJ5/A2P395dFRClxdxeQa0IyeMHQKCsLQ6fPPM1/GY8a67r17yGrr6iqvnhopvPUWrsGlS8iJmBnMRAMGYI17/XrrTjnu6iomkYYQo4+KwlPXmnn7bczvg4IQtZcR8+ah6uqKFepKspBbqVkTqcSXLMHqSUYEBhL9/jsi+1SWN8RkXFxUZPQJCW9mhbFGunVDTz5iBFH6hLQHDyKKb8wYLNNpqIOBA/EaPBhOutScOYPYieHDEUdh7ajK6JOSiBwcREhSnvnzkefvo49S5vcPH+KB0LQpSjJpqAcbG+RCrF6d6MMPiZ49w/vh4USdO6PK7KxZyuooCgcH7PGwFM3o05E3L1JnP3mCrDexsbh5XF0x9LfmOWFOxckJ10yng2MvLg4P6cREvJ8TRqFEuPdEbDoScgsnJakjP7go3nkHc3dfXxi7szPRiRNEBQoorZlGZhQpAgN//30Mg+3tEWZdrJjSmonDzk5FPb1OB4VyEu3apeT7a98ew8ecgLWG4RpD/fpEDRrg94oViRo3VlYf0djZienphRi9KGXUxKZNKU6TXbuIQkKU1UcUQ4cOpatXr9KZ9F6vHMCpU0QnT+L3a9eQN0HjTYQYvb29mGGHWjh9GjvnPvkEc/qKFeH9zSIVvYbCPHhA1LEjEqBGR2M7bpcuRHfuKK2ZOBITxUyjhRi9KK+iGnj4EDdP9epYr8+bF+u8yckY8qusMIwGIeKufXtcq61b4Yf59Vck4PD1RfBYTkCU70yY0ScmipCkLNHRRB06oDTw77+npFAqXhybO+7exbKQHGmZNYwjOhpx+GFhmIYZtqDmz0+0Ywfe79YtZ3RKolbJhBi9mxtOvjWj02EDx717uFkMN4+BqlWJtm1DFdzevZF9RUNZ4uMx7bp+nWjvXkzDUlO+PHr8/fsRoKOmUtjmEBsrppiMEKN3d7f+Ye/YsUQ7d2It/t13Mz6mSRPEb//2G+K9rf0msmaSkhAZ+ddfRH/8kfn25hYtEKa7ZAnR9Ony6iiayEgx4e5C1und3VMKWFojP/9MNHs29sa3a5f1sZ07owLL4MFIDzZunDw6aqSg1xP17Ysp17ZtRI0aZX38wIEItpowAev5ffvKoaV4RG1sE2L0+fKlpMyyNnbvJhoyBEZsbLXUzz/HXHH8eMz7R46UVkeNFJiJhg7FiCwoCPN5Y5g0CRVxBw5Eyaw2baTVUwpevhS0m9Xy5DvM8+Yx58mj/gIP6fnzT+jdsSNSKZmCXo8CBETMM2dKo5+UWGu6LMM5//ln0z+blITiGS4u1pfiLDERacLM+d7pEWL0v/6KCxERIUKaPFy8iBLWjRszx8WZJ0OvRzkkIuZp08TqJzXWaPTTpplWMiwjYmKQJ69wYWnLm4nm0SN89507LZclxOj/+gsKXbwoQpr03L3L7O3NXK2amFrkkyfj+0+ebLksqVm0aBFXrFiRy5cvbzVGr9czjxmDcxwQYLm88HAkxyxbFr9bA6dP4/uHhFguS4jRP3wIhXbtEiFNWsLCcLHLlsXvovjuO5yDiROtY5pjLT19cjLzwIGW9/DpuXMHvX2tWqhxqHY2bMA5ePHCcllCHHne3ggaULsHPzISDpzYWKy3e3qKkz1uHM7BV1+hGMPChdo2XEtJSEAo9LZtyIwjsnZ8mTJw4jZtiqi93bvVnSH3xg3EjoioLSEs9r5CBeQrUyuxsQivvX8fgRylS4tvY/RohO7+/DOCRkRkOcmtREcjtHbnTqItW8QavIEaNWDsZ88SdeqEYB+1cv06bEwEQoyeCBFrFy+KkiaW2Fg8zc+dw01UpYp0bfXvjzaOHcPWzqdPpWsrp3LnDjLXnj6NB3THjtK1Vb8+IjCPHUOwj1rDyVVp9FWqEF2+rL4oNYPB//03nur160vfZqtWyLMeHk5Uty56Eg3jOHCAqHZt9LonTyIKUmqaNsVGnb17kXlHbT3+q1fI2ejjI0aeMKOvWRNDsqtXRUm0nPQGL2dF2apVcdN6euJB89NP6nsgqglm+EFat8a9dPo0UaVK8rXfpg18B8HBmJqJKAktijNnEHZsSBBiMZb7AkFsLLODA/PChaIkWsa//zI3asTs6sp87JhyesTHM3/xBTyvPXtinVgNqMl7HxPD3K8fztHIkaYHSonkwAEE7zRpoh6v/rRpzO7uWMkQgTCjZ0agy4cfipRoHqGhzD4+zPnzM584obQ2YN063EyVKjFfu6a0Nuox+rNnmd95B5GRq1Ypqsprjh9ndnNjrldPTByHpbRujSKrohA2vCciataM6NAhZZ0h9+5hGB8ejhrkaqlb9sknGKYxE733Hjz8uXm4r9cTzZwJn4eLC5ysUnjozaFBA/gWrl9Hok0lnbGRkai50L69QKHinh/Mly5hiLZtm0ipxhMSgki7smURdadGoqNThrLNmjHfvq2MHkr29PfvMzdtiljyMWNQhlmNXLzIXLQoc/HiuLeVYP163CsPHoiTKdTomTGs7tpVtNTs+f13DJ9r1hQbaScVe/cylyqFYe3s2eLma5CGs5kAAAV1SURBVNmhZBhuVBTz+PHMzs4wpgMHZGvabB4/xj3t4aGMvu3bI2pQJMKNfvZsZicn5mfPREvOGL2e+fvv0Wt06QKHorUQHc38v/9B91q1xMRVG4ucPb1Ox7xiBbOXFwx+wgR8d2shMhLzant75kWL5AuzvncP98ayZWLlCjf6iAg4Qb76SrTkN4mMZO7WDcOfCRNwc1kjJ07AwWdjw9y9O/P169K3KZfRHz7MXL06rlGPHmKHqXKSmIgHNBFzr17ydC7Dh2MnqOgVH+FGz4whXN680vb2589jp5SbG/OmTdK1IxeJicxLlzIXK8Zsa8vct6+0fgmpjf72bebOnWEkdeqoZxXFUtatw5TMx4f5xg3p2nnwgNnRkXnqVPGyJTH658+xXNa9u3jZSUlIWuHsjBN/86b4NpTk1SvmBQuYPT0xnBw8GHupRSOV0d+6xeznhxu2WDHmtWutdwSWGRcuoMPJk4c5MFD8cF+vZ+7QAdMhKWIFJDF65hSvo8heOCSEuUYN9IQjR5qf/MIaiI3Fw+2tt+Aj6deP+cwZcfJFGn1iIvPmzcwtW+Ka58+P3ALW5F8xlZgY5iFD8H1btxY7Klu+HHI3bxYnMzWSGb1ez/zxx/CoW3qzRkcjTZKdHXOVKsynTonR0RqIjGSePp25RAncCDVrMn/7Lc6BJR5/EUb/8CEyB3l7Q7d69ZhXr87ZD+P07N6NlQhnZ2Z/f8u/+5EjGCUNHChEvQyRzOiZU1ITubsz79tn+ufj4pA4oVChlPmNWtd0pSY5GcuSnTsz582byETMNjbPmWg9T558n58+NU2eOUYfHw/H3KRJzA0bYsTl6ooe7/x5E79QDiI6mnncuJQpzaxZCAM3lR074Atr1kza+1xSo2fGnKRNG9wgw4cb59w7f5552DB4Lu3smAcMQECHBlix4hfu338Ft2t3jolOM2L74OMYM4b54MHsbxpjjD4pifnkSWQFatECc1giTDm6dMFSklri09XArVvMffpgD4qrK/OIEcb5nB49SskO9MEH0o+UbJilDwZNTiZasIDom2+QDaVtW6KWLYlKlEA2kJcvkVL61CmiI0eQJcTTk6hfP6JBg5DlRONN7t+/T6VLl6YDBy5SWFgV2rMH20PDw1Gaq3Rp5HkvWjTtz8KFiRISoqh5cw8KCoqkqCh3CgsjCg3FdTC8QkOxzdTVFVtcmzXDq2pVIluhAdw5i9BQ1EZYvJgoIoLo7bdx3urVw/n38EDK+Dt3kLv/wAGc44AApPe2sZFWP1mM3kBEBNHGjUS//IJY6/Qx+pUro3BB69aINRZRtysnYzD6kJAQqlatGhEhpv3CBeyBePAAceNPnhA9fswUFkaUlGS4o6KIyIOIIsnW1p0KF0Y+eMPL2xs/a9fGVlftWphOXByM+tAhxM+n33Zub4/73dcX+fhFVK8xBlmNPjV6PdE//6BXyp+fqFAhIicnJTSxXjIy+swICAigyZO/JaKCRFTov3ev0s2bkVSmjDvZ2UmtrcarV7jnIyOJChRAVV0RVWhNRTGj1zCOdevW0eeff/767927d1Oj/+o4mWL0CQkJlJCq3G5UVBQVL16cIiMjyV2uLkZDFWj5WlVOx44dqU6dOq//Llq0qFlynJycyEkbSmmQZvSqx83Njdzc3JRWQyMHoRm9FfLixQt6+PAhPf0vu8ONGzeIiMjLy4u8vLyUVE3DCtDm9FbIqlWrqF+/fm+87+/vTwEBAUbJYGaKjo4mNzc3spF6jUhDVWhGr6GRy9BCLDQ0chma0Wto5DI0o9fQyGVoRq+hkcvQjF5DI5ehGb2GRi5DM3oNjVyGZvQaGrkMzeg1NHIZmtFraOQyNKPX0Mhl/B/Aq0+GiwGwnAAAAABJRU5ErkJggg==",
"text/plain": [
"Graphics object consisting of 1 graphics primitive"
]
},
"execution_count": 14,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('t')\n",
"Courbe=parametric_plot([sin(2*t),cos(3*t)],(t,0,2*pi))\n",
"Courbe.show(figsize=4)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Un peu d'algèbre linéaire"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Voyons maintenant comment faire les manipulations usuelles en algèbre linéaire : déclarer des vecteurs, faire le produit vectoriel (pour les vecteurs dans $\\mathbb{R}^3$), produit scalaire, norme... et il en va de même pour les matrices."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"u=vector([-1,-3,1])\n",
"v=vector([4,2,8])\n",
"w=u.cross_product(v)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"w"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"v.cross_product(u)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"u.dot_product(v)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"u.norm()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"norm(u)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"u+v"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"A1=matrix([[1,1,0,0,0,0],[0,1,1,0,0,0],[1,0,1,0,0,0],[0,0,1,1,0,0],[0,0,0,1,1,0],[0,0,0,0,1,1]])\n",
"A1"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"det(A1)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"A1.inverse()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"A1^4"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Polynomes de Taylor"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Pour finir, un peu de polynômes de Taylor, en une ou deux variables."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 15,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"f(x)=sin(x)\n",
"Taylorf = taylor(f(x),x,0,12)\n",
"Taylorf"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"On peut, bien sur calculer plusieurs polynômes d'un seul coup, et faire les dessins sur une même figure. Ci-bas le graphique de la fonction $x\\mapsto \\sin{x}$ sur $[-2\\pi,2\\pi]$ (c'est ce que le paramètre $L$ contrôle), et les plynômes de Taylor de degrés inférieurs à 20. On remarquera comment on fait changer les couleurs des courbes.\n",
"\n",
"Par ailleurs, on a intérêt à faire `Taylor?`."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEcCAYAAADOY2OHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd4HNX1v9/ZrlW3uixZLpJsufeKjTHghm1segslEEhCfgkhJIQEkkAKIQkQElLgC8R0043BBlfcsI17kyVbLrKs3stK22d+fyyyPSpW25ndlfZ9Hj+P5+rO3LvS7Jw7557zOYIkSRJBggQJEqTPofH1BIIECRIkiG8IGoAgQYIE6aMEDUCQIEGC9FGCBiBIkCBB+ihBAxAkSJAgfZSgAQgSJEiQPkrQAAQJEiRIHyVoAIIECRKkjxI0AEH6LJIkUV9fTzAXMkhfxe8NwPI71vOA8DK738z19VTapfpoES8LD7Dn0fdVGa9x+372CRMpf/pVVcbrrTQ0NBAZGUlDQ4NP5+E8nE2J0B/Lj3/l03n4I/bKOj4XlnD0/hd8PZUOWX3fJzwpPImj0eHrqXQavzcAt796BQYjrPjR14ii6OvptEnU8CRAoja7WJXxDBkDAHAUlqoyXhBlsf33dQBMD9zl45n4H/X7TgIQNnyAj2fSMbYaKyBhCDX4eiqdxu8NgN6oY/FvJ9BY7+bNuzf6ejptotFo0Jt01J+pVGU8XXwMIOEqUWe8IMri2LANjUmPbsRQX0/F77AcOg1A+OhBPp5Jx9hqbWg0gq+n0SX83gAAzH1sAsmZYex48zQnNhf5ejptYuoXQlOpOq4EQRAQtBpc5TWqjBdEOURRxHn6HPrh6b6eil9iOV4IQMQE///92OrtaLRBA6AIP9m4GJ1O4F+LvsBaZ/P1dFoR2j8KR71dtfE0Bh2u6jrVxguiDK6NW5HcEsYl83w9Fb/EeqYMQQP6yDBfT6VDHBYHWn3APFKBADIAUSnhfOeVWdga3fxh1Pu4nG5fT0lGREY8bpeIq0kdI6A1G3HXNaoyVm/nlltuYcmSJbz77ruqj2177R1AwvTAnaqPHQjYiqvRmvS+nkancDY60Rq1vp5GlwgYAwAw9a5hLHx0FJXnrDwz8UO/2hSOGZMKCJTvPKnKeNrwUNwWqypj9XZWrFjBqlWruPXWW1Uf27FtN9rwULSJCaqPHQg4KhvQR5p9PY1O4bS60Jt0vp5GlwgoAwBw7Z+nM+32QRQcruOPo97D5XD5ekoAxM/MBKD8a5UMQFQYoi1wws2CtEZ0OHAWV6AfP8LXU/FbnA1WjPERvp5Gp3DZ3ejNQQOgOHe/NZeZ9wyh8Fg9v0p5k8ozvveFx00aCEhUHTinyni62ChEP3ODBekajvc/BQmMNyz29VT8EkmScDvcmFJifT2VTuF2uDGEBU4IKASoAQC447Urue4PE6ivdPDbzPfY/tJRn85Ho9OhM2qpO1muynj6xBgkSUJ0OlUZL4j3sb3zMSBhuvtmX0/FL7EWlAMCoUOSfD2VTuF2SRjDgwZANeb9eiKPbF6E3qThze9/zZ8nfoCl0nd+8ZCYUBqL1Xkb0SXHAQKO0/4ZFhukY5zfHEQXF40mzP8jXHxB/d4TAISNTPPxTDqH5JYwRpp8PY0uEdAGACB9Vn/+VnU3Y6/pz5l91Tya9CYb/rbfJ3MJGxCNXaUQVcOARAAceWdVGS+IdxHr63FV12GYMs7XU/FbGg6eASByYoaPZ9IxotuNhCcfKJAIeAMAoDPo+MHni/jJF/Mxhmr54Od7+V3G21ScqlV1HlFZSYhuCVu1RfGxDINTAHCcCb4BBCKe8E8B43du9PVU/JbG44WARNiogb6eSodYShoAgZDo4BuAzxg+P42/Vt3DjO8MovSkhd9kvMcHP96qWrho7KSBgEDp5uOKj2UckgqAoyCoBxSI2D/8HEEAw3XX+Hoqfos1vxyNXotG5/+RNZYSz6LPHBfq45l0jV5lAAC0Wg13vnE1jx+4jujkEDb8M5fHkl7n3AHlN2eTLvdouVSokAugH5wCSLiKKxQfK4j3cR7KQZeSEBAPN19hK61BH2b09TQ6haW4HggaAL8hZWwcfyq8k2t+NYr6Sgd/nPAJXzy1R9ExI4YlISBRfaRQ0XHAE3UkCALO0qAgXKDhLijEbbFimD3N11PxaxzVjRhiw309jU7RWObJyg9LDKwN/V5rAJpZ8sdp/O7YTUTEGlj52wM8O+MjxWQkNBoN+lA99aerFLl+q/EMOlyVvs+BCHTUloKwvfQGIBBy3+2qjBeouKwOTP1jfD2NTtFY7nEBhQaYAegT758JQ6P5U/FdvLR4NYe/LOY3g97i8SM3YY72/o59SFwYTaX1Xr9uW2hCDLhqfVvMpDewYsUKIiLUyza1f74eQadBP2u6amMGGs6aBiQRQock+noqncJa2QRAeHJgZC030+vfAJrR6TQ8+MVirnlsNFVFNh4f+A61xd6P1gkfFIPDoo5EgzbcjLu+SZWxgngP5/HT6If4f4ETX1K7MweAsACoAwDQVNUESIQlBYbLqpk+YwCaWfKnadz58mU01bt4avh7Xk8c6zeyP5Ik0JCv/Oasrl8EolU9CeogPcd58Aii3YVx3mxfT8WvqdvjSQKLmjLMxzPpHLZqKwKg0QXVQP2eGd8bwe3/nk5jnYsnh71LU633krfipgwGoHSz8jWMdXHRiH4ihucPbN26lcWLF5OcnIwgCKxcudLXU2qFx/8Ppu8Hyz9eCkt2ASARMX6Ir6fSKWx1gVcMBvqoAQCY+YNR3PS3ydRXOfnj6Pdxu72TK5A427NiqfjmjFeudyn0SbEePSCb/xXI8QWNjY2MGTOGF1980ddTaZfz5R+zMn09Fb+m8XQpWr0WjT4wagHY6+0BVwwG+sgmcHtc+bNx1Jc28eXfsvnXvM/58YYlPb5maP9oBA3UqFAg3pCaCAjY8woIGRV8oCxYsIAFCxb4ehrtIooizjOFGMZm+Xoqfo+9qBpdRODIKtjr7egCrBgM9OE3gGaW/XUGWbPjyN5YymeP7/LKNY3hRhrylQ8F1Q9KBsBxIqgHFAi41m/2CIYtnuvrqfg9jppGTMnRvp5Gp3E2udCFBN56OvBm3EVEUWTdsXWsP7aenJIczladxag3Mih2ELMyZnHL5Fv40fpreTz1DVb/6RCjrh3EwEk9q84UmhRB/dlqL32C9jFmeCJJ7KfUqUEQpGfYlq+gK+Uf3aKbTbmb+OzQZxwuPEx5QzkGrYEh8UOYlTGLGyfeSHJUsrKT9gGi243L7gqYEFAAp81FWHxgVC67mF5rACRJ4t3d7/LU509xvLS1Ns+BggN8vP9jHvnwEW6ffDsPrX6Elyd9zT/nreaZ8rvR6br/chSZGU9Vbjmi241Gq9xroXGYJ0TOebZEsTGCeA/H1t1oIzou/yhJEu988w6/XfVbTlWcavXzQ4WHPPfuez/j1vE38+db/9qrDIHl0GlAIDwAROCacdvdGCMCQ7biYnqlC6iktoRF/1zE7a/c3ubD/2Jcbhev73ydma9NI/yxciw1Ll6/bV2Pxo8ZPwAQFN8I1ifEAhLOoqAeUE/IyMggMTGRCRMmsGTJEkWygkWHA2dJBYbxIy/Zr8pSxcJ/LOSOV+9o8+F/MS7cvLn/HYb+bDDLt7zmzen6lJqvjwEQOSlw9rXcLgljZOAZgF73BnC48DALX1hIUW3XZJItdgt/KfsN0xYuRPpgEbO/LmbIjO6tqhIvHwp8QelXOSRMT+/WNTqLRqfFWaaO9ERvJS8vT/FMYMeKTzzlH29sv/zjoXOHuPZf13K2qmt7OhaNnXveupe9B7bywo9fRasJvM3Ii6k/cAqQiJp5aWPpT4iiRIgCygJK06sMwJ4ze7j6+aups7bWx4lpGsSSMUuYNWMsTreTLSe28OGej7CL8hDKnclrqLq8mshlBp4pvQeNpusvSfEzMgCJyr3Kb85qTHpcVUE9IACLxcLJkxeUWM+cOcPBgwfp168fAwb4NvPW9u4ngITxzpva/Pne/L1c9dxVbd67Y1LGcN3468iIz6DR0cj2vO28t/c9bE75vfuv7NcpfjSfD5/Z1K371l+wHC9CoxUwRAWGro6tzgYImGODewA+43jpceb+fW6rL5DJGs2TM//Kz+//LoJwIVHje7O+x7M3PcujHz7K6ztfl51zImMXa22hTHoonZv+cXmX56LV69CbdNQeV16rXxsagqtO+QI0gcDevXu54oorzh8//PDDANx1110sX77cR7Py4Nx9qN3yjzklOcx9vvW9mxiZyH9u/w/Xjr1Wdu/eN/M+/nLDX/j5hz/njZ1vyM75pHYL33n4at56foPsnEDCdq4SfXjgFFapP+cpPGWODywpaOglewC1TbUseXEJtU3yCmBxFSM49JtD/OKBe9v8MiREJLD8u8v5393/Q6eR28IjozbywuYXaazqnlRESJw69YG1UWGIlmAiGMDs2bORJKnVP18//MXaOk/5x2kTWv2soqGChS8spKapRtY+I30G+x/fz9JxS9u8d+Mj4nn9u6/z2t2vodfKk6XeadzEb397n3c/hIrYKxswJkb5ehqdpv6c53seaFLQ0AsMgFt0c8vLt3Ci7ISsPbF0PEdf+prMzNQOr3H3jLtZ+eDKVkZg56SPeOyu57s1r4jBsdgblBeF08VEItqdio8TpPs0l380fecGWbsoitzxyh3kV+XL2uekTOeNqsU4f/wiZX98GWdx+8WM7plxD58++GkrI/DHotf45LV/eesjqIYoirisTkKHJPl6Kp2mocij/huWFFhKoNALDMBfvvwLa7PXytoiqwaz47kviE+I7PR1rhl9DcvvWS5rkzQSr0Q+Q/bevC7PK2ZMKpIIDaeVrUSmS4hBdItIkqToOEG6j/2j1QgC6JculLX/+Ys/s+6YPOJsZG0ET/2+iZq/fkDFm2spfPxlDvdfQN7k23GWtV38Z8GoBbx171uyNlED9294hMLDR737YRSmfm8eIASMBhBAY4lHkj0iNWgAVOVAwQF+8+lvZG0GayRv3ryCQRnxXb7e7VNv58klT8rarOZ6bvlj14W74i/LAKBofXaXz+0KhtR4QMBZVKboOEG6j/NQDrrURFn5x0PnDvG7z34n6xfbqOe5tYNJuXk+WQfeYpxtBxlfvkDEtBHU78klO20RDet2tDnGTZNu4neL5derDLVxx6MLcdsDRzG2+qtDAERfPsrHM+k8jeXf1gJI7fyC018IWAPgdDn57vLv4hIvUsMUNdwnPcPimyd1+7qPX/M480bMk7Udjd3JP15/uUvXSboyC5Co2HW623PpDIa0b+UgcpUXnwvSddxnC3A3yss/utwu7v7f3TjdF1x3GhGePT2FKwq2kPb205jHDkNjNBAxbwYZO94g/dNnkUSRvAU/oXHnwTbHemLRE8wZNkfWtiXlHH+78VZlPpwC1O3JAySiLxvh66l0mqbKRkAiNCG4B6AaL2x8gYPn5F+E4Tk38o83vtej62o0Gl67+zWizXIdksc3/JIGW+erb5n6haHVaag5qqwonGFICgD2k0E5CH/E+tKbgEDIvbedb3vxqxdb3bsPNI7nzl3b0EW17UaIXDKbYbtfR9DAiSu+j6ONNz6NRsPr97ze6t79S9gajr/+Wc8/jApYcgvRGXVojQZfT6XTWKutCAIBGXobeDPGk+nb8vU5vDqNf/34T2i1Pf9IyVHJvHibXFK4wVTDT158pEvXMUWH0FCgrCaQcahHDsJxpmuJb0HUwbF6g6z8Y0ltSSu3ZaYtiuffbNu1czEhY7NIX/ksot1J3pQ729z3SemXwr9uk2/+Vofa+fVLD+Oo9f9wYWthFca4wKqqZau1odUFZshtQBqA36z6DY32RlnbgpJHmH3LYK+NcevkW7l6+NWyttdzXuVE6Yl2zmhN2IBobDXerTjWkuY3AEdhcA+guyhZFN6Zexp9+oUktF9+3PpN8v9+9QlGfedkBMKvmUXST2/BVlRFyS9faLPPLZNvaeXG/HTYKVYufrCLs1cXSZJw1tsIzQgsXSNPLYDAzL4OOAOQXZTNa9vluicDjl/F8697t8KSIAj867Z/YdBdeBUVNW5++r/OvwVEj0jG7RSx1zZ23LmbaPR6BA24StqOEAnSMStWrGDVqlXceqt3feXO/YcRHS6M8z3JaYcLD/Pmrjdlfe4YfSOzsmZ36bqJf/sZxvhIyp59G2dp67+7IAi8eNuLstBQl1biH4b1FL/9Vdc/iEpYss8iSQRUBBCAw+JEZwoaAFX4xUe/QJQuVO/SOo3caH6Q5AzvvzZmJGTw0JUPydrWnP6MfWf3der8uKmDAYHiDce8PreL0Rj0uCpqO+4YRFVsL39b/vF+j/zzEyufkLltwjQm/nbXP7t8XY1Gw8APnkF0i+Rf/7M2+6THp/OTK38ia/t6cAkf//L3iE7/zBupWuv5XsXMGePjmXQNZ5MTvTkwKpe1JKAMwI6TO1hzZI2sbciRZTz2qnIFNh5b+FirTbVH3v5Fp87tP88jZlW2tfNuo+6gMRtx1XR+gzqIOtgvKv+469QuVh1aJfv5Lxb/ioSI7tWeCJs1kYjpI6nfcRTbsbZVQ399za+JMsszapePyObIXc92a0ylqdmZA0j0CzAD4LK5MYQFDYDiPPmZPEbf2BTFjQn3EtNfORGmKHMUv1zwS1nb5jOb2HlqZ4fnRgyOR6OBqgPKRujoIkJxNzQpOkaQriGKIq78IvQjPJLGT3z6hOznseZ+PHTVQ22d2mkGvPF7AM7d+7s2fx5ljuLR+Y/K2vallrNu02c0ZPtfFTnLsXNoTTq0psCSVXY53ZgiAke76GICxgDsOrWrVdZk+qHrefiVGYqP/aMrfkRSpDw1/Q+f/aFT5xqjTNSfUlavXxcTidsaOMk+fQHX2q885R+XzGXXqV1syNkg+/lj1/yacFPP3JbGIQMInzKc+l3HcJxue5Hx/+b8v1ZvGe+PPcmB6//Yo7GVoOlcFSEBpAHUjOiSMEYFltFqJmAMwNNfPC07NjZFMTf8RvolK6/BbTaa+cV8udtnTfYa9p/d3+G54Wn9vk0UUQ59Ygyi063oGEG6hu31b8s/3v+dVvduYkQiP5j9A6+MM+DV3wJQ+IM/tfnzUGNoqzfYvanlHKzIpeyTr70yB28gulw4LXbChnes3eVPiG43kgTmmMCTgoYAMQA5JTmt/KdDDl/HD/8xWbU5fG/m94gLj5O1/WXtXzo8r9+o/p5IoGrlYrD1/eMAAVd1cCPYX2gu/5jrrmx17z4y7xFCDN5ZuJhGpGPOTKF2417EdiQfvjfze8SGxcraPhx3iiP3v9hmf19Qs/kwIBA9PcvXU+kSjeWNgEBIANYCgAAxAM+uk29a6e1hjK9dRPqk6HbO8D6hxlB+etVPZW0f7PmAMxWXlmBInJkBCBStU04TyDCwPwD2djYDg6iL6HDgLK3EMH4kz2+Qq8lGm6O5f9b9Xh0v8Yn7kNwSZX/4vzZ/HmoMbbXfsGNQKQXWCk4/vcKrc+kuFV96IoDiF0/x8Uy6RkOBZ9EViDIQEAAGoKy+rFXsdFrOApb+QP2Vwg9m/4Aw44U/tIjIvzZfWnK3/3yPqFXplkvXJu4JxgzPa7PteIFiYwTpPM3lH+uWXcFbu+QqnQ9e8WCPff8tib5jMTqzgcqXPm63z4NXPEio8ULBEjciX447x4mn3kN0KC9b3hG1O3MRNBA2apCvp9Il6gu/lYJODLxiMBAABuDlrS/jcF24QTWinozji7j2F+oXjI4yR3HvZffK2l7Z+mqrrOSLCU3ph0YLVQeViwQyDPtWDuJUUA+oO3g7E9j2zseAxP/6l2N3XXDLGHQGHrxCmWzc6Bvm4Kiow7q/7ZyTKHMUd0+/W9a2bkQxFped7O/73hVkOV6MMTYs4KqYNRR/awCSA08JFPzcADhcDv6z+T+ytv55s5g6fQg6nW+m/qM5P5Id19lqeeebdy55Tki/EOpPK5epa8xMAyQcBSWKjdGb8XYmsHPPIcSEKF7a+aqs/bbJt5EYmeiVMVqS8KRnU7k9NxB4IoIups5tYcfkGgpe34zDh4mEoihir24kfFiKz+bQXSwlnr29yLTAi14CPzcAnxz4hJI6+UNt0LFF3PW3kT6akSfDcsHIBbK2F7968ZIFWcIHxmCtVi5OX2MwIGgEnMVBOQhf4yn/WM+6y2MprZPXhG6ZmetNjAP7Y0yIpm797nb7DE0cysJR8qI0a6ZVIIoih27rOKBBKep3H0eSIPqy4T6bQ3dpLPUYgKhBQQPgdV7a8pLsOLZiOIN0w0gb6dvXrZYrqcOFh9mWt63d/v3GpCK6wFqq3CpLY9DhKq/puGMQRbG9+jYg8FqaXAV2RvoMxg4Yq+jY0Tdeictix7KtfamSlkboeN0pCi4zULbhCI15hYrOrz3KPtoOQOINl/lk/J7QVNUESOhDAke++mL81gCcKD3BV8flwlUDjixk1i2+VwqcN2Ie6fHpsraWrqqLSZzl2a8o/OKIYnPShppw1dQrdv0gncP+0WpORjnZXiOP+npwtvJKnPGP3w9IlP/p1Xb7XD38ajIT5PtnW5d6tLUO3eqbt4CqLdlotAIR49I77uxnWKusaLWBtW9xMX5rAF7eJq/AFeKOJCl/Gjc8MdRHM7qARqPhh7N/KGv7eP/HVFmq2uyfMn8kIFG6reu1hTuLLjIsKAfhBzgO5/LuRPkDITYsluvGX6f42PqEGEwpcTRsOdBuH0EQWoWhrjz5BYY5A6ned4bancoKF7aF5XgxpsTA3ES11dnR6v32Mdohfjlzu9PO8h3LZW0puVeQOiiciBj/SLm+c9qdMqloh9vB29+83WZfU1wEWp2G6sPKvWLr4qIQrb4P5+vLuM8WYLM28X6a/E3snhn3dFrvv6dE3TAHl9VJ49a97fa5a9pd8nvX5eDQD5MQBIFDdz2nxjTP42qy4ai3EjkusMI/m7HX2wNWChr81AB8dvizVqvplOz5XHXvgHbOUJ+YsBiWjVsma3tl2yvtbgaHxJppyFeuOpg+KQ7R5b7kZnQQZbH+9w02DLBTJdhk7fdddp9qc4h/9B5Aovz5t9rtExseyw3jb5C1vXHkXZKum0xDXhnlqzoWOvQWpe9tBQTil07rsK8/4rA4AlYJFPzUAPzv6//JjlMbxxDekMyih3xTKEISxTYfrC2/2EeKjrRbKyBiUAy2WuWqg+nTEgEB57nSDvsGUQbH6g28nyn/G8/KnEVmono5K/rEOAyxEVgu4QYCWuWzHC06iu13s9DoNBx54NLJjd6k/JMdgETSLZerNqY3cdrcGMP9wyvRHfzOABTXFvPl0S9lbfEHZ9M/3YQxRKfaPCRJYsPP1vBMxB95SvsUT2me5Ln4Z9jzjwu1W+cMm8PAmIGy897Y+Uab14sZNwDRDQ1nlQnVNH5bGtKWfVKR6wfpmKKzeWxMla/+WyZfqUH47Ak4aiw4i8vb7TN76GwGxcrdLu8cfp+0712NtbSecy+tVnqaANTszsMYbUYXqryooxK4HW5MUYEpBQ1+aADe+eYdWcWvEK2Z+LwZzLxZvegfp9XJvzP+ztfP7UGr1zB8aQaZ8wZhtzhY85P1vDz6nziaHGg0Gu6cdqfs3BV7VuB0ta64lDh7GABFCkUCGYcOBMCem6/I9YNcGufeg3yYZsF90f6v2WDmhgk3tH+SQsQ8cD0gUPWf99vto9FouGuavIzqu7vfZciz96Az6cj5xXJEUWznbO/gsjmwltUTNSGwSkBejNslERITmMYL/NAAtNxIzay7HL3LxOKHM1QZXxRFXhr+TypP1TH5+2N5pOoxbvzkdm798i4ebfg1o24aSsmRKv4z9B+47E6+M+07svMrGipYm7221XWT544AJMq2KxMJZBzp+f04TvsmljuQ8YYUhO2Vt/ggQx6FdcOEG7yu+9MZwq6cikanoe7TLZfs1/LerW6s5svc9aQ/dj2Oejunnrp0hntPKXl7EyCQeNNMRcdRCkeTAxAIjQtMHSDwMwNwrPgYB88dlLVF7Z5BbH89YdHqJFp8evsHVOU3MPVHE1jwn2tlP9NoNVz33i3MenQqtYUW/jflZYbEDWHaEPkGVltuIGOkGZ1BS/WRIkXmrU+KwyMHEdwD6CrekII4sGMtOf1csjZfuH/AE+oZkplCU+6lq34NjhvMZeny5Ks3dr7B4MdvxRBp4tQzHylaP7hkxVZAIvmOKxQbQ0lqT3sSL8OS1Dfy3sKvDEDL1X+8OZHwMyOZuDBelfELd5zl8IocEkf0Y94/F7fb74o/z2fUzVkUH6rkiwdWcudUuRto1aFV1Da1zvoNiQ3Fck6ZbF1BENDotTiLla0+FqQ1oijyQUi+rC0lOoXLM323sRm5aCaiU8RyiXBQoJULc82RNdTb6sn62z24bG5yfvxfxeZYu/skIQkRaEMC04del+/5Lof3DxqAHiNJUitRteH1cxAkDdc+oo775+NbPkCjEbh9/V0d9l327k3EDolgz/8d4jJhuiyu2u6y89G+j1qdE5keh63WrliopjbEiKuyTpFrB2kf+xcb+HiwPPrn1sm3otH47usV88ObAYmql1vfhxdzw4Qb0GsvhDHaXXY+OfAJqfctICQpkrOvbMDV4P2Kdk1ny3DUW4m9crTXr60W9ec837WIAYGpAwR+ZAB2nNpBflW+rC3s66mERWhIzlTewh556wA15xoZd/cowpIiOuwvCAJ3bLwHjUZg7Y1rWDhSLrL17p7W/uS4yYOQJKg+ooyfXhthxl2nXOWxIG2z5a1/UBwmL8l5+5TbfTQbD4a0ZHRhpg7DQaNDo1sJxDUvxEa99CCiS+Twnc+2dWqPKPj7SkBgwIPtv2n7Ow3f1gKIGhg0AD2m5ep/aNwwyEtj5Kx+qoy/8dEN6PQC8//d+RsyMi2Kmb+chqXCzuiTciXDr3K/aqUG2X++R8W08DP5Poe30MVE4m6yddwxiFd5v1KeODU8aTijU3y/sg0dnY69qBLRfel60bdNvk12vCl3E6V1pcQvnkpEVjLFn+6l8bh3a02UfLITnUlH9PSdBTGAAAAgAElEQVTAUwBtxlLaAEDUYHWeUUrgFwbALbr5sIXLZLT1agQ0LPih8iniRd8UUFfcyIgbhqIzdi2r7/I/XE1YjBHhvxp5tTBJ5OP98gpNiZdnAhJlO5SJ1dcnxiA6gsXh1cRhbeKzBPl+z62Tb/WLwiaRS2cjSdCw8qtL9ls0elG79+74D38FksT+69ouOt8dXJYmGs9WET1VHdeuUjSVNyEgoTcHphIo+IkB2Ja3jfKGMllbyPaJ6HQSY+YpvwG8+VcbAbjyr/O7fK4gCCz87yIEm5axDfJV3/t75XHYGp0OY7iBmmPKROoYUhORJHDVBlVB1WLjy3+iMkQeL3/zpJt9NBs5Ud9dBkjUrPjykv3MRjOLx8jffJvv3bDhaSQvnUTdsUJK3rt0WGlnOf3nDwCBtP+3xCvX8xVN1U1ofKQE+sjEr/j5xM09vo5fGIAP9n4gOx6bOhbLoX6kZJoV30gTXW7ObC0gLiOK8P7dUyTMumEksemRpG6VaxVtzdtKcW2xrC08NZrGEmUe0PpB3xaHzw4Wh1eL93bK93rGDRhHRoJ/rGz1MVHowkNo/OZoh31vmniT7Hhr3tbzLszRb/8CrUHLke+92KE7qTMUvrYeXYiOhGXTe3wtX2KrtaEz+uYRWnSiCUtNz0N0fW4A3KKbD/fK3T+Xxy7E6YSJi5Rf/X/z3Ne4XTD14Z6JUS3872IGnxtCiHQhK1CSJD7c96GsX78xKbjsbux13pduNmZ6DJA957TXrx2kNS63i8/18lj7myf6x+q/GXPWQOxFlR1Gns0fOV/mBpIkiY/2e76XOrOJrGfuwtFg5+hdPdsQbjh8mqaSOhIWjPcLN1lPsNc70JnUk6e5GFuTSFRiz11PPjcA2/O2U26Ru3/CvpkASMz/gfL+/73/3oPOIDD2/kk9us6gK9NJSO1H5in56q/lPkDS7KGAQOHqwz0ary1Mwz0p9faTweLwarBl/xqqTPIV8Y0Tb/TRbNomYt40JBEsm/dcsp9Jb+LasfLEx4tdmAMfWkZ4ZgIFb2+jbl/3s9lzf+4pVjP0b/d20NP/cTQ6faIE6nS4cbshPs3c42v53AB8sE/u/hmTMobSTaGYwzTEDwxr5yzvYKuzUX22gYEzU73iapr3wnyyTsujGrblbaOi4UJyVuqScYBEyUbvF94wNBeHPxssDt8VuisF8f57f5MdjxswjsFxg705tR4T9Z1FANS9v67Dvi3dQNvytlFWf2FxNvHL3yNoBPYu/F23dIJcVjsVG48SPiQe86CkLp/vb7isLowR6iuBnjtaDwgkpvdcgsKnBkAUxVbun+vG3UBFkYMh45SP/d/zwg5AYOKDk71yvcwlwxljG47BeeHVTJREVh1cdf7YnBiJVq+h8oD3V+kanQ5Bq8FZ1L4KZJDWdEcKQhRFPq2UF2BvqbHvDxgz0tAYtFi2XTofAGDuiLmt3EArD6w8fxw6KJHMX12PtbyBQzc93eW55Pzo34huicw/3tlx5wDA5RR9ogR65oAn6mzAyI7zlTrCpwZg5+mdlDXII2LSiqYjSQIzb+mv+PjZK46i1UHGtVleu+b0H0wn/Zy8tunHB+RuIHN8GPVn2i4f2VO0Rj3OMuUKzwTxsPvMbsr0dlnb9ROu99FsLo1pQDy208Ud99ObuGb0NbK25n2AZjJ+fxdRY1Ip+mgXxW9v6vQcHFX1nHt9M+bkSJJuDkzt/5aIbglzbM/dMF2lMMeT7Dl4fM/LaPrUAHxy4BPZ8cj+I8lfaURAYvbdaYqOLbrcVByvIWlMnFcjjWb8+nKGnxsma9uQs4F664XIn6ihCdjrbIrI7WrDzbhrGrx+3SByPt7yuuw4KymLoYm+r1fdFuYpo3BbHThLO9aJun683Ih9dfyrVrpWU7Y8g85s4MBdL1CzK6dTczh4wx8R3SJjXv9p5yfux9jqbIBAaLz6SqAlpxoBiYTBAewCkiSJj/eulLUtG7eMvL11RMXpMJmV3V3Pfvcwogij7hjj1etq9TquGTYPjfvCr9bhcrDmyJrzx/FTByNJAlX78r06NoCuXwQui3KVx9Tk3//+N4MGDcJkMjFhwgS2bdvWbt/ly5cjCEKrfzabMpnRK7+RR3ctHbtUkXG8QeR1VwICte980WHf+SPnY9Rd8Gu73C7ZvQugjwxj2tY/Iwiw6/LHsORe2p1Z+uE2yjcfI2ZaBjFXje/WZ/A3ak973rJ9oQRaec6KXi94ZeHqMwOQXZzNmWp5vPrCYYuor3aTMannrzYdcfTdI4DE2Psmev3a1z5/PYOL5ZuBF7/tpCwYBcA5BSKBdIn9EO3KSfiqxXvvvcdDDz3Er3/9aw4cOMDMmTNZsGABBQUF7Z4TERFBSUmJ7J/J5H0fbW5JLnmivLLb0nH+awAiFnn09hu+/LrDvuGmcK7KukrW1vJNHSByQgaTv/gtoktk+7gfU7O97VyD+v157L/1b+hMOiasfrIbs/dPLiiB9twP31VqyxyEhHnn0e0zA/DpwU9lxwP6DaB+cwwgMP0G5at/Fe0uIizWhCHM+7v40UNimNQ4Tta25sgabE7PajRuejoCEhU7vZ+wZUhNRBIlRGtgvwU899xz3Hvvvdx3331kZWXx97//ndTUVP7zn/+0e44gCCQmJsr+KcHKg/I31+SoZCameX8h4S00BgP66FCajnTufls2bpns+IujX5y/dy8m9qrxTPjwUUSXyI5Zj3Hku8/havTcd5Ikcea5j9k++RGQJCav/wOG6MCVTW5Jbb7HLRY1KFr1sRvrXIT38074qc8MwMf75KuKa8dey65PSgGJGbekKDq2vcFGY5WdlCnKGZrv3ng3XJR7Y7Fb2JjjkZzQaDQYI4zU5HhfEsJTG1jAejRws4EdDgf79u1j7ty5sva5c+eyY8eOds4Ci8VCWloaKSkpLFq0iAMHOo586Q6fbJcLF1479lqfSj93hpBhaTjKazu177R4zGI0woXP02hvZFNu2xu+ictmMDv3P5hTYzj7v82sDb+ZtRE38qVpGdk/W47OrGf6tj/T77IRXvss/kB9gccARGfEqD62rUkkOtE7C1ef3LVFNUXsP7dP1rZ07FJO7qsnKkanePH3w//bDwiMvE05xcY5P5pPWrlcGuKzQ5+d/3/4wH40lXl/s9bwbW1g2xFlSk+qQWVlJW63m4SEBFl7QkICpaVtG81hw4axfPlyVq1axbvvvovJZGLGjBnk5Xn391BcW8zucnldZ3/2/zcTdvkEJBGs+zrOP4mPiGf6ELlMw8WhzC0xD0nmirPLmfjRo8RcNhRjXDhh6YkMffx6rqpeQdS0wFX8bI+G4gZAIiJVeXf1xTjsniSwuDTv1CH2iQH4/PDnsuMocxRTBkyjrtJF+gTlfWq5Hx1DECSG3ThKsTE0Gg3T9FNkbZ8d/uz8CixmbCouh4ityrtGIGSkJwTVkXfpcoCBQEupAEmS2pUPmDp1KnfccQdjxoxh5syZvP/++2RmZvLPf/7Tq3Nq+SCMCIlg9tDZXh1DCSJvuBqA+g/Xd6r/krFyobZVh1Z1+PaQeN0Mpm79K7NPvcbM7P+S8fu70Oh8I5WgNI1ljWg03tmI7QoFhz1JYMkZ3kmS9YkBWHlA7v9fMHIBuz8sR0JgynXK+//LjlYQHm9Gq9cqOs4D935fdlxcW8z+gv0AJM3JAgTOebk2gGHYIEDCcabjuG9/JTY2Fq1W22q1X15e3uqtoD00Gg2TJk3q1BtARkYGiYmJTJgwgSVLllwyK/jTQ/J7d+HIhbJqcP5KyPgsBA1YtnfuflsyRm4ASupK2Hd2Xzu9+x7WqiZ0BvUfn2cOeVxPqSO8s5+i+idotDey8Zjcn7hkzBJ2flQMSMy6XVn/v9vppqnaTsIY5YXmZi+cQ2xDrKxt1SHPCjJ10RhAomRTrlfH1Gi1aLQaHIWBmw1sMBiYMGEC69fLV6vr169n+vTOKUhKksTBgwdJSupYciAvL4/S0lL27dvHqlWr2s0KbrQ38tWxjbK2lvo5/oogCBhiI7GdaD+K6mKGJg4lMyFT1tZ87wYBa60dvcKh6m1RmOPxGAye4J3NZ9UNwPpj63FKFzIodVod80fO5+S+esIjtYQoLK50as1xJASGzEvvuLMXmBnati/VFBOGzqCl6qACkhAhhoDPBn744Yd55ZVXeO2118jJyeGnP/0pBQUFfP/7nreqO++8k8cee+x8/yeffJK1a9dy+vRpDh48yL333svBgwfP9/cGG3I2YBcvhNg237uBgmloGs6qhk7XpG75FtDSdduXcVgcGMLUf/MrPdUESMQPDNA9gIs3QgFmps8kMiSS6lIHqVnKZ9UdX5kDSAy/VZ2Sfffddb/s+FDhIQqrPTWBzYnhNJyt8fqYuohQ3DWBXRTm5ptv5u9//ztPPfUUY8eOZevWraxZs4a0NE+GeEFBASUlF0Tvamtruf/++8nKymLu3LkUFRWxdetWJk/2js4TtH3vRpkDpx5s6IwxSBJY92Z3qn/LIjEHzx3kXHVQaRbAaXUREq2+DpA3k8BAZQMgiiIr96yWtS0es5jjO6oQRYFRc2LbOdN7FO4sRG/SEt6Jwu/eYO6MeZgdcmu9+ojnd9BvZDK2ejuiy+XVMXVxUbh7QTbwD3/4Q/Lz87Hb7ezbt49Zs2ad/9nmzZtZvnz5+ePnn3+es2fPYrfbKS8vZ+3atUyb1rMaDxcjiiKrD7e+dwOJ8EUeDZ76zztX2Wv6kOlEh8gNXMus4L6Ky+EbHaDaUgfmcO89tlU1AAfOHaDaIdf+v2bUNXz9XhEAlyvs/weoya8jeqB62Xs6rY7JZnmtgWYD0FwboHh951ZkncXQPw63PVgb2JscPHeQ0nr5pvSi0Yt8NJvuYZ42GgRo/PpQp/rrtDrmtXBxNd+7fRnR5UaSJEIT1NcBstQ6iYzznutJVQPQ0oeYEZ9BZmIm2Vur0ekkUoYrG1PbUFSH0y6SMi1V0XFa8p3r5PK3G3M2YnVYGXj9BADOrT7S1mndxjDQE0nlLK3soGeQztJy5ZsRn+E3pR87i0ajQR9pxpaT3+lzWqqDbszZ2GZWcF+i5kwNIBCerH5ms80qEZvqPdeTqgbg/W3yKILmm6voZBNxqcoXVshecRgQGLrUe/LPneHaaUsRpAvx602OJjYf30z44Hi0OoHyXd4t4WjM9PjJrQe8G2HUl1lzVG4AFo5a6KOZ9AzT4P44yms77vgt80fMR0B+72457p3i8IFKTZ5Hyj1igLr7PzWlNiRJIDnDe28eqhmAioYKjlXLU/OvGXUN9VV2rI0imZOV/2XmbzoDSAxZoO7KLSYshiytXCL6i6MeZUZzQhj1p7y7Ujd+mwxmPxa4chD+RGVDJbtO75K1BaoBME/MQnSJOAo6VzUuNjyWKYPkCY193Q3UrAQaPVhdHaC8bzzjeqMQTDOqGYC12WtBuBB+FmoMZWbGTL5eUQgITL5W+RJxFdkVmML1aPXqx+/eMEdeK7bZpRA9PAlbrQ3R7T2ffcg4zxuOvRdkA/sDa7PXykInzQYzszJnXeIM/yV8rmdjvH7V5k6fs2iMfK9j9ZHVnQ4l7Y3UFdQB0C9T+aCVizlz0DNu+iTvGR7VDMA7X8kzKK/Kugqj3si+NWWAxORlymcAN5Q2EjVAfflWgKXT5HoxpypOkVeWR+LlmUgIlG057rWxdP0iEQRw5AdrA3uDlv7/K7OuxKRXPwTQG4QvuAyQsGze2+lzWr7tnK44TV5Z4GpN9ZSGonpAIlJlJVBPEpjEwLHe2ytVxQC4RTdfndwga2u+qU4fqCc8SovRpKwsg7XWitMukjhGGYngjhibOpZ+yG+YNUfWMHCZp0BGwWedi8zoLBqjDkdxxxWggly6KLxbdPNl9peytoUjA9P9A6Axh6ANMWA9crLT54xNHUt8SJysrdmF2RdpLGtEI4BWp+wzqyVlZ5rQ6UDnRQkbVQzA7jO7sWnkG08LRi5AFEWqy5yqJICdXnMcEBhwxUDFx2oLQRBYMHqBrG3NkTVEDe+PRovXN4K14WZcFZ3f7OvLXKoo/O4zu6lulGdVLxi1oFW/QMKQFIujqPP7ToIgsHCcPBqoLxuApsomtD7QAaousWMO967RUeVTvLtJHv0zInkEqf1SOb2vFlEUGHG58praZzZ6HrAZi4Z10FM5lk6XF9rYmrcVq8OKOS6Uujzvavfo+kXgrm/y6jX7Il8ela/+hycNJy1G2XrVSmMaloarsWv7TgtGyo3e5uObabL3zfvLWmNDb1J/H9FS7SIi1rtSOaoYgI93yX2ozTfTro89ipXTVFAALd1fglYvEJbou6pEV2VdhUa68Cu3OW1sObGFqGGJWKutXi0Sr0+MwW1zeO16fZVW7p8Ajf65mNBJIwAB667OlyS9evjVaC56XNhddjaf2Oz9yQUAjgYHhnBlNcvawmYViU3x7t6T4gagoqGCIkGe6NQsoJWzvRqNRmLIROU3U2ry6wiL946AUneJMkcxIWmCrG1t9loSL8tAkgQqv/Fe2KZhgKc0pLsp8CUhfEVlQyV78vfI2gJJ/K09wq6eCoBlw64Oel4gOjSaKanyjPaWb0d9BYfVhSlK3SCAhmoHoiiQOMS77nLFDcAHW1e3Cv+8LP0yAAqPNxIZo2u3yIc3sdY5iEnvp/g4HbF4ilw/5sujXzJgqad+cMGn3qsNYEgfAAjYD5/w2jX7GhtyNrQK/2y+dwOZkKmjAYmm3W0Xcm+PaybI79212Wu9OKvAwe0QMceoqwN0UoEcAFDBALy6Su7/nzNsDka9EVEUqatykTJU+Q3gimPlSJJA0gTlcw06Yv4I+QoytzQXSxoIGij7uvORGR1hGuVJBrMeChqA7tJyhdt87wY6Gq0WXagJa27X8kTmjZgnOz5RdoL8ynwvzsz/Ed0ioigRGq+uDtCp/Z6AjvSJ3k2YVdQASJJEtnWrrK35Jjqz37MBnHWZChvAaz0PwYFzBis+VkeMTxtPlF7+R1x3bB0hMWZqj5e1c1bXMU/w1GG15Z7x2jX7EqIotvL/t3wABjKG5FicpV2rGTF+wHiitfIY9L72FuApBi8QkapuPlFzDsCg8QFkALYf3YfdWCVra/4S7frEk6Q0ZZnyq/LCnYWARJofGACtRsv8sfK3gLXZa4nKjMda1eS1DEt9aiIg4ThZ6JXr9TUOFx6mrF5ukHuD/78ZU1YariY7otPZcedv0Wg0zB0tN4J9zQBU5npyayIHqqsDVHq6CZ0WjCHejT5S1AA898pHsuPBcYNJj/e4JnK2V6MRJIZ4+ZWmLSpzK9EbNOhD/KN2a8sHyYacDcRMH4goClTvz/fKGIIgoDXocBR6762iL9HywXbxvdsbME8ZDQg0bdvfpfMWjJVHQW3M3YjT1XkjEujUnvxWByhdec/FxVQX2zGFef9xrewbQKG89u/c4XPP//9croWIGJ3XKttcivqiBsyxvo0AupiLfw8A9dZ6KqZ7NsLzP+7aF/JSaMNDcJV7v+JYb6OtTOB1x9bJ+rTcuwl0mjWBLBt3d+m8tu7db85847V5+Tu1+Z7vU8zQuA56epeGaicRMd5fwCr29K2srqMqUq7+2ez+kSSJukoXKUPV2Um31jmISlO21kBXSIpKYnSyvCTlbo4iCFC2zXsaK7qYSFx1jV67Xm+lZSZwo72R7Se3y/rMHTG3rVMDFtN4j2BgUyfLQzaTFJXEsJAhsra+5AaqP/etDlCaui4gW6NITH/vByAoZgD+9PynSNoLr4ZajZY5w+YAcPpAnWcDeIbyr1ENxfWIbkgYFa/4WF1h/ij5inL9sfWYY0OoyS1t54yuo0+KxW21e+16fYUtJ7bgcF1IotNpdVwx9Aofzsj7aDQadOEmbCcKunzuNdOulR2vP7beW9PyexqKG9BoBTRa9aQgrA0O3KJAkpdzAEBBA7B6v/ymmDZ4GhEhnp3z3Z94MoAnX6u8MFv+Bk9yVf/pAxQfqyu0XFHuyd+DdngETZXeywg2DExGEsFtCb4FdIV12XL3z9RBU8/fu70JQ1IMjrKuuwhb7gPsyd/TSi+pt9JU2YReYeHKlpz4xvM3Sh3pfRUDRQyA0ylSEPK1rO3iB17OjmoEQSJjqvKJWUU7zwEw8MohHfRUlxnpMwjRXcgmlCSJsxMakSSo3O0dYTjj0ObKYN6Tmu4LtPT/96bwz4sxZQ7AbXV0uRbFjPQZGMULUgiiJLIpd9Mlzug9WGtsGMLUlYE4uceTA5DhxToAzShiAP73r0PYouXx51dnXX3+/0W5jYRHaVXZAC47UoZGAxEp/rMHAGDSm7h82GxZ29HkIgDOfuKdjeCQUZ7KZ7aDwdKQnaWwupCckhxZW2/z/zcTMm4oIGDbn9Nh34sx6U1Mihora+srbiCHxUmIyjIQZw979h0ypgSIAXhjtbxkXGRIJBMHTjx/XFPuIHGwOhvAtfm1mCL9I/yzJRcbRYBtFbsQNBKl27yTERwyaSQAtmPelZruzazPkT/Ios3RTEib0E7vwCZ0hkeCpHHrvi6fu3j29bLjddnr+kSVMKfdTWicujIQxXkW9HoBvdH7CqReNwCiKJLrlrt/rsy6Ep3WM/nys024XAIZk9RZkTdW2YhIClNlrK5y9XC5AThbdZaGgQ6vZQTrE2IQBLAHk8E6TcuV7Jxhc9Bq1PX5qkXorPGARNPeY10+d8E4+T5AflU+pyp6dw1qURQR3RJhSeoqClcV2QmNVOYe9LoBWPtOBXVJcgXFi1e6+z7zZACPvkr5qBxRFHHa3ESnq1u6rbOM7D+SxAj5Rvjp0XXYaqxeqxGsNelxFgWTwTqDKIpsyJFXrmtppHsTmpAQNHotttz8Lp87sv9Iol3yB2FvDwetPVMDCESqXFbWUuOiX5IyGlReNwAvv7odl1ku/3Dxlyh7axUgMXae8gag8mgZIBA3wr9CQJsRBIGrhl8lazs2oBRJEijZ2DW/bHtoI0NxBiuDdYrDhYepaJCX0ezNBgBA3y8CR2HXixEJgsDMmCmytg3HNrTTu3dQdczze4oarF4WsCiK2O0SiYOVSWT1qgEQRZH9NXLxt0GxgxgSfyEC5+zReowmgRAVdtLPbffEOCdP6q/4WN2lZWblPnc2bkHk7MoD7ZzRNfQJ/YKVwTpJS///4LjBDI7zvX6UkhhS43HVdi9MeOn8m2XHXx3/Cpfb5Y1p+SVVJzwL25ih6hmAs4fqAIEBI5VxmXvVAGx8r4raJHlqecsHXMU5O/0S1dmULTvocTelzByoynjd4aos+RtAvb2Bc0kVlO3wjj/VkJqI2+HyarWx3kazFMSbb70pa2+5Sd8bMWUNQnS5cdVbunzu/InyOsF11jr25u/11tT8jrpvZSBiVfQo5O7w5FekT1Ym89irBuDtF8/RkChfuV78Cu1yiTRZRFKHq7MpW5lbiUYDobHqand3haSoJEb2HylrO5lZSf2pzhftvhTGTE9hGOeZ4EZwe6xYsYL3P3qfvHC5DEdL91xvxPxtecjGzV1/cCdFJTHAJn8YttxD6U3UFdQBEqEJ6m0Cnz5QB0DWzFhFru81AyCKIrvP7ULSXZAe0Aia8/IPADlbKwGBYdPVqcxVV1CHMUz94s1dpeVKMzetFLvFgaup5zIOphEe95u1i5ovfY2vT36NzWk7fywIguze7a2EXuEp89j4dfeq0c2Knyo7bulG601YSixodYIqFQybKcq1oNVKhEcr4zXxmgHY+F4V1Yly98/EgROJDr0QgXNwnWcTZfxC5SUgAJqqrKpX7ukOLVeaOfp8bDoXZ1f2PCEsZOIIAKyHvScy1xtpGf45MW0i/UJ9X0JUaYzDPQsEWzdLhy5bfJvseOepnVhsXXcnBQJNlU0YzOouKCvPWTGHKReG7DUD8N4/y2lIlhuAlivbvN21CILEoLHq5ADYG11Eqly5pzvMypiFXnthU9yFm7zEYgpXH+7xtY3DBwMS9uNdK//X1+hL4Z8Xo9Fo0IUaup0rcvXUhWjFC48Rp9vJ1rytlzgjcLHV2jFGqFsStK7KRVS8cnumXjEAoihy6HApTbFyyYErs66UHRfnNRIWoVXlFcpS1oAkCaru2HeXMFMY04ZMk7UdTyuhYk/PH9oanQ6NXovjbEmPr9VbqW6sZn+B/G2r5eZ8b0YfH42jrHtibuGmcIY2psjaems4qKPRSWisulnAtiaR+IHK1TLxigHY+H4V1XH7QLiQCh5iCGH6kOmyfrUVTuJS1dHRKNrhCQGNH62Ou6mntHzgHB9QSkOBd4q5aMNCcJZWddyxj7LtxDaZjEGIIaSVQe7NGAf1x22xddyxHS6Lk+cD9NZ9AJdDJCxZPVWBsvxGJEkgdbhym85eMQDv/aOchv5y98/M9JkY9Rdel5oanDjsEgMUkDRti9L9Hsnp/lNSOujpH7Q0AAWh5VRqGrCW9jyJSx8Tiaumd/plvcHmE5tlxzPTZ2LSqyv45UtCRg1BksB+quu1AaD1PsDRoqOU1PauN05LaT0SAlEq1gLO3eaJBFSybG6PDYAoimTvtWIdKDcALTc2D68vBwSyLlNnY60ypwKQiAuQN4BJAycRbpIbx+PJJZx+b087Z3QefUp8sDDMJdh8fLPsuC+Ef15Ms2hgd0ThAK66chEhDrmfurfJQ5cd8sip9MtQz6V8cq9n8Zc1U7kxe2wANr5fhcVYgiXknKy95Yo2e4vHmo2bn9DTITtFbX4dOr2AVhcYQl5tVZ3KSS6kaF3PwzeN6alIooSrOigJ0RanK+RqqX3J/w8QeplHFbS7dSN0Wh3DG+QFl3qbPHTVMY8BUFNWpjDHgiBIxKcpF8nYYwPQlvsnJiyGMSljZG1nDtSh0UgkDlHHh9ZQasEY7p8y0O3R8sGTm1pM5cFz7fTuPKaR6YBA066eRxX1SjYB64BTbd+7vR1DWjKCAGY2M9oAACAASURBVLacMx13bofL+k2SHW/M3dir5KGr8zyb5PFjklQbsyy/iRCzsjVTenz1pgY3UpY8i/DKYVe2KvZSetpKmEKSpm1hq7VjjlVu91wJWroeqs0WTjf1PIPXPHE4ANYuFv7oM8wB5gJD2r53+wLaEAOOs92vR7104S2y48KaQvLKek/uSW1+LQISofHqbQLXlDqISlBWM63Hd/pbh0ZiHST3HbYM/wSorXQSm6LexpqjyU1Ef//PAbiYYYnDSIqUrzCOJRVRsaf7KzOAkAlZgITtWM+u09toSx+pr7l/mtHHRuIs737U2cxrryGyUR4i2ZtkIRqKG9AZ1VsYSJJEk0UkcbCyiaw9/kRHi4+2ktBt+SWyN3kigNTSAGqqbkKSoJ+f1gFoD0EQWruBkos4837PNoI1JhMarQbHmaIeXae3caykdSGUthYvfQF9Sjwui7Xb52u1WkbWpMnaNuZu7Om0/IbGyiYMoerVAi4+7sljGjRG2UVsjw1Ay6SPgTEDW0noHtnk0QAaqkIReICSbzx+89jh/lkH4FK0fAAdTy6maEvPXTfasBAcxd4RmOstbM7dLDseFDuo18s/t4cpcwCSW+yWKmgz08LkdYI35W7CLXqnsJGvsdc5CIlWz4PheWbCUIV103puAFq85rUVQvfqf98AYMzVcT0drlOUHfT4MhMnJKsy3rvvvuu1a105TG4AmowODpf3PBJIHxuJq7q+y+d587P5G3ER396P30oZ9Eb3T2f/fqYxmYCAtZuicADXzFoqO65tquVAgXfqWrSFmvemw+oiNEE9XbG83TUUsZkRVyj7zOyRAXC4HK10P9r6Em365jMEQSJluDo++eYcgMTx6hSC8eaNmNIvhaGJQ2VthyLzcTZ2P1MTQJ8aj7sb6qK92QDcPMlT0CRsxRH+O/c1vn/59308I+/T2b+fecpoABr3HO32WNPuXERCrVznS8l9ALXuTbfTjeiWiEhRb0/x3LEGioVtiqmANtMjA7D7zG4a7fJqQm1J6Noa3YSGa1STUa09U4NGK2AIDaww0GZa7QP0L+bsR91L0mnGlJGGJIKz0jvyEr0JvSuEB268h/Fp4309FZ9xPlDgyMluX8MYaWZkeaqsbWNO4O8DVB7zlJbtl65eElhFgQ2dXvnnZZcMQEuL29K6j0kZQ1x461cWp10kJrnrKnrdtfCbTmzplmyr2qvd9sZr6QY6mVDKyVV7LnlOR6xxejbqm3Z0/xW/K3R3nmqe9383fQ5AOOq5xtQ+r7NoDAY0eh32U4U9Gi+0Uh7osf3kdlmdhbbwl+9de5Qd9CSB7anrXrWz7ny++moXBlPbj+e1R9fy+aHP25Xd7sp4PTIALa17WxEUTocbUYSUYV2PAOrujbG7el+3Nmz85UacPXQ2GuEiiV2dm69P7bzkOR3x6SnPq711b+vIFyUIhAfkf9emAzA+tOsZsIHw+bqKLioU57eBAt0dr9zahCBeWLnanDZ2nNxxyXP85XvXHpXfZgFvzN6synj2JidOp4SpnWJWf1j9Bxa/uJiIB6OZ+cxM1mWv6/Z4nVomS5JEQ0MDLpeL+nrPaslis7Dz+E64aJN/ujOB+q3yPYHs/TZE3CTHVbT6WUe4qqq6fA6Ay+VCF2pXbzwvn6cFxkZksr/igrz2N5oc6rdu7fZYosuOBRcVW3Zi3jqqx3PsDedV4dFe+ssb+oC9V7x5niNch7Wgqkf3WWiYntSSfhTEXVCfXfPF/5hY0f6jxp9/JwBFu7KxYUOwW1QZ79A3VpxYCTG0foZZXFZ25u4AESRcbD+2nYZZDeefy8D553R4eHiHbndB6kS+dn19PZGR6hRxCRIkSJAgPaeuro6IiEtvXHfKADS/AVzMxpyN/HXtX9mZtxs0bqYljubLa/7Z6tznfl3BN9tdvL0xAZ1O+Uy6ijP1vHL318y4bSCzHshSfDyl2Fy8j2u/ePhCgwifuX/HrO9f0f5JHZC95FEEjYbhK5/2wgwDm58uPcV7NdNoJItza9YQEer/pUOVpvT/PqXkrU0Me+URQjJSOz6hHZ763l94durq88eCIJB/x+dEGdSTUfAm/71hAzarm4dWz1NlvL/8ooL937h456uEVrIkj+36F//Ofv/88bRBU/jy4XUtLwHQqTeATrmABEFoZUmWTVnGsinLsNgsbD6+GYPOQMSIWa3Ora7eSJjJSr85szszVI85W3AAEybSFkwmYtY4VcZUgrnOyZi2/kq2gbbjzHEWzfptt68Zndof28lCIma1/jv1NTbV9EfAE5gQMWNGhyulvoBU7aLhrS1o7boe3SNXZO7mBc2XuHQe/7CExP4YB0vHBeZ9J1m3EpMQqtr3pqZmPeFmB1GzZ7f62fav/h9cFNw4b/yCHt27PV6Sh5nCWDRmEXNHzG3z59UldiJi1EuhrjzmiXZJUFG1TwlMehMz0mfI2na7uh+jDWAcmIzb5mxTA6ev0UAkWnpHlqq3MM/wZPJaD3ZPFrqZIQvHk14mr8MRyOGgjiY34cnqFLICqC5xEBnf+plZXl/O4UK5om9Pa1co7pNprHcTn6aeKmft6RpAIiZLnaxjJWkZDnos9hyO+qZuX880cggg4Dh2qoczC2yqyitxosdIsEjOxejj+iFowH48v0fXGXTLZLKK5Fn4gSoMZ2+wI4oSUYPU0RWTJAmrRSRxcOvawy2L7IQZw5g8cHKPxlPUANSW2XC7BQaMUM/3V3+uDq02cArBXIqWCWEl0bXsemN1O707xjxpBACN2/Z30LN3c3vKQSQ0xFHm66n4HdpQE47C8h5dwxgdxsgaeYGY3NJcimoCT4ywdF8RIBCbFavKeMUnGhAlgcFjWwfdtDSil2dejl7XM++Kogbg6GaPOyZ9snqqnJbyJvQhgf/wBxifNp4os7we6OdbVnb7euaZnkzX7lZ+6i1kOzMBiUcfbOiwb19D3y8CV2Vdj68zut9wzHZ5Jn4guoHKDnhqiyeMU0dX7NA6j/HNmtlaBK7l788bpUsVNQDHd3pkB4ypVSxZsoTIyEjCw8OZOnUqBQXdK0DdEdZqK6bIrmcd95QHHngAQRD4+9//7rVrajXaVmUid1m6n8nb/Ipv68QrvtPp5NFHH2XUqFGEhoaSnJzMnXfeSXFxcbfH9xcaCUOHi2v/dJmvp+J1nn76aSZNmkR4eDjx8fEsXbqU48c7b/D1ybG4e6g7BdB/ZiaZJcq7gZ5++mkEQeChhx7y+rUBKr7dU0yenKLI9VtyfFcNVip5/t2fExMTg9lsZuzYsXy64VPyq/JlfVu6iLuDogag4Eg9VopZdts8hg0bxubNmzl06BBPPPEEJpMy0qqORifm2Nb+MyVZuXIl33zzDcnJ3l8ltHQDHYnOx+3u/ualLiykU5Wfmpqa2L9/P0888QT79+/n448/5sSJEyxZsqTbY/uat3a9xaxHZ9M04hX0UQd7VcnCZrZs2cKDDz7Irl27WL9+PS6Xi7lz59LY2NjxyYBxUDKiW0S092x/ZNBNk8gqkosxertM5J49e3j55ZcZPXq0167ZkppTNQiCREi0OvuYxw8Ws4NHCTEb+eKLLzh27BjPPvssR/9/e+cdH0d19e9ntq+kVe+yJbnIVe4V44ptjDE2YAyY3vILvSeQhAR43ySQkOSFAAmQQjcBAsYN25jmhnu35SbLsiWr2urS9t35/bHY8uxKVpvZIu/z+eiPnbkz96x9d86de8/5ntPSAJBkUzK5Gbld7q/jgjkdoLzQzFHNh1x55ZW89NJL54737q2c5rrT5saU7r89h5KSEh566CG++uor5syZI/v9veU1aiPNbFy2iinXXtWp+2mTY7GXVbfZLiYmhq+/lhb2fu211xg7dixFRUVkZma2cmXwsnzvcjZUr4NL1lEJPPbJnYE2SXZWr14t+fzOO++QnJzMzp07mdyOMEZ9/16AgGX3YSLHd742cvKlOQwqkzqA0tpSDpcfZmBa1/NzGhsbueWWW/jnP//J7373uy7frzXqS+o7pSvWWTYUfIhJl8Q777xz7lh2djZvvfmWpJ3h+ChuGbqfj/Z3zfkpvAlso8y1g379+jFr1iySk5MZN24cS5Z0fh37QjRVNiAiEJMV23ZjGXC73dx22238/Oc/Z/DgwYr00S+lHz3ipK+fS1Z2XjtFl5WG02zr1Eysrq4OQRCIjfXPv6+cuN1unwpVozJHBcga/1FX51nPj49vX2ERw3CPFLllZ9c0o1QqFb0MGcSbpZOxrw9+3coVHePBBx9kzpw5zJihbA0H8xkLxlj/LSkX2baSlTSI66+/nuTkZEaMGMFbb73lM3aFw6MwyVBjXVkHYK7BIVr4wx/+wBVXXMGaNWu49tprmT9/PuvWrZO9v7OFYOJz/CPb+sc//hGNRsMjjzyiWB8tlYncWNX5EpGGwX1ABPuJjkVkWK1WfvGLX3DzzTeHZNLU3lN7qWqskhybOmAqAAsXLmTevHndrvaBKIo88cQTTJw4kdzc9i0XRIzztLMe6HqocOLwnvQ/JV0WlWMj+OOPP2bXrl28+KLyGe22BgdRfioEU5RXj5lydpUvJScnh6+++or77ruPRx99lOo90rf26FPjufnJ1Fbu1H5kdQCLFi0iKiqKqKgoIiOjaMDzkLn66qt5/PHHGT58OL/4xS+46qqrePPNN+XsGoAzBz076EqUgjz/u0VFRbFu3Tr++te/8u677ype58DbARwwncDpcnbqXpE//sCb1kqlbb2/34YNG86dczgcLFy4ELfbzd///vdO9RtovDcg+yb3JTPes4z18ccfs2zZMm666aZAmKYYDz30EPv27euQY9OmJCIInJOF7go9Zg322Qf4/sj3nR67AMXFxTz66KN8+OGHiu0jnsXlcOJ0uP2WA7DnqwpERAbmDOWFF15gxIgR3HvvvYyaNQrOqwob2ZSJyZnC5Gu6Xi5SVgcwb9489uzZw549e3jj1yuIoTdqtYZBgwZJ2g0cOFCRKKDqfM8ML2V41z2jN+d/tz179rBp0yYqKyvJzMxEo9Gg0Wg4efIkTz75JNnZ2bL27b0PYNU5+G7dyk7dK2LKaADM26VlJr2/3+jRnnYOh4MbbriBwsJCvv7665Cc/YPv0sPMQTMDZIl/ePjhh1m2bBnff/89PXp0LIJFZdDiKO56jkSvG8cyoFT6BtBgbWD7ic6/we7cuZPKykpGjRp17ne3bt06Xn31VTQaTZcCJLyp3FsOCCQO8k9S6ZHN1RiIY9Q4qVpvtbYazpP+jzg5hhGXRsgy8ZR1d8NkMmEyeVKmvy9pREsjI4eP8glDO3r0KFlZWXJ2DUDtiVoERKJS5X9Inf/dAH76058yd+5cSZtZs2Zx2223cdddd8nad2pMKrkZuRwoaY4EWLz0Iy6/rOMRObqMFE8oaN5xyXHv7wfND//8/Hy+//57EhL8VxFJTqwOKxvyN0iOdcf6v+BZ9nn44Yf54osvWLt2Lb169erwPTSxUThO13bZloi0WBLcJjKbkiiKPH3u+DeHvuGSPpd06p7Tp09n//79kmN33XUXAwYM4Omnn0atli8HqHSb5y0odaR/cgCK8hpJVA3kWEH+uWNWh5X8/Hw4byvFVDqOm16XR+pGse3tU4caEQSRXz7zNDfeeCOTJ09m2rRprF69muXLl7N27VrZ+2wsbUCtU15xFCAhIcHngajVaklNTaV///6tXNV5ZgycIXEAGyu2dPpenlDQsgu2cTqdLFiwgF27drFixQpcLhfl5T/uscTHo9OFTrnNTcc2SUT1BEHw5Fd0QymgBx98kI8++oilS5diMpnO/Z/FxMRgNLYvlFGbEo/l4AlZ7InOiqd/URpFA6UO4DdX/aZT9zOZTD77GZGRkSQkJLR7n6O9VOz1/NtlTPBPxFtViZVRyQtYseUJXnjhBW644Qbe/uJtXAddcDZlRVSRWDWKCVfKE4ih2NOy8qQFY4SKa6+9ljfffJOXXnqJIUOG8K9//YvPP/+ciRPlT8Ixn7Ggi/Sf8Jw/8akTHFHcakm4ttCmxrc5wzt16hTLli3j1KlTDB8+nLS0tHN/mzZduMJTsOG9/j86azRxkf7LTvcnb7zxBnV1dUydOlXyf/bJJ5+0+x66rDRcdqcsooFJY7Ppf1I6W91csLnTY9efVB+tQlBBVLLyYeVut5umBjfDh4zkiy++4D//+Q+5ubn846//gPGAp3gdkacHMnJEqmz7joq9AdSdthOd6HkY33333dx9991KdXUOa72NiAT/Cc95c+LECcXuPaXfFDRqzbkNNJfazZptK5k/+YYO30vfOwPz0VO43W4fvfGzZGdnd5tEKW8H0F2XfwBZ/s/0/TIBAfvRkxgGdHwJ6XwyrxpKzseb0aDG+eMrl8PlYEP+BmYPmd1lWwFFVhMAak/WoY/0Tw7Aid21iKJA3zGxXHXVpVx1lSfPZ8zvxlB1sjl6zVQ6lgVPyRfkotgbgKXRTVKmfx/GdrPT71nA/iLKEMUlvaXrpl8s+6hT9zIOzQEE7IeOt9k21KlpqmHHSWnEU3d2AHJgHJIDgGVH1+THAXrMHY7BqWGgPVtyXK58ACVpOm0mMsk/z5PdX3kiGIfOaH64VzdVs7Nop6RdbPlYLlsg316cIg6gvsqGyy2Q0d9/VZZEUcTlFP2aBexvfPIBKrZ26j7GcZ7swab1O9toGfp8d/g7yazYqDMyoe+EAFoU/JxVjbXsy2+jZdtoI/Too3QMKJZG5oWCPLStyUlsln9K4R7e5JGxHzip+eHuPXZVTj2j08bIGnauiAM4tOEMAL1akDRViobSekAgumf3rV3s7QBOGMopr2tb18ebyCmeDFjz9q5le4YC3jPNSX0nYdAqGz8e6mj7ZQMi9qPyhGpH90mgzxGpnPL+kv2dGrv+or6kDlH0nwx08cEGIqJUkrK53mM3qnwE8+/J8L60SyjiAAq2ezYYB1zqv7DBqkOeKIOY7O65uQcwttdYoo3SENdVOzpeH0CbEIugFrBeBEtAXx9qO/6/u2YCdxaVSoVKp8HWRqRYe0kZ15vMsiRMXjWBg/ktoHj9CQDSRvknBLSqzE5ST+nExNsBRJeOZe498ia5KuIATuY1ACJZQ/2XNFR91LNR4i8ZiECgUWuY2m+q5NiSr9of3XE+2phIbO1QBQ1ljp8+zvHTUifXkgPorpnAXUFjisBR0bZoYHvIvGY4alHFKK1ULyuY9wHKdnhkz3tMyla8r6Z6BzarSK+hzXk4BZUFFJ4plLQbpJsoeUOQA0UcQMVxM3q90GqEiRLUFnpqD/gray9QeNde3nh6a6ciP3QZSTir6+UyKyjxfsAkm5IZkjGkldZhzkebFIurVp5QzfSZgwGRQV66QGvy1gRtpNnpg5UIiMT3VX5CuXulJ+N4yGXNy03eY1djieema8fL3rciT+jqMhtRcf6TUAWoK6oF/Fe7M1DMHCidwVZr6skrzWuldesYBmTjsjlxW7te/CNY8f4RzRg4w6+TklBG2yMZl9Uhy71UGg2GWAN99kp/m+X15ZLkxmCi9ngtugi14jpfAHvWVAIiY65udpBrDq6RtIkuGcONj8qT/Xs+ivwamupcJKT7typXY1kjKrWASsZU8GAkJyXnnIjZWVbv7rgukHHUQECg6YfOVxgLZlxul4+EbnfX/5ETfd+eiCI4K87Icr/YfsmYCtVkJ2RLjgfrMlBjRZPfcooKdtWh1UJsimcPwOly+hSAz7ZPwKhAToLsDsBhc+JwiKT19V8IKEDT6SY0+u4/uxMEwWcZaOn3n3X4PlFTPWJvTeu7Z4H4HSd2UGuWZjuHHUD7MQzxpJ6at+5vo2X7SJ3YF9ElMCVNGoLrPdMNFqwNDmKz/VP3oqLQSnxqs7TKjhM7qLNI6zJfd+ksRfqW/YmZv70WEPy6AQxgrbGhjwwdfZqu4L0MtL12j0Trpj0YRnvWZS07D7XZNhTxfrAMTh9MRpy8IXTdGePwAQBY9h2V5X6Z144EYFCJdB9g3ZF1HR67StNQUofbDcmD5ZeV98blctNU7yJzUHOElPfYNVT35oGnRijSv/wOYKsnciBnrH/X4m2Ndgx+rNwTSGYMmoFKaP6vs6kcPmqXbaFSq9FE6LHKFOsdbKzJk/6ILh90eSstw7SEccQAQMQm0/hIntAXQYCsHRGSsWt1WtmYv1GWPuTixPeeyLG0ccpPGA5tqEJEYODEZm1/bweQWjee2ERlJreyO4Ci/Z4Q0JzxXS9W0BGcVhcRfkrbDjTxkfGMyR4jOdaZfQBtShz2MnnWeIOJeks9m49vlhzzXjYLc2FURgOCWoWtsFSe+6lUGBONOA/U+4zdYFsGKvnB4/R6zeireF87v/TUXRgzz7PBW2euY8txqdLvtD7Tfa6TC9kdQGl+E2o1RJj8p8opiiIul0hUaveVgfDG+4G2YsvSDt/D0C8TZ6NVFtXHYOK7w9/hcjdrPes0OibntF0QPYwUtVGHs7yq7YbtJG5AGuYzTT57MWsOBJcDqNhXiUoN0T2UVxU4sqUalUokc4inL++xK7i0PPOzaxTrX3YHUF1ixRjp30ic+uI6ursMhDezBks3hY5aCymt7dhszTjSEwlk3X1YRssCj/eMclLOJCL0F8fboZxoYqJkzRVJm9IPURQYK0orBO4t2UtFfdcrkMlFTWENxhj/7CeWHjUTHa85F27qPXbjqkbQJ0e51RTZHUB9teOcDLS/qDroGTzdPQfgfMb1GkeMUerwvNe92yJymudVvPHbzheXCTZEUWT1gdWSY22t/4elIFpGkxSLq9Ei2/0y53s2gpM2g8kgrT7X0bGrJE1VVmJ6+ieIpe6Mg4yc5smJtwMYGTtV0f5ldwDWJrffcwCq8ru/DIQ3GrXGp1bwyt0d0wWKmjwKEDFvkSfULxg4VnnMJ4Xe+23Jm7AURMvoMpJx2TtfwN2bhOGZqFRwZtMJLhtwmeTcV3lfydZPV7A32nDa3SQNVl5RoOhAHS63QL/xnonrscpjPtIlj9wxX1EbZHUA5gYHLjek9Pbv63bdCU+8d0J//yj3BQveM9uv96+RrB+2hUqvQ23UYTnYfUThvGf/qTGpDO0xNEDWhDa63hmAgP2UPMszgiBgTIyg9kgFVwy+QnJu1e5VQbEXdeK7AkAgY3xPxfva8nkJ0LwB7D12dZYErpo2VlEbZHUABdtrAIHMwaY228pJQ0k9IHZrJdCW8J7Z1rrr2V20u0P30KXGYy/pPpFAq/OkP6JZg2b5JZ2/O6LvnwWARcY9oriBqViqLD4bwdX2anYXd2zsKkHx+pMA9J7ZR/G+9q+tQhBEBk32rFx4O4AcJik+dmV1AMd3eWbivUf5J4PuLI3lTahUAip1988EPp/sxGz6pfSTHOvoq7Shf1a3iQSyOqx8f+R7yTG5yg5ejBiHesaW7cAx2e6ZOikHUQTTcXzH7oHALwOV7S5DEETi+/thCSivkZgEDSqVqsWxe+vMuYrbIOsTs/hgAwB9x/h3Jm4+Y0aju7ge/mfxfgv4cufyDl0fMS4XELBs3iujVYFh/dH1WOzNm5YqQRUu/9gFDMP7A2DLPynbPc9mBBct2eUzdpduWSJbP52l6mg1xmid4jNvt9tN3RknPQd6JHM25m/EbDc3NxAF/t91VytqA8jsAMqONaFWiURE+1eSwVJjReun4s3BhvePaFvxdh8NnAthmuXRZmlYs7mNlsGP9yv02F5jSYi6eAID5EZtikJQgf2EPIVhABJGZKFSQcWmAq7Ile4D7Cjb2aGxqwSNlWZiMpWPADqyuQa3KJA71bNv6b10mWIb4pexK6sDqCqxYYjw/0zc3mjHYLo4ZCC8mdp/KnpN83d34e5QpSVPfWAR87bglOXtCN4/Iu+NxjAdR6XX4pAxW1wQBAwJRmqPVDC131RJeU634A6oOqj5dCNOu5vUkfLLLnuzdbFnA3jC9R5tJO/JyxVDlBF/80bWp3VDlQNTvH9zAAAcFhfG+IuzzmukPpLJ/aRZrqv2r2r39SqVCk2UAeth+V7zA8HJqpMcKpMK23nPMMN0HE10JI6qurYbdoDYnGQsZ8xE6COY2n+q5NySAC4D5S8/DAj0mt5b8b4ObqhGrRbJGhJLUVWRT02Pn85XLvv3fGR1AJZGF/F+zgEAcDndRCT7V346mLhyyJWSz1/uWdGhSkv6HknYy+Up/xcovGdQCVEJjM4eHSBrug+axFhcDea2G3aAlAl9cLuhal8xs3Olm/Sr9wYuHPTEd4WASN+rBijeV0m+mfgUz2R51QHphE3vjGFc73GK2wAyOgC71YnT5f8cALvZjigKF5UOkDdX5kodQEVTJXuL27+paxzSF5fVjquxSW7T/MbK/VIxvJkDZ6JWtU+SJJwJ3Dra9ETcNvmSwQB6zh0GQNGS3T6Tl2pq2FMcmCJF5XvK0epVGOOULQTjcLhpqHWR/WMNYO+xOy7lsnaP3a4imwM4vsujx9NzoH8fxLUFnpmrKcO/9QeCiZyUHPokSeOWvQfVhYicMhoQaFj9g8yW+Qebw+az7+H9YLkQ4Uzg1tFlp3sqg1XVyHbP5In9EASRig1H6Zvcl77JUtXNZds6LmwoB7VF9ZhSlV9J2LWiDBAYPjMJm8PmU7nu7rnKR/+cRTYHULDTM0Cyh/s3B6D6RxmImMyLRwjOG0EQfF6lV+5vvyxE9NwpADR+s1VWu/zF+vz1khA6QRDC6/8ycTYZTE7BQJVKhSHGQM3BcgCfsfvZtx2vcNdVnHYn1gYHybnKF4HZ8kUZIDLx5kzWHV1Hk+28N29R8GvuimwOoDjPkwOQM86/dQDqTngcT2xv//YbbHjPeDcXbKGqsX1SvrrMNFQaAXOIVgf7cp/U2Y3NHkuSSflEnosBQ24OAJb9+bLeN7pPEubKRsB37B50Hmr32JWLwtX5gED2tF6K93V4tYE8LAAAIABJREFUUw0Go0BcqoEvvSZqfY3DSY5W3gmdRTYHUJbfhEoQiUny7yZwfbFHrvZiEoJrian9p2LUNa9dunF3KCtYmxSLraBECdMURRRFnx9RR5Z/wlwY4zBPtq49v1jW+yaPy8blFGkorGRKvymSsSsKIss2+3cZ6MjSQ4DIwBuHKN5XZZGV9JwIz9j1mrzcPN0/0T9nkc0BnDllRW/0fw5AY5lHB8h0EdUCaAmjzsj0AVJ10BX7VrT7esOALBy1TUEhCSGKIs8//zzp6ekYjUamTp1KXl5ei22PVhzlWOUx2An8y/P33LznEASB1NRUv9rdHdGkeCZW9pPyJYMB9LjS86A9uXhXi2P3/c/fl7W/tji15RRavUrxIjDFeXU4HAJDpiZwtOIoBacLJOevGam8/MP5yPbErjtjJyrO/9m4jRU/6gCpLk4piPO5auhVks+r9q3E6WpfBEfUxBGIIkEhCfHSSy/xf//3f7z++uts376d1NRUZs6cSUNDg09biZOLg5T7UigtLaWsrIz9+7uPzHWgEAQBlU6NvfS0rPdNm5kLiJStPQL4jt1tlm3tHrtyUFNYR6wfMoDXvu95k5p8S0+fCVqsKoXhPYcrbsP5yPbUtDS4iUv1rwQEgKXKgvoi1QHyZs6QOZLPtdY6NhVsate1MddMA6Bu2TrZ7eoIoijyyiuv8MwzzzB//nxyc3N57733MJvNfPTRRz7tJT8iAeZdMo+0tDRSU1NJSgrvA8iBJsqA84y8Eg0anQa9SUf1fs+yo/eynVlnYc0m/4jDNVY2Yre4yBibrnhf+749jVotkjM23mf555oxV/lduVaWJ6fb7cbhEEnsqWz8bEtYa61ojRenDpA3PeJ7MKzHMMmx9i4DGUYMRFBB06bAvgEUFhZSXl7O5Zc31zrQ6/VMmTKFTZukzqzWXMuG/A3NB+rhsyc/o1evXixcuJDjx7tPnYNAoo414ayTP0fElBVPU5nnra5nfE+fsfvv9/8le58tceiT/YBAzlzlE8CKj5hJytBT01TD+vz1knPXjPbv8g/I5ADKC8yAQFpf/2fj2hvt6KP8Lz8RrMwdJh1Ey/Ysa9d1giCgjTdhPRJYSYjyck9oYEpKiuR4SkrKuXNnWbV/VXMBnGTQTFWzavUq/vnPf1JeXs6ECROoqvJvNEl3RJsSj9tsk/2+iSN64rS7sFZ5ooG8l4E2NvgnL+XYyqOASL9rBrXZtis0VNswN7rpNy6GVQdWSYo3adEHRLlWFgdQ+GMdgIwB/i0EA2C3ODHEXpw6QC0xb9g8yecjFUc4Un6kXdca+mfiqKrvkIxEV1m0aBFRUVHn/hwOB4DPq7Aoij7Hlu09z7n1hJlXXc64UeOYMWMGX37peb1+7733lP0CFwHajGTcLjduV/urzbWH9OkDAYHi5Z7M33nDpWO30nSaDV8rvyRZtqucyHg9Gr2yKwkbFp0CBMbNT2fpHmmU02UDphOp9/8EWhYHUJTnCcXsNcL/kTguuxtjvP+XnoKVUVmjSI2RRr8s39u+GgFRk0YgusGyw3/KoPPmzWPPnj3n/hITPfK43rP9yspKyVuB3Wln5QFptvPVw5szKCMjIxkyZAj5+W3Hr+fk5JCamsqoUaOYN29eWBbCC33vdEDAnl8k6317zB0OiJR958k/GZ012mfsvvHm32Xt0xuXw0XjaQupQ1PabtxFdnxZjoDIyLkJPvo/143xb/jnWWRxAGX5TYBIZq5/5RjcLhduN0R2UyE4t9NJ/jPvsn7QvXyfeQdbLn2Ssk8uPCNSqVTMHeq1DLS3fctAMfM9r6B1n33bRkv5MJlM9O3b99zfoEGDSE1N5euvm2WB7XY769atY8KECeeOrT+6nnpLveRe5y9/2Ww2Dh06RFpa29K++fn5lJeXs3PnTpYtWxaWhfBC3y8bAOve9r1JthdDfBQanZqqPaeAlsfuJscW3C7lQpMPL85DFAX6X6v8+n/Brnqi49VsOvkDDVZpRJv30q2/kMUBnC6yoFaDVucfAaOzNJQ2AAJRad1PCK5280G+jlvIkRcW01RQgaPBQtXmfHYu/Avf9bidxoOtr9V7LwP9cOwHTje0HcZnHD0YQQWNG3Z12f7OIggCjz32GC+88AJffPEFBw4c4M477yQiIoKbb775XLu7brgLzksNSNmfQP7efAoLC9m6dSsLFiygvr6eO+64IwDfonuhH+zRmVJifygiJYqGk81KtOe/xQGcTC5izcvt17XqKAf/sx8QGXLHCMX6AI9YZu1pJ31Hxvgs/4zqMdbnzcdfyOIAasoDUwimWQiueyWBVW88wKZJv8BlcTDkr3cz27aEy2s+5Qrzf+l17wwspbWsH/oI5Z9vbPH66QOnE6FrVmV1i+52bQYLgoAuKRbrEXlf9TvKU089xWOPPcYDDzzA6NGjKSkpYc2aNZhMnj0mURQpKy4Da/M1ybp0brrpJvr378/8+fPR6XRs2bKFrKysAH2L7oMhty8g4ig8Jfu94wamYqu3nUtAnD7Qay1cgA+WfCB7v2cp3lRMZLweQ4yyy8gbPjqFiMD4Bak+b+TzR/tP/M0bWZ7aDdUOomL9H4pZ+6MOUExW93EA9romts38DQgCl277M1mPNK8Nqg16Br/5CBO3/gmVTs3O61+icoWvgJtRZ/QR2Ppi9xft6t+Y2wdHdQPuHzdjA4EgCDz//POUlZVhtVpZt24dubm5587vPLkT1w0uGNV8zaKPFlFaWordbqekpITPP/+cQYOUjeq4WFBHRSIIAvbiCtnvnTyhDyIClZs8hecNWoNPJbcdEXuoK5a3KA2Atd5Kw2krPcZlyH5vbzb9txQQMU09Q3G1VFbDe/Pbn8jiAKxNLmJT/F8Ipr7IMyi6kxDcztm/wWl1MvLjnxMzMqfFNjFj+jNp/+uodWp2XPMCdTt9Nzrnj5wv+fz1wa991sxbwnT5eEQEGlYFrzS0tzPro4onNyO3ldZh5ECl1+CokL9oUM85ntj/klXNWdvXjJBuiBZkFLDiyfZNYDrC7je3AQLD7lR2+Qcgf3sdsYkavjwonf1nxfVicPpgxftvjS47AE8SGCT29H8oZmOpZyOluziAiqWbqdqcT8r0XFKvm3jBtpF90hm/4Q+AyObJv8Be2yg5P2fIHLTq5vwIu8verhoBsbfMAUTqvvDfRnBH8XYA14y73u8ZlBcb6igjTplLQwLEj8xCEEQqNzcn7c0ZMgeNunlFwaVxsWL3KtxOecNQ8z4+gEoF/Rco+wC2NDmprXKSMyaGxbsWS87dMHZBQMdulx1A2bEmQCC1j/8jcRorGgGRiAT/ViFTirwH/o5Ko2LEkt+0q33smP4M/+BxnGY72yY/JTkXExHD9IFSga32LAPpMpJRG7Q0bdrXfsP9yOGywz61f6+bEt7oVRpNrAlXvbylIaG5NkDt0eblpbjIOKb1nyZpt79nHht/L19OgNvtpuLAGRJzYhXXEVv/QREg0OMqC4fLpXUVrht5naJ9t0WXv3nhbk8SWM/B/k8CM582o1J3j5lf+WcbMJfWkXnHVDRR7Xdo6TdNo8f146ndf4pjv5Vq5cwfIV0GWrl/JVaHlbYwZKdhPVHeZrtA4D2DSnPoGdfLP/VTL2Y0yXG4rHZF7m3qlXCuNsBZvB+M+Zn5/PB6y0EPnSF/+WGcDpHBC5VfOtz0aSkCIkXp0mXVNFMGY7LHKN7/heiyAyg64FmG6eXnSmAAlhormm4iBHf4qXdQqQUGvnZ/h68d+vEvMSRGcuT5j2k63izbe/XwqyWvl422RtbkrWnzflGThuO2u7AdC2w0UEv8d+d/JZ/nJY0LK8H6AV1GMqLLjdspv0Jn4shMXA435vJmwTnvsWvX2tkXcYhD/5VH4XXby5sBkbGPT2izbVc5uqOOhHQdS/cvkRy/bvS1AR+7Xe69/JhnGabHYP/X5LXV27qFEFzjkWIaC0+TeuUI1MaO76WoVCrGfPVbRLfIztnPnTueHJ3MpJxJkraf7vi0zfvF3uJRZqx+r30ZxP7iaPlRn4Lh19/4sy7fN1wUvm10vdIAAfsxeQvDAKRfNgCPJESzEGFqTCoT+0r3wQ71Psg3P297AtMWoihStKmEhD4xiod/lhc00tTgpscMC7uLdkvOXTcqsMs/IIMDqDz5YxKY1v+ezN5oRxcZ+kJw+c94il/0e+meTt8jZmRfet44gfqj5RS92Swze/2o6yXtlu5ZisVuueC9IiaNQlBBw5rNnbZHCbydV5JVzdSRXa/+FS4K3zb6nB9rAx+QtzQkQMacYYBI+Vrp+rj32M3vk0/FqRoKVnUtIznvoz04HSLD71Bee3/la8cBAfNEaXJlYmSSj4MLBF1+atdW2DBEBuY1xmF1oY/xf/ip3FSu2oUxNYaoAT27dJ/c93+GNkJL3uP/wmXxrPUvGLUAldD8/9Noa2T1gdUXvI9KpUKfnoDl0Iku2SM33g7gakcv1Cr/Zp9frOgH9gbApkA2sD4mAo2+WRLiLNeNuk6yDGQWLBT2LGDl/e2vdNcSm/7wAyqVyPifK/8A3r6iAr0eviuX2rxg9HWSSKdA0eUntylOR4+cwGjxuBxujHGhLQR3euU2HGYHGbdNa7txG6h1Woa89QAuq5O9t/4Z8LxKT+k3RdLukx2ftHmvyHG5OBssOGvkD/3rDIfKDrG/RLr+e+OltwTImosPw5AcQMReIH82MEBkajQNxTWSY+mx6T5LmKemnqL6ZANHlh7sVD+N5fWUHThD5iXpaAzKrh64XG7KCq3Ejq7zWf65YfQNivbdXrrsAP60Yyp/2jFVBlM6hiiKuF0ixoTQdgCFf1kMiPT51Y2y3C/91ulED0inbPFWmg57NnG9B9vyvctpsl24wEfs9TMBgZog2Qf4dLt09p/apGLq//tFgKy5+FBHR3mygU/Jnw0MEDcoDVuD3Udy2nvs7orcg1vvZMU9yzpVv/qbJz1vv9NfmtV5Y9vJ5v+W4HYLmCdtlxxPNiUzud9kxftvDyEbPmGrswJCyCuBVm86SmRWAtpY+QTtRi5+BhGBPQv/CHhepc9fKjHbzT7l6LyJnj8dQYC6L76Xza7OIoqiz1vLvMp4NIZwHQh/otJpcJQrU2An+ZLegEDlD8ckx68beZ3PEqbqYYHGKhvfPLGKjuAw2znw6SFi0iPpMUF5jahv3y4C3OxSS0tb3jD6hqBZugxZB1Bb6HldjEoNXSXQmi2HcFqdpF4zXtb7Rg3MJPWKYdTsLeLMmp0kmZK4bMBlkjYfb//4gvdQabXo0+Jp2i2vBHBn2Hdqn0/y14LkSwJkzcWLOsqgSDYwQMbsoQCUfCWtRZEak8rU/lMlx/b2yiMm3cjW13ac0wNrDyvvW4bLKTLrlSvabiwDR7bWIeSc4nCFdHN74diFfum/PYSsA6j78T8+lJVAi15dBohkPSZ/MYihi55CpVax765XALhxtHSJ6cv9X1LTdOEfT9TkETgbLNhLK2W3ryN8uOVDyef0RjWTbn04QNZcvHiygeWvDQyQMDITQRA5vbXQ59xNY6XRWV/u/5LLP56N2y2yaPq77apg11hWz75FecRnmhh4/RDZ7G6NisJGGutdNEzYIjmeGZ/JJb2DZ/ISsg6g/kd1wOjM0HUAZ77diy7GSES2/FrgungTWfdMx1xaR9EbK5g/cj56TXPElN1pbzMnIP7uawCB6n98Jrt97cXldvHRNq8M5+NGdFdMb+WKMEqhSY7DbVEmG1ilUqGP1kskIc5y3cjr0Gl05z7bnXZ+ELcw5qfDOXO8nmV3tD0+F818D7db5JpF89tsKwdL/3wMUXBzMPYbyfGFYxYGPPnrfILHkg7S8KMQXEy2/zOQ5cDZaMZS2UD8Jf0V62Pg3x5AY9Rw6Kl3iTHG+FQd+mDLhXXWI6ePQ1AL1C1Vvi5ra6w9spbS2lLJsRst2UH1I7pY0GYkKVIb+CymzHjMFY0+x+Mi43wKxn+w5QOufOsaUgfFs+eDPNY+03qC2FcPL6c8r5qhCwfSc2Iv2e1uie3LK6jPPkBFU5nk+K3jb/VL/+0lZH9FTeWegRKbHRdgSzrHqXe+BgTSb52qWB8qjYb+v70ZR6Odoz//F7eNv01y/odjP1BQWdD69SoVETk9MB88oZiNbfHBZqmTGnxGw7BL/bOGG0aKLsuTDew4UaLI/eOHZuC0u7DV+YrOeY/dDfkbKDxdyD277ic2I5J1L2ziv9d8KCkfKYoiK+9dwpbXd5LQ28TVi673vq0iNNbYqSy2UzdOqv0zrMcwhvRQfvmpI4SuAzjdhICoeCyvUlR8/gOCIJJ6g7LhYL2eXIAhMZLC11Yyo880EqISJOe919e9iZk3GbfdReO6HUqa2SIN1gYf7Z/rCiIw/L/bWrmic4SlINqHvo8nUdF64FgbLTtHysQcQKB0TZ7Pudm5s4mLkE723t/8Phq9hgfyH6XHqBQOLi3gj6bf89Gsd/lk7gf8JeFFtv9jL4l9Yrgv72G/vTUu+3M+Do2VozHSN+fbLpF33MpByDoAS7UFlSZ0lUDr957EkBKNSqu8Axv8+n24HC7y73+DhWOkEQjvbX7vgvHUCY/eAoicefWjVtsoxafbP8Vsb54NqkVYcNKEduRQWfsJS0G0D90Az/KJ7agyIoEZV3hmx96SEAB6rd5nM/idTe/gdrvRGnXcs+N+rnxlBnqTjvw1Jzi8ogCXU2TyLy/hgfzH/DpR3PBJCZU5P2BxNY9dlaDi5rE3X+CqwBCyDsBWa0Pj5yL0cuFotGCrNRM7uuWKX3KTduMUorITOfWfjSwcKN0EKzxTyNoja1u9VpeejC4xmobvdypspS9v//C25POMYgMZ2f75Nwvji2GQRw7CrtASkCk7EZUaqna3LDh316V3ST6frDopGbtjHr2UJyqe5jnxeZ51P8fT9c8w7YXL/VpwxWZ2UHrcRuUIaf7M7NzZpMWm+c2O9hK6DqDBhsYYmg6g4pN1gEDKtf4LBxvy9mOIbhH9L7/1KZ/4743/vuC10dPHYK9pxH5SmR9+SxwuO8ymgk2SYzceNqKbM8NvNoSRok1JBEQcp5QLCzbEGak7fqbFc6OyRjEkQ7qG3trYDVSVreUvF9AQXUJxhLSgkrfzChZC1gHYmxzoInVtNwxCKldsA0RSrp/UZlu5SJg2jNihPan4ah+3DVggOff5rs+pamw9wzPx8dsAgdN/uXDUkJx4/7CTRCPTi/UY7wtX/wokKo0aR3nLD2g5iM5OwFrVcuUxQRB8HqRtjV1/8+07xZwaKI1ISoxK9IliChZC1gE4rS700aGpBFq3swCtyYDW5N9SlsMWecpG5r5aKomrtjltvLfpvVavixw3BLVRS+3StUqbCIDFbvFZ/rn+hAlDRATqzB5+sSFMy6iMOlxV9YrdP35YD1xOEct5xWHO59bxt0pqXducNt7d9K5i9nSE+iobxYUNlAz4TnL8zgl3otcG57MqdB2Aw40hNjj/US+EKIpYSmsx9fP/eqApN5ukyQNxby5lbtZMybk31715wc1g06VDsRadxlmtvDropzs+pbqpWnLs5h2gHTZQ8b7DXBh1lBFnrW+svlykTukHwKnVB1o8n2RK8qkT8MbaNzolDCc3n/32CKW9NmHWSH8jP5n0kwBZ1DYh6wDcLhFjfOgpgTbsPY7bJZIwLTDxwMM+egpBEJjyuXSNNL8yn+8Of9fKVZD0pGcZqPLFC+8XyMHf1/5d8nl6wnB612nQXzdH8b7DXBhNfDQuc9t1pTtLjyuGACLl64+22uaBaQ9IPhecLuDrg18rZlN7Wf+fUopyV0qOTek3hf6pyiV7dpWQdAB2sx0QiEj07xKKHFR87ilsnTz/0oD0b8hIJO2aMWTvEOlv6i0599p3r7V6XfQVE9FE6Kj+sGMKjB1lx4kdbCvcJjl2V0EMIGK4O/jC6C42tElxuG0Oxe5vSIpGrVVRvbf1ugMT+kxgaA9pKLD3pMHfnNhXR6HzCFVJUtHCB6c9GCCL2kdIOoD6k571wVCUgq5en4cgQMy4AQGzYci7T6BWq7l8izQpbPm+5RyrbD3JJ2b2JdjKq7EePaGYbX/7/m+Szz3je3LZ+ko08TGoYkNX96m7oElPRHSLuB3KOQFjQgQNJ1vf2BUEgQemSt8CVuxbQeFpXyE5f/HB0wcozJXWzkiLSeOa4fILPcpJSDqAuh8dQFSaKcCWdJzGw6fQJ0QGVMtGGx1J1j2XMWl7ItHqZicqiiJ//eavrV6X+j/3A1Dx67+12qYrlNWWsWjrIsmxn46/Cypr0Y4dpkifYTqGLtMjB2HLVyYZDCCmTxLWmgsvM90y7hZM+ubfv1t088q3ryhm04VwOlxs/qGAkr7rJcfvnXwvWk1wKxWEpANoKPFEIZgyogNsSccQRRHrmUai+mUE2hQGvPYAJrWeyw9KbXln0zvUmluOwDAM7os+JY6aFRsV2XR7/fvXcbiaZ5Z6jZ5bi2IBAcMt18ne31nCUhDtR9fbM17sh44r1kfCyEzcbqgvaD3fIMoQ5bO5+u+N/25T4lwJlv05n2M5K3GrpGP3/qn3+92WjhKSDqCxxKMEGmpS0E2HihDdEDOuX6BNQa3TkvOr65i9qyfq84ZBk62JN9a+0ep1iffNx2VxUPuBvKUiG62NPv3efsntxHyxDgTQ3XC1rP2dT1gKov3o+/8oB3Gs5WxdOUib5lkePbVq3wXbPTrjUdRCczJoW2NXKRb/7RAnBksr7N06/laSo5P9bktHCU0H8KNkbExWaElBVy7fCkDSFaMCbImH3r+5hZ76BC4tlIakvvzNy5htLSfjJP/qJ6jUAuW//Zestry57k1qzNLZ2xMzn8CxOw9tWhIqXWgm/XU3muUgStto2XnSZg4GRJ/ykN5kJWSxYLQ0qfHlb15us961nOz//jS745fj0EtDY5+Y+YTfbOgKIekAzKebAJGIpNAqB1mzMQ8QiZ8mr5hZZxEEgdw3HuTaPdJooNMNp/nnhn+2eI1KpyN29ngsBaWYdx1qsU1Hsdgt/GXNnyXH5g6bS44Qh6u+Cd3ksbL0E6braBLjUFoOQhdlQKNTU5NX1mbbp2Y9Jfl8pvEMb617SynTfPjnz3ZwbOhiybF5w+YxKH2Q32zoCiHpACzVFlRC4PQ+OktDXjHaKL1fFEDbS9oNkxmVOoiRxUmS4y+uerHVmVT6334FCJQ89KIsNry1/i3K66WVoJ658hmsb70PCBjuDJ4aqmFApVVWDgLAmBhBY0nLe1HnMzJrJFcMmi059qc1f8Jityhl2jkqCpv41v45dqM08euXs3+peN9yEZIOwFprRaUJPdOtZTUYeya03dDPjPziN9y0R6qyWVFfwavfvtpie31mGqbR/anfnIetsPV47fbQZGvixeW/kxybMXAG43qPw7Z8DYJaQDNzapf6CCMvaqMOZ7VychAApuwEbLXtSzh7bt6zks/ldeU+4cRK8Nef/sCxYdJylLMGz2J8n/GK9y0XofcUBWwNdjS60DLd0WDGaXUSM8w/Jek6QmROBjOnzWV0kXTT6qWvXmo1qqLnO88DUHT7r7vU95+/+jOVZmnM9/9e/b8AOPLy0fbqES7/GGSoTRG46pSTgwCIH9oDtxuaitsWehvfZzxTsqdJjr246kXqzMrJllSXWVhc/a7P7P+5uc8p1qcShOQvy95oR2PQBNqMDlG1egcgEDc5t822gWDI+09y50GpbbXmWl5c1fIyjzE3B9O4QdRv3E/Tpt2d6rOkpoSXVkjvf+WQK7mkzyU4847gtjrQzfCfYmqY9qGOi8bVpJwcBEDypX0BKP3atzpYS/zp5j9KPlc3VfP7lb+X3a6zvHjP1xzLXSI5dnbshhIh6QAcFifayNByANXrPeJWibNHB9iSllFptcz/82+YVJAuOf7KN6+QX5Hf4jW9Pv8zgkrgxPVPd6rPX334BGbR1myDoOIP8/8AgPUf7wNguPf2Tt07jHJok+Jw252K9pE+czAAlZtbr1l9PmN6jeGKXlKtqAuN3a5QebKJj82v4NI17zMIgnBu7IYSIekAnFYnuqjQCgts2FeIoIKI7NRAm9IqaTdO5SHXTDSu5s11h8vBIx8/giiKPu21GSmkPHQ91tJqSn/2lw71tfHIej7Y+6nk2E8m/eRc0WzbV2tR6TVohwdXEe0woM1I8shB2O2K9RGREoNKDdX72x9u+uo9L6N2N+cFOFwOHvrooRbHbld45La3OZUjrfh1xyV3BF3B9/YQkg7A5XBjiAktKWjz8Qp00cGvXnrN0te5+nAfybHVB1bz8baPW2yf9vLPMfRIoOwv/6Hh+20ttvHG7rRz92/nIZ4XxGUymM6t/QM4CorQDujTwtXyE84E7hi6zFRAwHb0pKL9GGKNF9QE8iYnJYc7c6XZwWsOruHDLR/KZtOmpSdZmSSd7EQbo3lxvjwRcf4mJB2A2yViiDUE2owOYTvTgCE9LtBmtIkuNorf//QvxDdJHezDHz9MeV25T3uVSkXOD++i0qo4NushrAcv/MouiiKP3TKe/BY2z1KiUwCwr92I6HSj91P5x3AmcMfQ9fYU5bEpKAcBEJUZh6WV6mCt8X/3vYTJJv2dPf7p4y2O3Y7idLr5f396ioZ4qeP7n3n/Q2pM8L7ZX4iQcwAupwtRFEKqFoDbbsdpdRLVP/AaQO2h/53zeMosXU+taqzijrfvwOV2+bTXZabRd9VriC43h0bcTMPqjS3e11lTz6JLJvNWlHTTeHjP4Tw6/dFzn61v/wcQw+v/QYq+fzagrBwEQNygNFwON7b69sf0RxujeWmWdIZ+dux2Vb/q/lve4OCA/0qODesxjAenBrfk84UIOQfQWOrRAYpICh0p6JofDgECMWNy2mwbLPzsk4+YWCItv7jm4Bp+s+Q3LbY3TR9HzleeegJHZz/KsUle41DPAAAORUlEQVR30vDNZtw2G5Y9hym6/Rm+z5rM47234j5v1GnVWt6+82006uZNffvazaijjOHyj0GKfqAnc9xR1PVZ9YVIHtcbECj/9mCHrrvvlrsYXDVOcmzNwTX87svftXJF2yx5fwcfqJ8FoXk/QavW8s5d7wS94ueFCDkHUF/sWTqITA4dGYiadfsBiJ8WOpLGar2eD/+wkjizdCnoxVUv8sn2T1q8xjTjEnJPrsA0diB1G/dzdObD7DZcysERt1L80UqemFXImUipjvzzc59nROaIc5/dTifOUxXh8o9BjCYhFqXlIADSZnrkFCo2djySZ9HP3iGiSSoW+dyy5/jP1o7v8xw7VMadS27AFiktU/ri/BclYzcUCTkH0HDK4wCi0kLHAdTtOgaIRI8JvApoR8gaOoR3Z7yM2i2V3Ljt37exan/LlcG0qUn02/ohQ0tXk/H8T0i+czaxT17Pc89GciBWmj16+aDLeXq2NITUvvhLRBH0C67qkK2LFy9m1qxZJCYmIggCe/bs6dD1YTqGSqPGWVnddsMuENM/DUEQqdrd8aWmYRMGckf1EwheY/f2t29n+d72K9mWl9Uy6ak51CVIi83MGjyLx2c83mG7go2QcwCNZZ4lIFOP0JGCbsovRWPUolKr224cZMy7636eS71HcszhcnD1367m/U3vt3qdNi2J1Ofuw/DqI9yZtIJvi3+QnO+V2IsPf/IhapX038T2wX/pTPnHpqYmLr30Uv7wh9CLxQ5FVEYdzirlMm3BE1uvM+mpLzjdqetf+vDnjN8xX3LM6XYy/+/z2yUYd6ygiKEPXEp5qnTPKic5hw/v+bBbZKiH3Ddo+lEKOrpH6BSDsZbVok8KHXu9+fXv/sEtJmlEjsPl4I537uCud+7idIPvD1QURZbsXsLw/x3OxmPSTeG4iDhWPLyCJFOSz3X2rbvRJMSgiu7Yv9dtt93Gs88+y4wZ/okcuthRRxpx1isvuxyVHo25snOyE1GJRh6b8jC5By6THHe6ndz34X3c8s9bKKkp8blOFEX+9I93GPLsCE4nSvcfEqISWPnoShJNiZ2yKdgIrXRazkpBQ3Rm6NQCcDZYic7NDLQZnUYQBN7782osT89gce1aybl3N73LJzs+YcHIBUzoM4EoQxQFlQUs3r2Yfad8C3rEGGNY8/iaFuVy3Y2NOE/XYJw9RamvEkYm1DGR2IuV3QMAiOmXQtXh07gcTtTajj+uFrwyia2JN+HUWTncb5Pk3EfbPuLzHYtZMOY6pvSbgkFj4Lu1O1l28AuqjUUQIb1XbEQsqx5ZRd/kvl35SkFF6DmAM2ZARBsRGpnA9up63G4xZEJAW0OtUvPfP37LQ6/eyRt5H0jOWewWPtjyAR9s+aCVqz1kxGaw6tFVrWZMWt/9BBAw3Dy/xfNhggdNQgzWY76zZ7lJHJ3N8WV5VG46RtqUAR2+XqVSce/i2TRMc5ASlcS69KWS8za3lUVbF0lrUbcQYd4zvicrHl7B0B7BUctDLkJuCchSY0WlDp06AJ4iMAKmEf7JalUSlUrF3x97n3fveJtId8cysS8fdDk7f7Pzgunyts+Wt6v846JFi4iKijr3t2HDhg7ZEqbraFPicbvcsssseHO2PGT52iOdvke/qRmMviaL/itn80yPF4g2dmx58YrcK9j2q23d7uEPIfgGYKuzodaEjgOo334UgNgJoVEhqD3cMfEuZgy+nF9+/BT/2fkxTqH1BJt+Kf149qpnuXnczW0W8HHsykOb3nb5x3nz5jFuXHOcd0ZG196uFi5ciEYj/SncdNNN4czgC6BJSwIEnJVVaFOUWw9PGt8bEKnaXdSl+9z96SwOJ71L9W/j+WHbdl7L+wv/3vjvFhMbz9I3uS/Pz32+XWM3VAk9B9BgQ6MPnWiahgMnARFTENYB6AoZcRm8f/8iXqx5iSV7lrD2yFqKqosw282kRKeQm57LlUOuZPrA6T6RPi3hKi3D1dCE4arpbbY1mUyYTCY5vgbgkYKI7uCm88WORw8I7EdPKuoAVBoNWoOGuqMVbTe+ABqtmke/nsOL45by/qwf+Fvp3/mfef/Dpzs+ZUP+Bo5VHsPmtJERm8Hg9MFcN/I6JuZM7LYP/rOEnAOwNznQGEPHbHNBOWq9JiRDQNtDRlwGD057kAendS0d3iP/LGC4q3PlH6urqykqKqK01KMeeeSIZ8kgNTWV1NTQ1GkJZnS9PW9dtvwiIieNUrQvY2Ik5rKuVyDLGpPKNb8bxRfP7OTVy5byxIb5PDL9ER6Z/ogMVoYmIbcH4LQ40UWGTuq1tawGXWxE2w0vcmzLv/aUf5w+uVPXL1u2jBEjRjBnjkfDaOHChYwYMYI333xTTjPD/Ii+ryeqzX6y7cLtXSUqKx5bva3thu3gil+NZsisdI5sPMPiJ1vWrLqYCD0HYHOhjwodKWhHnQVDRnygzQh6HAePoe3ds9PJNXfeeSeiKPr8Pf/88/IaGgYAXb8sABzFXVuaaQ9xg9Nxu8FSIU/i2f1fziEp08hX/5fHhjf3y3LPUCXkHIDLKaKPDg0H4LbbcTlcRPZJC7QpQU24/GPooY6MQBDAUda5LN2OkDQmG4CytYdluZ9areJXe68nMkbDovs3sfnf7Ss72R0JOQfgdonoY0PDAdRtOwoIRA3JDrQpQY31rfcAMNx3R4AtCdMRBI0K5+laxftJndofgNNb2lcesj1ExBp49tBCjCYN7/1kIxveuDjfBELKAbgcTkDAGBcatQBqt3hmLLHj+gfYkuDmXPnHoYMDbUqYDqAy6nDWdH1zti1MfVIQBKjpQHnI9hCbFsnzRxYSEaPhwwc2seTpTW1f1M0IKQfQWO6RgTCESDEYTwgoxFwSlja+EI7jxX4r/xhGPtSRRlx+0AMSBAFdpJb6wjOy3zsmLZLfHr+ZhB5GVr10gJenfoHL2XpuQHcjpBxAQ4lnEygiKTSiaizHyxFUoDWFhr2B4Fz5x7kzA21KmA6iiTXhMlv90pcxJQpLZYMi946MN/K7k7eSOzOVw+sq+VWPDzh9XFml02AhpBxAU7lHFTBUisFYS6vRhIhmUaCw/usjPOUfA7f+Hy4K3zk0CdG4bU6/9BXdKwl7k0Mx6QmVSsXDa+Zx9fMjqKu08WzOx6z49RZF+gomQsoBNJ51ACmh4QDsVQ3o4kKndGUgsK/fgjoqAnWP9IDZEC4K3zk0KfGILneXa+22h/ihGYiiQH2+smGnVz43ll9uvQZTgp7lv9/Hr7Pep/RAlaJ9BpKQcgCWH6Wgo9LkkwFQEkejDX1aXKDNCFrOlX8cHt4jCUW0GcmAgKtc/rV5b5LGeeoQl8sUCnohssak8Ify25l6X3/OFFv436Gfsejub3G5lHd0/iakHID5zI8OID34HYDb4cDtdBOR5Vv0JIwH++fLfyz/ODfQpoTpBNqeHokN25ETiveVOs0zSTizQ/m+wLMkdNMbU3j+4A0kZUey/p0Cnkp8h8PfdE2ULtgIKQdgqbYAIlGpwb8E1LCvEBCIHNAz0KYELbYPPgPETuv/hAks+l49ALAVnFK8L2OSCZUaavLkDQVti9QBcfz2+K3Mf2EUlkYXL89cxeuzlmE3O/xqh1KElAOw1lgRICSE1ep3eZJWTOEksFbpbPnHMMGBvr9HDsJ+wj8PZX20nsYiZQvRt8asX47ipdJb6T06nv1ryng69T2Kdigvg6E0oeUAakOnGEzDgRMAxIwNJ4G1hLuxEeeZWnTjRgTalDCdRNe3JyDiOOWfB2FEWgyWM2a/9NUSUUkRPL39em5781JsZhcvjl3Cd3/Z3faFQUxIOQB7ox1ViBSDMR8rA0SMWSmBNiUosb7zH0BAHy7/GLKoDAYEQcDph01ggJi+STisTtyuwCZqTbw3l2f3LSAyVssnP9vGop98F1B7ukLIOQC1LviXfwAsxWfQ6EOnboG/sX22wlP+8cZrAm1KmC6g0qpxnK7xS18Jw3sCAlW7TvqlvwuROiiBF0tvJ2OAifX/PsbbN30VaJM6RUg5AIfZgdYQGg7AXlmHJiY0JCsCgWN3Htr0ZFSasJMMZVQGHa5qZTJ0vUm+xCMXUrH+qF/6awutQcOv8xaSPTyWrR+fYMlTPwTapA4TWg7A4kRjDI1iMI46M/qkmECbEZR4yj+a0U0e13bjMEGN2mTE1aC8HhBA0sR+yFEfWE5UKhU/377AoyX0pwPs+iQ4nFN7CSkH4LK7Q6YamNPqxNhTuVqpocy58o/3BEfmbVgKovOoY6JwmeWp1tUWuigDao2KuqOVfumvvWg0Kn61+3r0RhX/vnUtVSf980YkB6HlABxudFHB7wCsFTWAQESv8AZwS9iWrfGUf5wWHAVgwlIQnUeTEIPb7h89IABdtJ6mEuVrEHSUqEQjj6yZg8sp8tfpSwNtTrsJLQfgEtFHGwJtRps07vHkAET0ywiwJcGJ41BBl8o/hgkeNMkePSClRNq8iUg1Ya0OXCjoheg7MZ2Jd/WlosDM1y/tCrQ57SKkfoGiW8QQAtXAGvI8a5RRg7MCbEnw4ThwyFP+cWbnir+HCS60aYmA/0JBTb0SPaGgfhCg6ww3/2saESY1y57did0S/NnCIeMAbA1WQMAYAsVgLMc8mZGmYb0CbEnwYTtb/vHe2wNsSRg5OKcHdPSEX/qLH5wOCNQdKvNLfx1FpVJx85sTsdvcvH/7t4E2p00E0V/vbmHCBBn19fXExMRQV1dHdFiOIsxFSNgBhLloEUWRhoYGTCYTghAaGeZhwshJ2AGECRMmzEVKyOwBhAkTJkwYeQk7gDBhwoS5SAk7gDBhwoS5SAk7gDBhwoS5SAk7gDBhwoS5SAk7gDBhwoS5SAk7gDBhwoS5SPn/llVPgQQf75UAAAAASUVORK5CYII="
},
"execution_count": 16,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"N=20\n",
"L=2\n",
"Curvef=plot(f,-L*pi,L*pi,color='darkgreen',thickness=3,detect_poles=True)\n",
"TaylorPolys=sum([plot(taylor(f(x),x,0,j) ,-L*pi,L*pi, color=((N-j)/N,0,j/N),thickness=1) for j in range(N)])\n",
"show(TaylorPolys+Curvef,ymin=-1.2,ymax=1.2,figsize=4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Voici comment calculer le polynôme de Taylor autour de $x=1$, on obtient une somme de puissances de $(x-1)$."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 17,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"taylor(f(x),x,1,6)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Finalement, en deux variables: Calculons le polynôme de Taylor de degré $4$ de la fonction $x\\mapsto x \\cos(y)$ autour du point $(0,-1)$."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 18,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('y')\n",
"taylor(x*cos(y),(x,0),(y,-1),4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Bien entendu, ceci pourrait se faire (dans ce cas) comme le produit de deux polynomes de Taylor (attention aux degrés)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"execution_count": 19,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"taylor(x,x,0,4)*taylor(cos(y),y,-1,4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Quelques graphiques en 3D\n",
"\n",
"On peut dessiner les surfaces de plusieurs façons différentes, dépendament de comment la surface est spécifiée:\n",
"\n",
"- Paramétriquement, c'est à dire $\\vec{r}:\\mathcal{D}\\to \\mathbb{R}^3$ donnée par $\\vec{r}(u,v)=x(u,v)\\mathbf{e}_1 + y(u,v)\\mathbf{e}_2 + z(u,v)\\mathbf{e}_3$ est une paramétrisation d'une surace $\\mathcal{S}$. Ici on suppose que $(u,v)\\in \\mathcal{D}$.\n",
"- Explicitement, c'est à dire si $\\mathcal{S}$ est l'ensemble des points $(x,y,z)$ tels que $z=f(x,y)$, pour $(x,y)\\in \\mathcal{D}$.\n",
"- Implicitement, c'est à dire si $\\mathcal{S}$ est l'ensemble des points $(x,y,z)$ tels que $F(x,y,z)=0$.\n",
"\n",
"Voyons quelques exemples.\n",
"\n",
"Exemple : dessiner la région de l'espace comprise entre les surfaces $S_1:z=x^2+3y^2$ et $S_2:z=8-x^2-y^2$\n",
"\n",
"Dessinons les deux surfaces explicitement:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": "\n\n",
"text/plain": [
"Graphics3d Object"
]
},
"execution_count": 18,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('x,y')\n",
"f(x,y)=x^2+3*y^2\n",
"g(x,y)=8-x^2-y^2\n",
"S1=plot3d(f(x,y),(x,-2,2),(y,-1.5,1.5),color='darkseagreen', opacity=0.65, mesh= \"True\")\n",
"S2=plot3d(g(x,y),(x,-2,2),(y,-1.5,1.5),color='darkgreen', opacity=0.65, mesh= \"True\")\n",
"show(S1+S2, aspect_ratio=[2,2,1])"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Le graphique n'est pas tellement beau, essentiellement parce que $(x,y)$ décrivent un rectangle. L'idéal serait que seulement les valeurs de $(x,y)$ qui se trouvent sous la région commune soient considérées.\n",
"\n",
"Pour ceci, on paramétrise les surfaces (on verra en détail comment faire dans le cours, on peut simplement ignorer les calculs qui suivent):\n",
"\n",
"+ Calculons d'abord l'intersection des deux surfaces, c'est à dire $$\\displaystyle x^2+3y^2= 8-x^2-y^2$$\n",
"\n",
"+ C'est l'équation d'une ellipse, à savoir $\\displaystyle \\left(\\frac{x}{2}\\right)^2+ \\left(\\frac{y}{\\sqrt{2}}\\right)^2=1$.\n",
"\n",
"\t+ Une paramétrisation de celle-ci est $x(u)=2\\cos(u),\\ y(u)=\\sqrt{2}\\sin{u}$ pour $u\\in[0,2\\pi]$. La courbe d'intersection entre les deux surfaces est $(x(u),y(u),f(x(u),y(u)))$ où $u\\in [0,2\\pi]$.\n",
"\n",
"\n",
"\n",
"+ On va utiliser la paramétrisation des surfaces, pour que les dessins soient plus beaux... Les paramètres seront en quelque sorte les coordonnées polaires, mais avec les noms $u,v$. Ainsi $x(u,v)=2 v \\cos{u}$, et $y(u,v)=v \\sqrt{2} \\sin{u}$ pour $0\\leq v \\leq 1$ et $0\\leq u \\leq 2\\pi$ est une description de l'ellipse et tout ce qu'il y a dans son intérieur: en effet on \"multiplie\" l'ellipse par le paramètre $v$ qui varie entre $0$ et $1$, ca remplit la région enfermée par l'ellipse. Pour ce qui est de l'ellipse il suffit de faire $v=1$.\n",
"\n",
"\n",
"\n",
"Les surfaces sont ainsi $S_1: z=f(x(u,v), y(u,v))$, ou, paramétriquement $(x,y,z)= (x(u,v),y(u,v),f(x(u,v),y(u,v))$. Pour $S_2$ c'est pareil."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
"var('u,v')\n",
"x(u,v)=2*cos(u)*v\n",
"y(v,v)=sqrt(2)*sin(u)*v"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": "\n\n",
"text/plain": [
"Graphics3d Object"
]
},
"execution_count": 24,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Ellipse=parametric_plot3d([x(u,1),y(u,1),0],(u,0,2*pi), color='darkgreen', thickness=2)\n",
"Courbe=parametric_plot3d([x(u,1),y(u,1),f(x(u,1),y(u,1))],(u,0,2*pi), color='darkgreen', thickness = 3)\n",
"S1=parametric_plot3d([x(u,v),y(u,v),f(x(u,v),y(u,v))],(u,0,2*pi),(v,0,1), color='darkgreen', opacity=0.3)\n",
"S2=parametric_plot3d([x(u,v),y(u,v),g(x(u,v),y(u,v))],(u,0,2*pi),(v,0,1), color='red', opacity=0.3)\n",
"show(Ellipse + Courbe + S1 + S2, aspect_ratio=[2,2,1]);"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": "\n\n",
"text/plain": [
"Graphics3d Object"
]
},
"execution_count": 25,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"#Un tube tordu\n",
"x(u,v) = (2+sin(v))*cos(u)\n",
"y(u,v) = (2+sin(v))*sin(u)\n",
"z(u,v)= u+cos(v)\n",
"Tube = parametric_plot3d([x(u,v), y(u,v), z(u,v)], (u, -pi, 2*pi), (v, 0, 2*pi), mesh=1, opacity=0.5, color=\"orange\")\n",
"show(Tube, frame= True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Ici on dessine un champ de vecteurs, le champ gradient d'une fonction $f$ qu'on déclare. Par la suite, dans le même graphique le diagramme des courbes de niveau de $f$. On verra que les courbes sont effectivement orrhogonales au champ."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAGGCAYAAABScglfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXd4FFUXxt8kkFBD7yWAyEeVUEIVpEgTCyJV6YJSlKKCFBFEAaUJ0qVXIdJ7ld5L6L0lQAoQ0nt23u+Pk7bJJtmd2QAL83uefSC7M2futPvec8s5diQJHR0dHR0dHZvB/mUXQEdHR0dHR8cydPHW0dHR0dGxMXTx1tHR0dHRsTF08dbR0dHR0bExdPHW0dHR0dGxMXTx1tHR0dHRsTF08dbR0dHR0bExdPHW0dHR0dGxMXTx1tHR0dHRsTF08dbR0dHR0bExdPHW0dHR0XmjmDNnDkqXLo0sWbKgRo0aOHLkSKrbNmrUCHZ2dik+rVu3TtimR48eKX6vU6dOhp5Dpgy1rqOjo6Oj8wqxdu1aDB48GHPmzEH9+vUxf/58tGrVCteuXUPJkiVTbL9hwwZER0cn/O3v74+qVauiffv2Rtu1bNkSS5YsSfjb0dEx404CgJ2emERHR0dH502hdu3aqF69OubOnZvwXYUKFdCmTRtMnDgx3f2nT5+On3/+GT4+PsiePTsA8bwDAwOxadOmDCt3cmzW81YUBd7e3siZMyfs7OxednF0dHR0bBaSCAkJQdGiRWFv/+JGUyMjI428WjWQTKEBTk5OcHJySrFtdHQ0zp07h+HDhxt937x5cxw/ftys4y1atAidOnVKEO54Dh48iIIFCyJ37tx47733MH78eBQsWNDCszEfmxVvb29vlChR4mUXQ0dHR+e14eHDhyhevPgLOVZkZCRKl84KX19tdnLkyIHQ0FCj78aMGYOxY8em2PbZs2cwGAwoVKiQ0feFChWCrxkFOX36NK5cuYJFixYZfd+qVSu0b98eLi4uuH//PkaPHo0mTZrg3LlzJhsR1sBmxTtnzpwA5GFzdnZ+yaXR0dHRsV2Cg4NRokSJhHr1RRAdHQ1fX+Dhw5twdlZ33ODgEJQo8b8UOpCeYCb31E1576ZYtGgRKleujFq1ahl937Fjx4T/V65cGTVr1oSLiwu2b9+Otm3bmnMqFmOz4h1/oZ2dnXXx1tHR0bECL2MI0tm5sIY6PHucDfN0IH/+/HBwcEjhZT958iSFN56c8PBwrFmzBuPGjUv3OEWKFIGLiwtu376d7rZqeWlLxQ4fPoyPPvoIRYsWhZ2d3Qsd6NfR0dHRefNwdHREjRo1sHfvXqPv9+7di3r16qW5r7u7O6KiotClS5d0j+Pv74+HDx+iSJEimsqbFi9NvMPCwlC1alXMmjXrZRVBR0dHR+cN47vvvsPChQuxePFiXL9+HUOGDIGXlxf69u0LAOjWrRtGjBiRYr9FixahTZs2yJcvn9H3oaGh+OGHH3DixAk8ePAABw8exEcffYT8+fPj008/zbDzeGnd5q1atUKrVq1e1uF1dHR0dN5AOnbsCH9/f4wbNw4+Pj6oXLkyduzYARcXFwCAl5dXihn3t27dwtGjR7Fnz54U9hwcHHD58mUsX74cgYGBKFKkCBo3boy1a9dm6BwCmxnzjoqKQlRUVMLfwcHBJrfz9ARKBK6GfcHyQJHqqo4VGgpERQHJGljA7jlAmRrA27XTtUEC3t5AsWIqCrDsT6BISaD5Z/DzA9IZikkXf38gTx7A4hUg334LlCwJ9OuHqMw5YDAA2bJpK0tICKD1eQ4P116O6Gggc2ZAyxAfKR+tK2viIy1oLUtMDKA1LoQ1rq017nFEhFyPLIYwYP584OZN+dcCFAUICDDxHltIwjv432bgwS2g11CLbTx+DBQtauY9vncOuHkcaPWt0dcBAfKs5cpl8eEFv0tQvC/AK083lCql0sZrQv/+/dG/f3+Tvx08eDDFd+XKlUNqIVGyZs2K3bt3W7N45sFXAADcuHFjmtuMGTOGAFJ8goKCEra5coX8otY2KmPtyN/zkN7nLC5LdDTZogU5YkSyH85tJ9uD/CIreSrtspLk/Plk9eqkolhYgKvnyCoOZEUweFAvuuQPppeXhTaSoChk48bkkiWWluMqaWcn+pQvH09+PJ7dPw1Kf780ePyYzJePjIzUZIb16pH792uzMWkSOXiwNhs3bpClS2uzQZLly5OXLmmzMWwY+dtv2mwcOULWrKnNRkwMWbAg+eCBNju9OwbzyIe/kwUKxLeRSA8Pi2ysXk2++66KdzAJPj5kyfwhDBzyFVkRZCU78sIJi2woClmnDvnXX2ZsfHYr2SW71DXJ6pmxY8kmTVS+P74XyT/ykWPB7rU38MIF45+DgoJS1KcZjTWO+TLK/apgM7HNR4wYgaCgoITPw4cPjX6/ehV4/32gRZ8GsCtRF4gMAJa/D/icN/sYJNC7t/z7yy/JfqzYEKjWCoiOAKa2BbZNS3SZknHyJDBiBLBihQpvqmxloNcw0M4OOfcuhkfpqijx5KiFRhLZtEla/Z9/buGO5coBS5YAZcsC/v6ovWUUFux1AX76CXjyRFVZVq0CWrUCtCx7DA4GPDyAZCs1LOb6dTk1LYSEADlyaLMBANmziy0tlC0r56SFGjWAa9eA58/V28iUCfjoI2DlSpUGnj0DxozBnB0ueHfbcODpU6BMGWDhQqBSJYtMtW8v3qq7u8qyACjsewIX3nJFrt1/yxc9fgAqVLPIhp0dsHSp1ClphNAGds4EJn0CRIUBVd4HKjcx+nnUKCBrVqBHD+lVMBu/S8CyJkCEP1DUDa36NUbz5sDFixadhs6rxstuPZDmed7JSdriunKFLFyYXLQo7sfIIHJRPXIsLPLAhw8na9Qgg4NT2SA2hlzQT1rF7SH/j40x2sTXlyxWjPz3X4tOJwXuww7xcSWXxNb+tOFkVJRFNiIixDPcvl1DQWJieKTvSt7LWiHRA8qShRwwgLx/32wzikJWqkTu3auhLCS3bhVvSit165L79mmzsX+/9AJopVEjcudObTYOH5ZnVytNmpDr12uzcegQ+fbbFnq8np7koEFk1qwJz5ln1nI89OUycedVsncvWaIEGRZm4Y7R0eSMn8jK9mRF0KdSCf4zWFt3z6ZNZJEi0gNlhCGWXDwwsV6Z25uMiTZpIzSUrFWL/O47Mw+axOPm325kRABJcsUK6SGJ98B1z9v2sHnxPnkyyFi447FQwGfOJMuUEfFNE0Uht04jO9jJizahFRkmD050NNmwoXRhauH6dTJPHvLmuSByZA8R8IogP61K3rhotp0JE8gPPtBWFoNBRHfLJgO5YQPp5pYo4g4OZOfO5Pnz6do5f14aNbGx2sozaBA5Zow2G4pC5s5NPnqkzc6mTWTLltpskOTHH5Pu7tpsPH1KZs8u90sL48eT/fpps2EwSKPxhDm9yxcvkl26kJkyJT5X1auT//7LXdtjWa6c9memTRvpcjab21fIdtUT37sfu/CuRwDz5NE+vPHTT9JwTGiHR4SQf3ycKNyb/ki31fPkiTSOpk5N52CpCHc8SQVcF2/b46WJd0hICD08POjh4UEAnDZtGj08POjp6WnW/vE3rWDBoJTCHY+ZAv7vv2ShQuStWxacwKkNMv7dHuT3VcinXhw8mGzaVJOjwJgY0cc//0zy5Z71ZP38UpFUdSQX/J5ujfb4sTQAbtxQXxaS3LyZrFw5iSgoiriczZolVraAuGxbtqSqHoMGkT/+qK0spJTlyBFtNnx9yZw5tY2FkuTy5WT79tpskOQXX5ALF2q3ky8fNc2PIMlTp8hy5bSX5eef02gEGAzSHWTqGdq9O+HGKApZrZr2Xqw7d6Sxlm7VYjCQS6aSrk7yrtXNS+5cm/Dz7Nmkq6vFHWBGxMZKg69/f5L+j8hh1aQO+dyJPLY23f3juXdPvPjVq1PZIB3hjidewI8e1cXb1nhp4n3gwAGTE9C6d+9u1v7xN23WrHRuWjoCfugQmTevVFoWc/s02acw2R4M71KYrSuc4ZMnKuwkYdw46UZNoYFPfcn+HyV6A53rkPdSV+Zu3SzoWksFRSFr1yZXrkxlg/Pnyc8/Fw88vgIuW5acMYNM8jJFR8u8o6tXtZXHx4fMkUNb5UmSBw9KA0krs2aRvXppt9O3LzltmnY79euTe/ZosxEbS+bKpb0RcPu2NB6NJleFhIgCliuX+LzY25OdOpFnz5q04+4uAq61oTV8uBwmVR7cIru8m/h+fd2K9DPu31YUaW/89JO2svj7k60qXmBo12Ii3F8WIG8et9jO+fPSYEsx/GOmcMezYgWZP78u3rbGK9FtrgaLbpoJAVcU8vJlMn9+cscO9eWI9vZk+IAqZHsw9vNsZs1EN0VICHnunDQkUh1KVhRy/SKylrNUMNWykMunGym9nx958qS0pgPSfmfT5P59cbBLlzajJ8HTU8YKcudOrJRz5CC/+Yb3d93gxo3aZzHfuCFDI61aabNz65b0anTtqk0QHjyQhtagQVIZq8Xfnxw6lBw9WtsMbUUhe/eWWfQ3b6q3Q5KffCKrJa5f12anXj1y7Vry3u5b5MCBpLNz4vPh7Ex+/3268yZiY0Xrd+2yaIpFCoKDxVM9fFjekQQMBnLVLLJGNnmnauYg185P9eF4+FAE89QpeWdVcW4bYz+XGeXhfSsw+tE9lYaksZYvn0zEVxRaLNzx/P23Lt62xpsh3qSRgMdOyMMlE86xRAkVS6iSEBEhHu47ZYP4qF8LaUV3sCO3TLFYGdq0kbHlVIcAkuLtRfZulugldH+PfHCbpAwflitH/v235eeTlB9/lAbAd99Z0AgIDRXPqkIFo+7QA/ZNOKGaO29cUu8yr1pFZs5MVqmirdt861Zx9ooUkV5+tezZIx0OWbOKTbXs3i02HBzIbdvU29m5kyxaVM5Ny4SzEyfIqlXlWmt5N25fi+bEmuu4zz5Z13i5crJmKtVZocYEBiY+i0OGqC8PSS5dKmPFHTvGffHwHtmzSeJ71KMx+eh+unZWrJDT+PhjCwugKOT2GWQHe7I96N2vKSuXDmD37vLqqGXlSrn3S36/yJgJlgs3qY952yJvjniTRgLu/2MeDul0juHh6suwapXUR8WKkSePx5AL+idOPJnXJ9UZo8nx9EzsQZwyxcyDKwq5Zi5ZI7tUPNWzUln2J0sUiyUgFYuW9dSffJI4DGmxHUWRab4ff0wlfq04QKVgQfHQVQzEr18vZmrV0jYp6+pVsfO//2mbCBUSIoKbL58MC6glJkZWStjZaespMRhkPoCK5dAp7NSvL3b++UeFgVu3yBEjqBQunHDfDbAjW7cW99nCmxcVRTZvLqa09LpER5Nt24qdggUMVFbONHp3uPIvs8s2Y0bi/Lrbt80sQGwMuXCAUf1w9lQ0S5YUO1qdiO+7XOTTYeqEm9TF2xZ5s8SbpM+DIB77UgQ8bEweht2xPJBLPI0ayYs3cCClEZCsZc2xjcmQ5+namT5d7PToIS+iRSTzHo6Wqsev3r+uqVFCSuAQV1ejoWtVjPvyAadm+4mxBQsbe2ANGogrZGbf444d0rg5p/52kZT7BMihtVKrlqyY08qQIXKttbJ6tZyb1nt26ZI0TDZtMnOH0FBxR997z+gexxYoxOnZR3J01/uayhMSIsMuZcpoMsOICPLrlrd40KVhorfdrWFCr5W5REaSffrIaU6aZMYOoQHkb81T9MxFRMjIAaBtyWHY/YsMHSPCfbqPGx/etrwVqIu37fHGifewYWSzhkEM/cvydeBJuXlTPG6TE4TObSO75pCXdWA50iftyqFpU2nNqx6DVRRy7XxGueYkK4KKqxP590TV095jYsQz9fFRWZ4kfPll3DWKjpalZh9+KCocX8lnzy5jD/v2pekKHzhAfvut9vKQsk5ci7ccz9Ch5HHL5xml4OxZGTvXSmysddadkyIqu3ensYHBQP73n7Q4c+QwnoDWsqVMEY+K4oEDcnu14ucnDUrVvUkxMeTiyVSqZSErgtFVs8tYt8puHEUh58yRpaFp4nuXHFxB6oIupufE7N9PFi8uESItJskYd/gMN7ZuGqAqcqAu3rbHGyXeMTHkunVx76vKQC7xHDlCPnuWxgael8h+JeWl7ZmXvHrQ5GYRETLj3Rqc3uxJpXeLRK+iXXXyWvprsJPz9KmFy+bS4MwZE18+eiSxPN9+29gbL1JEVOzkyRQtmbt3ZfzTGiQPDamWS5e0z4ImxYbW9cPxWOvcQkJMPAOKIjf0u++k5Zr03r31FvnLLyanqZt8BlRw964ZcRhMceMi2cEt4b1Qer3PUxvUTxJLypEjaQSAuX6U7JVf6oCvi5H3Un8Xnz+XyXQWYWJymqLIEJOljVNdvG0POzKVGJ+vOMHBwciVKxeCgoLUJ3KPCgZWtQIeHgey5AG67VOdzMQkgb4S7vDOacAhE/DlHOD9PtazbwoS2Lwc+GMIEBwAODgA3YYAA34BsmrMOGFtSIklu3w5sHatxLKMp1QpoF07iXHp5qYta4eOekjg3Dng33+BdeuAe/cSf8uVC+jQAejeHahX79W7R5ERwNxxwNIpQGwskDMXMHQq0LZXxpf14DJgfh/AEAOUrg78uBXIW9R69pOFPEXXPUCW3KrNWaU+fQnHfBnlflV4s8UbyHgBj44A5vQCjq+Rvz/8DugyCbB3sN4xTPHUF/hjMLBzrfxdogwwZj5Q9/2MPa5aoqOB3buBf/4BNm+W9FbxlCwJfPIJ0KYN0KCBpAPTyThiY4GjRyUw/ubNwIMHib9lzQp8/DHQuTPQsqW2QPUZyemDwNivAM/b8nezz4CRfwEFrSigplAUYM0oYNPv8nftz4ABy4As2a13DN+LwPKmVhNuQBdvW0QXbyDjBZwE1v8GuP8sf1f/EBi4Csj2Ah62Q9uBcf0A37hELh9+AQybBuQrmPHHVkt4OLBrl3h7W7cCYWGJv+XODbRoAXzwgYhHwVf4PGyJp0+l8bRjh/ybNDtJtmxA69bSC/LBB5JJ5VUl4Bkw+Qdg8zL5u2BRYPQcoMknGX/syFBgVjfg9Eb5u+1PQIdftOeMTUoGCDegi7ctoot3PMkFvOteoGgN7XaTcnwtMLsHEBMJlKgEDNsCFCpj3WOYIiwEmDEKWD1LGhLOuYEhfwDtelu3YskIIiKAffvEC9yyRbJOJaVaNaBZM/m8+y6QJcvLKaetERUFHDsG7N0rn/Pn5dmIJ18+SQ/Wpo1cW61JvjMaRQE2LQWmDAWCnku3eIe+wJCJ0l2e0Tz1BCZ9DHheAjI5An0XAg27WvcYGSTcgC7etojNiffs2bMxe/ZsGAwG3Lp1K8VNi4nR0KuaRMCZJTfsuu7TJOAGgww5G3HnDDD5EyDAB8iZD/hhI1ChQao2FEW7vpJxQ3xXzgK/fA1ci0uT6loXGD0XKF9V2wFeFAaDjJHv3CkeooeH8e9OTkDdukCjRsB770ne0FdddF4U4eHAmTPAoUPAwYPAiRNAZKTxNq6ukrP1gw+AOnUkv6ctcOuy9C55HJO/y70DjJ0PVK2T+OxrIN138OZxYHIbIPgpkKsQ8MMG4H/1jDYxWRdYgu9FcHlT2FlBuE3Vkbp42yAva6acVkzNMvTxkTjIWmZvKxFBvDsqfhZ6bvKx6ZjL6bFrF9m4cSqzkf0fk8NryizUTpnJfQtM2vD3l/Px9lZVhAR69UqyZjcmhlz2p4SBrAiyigP5+xAyJO3ZmuvXU9USlKQEBsrybq3LtHr3jpvB7OMjkXK6d5cQU0lnPwMSSaNmTVmIv3KlBIeJWxq0YoUE+tKClxfZoYM2G6QkJrl7V5uNuXPJxYvj/jAYZC3jqlUye9/NzThrV/yncGGJE7tiBentzQsX5FJqITZWlnunuRLDDH780YwgMaEh5OSh8gxXhARdWTw54QHbvl1OTwtPnsga/FRzFhxYSnZ2lHd5qCv5NOVse0WRQDOqI/H5XEiYVX5vpBsNYeqj+Zw4Qb7zTsqMevpsc9vjtRHvmzfJUqXIUaPUL99RFPKbb8h33YIYPV+9gJ87J5G3DhxIY6PIMHJq+8SIS4u+NcoNbjDIkuj+/dWdSzy7dska0hTPtu8jckj7xGVlDQuTm5ebvHgxMbLG1uygHanw11/kp59qsxEaSmbLZiKeuKLIQzBvnmSgMCXm8TG1Gzbkvkrfck/HBRKk2sxQnck5e1ZC2mqlWjUN68WDg8nTp/nfFwu5u8JAUc5cuUyfe5Ei0tqYO1cClye710FBcm21Lsnr2NGCSIGpsGOHrD4z2dBTFHLbarJR0cTnd+CnEjY4CSEhpIuLZMbTwuDBIr5GYQhiY8hl3yW+v5PakBGpxzg9ckRlAqQky8Fi5rqxSb0AfvWV+iiDiiIr+kqUME4UpIu37fFaiHd8Io45c9TbixfuatXihMFoHbj5An7/fjqp+pIf9N9xiRXAuKYJEdkmThSnUUuI0+BgsmTJdFr8h3eSrd5OrAS/qE9eM46vuXgxWaeOtjXNiiIhz7Vmvdq8WYKsmHVAT09x3wYOlOglWbOaFjVAWjjNmklrado0CXx+6VKaSrZ/v3WCojRqJLHJUyUoSLLobN0qWVUGDCBbtJAaOLXzyZJFbtq338rD+OCBWTewSRPtKTgPHhTh1RLGVlGkl2bevGQ/3LwkUdHin9cWZcgDqT/gu3fLknQtDZKoKMnBnZATPCyQHN8y8b1dM9qsk123TlIP37lj5oFNrOMOCJDIfloEnCQXLJBMf/F5AnTxtj1sbsw7nvixjrVrg9CvnzMWLgQ+/VSdLRIYOFDm7+zbB+TNG/eDhbPQnz+XOVM9egDDhllQgNMbgZldgagwoHBZnG60Ba2/roAzZ2S5s1oGDpT5XatXp7NhdBSwfDow71cgIkwG+Nr1AQb+hsis+VGunCzFbtRIfVkOHgT69AFu3tQ2hv/VV0CZMsDw4Sp2jo0Frl6F4nERM/tcQr96F+F48zLg55f2fs7OQPHiQOHC8ilUCMiXDxc882DX6bwYPsEZyJFDZmFnywY4Osonc+bEAVdSBhujo+UTEQGEhgKhoZjyczAaVQ1AzTLP5SHy8wN8feXz6BEQFJR2+QoWREz5yph7rCoG/F0VDtWrApUqqZr8MW0acOkSsHSpxbsmQAKVKwN//gk0b67ezrFjsoz89m0gW/RzYNbPwNq5MgidJSvw1Sigx/eAU9qTFHv0kHmM8+apL8vDh0DNmsCGWbdQ/9jHgPdNwDGrLAOr295sO9OnA7NnA8ePAwUKpLFhGuu4AwNlwYWrKzB3rvr3aetWuTYLFwJNm+pj3jbHy249qCW+xZUvX1DKLFOeq8kA87IzpPC4k2NmJLaICPEUBgxQ6aHe90iIyBb8aU6emqshVRXJY8ekZW1RfnGfh+T3HRO9mjq5eeDL6WzdXGMCbUpv7dSp2mwoinhRWqOR3b0rPTUJPH8uF2zhQnLECLJ9exnozJs3dc/2RX/y5JEytWsnyakXLCCPHjV6aIsX157G88YNuTZavDqSnDlTkttopc2H0dzTcxZZN2+SLvK25OMHZtvw95fh/YOmgxyazdmFOxn4aS7xtvsWJ++qmw8zZIh0iqQamc2MtJ6qPPDAy+SD5UZfnTgh93vqVN3ztjVs3vM+dSoItWolaXF5/QOc+hzIUgRoegrIViJVG6l63MlJwwOPr107dRKHav16dbNKo6MB+9CnuNKrHVwdD4vH1vE34NMRFk2XDQ4Wp69aNeCnn4AvvrC8LDh7GLG/DkSmOxcBAJGF30aWUVOAxh9ZPHXXz08cx5o1JdZHqtc4HR49Eg+sRw+xo3YG8YMHwJEjwLJlcs/TJTRU3K7HjxM9Yj8/hD4MgPeV54C/P8oUCkWmCPGiERFh7GEnJXPmRK88SxYgZ04YsmTHvWc5oeTKi2JV8iJHybzi2RcqJF5+0aISpCZHjnSL+sEHshS7USOgdGk1V0ee5XLlxKMrV04OrYagINn35ElZml+kiIqCHNmJyF+/RxbvGwCA2NKVkemnGUCdJhaXZ906YMQI6VWIjpbgcBaVZesUYNVwgAouRdVDhYXrwVyF4ehocVGgKMb1hb19kufZgshpFnngEd7A/jpAxEPAbSlQqnvCTzdvAs2bB8PLS/e8bYqX3XpQS6otrqgAclcl0h3k7nfI6JSTkWJjJatUmh53clLxwMeMMaMlbQajRpE9e5JN34uiYV7fxPG0aR3SnAiTnL/+kmQJrVppG6N2/yeWI8rOZ0CVgokeT6+mFsdK37OHzJ2brF2bvHhRfXmOHiWdnCSPspa818ePS8asIkXI5cvT3z41Dh6UCdzZs5Pu7urtbNokNjJl0jYf4J9/ZI6eg4M2D3PnTpmb4OQkeUfUcvmypBbNnVvF/bpxkeyTGKM/qEp+ji47myuXqUu0Q8q70KaNvBsWTaaLCidnfJ7wPhrmfMkPmkWyWzeZEa+WiAiZu9G/f5KxdDM87uQk9cCXLUslF1FMKLmnutSJO/9HRqWs8G7e1D1vW+P1E2+SDH1Abi4kD+vhVqTB+IletkwquYoVzRTueJIJuOfJc7Szk4pOS3ap+JzOAPnDD3Ev4J55ZKdMUmn8UJX0u2+WrZYtxU7dupJgRC3DhsXlmygczGc/jSBdnaQyrWRHDu9qdrfl0qVip0QJlUkl4jh2TOyULKl6cjhJ8vHjxInXWtKmhoeTmTPLxG6L07gmISpKViY4OGg7r8jIxPlr9zTk3AgNldSbQDqrJdLh2TOydGmx8/ffZu7k85Ac2UOesYog38nMgFE/sHyxQALalir6+8uwFiCT8sziqSc5rLq8gx0dyJ0zGRujcORIsZM/v9w/tZw+nTiH8s4xy4U7noAAsmpVeYYWJF91qsSSRz+WunBzATLE9JpEfcKa7fGKh9dSSXYX4N2tgENWwHcn4PFtQvSoyEhg9GgJmuDoCPj7W2DXyRn4YidQoh4QGYB8O96Ha+HzqFBBWwCGXbukN7ZKFekWzpQJQLOvgTEHgFwFAc+LwIiawOX9adoJCwMOHADeegtYsgTIn199mc6fl57bbQdyIt+vE4Ct14EPOst13LKMzdbCAAAgAElEQVQCaP0/CUMZmPYF9PGRHuJNm8SeWuK7BP/+G8iZU72dwoWl93r4cAnTrZasWWUooGNHbUHdHB0lTLirq7bzcnICRo2S7tdixdTbyZ4dWLBA/q9lYmG+fBIWPXt2eQbSJPA5MPVH4IO3JUoaCbRoD2y5hty/TcaWA7lQtKg8k2rJmxdYvFiGAg4fluGlNLl2CBheE7h/HsiZHxi9D2j5DRwy2aFrV7lfz54B27apL5O9PVCxIlCl0CUU3KU+ycjz51JnGAzAmDHGaQFw8XvAewtg7wTU3wzkeAERHXVeDC+79aAWs1pcjzaS7nbS6rwhfWXTpsl68JUrNUzKiQxi1FzxwCPG5mGMl+X5wJPy2WfShW/SE3zqlRjQpYM9uXVaqv3hW7eKd6HF4ybFfPnyxutAE7h8huzeKLErvZYzOX88GWa6a3/gQDOXzaXDyZPaA4jE8+672rzleIYNY8rJkio4dUp7ABxSvEBr5fPu00dFikoTrFtH9uuXyo8R4eTCP8g6uROfp64NyIsnU2x644YMmWidSPf8uQRPWr8+lQ0Uhdw5Uzzt+MArT1L2MkVGyj376CNt5Yl9fJHhv4jHHTXbMo87KQaDDJ2UKUP+/nvcl7f+krrPHaTX2jT31z1v2+P1Fm+SvDkt7gG2Y6zXRq5YoW3tdDwnDgYxco76fODxREVJIJW0N4ogZ3VPHAef8YWMxSXj8GHrnNvz5zJmmSqKQh7eQX5aNbHSbVCIXD6djDRWxZMp62FV3Ltn4RBHGniYtxAhXS5etF4+by3zAZJirXMLDCRv37aOrRTPQFQkuXIm+V6RxOenTRVZr53GBb12TXvDlJR3zuS8gKgIcnbPJO/Z5xJMKQ327NHQEEwyxh01243H9quPnBZPVJQEzIt9uI10t5e67/rEdPfTxdv2sPnZ5unOMiQBjwHA3bnSjd7oMJC3pnUKYTQLPTegMRZ6mpDArlnAsiGAYgBKuQLfr38xiU1SQ1GAHWuAmT8Bj+7Ld4WKyfrbtr0Ax1c0XaTOyyE6WrrF5/+WmOWuqAvwzTjJdqcp+LdGnnoCUz8D7p0D7OyBrpOB1kMyLu+3lfNxGxF4ETjwLhAbCpT+EqixIN3z0GOb2x6v55h3UuzsANe/gMItAUMEcOwjIPyhdWwbjYEHAiuaAT4aBubSws4OaPWtjL05FwAeXJAxuQu7M+Z45mBvD3z4ObDtpuQKL1wC8HsM/NofaFUWWDNXAsDovNlERwPuf8uY9i9fi3AXKiapOrffAj7p9nKF+/J+YHgNEe6c+YBRu4EPv7NN4Y7wBo62FuEu2BSoPjfjzkPnpfL6izcA2GcC6qwFnCsDkb7A0Q+BmBDr2E42iQ3L3884AQeASo2AP84Db9cGwgKAiR8AGyeKF/yyyJwZ6PAVsPM2MGqW5FD2fZQo4iv/AiLC07ej83oRGQGsnp0o2j5eQP7CwPDpwM47QKd+ULVQ2lqQwJYpwG/NgRB/oEwNebfeeT/jjpmRwh0bBhz9CIh4DOQsD9RdB9irTbGo86rzZog3AGR2Bt7dBjgVAoIuAac6AzRYx/aLFvB8xYGxh4AmvQEqwD8jgSmfAmGBGXdMc3B0Aj4fAOy6KyJeqJiI+MRBQPNSwN8TgOCXXEadjCc0GFj4h9zz8d8Yi/bue0DXQemGNM1wwoOBqe2AlUPlHXqvOzDuCJBfZVQac8hI4aYCnOoCBJ4HHPMD724HHK1kW+eV5M0RbyBuCdkWwD4L4LNdllFYixct4JmdgL4LgK/+BjI5Ame3SDe61+WMO6a5OGUREd95R7pGi5UCnj8FZowCmpYAJn0voq7zevHEG5gyTO7xn8MB/ydAkZLSkIsX7Swa1udZi0fXgBFuwOkNgENm4MvZQP8lEqs8o8hI4QaAyyMA7036krA3CJsT79mzZ6NixYpwc3NTZyBvLaD2Cvn/7RnA3fnWK9yLFnAAeL8P8OsxoIAL4HcXGFUHOLwyY49pLk5ZpGt0x23gj5XA25WB8FBg2TSgRWlgRHfgWgZfH52M58ZF4KdeQLNSwJLJ4nmXqQBMWCYNuM8HvBqiDQDH1wIjawM+t6QHa9wRoEX/jB0Xzmjhvr8EuDlJ/u+2GMhfz3q2dV5ZbE68BwwYgGvXruHMmTMpfgsPB3r1Ai5eTMdI8XZA5d/k/x4DAL+9Rj8vWAAsWqSygHECHp5PBJwaBDwyEujXz4xAMm/VBH4/B7zTDIgKB2Z1BRb0A2JksthffwGnTqkqQgKnTycG77CYTJmAD79A1JpLWFx7JxS3xpLha8tyoH0NoFtDYM96+c4M5swB7t5VWZY4Dh0Cdu7UZuPZM8nCpZW//ko/sVl67N0L/PefNhuensDMmWZubDAA/20GejYBPnMFNi4BYmPAGg2xtPY2RKy5IhPRVGQ2AySr2bFjqnZN4Ny5JPcnNhpYPBCY3gmIDAUqNU6cO5IGgYHyDkZEqCxEEuEOy61NuFeskIxkRjw5CJz7Sv5f8Weg5Odp2rh2DejeXcLw69g2NifeqXHvHlC3rkQZe+stM3YoPxJw6Sbj3ifaA8HXQEr0tfHjgXoaGq9X7zij6qSd8HOsBzuVHriiAD17Sj6M3Oa86znzASN3Au1+Fi9i7zzg53dxapsnfv1V8luoxWAA+vfXFnELAFastMMqz5awX/ofsOY00PpzEfZzR4Ah7WSMdM444KlvqjYiIiQ6mpaoZgCwdi1wWeMIg5eXhkZeEpYsAe7f12bj6lUzUr+mQ9aswMiR6VTs/k+A+eOB5qWBb9sApw/ITPFWHYHVJ2C3/BDW+rTGkmXaHhYHB3nmzGzPmaRIEeCPP4BjWx4CY94DdsW1TNqMAH7aI6s20sHZGXj6FOjaVcWc0CTC/czJDa5T9uDiTfUed+3a0hgZPjyuLCG3gONtAcYCJToBFcema6NUKbmmdeoAt26pLorOq8DLXmiulqSL83fskDjDU6ZYGDQjNpL8rwHpDirb32K/L5+xWjXS21t9ua5ckTjlixfT7HSiphg5kqxRQ2JNW4zHTrJnXrI9GPBpHh6fpSGTB8m5cyWxiJboVrGx5Ntvm0i+4fuInD6SrJ8/MWDHO5nJ7zqQx/emOOiGDRIhTSu1apH79mmzsW+fJN/QSuPG5I4d2mwcPiwZQ7XSpIlE6jLCYCBP7Ce/70RWdUy8T/XykVN/JL29jDY/eFCiGJpMkmEmiiL3ecYM9TZI8uT8XfRvk0+CrvTITZ61PNVueLgkHvrhBwt2MpFkZMUKSb954YLFRUjAz490cyN7dw+gYXs5CcKyrw4Za36kGEWR65ovH7l5s3ynB2mxPWxevEeNCmKhQuT+/SoNRT6lYWtp0h28OOM9BgeqzzRgJNwJ9i0X8IULSRcX0sdHdVGo+D3gzc9qJUaLWjWCjLW8Nn36VBpGZ9WlLk5g3TrJ4JZq4yoqkty6ivy8XqI4VATZvDQ57zfysSdJslMn7RV6dDSZJYtEktPCv/+SH36ozQZJtm1LrlqlzUZIiCTI0Rr2dd48KQ9JEeW/J5Atyxrfk061yc3LU0TTi0dRpLGnNSzuxYuSUl3Ve2CIJdeMJjvYke3BW22r0+BtOimHOfj5SejR2bPN2DiN7GDWEPDQ4Gien/4+6Q4atpQgI9Rl/Dl0SOqrn38mAwJ08bY1bF68q1cPopdX+tunxqNH5KdNrjB8dU5pxZ7uqSrmpUnhjscMAVcU+ezeLWJ55YqKk4k/XKSkBq1RNYoxf3+bKOA/NyCfPTTbjr8/2bs32bev+rKQpKcnWbMmuWaNmTtc8yDH9Ze46UlEI7R9Y/YtvISPb6p/Uf38xPt/6y3VJkjKczNrFtm1qwinWkJCyC+/JP/8k3xo/q0xSYUK4sFr6Tl6cj+YfQotY0jHplTis3tVBOmWkxz7NXnFvFbchg2S6crTU1sI2YEDyW7dLAyN6/+YHNs44bmPndeXdWtGcMoUbeGDb9wgCxSQFKfx72sKzEjrqUnAFYU8+zXpDkaszs62TTw013916pDNmunibWvYvHj7+am7aQcOiECWKCE5uZXHOxJjAd+YbLadjRslXWWqwh2PkYDnJh8bV4JHj5KTJ0tXlupeBJI3b5IdOojHcv163JfH1pLdckpl1iufdKung7e3eMoFCmiLKe7vL9cmf/4k5TGXsFBywxKyR2MjEY+t4kQObkfuWS/JLSzg/n3JnV2gADlzpoXlScLJk2InZ05Je6qW1avFRqZM2hKBzJtHFiokdm7etHDnyAhy/ybyuw6MfSeLsZfdrSG5fhEZalkL5eZNue+FC2tLBRsQIDaqV5eGQLpc3EN+WUCe9S7ZySPSpXH7trxbnTqlE7c/HQ4dkndr6lQT+c4tyMcdL+BHj0qvlNkkJBuxo/JoM8ePJ4sVk14KtSlcIyPJL7/UxdvWsHnxVnPT7t0jnZ1FUBYuTPLDrRlxL4Y96Z3+IGR0NFm2rOTRNStncRoe+KefSl7f7t3JsLRzIaTJzz+LnYoVk2UF87mdmJu4PcjVI9PsRl+9Wuxkz05u366+PCdPip3MmbWNMfuce8BR+X/l9bLljcWlRnYZH9+51iyBiYiQ8uTIQT55or48UVHS9Z49uzbPOzxcnsXMmbXlF/f3l9ziAGnWKxEWSu5eJ+PYbjmNrumtt8txdP5f6HVcfWLwQ4dIR0cpj5ZGye7dcq+AdBpJhlhy7ZiEbnL+8A75+EbCzzdukO+8I3aGD1dfnvBwybgGkK1bJ/nBAuGOZ+lSaWy5uJjZI+C7l/zXIc7BmJTw9bJl0jDJlYu8dcviUyKpj3nbIm+ceCsK2aqVvHx58ojXbPTjmd7ycmzISQam3Xc9Z47YcXQkJ0wws3vQhIDfvk3a2YkY/P67NArUoCjSmHByksZEivJERZAL+iUK+E/1TKY7JKWCypRJ+1jsihVyjbTauXNH7Mybq0i3+uShZJPixkJe1ZHs00IyVj1MXXhy5ybHjtVWHlLSr1ojTWmfPjJGrJUJE8isWdN4Dh97kqtnk1+3Il2djK9do6LkH9+RV85y8SKFgGTx0oK7uzzXixZpt+PomMa1fupF/tww8bme18dk1r3Fi+X6uLion3wZEyM9ZFmzMvEaqRBuRRE7Tk5iZ/r0dHYIvkFuzC1106luRjf51CkRb4Bs2lTdMIUu3rbHGyfe7u7y4n3zjXjgKTBEkf81lJdkWyky0nQOwpAQskgRGY97YFr/UieZgE8cdI5Nm2pPwXjqlIh3umkhj60luzknzsA9tSHFJq6uZqQqNYPRo6WS0sqVKzI5zKhiMhgk9/PkoWSLMsZiVBFkq7fJ376RVJOhwQm7NWhABgenPIalDB+uvqsyKceOkd99p91OaGiy2e+hIeSh7eSEgWTr/6W8Ps1KkZO+Jz2OG6mZosiktfPntZdpxgzyxx+129m/n6xc2YQwnd2asLKCXXOQh1emaefyZfJ//9Oeh/3ePbJFC/KXfhcsFu6keHmRPXtKF3pgYCobRT0nd5SVOml/XZMzyx88IAcNIrNlI1emfQlMoou37fH6pwRNgsEALF4MfPopkD9/GhtGPQP21wbC7gEFGgEN96QI8H/8OJAjB/DOOypPIEk60WiHPMjcax/silZXaUw4dAioVk3WpqbLk/vAjM7A7bjoLS0GSBpEx6wICQGuXwdq1dJUHAASaKNePe0BrDw9ZR1ywYKpbEAC924Ah7YBB7cCF47LDY/HwQGoWANwa4Q7uRugbNs6QJ60HoL0uXgRqFJF+/p3Umy5umqzg0B/3NlwCmWDjgBnDgJXzhhfA3t7oGpdoNFHQKMPgbcqpnpj/P2BoCCgjBWibB47BtSvr93O+fNA6dJAnjyQAESrfgR2zJAfy9QABq8BCpdN105oKHDmDNC4sbby0Ociohc1hZNBe+S0K1eAgACgQYNkPyixwNEPJJBUNheg6WkgS2ovgdy3DRskRkSmTOYfX08Janu8UeJtEUFXgf/qSGq9t/oB1edY/xhG+cDzAN32AUW0CbhFxEYDq0cC26bK3yUqSwVYotKLK0NGERIEnPoPOLYbOL4nMd94UlzeBqrWASpUBypWB8q7AjlspAIIC5GwpNfPA1fPAZdOAg9MRN0oVgqo2wyo3wKo0xRwfg2SVTy6Lg1Pz7hQiq0GAl0mSbz/F4XvRWB504wLeRrPhSHA7emAQzagyXEgd1XrHwO6eNsiuninhfdW4NgnAAhUmwWUHWD9YxgJeG6g6z6gaA3rHyctLuwCZncHgp4AmbMAXadkfLznF423J3DmkHikF44D92+a3q6oi3ikb1cBypQHSpYFSr4N5C/04q8HKRHNPG8DXneA+zeAO1eAO1eBxw9M71OqnHjXtRoDbu+JeL8ukMD+BcDSwUB0BJAzvyQUqfHhiy3HixLuewuBc33k/3XXAcU/s/4x4tDF2/bQxTs9bvwuGXvsHICGe4GCGvvaTPGyPXAACPQD5vQQIQeA6h8C/RebFULSJgl8Dlw+BVw+I97rtfOA78PUt8+aDShcIvGTrxCQtyCQtwDgnAfIkQvImQvIml1SozplATI7AogXfAIx0UB0FBAVCUSESe9AWDAQHCAi/fwJ4O8H+D2Ssvh4pZ0HvXDxxF6DSjWlFyF3PmtepVeHEH9gXm/gzCb5u8r7wDfLgTxFXmw5XpRwPzsKHGwCMEbCnlYaY/1jJOFNE+85c+Zg8uTJ8PHxQaVKlTB9+nQ0SDFmISxduhQ9e/ZM8X1ERASyJInTbIlNa/B6infYASBzKcCxtPYDkcDpLoDXasAxH/D+GSC7Fewm51UQcEWR+M8rh0mXeq5CwIClgGvLF1uOl0WgP3D3mni2d65KN7TXbfHaLQ5sbSXs7KQ3wOVt6QEoW0mys71VUfOYvc1waZ/0DAV4SwrPzhOAD7/TPtnAUl6UcId7AftqAlFPJYlSHXfr9PrEeAFRN4EczVL89CaJ99q1a9G1a1fMmTMH9evXx/z587Fw4UJcu3YNJUumzOe+dOlSDBo0CDdvGvfWFS5cWLVNa/D6iXfAAsDnayBrHaDUYcDOglkbqWGIAA40AALOAbmqyNhTphza7SbnVRBwAPC8JGOKj67J3837AV0mA1myv/iyvApERwE+D8Ub9n0onnG8p/z8CRASKGkwQ4Ml5WlMVOoZNTJlkrHZbNnFW8/hLP/Ge/L5CgIFi4l3X6SE5MN2fIFjua8SUeHAquGJCUWKlQcGrgZKV3vxZcnotJ7xxIZLXRN4HshVFWhyDMhkhfeOBsCzCRB+GCg8G8jb3+jnlyreAd7axDtPUYvKXbt2bVSvXh1z585N+K5ChQpo06YNJk6cmGL7pUuXYvDgwQgMDLSaTWtgBWV7scyePRuzZ8+GIeks2qRkbwbY5wQiTgDPJgAFftZ+UIesQL1N0hoOugyc7gHU/df6Y6Dx+cBXtgQenZBsZC9DwF3eAX4/C6z8USrOPXOBy/uAb1cBZVXmUbdlHJ0Al7LyMReDQbrJk5LZUWa966TPvfPAzC+Axzfk72Z9gW5TAadsL74sL0q4SeDslyLcjvmB+putI9wA4D9FhNs+B5CjhXVsWotbRQG1vlBcBrzg4GCjr52cnODklLLRGx0djXPnzmH48OFG3zdv3hzHjx9P/TChoXBxcYHBYICrqyt+/fVXVKtWTZNNrdhcStC08nkDABxLAUXiZoY/HQdEpLKdpWQrDtTbANhlBh6vB66Pt47d5Dg5A112AcXrApEB0k3nfS5jjpUWjlmBXn8Bo/cB+YoDPreBn+oC7mOkS10nbRwcgCxZjT+6cKePIRZY/xswqo4Id54iwMhdQJ+5r7dwA8DNycDDNdJbWG8dkN3FOnYjLwBPRsv/C80AHM3JmWxblChRArly5Ur4pObtPnv2DAaDAYUKFTL6vlChQvD1NZ2KuHz58li6dCm2bNmCf/75B1myZEH9+vVx+/Zt1Tatgc2Jd1ooCjB3LvAs+nPAuQMAA/C4K6CkMenHBEePAidOmPghf73EJWNXR8ts9FR4+hRwd7fosInECTiL1wUiA8EV72sS8H37gCdPVO5cpSkw+RLCqnYAFAOwbhwwsjbgZXkybEUBduwQB0MLx44ByRraFnP3rny0EB6eynNiISdPppND2wzu3wfi6hLVhIbKs68FEti503h5udk8uiYNxLWjAUMMwiq1BaZcBlzVeYrPngF79qjaVfC7BMYJNzUK97p1gJ9fGhv47gIux3lurjOAAu+l2OT0aYnlYBFKJPC4C4AYIGcbBLAnZs9WeX8yinLeQPlQdZ9y3gCAhw8fIigoKOEzYsSINA9pl6zXlGSK7+KpU6cOunTpgqpVq6JBgwZwd3dHuXLlMHPmTNU2rcFrI96ensD77wOLFgHBIXZAkblApiJA9E3A70ezbJDA1KlAmzbA8+epbFSmN/BW3HjRqS+A4BspNrl1S5Ldp9Y5YFZZHJ3xg8cuXHxeF3aRgYBKAT97FujYUa6PWpRsefDhvrVYV3wNkCMv8OAC8GMNYONE8ZTMxN0dGDlSm3hHRQGffAJ4e6u3AQCzZgGrVmmzcfu2BMPQyldfSVAcLbi7A3/+qc3GkyfARx9Jo0QLY8YAK1dasINiALZMAX6sDtw9C2TPjS2lVqL5nnUwZFM/e/7RI6BzZwmoZDFxHrddhD+uBrph0Jk9UBzVe9weHlInmLzPoXeAk50BECjdW+JKmCAgAGjXDvjjDwvmTz4ZBURdBRwKAkX+RnCIHVasAJo0Ae7dU3s2VsY+u7YPAGdnZ6OPqS5zAMifPz8cHBxSeMRPnjxJ4TmnWlx7e7i5uSV43tawqYqXEdbNGsSHxQsMDOLixZLpZ+zYZHHBQ3aTVyGfkD1p2gsIkOQgrq5mhCk1RCeGUN35PzI6Ma7h4cOSsWrWLPXnpihk//6SSem5j+X5wOPx8iKLFiXXrlVfFlIyKNWqFXdtA3zIPz5OjCM93I18eDVdG1FRkg9Za8hVd/dkIUBVUrOmtkQppOxvjbI0biypPLVw5Igk3tBKkyYSj14L//0n2frMyi3+6Do5sk7i8zShFen/mLGxcm0nTNBWlo0bJdva/fsW7JQsVnmgbwBr15b0uGpjopPk/PmSDMkoG1lMCLmrUpLQp2lnKLl3j6xRQ0IFp5uPPvQAedVO6r/grYmHjCHHj5fcDvPnS33zJoVHrVWrFvv162f0XYUKFTjczIw1iqKwZs2a7Nmzp9VsqsHmxbtlyyBWrEieTS3NsHd/eXhvFiNjTT/tHh6S37l3bwsyO0X4kluLy0t35CNSMXD1amlEbN2a/u6pYSTc8cU1Ix94UgwGib1etSr566/qyxIeLrGg8+RJlmZSUciDyyQuenuQnR3J9ePJGNMZVfz8JP1mkybacjvfvk22bJlO6tV0iIqSPMpZsmjLBubtTS5ZQn7yibZsYOHhZPv25IIF5OPH6u1ERMg5eXhoy0q3cqU0JrTG2W/ZkpwyRe69SWJjyE1/kJ87yTPUzZncv8joAbl7V94nDw9t13jSJLJSJcm2lq74ppJkJDCQVhHwnTslicjy5ZRzPdZW6pAtRchw8x6AiAiyXz+yVCnyzJlUNooNIm+5SN33uLfJTTw8yCpVJFHTjRtvjnivWbOGmTNn5qJFi3jt2jUOHjyY2bNn54O4JBVdu3Y1Et2xY8dy165dvHv3Lj08PNizZ09mypSJp06dMttmRmDz4v3NN0Fpt/ANoeTtsvIQP+qS8PXjx/ISLFggFYSqnMz+Z6iscyLdwSPzfmbRomk0ItIhNlYyb6UQ7njMFHBFkYQZH39MdumiTSw7dpSeiFR7EfwfkxNbJ3pN31chb59OsVnjxtIbkeRZV0WlSpJ+dckS9edlMIjI5cgh3odarlyRNJ7OzuTs2ert/P23pHLMnFlbIpA//pCyODpKA0UNiiJet4MDWa6c+rKQIgz58pENG5r48d55cqhr4nMzvqVkBjPBggVy39u3V18WRSF79ZIGxfDhaTw76WQHSyrgq1erz/534QJZvDi5f9ZvpDuo/OtIPjthsZ1Vq6TumjNHyuKV9BI+7iV13q1SZGzqWXgiI+Wa5M375og3Sc6ePZsuLi50dHRk9erVeejQoYTf3nvvPXZPksJu8ODBLFmyJB0dHVmgQAE2b96cx48ft8hmRmDz4m3WTQs7Tl61j+s+2sTYWPECmzQh336bvHRJfTlWjV8WlwMc9Lug3uVevFhScL7zThrdYWYI+JEjkhowVy7ynPk97Cnw9BQ79vaSGSpVFIU8tILslU8q4g725IphZKS4f2FhIgYA+fXX2hoT2bKJndWr1dsgJSWovb30KqjFYEgUS39/9XYCAyXLXdas0p2pluvX5fnJlk29DZJct06ucaZM6u+VopDffit27OySZHCLipA88h0d4jLa5SEPLEnzQHPmSFkASQurlosXE9Nm7t9vYgMz03oGBkrjOlMmct489eV5cnkXDWvtSHdw5a8LVNu5epUsX17qsgYNxAlg8I644UI7MtQ8Admz580S79eBN0O8SdL3R3mgbxTi9KlPCYiobNqkvgxnzogI/NXzG2lBb8hFBt+y2E54uLTEAenqvns3jY3TEfB27cTO+++nkvLUTP78U+x06iSpJtMl6Ak5vXOiN/VNGdJjF48fFztffaWtuzE8XOx8+616G/GULk327avdTtOm0juhla5dpeLVyqBBMsdBK99/L9daS32oKJJ2FyAPHiR5aR/5bdnE52NqezLAN1074eHSgwRI74JaHjyQFJ6A9EoZYUE+7gcPZMwZIAsXNvPdSE7oPSob85Lu4Lw+X9HOjjThyJnNjh2JDZw/JjwnbxaVus5nsNk23qQx79eFN0e8DRHknUrkVdB9WntWr65w5kzy2TN1x4+Oli7lSpXIJYuiaNhbTzzwXRXJaMuSRU+aRJYsKeNgsbFm7GAk4LnJx9JX//xcZYAAACAASURBVOCBeBeLFmnzcEmyUSMZs7TYzpnNZN/iCZX0jf6d+UNvH03CTZIPH5J16qjvEk5K48bkkyfa7YwaRe5Jex6kWRw8SA4dqt2Ov38q3dQWEh0tjYk0G5FmoCjk8P5+vNK3a6Jof1WUPLneYjszZpD16mkvz7JlMmkswYu3QLjjMRiky7p0afK33ywsREwoufsd0h007HHj8qURrFJF6hG1z/bz5zJ0U7MmufKPL0S4b5cjDeZPftDF2/Z4c8SbpCHsLGMvZ5KHO1DbFOwTJ2TySYK4hXvLpBN3kMfbm616MTEyhmvWzNykmPDADxzQNukpnrCwVLoWzSU8mFwyWLrQ24NKN2dy50zSYE7LxDReXiLg1iDVST4WcuGCtt6EeBRFxoitgbXOzdvbwhnayTEYyD3zqMRPauxgRy76hgxTX8kePJikC14Dvr5xM75VCHdSoqJkrozZoqso5MkvpI7YXJAMe5jw9Z495NGjlp1HCoI2kldBwxV7xoZYNoaui7ft8frFNk+PJ2OAZ+MAhwLAW1eBTFbMmuV/AjjQEGAsUPVPoNxg69k2xasSCz017p0DFvSVtbsAUKYG0Hvumxli9U3i3nlgUX/g9in5u3Q1oM88oGytl1uupLzIyGnx3JkDeAyQDIXv/QcUaGg924bnwN1KQKwvkO9HoNDvFu3+JiUmeV14bYK0mE2BUYBTZcDwFPAdaF3b+eoCVafJ/y8NBZ4esa795MTHQi9RLy6U6vuAz/mMPaYllKkBjD8JfDkbyJZLxHxkLWBOLyAw48IG6rwkgp4A8/oAI2qKcGfNCfSYAUw4rQu3/0ngQlxjvsof1hVuAPAdIsLtWB4oMNa6tnVeSd488bZzBIouAeAABK8Bgjda137Zb4ASncX7PtEeiNAYCiw9XnUBt3cAWvQHpt8AGnaV7w4uAQaVA7ZN0+Okvw7ExgA7/pJ7+t9CCaFXvzPw5w3gg4GAwyuU/+hlCHfkE+D4Z5Kbu1hboNx31rUfsh0IWg7ADii6GLDPku4uOrbPmyfeAJC1JpBvmPzftz9gCLCebTs7oOYCSR0a5Qec7AQoMdazb4pXXcABIHdh4JvlwG8ngLfcgIgQYPn3wPeVgbNbtAc813nxkMD57cDQd4Clg4DwIKB0dWDcUWDQaiBv0ZddQmNehnDTAJzqDER6AzkrAG5LrZuN0BAkKZABIO8QIFtd69nWeaV5M8UbkFShjuWlq8nXyi3hTNmBuuuATDmBZ0eAyyOta98UtiDgAFCujnSlf70AyFVQspVN+gT49X0ZK9WxDR5cBCa0BH7/ULJ/5cwv49oTTwPl67/s0qXkZQg3AFz5GXjyH+CQHai3Hsic07r2/YYBsY8Bx7JAwV+ta1vnlebNFW/7LEDRRQDsgKClQKiW9EMmyFlOWtkAcGsK8NjK3fOmsBUBt7cHmvYGZtwG2gwHMjsBV/4DhtcApncG/F6VjAk6KXjqCfzVBRjmClzcAzhkBj4eCsy8AzT7WoZJXjVelnD7bAduTJD/11wIOFewrv2wA0Dg3/L/IgsB+5eQMlXnpWFz4j179mxUrFgRbm5WmLGcrR6Q91v5v8/XgBKm3WZSiicZ3zrdQ7IHZTS2IuAAkM0Z+Hwi8Od14N0vpDvx+BpgcHlgySAgMK0cijovlOCnMswx+H/A0bh0bPU6yb3rMkkmJL6KvCzhDnsAnIqb41H2G6BkJ+vaVyITu8vz9AWyp0whqvN68+YtFUuOEgrcqQjEPgTyfg8UnmK9QgIy3n2wMeB/DMjtCjQ5Djhkte4xTPGqLyMzxYMLwIqhwOV98rdTNqDVQPHscuR9uWV7UwkNALZNBbZPB6LiGreVGgNdJ8tqgleZlyXchijgwLtAwFkgby2g8RHA3tG6x3gyCng2QdIev3UdcNDWeNKXitkeNud5p8epU0C0JROY7XNI7m8AeP4nEHEW3t7Aw4fayhETA1y9CsA+M1B3LeBUAAi8AHhYtjzt2jWVBUjmgVOjBx4amkaOcwvwS8uZLuUK/LRHPmVrAVHhwKbfgQGlgNUjxPuD5DXWSni49jlyigIYDNrLYjBYkJ85FUjtebiBJNc2xB9Y85Nc+w3jRbjL1ABG7AB+3p+mcKd5j80kMBAIDtZgwO8SaCXhtvgdvPi9CLdjXqCOO2DviGvXLKyXTJBQL0VeBJ5Nki8Lz7JIuGNjgZMntZVD59XgtRHvR4+AL74APvkEuHXLwp1ztgacOwFQ8OzyV3B1jcW+ferLcv8+0KAB8NtvcV9kLQbUXg3ADri/EPBana4NEhg7FmjRQkMl5uSMa9V24rRPPdhp6EJXFKBbN+B3y+I+pGDHDuC999IRKjs74J1mMqlt2BbAparMTN/0OzCgNAwrhqNpTT9cuaKtLL/+CvzyizYbV68CFStqswEArq6Ah4c2GxMnAqNHa7Nx+zbQ0PUJYleOAr4pLaIdEQyUqAz8sAGYeAao1irN2dIk0KwZsGmTtrJMnSrvs6rGUZzHbRfhj/N+brjsql64w8KA1q2BUaPMbGA9Wg/cnS3/r7USyO4CAJg0CahfH7ijYeTswAGgenUD/C58BSAWyNkWcG5rkY07d4C2bYGOHQEvL/Vl0XkFeLkB3tQTHxbP1zeI48ZJpqihQ9UnU7h3y49Bp/OQV0Evj2mqy7V2rcQXnzjRROjMKz9LaMQNOcjgmyb3JyVUaufOZLVq5KNHqovCy5fJQoXIlYssywceT3z5x4wh3dzU51QODpbc2SVLktu2Wbizoki89B9rJMTHjmznRM7/mvRRl3T6+nXJDKUlBOyTJ+TGjWT9+pJWUS2RkRJr3d1dwnaq5cgRsnJlOTdV+N4lF/RnZLssiXHIh7qSpzZYHAN2zx6yWDHJwKU2nGlkpMQyHzFC/ja7CMlCnrovD2CBAtrCz3p7y/Pfrl06udJD7pAbc8k7fvFHo58MBskVkDevxEVXy8OLs8irYMhZZ965oS4WcnCwXNfcueXdDgvTw6PaIjYv3iVKBPGjj8hblifzYni4xBafMkUe5O0r/5a459eyk9Gm8wubwttbXoA+fUgXlzQyBBliyAPvycu9+x0y1lgNz5yRCrxOHbJNG5UZiyiicuqUCPeSJXFfmpkPPCkLF0rO66JFtTUixo8XgdKUgUtROL3rFp5pUSdRXDrYk5M/JS//Z1EGlfisUEOHmpkIxgSPHiXm854wQZ0Nkpw8OTGft9oscAYDOXKknFOVKhbsqCjk1UPk1HYJcejZHjzfwo1/dt6oKbtN166S3GbMGNUm6OMj2fZ++42cO9eMHVKJVb5qleSTP3lSUp6qISxMxNvNTd73FDHkYyPIPdXl3d5flzSYTvZ9+jRZpgzZs6e8397eFhQi+jF53Zm8Cu5ZM4u5c5O//y51mJqG9d27Us+UKEEuWqSLt61h8+K9fr26m/bvv5Ky0M1NvKfr10kqBvJefRFwrzZm2blwQbL5VKxIfvYZGZBeboNwb0lK4A7yTJ+Er/38yIIFRfyHDVOf8CIqSrIdZc4s2cWMsEDAFUWypgHk/9k78/AoivSPf3KHMwTCfYPcIsglgggi4rmLt64uoqvroqyi6PoTV1cFFc9dL8ADXQRd71VXRQRUDhHlvsJ9BkhCSCAJuTMz7++PdzqTkGumZzqTIf15nnl6Mul+q3qmq75V1dX1vf9+E8YppRgxQuNccIH2xvyL45JHr14mrmcu84j4dYg82E+9oQurr8UGDND8fPih+by4XGoJGR7un2FKSoraOTZt6p8T3Oef6zn16ePFzoX5IsvmiTw0oMx36HrqEpl2w48CLjnnHPN5yc4WGTtW8zNkiPk4hYVaFkDLV5XfT8rGKk1G3n9fvdfbtzd/LTud6iTXvr02BsoI73q1BZYvm4nkVt3wz8zUhmyPHlr/eG0mc+gGrZv2DhZxOWTXLnWRO/tstYM163O/eLFIz562eIcaIS/eZn60334TiY3VSmH69FOEMn+LSKLbeSz762ryINKtm8YZMcKH1m/qEpFPwrSwJ30iIuqbDdqTW77c51Mq4dVXNU5UlFqNlqvwvBRww4e7eXPzvRURbcxERGhF5a/FZJs2OipR8j0fShR5a6LIH+t7ROjWeHU0O1z5+PHQoSou/tqmXnGFyO9+518MEW30jR3rXwyXS/MyYEAVOyXvEnnvAZHbmnq+r5vribzxZ5GDm0VEhW3ECLXN9If9+1Vww8JEjh0zH+fLL3UEqcQXvCKqEW6XS/3po6M1zosvms/PL7/oKB2IXHWV+xo6/IWW5U8QSV7gVZz8fJHRozVO585eNPpPfq91UmK4SN76ko+dTvU5B5GYGJGVK82dV0aGLd6hRp0T74MHtTKIiBAZOVLk3Xcr2Cn1b1pQdnWq1BPX5RK5/noVyXHj9F63T0NXm6dqYf8iThZ/uU8iI/U+96+/+nQ6ZcjK0nP74x+rGYL1QsBvvllF5ehR8/kRUeEfOVK9pv0hL08bShX6cJ/MEPniWZG7O5Xtjf/9XJHvZ4ucPF5m90suKeXn7AdPPGHiHn4FLFqkw97+cvCgyJgxp3yYmymy+C2RR4eX/W7u6iDy+dMiWeWVNSNDpGdP8/NHDE6cELnwQvM9QoNjx7Rxe911FfyzGuEuzYEDIhMmaMOkWrGsgjVrtIxFRYl880mSyJdNtSxvfMDrGPn5WjauukobFSUNgYpw5ovsPkPrpJTJ5f49b56OakVGamPbzO0X+5536FGnnvN2ueCVV6BdO50R26SyCailn/1uNhVaPlNul3Xr9HXttdDUzCPIrmJYOhIyVnG0eDCOET/Ttr1/z4IuXw6NG+vs5Wop8xx4Exi/BNro4z8FBfDdd3Dllf4vw/zjjzrLNibGvzgpKfq4WrduVezkcuqqX4tmw4YF+jfoCm5nX6ZmGQMuZ/Wm+gwJgMnVxo3Qty9E+LmomMsFmzbB2Wf7n6fVq2FI/3xYv0AXvFn3DRQX6D/DwqH/JTD2Lp01XsVqaPv3Q2QktG/vX36KivS6HDPGvzgAX32l5ba+sZBY6iaYd6HPj4Nt2QLp6XDBBf7lJyXZAT+NpHX0LxA/CEavNPU894kT8Pnnei2dc04FO6Q9AelPQmQb9zPdFdd3WVmwZAkcOAD33efbdWk/5x161Cnx9i2BL+HwVUCU+n7HVKUaJslLgkX9ofgE9HgIznou8GlURSgu5OItmamw4gNY9h4kbfF8HtsQBlwBg8epgNXWlcF8JS8bNi6EtV/Buq/18TqD9n1g5ARdxa62mYWYxaRwB5Stj8H2pyCyMVy0ARp2CXwaRfthby+QQmj7McRdH/g0sMU7FAmYeM+aNYsXXniBlJQU+vTpw8svv8yIESMq3Hfu3Lncdttt5T7Pz88nNtY7OzvLfzQRSLoMchdCw8ugw7eBTwN0zfNf3M9qnr8YWgagi+ILp7OAg/6OBzdrL3TlR3DsgOd/EZHQeyT0vUifLe/UX9ddDwVcLkjaDJuXwOZFkLgUnKXc65q1h+E36mhDp/6BdbIKNrVBuI8t05UTERj6EbS/wZp0Dl0FJ7+E+qOh4xLLfkdbvEOPgIj3xx9/zPjx45k1axbDhw/nzTffZM6cOWzbto0OHTqU23/u3LlMnjyZnTt3lvm8VatWXqdZIz9a4S7YeyZQDO2/hEbjrEln3UTY9ybEtoKxm3U1tprkdBdwAxHY/Zv2Ttd8BUe2l/1/o2bQcwT0PA96na+iFxkVnLyeitOhy8duXwE7foYdK0pWnCuhTQ8YNE5HFboNDZ2GiC/UBuEuOg6L+kH+Yeh0Gwx+15p0Tn4Hhy4DIqDLJojtY0062OIdigREvM855xwGDBjA7NmzSz7r1asXV155JTNmzCi3/9y5c7nvvvvIzMw0nWaN/WhHp0LGsxDVGbpus8bo3pEHSwbBye3Q+ncw/Kua7ynVFQEvTcpu2PAdbF4M25ZCQU7Z/0fF6ApvXQZCp7OhXS9o20tF3kpyjsPh7dq42L8B9q9TC07j3rVBTAPoM0pHDfpfouJ9OlMbhFsEfr0eDn8GDbvBReshsqEF6RRpx6FoNzSdAq1eCnwapbDFO/SI9DdAUVER69at4+GHHy7z+dixY/nll18qPS4nJ4eOHTvidDrp378/06dP5+xAzNgJNM3/DlnzoXg/ZLykfweayPow9EP4YQikfK298K4TA59OVRhroRsCPm/M6S/grbvp67J7wVEMe9e4e7XuV+4J2LNaX6Vp1AxadIaEjtC8IzRppX7WjZtDgyYQXR9iG0BUrKcRJqLiW5inr9wTcDJde8+ZqZCepHabafv184qoH6ejAj1HqGf2GUMgMsCGF7WV2iDcAAf+rcIdFqlLHlsh3AAZr6hwR7SE5o9bk4ZNSOO3eKenp+N0OmnZsmWZz1u2bElqamqFx/Ts2ZO5c+fSt29fsrOzeeWVVxg+fDibNm2iWyXTiQsLCyksLCz5O7vKBb9XAJ0AP6fKghqXtHwejtysLj5NboWotv7HPZUm/aDvs7Bpir6ajwy8/2911EUBN4iMgh7D9DXuIb2nnLYP9q2DvWt10tuR7SqyJzP0tXetdflp1l57+u37as+/6yBo2fX0HAqvjtoi3Cd3e4yFznwKmg6yJh1HKqRP1/ctn610drnvJAM7AT+n2dvUCvwWb4OwU4Z5RaTcZwZDhw5l6NChJX8PHz6cAQMG8Nprr/Hqq69WeMyMGTN40isniUeAGcCfgbe8y3x1NP4DHJ8F+Ssh7WFoOz8wcU+l22RIXQhHF8FvN8GFvwXeSrA66rKAlyY8HFqdoa9hpSYjFeRA6h7tJR87qGKenaY96OxjauRRkAtFeVCUXzZmdD1Pr7xeY+2pN0qAuBaQ0MHTk2/dTWfF29Qe4XY5YPUfwZkLzS+AHn+zLq20R8F1EmKHQNwtAQw8A3gdmAJYOwxvYz1+i3dCQgIRERHletlpaWnleuOVER4ezuDBg9m9e3el+0ydOpUpU6aU/J2dnU37Ch9CvRy9SOcCjwLlJ8z5TFgYtHoF9g+CrPeh6WSoZ0GrOywcBs+FRX3VPnTbdDhzeuDTqQ5bwCsntqFOZOvkzcP0Nn5RW4QbYMcMOL4aoprAkHlaVq2gYBNkuifAtXo5gOkkA2+7318eoJg2wcTvKyM6OpqBAweyePHiMp8vXryYYcOGeRVDRNi4cSOtW7eudJ+YmBgaN25c5lUxw9FhoWIggM9N1xsIceP1fep9/ptBV5pOaxjgnvi3/RlIr3zegKWc4gdu1k7UxsYUtUm4j6+BbdP0/dmvQ/121qQjAqn3AwKNr4f65wYw+AtAIZ760SbUCUizbsqUKcyZM4d3332X7du3c//995OUlMTEiTrp6pZbbmHq1Kkl+z/55JN8//337Nu3j40bN3L77bezcePGkv39ITMTRAxj4zloi9M3HA7Iy6vgHy2egbD6Onye/Wm1cXJyqt2lYtpfBx3HAy5cv/0Rik9We0hVlJoq4BunCLgEQMC98kSuhtBcVig0CMR36/dvfHQzEiDhNn3tGzhycf16M4hDn+XucJOpMF7VBSe/gryfICwGWpTveOTlQXFxBcdVSxrwJqB1Y2bmafTMfx0mIOJ9ww038PLLLzNt2jT69+/P8uXLWbBgAR07qhF9UlISKSkpJftnZmZy55130qtXL8aOHcuRI0dYvnw5Q/xYszI5GR58EDp3hq1bR6EtzCLgX17HcLngk0+gTx94550KdohqBwkP6fu0qfo4RwUcOgTXXQd//KOPJ1EK6f8a2c6OhOftp3i9+ftru3frsptVTPyvmpjGyE3fsbdoGGF+9MCdTli5EkaPNi8QublaCV5wAezbZy4GwJ498K9/wb//bT5GdrYuRXrTTXpuZnE6YcIEWLVKG55mef99eP55PTezJCXByJH6PZ802V4UgYsvhmXLTH4vRzfDe6MJy89gf+FgXDebF+61a+Gss2DHDlOHA+DYOJXw3N2cdLbF1X+26Uc4b78drrpKly6tECmGtP/T902nQHSncru8/z706gUffuhrA+kVIB8YzM6dY+nUCaZMgSNHfIlhU+sIzpLq/mMsSL9hQ5bceae6cU2cWNq56htR35WGInK80jgiagiwcKE6MvXtK/L111WZBOSI7GylJgHpr4iIxxO6sFBkxgyR+Hg1u/fVj9vpVDOII0dELr5Y5Pbf/+hxK0r53qc4iYki33+vJgyvvmrOQau4WOSTT0Tuukvk/HOypPhN3/zADU6cEPnLX0TathX57399z4fBkiX6+wwd6p8j2F13iTRqJHLLLZUYnXhBXp5IvXoiDRqIPPig+bxMnap5iY1VK00zZGSoP3TDhiK3324+Ly6XWkz27SuywDtzrAr55hu1S504USQ93YcDS/lxF88eLBcOPyG33672vYWF5vIya5ZIs2Yi334rsm2bj/7tRz3l7+5rvpcLLxRJStLfyVcf+NxckUcfVUey6dM9tqQlcTJma52yI0HEUbHJhsulv0v//iL9+uk5VV8OskQkTrQu1MK3f7/IpEnqI3/77SK7dtnGJKFIyIt3XFyWPPRQRab2LhE5U/QUp5c7PjdXZOZMkVWrREaNEunSRT1/vfLRPv6Wu6A1E1dxptx+u8h334l07y5y0UUiO3aYO6fHHhO5804V3KlT3RXW+nu0Avm6nUihd1ZIr7yidozNm6vgmeWtt9Q5qX9/kePH5RQ3siYiR9Z6FWfWLLUs7N5dZPNm8/l56imN07SpyDrv2w7luO02jfOnP5mPIaLOWyCyaZP5GNu2aYwuXfzLy8SJGufmm83H2LhRrz0Q+cc/zMdJTFRfcRB5+WUvDyol3IY7WGamyKBBeg2+/rr5/CxdKtKihebphRe8PKgoW+SbTlr21v5Fior0O2nWTL/r//s/c3nZtUvk0ktFzjhDhfi220ScxSdFdrTUOiXjtWpjOJ3qRX/GGWrf+vPPWsZOnqxo7+dF68AeIlK2cktN1XomPl7kqqts8Q41Ql68Dxyo6kf7QPQUm4uIx68zJ0ct9OrV0x7CzJk+tuxdxSK7e4kkIj98+HcBteL87DPzPcIvvtDKDtRetITiXJEF3bQS+W1CtXF27tTzApFrr/W08H0lN1ekdWuN07+/2imKiNd+4KUZOFDjPPCASEGBufyIqH92o0ZaWfnDH/6gYmm2p2twww3aU/WXMWPUEtIfcnK0cXTNNf7F+fVX7ZH54y9eWCjy8MPq5d23rxdlogLhFhE5dEjFG1R8zf5eBQX6mxue14mJXhy09i9a5r7ppELuptJy6gMul8Yxytd3855U4d59hojL+4qoqEjkzTfV575ePRXyst9RgYi0Eq0DK/I+VjIzRf7xD1u8Q42QF++qf7RiEekkepqzRURbpyNHegrgpEle9rbLZeC/IolIzpr60r51slxwgTkfXRHtfTVsqENqt9yi/s5lOLZS5JMwrUySKzeQdjhEzj1XK4UnntDhd7M884xI+/Yic+dWMETog4Bv3KiVy+LF5vMiohVet27++Z0bXHedyC+/+B/nmWd0SNdfvvpK5PHH/Y+zZo3IlVf6H2ftWm3cmCoXpfjpJ5F27URWr65ip0qE28DpFJk/X6RjR72mzZKSIjJtmt66GTxYbwlVnqfFnttVR38q868ffhC59Vbtrdavb34k6eBB9Tpv3SJNslc3VPHO/MjnOC6XyP33e+qz4cNL+7C/I1r3tRWRqhsF9rB56HGai7eIyKuip3mGOJ0OefFFkSef1Pty5YfavWfzZpccXDpUJBEpOniX6TgOhw7lLVxYTe9/4xStTP7XRqSw4nv4P/+s96iLikxnR0Q0H2+/XU2v3UsBX7zYx/uelZCe7t9QeWlWrgxMnA0bqhEBL3E4at+5bdyow6r+cvy4zr2okGqEuzQFBSJz5pgfSTIoLhb5/HORZcsq2aEoS+SbDlrW1v+10jhFRdrIfv55/66BoqTJIonI4RUDZP16862llBS9Bz5tmsizz4o4HE4R6SVa971Y7fG2eIcedcDPOxddqOU48DlwdeAykbsMDo4CIuCMnRDdNXCxT8WZr97fObug059gcEXT4WuYumhmYhMY3LPKa8Vz3KVZfzfsnQ0NuqjDX2QD69IqOgh7ugHF0GExNAykHfC3wBVAY+CQe1s5tjFJ6FEHFkpuANzlfv9KgEOPhAaXAE44Ni2wsU8lop7HevDAu5D2k7XpeYO9kIuNGWqrcKevVOEGGDTHWuEGSH8KKFav7oAKN8DL7u2dVCfcNqFJHRBvgLvRlWCXAwEWlxZu0c56Hwr9eKDUGxKGQxf3QjZr7wBHrrXpeYMt4Da+UFuF25kPa/6k7zv9CVpYvApZ0V7IdC800CLQSyBvBZag1ftfAxzbprZQR8S7DWCYS7xc1Y6+U28wNPw94IJj3hin+MlZz0G9dpC7D7Y+Vv3+NUE5Ab8QktcFO1c2tY3aKtygy5/m7ILY1tDvRevTOzYdcOrIXX3vlpH2HmOE8WqgY4Bj29QW6oh4A0x2bz9GlwsMIC3cop39MRRuD2zsU4lqDAPdbmm7X4ETtaSXW0bAM2H+RXYP3MZDbRburC2w0y3YA2ZDdLy16RXt0ZE68NQdAeM48IH7/eSqdrQJceqQeA8GhqBLpgbIKtQgtj80ugoQd4vaYlpfCu1vBFyw7k4QP9bnDCT2ELpNRdRm4RYXrL1T1y5vezW0HWd9mseeBpzQ8DKoZ35J6Ip5B10KtT+6RLTN6UrIiffMmTPp3bs3gwcPNnH0Pe7tbNR1LIA0/4dusz+yvvcN0P9fEBUHJ9bBntetT89bbAG3KU1tFm6AfW/B8V8hshGc/ar16RXtgaz5+r754wEO7gRmud/fA9gGJKczISfekyZNYtu2baxZs8bE0dcBLVGnsa8Dm7HY/tDoSkAgfUZgY1eYXivo63Ye2voY5PvunmYZtoDbQO0X7oKjsOVhEIAomAAAIABJREFUfX/mU1CvrfVppj+L9rovtaDX/R1wAGgK/CHAsW1qGyEn3v4RA7hnlLot8gJKwt91m/UfKDoQ+Pin0uXP0HQoOE7CxvutT88XbAGv29R24QbY9CAUZ0GTAXDGJOvTKz4MmfP0fcKjFiRg1Gm3AfUsiG9Tm6hj4g3wZ3Q4aRGwN7Ch6w2CBhcBTsh4IbCxKyIsHAbOBsLh8CeQusj6NH3BFvC6SSgId9pPkPQ+EAYD34CwCOvTzHgJfa57pAUzzA+iC7OAPtttc7pTB8W7M3CJ+/3bgQ+fMFW3me+CI8Cz2iuiSX/odq++3/BXcFXsMR40AizgRQE4vdBcU9A7AnFufn3HoSDcrmItKwBd74KmZubP+IjzOJxwT5Q16oiA8i4gwAVAdwvi29Q2ThvxTk2Fl16Cfv1gR7VrpfzZvZ0HOEo+dblg4UIYNw7mzDGZkfqjKIoYAlLAN/Nnmgyiefn4Y7jwQigsrGbnPk9CTEvI2Q27ddKNUQEfPKjns3WruXwcOKB5ee45eMfsiqwxjfm2yXfkxKuAix8CfvfdMGUKpPnRLvrtN7jnHvj5Z/MxAD78EGbO1O/ILAcPwhtvwPz5/uVl1SqYPBlWrDAfIyMD7r8f7rqr+n0rpJRw58QN5usm5oV7/nx46im99vbvN5ednTvhd7/zHF/SKNk7G7K3QXSC3uuuguJiuOgi+OADzYtZvp43GySPovB+0GCsqRjz5sEVV8C334KzzAMmLmCu+/2fyx1Xmn374Kyz4IUXILkWTZOpaWbNmkXnzp2JjY1l4MCBrKii4Lz99tuMGDGC+Ph44uPjGTNmDKtXry6zz6233kpYWFiZ19ChQ609iWAvrm4WY0H6d97JkksvVavIm29WE4RyLljlKBS1CUVcrv/JsWNqMNCli8iZZ6pFqC/r3B85IrJ+vdpx3nGHyPhxn4okIo7EpiLOHB/OSX15lyxRG82zzlLPX69sRve9q2YK/20k+SdS5JprRP71L3U/euwxc4YOhYWaj9GjRQYMMO+alp8v0qGDSEKjLDk6wzc70dKkpoqEh6vV5Kuvmrdf/egjdWDq2FEkKclcDBF1hQKRL780H2PBAo0xYoT5GMnJIl27apz33jMf5403PN/v4cM+HlzKZCR9xmBpGXdC2rZVa1kzHDyo7l+jR2s5MGMlW1CgJkTx8Wr+c911IrnH00S+aKJlZc8b1cZwubROOftstcZduFC/p+MVewNVjDNPHIktRBKR26/9QG67TZ0EN23y7frLzhaZPVu/j06dRGbMEDl6VERkoagBSRMRqbqgOxxqFjR+vNaZF18s8sEHIikpdceY5KOPPpKoqCh5++23Zdu2bTJ58mRp0KCBHDx4sML9b7rpJpk5c6Zs2LBBtm/fLrfddpvExcXJ4VKFZMKECXLJJZdISkpKySsjI8P0eXlDyIv3eedlybvv+u71u3PnAyKCrFv3e2nUSP1+ly/3XRC2bVNh6tNHK4mpU0VSUxwiu7qqzV/Gq16ej8jQoSKxsSoq8+f7aMnocoosGSLyCbL0hVsE1N9561bfzqc0Dz/s8UD+8Ufzcf75T40TFSXy+ktZ4ppjCHgTkSNrvY4zc6bGufhi/5zKXnhBJDJSLSv94e67RXr29M860+VSz+s77vAvLz//LBIdLfLUU+ZjHD8ucvnl+h3/618+HHiKO9hbr56Q6GiN8+yz5vOzYoXHm37KFPNxtm0T6dVL4yyacYcK96L+Iq5qW/klOJ0i//mPSOfOWkYHDfJBwI+/oXXBro5yNLVIHn1UpGlT7Si0bSuyZYtv5+NyqXvczTerAK9adZ2IILt23eNTnJMn1fJ39GiRxo2DKN4ZySLFOaZeWRnJPud7yJAhMnHixDKf9ezZUx5++GGvjnc4HNKoUSN5r1RLecKECTJu3Div8xAIQl68fb3YnE71Tu7Zc5uIIMXFkXL0aJqpPPz8swo2aCWzYUOpf2bMchfYriqsVWAIt+HJ++CDJnuVGatLfIjHDFgtN91k3tP7p5+0BzZkiMibb/o2ElGazEyRhAStaEp67j74gZdm5EiRf/zDm5GVqrnnHrU89ZeXXxZ55x3/48yfryM//vLeeyJ/+Yt/MZxOkenTRYYN8/KASmw9DxxQb/qmTUXMdkCys/V3MspGOZ97b7OYqj3NUf03iPOjMC0jx372OY7LJfLoo55y6pWAu5wiu3tqXZDuaRFt3SrSoIHGiYsTWbrU5+yIiMixYxlSVBQtIki/fhvkkUfMNSa3bg2ieM/F45/u4ytrLgLIoUOHJCsrq+RVUMlQTWFhoURERMh///vfMp/fe++9cv7553uV7+zsbImNjZWvv/665LMJEyZIXFycNG/eXLp16yZ33HGHHNVhEcuoA5agHlwueOUV+PVXaN0aHnpoCG3arMHpfIWIiHt9Sn/HDr0P3K4ddOsG3btDz57QxLjF58qFXe3AlQnt/weNfldhHKcTXnxR760NGqSvhASfslLC+vUQsW4C/ZrMQ5oNJ+yCFRDm+0INxcXw2mt6r69vX3N5MfjhB2jaFM4++5R/+GgnmpMDK1fCxRf7lx+ApUth1Cj/42zapL95TIx/cYqLdU5Cue/IBMuWwciR/sdZsgQGD4a4uCp28mJy2ubNcPSoXkv+kJio81HuuQeio00EEEGWXUjYsZ9IzL6B3L4fMcTkY9YZGbBuHaxZo8XroYcgMrKSnXO+h6RLILwRdDsMEVpXZWVpHbJrF+zeDUlJ8Le/QZ8+vuXF5XqD8PC7OHq0H88+u5HkZK1DpkyBCB8m0AfVEnQuNK5vMkYexN1a/vPHH3+cJ554otznycnJtG3blpUrVzJsmGfG/zPPPMN7773Hzp07q01z0qRJfP/992zdupXY2FgAPv74Yxo2bEjHjh3Zv38/jz32GA6Hg3Xr1hHjbwVRGZY2DSwkMCbsr4kOPgwIUK5OIfUhbXHvH21N/IrIPSTyeT1tmSZ9UnPpmsFkD9ymFlBJj7vWcvhLLROfxYjkHKi5dA9eqnVAyn0WJTBUtA57ya8ogalPTaYZgGFzb3veR44cEUB++eWXMp8/9dRT0qNHj2rz/Nxzz0l8fLxs2rSpyv2Sk5MlKipKPv/8c++/EB85bWabm+NG1Cp0PWDBkqZNJwHhkPdjzSyZClC/HfR4SN9vfUQfi6mt2M+Bhyapm2r/42ClcTlgi/vxrO73Q4Mactoq2gM53wFh0NQKa869wK/oQ0M3WRC/hohs4N8LaNy4cZlXZb3dhIQEIiIiSE1NLfN5WloaLVu2rDKbL774Is888wyLFi3irLPOqnLf1q1b07FjR3bv3u3DF+EbdVy8EwBjHPbDwIeP6uAZLj8xO/DxK6PHgxDTHHL2wD4LnmUPJLaAhxapm9TyNVSEG+Dge3ByO0Q3hZ4P11y6J9wrnjW8BKK7WpDAR+7thUArC+KffkRHRzNw4EAWL15c5vPFixeXGUY/lRdeeIHp06ezcOFCBg0aVG06GRkZHDp0iNatW/ud58qo4+INnjWAP0QXOQgw8XfrNvM9cJ4MfPyKiGwIvd2mB9uegOLsmknXLLYfeGgQisLtyPX43vf6u5r51ASuPDjhXhgh3uyD89VhdDjsdcx9YcqUKcyZM4d3332X7du3c//995OUlMTEiRMBuOWWW5g61bOQzvPPP8+jjz7Ku+++S6dOnUhNTSU1NZWcnBwAcnJyePDBB1m1ahUHDhxg6dKl/O53vyMhIYGrrrrKsvOwxZtx6DrAe4ANgQ/fYAxEdwdXNmT/J/DxK6PLndCwGxQeg10v1Vy6ZrH9wGs3oSjcoJ73BSnQoDN0rYH1yw2yPwbXCYjqpNafASfR/YoGrBOI05EbbriBl19+mWnTptG/f3+WL1/OggUL6NhRb6ckJSWRkpJSsv+sWbMoKiri2muvpXXr1iWvF19UD/iIiAi2bNnCuHHj6N69OxMmTKB79+6sWrWKRo0aWXYedWq2eeVcA/wXeBiwwBEs4yU4+iDEDoQuawMfvzIOfQq/Xq92h5fth5hmNZe2WXychW5TA4SqcBdlwoLOUJwJQ+ZDxz/WXNr7h0H+KmjxjEXLoT4BPAlcQSAcEoM629yPNIOR79qC3fMG4Hr39lMsGTqPuwWIgoJ1kG9B774y2l0Dcf3UdWxnDRilBAL7HnjtIlSFG2DXP1W4G/eGDjU4tFyQqMJNRMXPMQWET93b66vcy+b0JeTEe+bMmfTu3ZvBgwNpJnA5EIvO3twYwLhuIptDY/fQVmYNTiALC/es3bznVfUvDgVsAa8dhLJwF2bA7n/p+z7Ta8Y1zCDTbYzQ6HcQZcWEpe3ANnTI/PcWxLcJBUJOvCdNmsS2bdtYs2ZNAKM2BC51v/8ygHFL0eR23WZ9BK7qnEYCSOvLoekQcOZrTyRUsAU8uISycIM2Vh056rrXtgbvCUsxZH2g740yH3C+cG/HADU0Ac+m1hFy4m0d49xbi8S7wYUQ2UYnseR8W/3+gSIsDHo9qu/3zITC9JpL219sAQ8OoS7cRZk6UQ10hrmJVQZNk/M9OI9BRAtoGIDlACvEqKOutCi+TShgi3cJV6Bfx2bApAdhVYRFQJx7wkzme4GPXxWtr4AmA8CZGxozz0tjP0ZWs4S6cAPsfhmKs6DxmdD26ppNO2uebuNugrAoCxI4AqwBwoCKl1y2qRvY4l1CM2CE+71FPeO4W3Sb8x04j1uTRkWEhUEf93Pfe2ZpxRYEjps95VMeI5P5Y2wBt4IACrfp39pfHDklnvb0/ofO+6gpnNlw8n/6Pm68RYkYddM52Auz1G1OG/FOSYEPPoDbboNTVr6rEpfL897p1Ocxd+xYwJIlvqWfl1c2L6+/DjNnnrJTbB+IOQsohuzPK4yTmqpGFU4nLFoE//d/vuXDID1dTSGOHIGpUyE96gqddevIhr1veB3n6FGYNQv+8x+owq++WrZvh2uu0d/IFG4BT40aRlgABHzWLN+uk4o4eFANRZxO8zGcTo1x8KB/eUlL02vO9IOfqZsQt3CnRvgn3B9+CNddB1u2mMwLsGoVzJsHb7wByck+HLjvbSg+AQ27caLB1fzf/8GhQ2psctTkfM1HHoHvvtPfyunUMlUhJ78AKYTonhBb1mXmzTfh1VfLHlu6zvCGZctg69YFADidl5d8XroOq46MDJgwAebP9/F7tal1hLx4P/SQOvH06KGVRr9+3rkO5efDww/DggUqKDfdBOefr+LdtetPtGvnXckSgblz4Y47tPIcOVLzsmIFdOlSwQFx7jWIs8ov2LJihToCTZ8OnTvDAw+o+5mv4rBnD5x7Ltx+O/TuDSdOgMMZ7lnzfPfL4CyoNs6xY3DhhTB5Mjz/vG8uRaU5eRKuvlrdvObN862yKU1OcWPOm/0dK5NUwDEp4AcOwKRJ8I9/+CF2wKefqjtZZqb5GDk5MGaMH40a9BymTVPHrV27TAQ4uhnmXUhYfgarjwxm+OxFZBeZE26XSxt6P/6ojbUsk4M84eHqAHjPPTB6tJfC6yryTMrs8TeKHRHk5MCZZ8Ktt2qZ8MI0qmxIl5bBqVOhY0d4/HEYOhR++qmCnY0yHXdTufvsXbqom2GvXjBihAr5xIkwZ47312Dr1oV066a9itGjL+PGG1WEv/8eHnzQu8ZARAQMGKDXbq9eWj/ccw98W4PTcGwChGWWJxZjONJMnZolK1eKFBV5f+yKFSLdu6uXbmysyKWXirz+usj+/S4RaS/q0vNdtXHS00WuuUbjhIWJXHedyKefiuTmVnFQ4QF1GUoMEylKFhH1CX7pJZGICI01apTI6tXmPL1/+UWkWTONU7++SBnzG2ehyNft1F1p37tVxsnIEOnXT+OEh4tMm2YuPy6XyPXX6/czapTI7Nnq02yG6dNF2rUTmT8nS1xzDDeyJiJH1voU59139TfPyTGXD4P580Weesq/GCIiL7zgvy94Xp7I73+v369PlHIHc701WD789wnp0EHkscfM5ePkSfV/Hz1ar5urrjJ/3Tz7rKdM9OkjkpZWzUEHP9Br+3+tRBz5JR9v2ybSsKHGiY8XWb7cXH7WrRMZM8ZTJp59ttS5FaeJJIZr2S7cXWmcvDyRzz8XufFGjQEi48Z5cW4iIvKDaN3UUg4ccMqsWSKXXSZSr57G6drVN1/w4mKtL6ZPFznvvCC6ivmRZjDc0GoLdWqFNZdLh69ee017sy6X9tQ/+KC0J/MdwDvAFKDyyV179sD99+u9vZgYiI3VUQCvfKL3D4X836DVTJxxd/PPf2pLvlkz9fLu0EFbw5V6BFfCtm3wzDPaU+jaVV99+0Kr0rfGdjwHWx7WR2jGrK9wJq7DoV7lkZHayxg4EBo29C0vBr/8AmvXwrXXQps25mIAFBbCe+/B+PFQrx6nrMTWBMYvgTYDvYr1/ffam4vycz7R5s3aozL73Rjk52uPsH9//+I4HOrDfcklXh5QiR93QYGOkJR81yZJTYXPPoOzzoLzzzcXIzdXvbN//RUKCrQHXOnv9sNQOP4b9JkGvR8r+TgtTX+rvXv1deSIjrr56lXvdOro2oEDOvyckQHnnaflPiJ7DqT8WYfLu1T/RMTKlfD003pdFxRAfDy89JKO2lXOI+gKkOMBnRhXXKy/07p1OloRHg533QV//au+9xZ7hbXQo06Jt3d8jFqF9kVnnltA+guQ9hDUHw2dfrAmjcoozIBv2oGrAEYtheYjazb9QOKHgNd5KhHukCVjFfw4DMKj4fIkiK3a3jHgHLwUchdC86eg+d8tSmQwsBZ4D7gloJFt8Q49Qv6ed+C5EH0MYwvg54ymymh8jW7zloKjhp+7jmkGnSbo+13/qtm0A005MxN7FrpXnG7CDZ7nujvcXPPC7cyCXHcj3CjbAScDMK7tiyxKwyaUsMW7HAlAP/f7ZdYkEd3FPevcBTkLrUmjKrpN1m3y15B3uObTDyS2G5lvnI7CXXAUDruf3jCu7Zok53ugGKJ7QExPixJZjvou9AKs84i2CR1s8a6QUe7tUuuSaHSFbnO+sS6Nymjcyz1c7oL9c2o+/UBjr8TmHaejcAPsfwfEAc3OhSb9qt8/0BhluJGVi6YsdW8vsDANm1DCFu8KGeXeVvQ8SIBoaIj3Ql0Puabposbz7HsbXI6aTz/QGALe7lxbwCvidBVuccG+t/S9cU3XaPpOyNFnr0vKtCUsdW9HWZiGTShhi3eFGCut7QSOWZNEvSEQ0QxcWTrzvKZpexVEJ0BBMhxdXPPpW0FMY/jjQlvAT+V0FW6AtJ8g7yBENYH219V8+gXrwJkB4Y2h/jCLEsnEM3nW5LR9m9MOW7wrpCnQ2/1+lTVJhEVAgzH6Pud7a9KoiogY6OBeMOZgDa+1biXlBLyOr4V+Ogs3eK7d9jdChB/PtZnFKLsNLrRoLXOAX93bM4AanoxnU2sJOfG2xs+7IoxW9C/WJWG4DgVDvMEz6/zIl+rEdLpQRsDr8CS20124i096JqoZ13JNY5RdyxzEwNOBsKpnbxOKhJx4W+PnXRHnurcW9bwBGrgLfMFacJ6wLp3KaHK2Oi+5CuHwZzWfvpXU9SH00124AZK/BGceNOwOTc+p+fSdJyHf3StuUBPifW6Ve9nULUJOvGuOIe7tesAP54mqiGqjj5cgkOeH64dZwsI8Q+eHPqr59K3GEPC6Ngu9Lgg3QNKHuu1Qfi3xGiF/JeCEqM4Q3cmiRARdmAU8dZKNjS3eVdATqA/kAGbcHrykwSjd5i61Lo2qaH+DbtN+ggKLFqUJJnXtMbK6ItyF6Z6Jlh1uDE4ejDJrlGFL2AecAKKBMy1MxybUsMW7UiIBw9ZvbVU7+kd993ObeUutS6MqGnZxDzm6PPcPTzfqioDXFeEGOPKFPtvd5GxoVOWC4NZhlNn6Vi4xbNQ9/VABt7FRbPGuEkO8N1mXRP3zdFuwCVw51qVTFe2u1W3yVxX+2+VSAwV/yc+HoiL/45jidBfwWiTcDocaivhLYWEVdrjGtWpcuzWNqwDy3ddP/RFV7+sXRt1zdpV72dQ9TgvxFoFDh2DxYvXJ9dZDODsbVq/2/J2fr+48c+fCli3gWSa1avF2ueCTT7SiEVHXoq++UveqaolqC5HtABfkr2H5cli+XEXu11/Vr9cM27fDI49ASoo6RFVZmbYZp9u0pVBc9ss7dEj9pr/6yqRXtJvkZPU6L/19m2HnTvVANsUpAi5+CnhRke9e6xXhdPrZqDm6GQmQcM+dC4mJfuQFWL9ePasP+7Hy7t698M036v528OAp/3TkwFH1tS65diugoEDP58gReOwx2LrVXF4++EDd8QoL1Q3sp5+AgvVAMUS00Hve1bB4MXz5pZYnNfCEjz/25vox6p5+JCbCv/+tLn2lvbvXrvXeUz4nR33SFy2CpCStu2xClOA6kprH8HHt3z9LGjQQadpUZPhwkTvuEElOrvrY7Gz1YY6PF7nkEpFrr1V/76gokR499O9ly0REfhP1z21eYRyXS+Sbb0TOOkukSRP11m3ZUiQuTv2M33zTy5M5dJ1IIvLBK08LiPTsqR69vXuLTJrkmx9yfr56MUdFiURHizRqpD7PBw9Wc+B3PdUL+eCHJR999JGeF4iccYbIwoXe56M069aJtG2rca65xlwMEZHDh0U6dNDvprrfuCqOp2TJr3cafuDxIsnrTMVZv17kT38ynw+DiRNFfv3V5MEpG0v8uNdOHCzph0+Yzkdaml4vbdt6cb1UwU036W/dqpXIb7+Zi7FkiZZJEGncWOT990v98/B/9Vr9tkuVhePIEZErr9TjY2JEIiNFpk5VT21fmDxZ/cTr1RPp1Uvz9O4LL6l3d9I4r2K8847IhRdqeWreXP3kmzXTuF9+WdVptBOtg1bIypUi11+v9UNUlEi3biJXX631TpMmIk8+KZKZWXU+jh4V+fOfRc47TyQhQaRBA5EBA0Suu8728w41Ql68v/suy0sjexGnU+Ttt7XQGO3fM88UmTtXBaZ8oc4R/YoQkbKJ7NsncvHFnjgg8tJLIrt3+ya2TqfIz1+9KJKIfPby1QIi55wjkpHhfQyDXbtELrpIpHVrbcw0aiSyaJGXB2/6m1aIq28Vh0Pk+edFBg3SQn7hhSL33itSXOx7njZv1sbQnXeKTJ8uMn++SFGR73GKirRymjlTZNs2377jU1m4UGT9qiyRd/wT8J07RVJSzOfDIC1Nz8lnSgm3vDVYNq8+Id9+az4fLpfIjh0is2eLPP64SGGh7zGKi1Von3pK5C9/0cbahg2+x3E4RKZMERkzRq/BQYNEnn7afQ2uvVOv1fX3ehVr2TIV8KZNtUExerTI9u2+5+n4cZERI7Ssf/D8H0QSkZVfPi0Oh/cxXC6RvXtFXnmlbN0xZozWHWXJFE/9U7ZRlp+vjcf33hPp188TJz5efz+n07v8HDsmsmKFyCuv2OIdatRJP++8PB2+SkrSYeU//AGiKl0cqTNwAHUYK780YU4OpKbqKz4e+vTx7TwAyP0JDo5GIjuRHr+fEyegc+eq8mQBRxfD8rFQry1cfig4j97UNGX8wOPhliXQekCwc+UdqZt09bhacI+7xlnQBXL3w3nfQOvLayxZhwP27YMmTaB5Vk/CindCh4WmFmjZvh3S06FVK301bFhRkfsVfba7DXCk0jz95z8ao0MHaN8eGjTwOTu2n3cIEhnsDASD+vWhRw99VU9vVLy3UZF4N2wIZ5yhL9PE6mSUMMcBmjc9TvPmTf0IZpKE8yA8BvKPwMkd6jx2umPcAzcEfN6Y0BDwuizcOXtVuMMi3c54NUdkJHTvji7Oku6eABJrbiJZL6+K13b3tnele0RGwi23mMqCTYhzWkxYsxajlO2wLomIJp5JLwUWzmyvMg/1IME9azbNQje12kaozUKvy8INnmuz2VCIbBicPBRuAQQi20JkCwsTMuocqzzCbUIZW7yrxehS77U2mRj3AgyF26xNpyoS3I+tpf8cvDwEg1AR8Lou3AAZK3WbYOXjWdVQ6J6OH2P1oil73NtuFqdjE4rY4l0thnjvqXIvv4lxD40V+vmcjj80d1eI6St0/ktdorYL+NHNtnADHFuu2+ZBtMYsEe/Kh7MDg1Hn+HNPzuZ0xRbvajEKzj7AwociS3reJh9GDQRNh+q9xPzDkJcUvHwEi9oq4LVoAZagkp8CufuAcGgWRIctY3QsxszsVG8RPKN9XS1MxyZUscW7WtqhX1MRcNS6ZGLcs+eKdluXRnVE1oe4vvr+hIVLwtZmapuA28LtwbgmG/eCqCDOLC5yT1aLsfJe9HHAWFmpg4Xp2IQqISfeNefnbRCJPqoBcMi6ZKLdPXxHavCWSQWIH6jbE+uCl4dgU1sE3BbushjXpHGNBgNXARS7R6WirbwXbdQ1zYF6FqZjE6qEnHjXnJ93adq7t6eu0xhAIuIhopm+L7L4/npVxA/SbV0Wb6hAwC+sWQG3hbs8JeI9KHh5KN4PCIQ3gojmFiZk3Laye902FRNy4h0c2rm3KdYmE9VFt8UWNhKqo4l7PfesIN57ry2UEfDMmuuB28JdMcY1aVyjwaDogG6juli8kFGye9vWwjRsQhlbvL2ilXtrsd91lLuHX2zh8Hx1GIuzFCSXMympk9T0ELot3BXjyIM8d6M2mAsIOdxl0yirlmHUNa0tTscmVLHF2ysM8bZwwhrUDvGOioNYd4WRbeHCNKFETQm4LdyVc3InIBDdDGKsHK6uhuKaEm+jrmlV5V42dRdbvL3CWEXJYvGOdA/PF/vhpRgIGrln0eYEceZ7bcNqAbeFu2qMa7FR9+Dmw+FeY9woq5aR5t5auYKbTShji7dXGGuNn6hyL7/XNYlsqXEcx/wMpIhAcbGJAxt01G2e5957dnZAshTaa79YJeCnmXAH6jcuc80Z12L9Tj7HKS4OXJ6k2C2q7rJqOk61+TllYnacAAAgAElEQVTu3gbB58AmJAh58c7Ph7Q02LMHNmyA5cvLGtVXRlISzJgBjzyiBenkSTh8GBIT4ZdfIDm59N5GATpeLk5hIXz+OYwbB3v3wvHjul27Vp2DfOHAYW1lpxxOIzUVtm6F1at9iwGQlQUzZ8LgwbBpE6xaBQUFPgSor+ItOQdZsAAuvRQeegiO+jHwkJgIt94K//2v+RigLnD/+59/MQBOVN0Oq5xTBNw5108BP7oZ578DI9ymz6kU33wDRyo2sPIpxi23wJYt5mOkpcHf/w4XXwxffw2uHLd4Gw1LLygq0rKcmAiDBsGrr5r7jtas0XNJSYEjSSre+w/71iPesUPrBKOOOHgQfv97+PTTyspmefFOTfWcz+HDWmeJwOOPw9NPa8zqKCiAZcu0rtyzR7/n/PwQb1TXVYLtSWoWw8cVsqRxY5F27UR69VIv7AMHKj7G6RT5z39ELrhAJCxM/W+jo0XCw9XcPiFBpGtXNaf/4ovSR24U9dRtUfLJ/v0if/2regQbXrphYSL164u0bas+4Y89Vv15OJ3qJz5kiMjZvdaJJCJHfmotTZqInHGGyKWXev+d7NkjctttIvXqefLUurVI//6VfycV5mnPOyKfIEunX1ISp3lzkc8/9z6Gwc6dIr/7nSc/99zjewwR9XH+179EGjTQ78UftmwRGTtWJCnJjyAFWeJ82z8/cEndVOLH7XhjsEj+ieqPqYSUFPWEXr/edAgREenTR6+f558357suIvLAA57f+7LLzHmVf/21SMuWnjiLnvi9yCeIY+csr2McOSJy9tlaBow4sbEiEyaI7NrlfV5+/3uRbt3UK3v/oo4iicg5Z62SgQNF3nlHvPLznjZN64S2bbWOMOofw4P77ru1/HpoJ1rnrC755JtvtG7q2lXrqqgorbtiYjyxRo4UmTevcj/vI0e0juzdW+vMuDjNS0SE7ecdaoS8n3dmZhZxcd6vtlRQoC3pFSv0Bdpzrlevqic/9gNdgPp4Vj3S3vsvv8DKlfp66SW44ALfz6WwEDZuhG2b9nHbeV0pLKpPdL9cU0+ipKZqC994TZ0Kw4f7GCTlW/j5CvJjB/JV7lo2bdJezIsvmns6JjcXdu+GXbvUjvWKK3yPYVBUpL2Ftm1rgeV44Un44BJzfuC1cKhcRHvdLVpAdLT5ON99p0Pe3btDt25qm2smLw8/rO/79YMrGw+jfv4qGPZfaHuVT7HWrIEnntDe96BBMHAgtGlT7WEV5ilvQzwNYjN57+ft9DirJ/37Q2ys77F+/hnuuUfL5rBhuu3QofQ1HQ9kos5iFXsXi2h9dsMNWi7OOw9GjIAhQ7Q+8+W8UlOzadPG9vMOJUJevP390ZxOCA+vTgjSAOMelwOIqHAvl0tjmcaRAbsS9H2vIgiL8iOYH2T8Bj8Ohfod4PIgPnMeChRme/zAvRXwWijctZ7vukHOHhi13GOgU9OIwPZIwAXdkiHK/GNc1dcVUWhdcwjPOhMVZ8npVF9vfwiGCNri7R8hf8/bXyIivOnBle465Fa6l1/CDRBR6uJzBmiGmBmMR3EKAzNx7rTG10lstnCbozBdtzEJwcuD5FJiThThn1BUXVcUocIN0KDKOGFh/gu3TWgSVPGeNWsWnTt3JjY2loEDB7LCGMeudZQeFyu0LpmwKLTFDYgXs+6sIipOt858EGfw8hEqeCvgtnCbQwSK3Y3ZqCB+X65SZTKsvoUJlZ7BZmU6dRdftefzzz+nd+/exMTE0Lt3b7744osy/xcRnnjiCdq0aUO9evUYNWoUiYnW2jsHTbw//vhj7rvvPv7+97+zYcMGRowYwaWXXkpSUm20ogxHDUpAW8VWJuVuKIiFjYTqiCxVYTiC2IgIJaoTcFu4zeMqoqTHGxlEMTPKZFiMxRMuStcxQbp1dhrjq/asWrWKG264gfHjx7Np0ybGjx/P9ddfz2+//Vayz/PPP88///lPXn/9ddasWUOrVq246KKLOHnypHUnEqyZckOGDJGJEyeW+axnz57y8MMPe3V8zc8yrC86+3OftcnsSBBJRCR/q7XpVIXLJfIJ+spPCV4+QpGCLJF3Ss1Cz0wqM6tc3vJvVnmdpDDDcz06TU6BDwQFu7Rsbm9scUJHROuaSIvT8RCMWdvBmm3uq/Zcf/31cskll5T57OKLL5Ybb7xRRERcLpe0atVKnn322ZL/FxQUSFxcnLzxxhte58tXgtLzLioqYt26dYwdO7bM52PHjuWXX34JRpa8wOh5O6rcy29KJqmZWV0lUHkIg/AYfe8M4ghAKGL0wBN6aQ98wzt2j9tfXKV6ouHB7Im6y36Y1TeZjTqm4omxpx1Fuf69fEnKhPasWrWq3P4XX3xxyf779+8nNTW1zD4xMTGMHDnSUj0LylSH9PR0nE4nLVuWXaWoZcuWpKZWbP5RWFhIYaFHSLIDteSX19TUc0nBfv7JoLbkIwSJaQwJPSB9O/zyIhTn2sIdEGrLNVnX6gKLealN2WlFvuCeHnCqHsTExBATE1NudzPak5qaWuX+xraifQ56s3KOSYI6YS3slPtGIlLuM4MZM2YQFxdX8mrf3mpjABsbPyh0VybFuUCY3gvPTavyEBsbG3O0b9++jD7MmDGjyv190R5v9/c1pr8EpeedkJBAREREuZZOWlpaudaLwdSpU5kyZUrJ39nZ2TUs4DX1OHxteezePUEo6CuhhCBHN0PSylIfCPz2Cmya59tCLjan4F5ILOjXZF2rCyzmgWQw+4x2djY824ZDhw6Vec67ol43mNOeVq1aVbl/q1bq/Jaamkrr1q0r3McKgtLzjo6OZuDAgSxevLjM54sXL2bYsGEVHhMTE0Pjxo3LvGoW476bH0tPeUPpGa3BQpye+4wRPizVZOOZVe4shIatYPAkOOc+Feya8AM/HSl9DbqCOAcjzF32xeInTqgF815qkugG/r2gnDZUJt5mtOfcc88tt/+iRYtK9u/cuTOtWrUqs09RURHLli2rNGYgCNrj/VOmTGH8+PEMGjSIc889l7feeoukpCQmTpwYrCxVQw2Jt6sWiLcz3/M+oupFImxKUdXjYKVXYps3xu6B+0JEqcfDnHkQYfYGqZ+EudO1vAFh1DEuwEmdmbhWQ1SnPbfccgtt27YtGXqfPHky559/Ps899xzjxo3jq6++YsmSJfz888+ADpffd999PPPMM3Tr1o1u3brxzDPPUL9+fW666SbLziNo4n3DDTeQkZHBtGnTSElJ4cwzz2TBggV07Oi9a1DN4aRkGNnK5y5FQNwzMIIp3qWf7Q5WRRlqVPcctzEL3RZw3wmP0qcwpBgcuRAdJJtMQ7wp1tGpMKtEtXQHoRB7oZbAUp32JCUlEV5qCbxhw4bx0Ucf8eijj/LYY4/RtWtXPv74Y84555ySfR566CHy8/O5++67OXHiBOeccw6LFi2iUaNGlp1HnV/b3DtOAkYauVhWmFwFsMM9RNgjEyLirEmnOrJ3wPe9dDWrKwPgM3m648sCLGbWQreB/7WEwjS4aBM0OSs4eShTPrP8XiK1chx4OgnpQDOL0vFgr20eetTptc0LC+G337zxss1xb8OAiu8Bp6Wpy5hfuLIAEMKQMP9bbMXF6h3sM0Xl15EuLrY9fyvE15XTfF0LvY4iok5ZJRjXonFt+sCJE6fEMpunsFhcRq/YXVbNcugQHD1a2X8jAWPkLaeynTRPonVYxZ7gNqczIb+k/Q8/QKtWOlmxUSPdNm5c8cL/LhcsWQJLl6ol3+rV0Lev2mbGxUGTJro13keVjJAbBaghxrOXhw/DggUeS9A9e+C119S+MD5eX02bVm/NZ+Rp1So4tCeLOVMhN68RiWvCSUiAhATNjzccOgQ//qgWiGvXwqZNMHcujBoFzZt7b5zizDtGBJCckcAjt2qc5s3hm298t4o8fFjzs3OnWoIOHQp33ulbDACHQ21TU1Ph5Em48Ubzk47T07Ux0qyZf9aXppc8tWAIvagIMjLUpKJ5c3MxROCTT9S2tXVrvZajTNwl+ve/YflytQTt0UNtODt08C1GcTFcfbVe0/36wdMXJdA+1nNteoPLpb/1zz/DzTfDWWd5bEFHjwZv79BlZ2uc9HToLo1p0iidv/w5i9ad2jN0KFx0kRocVUVBgf4+J07oKzER7roLunb1WIJecknpPDVEh8w94u1w6LFZWWVfL7wA69bB4MFqCTpyJIwdW3kdmJ2tZaj0tvKGhE1tJeTF+6WXIC+v7MW4YYNWGqcSHg69e6sIHD+uPe+cHJgzp3yBeOkl+POfjSONBQA8veFWrdRTOjdXe9xhYfC//8G8eZ4Cetll+ndVhIdrJbdyJaSl6hB1Vk4T/nKfVhbR0bBvn3ffRcuW2ljYsUNb4xER8NhjWjDXrlVvZW+IKEoB4NjJlnz2mZ5jw4Ywfz7cfrt3MQyaNoXkZHjrLdi/HyqZBFotkZGaj2ee0UrsD38wFwdUGCZOhDff1N/RFEc3I++NJszsymmnCLjMG0OYHwJ+8qQ2imbPNnU4oNfw669rQ2DGDHPCDZ5GY4cO8MADcPHFvsf45BNYtkzL5549cO+QVrSP9Vyb3nD4MJx5pv7GDoc21uvXV4Hz5XcfMkS/34QE+PLFeJo0Sif96HGat9MyVZ1wA/z1r/Dll56GfXy8lv2kJG2ctGlzqsd4YyAD8PTwP/hAPcCNDobxysrS3+z4cf27T5/KG+pJSdCrV9nOTqNG5jzJbYKMZQuvWoy/6+K6XCLr14v8+9/e7L1IdK3hvhX+Nz1d5PXXRfb5uey5I/N/IonI0V8H+xdIRHbtEnnoIZHUVBMHb3pI15Fef69kZoq8/LLIa6/5l5/iYpGPPhJZvdq/OC6XyJ49/sUw4pgmkGuVn7oWevI606H8Oic3e/b4H2fdOpH33xcp8nMZ8tmzRV56SeT4cRHZ+KBekxvu8zlOerrIgw+K7NjhX35ERFJXDRdJRBwnPvMrTlKSyKuvihw7VtkeA0XrnG+qjTVvnsjatf79bnVpbfPThZDveZslLAzOPltf1WNM2qp4lmuzZjBpkv95inDpClwtWrfwO1a3bvDccyYPznPfvG/Qkbg4mDzZ7+wQGQk33OB/nLAwHWoMRBxTBNodLIBD6IFYuyQQ3+2AAfrylzJPjWa4x5PzfF9uslkzHVoOBC3btoCTnrJqlvbttRddOUZdU/2E0fHj/cqKTYhSpyeseY8xScbiR1Qc7lV8Iv0Xb7/I3a/b+rXxsb0gkrrJGpMRexJb9RjXYo6X95CsItK9Ypaj4nWwA4dR1/g+Qc+mbmCLt1cYszmsW+oOAMch3UYGcd12Ecjeru8bVTBxoK6SugnmXWidO5gt4FVjXIs5u0BcVe9rJZHtdGuUVcsw6hp7JplNxdji7RVGK9vs7CYvKXZXCFFBFO+CFHBkA+HQ0MsZbqc7Vgu3gS3gldOgC4RH6+p/ef4+k+kHRtkstlq8jbrG6h6+Tahii7dXGDNcLe551wbxzt6m24ZdISKIq7zVFmpKuA3KCfiFkLzOuvRChfBIT2PSuEaDQYl4W92AMMTb+9n1NnULW7y94rB72866JESgaK++j+psXTrVkblBt036BS8PtYWaFm6DMgKeCfMvsnvg4LkmjWs0GER10W3xAV0i1TLaureHq9zLpu4ScuI9c+ZMevfuzeDBg2swVWOIzMeVJnzBkQKSB0RAdBDF+/ha3cYPDF4eagPBEm4Dewi9PMY1aVyjwSCqnbqLSZHFQ+dGXXOQOmMNauMTISfekyZNYtu2baxZs6aGUszDM+PTQvEu2q3bqE5qwhAsTriHaOuyeB/dHFzhNrAFvCzGNXkiiOIdFgFR7ufpjDJrCcatsxxKL9RiY2MQcuJd8xxwbxsDFhqFFLpneMd0ty6N6ig4Crl7gTCIHxS8fASTQD/H7S+2gHtoMgAIh/zDkBfE4eQY98x3o8xaQgPA8BbYb2E6NqGKLd7Vsse9PQNjXXNLKNyq25gzrUujOtLVn5a4MyE6Pnj5CBa1TbgNbAFXohpBvHtVpfTlwctHTB/dGmXWMs5wb/danI5NKGKLd7UY4h2ApaeqotA9g9aoGIKBId4JI4KXh2BRW4XbwBZwxbg201cGLw8l4m31rHdDvPdUuZdN3cQW72rZ5d6eUeVefiEChVv0fTDF+9gy3SacF7w8BIPaLtwGtoB7rs1jS4OXhxLx3mLxgjHGOgu7qtzLpm5ii3e1GPe1eluXhOMwONOBiOANmxce8zyC02J0cPIQDEJFuA3quoA3HwWE6bPe+cnByUNML51x7sqGYivvR/d0b628t24TqtQpYxKXS+1Ck5I8r+Jitf+s3P7QGBrrVebTtDT1p05N9bzGjFHvbF/zdGjnejqGQ1ZhH/73QSx5efCnP/luyWh4DhcVqd1pUZHahJ7hzaDB0R90G3cWzqiWpB5Rm8DYWLXxjDR5pZw8qTaM3tgmVoXDocYb/sYBcDrdcfwUbpfLe4/0gMaqwsyk5Nz8xOnUASGzv3vpOLm5aj1pBodDr+WCAn21bNmMyPiBOuP86BLodEu1Mfbtg5QUtdeNjtbruVkz333PHQ54912IjY3i92eeRZPYtSTtWk/bXl19/s5XrICFC9Wa1Hh163aqVanRYdiGPi5Wfs6NwwEPPqjXTocOnteAAYG7Nm1qJyEv3tOmqR9ur17q4d2oUeX7hoerAMydq97boIXl2DHo29fz6tjRcGg6hucxsZ5lYtWvr37Dzz+vPuKgftWJiTBwoOapXr3q8x8eDpK/DhrAF9+dzW1/h/79tbIbPlwLoreEh8M//wlvv+357P33NUZ0dDUHH/1ety0vIiJCz+2uuzzndtll8NVXvlfmGRkwcqRu27dXb+TnnvO9YRIeDvffr9/xBRfAzTdDC5P+LV99Bce3b+b2KD/8uIH167Xxd+655vJhsGaNitzQoT4cVIEf+DyWENtpgGn3tvR09Yz+6Sf1qn/tNd9jOBwwdSr8+iscOgRNmsDnn/su3k4nXHutemCDluvXX3c7aLW8yC3e31cr3sXF6mV/443aGAG47TYtt75w+DCsXKlla+1aeOPxAfzl+rW48tYREXGdVzHy82HzZli3Tr+f+fP184YN4W9/03Jflm5ABJANJANtEdFOx5YtnteyZZDsHoS4/HJ4/PHqhTsnB3buhO3bYccOjWMTYgTbk9Qsho/rgw9mydVXi/TuLRIdLdKunXd+z2vXilxxhcikSSJz5ojce6/IBReIJCSINGok8p//iIgsEfXU7VppnPR0kQceEGnfXv15J0wQOfNMzctf/+rlyRy4SCQRWfn1TGnRQuTGG0Uuu0ykSRORPn189+ldsUK/j3btRM46S6RhQ/X3rhSXQ+Sr5uqXfPQHT7YOiJx/vghoDO+8z8uTna3fNYjcfLO5GCLqD33ZZSJt26o/uFmKD2+SE4/478e9fbvIE0+Yz4fB00+LbN5s8uBSfuCZj8RLUZJ5P3CnU6RTJ5GLLhIpLDQdRm67TX/riy8Wycw0F+ODD7QcgsiwYSL79pX657EVeq1+0UTEWblp+P79GqNvX5EOHUR69BBZutT3vAwYIBIXJ3LppXr9JiSI/PTFHJFERPaP9CrGlCkiMTFaLsePF3nlFZHOnUXuu08kLa2qI3uJ1kEL5LPPNB/NmomMGiVyzz0ib70lMnmy5u2336rPx8GDWldFR4v06iVy1VUijzwi8uabtp93qBHy4l36RysuFtm507eK5/jxsn+7XCIpKSIZGSIi/xT9iq6qNs6hQyIOh+fvnByRw4e9yIDLKbK9sVYEeeslK0tkxw79l9Ophc0MhYUin36q71NSyuatHMd+rrQydDhEnn1WZO9eFWGzOBwiDz6oefGHnByRjRv9CJC6SeQ5/4W7VlFKwOXZeJFk8wK+ZYt/v7OIlp3Jk/1rYJ08KZKUJDJ9egVxXA6RLxPcjc0fK43hdIokJ+v7zz77f/bOO76p6g3jTzooBdoChTKUJciSvYeIigMUwS3KUBzgQERRFBVZCiK4RRFEhqCyFfgBAsqSFmRDB1AKhTK6925yn98fb9KZpsm9SdtAvp9PPrltbt5zktxznnPOvfd9yOxsdXW5eFFikdK/JCeTzA6RNhtajVTK/qBXrsixm/8RFGvb9lOUPuhTJibK5yk+mC/eh1kiL0/6l9xiY56KEEGXeGtDR9Ipc++lpqbCz88PKSkp8FV7Qq1MngOwDMA0AFMdU0R2MHC+PaCrDrROBnQVcCbj5CTgzFyg8TNAz5UOLYo0nZKoAJzt4jRbyEktOAdetVb+OfCKoFx+40OjgcilQIvxQOevHVyYGagAZ2oDSgrQ7DDg7aiMhLMBvA/gaQC/OqiM8upP7V9mRdS7suC6pMEipqt4S5yMsh+Z++TZu2fFCDcJRK2W7ZsecXhxLuF2EJXoKvRy+Y1Nx+rltQ42CCkFnRvgbbzYwdSGHYKp77mB7ihwYRUu8S6VDAAhxm0HmqBk7pLn6nc6rgxLJB4AMi8CHjWABg9WTB0czfUu3CYqkYA7nHr3A541geyrBcmFyhtTm83c7cBCTGmKz8CV49xFYVziXSrHASgAGgBo6JgiSCBjt2xXv8sxZZTFpd/kueHDgLsVl8c7GzeKcJu4UQTc3Qu46VHZNh3D5Y2pzWbsdWCylroAmhi3r8Pf0YVqXOJdKv8Znx1o0JETDBjiAJ03ULU8LU6NKHlA1O+y3XhY+ZfvaG404TZxowh446flOWo1YMgp//KrdgHcfAAlCch25Pdr6hsOOrAMF86GS7xLJdD43MdxRaRvk+fqdwJuXo4rpzSit0lmNa8AoN595V++I7lRhdvEjSDgAXcB3jcBeUnAtc3lX77OA6huzEaY/pcDCzL1QUEOLMOFs+F04j1//ny0bdsW3bs7cqZKlIt4ZxgbfPX7HVeGJSKXyXPj4YBbBXqI25sbXbhNXO8CrnMHGo+QbdOxXN6Y2m5GeYh3IKRvcuHCCcX7tddeQ2hoKA4dOuTAUiIhGY084LBlcyUDyDReaFOjAma9OfHAtU2y3fTZ8i/fUbiEuyjXu4Cbjt3orUB2dPmXX8Mo3plBgMFRF5R1BuAFyfboMilxITideJcPRnctdAdQzTFFZPwNMAfwbAZUaV32/vYmcgmg5AK1ugE1O5Z/+Y7AJdzmuZ4F3LcN4N8HoB64sLj8y69yC1ClFQA9kLHDUYUAMOXO3WNpRxc3EC7xNovx9i048ArwNOM5Op/B5X/zMxUg4kfZbv5y+ZbtKFzCbZnrWcBNx/D5hRVzz3eNwfKc5sjz7qa+aJfFvVzcOLjEuwQEsNu4faeDilCAdGNDr1EB91bH7AQyIgAPX6DRdXCVuUu4raOEgA8Arh6p6Fpp5+YngCq1gcxLwLUt5V++j7ENp//PgYOHO43Pu+E67+0CcIm3GcIBXALgCYddrJZ1ENBfk9tMqvV3TBmWCP9Snps+B3hUL//y7YlLuG2jiIAnA7/c4/wC7l4VaPaCbId/Vf7lV7sdcKsFGOILrmOxOz0BeAOIRkHyKBc3MjeUeCsKcPEiEBkp1pIREcC5c+J7XYDpvFVfAKULW0qKWImmpcn7bcoQn7pOnmsMhoFVkZQkddNKZqYV9UgNk1vEoANuHW92F4NBrB3tgb3imPyli6BSuO3xXdszjj1jWRWnhIDfa3YJ3WCnSaQ9j4FSY7UYJ1efx/4DJJ+0GIcUj3GtKAqQlAQYFE/AZ4j8M22d1e8nxbI0LU36kuRkS3tXBXCHcbvg3HpenvRhERHSp0VGSh9nz2PTReXkhhJvNzfxrb39duCWW4AWLYARI4p3CDuNz/dajJWbC7z0kvgUe3mJP/UOa65XIQsauO9jcHMr8DsOCBBf8rFj1XV4sbHil92+PfDww8DEieIfXIRz38lzw6FAjeZm47i5AR98IL7ZkyeL/3W0ygt5jxwBhg4Fli+XAY9aFAV49VXxUgagaca9aJF4Imtl1y7pLLVy+bKVx04ZXLkCLFhg5c4WzoEfO6b+GDSRmipe8kOHine1GmJigI0bgfffB+6+G5g0yYJPdbXGwE2Pyfa5b4q8FBoKvP028MgjQIcOQLdu6o5ngwEYN07aaECAeIz//ruxTr7GslPXW5Vtbc8e6TeqVJG2P3o0kFNmnhlTn1RwsBgM8t4WLaRP69NHfr+y/LyLk55u2/4uKgEVbWumFpMVXPfuKZwyRXx6rbX8S04mx4wRr+DWrcnq1cVv+scfc2kw+FAs+P4rM46ikIsWkdWqkd7eZO3a5AsvkNu2lbTcyyfzYIGVoKHAI/DwYfFSBsgmTcgZM9TZgSYmFnhwV6tG/v57ITvQ7DhynXcJ325zGAzkiy9KHEA8f231FTfx+ecSo0oV8umn1Xs8r1olcd4ZdZz62eptPf/4QzzBg4PV1cPE4sXkqFHaYpDkSy+RP/ygLUZYmHhWr1pl4xsL2YnqZ9Xi+6OPECB/+UVdPVJTyREjxLsaIGfPVhdHUcjp0wuOv2efLbDlLBWTte1aLzJLvGf1erHGrVGjwBs8Ls72+kRFie96s2YSp1GjYv7ZhiwyzEfadsY+szHy8sgdO+T3rlNH+gxvb/ntrWtbJ0iCBkM1/vRTFocMkc/VurXU6fnnrbcHzckh9+4lP/qI7NuXrFrVZQnqbDi9eK9dm8KJE8mOHUWE77+fjIy0Lsbff5MnTpAxMeSyZeS0abtIggkJdbllS1k9RQFnz4pAhYeTs2aRnTqJkH/8sZmdr70hDTzq6RIvJSTIIGLvXhkE+PqSgwaV4cVthuxsEckXXiC7dJEO5/RpksFTpXPb3sWq3sJgEHFq1oysWVN9h64o5OOPSwfz8MPqYpjq8/Rdxxk3SZsfd2Ii6eEhntNqByQk+eWXZIsWZGys+hgJCWTLluTcuepjKAr5zjuku7scyzZTSMAT3q3Fp+44Ut10PwgAACAASURBVLZQWuDJJ+W3HjpU/fe7apUcc7fcIseyVW1AUcidveQYPzmZ587J79OpkwzWH3+czMy0rR4GAzlkiLTF0aOlbQ4eXMoA4PKz0ravvlLipc8+E8Hu0EH6hTNnyK++MrZLK9mxQ2FMTEOS4IwZf3HJEjI6Wgahf/1lXYzLl8mBA0X027cn33yT3LyZvHzZJd7OhtOLd+EfLTZWZpqFTe9t4x2S4LVro3j2rLb6hYeT+/cX+6eiJ0/Xkwaeusns+wyGghlGWpr1jdJcnJgY6c927yZzMtLJP2pLx3bJ+umZXi/vj4qSh1pSU8l337WtsyrBtePM+VibcJsIDdUm3KSsrmgRORMGg4WVGitRFDIkREOAQgKeO7MWefWI6lBnzpDvvUcmqf95eOWKDML37JEZq9Vc3iDH+AY/5mWm8J9/5LuJjVX/W23fLscvKTFKHUik/SVt+7Q/qRT9QYOC5HvRQkQEeeXKi5Ru+w1VMbKzyV9/FdEvTEWIoEu8taEjbbrUqtLgGBP2tgDCAPwGwAG3UKXvAC7dB7jXBlpeA3RV7F9GaZz9EjjxFlC9OTDojFzcU84oiu3n4vKJPiG3NrmuKnccOanAykFAVCBQtRYwaifQoIuqUJp+ay1QAf66DUg7DbSfDbR+rxzL1gNnbwIMsUCjTZLDwe6sB/AYgOaQO2PskyPCMf2p48usiHpXFm6oC9YscxYi3B4ABjqmiJTl8uz7VPkKtz4TOD1Htlu/VyHCDbiEu9Jjx0QuFSLcAKBzA9q8L9tn5gH6crwSS+cB+BmdzlJ+cVAh90JSpUYACHVQGS6cAZd45/On8fkuAA4QBkOaXIkKAH6j7B/fEucXAjkxQLWmzpfH3CXc5cv1kImt0dNAjVuB3ATg3PflW7apbaf9CRgs3vulEh8A9xi3/3BAfBfOgku88zE1hKGOCZ+2FmAmUOVWwLunY8owhyELODNXtttMdi73sJiTLuGuCJxdwN08gDYfyPbZzwG9HW7qtpaqnQGv28S3IHWVgwp52PjsEu8bGZd4AwAuo8AC9GFLO6on6Sd59nuufHOZRywAsq8C3o2AJk4063ZlTqtYnF3AGz8DVL8FyIktyG1QHuh00saBgjZvd4ZAuu7DAC44qAwXlR2nE2/H+HmbsiL1BXCTHeMayQ4BsgIBuAM1R9s/fmno04HTs2W77UeAu1f5la0Fl3BXDpxZwN08gbZTZfv0HCDPUXadZqj5LABPIPswkH3cAQUEADClVV7jgPgunAGnE2/H+HmbGsATdoxZiGTjCNxnMODZwDFlmCP8GyAnDqjRwnnOdbuEu3LhzGYmTYYDPq2BvCTg7BflV65HXcDXuIKXtMhBhZj6qrUOiu+isuN04m1/ogDsN24/Zv/wSiaQvFS2a46xf/zSyIkDTn8q222nOce5bpdwV06szIVe6dC5A7fNkO0znwPZKnP8qsHU1lOWA4ZUBxTwKKT7PgTgvAPiu6jsuMQbpotK+gG42f7hU34FlGTA8xagxv32j18aoTMBfRpQszPQ+OnyK1ctLuGu3DjrEvrNjwO1ewKGDCBkavmVW/1uoEorQEl30G1j9QDcbdz+3QHxXSQlJWHkyJHw8/ODn58fRo4ciWQL7jGJiYl4/fXX0apVK1SrVg2NGzfG+PHjkVLM1EGn05V4LLDalKAAl3jjN+OzAwSOBJKMt6rUeqX87q9OPy8XqgFAh7ly72tlxiXczoEzCrhOJ20AAC4sBtLOllO5bkCtV2U76QcbbQetxdRn/WZxLxfqeOaZZ3D8+HFs27YN27Ztw/HjxzFy5MhS97969SquXr2KefPm4dSpU1i6dCm2bduGF154ocS+S5YswbVr1/Ifzz6r4rRmRad4U4t90uKFUVINupPUkKC6NDICjSYkXmRevP3jl0bQU5Iics+95VemWqJPkHPsk/LURTlRKJUqP9WWSrXc2PegtIn9j5RfmfokMSAKAZm+ywEFJJGsQunDTmiK5EqPWpTQ0FAC4IEDB/L/FxQURAA8bUOO59WrV7NKlSrMK5TjFwA3bNiguY6VfEpmXxSluI+vMeMZBgGoa1Os7GwrBtOJX8mz33DAw9/sLnb3zo4PBKJWAdABHT5TFcesd7ZKLPoK2zDjtqc/sb0+mz0nU5WxTqV+5zbOwO3125EaPMbbz5GVrysbgNhddvUYL7VO7jWBmsakLYlfW4xDSp9iGzUBmFKwLs//b0aG/bzYy4XsDG0PBxAUFAQ/Pz/07FmQk6NXr17w8/NDYGCghXcWxZS21cPDo8j/x40bhzp16qB79+5YsGABFBWN5IYSbzc34JdfgDp1gLZtDYiNlXNRer3tSxbR0UDv3kD37sAzzwDTpolXeD55UUCq8Ra02m9YrNOMGeIxPmECsHIlcOaMuk44JFjB6VVvAgBiazwPg08n24MYee01YO5c8VTWwubNwGefAVlZxV6wcak8Kwv48EMgL09bfQDghx+s8U4um61bxUNdKwkJ8j1pJS8P+N4OCcX0euCjj8rweLZCwLOzgc8/B/7QmEskLg744gvglVfUD04Un9sQW0MuIju37i2cPGG7upFAeDjw66/AW28B/fqJ773FVLC1x8tz2p9AbsGFZaGhwPTpwPDhQI8eQM+e4sduKwaD9F2JiSvQrp0edeoAS5ZUYHpaNYxtCIyqoe4xtiEAyXFe+JGjsYFHR0cjICCgxP8DAgIQbaUZfEJCAmbOnImxY8cW+f/MmTOxZs0a7Ny5E8OGDcPEiRMxa9Ys2yupee5eQZiWSy5etH25ZM8e8rHHdpAEU1JqctWqLObk2F6H+Hiyd2+xP/T2Fmu9fKeq6EmyXHbhrjLjKAr51lsF3sUTJ6p0vIpcTq4GU5fVYD2/a+zQQdyZ1HDpklgyeniIjec+8xbFZaLXk+3aiX/2Tz8ZHaJULpU/+aR4D1++rK4uJiZNIp97Trur2KxZ5IcfaotBinf7tGnaYiiK2F6+oc5sKp9r18QP3mrrVjNL6Ho9uWSJeF63amWjK1ghgoLIxx4jPT3FkvPCBXVxoqPFGreOTyyTlvjJ8nnEIlWxJk8uaKevvWblMRR5v/QF1yaQlPds2yYWxgDZvbs6K9fcXHLNmhwmJtYhCQ4btpl//217nORk8ttvK3DZ/GGQT6h7pDwMAiUfU6dONVvm1KlTze5f+HHo0CF+8sknbNmyZYn3t2jRgrOtMKlPSUlhz549OXDgQOaWYRk4b948+vr6WvWdFcbpxbt69RQ++aQIpy22iunpw0iCZ868wr59yXr1yPffJy9etK0eGRni9zt8OHnrrWTnzuS6NSlUwnyN1p8brYpjEvBmzcT3d/hw8vx5GyqSm0L+WY9cDe5fPJtubuIp/s03tvuBm1i9WjoXLy/yv//UxSDltzF1eMvnnqCi8hz3unUSIyCA/Ocf9fX59luJ89ln6mOQ5LPPkrVqiXWrWjIz5fd+uqS9u0189ZV8pnnz1MfYu5esX1/i/PabDW8sJuCrvjqS/3uvX6++PseOyaAYIFesUBfDYCC//17agrs7uevHL0S8//AncxKtjhMZKd72/v5k8+Y2CDeZbxWqhFbnn+sT2a2bxBg1inzgAdstjKOiyClT5Lfq1YsMDZ1AEkxPt/58fl4euWULOWyYeHvfd18FinfMVTIrXdUjJeYqATAqKoopKSn5j+zsbLNlxsXFMSwszOIjKyuLixcvpp+fX4n3+/n58eeff7b4uVJTU9m7d28OGDCAWVlZZX4P//77LwEwurhPaxk4vXifO5fCr78mu3aVTn3CBJk9WCaepgs9FEUutjlxgnz5ZdLPj3zoIdvEKi9PZrh6Pbl2LfnVlM/IEDDpcFtSsd5EWFFkhpucLAOJmjXJ8eNp3arAiXekU9pyK6nP5jffkCdPkj17SgO3aSBQiNGjyTlzpPP74w91MRRFZnMP9TzB1CnqL07LzCR9fEg3NxEFtTPnP/4QQejaVVYY1NKvn8yefvpJfYxly6Tz7NlTfYwrV8gePeQzrbLeqr0EmzaJwFWrZrugFBbw9I9q8ZFeR9irl/rf6H//E6H89FNy5Eh1MS5elJWabt1kIPDNN6SizyW3tZW2cqzsZYq8PBlU16wpfvSJidJGbfpcisLEwx3JEPC7qR9z1SrpK65etW1V4sgRWRHx9ZVVlmPHTK8Es+DCW8udX2ysrOzVr0926kR++aWsTLguWCuK6YK1gwcP5v/vwIEDZV6wlpKSwl69erF///7MyMiwqqxvv/2WVatWLXXAURpOL96Ff7RTp2RJNC6urHd/Q/nonc3EJefPl1mIKpQcKmduIkPAfzdbHqGVxZUr5Ny5VnQUqWfINZ7SIV3dXOQlvV5mHgkJ6upgGjgePKht9n0+6AQNn2q/qnzRInLrVttWWYpz5oysBly9qj4GSUZESAeqZfldUWTgGB6urS7R0TKTCglRHyMvT77bhQtVBigk4IbZtXh+v/qr0I8eJffvl20rJi9mSU4mv/vOjEBGb5e2ssadTA4uM868eTLb1cK+zStl9n06gDSo+0CBgbJqlJxs7tWelD7N8nJSUhL59ttyzBXGJd4lGThwIDt06MCgoCAGBQWxffv2HDx4cP7rly9fZqtWrfIFPjU1lT179mT79u157tw5Xrt2Lf+hNy5/bty4kQsXLuSpU6d47tw5Llq0iL6+vhw/frzN9buuxNs6FJLtKB/9W/tXLHGxLJefaUAabBtJqUJRyN33SGe0d5Djy1OD63awGwdnuY3s34elzezqr/3iB2tQcsmzjaVvSPjBAQUspPRpLSl9nG24xLskCQkJHD58OH18fOjj48Phw4czKamg77pw4QIBcNeuXSTJXbt2lXoe/YLxgo2tW7eyU6dOrFGjBqtVq8Z27drxq6++KnIrmbXoSIdkD3A4qamp8PPzy78U33r2A7gdQDUAVwH42a9SNAARbYDccKDePMB/ov1il8al34GDTwNuVYH7g4EazR1fpi24ErDceOSkAisHAVGBQNVawKidQIMuFV2romRcBP5qCxgyge7LgKajHF9m4rdA9HjAsynQIhzQeZT5FutJg5gqpQH4B8BdNr1bfX+qHnuUWRH1riw40w0FduJH4/Mw2FW4ASBtvQi3Wy2g1tiy99dKXgpwQm4NQ5v3XcLtonLgDJnYqjcRpz0AODERyE10fJk1XwDc6wJ5kUCKvbOi+QAYbty2PdWmC+fjBhPvOACrjdt2FlcqQNzHsl17POBWw77xzRH8oZgt1LgVaDXJ8eXZgku4b2ycQcBbvgn4tgVy44FTkx1fnls1oPYE2Y6fJSt1duVl4/N6ANfsHNtFZcPpxFubn/ciADkAugPoYd+Kpf0B5JwE3HwB//H2jW2OhIPAufmy3XVB5fLqdgm3C6DyC7hbFaCLcZZ6fiEQ/6/jy6z9mqzM5Z4GUleXvb9NdATQF4AeBSuMLq5XnE681ft56wH8YNx+3b6VogLETZft2m8A7rXtG784Sh5wZAwAAk1GAQF3l/mWcsMl3C4KU9kFvG4/oNmLsn1kLKDkOrY8dz/A/y3ZjpvhgNm3qW/7EYCDP4uLCsXpxFs9fwC4DMlh/kQZ+9pI2gbjrNsH8J9g39jmOPsFkHISqFIb6DjP8eVZi0u4XZijsgt4hzmAV10gNRQ4/anjy6s93oGz70cBNAQQDWCNnWO7qEzcQOJtMgYYC6Cq/cLSAMQZfYJrT3D8rDv1dIEvccfPpdOpDLiE24UlKrOAV6kNdDL2D6EfAynBji3P3bfQ7HsaQDu5pAAAPAG8Ytz+CnKnkovrkRtEvA8D+BdyYL9q39Cpa4CcEMCtZkGDdBRUgCMvAUoOUH8g0ESFB6wjcAm3C2uozALeaBjQcAjAPODwiw5Yzi5G7TcAd38g9yyQ8qudg48F4AXp94LsHNtFZeEGEW+jNSeGAWhgv7DUy8gZkHu63R0sWKaLatyry4U2Op1jy7OG6BMu4XZhPZVVwHU6oMv3gIcvkFjoYlBH4e4D+BvvEImbDtCe56frAhhh3P7K0o4unJgbQLwvAVgFAFCUCfb1zk5eCuSekRG0BdtPSyiKlTaHGReBk+/IdvtP5D5VM7HsgdVxok8AywdYFG57ejnbi8ronX0916nEMaBBwB16jHvfJOe/Abl1LD2izDiaPMZrvwa41wPyzgNJP9nVY1xRTNferANw3tLuLpyUG0C8v4JcaX43dLou+PRToE8f4PXXxff25El1HUL42UzEh8m555CYD5GS7qOqdjodMHEi8OabwL//llIXUpby9OmAf1+gxTizsYKCgBdfBI5qnMgYDMC4ccCRIxZ2skK4AeD334Fdu7TVBwASE8WH2x4sWmQfYdq8GUhK0h4nNRX480/tcUhg4ULtcQDgp5/s41W+dy+wYoWZF2wU8BMnxGNeq8CdOAGMGQPs21fKDreMkbs3DJnAoeflVFUxFAUIDJR2+8Yb6hfAUtOrIzhGEsUknp2OM2GWDNTNQwLBwcCyZcD48UDfvsCMGYBO1w7AQAAKgC/UVdBF5UZ7BtiKwbqctokka1By/m4lKWmMP/ywwKLy1VdVpjaOm0OGgJE7mrCKZzYbN1bv3JWaSrZtK/WpX59curTYDucWSB7mdd5k6lmLscaOlTi9epHLl5M2GtXks3atxBk2jDx3rtiL145bnav82jXxY540yUp3NAu0aCEuSFp5/HFywQLtcSZPJj//XHucb78V5yqt/PyzOOJp5bvvyCZNtMXIzRVnPA+PMpzbiudCv3K4yMvnz4s9rk5H/vqr+rqsXEn26SPH9OjRZbwh/Ty5rrq0ubNfF3lpxQqyYUOJ07JlaSYhZXPxotj/enjkMnxrC8l5HjvD5jiKIk6Kpv5s0qTC/dnflL7Pm6RltyZXbnPnw+nFe/XqFAviO5PyEduzeLL+adOkg2rQQDq8kydtKFyfQIbVJEPAY7uW0t1d7AtffNEaRzPznD0rdqQAOXVqIdestIiCjuRM2cqVmko2bVrQSRmsdyQtgqIU2Ey2bSt+xiRtEm4TQ4dKnC5dyLAwdfUhyREjJM6cOepjkCIG3t6kBWc/q3jgAfKWW9T7pZPy+7RqRd5zj7a6nDsn1qJPPKEtzhdfyHf85JPqY5w9S3bvLnEGWeOVU4qZSVQU2b69xOncWf2xbDAUDGobNbJScM99X2jAfIakuJPNnCkDiRo1yNBQdfWJj5f61Kkj9rYHd/wm4h3mQ+bFWB0nJEQsQuvVk4HA++8Xn4goJLtS+sApZmMoijjJ9enjEm9nw+nFu2XLFHbsSP72W/FONINkHcpHXGk2xv79ZEaGeAb7+4s4RERYUfi1idLYzrUnFT1XrJAG+cor0iB/+EFdh755s8y677pLOr/TYQbynzukE/nnDqu9wXftkk68USPyvffUi8vu3dIp1KlDHjpEVcJNkhs3SifVqpX6mQopM0JAZuBHNJhVvfCCxOnWTZu16E03SZxNm9TH+OsviVG3rnpzq7w8sndviaPW+5okjx+X2SQgIq6W1FSyXTv5zdeutfJNZgT86FH5Xm65hdy+XV1dDAZyyhSZLT/1lA1xFEOBW9/fvRl+Vs/evcXD/ZdfyA0b1NVl0SL5TGPGSJ/xyy/GsiK6SJ9ydVyZcSIjyeeeI2vXJj/5RLzXAwNLO37WUvrAWiRT8/+r15OrV8ugqGVL8rvvXOLtbDi9eCclpXD9ehG75s3Fi1iWir+lfLxmJMu2W0tMlGVQPz/ytddkudcsORfI0CrS0NK2lnj58GGyZ0+ya1fxwLYVRZFG/sUX5OTHvyRXg8q66jIDt4HUVPF47tOHfPBB8SlXQ0gIuWYN2b/VceZ+os7WMy+P/P138o47ZDChlsOH5TTHTTdJh6WWd98l27SRWVSSSnfS+HiZFdavT37zjfq6fP+9fJ727dX7iycnywC0VSty4kT1dcnMJBs3lu84MFB9nI8+ksHEqlU2niopJOB5n9Ti3W2OcOVK9R7lqakyM+3Rg7xyRf62iYyLVNb7kqvBj56awzlzRPTUDLIOH5Z6dOtWSr+Q/rf0KSEeZLb5U2MxMeT48dJHTZpEJiRYU7KeYhMKkp8zJ4dcvFgEu0sXadt6vWvZ3BnRLN6KonDq1Kls0KABq1atyv79+zM42LLB/dSpU0v4ndarV8+mcov/aIpC7thBDhhAnj6dQ7Ix5eN9b1Pcq1el81qypJQdooZJI4u8p9RWbDCQP/1EvvGGTUUXJSWEhjVVydVgTph6/9/sbBmMnDqloS7XjjN7pnY/7mvXRLzVzjANBnnv7NnqhY4ks7JkBma04VVFXh4ZG0vOn68+hokff5TvRssqwL595JYt8tnUEhMjMzlS2+mWDz4gL19WWYlCAp49Q5sf+OnTsjyt5TvJPbuYXA0a1lQhk06ojvP22/I7W1wFu/iA9C2XHjH78sqVMmO3/bv9idIXNuT581m8+25Z8SncDl3i7Xxo9vOeM2cOPvnkEyxduhQtW7bExx9/jL179+LMmTPw8TF/Bfa0adOwdu1a7Ny5M/9/7u7uqFvX+mxhln1cFwN4EUB9yG0S3rZ+LPNkBgKRfQHogGZHAO/O9olbHCUX+LsnkHwcqHc/0G9rxd3TbeVV5S5c2I2cVGDFQOByUMX7gZPA/qHAtU2AbzvgnkOAux0zNBYmOwQ43wGAAjTZBVS/006BcwC0gKSH/h4FGdgKcPl5Ox+abhUjia+++goffPABHn30UbRr1w7Lli1DZmYmfv3VctYgDw8P1K9fP/9hi3BbRg9glnH7HdhNuKkA0Ubv7JovOE64ASBkugh3lTpA9yUu4XZxY+HlC4zYBtzcu+ITueh0QLefAK8AIDUYCJ7iuLKq3gbUMtp6xrxp9jY1dXgBeNe4PRsuw5LrA03ifeHCBURHR+O+++7L/5+Xlxf69++PwMBAi+8NDw9Hw4YN0axZMwwbNgznz9srkcCvkNl2XdjVszv1dyD7P/HpDphpv7jFiQ8sMEfo+iPgbceMcLbgEm7bUBQgLQGIOQ9cOgWEHwRC9xR9hB+U12LOy772yjhyPVJCwAcAVy0lHnAgVQOAbotl++znQNwex5VVdzrg5gdkHwdSltsx8IuQ7JJRAJbZMa6LisJDy5ujo6MBAPXq1Svy/3r16uHixYulvq9nz55Yvnw5WrZsiZiYGHz88cfo06cPQkJC4O/vb/Y9OTk5yMnJyf87NTW1lOgEUAfA2wCq2/BpLKBkADHGVIb+7wEe9e0Ttzh5KcDB4QAUoPEI4OZHHVNOWbiEuyT6PCD6HHAlDLh2Foi7CMRfBOIvASmxIsa2zpR0bkCN2oBfAFCnMVCnCVC3CdCgJXBzG6B+C8CjimM+jzNgEnDTEvov9wAjdwINu5Z/XRoOBpq9AFxYDBwcAdx3EqhSy/7leNQB6nwIxL4DxLwH+DwqRiaaqQpgEoCPcUPk5roBsEm8V65cibFjC2az//vf/wAAumLLuiRL/K8wgwYNyt9u3749evfujebNm2PZsmV46y3z5h6zZ8/G9OnTrajlswAeA+Buxb5WEj8b0F8BPJtJDnNHcfQ1IDMSqNYU6PKd48qxhEu4RagvHAUiDgHnjwARh4GrpwGDFem9vKoBXtXl4elVcMqDBPJygNxMIDsDyMkQsU+Ll8fl0JKx3NyBm1oDzboCzbsBzbsDt3S5sQS9Mgl4p69k1p1+Try/e61yzCkt//FA8kIgNxyI/xio95mdAr8M4AUA6rJBuqhc2HTBWlpaGmJiYvL/zsnJQbt27XD06FF07lxwDnjo0KGoWbMmli2zfnnm3nvvRYsWLfBDKTkwzc28GzVq5PgLFXIvABFtAOYAN68HfB9xTDkXVwL/jQB07sCde4E6fRxTjiVuVHcwfS5wJhAI/gc4sx8IPwDkZJbcr2oNEdOGrYGAZsbZcmOgVgPApw7g42+9sOrzgPQEIDUOSI6WGXzcRSAuErhyWmb42WbSZVbxBm7tCbS6HWh3N9CqjwwSrneKXMRWs+IEPPEQ8E8fMSXq9jPQbLRjykn7HxA1GIAn0DwY8GrpmHKMuC5Ycz5smnn7+PgUuYKcJOrXr48dO3bki3dubi727NmDOXPmWB03JycHYWFh6NevX6n7eHl5wcurAjqp6Aki3NUHAD4PO6aM9PPAUeMVoG2muIS7PIi7CBzZBBzbIueji4u1jz/QoqfMeG/pCjTtBPg3st9My8MTqFlfHo3bl3ydBBIuA5HHZfZ//rCcM0+LB0J2y2P9xzLTb3MH0GkQ0G0IENDUPvWrbJSYgd9bMVeh1+4O3DYDCH4fOPY6UKcv4OMAYfV5EKgxCEjfCkSPBxpX4B0nLioldrlVbPbs2ViyZAluvfVWzJo1C7t37y5yq9iAAQPwyCOPYNw4MdR4++238dBDD6Fx48aIjY3Fxx9/jD179uDUqVNo0qSkW5Y5ymXElbYFiHoQgAfQ/CTg1cb+ZSh5wK5+YkPo3xe4czfgpulSBNu5UYT7ymkgcBVw6A8RxcL41QPaDxAhbH07cFMbwK2SnRsk5TOc/hcI2wuc2imz9sI06QB0Gwr0HQbc3LZi6ulIclKBlYOAqMCKu42MBmDPPUDcbqBWV+DuQMDNAacycsKB8+3ELrTRH4DPUPuXYcQ183Y+NKvEpEmTkJWVhVdffRVJSUno2bMntm/fXmSGHhERgfj4+Py/L1++jKeffhrx8fGoW7cuevXqhQMHDlgt3OWCkgPEGG0+/Sc4RrgBIHS6CLenH9BzpUu47U3CZWDfSiDw96KCrXMTke46GOh4v8x+K/vMRqeTC9lubgPc85KIeVQIcHI7cHgjELYPuHhSHutmipD3GQb0Gy7L+9cDJjcyk4AvH1D+S+g6d6DHL8COjkDSEeDUB0DHufYvx+tWwP9tIH6WrABWvw9ws9Otry6cHs0z74pCzYhLUaT/s6qPYtWqgAAAIABJREFUjvsEiPtQrixvfqbEFZ+KYoeJWcxOcO990IFy8UujJzWFs7lOpQg3aT8ds1csm+LkZAIH1wN7lgHBfxf4f7p7AB3uA3s9AV3XwYBvnfKrU3nESksAj26BLmg1cOIvwJAn/9fpgNvuAvo/C/R8DKhq3V0YFfLbWRtL4wzcLu33yh9AoPEamNu3AA0GWd5fTZ2UDOBca0B/GajzERBQ9kW7Jo8xWz6fa+btfFSydUHHotMBkycDL7wArF8vPspmyT0vV3kCQL15Zm/VOH4ceOopYN06IDtbRWWyY4CDI6ADERj9IpbvehKFrsdTxfbtwNy5QFaWFTtbmHHn5gKTJgHJydrqAwBLlwIREdrjREUBGzaUsdPlUGDJG8DYhsB3I2VZmZSl8DE/Agujgcn/w9LI5zQLNwBs2mThGLKBjAzgjz+0x4GPP5aeHwm8twlYFA28/BNw251G0+d/gPnPynezeBxwKdhiqM2bAXukXoiMBH7+WXuc1FTg3XcLtTUb/cBNZGcDX3wBGG+UUU1uLrBy98PYc+U1+cd/I4GsqzbHycmR43rYMODwYTM7uFUH6n8p2wmfAjlnzcZJS5M4L70kbbeyLyK5sAMVlJZVM2pz2mZnizMQIF7DJfyYFYW8OMiYv3yAxUTc8+ZJHF9fcapKTLSyEoqB3HO/OBZta8fTIZn08hJrv2nTxFBEDQYD2akTefPN4u1cah7l6BNluoNNniyGGVtLeq/YxO7d4kq2f7+2OHl58j0HBRV7wWAgD/1JTu1PPoGCx2vNyNXTyJiSJuv9+kluZ628+aY4yGll8WLJP6+VXbvEFKcEsZHk2pnkuOZFv6Mpt5MH1pGGogfKoUOkj496L3gTBw+SAQHqHcFM7NghDnlmTVdKsRMtjl5PLlsmxiu33abeaS82VgxtGjQQn/rgE9nk9k7SlnfdRSrWBU5OljzlNWtKHzJrloWdFYWMHFiqp8J330ldADGEUZPL3ZXb3Pm44cSbFEeoFi1Id3dy8GDxDS4IvFYaSWgVMtuy4bOiFHhV9+1rrcsPybA5BV7ByWLiMmtWwUDg2DGbP1I+27aZFs3E97rE2MMK4SbFdtDNTeKMGaPe3CE3V4TAy0ssCLXQooUMBM6dI5mRQm7+sqggPeVOfvYwefwvi84aPXqIzWRmprb69OsngyW1RiuF62NWdG0gO1tcxTp1srCTwUCe2EHOe0y+K9P39mpTcuM8MiOZFy7IILJxY231Wb9ePNO9vdUfOzk5YhJkOp7Dw0vZsQwBV5QCn3JALGrVcuoUWauWxJk61fjP1NPkuurSpkNmWhUnKYns37/A87xMI5icc2RoVembkn/N//eVK+Kc5u5ONm0q5jJqOHrUJd7OhtOL96uvpqiydTx9WjzAJ08WX9wffiANuSnkmYbSQGI+tCpOYqI4F73yiswO9u0r4w1x+8g17tLQIxbm/zs3l7z9dvLRR6UzL9WStAwUhbz7bhG6kSOLzTCsFG4TQ4bIiN7kNKWWRx6RTurJJ7X5ed9/PxngFc0l902mMsqvQHyeq0mueJeMjyo7CEXgAPL999XXRa8nq1eXOGqsX00cOyYxvLy0uYpNny5x2rSx8g0JV8hf3ydH187/HpVRvlwxaBLrV73Ku+5SX5fUVHL4cKnPAw+oj0OSc+fKMThwYBk7WhBwg0FWxlq0kDamdrAVGysWu0OGyGC9iN3phaXSple7kTH/WIwTFCRC++KL0m/ExVlbgRnSN52uRyUviYsWkf7+Yg+6apU669TkZHE88/Nzibez4fTi/fTTKQwIsMJuzwLHjhm9bb8dL40jvAVpsH5alme0C1+7VhrTzJml1CU7ltx0kzTyA8NL9CIJCdLRTJ4sM5+TJ9V9ntBQ8e++/fZCAm6jcJPknj3i61ynjjb7zOXLySlTyA4dNAhUfBSDXnyN2Y97FYj2G63I7QvILNvMvYcMEbFcskT9MRMSIsuvzZrJsaeWxYtFVG67Tf2Ki8FArlghIvfggza+OTuD3LmIfLNt/vea83gVBj7/Mhl3UVV98vLEz/6DD+T0jVr27ZP2tH8/+Y9lPRTMCLhJuHv1EqFS6w0eEiK/9dtvyzFjdpXtv9HStv+sR2aVHH0bDOK77u8v/vZkQd9hFYZsMrw1GQL+ueBlduwoPuFqMNkW16snA62wMJd4OxtOL94pKSk8eFCWHTt1EsFRQ17aIRqC3cgQ8LefdtjWqAoRGSnnne66S5a08lEM5N4HpHFvbU3mpVmMs2SJNPL//U9dPUgyLU0E/P0XTlCxUbgLs2WLnLs8X/L0sVUoijzuvFO8uG0iNpJc9Ar5dJV8cTkysBfzAjeoNp3OyCDvvVdmK2rJzSX37iW7d1cfw0TfvnJeV8vMe8MGWYbNyFAZwGCg/uBGHhrUt2BwNMyT/HGM2esGLPH55/KZTP7rarh4kaxfn/zzTxvfWEjAlU9rcfrLR/KFWy1//SVtcdGiMnbMyyC3tZM2vufeIue/o6PlmOvRg4yIUFcPvZ78/efdZAioBOuYlxKoKs6//8rgqlu3gmtRXOe8nY/rQrxJ6SiWLycbNiSPHrUxmJJLnutIhoApoc+wf39ZrlNLbq4syRZZMgybLY16rReZdMKqOHv2yHlMLcdlxvkTTHpfvXCbmDtXZs9aOHuWHDDASs1NuCKiPcyzQEw+uoPKyX/4+OMKw8K01WXRIpn1aiEykhw1SlsMUmaGZ89qi7F8Ofn999pinDsn50+V4D3k9LsLibiHiLgVpyUURU5vqJ3hmvj4Yw2nawoJeMoHtZh61vxFbNaQnk62bk3+/beVb0gJIddVM57/np7/70ceId95p9hSu418+60MipJCRssK4bnbSMW2gMHBMihasqRoO3SJt/Nx3d3nnZUFeNuaxyD+UyB2MuDuDzQPg+JWF3o9UEVj0qTcXGOM2N3AngEAFKDrIuCWF62OodcDHmrzttgxAYvpKNF6C0qZ9/ymJQAbZgF/fQ/kGe8Lanc38NgUue3JRflx+l9J9nJiu/zt6QXc+zLw6AeAb91S32aP+7o1H292zMRmcxu8+Avw3ygAOuCO7UC9ewr6Ag3k5ko93JgInGsDGGKButOAulNtimOuj3Td5+18XHf3edss3LnngDhj4oN6XwAedeHmpr2hAcYY2dHAwacBKECTZ8VW0AYqg3ADNiS3sSKOWXKzgI1zgdebA5u/EOFu1ReYugv46G+XcFcErW8HPvgLmL5X7pXPywG2fA283gLYMNu8eQvsd5xoiqPyPnBz2NwGm4wEmr0EgMCBp4HMy3brT9zcALjXBup/K/+MnwXknLYpjs19pItKyXUn3jZBAlfHAMwGqt8D+I20b3xFDwQ9JQLu2w7o8n35ZE9wppSnigLsXgq80RJYMQnITJG0npO3ADP2uUS7MtCmHzBttwh5s85AVirw2/vA+BbA3z8BiqGia2geOwq4zXT+BqjZCciNBw48JR4G9sT3CaDGA5L3/OpLtnvJu3B6nE6858+fj7Zt26J79+7agyUvAjJ3ATpvoMEC+wtr8AdA/F7AowbQZy3gUc2+8c3hTMIduheY3B34frTkIPdvBLy6BJhzFOg8yJUmqjKh0wEd7wNmHwbG/QLUbQIkXQN+fAl4t6tkcKuMVJSAu1cFeq8Vz4KEQODkJPvG1+mA+t8DbjWArH+BpO/tG99Fpee6O+dtNXlRQMRtgJImy+X+b9q3glf+BAKNFqK91wA3P27f+OZwFuGOvwQsnwgcWCt/e/sCj30IDHwdqFK1YuvmwjrycuS6hHUzgAxjHt3uDwPPflk5bUkryo3M0f1A4nwgehygqy6+31WaqgrjOuftfDjdzNsukMC1l0W4vXsBtcfbN35aOHDoWdm+dYJLuE3kZAJrpgMTWotw69zkAqhvwoEh77iE25nw9AIGvwl8HQ4MHAe4uYvV6pttgFUfAdkZFV3DolTUDPymoUAr46z70GggNcy+8Wu9AlTrBzADuPZSwZV+Lq57bkzxTlkOpG8BdFWAhovF4s9e6DOAwEeBvBTAvw/QYY79YpeGMwj3oT+Bt9oCa6bJxWlt+gFzjwMv/QD4BVR07VyoxbcO8Py3wLyTcldAXrZcof5ma+DAusolJhUl4O0+Aer2B/Tp4kKWl2a/2Do3oMFiOfWXsRNI/sl+sV1Uam488c67Jt64AFB3OuDV1n6xSeDIWCA1GKhaX855udnhMlNLVHbhjo0E5gwB5j4MxF2U89oTVgHT9oiHtovrg5vbAlN2AhPXAXWbyjUMXzwOfPogEGMHezJ7UREC7uYB9FoNeN8EpJ0BDr9g30GN161AgNEFMWainBJ0cd1zQ4m3YiB47RVASQaqdhWje7WxzF3cGfE9cGmlzOR7rQK8G5QZR1MbLibcHGEf4bZLv6LPA/78DHyrLXBkE+DuCTw8GfjqNNDnSZsvRrNnX2evWK46FUOnA3o+CnwZKvfle1QBjm0F37oNWP8JoM8t/zqZw8sXfMZ+Am5VnaoGyDlvnQdweQ0Q/mWJXcz2KdZS+w05BaikgVfHQDFUohUPFw7hhhJvXeov0KX/CYPiibgqS6QhqSQoCJgwAbhwwfiPuH3AceOMvv0coO4dVsVRFOCtt4Bjx2ysgJkZ94atNbF+vY1xzJCdDcycCRjU3gF0Ngh4ryuw8l3ocrOQd2t/YO4J4JlZgJe6K+7Dw4Fdu1TWpxgrVtgnzqZNQHq69jhZWXby84b9Ptu+fUBoqMo3V/EGnpoBzDuJvNYDoMvLBn7/EJjUWRK/qMBgAD75RLzPtbJxI7Bmo/YZ+IkT0gfo9Va+wb830PEL2T45CYiVA/rSJWDiRPnOVaNzR1yVn6E3eEGXsQ1IWawhmAtn4MYR77zL0MXIhWmfLp6OBk3bY/BgYMcOdeH69gXi4oAWLYCxo64gd+8TAPVAo2FAy7esjuPuDvTvD3TpAgwfDpy3ZoWxlKXy++4Dnn8eeOIJICZG3ecCJInDiRPAAw8AiYk2vDErDfjpNWBKX+DSKcDHH/s6LkOPLbuQ4N1GfYUA1KwJDBsGXLmiKQwA4PPPVQyWzLBjB7B2rfY4GzYA27ZpjxMcDHz6qfY40dHAU08Bfn7a4iR5t0KfrTvwT7sVkpHtcijwUT9g4Vi5n99KkpOBIUOAgweBGjXU1ycuDnj6aWln998P1UvokZHAqFFA587SD3h62lCJFuOAJqMAGpC37wmMe/4SbrlFBLx/f3Wf659/5Ptp0KQNZiz4BADgFvsmkBupLqAL56Bis7Oqx6actoXN7M/35Pa/8giIB+6OHerrEBND1qubw/0ze5OrQcO2DmSebQ5Xpur16SMWii1blmFcUIY72MSJEqd2bXLzZpurks9vv0mcZs3IE9akYj+2jXylcUE+7PnPkSlxDAmROJ06iY+6WvLyJE6fPtoMPEjy5pvFxEOrD3e3bmL8opW77xbHNS0oihhfBARoi5OXV+AzrcXvPDFRvh/A6JaWlkD+8GLB8TH2JvJI2QdocLC4rgHk0qXq6/PXX+KOB5Cvv17sxTL8wAsTGUm2bStxundXeQzpM6n81YVcDf43qxsD/LN49aqKOEZ27yY9PKROmzfryfO3S1934W4xRLICV25z58PpxTsuzoofLfFHOZhDvchscbR4+20xP6hdm5w/X31HHrbyZXI1mLzUj9s3nFMXhGJ/2LixdDD//VfKTteOl2nreeEC6e1N1qol22pJTRXbTDe3Mty3UuLIr4cXdMqvNSNP7sx/ubDv9aRJ2gTTz0/iTJigPgZZUJ9169THyMws6DBPn1YfJyJCYri5yXeuls2bJY6np7bveNIkiePtrT6GoogdKEBWrVpssBWymxzXvOB4+eJJMjmm1FgbNsj37OEhAwK1REVJ26patRQTGCsF/OhRsm5daatW2ZSWwj+bLjDh59rkajDsl+dV/WiKIna0tWuLicv48cYXcsLJUG/p8xK+LTNObi45ebJLvJ0NpxfvDh1SeOqUhR1zIsjQ6nIgx88r+HeOuOqEhspIetgwsdC0iYgfydWgslrH0L83MyCA/PprVR+HpPh3r11bioBbIdwmNm8W68127bQ5kn3xBTliBPn886XscHA9+WKAdMJPupFLJpBZJb/EceNk5r1ypfq6kOJ45etLHjqkXqByc8UlqmZNcs0a9XXZv1+Om5Yttc0IV6wg27SRhxbP9HXr5Lhp3Vq9LaiiyCy5Rg3yoYfU14WU7/a228jXXjPzYnYGufxt8il3OXaer0MGrjYb55VXyCeflGNRLWlpZOfO5PTpZaxGlSHgJuH+9Vdpq2r5/nuJc2L7diqr3cSBLPw7m2Kkp5MjR4rr4KlT8ttlZxfaIeFb44TFm8w+U2qc0FBZIenXzyXezobTi/e8eSmsVYucM0dmeUVQCi8h9S91CSk9XQzpW7eWZTqriA8k13hKwwsV78LwcPLWW8k33jBTFxsoIeA2CLcJRSFHjyYHDaJqb3JFIZOSyEaNyD/+KPRCajz55bCC2dObbcnwg6XG0etl2bJZM22WiFlZYp85Y4b6GHl5Im4+PuS1a9rirF8v369Whg4lf/9d/e9EyimJatXkWNZyWmHOHBmwZWWpj5GbK4OaTZvKaAcRR8i3OxQcR58/TqbE5r+8datY/CYkqB+s6fXy/T7zjJUxShHwwsKtFoNBVvxuuaXQas3pudKHrPEgY/dYFScsTAZGTz1lYbVGMZCR9+SfKqRS9OAyGMR3vVYtmXAkJbnEuziJiYkcMWIEfX196evryxEjRjApyXLf279/fwIo8njqqac0xzWH04t3SkoKz54le/cWr9tzhVeu4+bIwRtWg8y5YDGeopALFsgS1C+/lFF45hVyYwNpdPsfK9IrxMdLPYYOlY5ULSYBP7XTduE2kZND3nGHDCa0sHMnWa+enOPn4U3kS/ULZtsrJ5O52WXGUBTx8v7mG2112b9fBgFWeYJb4N575TvWwt69ZI8e2mKQct58586y97PExo3yW2tBUUR0tawAkNKObr/dSrHMyyFXfSSe4U9AVnIObmB8vAj31q3a6vLOO9I32DQYKSLgNRn2z2HNwp2ZST72GNmzp7EdmVAUMuhp6Uv+DCAzLlmM89tv0kd9950V32/uJTLMT/rA2IIR7/nzcqz06CEDAdJ1ztscAwcOZLt27RgYGMjAwEC2a9eOgwcPtvie/v3786WXXuK1a9fyH8nJyZrjmuO6EG9SRtizZ8tI8sgRklnHyRBPOXATF1sd9/BhsmlTC8vf+mxyZy9pbNtuI3NLDn2zsmRUrHVWtuOX44x/V51wm4iPlwt+tmzRVpf3xiczcMRzBbOkCa3J8NJOzpvn0CERXi2rEooiS8yHD6uPQZLTpsl5WS2EhMhqjVY6dDBe1KWBGTPIyZO1xTh5Uo4VLQMjg0FWn/bvt/GNEUfIt9rlH1+HRo3gW2M1nOSmDIiaNi0mltZSSMAT36vFrT+XfhGbNQwdSj76aCkXAeZlkH91lD5lR1dSb/5KwR9+kHPtB0tf5CpJ8grpA0M8yMxDPHlSxH/mzKIrPRUq3teukhnpqh4p1646pN6hoaEEwAMHDuT/LygoiAB42sJFLv379+cbFmZLauOa47oRbxOhoWReThZ5rp0ctJcetnnNLTGRjI4284KikP89L41sQ00yLbzUGAaDjHBVo2KpvNRQ1zTOVEN20/Cy8UryJ3XksolkjrpLkYsNQlWh9pxuYXJztV9trijaY9grjqJoOyVhwh7frerfODebXPmerOg8ARrG3ESe+lt1PRRF26kRW65CL4vz58tog+kXyD/8pW85MNzsAREbq+KODUUho56UvjC8NfW5GQwJKblbhYp3K5Bt1T1SWsnSdFRUFFNSUvIf2dllrwZaYvHixfTz8yvxfz8/P/7888+lvq9///6sU6cO/f392bZtW06cOJGphc5tqI1rjuvuPu82bQCPxA+AnGDAPQBosNDmbF61agH16pl54dx3QOTPANwkg1qNFqXGcHMDmjWzre75xJwElg+wW8rT+vWlPjaTlwOseBeYfhfcEi4B9W4Bpu8FRs2TRBwq0HrvMABUs4OzqqendsdRnc4+rqX2iKPTAVXskInXHt+t6t/Y0wt4ZjYwcz/Q4Fa4JV0BZgwQB7rcbJvD6XRy7KvGjqlUmzUrow1Wb2rMwOYuWRrPfl5il7p1AX9/GwvW6YAGPwAeDYDc03CPfxdt7ZgRurLQqFEj+Pn55T9mz56tKV50dDQCAkp6LgQEBCA6OrrU9w0fPhy//fYbdu/ejSlTpmDdunV49NFHNcc1h/oUY5WV9B1AojGLUcPFgEdd+8SN+Rs4YbQN7TAHqH+ffeKWKKeS5Cq/dAr4Zrg8A8BdzwPPfQV4+5R/XSozeXlAegqQlgJkpAKZGSI0uTmSIrYwHp5AFS95eFcHavgBNXwBn5o2Zvq4zmnZC5hzTER754/A5i+AY1uBN34FmnYq37qYBNxkJ7r8HsfZiQbcBXT8Ejg+Hjj5LuDXHqh/v/a47rWBhkuBS/cDSd8BNQYBPg9oj2svdl8F1Np5pqYCDRoiKiqqiCWol5eX2d2nTZuG6dOnWwx56NAhAIDOzIiapNn/m3jppZfyt9u1a4dbb70V3bp1w9GjR9GlSxfVcc3hdOI9f/58zJ8/H4bScnfqPAGPhoDPUMBnsH0KTT8PHHgSoAFoPAJoOdE+cYtTGYSbBLZ+C6ycJDNv37rA2EVA96HlW4/KQG4ucOUCcOkccPkCEB0lj9grQEIMkBALpCbZpyzfWoB/AFA7AAi4CajfCGjQCLipGdDkVnm2x9TaWahaHRizAOj2ELDgReBKGPB+T5mZPzBB5VKSSspTwFuMA5KPywrfgaeAAf8BPi21x61xn+Q/T/ld3BQrE9Wqy0MNetEBX19fq/y8x40bh2HDhlncp2nTpjh58iRizKSpjIuLQz2zy7Lm6dKlCzw9PREeHo4uXbqgfv36dokLADqyMnn2WY9FE3Z9AuDmDbjZYQ0wLw34p484hdXqDty1B3BXt2Rskcog3MkxwA+jZZYDAJ0fAF5dcv1bdhoMwIUzwOnjQEQIcC4ECA8W4bbWLcK7OuDjJ89VvMSb3NMTgGk0TZml5+UAOdlAVobM1rOsTNbt5gbc1BRo0Q5ocRvQvC3QuhPQrDXg4XRjcNtIjQcWvAAc3ih/d7gXeHUpULth+dYjJ7VAwKvWBEbuBBp2tX85hhxgz11AQhDg0xoYcADwtMP5JiUbUNLMrkZa7E8dhD3KdFS9w8LC0LZtWxw8eBA9evQAABw8eBC9evXC6dOn0apVK6viBAcHo3379tizZw/uuOMOu8UFrlfxthdUxH/36kax+LznsNj62ZvKINzHtwHznwVSYuXc48h5wP2v2eekbmWCBK5eBI4HASeCgOBDwJkTQHaW+f29qwONWwCNbgHqN5bZcL2bgTr1ZZZcu64se6sVUL0eSEsGEuOAxFiZ0UdfBq5dkln+5fPAxfDSRd6rKtCqI3BbN6BTb6Bjb+DmZtfn77ZzIbDsTfGD96kDvPKzzMzLk/IS8OxoYGc3IOsKUH8gcPtmOR/uIFziXZJBgwbh6tWr+PHHHwEAY8aMQZMmTbBp0yYAwJUrVzBgwAAsX74cPXr0QEREBFauXIkHHngAderUQWhoKCZOnAhvb28cOnQI7u7uVsW1Fpd4W+LUB8DpWYCbF3DnbsC/l/3LqGjhzssBVr4HbPlK/m7UDnjjN6Bxu/KrgyMhZdn74C7g0G7g8B4g9mrJ/byriwi2bC+z2hbtgOZtRKQrWghJID4GOB8GnAsGIkJlZeD0cSDTjK1ZnfpA9zuBHnfKc9OWFf8Z7MXlMOCbZ4DI4/L3wHHAiLmy0lFelJeAJx0BdvUDDFlAy7eBjnPtX4YRl3iXJDExEePHj8fGjbLiM2TIEHz33XeoWVP658jISDRr1gy7du3CnXfeiaioKIwYMQLBwcFIT09Ho0aN8OCDD2Lq1KmoXbu21XGt5YYSb9Mntaofu/QbcPAZ2e6xAmgyvEQszf1hzElw2d3Q2Um4ba5TdATw5ZPABeMVtAPHASM+Az297dbX2+V7sjVOWgpw4G9g/1/yuHqxaCwPD+hadwY69gI69ATadpXzyu62zWzs9dlUx1IUGZiEHAFOHgROBIFhx6ArfqFc/UZA3/vl0fsewNe6Y6xCfjtrYumLDTibdATeXA00tP7csOY6FRJwVq0JnR0E3GydolbLuW8A6L4MaDpKfSwLuMTbCbHpxrJKhJr7Eg0Gcd1av76Mey4T/iPXVpV7Lk+8Y3aX7dvJefM0pJEs5A52aUp3xlxUfx+3id9/tyGBw75fyVE+xtzS/uShjfkvpaZqy9FemJ9+ss+9w6dOlfHZIsPJpV+Qo+8mO3gUvR+0YxVy1B3kd1PJg7v4+1INdlmF+PNP+3y27Gwx4LAHvy3LIg/tIedPI5+9Uz574e+ivbv8f8k88kLpOa+PHNGeOIaU9rFwofY4pBgIFckieXQL+UJdOYZHVCd3L7MqzpEjklNeK3GXU3hhivb7wLOzyS+/tJBI6dSH0hetrSJpmUvBYJBjcsIE2xMhuTKsOR83lHiTkkXKw0PSQC5caEZ8M6IKUp/ufUDyo5vBYCC7dpW830uX2thYitl6fvNZEmvVIhcv1pasIzKSrFJFhLfUONkZ5PzRBZnSptxOxpVMydijh3YXMJL89FNyyBBtebtJSb7TokUx85jwYBGph9uXTODwQEvyk9fJPf+TbEyFaNWqWBpdlbz8snazFVJMPEo1f7GByEjJm12EzAxy7xZy1hvk4NYlv6cht5HffkSeOZn/Y2dkSOa448e11UevJx9/XFsuelKq9eGHYm5TgoQr5LQ7C47nb0aYNccxxZk/X9zywkvPr2RVfZYtI/39ybkfq0/kYjBIKuamTSXkWGFQAAAgAElEQVTLXql9iGIg/324IIVqemSRl7Ozpe9o3Vrc6Y6oGEO4xNv5uOHEmyywPaxdW1J25pOXQW7vYkx92o7MtRx7506JA0gHZZXQmfHjTk4WowyAvP9+bVnI+vWTOI89ZiZOVCj51m0FeclXfUTqzavqu+9KnNGjtQnvunUSZ+xYbQOB8+clzuRRF8iFs0sKdnt3mXUv+1Jm4aWgKGJ3+cwz6ution17yZGulQcflAGFVp57TgamFleVLp4jf/mafOGekisUD7UlF3zMqS9EaLY6VRTxzQYkH7da9HpyzBiJ8+abpexk0JNrZuRnZuOE1uSlog5DKSmSshiQ/OJqSU2V3wsQI5iEBKrKxKYoMrA19R9lpi/OSye3d5a+6a8OZF7BAMVkmqLFLtcl3s7HDSne6ekyiu/RQxp0djZldBv4pDSOP+pIukIruO8+ydc9fLgVs28zwm3izTdFVJ59VpvILVggjbhHD/Ly5UIv7FkuS4tPQIxFTlk2I962TeI0aCDbajl1SuJUqSJ1U0VKEpMWLeTeprcXFZsOnuQrD5LrfyaTrMsbmZJS0GFqWRZOSiJ1OnlcsuwlYZGrV0l3d6lPXJz6OMHBMuuyKU5yIrlhKfnqQyWW1/9t2ofx3y+QfVSweLH85oC6maCJv/8mb75Z4mzcWMbOYfvIMQ3lGB/uTf79U35junJFDIMAbeY4ikK+9JK01SJ2pzYKuMEgA+OmTck777SyzWdcIv+sZzREeoRUDMzJERe4Ll2kT1PrCX/liku8nQ2nF+9Dh9T9aFeviog/9BDZvz+ZeegjozWfp9XWfKSYUyQlyYzXooBbEG5SljyDgmQ298knqj4SSZkJ/PCDLOevX8+Sy+TT7yaTzCVuL0paGvnqq7I6ocW7ODNTVhNq1ix2vrIsDAYyaCc5cRjZyStfVAxtdEx94u7/t3fmYVGVbRi/AWUpFdwRM3PPLU1zT600zHIvl3LLTOsr6zM1M80PNUutLCt3U0xTc8kNzSXLXHLHHU1RcQNxA1lkn3N/fzzCMDADM3MGYfT9XRflwJln3vPOOed+1+cmV/1kl7CcOSPGGdWq3asfO9m6VYYpa9bUN3S+fLnYO9aoQW7caH+cdeukPNWqMWd/e0vERJOrFzCuZ1um1XQ1XS/wUXfyn602JciPjZVrp107+wWFFNer4sXlWrRqRCrmBjnRP8swejyDgsSlbPZsC74FVvL111LPBw6YGXq3UsDThbtpU/FRsNqGmJQ571Xu5Aow8eAotmlDvvSS3K8REfad09mz5JNPKvF2NpxevIsXj9G12Cc1lZwfsESEewXIC7Ylh08nLi4HAc9FuDNz+bI8ZPTOpe7cSTaucJbJHz5lHCZfOUGGGK3EYJCFNK1a6RsNSE4me/QQ17dcuX1DhsXbVTHpCWodajFl1hQ+U+Gqrh5zQgJ5/rzYreo5p9RUMjCQ7NXL/hjp9OtHzpmjf12An5+InVnnKisJCSHr+kYwZc7X1DrVMR3p8K9Ezp5I3sxd/aZOJbt00WeWomlk27biMW6TsY7BQK6ZRPZ0I7uDKR/UZosnTvGvnAebcmXFCtLXNxfDoVwEPLNw2603FxdnPK/mjw3U5d++fr3M3U+apMTb2XB68d6yJYblypGjR9tpNXl7P7VVHuQKcPo7I3UJg1kBt0G40wkOll7LDusHALKzdxWTespqcm1gGbvdmVJTyTp19K/ODQ6WB5/Z1fmaRh7ZQ47qazp826goOf5d8sTBDKUdOlS/9aWmSW/u0iV9cdaulZ6lXjp2FGHQw7Vrsm5Cr8/5uHHSyyUpFXXqMPn5+2QTb9Ppio/fIA/tMtsCSk4my5eXkSQ9rFghvVy7GwAhO6gNKkd2B5N6PErutn/y/Z9/5J60ajeHBQF3iHBTRsKmvS0r0LVV7uTN3TbHMBjI//1P7sm//1Zz3s6I04t3TEwMIyJkPsvf30bLvLuXjHNIuzpy8WIDS5Ykt2yxv1wmAh5uu3Cns2GDLEKxedFQagq58KOMYcOjnVty8ifhNgYxZccOmfvWe3+0bSs9zAySk8l1i8juDU17eD0ayTx2llXipDxEq1bVvwq+bVt9w+ak1EvjxvpikOSzz5J//KEvxoYNMkKil9q1ye3bzfwh4a7Mj7/e1PS76lZffp9stGAMDNRflrg4mevWWy/fjI3koU7PG4fR5w8hU21rDYSGkmXK2LidL4uAG64GO0S4//xTesqBgQbyn1fvrUAvTcZb7z8cFUW+/LIs3LtyRX6nxNv5eCDEmxQdGDJEFoCcOmVFgJRYcktd4+rNFJmYS785li61v2xxcWT/9scYO1afH/eMGbIYzuoGye2r5GfNjQ+qxR8z/HIqy5Sh7iHD3r3JYcP0xdi2TYQ37fZtctbnZCtfowg87UmOfpM8lnPXxmCQh/rhw/rKMmoUOWaMvhjHj8scs15q1yYPHdIXY/x4/d9PSAhZtqwVI1gnD5FjB5INvIzfX8sy5IxxNNy6ySeftGL1dC6MGkV2764vxu7d0gC+FJZGLh1tvC9GNyFvWjfsEh0t3/G0aXYUIJOAx/+vOPv5B+sS7pUradq5SI3PtDumFpmS+6KAs2fJKlVk90dmy2sl3s7HAyPe6fz6673tGzmhpZG7XpGLfr2vrOLMxPHjWbaQ2UrkMWqT9Ql3OmvXWjkdELKDfLuMPJz6e5P7jd2EvXttHJEww7Vr5LFj+mJoVy/yyvv/pdbwUeND/zk/cs4XZJT1S60PHcqy39sOLl2SRYJ6SEjQL7qkNETisw8y2MTly2RYmL4Y8fE2XvfRt8l5k8kXHjOuTWjgxSv/GULt0nldZTl5MstuCTuIipKRmgwOBZFv+hgTEx3flmsMg0FnAp1MAq5Nsj+RCym7I7I1WhPCyaDy8izb4U8acl44ceeO+Y6JEm/n46FKj5rB0Y+A0GmAqyfw/E6gRCPHFex+5yonxe94ySeAZgAqPgUM/w3wrZp3n2kr50KAnyYDvy8TBy9AHLEGfAy06668rJ2d1FRg22og8GtJ1QqIC9pLPYG3RwE1nsrf8mXmRhgw9TVJCeziCrz+BdBpZN5ajJrkQi/ueDvR6CP3cqDfBaq8Bzw93ebcryo9qvNxH01xHcOMGTNQq1YtNGpkp+CenyXCDQCNFzm3cCfGAd92BxaPEOF+tjcwcW/BEe6Th4APugCd6wBBv4hwN2sLzNsKrDoMdHhDCfeDQOHCQPuewPKDwPw/JYe6pkljrVs94L2Oknu9IFCmEvD5buC5N8U1cOmnwDfdgISYvPvMdD/wCs2BpGjxA7922HHxiz8NNPkFgAtwfiZw7kfHxVYUWB6unnfkFmD3KwANQJ0vgJqjHVeg+y3cEWeBr7sA4acBt8LAgO+BF98tGO5RJw8BM8cDOzbIaxcX4MVXpRdWOw/clxQFj9NHZLRly0qjI1DL9sB7AWIGk9+QwJ8/AQuGAGkpgF8N4OO1QPkn8+4z87oHfuYb4PjHAFyBFusAvw5Wv1X1vJ0Pp+t5203MSWBvDxHuiv2BJz91XOz7LdyH1gOjG4twF/cDxu8E/P+T/8J96rD0sno2EuF2dQU69QXWnwK+W6mE+2Gi5tPA1OXAxjNA1wHi2LZrE/B6U+Cd9sCJg/lbPhcXoO0g4PN/gJIVgIgzck/tX513n5nXPfDqw4FKgwBowL5eMpyueGB5OMQ7KVJ63GmxQKlWwDNzHSd091O4NQ34dSzwVWcZ5qvRApgSDFTPA59xWwg9Cfz3VaB7Q1PR3vAvMGkRUDkPezOKgk3FasDEBcCGTCK+ezPQqzEwpDPw77H8LV+VZ4DJh4BarWUaauqrYjeqGfLm8/JSwF1cgAYzgDJtZf77n45AYrhjYisKHA++eKclALs7AQmXwSLVgOarAVd33WFJOES4rZ60SIgR0V49UV63/xAI2A74+Noey1FlCr8IfNoP6PqULFhycQE69AaCTotoV6x2/8t0H2OpMtkQ5/EqRhHv1E8aeNvXA6/WBz5+A7hy4f6XKR3vMsDYbUCH4fJ63RRg0itAfHTelMmCgDvk3FwLA81WgsVqiXDv7gikxTsgsKKg8WCLNzXgQF8g+iDgXgJa840YObYkjh7VH3rXquNInqe/x52aCgQEAImJORx09TQwuglweANQ2BMYsljmuAuZLvZatgw4d87mImTjzh3g559zOCDqJjBpKPBKDWD9Ynl6+b8GrD0JTPkFeKJ6xqELF8o56uXYMeD4cf1xAGD5csfE2bAhl+/NSlJSgHXr9McBHHdup04Bhw7pj5OWBgQGZvrF41WAST8D60KA9r3kd78vAzo8CXzxAXDrusVYS5cCN2/qL1NYGPDLL1l+6VYI6PcN8N9lgLsXcGyLDKNfPmkxTnIyMG6c/N9msgh4yk9t8fcy/T3wEyeAEaN9YGi6AfAoDdw5Aux7Q6YLFQ8UD7Z4H/8ECL/X026+Fm7e1dC6NfD000CfPnIT20XkMbQMewEehts4E9cIYc/aP1Tu7g5ERwONGwMhIWYOOLgOGNNE5uRKVpCVsq36mI1VpQrQpAmwa5ddRcmgeHFgwgQzD7jEBGDul8BLVYBfvgdSU4CmbYAVh2ROu2qtbLFOnwZGjNBXHkAekG+9JWKgl9GjgYgI/XGCguRHL7//Dqxdqz/OjRvAyJH64xgMwMCBQFKS/liffmqh0VX5SeCbZbLroEU7IC0VWDodaF8VmDkBuGvaW1y+HBg1CihTRl959u6Ve+SJJywc0KIXMHEPULoiEHkOGNMU2PdbtsNOn5Y4kZGAp6edhfEohostNuFUXHO4a9F47or9Q+iXLgH9+wP16gEtWgCFvCvJojVXD+BakGyPVTxY5O82c/vJdXP+uVlGs5FLRpcPTZPUjQBZubK4TNnEtaMZKU/Dxzeit2c0PT3JxYvtP5fDh6U8np7kzJn3Un8aDOTK8casUAGtyTvXc4yTliaGG+7u+spDkt26icXkkiX3yrI6UBKqpCdXea2BOE3lwrffyrnNn6+vPHv2SJwpU/TFSUqSOB98oC8OKXm3O3TQH6dbN7kW9TJihJyb3gQ2330ncf7+W1+cxYslzuTJVhy87y9Ji5t+fbXyJVfOI9PSuGKF2Kbqretly0gPD9Lb2woTmJib5IQ2xvtv2WekwUBNI+fOFUtQgNy3z/7yLF8ucYp6xPDyONv8wDNz/jxZvbqUp2nTLKmDr6w0PgfPfm8xhkrS4nw8mOJ9bTO50k0u2JDPs/15714xTihVykqjgYy4R01yld+JjKa3t9hd6jVhqFdPbr5p08jUuDjy626Z8jF/IDnLraBPH4nTsaM+f+gvvpA4ParsZMIrDYwP1RefIIOWWO2A8euvEqdw4SzZrmzkn3+MDRybG1yZOHdO4nh46MvgdeOGxHFzI6/n3KbKkdu3pW4A8Zy2l8hIo6BYlR7YAufPk488InHM5ji3koMHpY4BctEiK9+kaeSm5WS7yhnXW+LL9di72l8EyIAA+8sTFUV27Xrvmu5h5ZvSUk18Aji5I9NiYzhzpsSpWVNfjv2DB+XZUbQoeTsii5lJuPWp+4KDJQ1s+fIWzIxOT7kn4K5kuHlTdCXezkeh/Ovz5xF3jgJ7XzNuCas5JtshTZvKfOWFC8ArrwAbN8qwdY5EHgMWtTGZ4/b29MHy5UBCAtC5M7B7N1Ctmn3F/uQTGa6cGXAB74d1ASJOAIXcgbdnAS+8ZXWcTp2AypVlfvDRR+0rCwC0qHgB+5p+jCaxq4EwAEWKAe+OBXp/ALh7WB2nXDmgeXPJ41Gvnv3l0TSgZk2gWDEgXsf6m8uXZXqhaFHg6FGgfHn74uzfD1SvDni5JmNvUBw6t4mXgiUmyiR2Skr2Mf5ChWSepHBhwMsLKFIEe3cUQd1qRRGX6ol9+4Bu3ewrz9GjQO3aMgVz+bLUlT3ExMi0UlSU1Lm91KwJtGoF3L0r14BVuLgAL/UAXugC/DoTmDUenheP4ZfCL2Bok06IeXwqAPsSED3yCPDvv8BnnwG1ss/umMetEND/W+CJ+sDcwUBwEPhZM/y6eR0CA6uicGH7N61cuAB07AjMng34+AAlyt2bA0/fB774Rav2gR8+DLz0EvDjj0CNGkD9+mYOqvExEB8KhP0kW8ie2wGUeMbkkL/+su88FPlIfrce7CW9xTVzZpYW16095NoS5PbnSUPu7kG//WZFDzxLj9tcrvIffpCE/3p6YTzxJ+N7lhAbz7fLkmf22BxC0+SnSxdy5Eg7yhAfR04bTa2+B1kLTKvlytC+75C37DuxxETJAV6ypB0OaZmLFS8OSMWK6fOIvntXDFKaNMnhIE2TL/LAAXLVKhn7HzFChjXatiWfeoraY48xxf1eF9UBPymFvaiVL0/WrSuf0bs3OXy4fPbKlXKBRkbm2NVr2VIMQe7etb9+UlPF+vLCBX351s+fl15lXJwOf/Gomzw34H2m1nKTvOlPFSa/GUnGx9ocauxYcdJKvz9sJvQAtcF+ZHfwbg8f8qj91oO3bskw9zffmPljLn7gmUnvcf/6qxUfakiR3OdrfMgbO03+tHgxWby46nk7G04v3n5+MZw4McsNGXuWTLbeDCRHAbdCuNMZMUIsIu166G2aTvZ0I7uDpzo/w6mjr9gRxEh4uAim1cYZmkZuXEY+X944RD6wLf/+6SSrVSNTrBu1t8jw4eLFrZd69cT5TQ/Xr5OPPkoa7iaSR4+KU8Nnn5GvvUbWr08WKWK7AHt5yUVUoYJYp9WqRT71lBS4Xj35d61a8rcKFeSpmz7ObctPkSIS79VXxRZtyRLyyBFqCYn08TFaPNrLrl0yHKyXkSPF5U8PaWlSlq1zTpODXzKdD1+/2GoVPnZMGiR6/dunjYvg8Y5NZQi9hyu54TubWwIJCWTz5uSHH+bwVisE3CbhTiclhow1tqA1jfzqK9LPj9y9W4m3s+H04h0SEsNatcj33rPSfcsCZgU80jY/boOB7NlT5ptzXRCTTmoKOe8/xnm173vzyvkEli1Lbt5s9+mQJOfNk+d8rsJ79gT55vPGh6N/JXLbGlLTqGniN23iw20HZ8+SxYvr6xWS5OjRdlpfRkeL6k+ZQr7+Ov91q0XNzc2ySLq4yCRi06YySfrRR/KkW7RIPBkPHeK2uefZ9bkofRdeWhp7+Efz9xkXpKW1ZYt0hb7+Wk60Z0+yWTPxQXVxsVhezc2N/7rWpNarl6wQ27ZNJnptZNQoaYTqITFR7qWQEH1xAgOlMaxplP9sDyLbVTFep31bkqeP5hgjNZV85hmx19XDn3+KWF4MTSRnvGm8X2cNJFOScg9AuUy6dZOfXC+ZHATcLuHOgsFA/ve/ZI0a4kan5rydD6cX75iYGEZFyZBh1646huiYRcBtFO50kpLI1q3J//zHikZ5zA1ZRd4dZA8Xcs2kjDdt3UqWKSNWj/aiaeTzz8viM7PEx5KThpJ13Yye2jMnkEmJJoft2iWtcz11S5L+/o5ZdV6jRi4HGQzkiRPS4ujf37gU19yPjw/ZogX59tvk1KlkUBB5+rSp2bEFduwQcdHLs8+Sf/xhxYFJSTL3sGGDDKcPGiRvLl7c8vlVrUr27UvOmiVd0FwWGtat65hV5q1b64uRlEQ+/riZUZbkJHLul2TDR+SareNKThxCxpr3sv76a6kiK9dXmiU8nPT1JTduvPcLTSODpkrvuzvIz1qQ0ZE5xtA06W03b27DfWRGwB0h3ImJ4pXetKnRKliJt/PxQIg3KRdkt27yHM7VzzsHfvuNbFXjGFO+sN+POypKRkgnTcrhoMsnyfeekJu/X1HxGs7C+PFyg+mZ4z13Tp7tp09n+qWmkZtXmG79+rAbeTXMYpxXXpGOpx7WrCEbNtQXI307XGhopl9qmpiwf/+9TPaXKGFeyJ54QobGv/ySc7ts5HfDr+haLnz0qBUNCSuoW1em1+1G0zj906uc0eF3ueh69CArVTJfB8WLk507y36wo0dNVO3SJWnL6J0iadZMtkHpYdo08sUXczgg4jI5rIfpUPqGpSbfZ2ionK6etRapqdIxGDPGzB+PbCL7e8s9/G4F8qJlw/upU6UNmS6WVpNJwFO/KM4XagbrEu7oaGlYdexoOgqmxNv5eGDEm5QH+4gR0sGwm8hjTPrcfuFO59Il8pNPLGjD4d9FsLuDHFKZvGJ+fNFgkBh6tnyR5MKFmcTh8nnT+cN2VchduY/PHzsmw5h6SE2VBolecQgMJC/ujyR//lkWkfn6ZhepRx8lX3hB5rI3bsxWiXv2yAi1Hm7fJqdP1xeDlE7xjRv6YmzbJiMkJty6JSvYxo4l27SROslaT2XKkG+8QQYG8sqBCP70k75ypH/HehqcpPTeg63Z7rx3G/lydZN1Grx4lqS8X+/5REXJ/L3FYe7wf8kPq8u93OdR8uC6bIdomoj/hQt2FiKTgCdNsG0bWVZOnZIZoKzTekq8nQ+nswSdMWMGZsyYAYPBgLNnzzrWCi6vTUZIIGgqsGSk/LtmK2DEaqBoScd9hiVSUoCfpwKzJgDJSUBhd7HofHsU4OmV95+vF00DgoMlpdnvv8u/M+PlBbRsCTz/vPw0aKC8wrOSliZ7i/7+G9i+Hdi5U/Y5Zubpp4GXX5Z9TI0aSQ7ygk5KMjD/K2DuF/Jvdw9g8Bhg4EibtjXaTXw08O1rwMm/ZO9Yz4lA108d6/KXx3aiyhLU+XA68U7H4V9aXgt3Wgow7z/A9gXyus0gYOB02cud1xzdCwQMAs7dy7/a5AXgf7NMcpAXSNLSRGTWrJHk31lzmjZoALRrB7z4omwm97gPD+oHiZQUyRf6xx/Ali3Zk5mXKyeJA7p2BV54oeA3hi6fBz5/D9izVV5XqgGMmws80yrvPzstFVg4FNg6U1637AO8+xNQ2IHXZB4KuBJv50OJN5D3wh13W1rmIX8DLq5A/++A9h/kvf/23Thg2mhg2Qzp6ZcoDYz8Vpy/8tv72xJpaZIxYtUqYPVq4PZt49+KFBGx7tBBMlP4+lqOo7Cd69dFxDdsADZvBuLijH8rUQLo0gXo3h1o06bgCjkJbFoOTB4K3L5nctLzXeCjyUBR77z//K2zgAUfiKVojRbAx2uAYqUdFz+PBFyJt/OhxDuvhfvqaWBKB+D6BcCrKDB0OfB0e8fFt8T2IGDie0DkVXnddQAw4hvAp0Tef7ataBqwZ4/Yoq1caWodVaqU9Py6dJHen90uEAqbSE6WUY+1a2Xk48YN499KlhQRf/114NlnC+bQeuwdYOpIYNU8eV26HPDZDKBt17z/7OPbpLGeECMGJ58EAY/XdVz8PBBwJd7Ox0Ml3mSWDqcO4c4WyxzH/wC+7S43cZlKwMj1wON1bI9jJSTgEn0T+PJDYNOv8ssKlYGAOUCztrbFcWSZLMU6fx5YtAhYvNjU4q1UKckT2qMH0Lo1UKjQ/StTPsRxZKw8KZPBIPPjK1bIaEhmIa9YEejbF+jXz2Ju4HytpwN/A+MGA5dC5bX/a8CY6WDJsnlbpvB/gSkdxZnMyka7TeeWi4DbWk9KvJ2Q/Foppxd7VhmmpUmSj6tXafc+7nTWrCH/+iuHA7bOzsiYxrHPikuRGZKSZHePnn2oJElN485Pl9HQrJRx/+vXH5MJtmdFiYyULXOOYOHCLOd2966sEm/Z0nTVc9GiZL9+5KZNZpejHzqUZbubDvRuY0pn/XrZoqiXlBRy7Vr9cUjHnVtoqAXHrNRUWaY/YIDkqs38HTZvTi5YYJJiUNP071JIZ/16OzPIJSWS00Zn5DMwNC3BnSOtz9BmCYNBcv5YTDwUd5sc95wxI9vvP1iMtXOnZOK1CTP7wK9dIz/91PYdHWq1ufPxUIk3Sc6eTTatdIwJ4/VtB7t9W7JbDh+eJZ+HIY0M/K8xA9OPfXPNwNS9u+yjvmM+z0Tu3LhGftg1Y7tM8st1yRMH7Qwmz7TSpfUn6yDJwYPvWUIeOiQvihY1PuxdXcl27SQ9aS6p1/78U3Z+6XzekpTspDbvtzXDwIGOaeQEBUkeFb1ER0syHb11pGnytWzalMuBCQmSLaR9e/kuM6dwHTiQPHCA307V+Oab+spDiqtciRI6G7mnDjO5Y33jtrL3OpKR9lnLxcZKSoHOnXM5MDWZnPmW8Xkw7z1xK7tHcrJktfP0tHO7YCYBTxxfnC2rBvMHy20Eiyjxdj4eOvFOunSMtz4R4Q75qBFvXrFvHzdptN+sW1dyhDAhlpz0ivFG/S1r0nXzLFsmcWrUsDGhhKaR6xaRTYuLcUPdQgwoHcBKjyXr7qU2bCi+x7r2zMfHc0W7n3gAz5j20CpXlrRvNnhybtggb12yJPdjcyIqSuL873/64pBktWqS1U8vPXuSFSvqjzNxopxbZM7JvnJl5UqJs3q1DW+KiJBWWtWqJt91MBrw1xfm6DIZDwmRZCt169odgqSk6K1SMYWjS00Uk5NaIJt4k6sX2NTiCQ2VJEyADCLliqaR676SLIrdQU5sR969w5AQ8umnJY7VNqVmuH0thseHioBHjSrOhAu2+YGTSrydkYdLvDMNlR98pxG7vRytK2HIjh3GFNiRIZfJEU/JzfmGJ7l3pdVxYmJId3fpvFjtfXwzkhzS2diLeK0B+e8x1qkjD4P+/a3K8GmRN96QOLVr2yEG58/LkISPT8ZDPAnuTOz2hphE29F9SheUsmV1jFBQBgDSs6Lqud8jIiSOu7tdKcQziImRXhdAXrxof5z4eDGiASQBjb3Exsr1bHdDSdPIHTuY1KMvE+FhFHJvb3GmMUmNlzu3bhm97l97zY7y3CMlRQYDAMl0xtCTZI9GxvvnP6+QNyKsirVsGVmokHi525TNcf8ass8j8owYVps3T4WxYkV5hliVHtcCqalk904x3DPIOjcycyjxdj4K4DLRPCLT4rS0so2Q2nMr4lJ9MGiQPF3soWVLYMEC4Odjs+cAABJ0SURBVLUGwfAY3wS4dBzwLguM3wE0fc3qOMWKAQEBskbrwAEr3rB5BdClDvDXOqBQYeC/XwBL9wE1nspYmF2ihL5tz3Xrylqxl18Gypa14g2krE7u3BmoWhWYOhW4cwcxpSrjW7+vMfKNcMTOWgI895xdq5MTE2U9VIMGwMWLNr89gwsXgEqVxPs467ZmW9izR06zalXJeWIvO3dKjCpVZMu1vRw6JOf0xBNyjvZy6ZLUcdWqQFKSHQFcXIBWrRA3YxE+ezMc3/hNRXTpamIUPm2afIkdOgDbtll145UsKYe3aqXPD75wYVkH2aGDLJRH1drAkj3AsCmSsGjHRqBzHWDD0lzLdfCg3BcTJsh9ZjWNuwDjdwHF/YArIXAf3wSdau3HggWykcIeSOC994AbMcXg2mcTUss1B5KigUVtgWuHrY6jx7tdkU/kd+vBXtJbXFFRVrS4LCxOi42VYavRo3UUZP8aar2lNX17QB3yhn3dJ02TDJ6+vpLq0izRt0zzOXetR/5rOq6dlia9wmz5zG0kKUnyovv45NKzTEqSRUpPPWU6NN6uHblhA+NjDQwOFlMsPeZbsbHispajD7cV3L0roxvduumLk5Iiphd6bS9JMQ/74gv9aWNff13Sgep1bmvZUhaHxdpum52BwSCp5PfsIeNjDTKB/vLLptdI7dpifZfDqr+YGJnrttIrxiKhoXItX75s5joMPSkjVxl5/ruSt81PQP/9t2SUzcVaPWduXeHtgfXJ7qBm4yhdVsaNk+mE6PTZPxv8wNMxGMjevVXP29lwevHu0SMmZ1HIZVX5tWvi4WCzZaCmkeu/yZjHih3VjhVL3zHvCW4D69fLgqpsQ8N/bxDzhVqQVbM/jM0xgfSkSbKOSC+vv05+/rmZP0RHyxxnuXLGh/Ejj5Dvv59t4l7T5DltsVFiJfHxskgw2v5lCiTJgwdlzlIvs2fL9IReBg2iXYuMslK/vizs0kNcnNSx3mfhzp2yJiCbwIWGir1WZs/0smWl9WKmlThliliX66VzZ8m5bpGUFHHUe6qQ3GMty5B/muYpj42VBonNq8KzcPgwWaF0HO+MyrQ+JpOjoLXMnSvOa9mWjtgg4AaDbBxo1EiJt7ORL+L922+/0d/fnyVLliQAHjlyxOYY6V9a8+Yx7N3bQq/Oyu1gZ85Ia9rqlcNpqbJqNP3Gm/sumZbKZctEeK9ft/l0THjrrUyiEB9HBgw29go61LRqJXlioqwLy7AxtJNjx2Tlecbun4gIcWrIvGq8fHmxHMuhi/7VV45ZUd26tf5tVbGxMldttee6BZYuddyCtYUL9cUwGER09TjqkeJj0qyZvhikOKyabfSlc+eOWG1VqGBqJjNsWIYaJSbKSNQh+304SIq97uOPWzkiceow2bmO8X4bM0CscymNrD599JXl1i1pACxaRNmZsuDDTN7gb5Op1g2/rF8v9+WpUxYOsELA04W7WTPyyhUl3s5Gvoj3okWLOH78eM6bN0+3eIeHx7BVK2YXcBv3ce/bJ8NzO3fm8sEJseSX7Y0e3EFTTVrMw4aJh7YeYYiJkdXHf3+/R1y/0h8kkz8iE6031V6zRhbn6HV46tCBDBwTKlu93N2ND9s6dWS5rRUfEB4ueq9j0TFJcsIE8oMP9MUgZRj/zBl9MYKCyLZt9Zfl5Zf1bzkLC5MGqF6GDxcjNj0kJMgQdViYFQenpJC//GI67VK4MDlwIJcEnKG/v76ypKTIKItN+9+TEiVHQm0Xue/8K/GfH3fxscf0jfqkpYmnfbaplk0/Gr3BP3+RvJvzisy9e+VZtXt3budhWcAzC3dMjFqw5ozk67B5WFiYbvGOiYlhXBxNBdzOBCwbNohX9MmTFg64mWlFeW8vcl/2J25qKvncc2JNajcpKQwb9hnTarrKw+OFCuTeP20Oo2niBPnNNzrKcvo0r7frwzRk2sfbvLkol43DfP7++nuYe/aQNWvqi0GK6K7L7t5oEzt26J+DJ2WOWc9qY1KmlFu10l+WevX07+9ftkzuAZvQNOn2t2qVcZ2lwZWRL7yeww2ZOz/8IPVr1/z0wR1k24qS2KWmCy8M+URXS3j0aLJFCwshDq43WYnO62FmY/z7rzTS1qyx8kPNCHhW4SaVeDsjD4R4k8wQ8FEDjlHTkTlt/nwZycuWyeniMXKwn9xcb5clQw+YfT8pw+YVKtiZ7epqmMkWlu1N+1C7Y39z/8QJWbxm83avq1fJXr1kH8u9h+mVuu3NmEZbz5IlkmhFD6mpktgrPFxfnA8+uJc8RgeHDzumIVGvnoVsZjbw3XfkO+/oi3Hjhoxc61kYRspaiwULdAT45x9eebqDsbHo4iKZjC5dsinMzZuyfe7wYR1liYvh9hZvmm7JvHTO5jCrV0sCnYicdqOdDzY+Ywb5yutMRETIkPusWTZ+eCYB1yYXZ8A7wSbCTSrxdkacZqtYcnIyYmNjTX4yU6QIsHEjEHndDalpbnabjLz1FjBoEDBvXpY/uBUGUhKBx2oBX+4HqjayGKNMGTHFmjfPjm1o7p5AxEWgmA9SJi1HgPtiXI213yilTh05pz17bHyjh4e4S5FA587YO/0Qvm/3uxhR2EmXLoCbm3he2EuhQsCAAdndQW3l2WflmtFD6dLAM8/oiwEADRvKNaOHRx6RrYt6CA8H+vfXt8UwLU1Sob9m/U7J7DRvjlntg7Bz2mHZP0nKtWhjwfbvB3r3Fotye4mML4axLoFImvIb4F0CCL8IeNhmjkPKs2DFCnFZtUjlBvJsebwukJyQzS44MBDo0wd4910bT8KjGNB7E1ChOdIMrrh4yQ2bN8sWVYXzkufGJEuWLME777yT8XrTpk1oee8pc/HiRVSqVAlHjhxB/fr1c4wzbtw4jB8/Ptvvsyak1zTANeoMUKSs3e5g6TWSLbH/hWCgTGWgSHGr49hlfhC8G/CrCJSrYH8MR/Drr0DNmvo22CoUejl5Ejh2TJQ4H8i4B29EAJfP2eUPbtN9nBADRJzN1kGw+FyyluRYIPYqtJK1sqVaUMYkzkeei3dcXByuX7+e8bp8+fLw8vICYJt4JycnIzlTly02NhYVKlR4KL80hUKhcCRKvJ2PPB82L1q0KKpWrZrxky7ctuLh4YFixYqZ/CgUCoVCkRdER0ejb9++8Pb2hre3N/r27Ys7d+5YPP7ixYtwcXEx+7Ny5cqM48z9ffbs2TaXr5BdZ6WTqKgoXL58GRH3Ji7PnDkDAPD19YWvr29+FEmhUCgUigzeeOMNXL16FZs3bwYADB48GH379kVQUJDZ4ytUqIBr166Z/G7u3Ln46quv0L69qZd7YGAgXnrppYzX3t7eNpcvX8R7/fr1GDBgQMbrXr16AQACAgIwbty4/CiSQqFQKPKDu3dlJau9780DTp8+jc2bN2Pfvn1o0qQJAGDevHlo1qwZzpw5gxo1amR7j5ubW7bO55o1a9CzZ08UybI61sfHR3dHNc/nvPOKmJgY+Pj44MqVK2oIXaFQKHSQvobozp07dvUC7f1Mb29vXAFg7xM8FkAFIJsOeHh4wEPHtokFCxZg2LBh2YbJfXx88N1335l0Pi0RHByMZ555Bv/88w+aN2+e8XsXFxeUL18eSUlJqFSpEgYOHIjBgwfD1UbDpnzpeTuCuLg4ADJUoVAoFAr9xMXF3Tfxdnd3h6+vLypERuqKU6RIkWw6oHcUNzIyEmXM7N8sU6YMIq0s7/z581GzZk0T4QaAzz//HG3atIGXlxf+/PNPDB8+HLdu3cJnn31mUxmdVrz9/Pxw5coVFC1aFC6Z9k6ktyD19sgbNWqEgwcPOu379cZwRD3m9zkUhDKoenRMDFWPjnm/pXokibi4OPj5+dkd21Y8PT0RFhaGlJQUXXFImmgAAIu9bktbjjOTXr9ZY1r6LHMkJiZi6dKlGDt2bLa/ZRbp9F1WEyZMeHjE29XVFY899pjFv+tdke7m5ubU73dUDD31WBDOoSCUAVD16KgYD3s9OuIcAPP1eL963Jnx9PSEp6dtSW/0MGTIkIw1VpZ44okncPz4cZMtzuncvHkTZcuWzfVzVq1ahYSEBPTr1y/XY5s2bYrY2Fhcv37dqtjpOK145zXvv/++U7/fUTHy+/NVPRaMcygIZSgIn5/f9ZjfdejslCpVCqVKlcr1uGbNmiEmJgYHDhxA48aNAQD79+9HTExMtmFwc8yfPx+dOnVC6dKlcz32yJEj8PT0hI+PbUnFnHbBmiUe5k37jkTVo2NQ9egYVD06BlWP1tO+fXtERERgzpw5AGSrWMWKFTO2ioWHh6NNmzZYtGhRhsADwLlz51C9enX8/vvvJtvBACAoKAiRkZFo1qwZvLy8sH37dgwfPhxvvvkmvv/+e5vK98D1vD08PBAQEKBrpaFC1aOjUPXoGFQ9OgZVj9azZMkSfPjhh/D39wcAdOrUCdOnT8/4e2pqKs6cOYOEhAST9y1YsADly5fPeF9mChcujJkzZ2LYsGHQNA2VK1fGhAkT7BpReeB63gqFQqFQPOg4jauYQqFQKBQKQYm3QqFQKBROhhJvhUKhUCicDCXeCoVCoVA4GQ+ceK9evRrt2rVDqVKl4OLigqNHj+Z3kQosJDFu3Dj4+fnBy8sLzz33HEJCQnJ8z7hx47LZ2SknOMvMnDkTlSpVgqenJxo2bIhdu3bld5EKLLbU1cKFC81aKyYlJd3HEjsPO3fuRMeOHeHn5wcXFxesXbs2v4uk0MkDJ953795FixYtMHny5PwuSoHnq6++wrfffovp06fj4MGD8PX1xYsvvpiRN94StWvXxrVr1zJ+Tpw4cZ9K7FwsX74cQ4cOxZgxY3DkyBG0bNkS7du3x+XLl/O7aAUOe+qqWLFiJtfhtWvX7mu2Lmfi7t27qFevnslWJ4WTwweUsLAwAuCRI0fyuygFEk3T6Ovry8mTJ2f8Likpid7e3pw9e7bF9wUEBLBevXr3o4hOT+PGjfnuu++a/O7JJ5/kqFGj8qlEBRdb6yowMJDe3t73o2gPHAC4Zs2a/C6GQicPXM9bYR1hYWGIjIw0SSTg4eGB1q1bY8+ePTm+NzQ0FH5+fqhUqRJ69eqFCxcu5HVxnY6UlBQEBwdnS9Tg7++fa/0+bNhbV/Hx8ahYsSIee+wxdOjQAUeOHMnroioUBQYl3g8p6bZ2WRPhly1bNkfLuyZNmmDRokXYsmUL5s2bh8jISDRv3hy3b9/O0/I6G7du3YLBYLC5fh9G7KmrJ598EgsXLsT69euxbNkyeHp6okWLFggNDb0fRVYo8h2nFu8lS5agSJEiGT9qMZBlstZVamoqgOy2d8zF8q59+/Z49dVXUbduXbRt2xYbN24EAPz88895V3gnxtb6fZixpa6aNm2KPn36oF69emjZsiVWrFiB6tWr48cff7wfRVUo8h2nzm3eqVMnNGnSJON1+fLl87E0BZusdZWcnAxAeuDlypXL+P2NGzdssqV79NFHUbduXdXjyUKpUqXg5uaWredoa/0+DDiirlxdXdGoUSN1HSoeGpy65120aFFUrVo148fLyyu/i1RgyVpXtWrVgq+vL/7444+MY1JSUrBjxw6rLO/SSU5OxunTp00aAArA3d0dDRs2NKlfAPjjjz9sqt+HAUfUFUkcPXpUXYeKhwa3cePGjcvvQjiSqKgonDlzBhcuXMDSpUvx/PPPIy0tDQBQpEiRfC5dwcHFxQUGgwGTJk1CjRo1YDAYMHz4cISHh2Pu3LkZrkNt2rRBXFxchuXdiBEj4OHhAZI4e/YshgwZgrNnz2LOnDk2+9E+6BQrVgxjx45F+fLl4enpiS+//BLbt29HYGCgqqss5FZX/fr1w4EDB9C2bVsAwPjx45GcnAxXV1dcunQJY8aMwdatWzFr1iw1AmeG+Ph4nDp1CpGRkZgzZw6aNGkCLy8vpKSkwNvbO7+Lp7CHfF3rngcEBgYSQLafgICA/C5agUPTNAYEBNDX15ceHh5s1aoVT5w4YXJMxYoVTequZ8+eLFeuHAsXLkw/Pz9269aNISEh97nkzsOMGTNYsWJFuru7s0GDBtyxY0d+F6nAklNdtW7dmv379894PXToUD7++ON0d3dn6dKl6e/vzz179uRDqZ2D7du3m30uZq5ThXOhLEEVCoVCoXAynHrOW6FQKBSKhxEl3gqFQqFQOBlKvBUKhUKhcDKUeCsUCoVC4WQo8VYoFAqFwslQ4q1QKBQKhZOhxFuhUCgUCidDibdCoVAoFE6GEm+FQqFQKJwMJd4KhUKhUDgZSrwVCoVCoXAylHgrFAqFQuFk/B+TUZZ3ViOL8gAAAABJRU5ErkJggg==",
"text/plain": [
"Graphics object consisting of 2 graphics primitives"
]
},
"execution_count": 29,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"import matplotlib.cm\n",
"f(x,y)=x^2-y^2;\n",
"Champ=plot_vector_field(f.gradient(), (x,-1,1), (y,-1,1), color='blue')\n",
"Courbes=contour_plot(f(x,y),(x,-1,1),(y,-1,1), fill=False, cmap='autumn', colorbar=\"True\")\n",
"show(Champ + Courbes,figsize=6)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Et voici la surface qui correspond à $f$"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/html": "\n\n",
"text/plain": [
"Graphics3d Object"
]
},
"execution_count": 31,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"cm = colormaps.autumn\n",
"def c(x,y) : return float((f(x,y) +0.75)/1.5)\n",
"Surff=plot3d(f,(x,-1,1),(y,-1,1),color = (c, cm))\n",
"show(Surff)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Flot d'un champ et lignes de courant : étant donné uin champs de vecteurs $\\overrightarrow{\\mathbf{F}}$ , une ligne de courant du champ est une courbe $\\mathcal{C}$ donnée par une paramétrisation $\\mathbf{r}(t)$ telle qu'en tout point le vecteur vitesse est égal au champ. En d'autres termes $\\mathbf{v}(t) = \\overrightarrow{\\mathbf{F}}(\\mathbf{r}(t))$\n",
"\n",
"Trouver des lignes de courant revient à résoudre certaines équations différentielles. Par chaque point il y a une unique ligne de courant, on peut penser à la ligne de courant comme la trajectoire qu'un objet mobile suivrait, étant donné que sa vitesse doit coïncider avec le champ $\\overrightarrow{\\mathbf{F}}$ .\n",
"\n",
"L'ensemble de toutes les lignes de courant s'appelle le flot du champ de vecteurs.\n",
"\n",
"Ci-bas, trois lignes de courant, calculées \"manuellement\" pour le champ $\\overrightarrow{\\mathbf{F}}(x,y) = \\mathbf{i} + (x+y) \\mathbf{j}$ . L'équation différentielle associée est simplement $y′(x)=x+y$. En effet, si on a une courbe donnée explicitement $y=y(x)$, la pente de la tangente en $x_0$ et $y'(x_0)$, de sorte qu'un vecteur directeur de la tangente est $(1,y′(x_0))$. La recherche d'une ligne de courant pour le champ $\\overrightarrow{\\mathbf{F}}= P\\mathbf{i} + Q\\mathbf{j}$ c'est précisément la recherche d'une courbe dont un vecteur tangent au point $(x,y)$ et $\\overrightarrow{\\mathbf{F}}$."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAFCCAYAAAA6106EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXdUVFfXxvcU6tBBBATBYAERRSOKBRTBii0WwBKDRo0ittjBGnuJxo5do8auwZrYxRh7QbBgRbCi9DrMzH2+P/jmRt5E2j28at77W2tWlnLn8eRyz9n3nLPPfiQAQCIiIiIiIiKfFNKP3QARERERERGRvyMGaBERERERkU8QMUCLiIiIiIh8gogBWkRERERE5BNEDNAiIiIiIiKfIGKAFhERERER+QQRA7SIiIiIiMgniBigRUREREREPkHEAC0iIiIiIvIJIgZoERERERGRTxAxQIuIiIiIiHyCyD92AziOo5cvX5KxsTFJJJKP3RwRERERERGmAKCsrCyys7MjqbT08+KPHqBfvnxJDg4OH7sZIiIiIiIiFUpSUhLZ29uX+nrmAXru3LkUHh5OI0eOpJ9++qnE642NjYmosOEmJial/ncA0Lhx42jdunVERGRlZUXHjx8nZ2fn8jX8PY4ePUpjx46lFy9eEBHR+vXrqWfPnoJ1T5w4QSNGjCClUklyuZxatGhBa9euFbxycOHCBfruu+8oLy+Pli9fTqtWraJNmzZRpUqVBOnGxMRQ//79KS0tjSIjI6lNmzYUHR1NLVq0EKT79OlT6tevHyUkJFBkZCQFBASQ1lRNyL1ISUmhkJAQunLlCq1cuZJ69OghqJ1a8vPzafjw4bR3715asGABDRo0iIkuAJozZw4tWLCAJkyYQJMmTWK2irR7924aMmQIBQUF0fLly0ku/6urZ2ZmkoODQ5n7HBHRtWvXqHv37lS3bl3asWMHGRkZMWnvq1evqGPHjkREdPjwYbK1tWWiq1QqqXfv3nTt2jU6dOgQ1a1bl4kuEdHMmTPpxx9/pC1btlCXLl2Y6R49epR69+5N48ePp/DwcGa6jx8/Jn9/f/L09KRffvmlyDMhhLy8PAoICKC0tDQ6deoUWVhYMNElIho/fjxt2bKFjh8/TvXq1SvVdwCU2I+ioqKoX79+tGLFCvr6669L1OQ4jrZv305dunQpts88ffqUWrRoQQEBAbRq1Sq+Hdo+p413pQYMuXLlCpycnFC3bl2MHDmyVN/JyMgAESEjI6PU/869e/fQtm1bEBFsbW1hamqKW7dulbfZPImJiejatSuICH379kX37t2xYMECwbqpqan45ptvQETo1asXkpOTsWTJEuTl5QnSzc/Px7hx4yCRSNClSxe8efMGAJCSkiJIl+M4/PTTT9DV1YWvry9evHghSO99oqKiYGZmBg8PDzx69IiZ7q1bt+Dk5ARHR0fcvHmTme6bN2/QtGlTmJqa4vjx48x0lUolvvnmG8hkMqxfv56ZLgAsXboURIRx48aB47i//bw8fQ4Azp49CyMjI3Ts2FHws/s+z58/R40aNeDi4oKXL18y01UqlejcuTNMTExw9epVZroAsGDBAhARNm/ezFQ3Ojoa+vr6+O677/7xd1dekpOT4ezsDE9PT2RnZzPT1Wg06NmzJ8zNzREfH1/q7xUUFEClUhV7zZo1a0BE2L17d6k0OY7D3r17sWfPnmKvi42NhUKhQGhoaKl04+Li0LRpU3z99dfFXpebmwsPDw94eHggNze3yM/K2+eYBeisrCzUqFEDJ06cQIsWLSokQKenp+P777+HXC6Hh4cHoqOjsXr1avzxxx+C2q5SqbB48WIoFArUqFEDJ0+eBADcvXtXcCf59ddfYWNjAxsbG/z666+CtN4nJiYG7u7uMDIywoYNG5h15rdv36JTp06QyWSYNWsW1Go1E12VSoUJEyaAiDBw4MC/PcBC2LlzJwwMDODr64u3b98y042NjYWTkxO++OIL3L17l5luRkYG/P39YWRkhGPHjjHT5TgOkydPBhEV+2JZnsHi2LFj0NfXR2BgIAoKClg0FwCQlJSE6tWro3bt2nj9+jUzXZVKhe7du8PIyAgXL15kpgsAkZGRICIsW7aMqe7t27dhamqKbt26Met3AJCTk4PGjRujWrVqZbrHarW6xJfz8PBw6Ojo4OzZs6XWPX78OPr371/smHX27FnI5XJMmzatVJoPHz5Eu3btYGFhgaysrA9el5qaCmdnZ3h7e0OpVBarmZeXhylTpkBHRwdEVOwkkOM49O/fH2ZmZnj8+PHffv7RA3S/fv0watQoAGAeoDUaDTZs2ABra2tYWloiMjKSf4CFPsiXL1+Gh4cHdHV1MW3aNGYzg+TkZAQHB4OIEBISgtTUVCa6arUaCxYsgK6uLpo3b44nT54w0QWAM2fOwM7ODlWrVsWFCxeY6b569QotWrSAvr4+Nm3axExXrVbzQX/kyJFMA8fRo0dhbGwMb29vpkH/+fPnqFu3LmxsbHDjxg1mumq1Gt999x1kMlmJ97isg8W+ffugo6ODkJAQpoHj2bNn+OKLL1CnTh1+9YcFarUawcHBMDQ0RHR0NDNdAPjll18gkUgwc+ZMprpPnz6Fra0tWrZsWaYxSKPR4Pz58x/8uVqtRpcuXWBpaVmmGe6pU6fQuHFjJCQkfPCaTZs2gYhK3acfP37Mr1AeOXKk2OssLS3Ro0cPaDSaYjXz8vIwffp06OnpgYiKDehqtRrt2rWDvb19iS8q9+/fR61atUBEICL4+/sXe/3atWtBRDh8+PA//vyjBugdO3agTp06/INVXIDOz89HRkYG/0lKSiqx4ffv34eenh6GDx/OLNABhW89X375JVq1alWmh7c0zJ8/H/b29kxnSAAQHx8PY2NjzJ8/n+lgyXEcvLy80L17d6b3GAAWL16M6tWrIyYmhqnugwcPYGFhwXyZkeM4eHt7IyQkBPn5+Uy1V6xYAVdX12IHvvLw8OFD2NjYICoqqsRryzJYcBwHPz8/hIWFlThYlpW1a9eibt26SE5OZqr7+PFjODg44PTp00x1OY5D+/btMXbs2DKtWGk0GuzcuROvXr364DWbNm1C/fr1kZ6eXmrdEydOoEGDBsVukTx58gROTk6lfuGOj49H586dQUTFLgFzHIcuXbogPDy8RM3s7GxMnjyZD6Jffvllsfdv69ataNiwYYlL8QUFBfjuu+8gl8tBRFAoFHj37t0Hr09ISED16tVx5cqVEtsMAFOmTOED9G+//fbB6ziOQ2BgIKZOnfrBaz5agE5MTIS1tXWR6X9xAXratGn8//T7n5IazvIN+33evn3LdK9HS0FBQZl/GaWFdQDVkp6eXiH3QqPRIDMzk7kugArTzcrKqpB7wXEc0z3A98nJySnVdWUdLHJzcyvkXgAo14qVUqks8eW0rC9WBQUF2LRpE/bu3Vviv13ae8FxHA4cOAB3d3f06tWrxOtLWnLVcv36dbRu3RpEBBcXlxL3ckujm5KSghEjRvDBTl9fv8TlbZVKVaqXtlOnTqF+/fr8WF+al8jSroYdOnQIMpkMcrkco0ePLvH6ku6VlgMHDkAikWDGjBnw9vYu8Xeu0WiKvRcfLUAfOHAARASZTMZ/iAgSiQQymexvHak8M2gRERF2lHewKAtZWVnFzhjLq7lkyRIMHTqU2QuDUqnE2rVr4eTkBGdnZyYrJhzH4dixY2jYsCGICHp6ekxWTDQaDSZOnFhkYnPgwAHBukDhfZg3bx6vW5pgV1ouXrwIhUIBe3t7eHh4MPvdXbx4EQYGBhg0aBCmTZuGpKQkJrqXL1+GgYEB/5yx2OL6aAE6MzMTsbGxRT4NGzZE3759ERsbW+L3/xuDhYiIyF9o+9z9+/fLlNxTGhITEzFu3Dg0bNiw1DP6kkhOTsaUKVNgbm4OAwMDJnkXeXl5WLlyJRwcHPigdOjQIQatLZwxOjs787qTJk1iogsUnmAxMTEBEaFJkybMgl1sbCwsLS3h6+sLCwsLZiuWsbGxMDc3R8eOHZGQkMAsUfbevXuwsLBA586doVKpmOWfPH78GJUqVUJAQECpZ9ulIT4+/uMmib1PRWVxi4h8yrDMCQAKZ2IXLlxgmm/AcRwOHToEIoK5uTmePXvGRPfSpUsICgriV9BOnTolWFOtVmPy5MkwMDDgg92cOXMYtBZIS0vD+PHjed0OHTow0QUKB2N7e3vI5XJYW1szG9vu378PGxsbNG3aFN26dWOWABcfH4/KlSvDx8cHOTk5xSadlYXHjx/D1tYWPj4+TE9tvHjxAlWrVkXTpk2ZvQQChcv8tWrVQoMGDYrNBC8rOTk5/BK/GKBFRD6AUqlkmvUOFOYDREZGonv37syOCSUnJ2PRokVwdXWFXC7HtWvXBGump6dj+fLlcHV15YPS8uXLGbS28CihpaUlr/vtt98y0QWAGzduQF9fH0QEV1fXUu/TlsSdO3dgZ2cHZ2dn6OjoMEsSjYuLg42NDby8vBAVFYU1a9Yw0X0/OGdkZOD58+dMdJ88eQJ7e3t4eXkxzed4+fIlvvjiCzRo0KBMiW8lkZaWBnd3d7i6ugqu9/A+eXl58Pb2RtWqVZmexddoNOjRowfMzc0/nQBdFsQALaKF4zjcvn0b+/btY7Z0V1BQgGPHjqF///5wdnb+xzOKZSU/Px/79+/HV199BV1dXUgkEv7svBBycnIQEhLCn7skIsydO1ewLlD02J/2w2rgvHz5MipXrgwigo2NDbMkxj///BOWlpbw8vKCi4sLzp07x0T38uXLsLCwgLe3N9LT07Fy5Uomujdv3oSVlRV8fHyQmZkJtVrNZJlUG5ybNGnCdJxMTEyEk5MT6tevj7S0NGa6KSkpqFOnDmrVqsU0Qz8vLw8tWrRAlSpVmK38AIVBNDg4GKampoiLi2OmCwARERHQ0dHBkSNHPq8ArT1uUrNmTTFAVxD5+flMOx7Hcbh79y4WL16MMWPGMDkzXlBQgNOnT2PkyJGoVq0azM3N8fDhQ8G6Fy5cwIABA/g3V4lEgqNHjwrW5TgOCxcu5Gd1RIQpU6YI1tWyceNGXrdFixbMlrb37NkDQ0NDVKpUCWZmZsz63J49e6Cvr48OHTpg3Lhx2LdvH4PWFlac09fXR+fOnZGTk4PLly8z0T1x4gQUCgU6duzIdNn18uXLMDMzg7+/P9Nl1/v378PW1pZ5cH716hVq1KiBOnXqMD3nn52dDS8vLzg4OCAxMZGZrlqtRo8ePWBqalqq3KayMHHiROjo6DDZlnmfn3/+GUSEjRs3fvxCJeXlf3kGnZycjKioKFy/fp2JXn5+PqKjozFjxgz4+vqiVatWgo/0ZGVlYd++fRg0aBCfUGNjY8PkDfbu3btwcnLiA5JMJmMyEwUK722NGjV47enTpzPRValUmDx5MiQSCdMgqlarER4eDiJCz549YWpqyuQeazQa/jxnWFgYrl69yhdVENLnOI7js36HDx8OlUpV7BnUshAZGQmpVIrBgwczTdTZt28fdHV10adPH6ZFbc6fPw9jY2MEBAQwLYFaUcH57du3cHNzQ82aNZlm2ufn56N169aoVKkS7t+/z0yX4zgMGzYMenp6zFZRtGjLiW7ZsoWp7vnz56Grq4sJEyYA+AQqiZUXVgE6IyMDN2/eZLY0mpycjN9//x3z5s1DYGBgiecjS4LjOFy/fh0rV65E3759+SzPwMBAwYOQUqnEoEGDiszq3NzcmOzR5OfnY+jQobyuQqFg9kLx5MkTNG3alPme6NOnT9G8eXPo6emhUqVK6NChA5MiG8+fP4ePjw/09fWxdu1aNGvWjMleYHJyMvz9/aGnp4eNGzeC47hiCyOUlszMTHTt2hU6OjpYt24dgMKAnZ6eLqjPKZVKfPvtt5BKpUzLXXIcx79MzJw5k+nZ6w0bNkAqlWL48OFMC66cPHkShoaG6N69O7P9caDignNqaio8PDxQrVo1ZseSgL9muCYmJszGBy2zZ8+GVCrF/v37meoePXoUMpkMM2bMYKr7+PFjWFlZoWvXrvyz9j8VoOPi4hAZGYmRI0eidevWsLe3h5GREU6cOCG4PVu3bkWVKlWK7NUtWrRIsC4A7N+/ny8EQETo0qULkzf5goICzJo1i9etWrUqk8ChVquxZMkSKBQK6OrqQiqVMjmKotFosGrVKigUCri7u6NTp04YPHiw4AGZ4zhs3boVJiYmcHd3x+3btzFr1iwme6JHjhyBpaUlXFxccPv2bQBgkhR2+fJlODg4wMnJienA9vjxY9SpUwfW1tZ/y8oV8lKcmpqKVq1awcjI6INlDctDQUEB+vfvD5lMho0bNzLTBYCFCxfyZSBZBv0jR45AT08PvXv3ZjrT1wZnLy8vpsE5MzMTjRs3hr29PZ4+fcpMl+M4DBw4EPr6+sxnuNotn9WrVzPVvXHjBhQKBUJCQpg+E+np6XB1dUX9+vWLrF7+TwXoV69eoWrVqnxAsrS0ZLJHpdFosGfPHpiamvLaLGYIHMchKiqqSG3X9u3bMymKcPr0abi5uUFPTw8dO3aElZUVk4zUGzduoGHDhtDV1cX06dOxYcMGJsk0T58+RatWrSCTyTB58mQolUpcunRJ8OwjNTWVT4IaPXo0v9QotPMVFBRg3LhxICL069eP2fELjuMQGRkJXV1dtGvXjmlG6qlTp2BhYYH69ev/4zJ5eQeLx48fw8XFBVWqVGHiHqclKysL7du3h6GhIZM8AS0cx2HSpEkgIixdupSZLlD4sq2jo4MBAwYwPV4XHx9fIcE5Ozsb3t7esLGxwYMHD5jpAsD48eMhl8uZvrABwOHDhyGTyZjmeACFyXG2trbw9/dnutWhUqnQpk0b2NnZ/W2C9D8RoFUqFbZu3QpXV1d+D9De3l6w0xDHcTh69CgaNGjAWzcSEZMjEjdu3ICvry+/nP3bb7/Bz89PcIJKUlISgoKCQETo1KkTHj16hLi4OMG2ejk5ORg3bhxkMhm8vb35eyt0L1sbkIyMjODm5sbU/u/MmTNwcHCAra0tU0vIhIQEeHl5wdDQkGm979zcXISEhEAikWDatGnMllw5jsPy5cshk8kQFBT0wWSl8gwWFy5cgJWVFRo0aMDUfvTNmzdo2LAhKlWqVOoayaXhffOQn3/+mZkuUOg9IJPJEBoaynS5vKKCc15eHvz9/WFlZcU8S3nevHmQSCTYvn07U11tlbBvv/2W+Qy3Tp06qFOnTplOMTx69KjEoj7Dhg2DgYHBPx6L/FcHaKVSifXr18PZ2RkymQz9+vXDvXv34ObmJjhT8Ny5c2jevDmICJ07d0ZMTAyysrIEL7M9f/4c33zzDSQSCby8vPhi9Tk5OYKCnbYkn0KhwBdffMH0rfX3339HtWrVYGpqirVr1zIbfBISEuDv7w+pVIpJkyYxM6BQKpUYP348JBIJunXrxixJCSgsYWtmZoY6deowtZp8/PgxPDw8YG5uXqyjT1lRKpUYOHAgJBIJZs+eXeygVtbB4pdffoGenh46d+7MtI74w4cP4ezsDGdnZ6be4EqlEoGBgdDT08PBgweZ6QKFphYSiQRjxoxhGjjeD84szw0rlUoEBATAzMyMqU868FeC1YoVK8r83eJmrtoqYZ06dSrT1kFCQgJmz579wXGroKAA/v7+sLW1LXXcyMjIwPjx42FhYVHskbHly5eDiD54iuGzC9BlOWaVmJgIhUKBQYMGFTnHyuJ4gI+PD/z8/Jh7xq5cuRJOTk7YuXMn046cmJgIKysrzJw5k2nGKMdxaN26NQIDA5ke1AeAdevWwdXVldlRGS1JSUmwt7dn6ocNFN6LgIAADB48mOlRHKDw6EX9+vWZF0xJSkqCs7NzqQJSWd2svvrqK3z//ffMK6Xt3LkTjRo1Ym6E8/z5c9SuXZt5GVOO4xAcHIzJkyczNw/Zu3cvmjVrxjQ4A4VVtzw8PMrV94rLseA4DiEhIWW23Xz8+DH69+9f7DJ7VFQUWrZsWerjaqmpqRg7dix0dXWLPeb38uVLeHp6lsrmVa1WY+3atbC2ti5VudYhQ4YUW7PgswvQWkrb8Io6hlVRbkgqlYppAH0flucs34d1MNLCcRxz20YtFaXLMiP3P2G571Ue3bIOFiwToP4T1kH/c9UFUK4Vqxs3bpS4qlFW3bi4OAQFBRVrYwkU9uvSvqi8ePECQ4cOhVwuL9bG8n3tksjPz8eiRYv4Wgeenp4lfq80utqcCG2+kLGxcYmrcyXdi/IGaCl9JpiYmFSIrrGxcYXoyuVy0tfXrxBtQ0PDCtE1MDCoEF2JREJ6enoVol1Rurq6uhWiS0Sko6PzWenK5fIK0SUikslk/2pdAHTq1Cm6du1aiddKpaUbjgFQdHQ0tWvXjpYtW0YKhYKJ7p07dygoKIjc3d0pPj6eQkJCir1eIpGQRCIp9pqUlBQaP348OTs70+rVq8nAwICmTZtWYltK0iUi2r59Oy1cuJDS0tKIiGju3Lklfq80ukZGRjRgwAD+z6NGjSJLS8sSdUujXVYqrueJiIiIMEaj0ZBKpWL68qtUKmn37t2UmppKI0eOZKJZUFBAu3btosWLFxMR0dWrVwVrAqCjR4/SnDlz6M8//yQzMzOKj48XrJuTk0NDhw6lbdu2EQAiIlq2bBmTlxylUknPnz+n/Px8IiKaOHEiWVtbC9YlIrK3t6f09HQyNDSkpk2bkp+fHxPdY8eOUe/evWn48OH06NEjGj16NBPdclGm+XYF8L9cSUxE5GNQ0X0uJSWF+R57YmIipk+fjh49ejDbIkhKSkJERAQqVaqEypUrM0kyTEtLw/z58/laClKplInZCVCYt6NQKPilV1Y1xAHg4MGDvG5QUBAzXW0hlzp16sDe3p7Z9tyJEyegr6+Pfv36YcuWLcxOAJw5cwb6+voYMGAANBoNs7ryJ0+e/HfvQYuIiLBBW0ls586dzDQLCgpw8OBBdO/eHW5ubkxyO1QqFaKiohAQEACpVApDQ0MmZ3hTUlKKWGMSEQ4cOCBYFwAePHgAPz8/Xvf7779nogsAx48fh5GREYgIX375JbP98GPHjsHAwADdunWDo6MjMyOK3377Dfr6+ujduzeysrIEV2PUcvr0aRgYGKBPnz5Qq9XM7sOlS5dgZGSEoKAgprkGcXFx5a5/LwZoERGB5OXlMc++ffr0KRYvXoyJEycySdLiOA43b97EhAkT+JrqLJy9YmJiMHr0aD7bVUdHh8mMUaPRYPz48ZBKpXywi4yMFKyr5ccff+R1e/XqxUx3x44d0NXVRaVKleDo6MissM0vv/wCHR0d9O3bF2FhYcxOROzevRs6OjoICQmBSqVCTEwME91Dhw5BV1cX/fr1Yxrszp49C0NDQwQHBzNNXrx16xbMzMzQqVMnpkmcT58+hZ2dHZo0afJ5BWjRzUrkv0VeXh5Onz7Nl+hkQUJCAlatWoWOHTuibdu2grPJtVabM2bMgIeHB4gIVapUYWJmEBMTg9q1axcxJWHV5+7evQtHR0dee/HixYI1gb/MOLQBOiAggMnRJo7j+LK4Xbt2hbW1NZPjmhzHYc6cOfys+dy5c8yqoi1ZsgREhLFjx/K11FmgrU8+cuRIpgVXDhw4AB0dHQwcOJCpbnR0NBQKBXr27Mk0ON+7dw+VKlWCn58f05M3b968QY0aNVCvXj0kJiZ+XgFaiziD/rzgOA4vXrxgeg705cuX2LNnD0aOHMlkGUylUuHy5cuYM2cO/Pz8oK+vj4CAACamJFOnTi0S7JydnZkM8G/fvkWPHj14XT09PWbV1tLT09GqVStee/78+Uz6XHp6Onr06AGpVAozMzNmQTQzMxM9evSATCbDkiVL4OnpyeRFJTc3F8HBwZDJZFi5ciU0Gg2TynMFBQUYOHAgpFIpX7SD1cvEhAkTmPoBaNEG/alTpzLty7t374ZcLsfQoUOZBucLFy7AyMgI3bp1YzrDffz4Mezs7NC0aVOmRXgyMjJQv359ODs74/Xr1//+c9AiJcNxHBISEnD48GGsXr2aydvgy5cvcfDgQUybNg0BAQGwtbXFpk2bBOseO3YMffv2RbVq1fjAERYWxsQwY+HChUVMSby8vJglp2zfvp3XNTc3Z2ard/78ed7hjIiYlaf8888/4eTkhMqVK8PPzw+BgYGC3ayAwvO3zs7OsLGxwenTpzFt2rRiKy2Vlvj4eNSuXRvW1tZ8oREWpUVfvHgBT09PmJubM7M0BQrHrzZt2sDQ0JCJkYyWgoIC9OvXD3K5HFu3bmWmy3Ecpk2bBiLCjz/+yEwXKOwb2hk5y6B/8eJFGBsbo0uXLkzrEzx//hzVqlVDgwYNkJaWxkw3Ly8PLVu2hK2tLZ8sKQZohmg0Grx58wbXr19HVFSU4DKESqUSd+/excGDB7F48WKEhoaiTZs26NGjh+BB7fHjxxg4cCC8vLxgbGwMIoKVlRUTZ6RLly7BxsaGDxoSiYRZTerExER+35KIEBISwuSNOzU1FaGhoXyt9lq1ajGZ4WZmZiIsLAwSiQTu7u6Qy+U4c+aMYN28vDyMHTsWEokEAQEBiIyMZJJYpFar8cMPP0Amk6FDhw548+YNzp8/j8zMTEF9juM4rF69Gnp6evD19eVntix+d1FRUTAxMUGjRo2YWiFevXoVdnZ2qFWrFlOjiMTERLi7u8PGxoZZpjZQWPe+ffv2UCgUTGxHtXAch1GjRkEikZRYhKSsbN68GRKJBOPGjWManK9cuQITExN06tSJaXB+8+YNXFxcULt2bSbjgxaVSoWuXbvCzMysyJba/0SA1mg02Lx5M2bNmoVRo0ahb9++aNeuHXx9fXHp0iVB7cjLy+NndLq6unzgmDp1quDBJzMzE506dSpiYdmuXTsmma5ZWVlFskarVKnCpHZ0bm4uFi5cyFfpkUgkTGZ1BQUFWL58OSwsLGBtbQ2ZTIaePXsKTiThOA5btmyBtbU1rK2tERkZCVtbWyQkJAhu89GjR+Hg4ABLS0ts3boVz549Y7KKcP36dbi5ucHY2JgvV5qamip4Kf7Zs2fw9vaGnp4eli1b9rcBs7yDRWZmJnr16gWJRIKpU6cyS/7RaDSvnfPrAAAgAElEQVSYOnUqiAgDBw5kWh1u586d0NfXR9u2bZnOkm7cuAE7Ozu4ubkxy3oGCrc6GjduDCsrK+bmIQMGDIBcLseuXbuY6QLA2rVrIZFIEBERwTQ4X7t2DWZmZujQoQPTZyI1NRX16tWDs7Mz07LGHMfh22+/hYGBAf74448iP/ufCNBAYY3r9wOdq6sr7t27J7gdjx49wtdff83r6uvrMzmG8urVK0yaNKmIheWAAQME76NkZWVh3rx5sLKygpGREczMzODs7CzY51WlUmH9+vWwt7eHoaEhIiIi4OzszGSZ7bfffoOrqyt0dXUxYcIEZGRkYMCAAYLfjGNjY+Hj4wOJRIJhw4YhLS0NHMcJdu55+/Yt+vTpw2f6alc7WFhYTp8+HXK5HL6+vkxeIrTs3r0bZmZmqF279gczcsszWNy+fRs1a9ZEpUqVmDqGpaWloUOHDtDV1cXatWuZ6Wo0GkyZMgVEhFGjRjFNKjpy5AgUCgX8/f2ZZu8nJCSgVq1acHJyYmIZq0WpVKJHjx7Q19dnatAC/DUez5gxg6nujRs3YG5ujrZt2zJN3NJ6Yjs4ODDtdwAwYcIEyOXyf7zHn12ALksWd3Z2NtasWYNGjRoVyUINCgoSfIzh999/R0BAACQSCRwdHVGzZk3Y2dkJTtB5+PAhBg0aBF1dXVhbW2P27Nlo2bIlpk+fLmiAz87Oxty5c2FpaQkjIyOEh4fj3bt3CA0NFfw2uH//fri4uPD1crV6Qo1E7t+/jw4dOoCI0K1btyJbBkJmYdnZ2Rg3bhzkcjk8PT2ZLjP+8ssvsLKygr29PVPHsDt37uDLL7+EgYEBli1bxiyRJisrCwMGDAARITQ0tNi66mUdLDZs2AB9fX14e3sztZqMjY2Fs7MzqlSpwtSsJjs7G927d4eOjg7WrVvHTBcAVq1aBalUyuQl+31iYmJga2uLevXqMZ3V5eTkoF27djA2Nsa5c+eY6QJ/JZrNmTOHqe6tW7dgYWGB1q1bM/UHyM3NRcuWLVG5cmWmL0AAsHDhQhARtm3b9o8//+wCtJbSNPzt27cwNTVF3759cebMGQwZMgQ//fQTk+WUgIAA+Pn54cCBA1Cr1ViwYAGTQWjr1q2oUaMG1qxZw78BsrB7e/fuHapUqYKIiIgilY9YLDf26NEDwcHBePjwoWCt99m9ezfq1avHZM/2fVJSUlCzZk1ERkYyNzHo27cvQkNDmedGHDx4EF5eXswHiJSUFHh4eCAqKqrEa8s6WAwcOJDZeez3+e2339CyZctiXZPKQ0pKCpo0acI8IAGFnr+zZs1i7mZ18uRJtG3blvl5+pSUFPj6+jL1X9cyduxY5tnlQOFZ506dOjE3BUpJSUHbtm3LfNwyJycH+/fvL/Z3PnnyZCxduvSDPy9vgJYA/198tZysXr2aVq9eTQkJCURE5ObmRlOnTqX27duX6vuZmZlkampKGRkZxRpi5Ofn8/V33717R1ZWVkKazaNUKivEcEGj0RBRxRTtV6lUFWKMoFarK8QYAQBxHFch90Kj0VSILsdxpTYZ+FS0AZSqYH9p+1xZdctDRWl/broVqV2RbS4PFdFnMzIyaM2aNdSvXz+ysbFhopmXl0dr1qyhefPm0apVq6hbt27l1iprn9MieJSwt7enefPm0bVr1+jatWvUqlUr6tKlC925c0eodBHeL47PKjgTVZwbkkwmqzBHnc/NtUgikXwy7kKlpaKCc0VqV9QgXJGD++fW5v+Ve5GcnEwcxzFtx/Pnz2ncuHF06NAhZprv3r2jyZMnk6OjI71584ZJcM7Pz6cVK1aQs7MzjR49mlxcXOirr75i0NpyUKb5dikxNzcvdRr/p3jMSkTk34zY5/4dxMTEMM0JAAqPpPXt2xfjx49npnn79m3+TLevry+T7YGXL19izJgxMDQ0BBHBxsaGyfOsVqsxduxY6Ojo8KdXbty4IVi3vH2O6ZRJo9HQnj17KCcnh5o0acJSWkRERKTCwP/v9LGcxRYUFNCRI0fI2NiY/P39mWjm5+fTnj17KDIykkxNTenIkSOCNVUqFe3fv5+WLl1KFy9epGrVqlFsbKxg3YSEBAoNDaVjx44RUaHHemRkJJN7nJSURCdOnKDc3FwiIlq4cGGZlo4/hEwmo9q1a5NGoyGJREIDBgyg+vXrC9YtL0wCdGxsLDVp0oTy8/PJyMiIDhw4QLVr1/7Ha5VKJSmVSv7PmZmZLJogIiLyLycjI4NkMhkZGRkx03z48CH98ssvJJVKafLkyUw0Y2NjaePGjbRt2zaqWrUqXbx4UbDmgwcPaM2aNbR582ZKTU0lc3NziouLExzslEolfffdd7Rlyxb+79avX08KhUJok8nJyYlcXV35AB0REUE1a9YUrEtEdO3aNYqNjSVbW1uqXr069enTh4nu8uXLacSIETR16lR68eIFzZo1i4nu+vXry/dFwXN3FJ6ze/jwIa5evYqJEyfCysoKd+7c+cdrtWXm/vMjLreJiPx3qKgl7oKCApw+fZpZ+VOg8NTCxo0b0aFDB/Ts2ZPJsbRXr17hp59+gqenJ4gILi4uTFyn/vzzT3z55Zf8mGZoaMgsW//kyZNFKu+xsgp93zyEiDB48GBmutriM1999RVq1arFpNjI+6VK582bh8OHDzNz4NKanSxYsAAAmNXmXr58ebnjXIXsQfv5+X3wF52fn4+MjAz+k5SUJAZoEZF/ID09nelxHqVSibNnz2Ls2LHM+ty7d++wdetWBAUFwdTUFF27dhUcRPPz87FmzRq0bt2ar3lQq1YtJkeQXr58CW9vb37ANDAwQGxsrGBdoLAa4fvaGzZsYKKbm5uLfv36QSKRwNjYGMHBwUx08/Ly0KdPH948pEGDBkzucUFBAUJCQiCTybB+/XoolUpcuHBBsK5arUZoaCikUimf48TKlCQ8PBxEhJUrVwrWe5+ffvqJL+TyyQToVq1a4ZtvvinVtWLCisjniEajwb1797Bz505mxRRevXqF3bt3IywsDHXr1uWdkYRw//59LFmyBB06dIBCoeCrogntc/9pB0lEqFevHjP/482bN/O6xsbGTKoFAoW167UFj4iIWW35J0+e4Msvv4SJiQmaN2+OwMBAJsEjMTERDRs2hJmZGY4dO4bw8HCkpKQI1n3z5g2aNm0KU1NTvjIcC8ewjIwMtG7dGgqFgpndJlD40hYYGAg9PT0cOHCAma5Go8GIESMglUqZPQtatJ7jixYt+niFSiZNmoTo6Gg8ffoUt2/fRnh4OKRSaanLAYoBWkSj0SAxMRGJiYlM9AoKChAbG4tt27Zh3Lhx6N+/v+BiGKmpqfj1118RHh4Of39/mJqaQkdHh0npxBs3bsDV1bXIlg+r0ol3796Fvb09r9umTRu8e/eOSYDesmULDAwM+CxaFr8/ra6JiQlsbW1BRMwG5B07dsDExAR169bFjz/+iAEDBjDRPXToEMzMzFCvXj08fPgQZ8+eRWpqqmDd8+fPw9raGm5ubnzxIBYFeWJjY+Hk5ARnZ2dmLz5AoTtU3bp1YWNjw8SsR0tmZib8/f1hYmLCO5yxQFufXEdHB3v27GGmC/xVWUzrj/7RAvSAAQPg6OgIXV1d3vS6LLV6xQDNlvz8fCalArXGDbdu3UJUVBSWLVuGMWPGCK4GplKp8Msvv2DKlCkIDAxEvXr1YGhoCH9/f8HmIZmZmejcuXMRs5OqVasyqYyWnZ2NLl268Lo6Ojo4ePCgYF2gcJZbv359XnvUqFFMZl+PHj1CmzZt+PK4Hh4egt2sgMJZXfv27SGRSDBy5EgYGxvj8uXLgtv79u1bdOvWDUSE77//Hq9evcLkyZMF62ZnZ/NlUMPCwpCXl4eUlBTBlapUKhUmTZrE19dntZKidQyTy+X46quvmJjqaDl69CiMjY3h4+NTpBKhUG7fvg17e3u4uroyrXGdnJwMT09PWFtbMznupKWgoABBQUEVUp983rx5IKIilcX+1aU+KxqNRoP8/HxkZmbi3bt3ePnyJRISEvDgwQPBiQ23bt3C3r17sWHDBixZsgTTp0/H999/j1WrVgneq9uyZQu6d++O5s2bo0aNGjA1NS3io1teOI7jBx7t530zeqGsWLGiiHavXr2YWMklJiYiODiY161evToTp6HXr18jNDSU3w+Vy+VMZnUZGRkYM2YM5HI56tWrhxo1ajCx3czPz8fMmTOhr68Pd3d3XLhwAZ07d+Zf3Mrb5ziOw9q1a2FsbIyaNWvyjj0sSrgeOXIElStXhoODA06fPs3/vdB7ERMTAxcXF1hYWODXX38V2kye169fw9fXF/r6+sz2moHC392gQYNARJg5cyazWu0cx+Gnn36CVCpF//79mVo3njp1CiYmJmjRogWTlQMtz549Q61atVCtWjWm5Yfz8vLQqVMnKBSKIs8aC2bPng0i+ttY+dkF6LKYZQCFe0fe3t7w8vJCs2bN4OPjg5YtW2LYsGGCExu0nqPvBw1jY2Ns3rxZ8EwmPj6e92nWfkaMGCE48KvVauzdu5c/UE9ETHx0OY7D+fPn0b17d17XxMQEx44dE6QLAHFxcejbty9kMhkf7EaNGiV4EHr58iXCwsKgq6sLR0dHeHl5oXbt2oJXErKzs/HDDz/AyMgIdnZ22LBhAwYOHIi9e/cK0tVoNNi4cSMqV64MCwsLrF69Gmq1Glu3bhVc7/rs2bNwcXGBoaEhFixYwBs6vL83XJ7B4smTJ/Dz84NUKsWECROYzRazs7MxZMgQEBG+/vprZpaQHMdhxYoV0NPTg4+PD1N/6ejoaNja2sLZ2ZlJfX0tL168QJMmTWBsbMxsdQYonC0OGTIEEokE8+fPZ5p4uHXrVujo6CA4OJipJeSdO3dQpUoV1K1bl6l5SHZ2Nvz9/WFmZsbUoAUAfvjhBxARVq1a9beffXYBWktpGp6VlYWVK1eievXqfNCQy+WIiIgQbEUWFRWFoKAgviINEcHHx0ewbWNcXByGDh0KCwsLXtfMzEzwzCsjIwMzZ86Eo6MjiIj/77fffiv4XuzYsYM/JtKkSRMEBwfDyclJsG1jTEwMOnfuDCKCm5sbtm7ditmzZ2PBggWCBov09HR8//330NfXR5UqVbB69WoolUrs2rVLsAn7xo0bYWtrC2NjY8yePZtfDhWqe+PGDXh6ekIqlSIsLIxJwg9QeC9CQkJAROjYsWOxz295LF4NDQ1Rp04dph7FV69eRfXq1WFhYYHdu3cz001PT0fXrl0hlUoxffp0pkYqP/74I2QyGbp27crU2OLy5cuwtbVFzZo1me4Lp6enw8/PD4aGhkyTq4C/jiVNmDCB2UwfKHTPMzc3h7e3N1MP74yMDDRr1gyVKlVi+mIFANOnTwcRYc2aNR/8t//VAdrKygotWrQAEaFhw4bMzr4FBgaiVatWGDp0KHR1dbFw4UImHXrPnj1wc3PDvHnzsHz5cjRu3Fhw0AcK3wCdnZ0xduxYxMfHY+vWrYiMjGTyVjxgwAD07t2b3088e/Ys3rx5I1j36NGj8PLyQlRUFN+RWSyF5eTkoH79+li2bBlTz1gAGD58OEaMGMF7QLPi3Llz8PX1LbOjTknk5ubCx8cH+/btK/FZKOtgMXHiREydOpXpDAkoHIgDAgKYl6vMzc1F+/btK8TNasaMGVi4cCFzN6tr166hR48ezN2scnNz0b17d6b7t1rmz5/P/FgSUOj617dvX6ZWk0DhvejTpw/u3r3LVBcAli5dWqy16UdzsxJKaV0+NBoNnTt3jm7evEkjR45kZuygdRa6fPkyGRoakru7OzNdiURCEomEEhISqEqVKsxMLvCeOw1LBypUoJsOUcWYAVRkmz8316LSUl5nHRERkfJR3j732QRooo8/sImI/BsQA7SISOkoKCigQ4cOUYcOHcjAwKDcOh/NbvK/iRicRURERD5fVCoVc82UlBRauHAh3b59m6nmnDlzqFq1anT//n1BwVkIn1WAFhERERGpWBISEqigoICZHgC6du0aDR06lDZv3sxM98qVKxQSEkJVqlSh2NhYqlu3rmDN+/fv05AhQ8jBwYEiIiLIysqKxo8fL1g3PT29XN/7aAF65cqVVLt2bfL09PxYTRARERH57MjPz6eDBw9SYmIiM820tDRas2YNNW/enFasWEG6urpMNFesWEH169cnT09PevDgAX377beCdU+cOEGenp7UuHFj2rJlC1laWtLSpUsF6wKg69ev07Zt2ygvL4+kUilt2LCBSe5QubeSypGwxpRPoVCJiMj/EmKfK0pGRgbTrGyNRoOLFy9i0qRJOHHiBBPN/Px8HDx4EH379oWxsTEGDRokWFOpVOLAgQPo1q0bX32vUaNGTIqYPHnyBG5ubvwRU3Nzc2Zn0XNyclCvXj1em0WNBqCwgEmvXr0gl8thaGiIMWPGMNP96quv/r3HrERERNjxufW5t2/f4tChQ8yOeanValy8eBHTpk2Dl5cX1q5dK1gzLy8Phw8fxqBBg2BjYwMiwqBBgwQHfo7jMHv27CKFlBo2bMjkWGFBQQEWLFjA65qamuLJkyeCdYHCSmstW7bktYUW93lft1mzZjA2Nkbjxo0xcOBAJrrJycm8ecjJkycxceJEwaVgASAtLQ0tWrTgf39igBYREfkgKpUKT58+ZdbnVCoVbt68idWrV2PEiBGCTUmAQgvL/fv3Y/jw4XB3d4dMJsOuXbsE6966dQuBgYEwNzfnA8e4ceME6wKFZ/215h70/8WOWJXTPHv2LPT19UFEsLS0ZFK+FiisiFalShWYmpqCiLBv3z4mun/++Sfs7Ozg7OyMWbNmoX///kx0r1+/Dnt7e1SvXh13797FqVOnmDzD9+7dwxdffIFq1arxZ6RZFF5JSkqCm5sbqlSpgosXL4oBWkTkcyY7OxvXr1/H1q1bmdQIzsvLw5UrV7BmzRoMGTIEjRs3hoeHB+7duyeoz+Xk5GDKlCnw9fXlLSyNjIyYlE589eoVmjRpUqQ07j+VTiwP+fn5aN68Oa/bs2dPJgNxfn4+IiIi+PK1Tk5OTArcFBQUYPLkyZBKpQgICIBCoWCyZK7RaDB79mzIZDJ06dIFz549w/DhwwXrchyH5cuXQ0dHB506dUJaWhpSUlKYmH3s2LEDBgYGaN26NdN636dOnYKZmRmaNGnCpCiTltjYWNjb28PNzQ2JiYn/7kpiIiKlheM4pKWl4c6dOzh58iQOHDgguDLcs2fPcOLECaxduxYTJ05EUFAQGjdujA0bNghewly7di3at28PJycnPnAEBgYKXs7VaDQYO3ZskUCnrU/Oos/NnTuX1zU0NER0dLSg9mo5ceIEXFxcmNtuRkdHw8XFBQqFAo6OjmjatCmTSlXXr19HnTp1oFAosGrVKnTo0IFJlcMHDx6gUaNGMDAwwOrVq8FxHBOzj9evX6N169bQ0dHB0qVL+edXaA347Oxs9OnTBxKJBLNnz2ZW+lOj0fDGPaNHjxbczvfZsGED5HI5goODmVYiPHfuHMzMzODj48OXKhUDtAgT0tLScPXqVURHR+P333/Hr7/+ip07d2Lz5s2C61Dfu3cPU6ZMwbBhw9C7d2+0b98eXl5eGD58uOD9nujoaFSvXp1fCiQiVKtWjUlJzYsXLxbZA9TT02Oy5AoAx44dK2J4MnToUCalZq9cuYLWrVvzuu7u7vwMQUifu3PnDjp06AAigr29PfT09HDy5EnB7U1MTESPHj1AROjSpQu++eYbhIWFCX4BSktLw+DBg0FE6NChAxISErB06VLBz7JSqcTUqVMhk8nQsmVLfu9W6CyM4zisW7cOCoUCDRo0YFqX+9SpU7CxscEXX3yBq1evMtN98OAB6tSpA0tLS/z+++/MdDMyMtCxY0fo6upi8+bNzHQ1Gg0mTpwIIsKUKVOY1hHfvXs3dHV10bNnzyJB/7ML0GVxs3r16hWWLVuGffv24eLFi0hMTORdeoSyatUqjB07FnPmzMHq1auxa9cuHD9+XLBBhFqtRmhoKNq2bYuuXbsiODgY/fv3R2hoKK5duyZIOysrC97e3jAyMoKRkREUCgUUCgX8/f0FJ3nk5ubC29u7yMzL2tqaiWfq27dvi2R2SiQSzJgxQ3BAys7Oxrp16/jkHCKCn5+fYL9blUqFnTt3wtPTk9e1tLTkbRbLC8dxOHnyJJ9E4+zsDCLC1KlTBQek2NhYdO3aFUSEpk2bYvz48ahfv36Re1GeweLNmzcYMmQI7yt96tQpbN++HUePHhXU3vz8fMyZMweGhoaoXr06rxcXFydo4OQ4Drt374aNjQ0qV66MXbt28fdW6D2+efMm72O+fPlyZgP827dv0bVrV0gkEkycOJHZHrZarcbUqVMhkUjQs2dPpvW+f/31V5iYmKBhw4ZMfaAfPHgAV1dX2NjYMHWdys3NRY8ePaCjo4MtW7Yw0wUK63FrPdL/85n47AK0ltI0PCcnp8iylzbjkIWn8pIlS4roEhGCg4MFP2wxMTFFLBuJCK6uroK9mjMzMzFlypQi90NfXx+LFi0SHOi2bNmCFi1aQCKR8NodOnQQnPhz/fp1dO/eHTo6OrxrWKVKlQTvp6Wnp2P48OEwNTWFnp4eunTpwltYCl0Ki4yMhKOjI6RSKXr27ImNGzeiRo0agn1pL1++DC8vLxARWrdujXPnzuGPP/7AsmXLBOmmpaWhb9++kEgkqFevHg4fPgyO4/DgwYO/7dmVdbBYsmQJjI2NYWdnh02bNvHPmdC+9+eff6JGjRowMDDA7NmzmWVpp6amomPHjnwmNcs9y7lz50Iul8PHxwePHj1ipvvHH3/A1tYWVatWFTxGvE9qaipatGgBPT09fqmcFdOmTQMRYfDgwUyXiKOjo2FmZgZPT088f/6cmW5qaioaNWoEc3NzpvcYAMLDw0FEHzRS+VcH6Ly8PN62UV9fH2PHjhW8RKUlJCQEBgYGICI0btwYf/75JxPdqKgoNGjQAEZGRjAwMMC8efOYvBErlUq4u7sjNDQUenp6aN68OeLj4xm0GBg1ahR69eqFXbt2wdDQECtXrmTSoU+fPg1fX19s2bIFjx49QvPmzZl0PJVKBR8fHyxatAjv3r3D48ePsWnTJsG6ADB58mSMHDmSX5F4/fo1k2fuypUr6NixIy5dusT/HYsZmEqlQqdOnbBr164S9co6WMydOxczZsxAdna24Ha+T2xsLAIDA5llJWtRq9Xo1asX80EYKJwlLV26lOmyKFDoGx8SEsLUXhEovBfffvstbt26xVQXANatW4cNGzYw1338+DGGDh3K3M1KrVYjLCyM2Xj5Ptu2bcP27ds/+PN/vZvV/PnzKTExkSIiIsjOzo7Zvw+AmjVrRmFhYRQcHExSKbviakqlkr7++mtauHAhOTo6MtMlKrxvmzdvprCwMKZtJiosS/fy5UuqXbs2U10iory8PJLL5cycvUTKjmiWISLy3+Vf72aVl5dXIQXLNRoNFRQUVIg2RPctkU8QMUCLiPx3+de7WVWUm4hMJqswbTE4i4iIiIiUF9EsQ0RERERE5D9IT0+njRs3Ulpa2kdrw0cL0MOGDaO7d+/S1atXP1YTRERERET+S6SmpjLV4ziO/vjjDxo+fDhdu3aNiaZaraajR49SUFAQ2djY0Nu3b8nc3FxwO0+dOlWu7woO0HPnziVPT08yNjYma2tr6tq1K8XHxwuVFRERERH5L5KRkUFHjx4ltVrNTPP+/fs0d+5catSoEZ0+fVqwHv7fEnLcuHHk5ORE3t7eZGJiQg0bNhSky3EczZ49mxwcHCggIIB2795NPj4+NG7cOMFtzs7OppMnT5bru4ID9Llz52jYsGF06dIlOnHiBKnVamrTpg3l5OQIlRYRERH5bMnNzWWq9+7dO9q7dy9NnDiR3r17J1gPAMXFxdGCBQuoZcuWZG1tTUqlkuRyuSDd+Ph4ioiIIFdXV3J1daXw8HBq06YN9ejRQ3Cbd+/eTa1ataJFixZRUlIStWrVin744QfBulKplFq2bEkpKSlERGRtbU0///wzkxMyCQkJdPTo0fJ9ubznvj5EcnIyiAjnzp0r1fViqU8Rkf8uYp8rLH504cIFXLhwgYmeSqXCjRs3sGzZMr5Wu9BCJvn5+Th69CjGjBkDDw8PSCQS6Orq4tSpU4Lb++rVqyIV8ogICxYsEKwL/FXpUKvbsWNHJufGOY7D5s2bYWRkBCKCnZ0dM4OLzZs3w8DAAM2aNYOBgQGzkqU7duyAoaEhmjVr9mkUKnn48CGICLGxsaW6XhwsRET+u7Duc7m5uYiLi2NSfpfjOLx+/RonT57ETz/9hIEDBzIpmHP9+nWsXLkS/fv3h7u7O6RSKTw9PQUXBuE4DuHh4XzQICJYWVnhzp07gnSBwgI2c+bMKVIal1UN+OTkZL4kLDHyrgYKy5X27NmTvw8uLi5MSoumpaUhODgYRIQxY8bAz89PcMldoPBFbcCAASAijB8/HgUFBdi5c2fZhQ4cAN4rRKVSqfD999/zJh8pKSkfP0BzHIdOnTqhefPmH7wmPz8fGRkZ/CcpKUkM0CIiKKx0lJyczKSaVGZmJu7cuYPff/8dGzZswIwZMxAREcH3u/L2uTt37mD+/PkYNGgQfH19YW9vz8zM4NixY7C2ti4yqxs2bBiT2delS5d4a0wiQqNGjZgEDpVKhRUrVkAqlfIliG/cuCFYV6PRYN26dbCwsIBcLgcRYenSpYJ1OY7D1q1bYWlpCQcHB3Tv3h1+fn5MXq4OHjyIypUrw97eHsePH8fChQuZVO26cOECHB0dUblyZX5my6Lu9/3791GnTh2Ym5vj0KFD5RPJzwe++w4gAkJDARS+/Pj6+sLAwICvLvZJlPoMDQ2Fo6MjkpKSPniNtn7rf37EAC1SHjiOw7Nnz/DkyRM8fPgQ9+/fR1xcHKBKECwAACAASURBVGJiYgQbh+Tn52Pz5s1YtmwZ5s6di4iICIwaNQpDhgzhjd3LS2pqKnr37o2mTZuiZs2asLCwgEQiQe/evQWX1Hz27Blq1apVpH/VrVuXH9SEBOisrKwihifGxsY4fvy4oPYChS8n27ZtQ+XKlXntiIgIwbM6juOwb98+uLi48DXmGzduzCQ4nzx5Eu7u7pDL5fjqq6+gUCiYlAq+ceMGvLy8IJPJMGbMGOzbtw8TJkwQrJuQkID27dtDIpFg2LBhyMzMxNWrVwW/EGZkZKB///4gInzzzTe8nlBvAJVKhRkzZvB+2Cz9mrdv3w6FQoFGjRqVP9gnJQGNGxcG5///3NmwAQ4ODqhWrVqR8qofPUCHhYXB3t6+xEGxPDNopVKJmJgYpl6gWs6cOYPbt28zK9Sv5fLly9i4cSPOnDmDhIQEJhaCQGFN6JEjR2L27NlYv349Dh8+jKtXryIpKUnw/dm7dy86duyIPn36YOjQoZgwYQLmzJmDHTt2CJ7FzJkzB/b29vjiiy9Qq1YtuLu7o3Hjxjhw4IAgXQCYMmXK3174OnTogBcvXgjS5TiOX6bSfpycnJi469y/f583dCAi6OjoYPny5YID0osXLzB16tQiga5r167IysrirynPYJGZmYkff/wR9vb2kMvlkEqlsLW1xc2bNwW1V6VSYevWrahZsyZkMhn69evHmw4I5fTp02jUqBFvgHPp0iV4eXkJngw8ePAAnTt3BhGhU6dOiI+Px7NnzwTvDaenp2PEiBGQSqVo3rw5b5WalZUl6LnQaDRYtmwZFAoFXFxcmCwNazl16hSqVq0Ka2trJn1ZS0JCApo3bw49PT2sWLGCmclHXl4evvvuO95Up9z+COfOAdbWfwVnfX2cGzAAenp6aNu2LVJSUopc/tECNMdxGDZsGOzs7PDgwYMyf780DVcqlXBxcYG+vj68vLwQFhaGHTt2MAl6Wl9QqVSKmjVrolu3bkwG4CtXrkAmk/GDpNYY/OXLl4J0c3JyUKdOnSJBo3Llyli5cqVgM45169YV8SaWyWQICwv728NWVq5cucJ7/b6/xCi0gH9WVhaGDBkCW1vbIjO6DRs2CO7QK1as+NssNDg4WPDM6+LFi3zCSNWqVWFmZoYqVaoInnllZGQgKCgIcrkclSpVQkREBCpXrozw8HDB1neLFi2CmZkZFAoFRo8ejWfPnqFJkyaCTS7++OMP1KhRAzKZDCEhIbxT2Nq1awXppqeno23btiAitG3bll9yViqVgoPzDz/8AB0dHbi5uTFZOdBy7tw52NjYoFKlSti8eTOzgJSeno6mTZtCLpdj8uTJTF2nJk+eDCJCt27dkJyczEz3zJkzMDU1hZubGxM/dy3p6enw8PCAqakp9u3bVz4RjgOWLgXk8r+Cs6Mjfvr/F8uIiIh/jEsfLUAPHToUpqamOHv2LF69esV/SutEUtoA7eDgACJCjRo1sGjRImZuVtoZkoGBAUJDQ8v1kvFPnDhxAmZmZiAq9OU9duwYk06nVqv5wGFsbIyZM2cWmR0JITw8HI6OjiAitGrVqtSJfiXxxx9/oF27dqhduzaMjY2xfPlyJi9XGo0G7du3x8yZM1G/fn34+fkx86SdN28eRo0ahStXrsDb2xubNm1i8vu7desWAgMD8fvvv0OtVmPAgAFMlu44jkPv3r3x888/86tBH9pXK+tgsWLFCsyePbuIbSOLLamHDx+if//+TG0bgcJ7MXToUJw+fZqpLgBs2rQJq1atYr6al5iYyORl+D/hOA7jxo1DTEwMU10A2LVrF7Zt28bUwhIozDAfP348czcrjuMwbdq08j9vOTlAnz5FlrTRujXw7h0OHTqE/fv3f/CrHy1A/9N+MhGV2vavtA1fvHgxTp06xfxhOHfuHObMmcO8Y2g0GvTu3btC2rxy5UqMHj2a2UvK+wwfPhz79u1j3mYAmDVrVrH5CUKIiopibgGohaUn7X9SUW0uDvHkhIhIGbl3D3B3LxqcJ04ESjnR+NfbTX5uoAKdrFQqVYXZNXIcx9y+UuTT4t/a50REKoTt24m++45IW3zLyIho82ai7t1LLfHZuVn9280yKtLJqiK9lMXgLCIiIkJEeXlEgwYR9e37V3CuXZvoypUyBWchiDNoEZH/McQ+JyJSAvfvEwUGEsXG/vV3/fsTLV9OpFCUWe6zm0GLiIiIiIh8UgBEGzcSNWz4V3A2NCxc0t64sVzBWQjCqqKLiIiIiIh8RPLz80lfX1+4UGoq0eDBRPv28X+lcXEh2b59hUvbAkhOTi7X98QZtIiIiIhIhQCAHjx4wMyvmajQFvPXX3+lYcOGUYsWLej169eCNd/u2UPZ1asXCc6vAgJIdu2aoOD84sULatOmDdWoUaNc3xdn0CIiIiKfCTk5OaSjo0O6urpM9NLT0+natWt05coVsrS0pMGDBwtKcOU4juLi4ig6Opr/mJmZ0fnz5wW1EwAtW7aMdu3aRVeuXCGNRkNGRkZ07tw5cnJyKr9wQQGpIiLIctEifraaSkQ3Q0PJb+VKQW0mKrStdHBwKPf3xQAtIiIiIhCO4+j58+cUHx9PT548ocDAQDI3Ny+3HgB69uwZ3b59m2JiYvj/du/enebMmSOorRcuXKC1a9fS5cuXKT4+noiI2rRpQ1FRUYJPn+zcuZMGDx78f+ydd1gUV9vG7116E6SIWEAUFRDF3lBUYommWWJJPk3im2Is0VhiiYklsUv01cQSu68xxhg19i6KKFhBUYgK0kWU3tvu/f0x2YVVQGHGPj+vcy3Mzj57HGbOPefMOc+NnH9nPTs6OuLYsWOws7MTFVehUMDT0xOTJk2CSqWCnp4e/vrrL7Rs2bLqQa9eBT75BAYhIdpNJwAEjhiB7yQQ55s3b2LYsGG4fv06unXrBj8/v0rHeG4CvWLFCqxYsQIqlep5VUFGRuYFgiSys7ORlJSkLQ0bNkTTpk2rHDMvLw8XLlxATEwMYmNjERMTg5iYGOjr62PlypWiel/379/HhAkTcP36ddy6dQt5eXkwNTXFX3/9JUqcAeD27dvo168fwsLCtNtmz56N77//XrSIurq6IjAwELdv3wYAdO/eHX///bfo57iZmZkICQlBYWEhAKH3eOzYMVE9SADIzc3Fjz/+CF9fXzRs2BDh4eFYu3YtevXqVbWARUXAwoXgDz9AUVQkbFIocG3QICzPycEukeJMEitXrsQ333wDDw8PBAcH4+7du1USaMn9oCuLnNVI5nUjOzubGRkZzM7OZl5eHgsKClhcXCxJ9ragoCDu2bOHO3bs4NatW7lx40auWbOGe/fu1cavyjWnVqv5yy+/8NNPP+XAgQPZs2dPtm/fnq1btxadk7q4uJjDhw+niYmJTjbCCRMmiE6pqVKpOGbMGJ24nTp1kiQLX0pKCvv166eNa2Njw6CgINFxMzMzOWfOHG2qYAD09fUVHTc/P59Lly6ltbU1bWxsaGJiQh8fH+bk5IiKq1KpuHHjRtrb29Pa2porV65kzZo1RRupkOTBgwfp7OzMatWqccWKFczOzubs2bOrHvD6dbJVK52MYA9q1mTxhQvMzMxkZmamqPomJCSwV69e1NPT48yZM7U2ns/dzaqqPEnF1Wq1aOvA8oiMjJTcyYoU/lC3bt2SPGVmQUEB9+7dy+joaMlj79y5k3/99RdDQ0MlTarv7+/PadOmcdWqVdy/fz+vXbsmid1fUlIS+/fvz6FDh3L8+PGcO3cuf/31V+7atUt0fuuQkBC6u7vT09OTXl5e7NmzJ/v3788ZM2aIbtD8/PxoZGSkIxomJib86aefROco9/f31zFpAcCPPvpI53hXpbEoKCjgqlWrdOJ6eHjwxo0bouqrVqvp5+fH/v376xwLjY+uGK5evcr//OswpIk9bNgw0dd7fHw8J0yYQDMzM1avXp01a9akk5MT//nnH1Fxs7OzuWjRItrY2LBatWqcOXMmPT09uWrVKlFxVSoVt23bRmdnZxobG3Pq1KlMS0vjiBEjRFubBgUFsW3btlQqlRw9erQ2ZbJYk4uEhAQOHDiQADh48GAdk6EqtXvFxeTChVQbGmqFuRhgypdfCp7OErB9+3ZWr16dDRs2fORG7ZUW6KKiIjZv3pxubm6cOnUqz507J1kO41mzZtHExIS9evXi4sWLGRISIknskJAQKpVK2tnZ8b333uPChQslMS8vKirSullVr16d3bp14/z58yUR1NK2jUqlku7u7ty7d6/ouBcvXtRxycK/dpDXr18XFTcvL49NmzbVidugQQPu2LFD9M3LsmXLaGdnp41rZGQkiTifO3eO3t7eOiLavXt3RkZGioqbm5vLfv360djYWKdH99dffz2yb2Ubi4ULF9LGxoYKhYI2NjYEwM8++0z0sThz5gwbNmxIAGzfvj3btGnziI9uVcjJyaGPjw8B0M3Njb/++iv79evHOXPmiD4vZs+eTUNDQzo4ONDX15eZmZmcMmWKaGvTU6dO0d7enmZmZvz222+1Qnfp0iVRcbOzs9m6dWsqFAoOHz6csbGx2vfEtnPTpk0jAHbt2lVSMw4/Pz9aWFiwfv36PHTokPiAoaFk+/Y6veYUe3uqJHAt1DBx4kQC4MiRI8u86XmlBTo/P5+Ojo5ai76RI0fywoULknz/pEmTCIA1atTgl19+yZMnT0ritHTu3DmamJjQyMiIQ4YM4eHDhyWJq1artaLUrl07/u9//5Ost7tgwQKt8H///feSGaRfuHBBawn55ptvSjIMSArHomvXrloxWrZsmWjLTQ3Lli3TNvJvv/22ZI5LoaGh/OSTTzh48GBaWVlxw4YNko2EjBgxgmvXruWoUaPYp0+fcq1NK9tYbNiwgfPnz2dsbCynTJkiSe+WJKOiojh69Ght475hwwbJTGumTJnCo0ePao+txspSLH/++SfXrFmj0wuX4u937949Tp48WVLbRg1z5sx5Km5WBw4ckORm+GFSU1P5ww8/iHezyssjv/uONDDQCrNaoWD655+TEjtl+fn58eDBg+W+/0oLtFqt5q+//spr165JfjL4+fnxxIkTktvHpaWlcfXq1UxLS5M0Lik0ZGLvrMvi8uXLXLZsmWT2laUZPXq0aM/jsti6dSunTp0qyZD5w2zevLlcy0ax7Nu3j4mJiU8l9o0bNyq8TsTM+5Dy0YeMzFPj1CmyUSNd96lGjciAgOdSHdnNSua1RLPkQubJka85mVeWtDRgyhRg7dqSbfr6wNSpwPTpgBQZx6pAVa85eZmVzEuNLM4yMjJQq4HNmwVxfvCgZHv79oJYe3g8v7qJQO5By8i8ZsjXnMwrxZUrwOjRQFBQyTZzc2D+fGDkSOAFuImX3axkZGRkZF4fUlOBUaME56nS4vz++0BYGDBmzAshzmKQU33KyMjIyLw8qNXA+vXAtGlASkrJdldXwa+5e/fnVzeJkXvQMjIyMjIvB2fOCM+Vv/iiRJzNzIBFi4Tc2hKJs0qlQnFxsSSxACH9Z1WQe9AyMjIyMi82t24JM7F379bZXDBgAIyWLQNq1xYVPjU1FUFBQQgMDERQUBDc3d2xdOlSUTFjYmJw5MgRnDp1CidPnqxSDHkWt4yMjMxrCkncv38f+fn5cHJyEh0vLy8Pt27dQlhYGMLDwxEXF4fp06fDxcWlagGTk1EwfToM1q+HspRWhAK4OXo03v/lF1H1jYqKwsCBA3H58mXttiFDhmDJkiVQKsUNMBsaGmLFihW4du1alWM8N4EePXo0Ro8erZ3dJiMjI/OyolarkZGRgYyMDDg5OYlynMrIyMDdu3eRmJiIxMRE7c/e3t7o27dvleOSxMaNG3H16lVERUXhzp07iIqKQuPGjbF///4qxwWAwsJCfPLJJ/jjjz+0w7nW1tY4cOBA1cQ5Px9YvhyYOxdGmZnazYkAvgPQ+uefMXLMGFF1BoS/m7m5ufb3/v3743//+5/o5ZsxMTGYMGECrl27Bn19fdSoUQN3796tdBzRAu3v74/Fixfj8uXLSExMxO7du0WdRDIyMi8WxcXFUCgUT2XNeWJiIqKjo8t8r2nTpjqNZ2W5cOECjh07hry8PJ3SuHFjTJw4EQYGBlWOvWPHDixcuBBpaWlIS0tDeno6rK2tsWXLFlEWlgCwa9cufP7559rRRYVCgXnz5uG9994TFVehUMDMzAzLly/Xbnvrrbfwxx9/iDrOABAdHQ2FQqEV59q1a+Po0aNwd3evXKDiYmDLFmDWLCA2Vrs5B8BihQI/kVi6di0+++wzUfVNS0vDjz/+iF9++QUuLi7w9PREnTp1sG3bNlHnRX5+Pnx9fTFv3jw4OjriyJEj2LBhAyZOnIi2bdtWPqDYFGYHDx7k9OnTuXPnTgLg7t27K/X5J02B5ufn91TSDIaFhUmW/7c0KSkpkuX/LY1arWZQUJDWxkxKgoODGRcXJ3nc6OhoHj16VPK0p4WFhVy5ciWPHz8uWd5wDevXr+f8+fO5Y8cOBgcHi7ah03Dq1CkOGDCAY8eO5cKFC7llyxaePHlStFlGQUEB+/fvz9atW7NHjx4cNGgQv/zyS06bNo1hYWE6+1Y27WBKSgrd3Nyor69PCwsL2tnZ0dHRkYMHDxadrjQ9PZ2NGzfWMTyxtrbmb7/9Jjqtb0REBGvUqKETe/z48aLbkdTUVK5cuZJmZmbauO3bt9cxoqgK+fn53Lp1K728vLRxq1Wrxv3794uKq1arefToUfbq1YsAtPUePXq06BTHoaGh/OCDD6hUKtmoUSN2796djRo1YnR0dOUCFReTW7eSDRvqpOdUAdxmbs4/lizhxIkTuXnzZlH1LSgo4NKlS1m9enXa2dlx1apVLCoq4rZt20SfF/v372eDBg1oZmbGhQsXan0BMjIyXoxc3E9LoFUqFb29vWljY8PJkydLaj35008/0dDQkO+//z73798vWU7u8PBwGhoaskWLFpw3b55kYq1Wq9m8eXNaWlpy0KBB/N///idZgv0ff/yRAOji4sLPP/+c27Ztk8SK89q1a9TX1ycANm7cmB999JEkZicqlUrHzcre3p5jxoyR5EZg1qxZOg27jY0NV69eLdoB6MKFCzqOU0qlkh9//LHoc7qwsJDt27fXqXOLFi3o5+f3yL6VbSzmz5+v4+xlYWHB//73v6KvlYCAADZq1Einzv369RMt+gUFBezcuTMB0NDQkADo4OAg2reaFM4LIyMjmpqaao/3+PHjRZu0+Pv7087Ojnp6ehwwYAC/+uorNmrUiOHh4aLi5ufns3nz5gTAN954gwcPHuTPP//MJUuWiL4B0rhZeXh48I8//mBxcTH3799fufZIrSZ37iSbNNHNmw3whKEht02bpm2DxHak8vLy6OrqSiMjI06bNq1KuejLQ+NmNXjw4DI7Oa+0QOfk5GjdrADQ3Nycc+fOlUQ8xo8fr43r6urK6dOnS2IWcf78eSqVSurp6bFDhw78/vvvRVvSkYJAu7m5UaFQsGPHjlywYIFoH1oN8+bNIwC6u7vzxx9/lOymIjQ0lJaWlrS2tua4ceNEe8WWplu3bgTA3r1789ChQ5LZkG7cuJEAWKtWLS5ZskQyA5GwsDCtxeL777//SO9WDGPHjtWK0caNG8t1T6tsY/H7779zwoQJBMBBgwYxPj5ekvrGxMTwm2++4fLly2lra8vt27dLZobzww8/cN++fdy5cyf79evHBw8eSBJ337593LBhAzMzM7lnzx7u3LlTkrjJycmcPXu2to24fPmyZCNOy5YtY3BwsPZ3sR7QGk6ePMm///67atecWk0eOEC2bPmIMBd16sRto0eLtjMtiw0bNjAmJkbyuEFBQTx58mS57780Ap2fn6/t8mdkZDAuLu6xFc/Ly+OsWbO4bds2hoeHS2LbqGHfvn3ct28fk5OTJYtJCo3P33///VRclnbv3s179+5JHvfixYu8evWq5I5hOTk5/OOPP57KI4odO3ZIdoNSmvDw8EdsBaVi+vTpvHLliuRxw8LC+P333z/2ZqIqjUVISAiPHDkitoplcvPmzadis0gKw9FSn88anlbcVxqVityzh2zX7hFhZvv25PHjgni/YrwQblYKheKxk8RmzZqF2bNnP7JdzgssI/NskHNxyzxzVCrgzz+F/NihobrvtWgB/Pgj0KcPIGL2+4vMS5OLe9q0adrlCBkZGYiLi3vWVZCRkZGReRYUFgppOV1dgQ8/1BXnpk2Bv/4CLl0C3nrrlRVnMTzzddBGRkYwMjJ61l8rIyMjI/OsSEsD1qwRcmMnJOi+166d4M389tuyKD8G0QKdnZ2NiIgI7e9RUVEICQmBtbU1HB0dxYaXkZGRkXlZuH0bWLYM2LgRyM3Vfc/HRxDmbt1kYX5CRAv0pUuX0K1bN+3vEyZMAAB8/PHH2LRpk9jwMjIyMjIvMiTg7w8sWQLs2yf8rkGhAN55R3Ceat/++dXxJUW0QHft2rXKTh0yMjIyMi8pBQXAjh3A0qXAlSu675maAsOHA+PGAQ0bPp/6vQLIZhkyMjIyMk9OdDTw66/C5K8HD3Tfq10b+OorwQ6yevXnUr1XCUmXWVWFx04/v30bWLtWmPHXrJkwG1CeZCYjU2XkZVYylUalAg4dAlatEl4flo1WrYAJE4CBAwERuayfF1lZWYiIiEBERARMTU3x1ltviYqXkZGBGzdu4Pr167h+/TpCQkJw5syZSl9zL74f9LlzwOLFJb/r6QGNG5cIdtOmQnFykiceyMjIyEhJdDSwaZNQYmJ039PXB/r3B8aMAb28kJmVheTYWCQnJyM5ORlZWVno27cvjI2Nq/z14eHhCA4ORnx8vE4ZOHAgJk6cKMoS8vfff8fKlStx+/Zt3L9/HwDg4+ODXbt2VTkmILiGbdmyBV9//bV2hNjBwaFKsV58gX54UbtKBYSFCWX79pLtFhYlYl26yMMsMjKvFSShVqufivtWUVERbt68CQMDAxgaGuq8Ghsbw8TEpMqxMzIysGPHDqhUqkfKoEGDULdu3SrHjouLw5QpU5CRkYGcnBxkZ2cjJycHbdu2xX//+19UL91O5uYCu3cDGzYAJ08+GszRURjC/vRToGZNXL16FT1q1sSDUsPddevWxV9//SVKnAHA3NwcEyZMQFJSEgDAwMAAq1atwqeffioqLklUq1YNV69eRXZ2NgDg//7v/7BhwwYYGhqKin369Gns3LlTK84NGjTA7t270axZsypV9Lny2BRo9+6RBw/y4sCBjO3alWpPT9LA4NE0ceWVOnXI3r3JyZPJLVvIq1fJUontQ0JCuHXrVknTh5JCwv7169czNzdX0rik4JoidWpSUjgWERERksdNTk6mv7+/5MeYJA8cOPBU0kSeOXOGAQEBkqf6jIqK4urVq3np0iXRBgulKSoq4owZM7hq1SqePn26wtzTlU07uHz5cv7nP//hDz/8wC1btjAgIIDx8fGi8577+/vT09OTPXr04LBhwzhp0iT6+vpy7969otNojh8/nmZmZnRwcKCrqyvbtm3LN998kydOnBAVV61Wc9SoUToGHwDo4+PDW7duiYpdVFTE/v3768StU6eO6BSrarWaFy9eZLt27bRx9fT0OGfOnJJrUq0mg4LIESPIatUebUeVSqEd3btXcJ76l8jISE6fPl3HNaxHjx6ic5+npKRw8eLFdHZ21sa1tbXl6dOnRcUtKCjg5s2b6eHhQQBs1aoVAXDq1Kmizme1Ws2TJ0+yS5cuWmOSefPm0cPDg3fv3n0xcnFXhSd1s9JYpXl5eTHAz4+8fp3cto2cNo18+23SyenJRVtfX3BPGTKEQe+9x7cAdnN25qYNGyRzs7p27Rpr1KhBW1tbzpgxQ7Lc2Wq1mh07dqSRkRGHDh3KM2fOSJYT2NfXlwDYoUMHrlixQrKbgBs3btDIyIj29vYcMWIEjxw5Ipk4tWzZkgqFgq1bt+Z3330niUsWWWIcYmxszC5dunDu3LmSGGZcu3aNRkZGWqel9u3bS5LjWq1W09PTU6dxf//99yVx1pk9e7ZOXCcnJ65evVr0zUtgYCBNTU21cY2MjDhx4kTR551KpWLbtm116ty1a1devXpVVFySnDlzpo4bmY2NDTdv3iz6GgwICKCNjY1OnT/55BPRhhlFRUVs0qSJ1qVO8/c7d+6csMPNm+SsWWTjxmW3lS4u5Ny5ZBnnkcbNysHBQWvU8t1334m+ET9z5gxNTExoYWHBsWPH8vDhw/Tw8JDE8c3FxYX6+vocNmwYr169ypCQEK5YsUJUXJKcNGkSAbB79+48c+YMScGPQePA9UoLdEpKCuvUqaNz8r799tuPuiKlp5MBAeSqVeSoUWTnzqSl5RMLdxbAEEND3uzQgcULFghuK9HRQoL3ShIQEEClUqmtr5WVFVesWCH65C0qKtL65+rp6dHT05NLly6V5MZi5syZBEBLS0u+9dZbXLJkiSSOMjdu3KCBgQGtra05ePBgbty4UbJeb4cOHWhmZsaBAwdy27ZtklnIrVq1Stuwr1+/XjLTkzt37tDe3p5169bljz/+KInDmYZBgwZRT0+PH374IS9evFjufpVtLPbu3UulUskGDRpw/fr1knmRx8bGsmXLllQqlRw+fLikLkO+vr6sVasWnZycuGPHDsluYo8cOcKNGzfSysqKH3/8sWQuWSkpKfT19WVYWBjr1q3LvXv3ShKXJNetW8eLFy/ywYMHHDRoENNDQ8nFi8t0kiJAmpmRw4eT/v4VGlecPXuW+/btY1FREe/evStZnXNycrhq1SqtB3tqaqpkfux//vmnznkm1XkRHBzMgICAct9/IcwyKkPpZVa3bt2qcHZbQkICPvzwQ5ibm6NmzZqwt7dHzZo1UatWLbz99tsVP+cggfh44Vl2aChw7Zrw+s8/QFHRk1XW3BxwcwOaNBGKu7vw6uhY7sS0y5cvdwyp5wAAIABJREFU4/jx43B3d0eTJk3g5OQkyTOxoqIibN68GU2bNkWzZs1EPfN6mLNnz8Lc3BweHh6SPr+7f/8+oqKi0Lp1a8mfCwYEBKBVq1aSHgdAmJxiZmYmeTa8wsJCnDhxAj179pT8WBw5cgTu7u6PfVZZ2VncsbGx8Pf3x5AhQ6CvL+20lcWLF6NPnz5o0qSJpHFVKhV8fX0xduxYyc+NvLw8BAYGwsfHR9K4AJCbm4u8vDzY2NhIG/j+fah37IBi+3Yozpx59H2FAvD2Bj7+WJiJbW4u7fe/5lR15cQLv8wqNxe4cQNo3lzi2fuFhcCtWyWCfeOGUKKiHl1CUB7m5oJYawRbU+rWlWeUy7ywyMusXhOio4XJXrt2AWfPlt2utW4NfPABMGgQUKfOM6/i60JVr7kXfhZ3QADQq5eQmKZdO6BTJ6G0bw+IalsMDQEPD6GUJjdX6F1rBPvGDWHGeFnCnZ0NXLgglNJohNvNTSiurkKpX/+lXCMoIyPzEkAC168Lorx7NxASUvZ+rq6CKH/wgZzl6wXnhRdo/wAVYFCA3FxT+PkBfn7CdqVSWAatEexOnYQkNqIxNQVathRKaXJyBOEOC9MV76ioR2OUJ9wGBoCLS4lgu7oKAt64sci7DRkZmdeS/Hzg9Gng4EHgwAEgMrLs/VxdgX79hJ6yp6c8wveS8MIPcf+07SIm/9MJBvfboeBmVyCqGxDfHih+9LlSvXqAl1eJYLu7C0L+VNEId+nednnCXRG1apUIdmkBr11bvphkJEUe4n7JiY4WBPngQWGdcl5e2fu1bi0kEunXT2hLZJ4br+wz6EVnF2HK8Sk625Q0hElye+Tc6AZEd/1XsB+dKGZlBXTsWCLYbdoAItfNPzk5OcIz7n/+KSnh4cK2goInj2NuLvSwGzUSSsOGJUVOwiJTBWSBfsnIzBTcok6eBA4fFtqRstDTEyZ69esH9O0rzIWReSF4ZQX65/M/Y/mF5YhIjSjj0wJ6NIJ5egfkXO+G4oiuQHw7QPVovm4DA+GmUiPYHTsCtrZS/m+eAJVKSJlXWrQ1PycnVy6Wra0g1A8Ld8OG8ixMmXKRBfoFJzdXSHF88qRQLl0S2o2yqFkT6NMH6N0b6N5d6JXIvHC8dAJdmWVWABCfGY9T0ae0JTKtnGctAPRhDKusjsi90RW5Yd2AhLaAquz0ba6uus+x69d/jiPKycm6PW6NgFdmZrkGB4dHxbtRI6BBg2c4jCDzIiIL9AtGXp4gwn5+giAHBgqrTMpCqQQ6dBAEuU8f4XnyU3+OJyOWl06gNVS14rEZsTgdfRp+0X44FX0KUenlP/M1VJjANtcLBTe7IuVyN+Bu63IF295eV7CbNxdywj9X8vOBO3cEZy9NuXVLeE1IqFwshUIY+mrQQLgbqV9f92dra/mZ9yuOLNDPmbt3hR6yply5UnFOhiZNAB8foFs3oEsX4RqVeal47QT6YWLSY4Tedcwp+EX5ISYjptx9jRSmqFnUCarIrkg81xWquNaAuuzlT2Zmjy7vsrCocjWlJycHiIh4VLhv3wb+dWipFNWqlYj1w+Lt6CgsT5N5qZEF+hlSUCAsfQoMLBHkh12hHqZBA0GQfXyArl2FYWyZp4ZKpUJWVhYyMzNhbGyMGjVqVDlWbm4uoqOjkZSUpFMyMzOxYsWK11egHyY6PRp+UX5awY7LjCt3X2OlGeqoO0ER0w0JZ7siN6IVoC6726xUCqNKGsH28ip/eRdJKJ5nbzQjo+xe9+3bQFpa5eMplULvWyPYzs6Czaem1Kr1Agw3yDwOWaCfEgUFQtKjy5dLSmjo4zMWurpC3b49FJ07Q/HGG8K1JCFxcXEgCXNzc5iZmcHQ0FCyduno0aPIzs6Gnp4elEql9tXOzg6tWrWqclyVSoVFixYhISEBhYWFKCgoQGFhIdRqNSZNmoQ2bdpUOXZeXh4+/PBDXLx4ERkZGVo3q/fffx/r1q2DpaVllWPn5ORgwIABOHLkiHabm5sbtmzZgtatW796iUpKk5qaiujoaLR8eI1yGdSzqofhLYZjeIvhIImo9Cicij4Fv2g/+EX5ISGrZGg4X52DCBwBnI4AToCpvjnqKTrDIKErEs91w/1rLbSCrVYDwcFC+fnnf7+rnu6wuJuboGW+vr5wcXFB3759JRXq9evXQ19fH0OHDq04XaSlpTArrnXrR99LTxeGzUuVrJAQqCMjUS0tDYqyJqWo1cLdf0xMyYL00ujpCdmISou2kxOKa9fGFn9/vDtmDGwkWaxewo4dO9CyZUs0aNBA0riXLl1CYWEhOnToIOnfLi0tDUePHkXv3r0lF8etW7fC3d0dnp6eonxyH+bYsWNISkpCx44d4ezsLNnxiImJwapVq9C8eXO0aNECLi4ukqQ/LS4uxtixY2FkZITGjRtri4ODg+i6L168GHv27IGbvT1aGRvDrbgY9dLTUfvePeiHhz9ejE1MgLZthRmqXl7CkJyNDS5fvIiePXvC3Nwctra2sLOzg62tLVq0aKH9v1SVW7duoVevXlr7Q319fdja2mLu3LkYPny4qGOSkpKCDz/8UGfbwIED8bOmcawi2dnZ2l6nhsaNG2PLli2ixLmoqAgnTpxAbm4uEv59PGhkZISlS5fiyy+/rPKxIInz589jzZo18Pf3127v378/Nm3ahCr3gyuVufsp8CRJxIuLi/nFF1/wt99+o5GREadPny7KSUetVvN2ym2uvbyWrea2osl3JsQslFss5lZj80VvscPExXTxvkgoiyv03ahenfTySmXt2ssJeLFz5x68cuVKlev7cN29vb0JgG5ubtyxY4do2z8Ny5YtE9xp7Oy4avJkZu/ZQ65ZQ06ZQg4cSLZqJfznntQ1rIySbmLCHA8PId6ECeRPP5Hbt5Nnz5IxMWQljRjat29PQLD7+/3335mXlyfJsVi8eLHW+Wfy5MkMDg6WJLF+aGgoTU1NaWBgwB49evCXX35hYmKiBDWm1jrP1taWgwcP5sGDB8vcr7KJ+xcsWKA1falZsyZHjRolidPZ1atXddysHBwc+Pvvv0tynEs7eymVSg4cOJDXr1+vfKDMTMGGcd06cvx4RjRowIQnPd8VCtLNjfy//yP/+1/y4sVyz+/AwEAdlywLCwvOmzdPtF2tWq2mq6urjtFQ3759RTtDkSVuVppSq1Yt/v3336Ljnjt3joaGhtTX16e5uTkBcMyYMaKNe1QqFevXr08A7NKlC2vVqsVGjRoxODhYdJ2/+eYbAqCnpydXrlxJFxcXzps3T3suv3RuVr/88gvd3NzYqFGjx1Y8KSmJXbt2pZ6envZkaNKkiSTWgt9++y1tbG0IaxCtQIMhBqz2Q7WKBXteNbb979t847uf2KLPZRqZVCzYQD6BAHp4HOCmTSkU07ZlZ2drj5mmtGjRggcOHBDdsH377bc6cW1sbLh+/fpHbwBSU8lLl8i//hIEduxY8r33yObNRQs4FQqyZk2ydWuyb19yzBhy/nzBy9vPj7x9m/y30VKr1WzRooVWSAcOHMgNGzZI4jv9008/EQA9PDz41VdfcdeuXZJ4e0dHR9PExITu7u6cPHkyT58+LZnFae/eveng4MCvvvqK/v7+5d64Vbax2L59Ow0NDTlw4EAeOHBAsvreu3ePzs7ObNKkCVeuXCmZYxFJjh49msbGxhw5ciRv375d8c7FxWRUFHn0KLliBTluHNmnD1mv3pOft0ol6e5ODhsmiPGZM2Ql7EmTk5PZvXt36uvrc8yYMZJ6nG/dupXdu3eni4sLDx06JFncCxcu8NChQ+zRowe/+OILyRzfcnNzuXnzZqamprJfv36S2LFq2LdvH6Ojo0kK7n1SnXM3btzghQsXtG1wYGCgzvsvnZuVhid9HlZcXIz+/ftj37592m1KpRKTJk3C7NmzK3a0qoCoqCh069YN6enpMDExgbGxMYxNjOHZzRNtB7fFhfsXcCr6FJJyksqNYWVshaYW3rDK6Iqsa90QerwZUpIrHmJ0c9MdFnd2frLJ08nJyZgwYQJsbW1Rq1Yt1K5dW/vq7Owsaohww4YNyM3NhYuLC1xcXODk5ASDquQOz8oqGQqPiUFKcDCyw8Jgl5sLk/v3oUhMrPyysYepVg10cECaoSFM6teHSb16wmSah4udnTD0XknCwsJgZ2cHOzs7cfV8iIyMDKSlpaFevXqSxgWEOru6uj52eLuyz6Cjo6NhYWEhucOSWq1GYGAgOnbsKPlcjbNnz6Jhw4YlE35Kn5PR0cLSRc18jMjI8pc1lUGBhQUMW7aEQpPLv2lTYbmHmZmoOq9duxZdunRBo0aNRMUpi7///hu9e/cWNVReHmFhYXB3d5c8LiBMujI1NX0qsZ8lz30W98qVK7F48WIkJiaiSZMm+O9//4vOnTs/9nNPWvHs7GxElpNn1sHBocoz7/gEE7lI4p/kf7TPsE9Fn8KD3Afl7m9jYoNWNl1hl+2DnBs+uH6qMSJuV/wdNWvqCran5ys836qgQLAATUgQSny8bklIABIThWfeYlEqgRo1HhVtW9uyi5XVK7+u9JWbJJafL5wvd+8KJSFBV4xjYoDU1MrHtbAoMdRp0qTk5xo15KWIMpXiuQr09u3bMWzYMKxcuRJeXl749ddfsW7dOoSFhT3WT/dlbCxIIuxBmI5gp+SllLu/g7kDOjr4wD7XB/nhPrgeUA9XrgDFxeV/h5mZMH9EI9jt2r1gy7ueNsXFwL17JYL9sIAnJQnvZ2ZK+71KJWBj86hwa0Td2loQ8YeLhcVLI+wv/DVHCisQUlKE5D0Pl8REXUGuivhqMDISDGxKZ+HTJPdxcJCFWEYSnqtAt2vXDi1btsSqVau029zc3NC3b1/Mnz+/ws++8I3FE6CmGmEPwuAX5SfMEo/2Q3p+ern717OqB+86PqhT5IPCW90Qeq4Wzp0TRuHKQ6kURtFKL++qVesp/GdeNnJySsS6vJKYKLxWdEckFoVCmDVvZVXyWlq8zc2Fu67Sr2Vt07waGT01cXiq1xwpDBfn5QmubpmZjy+pqboCnJIi3d9Ks7KgXr2SlQWan11chGWDL8mNlczLy3MT6MLCQpiammLHjh3o16+fdvu4ceMQEhKC06dPV/j5V0GgH0alVuFq0lWcjDqJk1En4R/jj5yinHL3d7V1RTcnH9RX+kAV0RXB52wQEPD4JGHOzrrD4q6ucltTLmq1sPb73r2ye2XJycCDB7q/55T/N3vq6OkJKVkNDQWxNjIq/+fSv+vrC8KuVJb7mllUBMs1a5Dx5Zeoppm7UVxcUlQq3d8ffq+gQBDgh0t+vvD6rKa1GBsLd6kPFwcHIalOvXry2nyZF4LnJtB3795F7dq1cfbsWXTs2FG7fd68edi8eTNu3ryps39BQQEKSrk5ZWZmom7duoiLi3tlBPphilRFuJJ4BadjTsM/xh/n48+jUFX+pJSm9k3R2dEbTcy6oDimA66er4agIMHJsiKsrISh8A4dhNK8uZx2WxR5eULvLiWlZLg1PV0YftWUzMySnzXvpac/3d66SDIB1AUQB+CFuuKMjITHCDY2usXaWvdne3thLoGVlTwELfNSoNG555ao5OGJVuVNvpo/fz5mz579yPa6sjWaltB//wErHrtvadLTgSNHhCIj8zheuCuuoKBk4qCMjIx4gba1tYWenh7u3buns/3+/fuwt7d/ZP9p06ZhwoQJ2t9fhx7048gqyEJQfBBOR5+Gf6w/rt67Wu6+BnoGaFu7LbydvNHBoQv0H7TCpfOGCAoS0v0+LoNn48YlPex27YRRQLkT8hKiUgnPegsKhOxVBQVCUamEIWa1utzXzOxs1H3nHcTt2YNqJiZCPH193aKnJ5SHt+nrC76txsbyiSMj84RodK6ySDZJrFWrVli5cqV2m7u7O957773XYpKY1KTmpeJ09GnhGXb0SYQ9KH9s29TAFJ0dO8PH2Qfd6vnANKMFAs/p4exZICBA8NGoCAcH3efYzZrJj+xedeRrTkbm2fJCLLNavXo1OnTogDVr1mDt2rW4ceMGnB6T+F1uLB7Pvex72hniJ6NOVuiFbWlkiS71usCnng98nH1go26CwHNKrWBfuVK+9zsgTCB+eHmXuflT+E/JPDfka05G5tnyQiQqWbRoERITE+Hh4YGlS5fC29v7sZ+TG4vKE5MeoxXrE1EncDfrbrn72pnaoZtzN7zh/Aa61+8Oe8P6OH9eEOuzZwX3u3/NXMpET+/R5V0ODpWvc3FxMfSfQtf8SRLNyOgiX3MyUvC0rumMjAxkZGTA2toaZmZmkl7ft2/fRlRUlJAx0thYmz3SxMQENWrUgKEIO91jx44hMDDwke1OTk547733UL16ddluUgxPI61ccXExwsLC0KxZM0njXr16Fenp6fD29sbt1NvaJV1+0X5Izk0u93POVs5asfZx9kF1IzuEhpYI9uHDOcjIqDhlYf36usPijRs/fnnXp59+ik6dOuGjjz6SxLFIw6+//or8/Hx88cUXMNE8T5WAa9euYc+ePRg1apSkKS6Li4sxb948DBs2DM7OzpLFBYAtW7bAxcUF7du3r7BRq+w1FxQUhPj4ePTp00fS6yMjIwMbN25Enz59JE9vuWLFCtSqVQtdunSBtbW1ZHEPHDiAy5cvo127dmjbti2qV68uSdz4+Hh88803cHNzQ7NmzdC0aVM4OzuLdiUrLi7GsGHDkJWVBRcXFzRo0AAuLi5wdXUVff75+vpi0aJFOumGa9WqhaFDh8LFxaXKcTMzM9GhQweEhYVBX18f1tbWqF69Ory9vbFgwQJRf8+kpCQ0a9YM9+/f126zsrLCggUL8Pnnn1f5eJOEv78/3nzzTeTn52u3jxw5EgsXLgTJqulc5VKCS0dlzDIKCws5dOhQ7tu3j0VFRfz7778lcSAhyfnz53PevHmMjo7mf/7zH+7evVuSuAEBAfzkk0+4b98+Ojg4cOHChZKYOKhUKvbt25fjx48nAI4YMUInSb1KreLVe1e5NHAp3932LqvNr9j4w3OVJycemchDtw9xxo8z2KFDRwJObNZsIYcMSaOHx+N9AqytyXfeIRcuJAMCyIeNxs6ePctatWoRAJs1a8bDhw+LPg6kYJbRtm1brRPSzz//LJmbla+vLwHQ1NSU48aN0ybYF8vly5dpbW1NhULBt956iwcPHpTMjUxzLBo3bsz58+czPj6+zP0qm7h/0aJF2mMxaNAg7tixQ5LjHBoaSjMzMwKgi4uLpMe5devWBECFQsEWLVrwzz//lMQla+HChTqGMoMGDSr3OFeGh529ateuzeXLl0tiTNKsWTNtXCMjI44aNYpRUVGi486YMUPnWHTp0oUBAQGi454/f55KpVIb187OjqtXrxZ9LNRqNZ2dnXXq/PHHHzMpKUl0nSdPnkwANDQ0JAA6Ozvz5MmT2vdfOjcrDU9S8YSEBHbv3p0AWKdOHb7xxhs0MTHh1q1bRX//d999RxsbG63FGwCOHTtWlJ0lSR4/flxrhagpnTt3Fm3zlpaWxmHDhtHa2lrH5m3Pnj1l7l+kKuL5+POc6z+X3TZ1o+GPhuWKtd4sPep/rk94g6gL6hvpc+rUqYyLy+b+/eS0aWTnzqSRUcWCbWREdupETp1K7t9PHj16UXviakqPHj0YEhIi6lgUFhayefPmOnFr167NLVu2iG6M58+fr41paGhIT09P7ty5U3TcW7du0cjIiAqFgq6urvzggw8kiUuS3t7eNDU1Zbdu3Th9+nQePny4TPGvbGOxdu1ampmZsU+fPly6dClDQ0MlqW9SUhJtbW3ZvXt3Ll++XBLR0DBkyBB6eHhw7ty5jIyMlCzu0aNHWa1aNX755Ze8dOmSJMeBJNPT0+nh4cGOHTty+/btLKyk7WpFzJ49mxYWFpwyZYpk1qYkee3aNVavXp1t2rTh0aNHJTsWOTk5nDBhAg0NDTl58mTJXLJI8tixY5w+fTrd3d15+vRpyeLevHmTly9f5g8//MCxY8cyOztb5/1X3s0KACIjI7F27Vr4+vpqzcfHjx+PRYsWiXoWUlRUhMWLF2P69OnabS1btsT27dtFDdWQxEcffYTffvtNu83c3BzLli0TZZSekJAALy8vxMTEAAD09PSgVCrx4YcfYsmSJRUOAeUW5eJs7Fkcv3McJ6JO4EriFRBlnwL6Kn3Y59ujuUVz/PDJD2hRpwUUCgUKCoDLl6GdeBYQ8Ph0yJaWcahbNwaNGyfD0zMbjRsboWZNe3h5eVV5yDszMxO+vr6oVasW6tatC0dHRzg6OsLS0rJK8Upz8OBBAIJJfL169SQblo+Pj0d8fDyaNm0KM5HuR6UhiWvXrsHd3f2xDmSVHeK+e/cubG1tRT2fK4vc3FwUFhbCyspK0riAcI3Url1b8rhJSUmwsLCQ/FEYSYSGhkr+KAwAgoODUa9ePcmG4zVkZ2fjxIkTePfddyWfB+Lv7486deqgfv36ksYFhMeDbm5ukp/PAJCamlpm+/vcJ4lVlcpWfNmyZZg/fz4ePHgA9b9uR127dsX27dur7GilVquxdOlSREdHIyMjA5mZmcjIyAAALFiwAO3atatS3JycHFy8eBGFhYWPlM6dO1f5GZBKpQJJKJVK0c+oUnJT4BfthxN3TuB41HFEpJa/LqumeU3t8+s3nN9AXUthXZ9aDdy8WfIcOyBAcPCriFq1dCeeycu7nh0v0rwPGZnXgddGoDWoVCqkpqYiKSkJSUlJMDIyQqdOnZ5iTV8PYtJjcCLqhLaHfT/nfrn7NrJphO7O3fFG/TfQrV43VDcpuUNPTBTEWiPYwcGPX97VoYPu8i4JO5gypZAFWkbm2fLaCbTM04ckrt+/juN3juN41HGcjj5drumHUqFEK4dW2t61l6MXjPVLEoFnZwPnz5cIdmDg45d3tWih28uuWVPq/+HriXzNycg8W2SBlnnqFKoKcSHhgrZ3HRQfhGJ12aYQxvrG6OTYSTsk3qJmC+gpS57jFhcD166VCPaZM0KvuyIaNNAVbFdXOdtkVZCvORmZZ8tLJ9ArVqzAihUroFKpcOvWLbmxeAnJKsiCf4y/dkg89H5ouftWN64OH2cf9GzQEz3q94Bzdd3n7yQQHa37HPvGjYq/38ZGEGqNYLdqJRgiyVSMLNAyMs+Wl06gNciNxavDvex7QnazfyecxWbElruvi7ULetbviR4NeqBbvW6wNH505nVqqjAUrpkpfuGC4A9RHkZGQNu2JYLdsSMg8cTVVwL5mpORebbIAi3zQkESkWmRwvPrO8dxMuok0vLLttrSU+ihXZ126Fm/J3o26Ik2tdtAX/nolG7N8i6NYJ89+/jlXR4eusPiTk7ysLh8zcnIPFtkgZZ5oVGpVbiceBnHIo/h6J2jOBd3rtzn15ZGlvBx9kGP+j3Qs0FPNLBuUOZ+ajXwzz+667Hv3Km4HrVrP7q8S8LMoy8F8jUnI/NskQVa5qUiqyALp2NO42jkURy7cwz/JP9T7r71q9fXirWPsw+sjMtPbKFZ3qUR7JCQipd3WViULO/y8no9lnfJ15yMzLNFFmiZl5q4jDgcu3MMRyOP4vid40jJSylzP6VCiba122oFu13tdjDQKz9zlmZ5l0awAwOBnLJXigEQetMtWwqC3b69Ct7eepIv78rPz4exsfHjd6wkfEJnL/mak3kd0SS2EpvcqSxiY2NhYWEBKyurMq9BWaBfU1QqlaTuUBqio6NRr149SWPGxsYiLi4OXl5eFe6nphrBicHa3nVAbACK1EVl7mthaIHGho3R0rIlJvabiIbWDSsUqeJi4OpV3V7245Z3ubgQnToptL3sxo3FPcceNmwYWrRogVGjRkkq1KtXr0ZiYiLGjRtXYbrXyl5zoaGh2LBhA8aOHSupA5dKpcKUKVMwaNAgtGnTRtJ0kWvXroWtrS369OkDIwmn9gcGBuLixYvo168f6tatK1ncrKwszJ07Fz4+PvD29pb0vFiwYAGMjIzQuXNnNG/eXDKLyL1792L37t1o3bo1WrVqBU9PT0kc5RISEjBkyBA4OTmhSZMmcHd3h7u7O+rXry+qrVOr1ejbty/Cw8Ph7OwMZ2dn1KtXD56enujdu7eo82/btm348MMPYWhoCHt7e9jb26N27dqYMmUKOnToUHWdq1TmbgmpjJtVbm4u+/Xrx+PHj0uWkF3D9OnTOW/ePKalpZEkCwoKmJWVJTruyZMnOWTIEJ49e5ZqtZqXLl2SJGl/YWEhe/TowV9++YWpqamcOXMmT506JTouSX777bccOXIkz5w5w9atW3PNmjWSHG9/f3/26NGDCxYsoEKh4KRJkyrlhpRdkM2Dtw7y60Nfs8mKJhW6c9XxrcPP9nzGP6//yZTclMfGVqvJO3fI//2P/OIL0t398e5dtrbke++RixeT586RBQVPfizOnj1LKysrAqCjoyM3btwoicsZSXp6empNX6ZNm8YHDx6UuV9lE/fPmzePAKhUKjlw4EAGBgZKUt8rV66wWrVqBMDmzZtz1apVzMzMlCR2q1atCIDVq1fniBEjGBAQILmbVZs2bejr68vc3FzRcUNDQ7VuViYmJhwwYABv374tOi5Z4uwFgLa2tly3bp0kDmoLFizQxlUoFHznnXf4zz//iI4bGhqqY67j4eHBDRs2SOKg1qRJE21cKysrzpw5k6mpqaLjTps2Tce0p1+/fgwLC9O+/0q7WcXFxbFXr14EQC8vLx47doxqtZo///yzaAuymTNn0tLSkubm5pw4cSL/+ecftmzZUrTri5+fH9u0aUMAbNmyJb/44gva2NiIdlBJSUnh8OHDaWpqSiMjIzo6OlJPT4+LFy8W3QCtWLGCTZs21TnR3n//fdEn8KVLlzho0CCam5tr47q5ufHChQtVihefEc9NwZs4aPsgms40LVeslbOVbL+uPWf5zWJgXCCT163fAAAgAElEQVSLVU8mhCkp5KRJp6int5jAGQL5FQq2sTHp7U1++y154AD5771emYSGhtLY2FjnGDdp0oR79uwR9fdTqVTs0KGDNqZSqaS7uzv379//yL6VbSx+/vlnAqCBgQE9PDw4aNAgHjlypMp11RAbG0tTU1M6ODjwnXfe4ezZsyVzGOrTpw9dXFz4n//8hxs3bmRkZKQkAr1t2zY6OTlxxIgR3L17d6Ub3PLIyMigi4sLhw4dyl27djEnJ0eSuCQ5atQodunShevWrdN2RKTg0qVLtLe357fffivapa80ubm59PLy4ptvvimpSxZJrlq1itbW1pwzZ46kLll37txh3bp16e3tXeYN7Cst0BoCAwP55ptvEgA7duzI2rVrs3///qKtITMyMujr68vatWtTX1+fAFivXj1J7gaDgoI4dOhQbVx9fX2uXbtWdNzMzEzOmTNHp6EfMGCAJA3GqFGjdOI6OjqK9nlNSUnR8aUFQD09PX7//fcsqEwX9CEuXb7E+h3rs0a/GjQfZU7F94pyBdt6oTUH7xjMjcEbmZCZUGHc/fv3c9CgQfzss884btwUfvrpBr799hm2bJnA6tXVFQq2QkE2bUqOHEn+9hsZHS301Eny1KlTnDFjBlesWMGdO3cyICCAERERokdtcnNzuX79eh4/fpwREREVHtPKNhYXL15keHi4pBaIpHBOJCRU/HeoKlJ4/JZFZmam5KN4pDByJ+Y6qAipbiIeJi0t7anVWUqL0NKEh4dLNkpTmsLCQh46dKjcc+O1sJvUcP78eYwePRqXL18GAPTo0QO7d+8Wbd+XlJSE1q1bIz4+HgBgbW2NvXv3PvaZ6eNYu3YtRowYgdKH+uuvv8bixYur/DyIJObMmYOgoCAkJydri4ODA3bu3IkmTZpUKW5ubi727t2LnJwcZGdna1/z8/MxcuRINGzYsEpx8/PzkZWVBZVKpS3FxcVQqVSoUaOGJBaRgGCnGRAbgCMRR3D0zlFcv3+93H2b2TfDmw3eRC+XXvCq6wUj/Sd7VqlZ3qV5hh0QAERFVfyZOnVKZop36gQ0bfr8lnfJ8z5kZJ4tr9UksVu3bmHIkCG4evWqdmZex44dceDAAVHessHBwTh9+jQiIiK05d69e9i8eTMGDBhQ5bgkkZmZqfUC1hQPDw9RccuisLAQOTk5knu/vqzEZ8bjSMQRHI48jON3jiM9P73M/cwMzODj7INeDXrhTZc3y117XR537z66vOvfU7NMLCyETGell3dJbDFcLrJAy8g8W14rgdaQn5+Pmzdv4vr167h+/Tr09fXx3XffSTprs6ioCHFxcahXr95TmZ4v8+woVhfjQsIFHI44jMMRh3Hp7iUQZZ/+LtYu2t51t3rdYGZYudGZrCzd5V1BQRUv79LXL1ne5eUlFHv7Sn3lEyMLtIzMs+WlE2jZLEPmeZOcm4xjkcdwOPIwjkQcQVJOUpn7GeoZorNjZ23v2qOGR6WXZGiWd5UeFr93r+LPNGyoOyzeqJE0aUplgZaReba8dAKtQW4sZF4E1FTjWtI1be/6bNzZclOR1rKope1dd6/fHdYm5a85Lg9SeG5dWrDDwyv+jK2trmC3bAkYGlb6q+VrTkbmGfPcBHrXrl349ddfcfnyZaSkpCA4OBjNmzd/4s/LjYXMi0hmQSb8ovwEwY48jOj06DL3UyqUaFe7HXo16IU+DfugVa1WUCqq9igkJQU4d65EsC9dqti9y9hYeHatEe0OHYAnmYIhX3MyMs+W5ybQW7ZsQVRUFGrVqoXPP/9cFmiZVw6SuJ16W9u7PhV9CnnFeWXua2dqh94Ne6OPSx/0bNAT1U2qPlkvP18QaY1gnzsHpJVtCAZAGP5u2lS3l+3o+Oh+8jUnI/Nsee5D3NHR0XB2dpYFWuaVJ784H2dizmh712EPwsrcT6lQomPdjujj0gd9GvZBM/tmotIJqtXCMHhpu83HLe+qW1dXsD08gJwc+ZqTkXmWyAItI/OciMuIw6GIQzgUcQjHIo8hp6js6dq1LGppxbp7/e6wMLIQ/d0JCSXLu86effzyrmrVgLZtM3H8uCX2789At27VntnyLhmZ15WXRqALCgpQUFCg/T0zMxN169aVBVrmlaCguAABsQE4ePsgDkYcLNdG00BpgM5OnbWC7WrrKolZRHq6Chcv6uks78rNfXivTACWADKgr18NrVqV9LC9vIAaNR6Nm5GRIVkymdJkZ2fD3Nxc8rhPy0SGT+gYJiNTmqoKdKVms2zduhXm5ubacubMmUpXdP78+bC0tNQWKR1hZF5v0ip6QFtJNPetWVlZuHjx4hN/zkjfCG/UfwM/9foJ4aPDETk2Er/0/gV9GvaBsX6JQ1GRuggno05i0rFJcF/pjvrL62P0gdE4cOsAcoseUdQnrvOyZXOQkLAJs2YRJ04A6enAxYvA0qXAgAGPrq0uLhbWay9ZAvTvL7zfuDHw6afAhg3ArVuAWk0MGTIES5YsQWFFs9aqwJdffonvv/8e6ellJ5CpKuvWrcPYsWMRGxsradx//vkHH330kTaLoVSoVCqMGDECe/fuRXFx2asHqsovv/yClStX4sGDB5LGDQwMxJQpU3Du3DmoKjJdryQ5OTn49NNPsWbNGkQ97hlOJfn+++/x1Vdf4Y8//pD03Ni3bx+8vb0xbtw4bNy4ESEhIdJcK5XJC5qZmcnbt29rS2kXl6ioKAJgcHBwhTHy8/OZkZGhLXFxcY/NUZqens4ePXrQ39+/MtV9IsaMGcN58+ZJ4khTmoMHD7Jv374MDQ2VNG5OTg47duzIdevW6eTBlcIRady4cRw5ciRv3bpFUjApKc8RqTIcO3aMnTp14u+//878/Hxu2rSJV69eFR23sLCQLVq04OTJk3njxg327duXO3fuFB2XJL/++mu+88473Lx5M42NjTl37lzRxzi3MJcLdy5k9f+rTrNvzcrNGW70oxHf/O1NLg9azoiUiCeKrVar6erqShcXFwJg586def369TL2I4ODhbzAH32UQTe3x7t3mZhkUqn8m8AE1qkzgH/++bck+ajPnTtHIyMjrevUvHnzmJ2dLTouSbq6umpz33/yyScMDw+XJO6sWbO0ueQ7duzI7du3S5KjPDg4mCYmJgTAmjVrcurUqdrrUCwtWrTQ5r7v1asX//zzT0n+fqXdrGrUqMHvvvtOEpOPsLAw7XkBgF27di3zXK4KLVu21Ma1s7PjkiVLJPn7aRzfANDY2JiffPKJjhY+d7OMJxXoh3mSisfHx2tNMoYOHcq7d++KrS5JoVGbM2cOzczM6OjoyN9++01rwybWJev06dP09PSkQqHg//3f/zEiQmhoz5w5IypucnIyP//8cxoYGNDR0ZErVqxgXl4eBw8eLPriWLNmDRs0aECFQsH33nuPy5Yto4uLi+iGIjg4mAMGDKCenh7t7OzYpk0bmpqacseOHaLiZmVlccaMGXRyctK6LQHg+PHjRSfx37VrF99++21tTI3oRUdHi4p78+ZNTpgwgXY17AgbEO1Bw88MqT9bv1zBbvRzI044PIF+UX4sLC67MSkoKODy5cu1loUacZo8efIjovfwNffgAblnD/nNN2SHDqSBweNEO4dWVlf42WeJPHSIrKopUGRkJM3MzHQMVBo0aMBDhw5VLWAp3njjDQKgoaEhXV1d+e6774q+9khy/fr1VCgUbNiwIQcMGMBZs2bx/PnzouMmJSXR3t6eHTt25Pjx4/nHH3+IPtc0DBs2jF27duXs2bPp7+8v2lxIw4EDB9iuXTv+8MMPvHz5siQWlqTQidMch8DAQMnikuSMGTPYr18/7tmzR1Lzl4iICLq4uHDRokVMTk5+5P3nJtApKSkMDg7mgQMHCIB//PEHg4ODn9iu8Ukrrlar+ffff7NevXq0sLDgTz/9xMLCQkZFRZV5QCrD3bt3+dlnn1GpVLJNmzb09/fn0qVLRVvfqVQqbt++nY0aNaK+vj6/+OILtm7dmjNmzBB9BxsbG8uvvvqKxsbGrFmzJvX09NipUyfRdnLFxcXctWsXvby8tI2mtbW1JI1bfHw8v/32W50G+bvvvhN9AapUKk6ePFknbocOHRgbGysqbk5ODrt27aoT19LSkr///ruouKGhoXR2dmaNGjVoZ2dHOzs72tSy4TuT3uHwXcNZZ0mdcsXaaoEVh/w1hFuvbX3E7/rgwYN89913OWjQIH788cccMWIEv/76a65atUqn9/+4ay43l/T3J+fNI996izQzK3ise5enJzl6NPn77+STHvaQkBBu3ryZx48fZ3h4uGSuS4WFhTxx4gSjo6Ml89rWEBMTI6kVpIbc3FzJ3cI0PC3HKamPrQaVSiWpKJfmaR2L7OzsCo/Hc3Oz2rRpE4YPH/7I9pkzZ2LWrFmP/XxlH57n5eVhwYIFWLhwIerXr4933nkH/v7+OH78uGg3q2vXrmHSpEk4duwY7OzskJeXh2PHjqF9+/ai4hYXF2PLli2YNWuW9rnH1KlTMW/ePNETTu7evQtvb29ERkYCAJo1a4bDhw/DwcFBVNxjx46hX79+yPk3gbShoSE2bdqEDz74oMoxSWLWrFn4/fffcffuXeT+O3vp3XffxZYtW6o8SbCgoAC//vor7t+/j7S0NG3R09PD4sWL4ebmVqW42dnZiI2NRV5eHvLy8pCfn6/9uUuXLrB/SsmySeL6/es4ePsgDtw+gLNxZ6Hmo1Oz9RR68HL0wtsN38Y7jd9BY5vGT3Q+VfaaU6uBsDDd5V3R0RV/xtFRd3lXkybPz71LRuZ589xncVeVqlb8zp07+Prrr7Fv3z4AQK9evbB3714YViX3YSlI4uuvv8by5csBAJaWljhx4gRatWolKu6dO3fQu3dv3Lp1S7ttwoQJ8PX1FSXSgYGBWL16NcLDwxEeHo7s7GzUr18fR48eRYMGlXNkKs29e/cQGRmJqKgo3LlzB1FRUYiKisJnn32GoUOHVjmuBpLIyspCYmIi7t69C0tLS7Rs2VJ03FeR1LxUHI44jH239uHQ7UPIKMgocz8XaxetWHd27AwDPYMy95NiaWN8vO7yrqtXK17eZWkpuHdpBLttW8DEpEpfLSPz0vHSCbRYs4yCggIMHz4c27Zt02774IMP8Ntvv4lynUpNTcXy5csRGBiIoKAgZGZmwtraGn5+fmjWrFmV4wLCUpWQkBAEBwfjypUrCA4ORo8ePfDTTz9JsnSDJOLj4xEeHo60tDQMHDhQduB6xShSFeFs3Fnsu7kP+27tw+3U22XuV82oGt50eRNvN3wbfRr2gY2pjfa9p5F7IDNTWNKlEeyyl3eVYGCAR5Z32dlJUhUZmReOl06gNYhpLAoLC3Hp0iWcOnUKfn5+OHv2LD777DMsW7ZMEsFTq9UIDw9HYGAg7ty5g6lTp0q+VjsvLw96enqie/4yrye3Um5h38192H97P87EnIGKjy530WQ00/SuaxvWhpWV1VPNPVBUJCRN0Qh2QACQVLZZmJbGjUsEu1MnwMVFGvcuGZnnzWsp0A9TWFiIixcvwsXF5ak9H5SReVFJy0vDkcgj2qHwtPyy14U7GTshZmrM/7N3nWFRXH/3t4WlN5UmoqBYQEVRYtdgV+wlit1giRpbjGLvxij22P6WWCLEgth7L6iARmNDEDuiokiHhS1z3g/77oQNiMBcNOie59kvMhyuszP33PY7hw78fYDa12hPMknxDw4BosePdfexo/L2cOFha6u7j+3pqZl566FHSYNeoPXQQw8eKk5FV2Ov8rNrHUezLCJaRERTiMwtzKmta1vqWrUr+VT2ERTuUVi8e6cJANHOsG/c0My8PwRjY6IGDf4R7IYNNdaleujxX4deoPXQQ48P4lHiI16sL0ZfJPVCNdEUIvrH3IykYik1q9CMulbtSl2qdaHylnlEYRUj5HKN65l2hn3lClFK3ufhiIhILCby8NBdFi9X7tO1Vw89Cgq9QOuhhx4Fwou3L6iCXQXqFdiLzsSdoUR5Yp7X1bavzYt1Lbtan9yDmuOI7t/X3cd+/jz/36lQQVewq1fXCLkeenxO6AVaDz30KBByvnMmZiZ05cUVOhh9kA5EHaCnyXl7H1ewrEBdqnahLtW65FvCVdyIjf1ndh0aqinvyq8Hs7LSLe/65ht9eZcenx4lTqCFllnpoYceRcOHOgutQYpWrP96nXcghLWRNXWo0oG6Vu1KbV3bkplMWBoVBCREpaRoSrq0gh0Wplkq/xAMDIi8vHTLu8qUKfjfy87OpoSEBHJ0dCxSe/NDYmIilSpVijlvdnY2GRoaMucV8r19bShxAq1FQRteXA9DcfISUYlrc0m7FxzHFUutd3HyEhHPrVAomJXYqVQqkkqlBIAiIyOpevXqeV5X0HfuZepLOhR9iPY/2E8Xnl8gFZc7ZclQoknv6lq1K3Wq2onszewL3F6O44jjONqwYQNZWVlR3759BT8jSiXRrVtEFy6oaPXqvyg5uQalp+fvMFitmu6yeKVKHy7vksvl5OHhQb6+vuTv70/m5sIzvYk092LAgAFkZWVFU6dOpXIMN9M3btxIFy9epEmTJuUbBVxYxMTE0E8//USjRo2idu3aMXtfOI6jgQMHUrNmzah3795MY05XrFhB79+/p++++448PDyY9UkRERG0atUq6tixI7Vt2zbXQKvIK8WFMgYtBhTEo/TVq1eoX78+rl69yvzv9+3bF7/88gtzH9w9e/agTZs2fEgGKyQmJsLDwwM7duxgkkiTEwMHDsSIESMK7KNeUBw6dAh169bF0aNHmbY5PT0dlStXxsyZM/nUrfT0dCZeyUOHDkXHjh1x+vRpcByHCxcu4Pnz54J5T506BRcXFyxcuBCvX7/GmDFjBHu+Axr/6QoVKsDX1xdHjhyBs7MzNm7cmOf9Lqwv8MiRI1HTqybaTGgD6kmQzZbl6RMumiNCg80NsDh0MWLex3yU99KlS7CysoKHhweICD4+PkzuMcdxcHJygpmZGYgIlSv7YPLkBxgyBKha9ePpXXZ2QPfuwPLlQEQEkLNr+Omnn3TSkNauXcuk7wgPD+d5ZTIZxowZg7i4OMG8AFCxYkWeu02bNjhz5gyT93DGjBk8r4uLyweDIgqLO3fuQCwW88lQffr0wZUrVwTzAuCfNSJClSpVEBQUxORe5EyzMjAwgL+/P9LS0viff/Y0q6KiIA1/8+YN2rdvD7FYjBkzZjATU47jsHTpUhgZGaFOnTr4+++/mfACQFhYGGrWrAkjIyMsWLCAmUl7YmIifvjhB4hEIjRs2BDXr19nwgsA27dvR7ly5WBqaoo5c+bwD5hQwb537x46d+4MIkKDBg1w6tQpcByH5cuXCzLFT0tLw/z581GmTBmYmJhg3LhxCA0NRaNGjfD+/fuPE+SDw4cP80EZ1atXR69evWBnZ4ewsDBBvE+ePMH48eNhbW0NqVSKMmXKQCqVYtWqVYI6iqysLGzcuBFNmzbVCffw9fXN9W4VtrO4cuUKRo0ahdKlS2t4JQQnbyf03NoTjsscPxjs4bHeA3POz8Hd+Lt5/t9evXqFFStWwMLCgm+vmZkZ1qxZI+i5UKvVfOpUznvRp08fxMXF4e1bYP9+YOJEoEGDj6d3mZgAzZsDM2cCP/10HETmOrxVqlTByZMni9xeQBMko70PEokE5cuXR+vWrQU/bwDQqVMnyGQyVK9eHd26dcOUKVMKnTqYF3bu3Al7e3u0b98e06ZNw549e5gkcCUmJqJOnTro06cP1qxZg5s3bwpOF9RiypQp6N+/P7Zt24bY2FgmnIBmgNWpUyds3rw5z/7yixZoQCOm69evh4mJCerUqYPIyEhmbYiOjkaTJk0glUoxa9YsZmKqUCgQEBAAExMTuLm54cKFCwA0wiL0gbt58yaaNGkCkUiEIUOGID4+HkePHhU8A8nMzMSiRYtgYWEBOzs7/O9//0Pfvn2xd+9eQbwAcP36dbRv356PbrSyssKQIUMEp+Kkp6dj1apVcHJy4jtlNzc3wWlWgCZx6fvvv+d5jYyMsHv3bsG8crkcU6dO1enoBwwYIDiXXKVSoVu3brkiHP/66y/+mqJ0FlFRUbCzs9PhlUqlmDd/Hq4+v4rpZ6ejxroaHxTryr9VxuTTkxH+MlxHrE+dOgVvb2+0bNkSbdq0Qbt27dChQwcsXrxY0Duye/duTJ48GfPmzcOyZcuwYcMGBAYG4uzZs7kGCxkZwIULwC+/AO3bA5aW+Qu2SKRGpUop6NUrHmvWvENMjPAs+adPn+LKlSuIjY1lmhKlVqvx+PHjYkmeKo5ULwDFlmQFgPmqY0HxxQu0FtHR0ahXrx6MjIywatUq/ssU+gCq1WqsXr0apqamqFGjBq5fvw61Wo1Tp04J4gU0L1+HDh1ARBg8eDAOHjyIH374QfDDwnEcdu7cCUdHR1haWqJx48aoUqUK4uPjBbf53bt3GD9+PJ+HLJVKsW/fPsG8AHD16lVUq1ZNZ2bDYlUkOjoaVlZWPK+jo6PgoHeO4zBv3jwdYSIizJ8/X9D3p1AoMGvWLPTu3Rve3t5wd3dH6dKlUbduXTx9+rTIvMnJyThz5gxCQkKwdetWrFy5EvPmzcO0adP4JdOidhaA5j3LzMxESkoK3r17h7i4OJ1BRcz7GCwOXYz6m+p/UKzLLS+HscfG4sLTC1CpiyeyUAhUKuD2bWDdOqBvX6B8+Y8vizs7A/36AevXA3fvAsWoMXqUQHw1Ag0ASqUS8+bNg0QiQatWrRAbG4vhw4czWQZ58uQJWrRoAbFYjB9++AEWFha4f/++YF6O4xASEgJHR0dIJBIQEX755RfBvIBmBjls2DBePGrXri04FxrQLDW1adNGZ8Z08OBBwbzh4eGoUaMGfx+ICF26dBEcJH/9+nWsWbMGY8eORdu2beHs7IzSpUszybKWy+WIiYnBmTNn8Pvvv2PWrFk4ffq0YN5/Q6FQMMtF/hCECHRhEJsSi9/CfoP3Nm+I54rzFGubABsMOzQMx2OOI1tVPFm9LPD8uSbr+scfNdnXIlH+gm1lBfj4aDK1L10C5PLP/T/Q43Pis+VBFxUsyqxu3LhB/fv3p/j4eEpNTaWffvqJli5dKrhtAGjjxo00atQo4jiOXFxcKDw8nGwExu2o1WoKCAigadOm8f+2fft2GjhwoCDe5ORk8vPzo+PHj1NWVhYRETVp0oROnjxJJiYmReZNSUmhsLAwioiIoIiICAoPD6fk5GTav38/dejQQVCbiYiysrLo/v37dOfOHbp9+zY5ODjQpEmTmJ6elsvlFBcXR66ursw4Szo+h/fAu4x3dCj6EIU8CKEzT86Qksvt6WlpaEmdqnai7tW6U1vXtmRiUPRnt7iRkkJ07do/5V3h4fmXd8lkmvQu7UnxRo0KV96lR8nGF19m9SGEhYVRy5YtKfP/s+127txJvr6+gtrEcRz5+/vTypUrSa3WpAM1adKEzpw5I6ieUKlUUlhYGJ0+fZpOnz5NERERJBaL6dixY9S6dWtBbSbS1Dv+9ddfdOnSJbp06RJZWlrS9u3bmZXxAKDnz5/T7du3qV27dsVSW6lH8eNzmwOlZKXQ0ZijFPIghI7HHCe5KreymRiYUHvX9tTdrTt1rNKRLAz/2x4JCsU/6V3az7t3+f+Om5tueVfFivr0ri8VX6VAA6ATJ07Qnj176ODBg5SUlETGxsZ07do1qlWrluC2JSYm0okTJ+jIkSN0/Phx6tq1K23ZsoVZ7VxSUhKdP3+ewsPDaeLEiYJn6P+GWq0mpVJJRkZGH79Yj68Gn1ugcyJTmUknH52kkAchdPjhYUrNTs11jaHEkNq5tqNe1XtRpyqdyNyQTe1xcQIgion5Z4YdGkr08GH+v2NvryvYtWsTSaWfpr16FC++SoHOCaVSSefPn6eQkBC6c+cOHT16lKkrj0qloitXrlClSpWYmgjoocenxn9JoHNCoVbQuafnKCQyhA5EH6CEzIRc1xhKDKl95fbUy70XdazSsUSItRZv32rSu7SC/ddfRKrc3i88TE2J6tf/R7AbNCBi5IuixyfGVy/QOaFSqSg1NbVYbPP00KOk478q0Dmh4lQU+iKU9kbupZAHIfQm/U2ua4ykRtTetT195/5diRNrIqLMzH/Su0JDNeKdmnsBgYdYTFSr1j+C3bgxUTE4jupRDNALtB566FEglLR3Ts2pKfRFKAVHBtPeyL0UnxGf6xojqRH5VPbhxVqoP/jngFpNdO+e7rJ4bGz+v+Piorss7uamT+/6L6LECbQ+LEMPPT4PSppA54SaU9PlF5cp+H4w7X2wl95mvM11jVase7n3og5VOpRIsdbixQtdwb57l/JN77K21pwQ1wq2lxeR/gjK50eJE2gtSnJnoYceJRFfyjunFes99/dQyIOQPMXaWGqsEevqvahD5Q5kKss/OONzQy6Xk3E+eZjJyZrELq1gh4cT/X9lZZ6QyYi8vEA1a6ZShw6W1KgRUenS7Nr66tUrqlSpEhvCHHj9+jU5ODgw501PTyczM/YDNqVSSQYGH45g/eIFuqSlFgEgjuNIIpEw59amFpUUXgCkUqnyfYCLCpZpUDlRnBF9CoWiWLg/1rlrUdjOIjMzk4yNjfnqBTBKPeM4juRyOZmaakTzzZs3ZG9f8DSsnFBzarr0/BIv1u8yc9c4GUuNqXPVztSnRh9q59qODKWF/w5SU1PJ1NSU9u/fTyKRiHr06FGk9v4bKpWK0tLSaObMmVS1alUaNWpUgfoOhUKT3pWzvCsh99k6Hbi5/TPDbtJEs0xelK8zKSmJatWqRZ06daKZM2cW+bv7N1QqFfn6+pKBgQFNnz6datSowYSXiGjdunV06NAhmjBhArVu3ZpZRU5MTAwNHDiQhg0bRr179+afaS0+S5qVQqGAv78/atSoARMTEzg4OGDAgAGFSmEpiMMCJMgAACAASURBVMNKdHQ03N3dce3aNSHNzQW1Wo22bdti3rx5zP1fN23ahGbNmjHxg86J2NhYVKpUiYkfdE5wHIdOnTph+PDhTFzIciIoKAg1atRg4uiVEwkJCXBycsKCBQsEe1j/G7169UL79u2ZBqgAwP79+1GuXDmsXbuWd05Tq9VM/Mjt7e0xaNAg3L17FwDw8OFDJCYm5rq2sK5GgwcPhoeHBzZu3IiMjAysXLmS/xtCcPLkSVhYWOCHH35AREQEmjVrxsROVp4th5WnFez87GA6xzRPBzOrRVYYcnAIzjw+Uyi70VGjRsHGxgbNmjUDEaFv376Cg1kAIDQ0FGKxGKVKlQIRoV69ekV69jgOiI4Gfv8d+P57oHJl7qM2pQ4OQM+ewMqVwI0bQEENGSdNmsQ7AZqYmGDGjBlITk4udJv/jZs3b+rY6vbo0YNJuAcAVKlSheetUaMGtmzZItjBEADmzp3L81pYWODHH39EVFQU//PPYvWZnJyMVq1aYffu3YiKisK1a9dQv3591K1bt8AcBWl4YmIifHx8IJPJsGHDBiFN1gHHcVi7di1kMhnatGmDt2/fMuP++++/4e7uDisrKwQHBzPjTUtLw8iRI0FE6N27N5N4N0BzL3bv3g1bW1s4ODhg//79THgB4NGjR2jXrh3vRc7CKxzQ2G8uXLgQZmZmKF++PHbt2sX7Ywu1fT1z5gy8vLwgEonQr18/PH78GAAER0O+fPkSY8aMgaGhIRwdHbF69WokJiaid+/egkJaFAoFtm3bBnd3dxBpohtnzZoFNze3XAlDhe0sbty4gUGDBsHQ0BDW1tZwc3ODmZkZDh8+XOT2ApoB1vLly1G9enUQER9I4u/vL+j7U6lUOH78OAYMGABTc1OQC4E6EqTTpHmKtf1Se4w7Pg5hsWEf9Vd/+PAhFi1a9E+yFxEcHBxw5MiRIrcX0Hwn27Zt07G/lUgk8Pf3FxRKwXEcfv11C4i6gmgpiMJApMhXsE1NgZYtgdmzgdOngRypiTrYsWOHjpBaWlqiUaNGCA8PL3J7ASA+Ph6lSpWCsbEx3N3d4ePjg9GjRzOxXPb19UXVqlXRrVs3TJ8+HUFBQUwSuI4ePYoGDRpg9OjR2LZtG+7evavzDP9nvLgjIiJARAVOVSpow9VqNWbOnAkiwtChQ5mMerS4ceMGXFxcULZsWVy6dIkZb0ZGBi+mQ4YMQXp6OjPukydPwtHREfb29oI7h5xISEjAoEGDQETo2bMnH53GItgjJCQE5cqVg5WVFdavXw+VSoUHDx4ITsV59eoV/Pz8IBKJ0LhxY1y/fh1z5szB7du3Bbc5ODgYVapUgYGBAUaPHo3KlStj9erVgngBIC4uDmPHjoWhoSHs7e15URV6L9RqNY4cOcLP8IgI9vb2uHnzJn9NUTuLt2/fYuLEiTyvSCRCQEAAk2fj+++/1+nsmzdvjjdv3gjijY2N1ZkxkZhg5mmGb1d9C7OFZnmKdcVVFTHtzDTci/9wyMrFixdRq1YtVK9eHdWqVUPlypVRsWJFzJ07V1Doy+7du/Hjjz9i/Pjx8Pf3x4wZMzB37lydgWdRsGfPHmzduhUhISE4c+YMLl26ge3bn2Py5DS0bQtYWOQ/w5ZIgDp1gLFjgT17AO0CaWhoKMLCwvDs2TPIGZqNJyQk4M2bN8yTpziOY6ob/+bOD/8ZgT59+jREItEHG5KVlYWUlBT+ExsbW6iGHzhwAObm5qhXrx7TPM+kpCR07doVEokEixYtYrrkfeDAAZQqVQpVqlTRif0TiqSkJAwYMIAfAGjvodD8ZkAzAHB2doa1tTW2bt2KyMhIbNu2TTBvWloaJk2aBKlUim+++QY//vgjOnfuzCTo5MaNG3wecunSpWFra6uzzFRUKBQKbNiwAQ4ODnxn/9tvvwnmBTThLDY2Njxvs2bNmIRYbN68GVKplOc1MzPjM4uL2lmoVCqMHz8eHh4e/FIsEWHQoEGCOr6UlBRs2bIFAQEB8Pf3h5+fHzp37oxevXoJ2iLKzs7Gu3fv8PTpU9y9exfXrl3DmTNncODAAbx69wq77+1G111dIZsvy1Osa66riYWXFuJJ4pMit6EkQKUC/v4bWLMG8PUFypX7eHqXiwswYACwYQNw/74+vetj+E8ItFwuR926ddGvX78PXjN79mydkbL2U9hsWjc3N9ja2vIZyyzAcRxWrFgBqVQKHx8ffvmYhXi8fPkSLVq0gIGBAZYsWQK1Wo0DBw4I5gWAffv2wcbGBhUqVMDRo0dRq1YtJrP1tLQ0jB8/HiKRiJ9Fnj9/XniDAdy7d09nljd06FAmI2aO49CjRw+et1y5coLiG7W4efMmP9PVflauXCmY99SpU/Dz80O9evVgamoKIkLdunXx7t07QbyJiYm4fv06du7cifnz52PQoEHw9vbGsWPHmKVZZWRk4OHDhzh37hyT5cfPhSR5En6/+Tta/dHqg6lbDTY3wG9hv+FNmrBZfUnB8+dAUBAwciRQs+bH07tKlQI6dgQWLQJCQ4FimqiWWHwSgQ4MDISpqSn/ybkcrFAo0KVLF3h6eubbCKEzaC1SU1PRvXt3SCQSrFy5EhzHMTuQde3aNTg5OcHJyQlXr17FuHHjkJqaKphXrVYjICAAUqkUrVu3hoWFBY4dO8agxZp9m27duvHi8d133zFbItqyZQvPa21tjejoaMGcSUlJaNmypY7gzZo1SzDvixcvMH36dHh7e8PY2BhEhEqVKuHVq1eCuZOTk3Hu3DkEBASgV69eqFSpEhOR1kKtVuPJkyc4dOgQDhw4UGzh8p8qbrIk4nXaa/wW9hsabm6Yp1CL54rR6o9W2HJzC1Kyvp77l5QEHDsGTJsGNGsGGBnlL9iGhkDjxsDkycDhwwCDc3QlGp9EoFNTUxETE8N/tCdnFQoFunbtCg8Pj0IfWhLSWWgOQPzKH+Tp3Lkzzp07V2ievJCQkIAOHTpAKpXC2NgYAwYMYMILAFevXuXFo1SpUkwOKahUKsyePRtisZgXPBZ501lZWZgzZw7q1KnD87q6ujI5nJaZmYkzZ85g6tSpqFevHsRiMdavXy+YVwuFQoHw8HAsX74cs2bNEnQI60NITExkXgFQ3NALdMHwJPEJFl5aiJrrauYp1sYLjOG71xdHHx6FUi18la0kITsbuHYNWLIE6NIFKF3648vi7u7A8OHAH38AT55oTpx/LfhsedBKpZJ69epFMTExdP78+UInMrEwTTh16hT5+vpSUlISOTk50Z07d8jKyqpIXDlx6dIl6tatGyUmJhIRm+xmABQQEECLFy+mpKQkIiLy8vKi0NBQwbWxSUlJdOTIEdq/fz+dOHGCsrKy6NChQ9SxY0dBvFq8fv2aTpw4QceOHaPs7GwKDg5mWs+bkpJCoaGh9O233xaLmYAeGnwpRiWfEvfe3qOdd3fSzns76Wny01w/tzW1pT41+tAAjwFUx6EOs/rakgJAk9aVsx770aP8f8fBQbce28Pjy03v+ixGJSqVinr06EE3b96kI0eOkJ2dHf+zUqVKFchAgkVnsX37dhoxYgRl/b+lTr9+/SgwMLBIXDlx+/Zt2r59OwUFBdHbt2/J1NSUbt68SVWqVBHMrVAo6PTp07Rr1y46cOAADRgwgNatWyeYV4vMzEw6efIknTt3jqZPn87MREALpVJJCoUiV0G+Hv996AW66ABA4XHhtOP2Dtp1fxclyhNzXeNWxo0GeAygfh79qLxl+c/Qyv8G4uP/sSm9coXo5s3807vMzDSJXVrBrl9f829fAj6LQD979oxcXFzy/Nn58+fJ29v7oxysOovbt2/Tpk2baMeOHZSamkq7du2i3r17F5kvJ5RKJZ08eZK2b99OsbGxdPHiRaYzR7lcTseOHaN69eqRk5MTM1499MgLeoFmA4VaQcdjjtOOOzvo8MPDpFArdH4uIhF5O3vTAI8B1MO9B1kYft33OiODKCLinxn2tWtEaWkfvl4i0WRi50zvKgb3z0+CL97qs6DIyMig4OBg2rt3L23YsIEcGeexJSYmUlZWFpUtW5Yprx56fCroBZo9kuRJFBwZTDvu7KDQF6G5fm4kNaKu1brSAI8B1KZSG5KKv9C13EJArdaEf+RcFo+Ly/93KlbUXRavWrVkpHeVOIH+FGlWxeWnrIceJRl6gS5ePEl6QkF3guiPO3/Qo8TcG7G2prbUt0ZfGlx7MNWyr/UZWvjfBKBJ78op2PfvU77pXaVK6cZt1q1L9F/s8kucQGuh7yz00OPTQv/OfRoUZL/a096Tvq/9PfWt2ZdKmzCKmfrE+FiSU1ERFxdHJiaOdO3aP4IdEUGUnf3h3zE0JPrmm38Eu1EjTQSnFklJSfTmzRtyc3Nj2tasrCyKjo6mWrXyHnAV9Z0rAYsDGigUio9fVARk5/dtCwCAYuPOyi9fTgDkcnmx8AIoNu709PRi4y2OsSvHcZSW38abACQnJxcbL8dxzHk5juMrJFjj7dvc0ZMskJCQoNMX5fdci0QialCuAa3tsJZe//yaDvQ+QD3cepBM8s/h2VtvbtHYE2Op7PKy1OmPTnQ85jhlyjPp1q1bzNr8/Plz4jiOQkND6dixY8x44+PjKSUlhX755RfatGkTs/dFpVJRVFQUDRw4kFavnkctWmTRwoVEly4RpaQQXb1KFBBA1Llz7ujM7GyNkC9aRNSxo2aGXaMG0YgRRIGBRBERb6levfo0evRoSvhY7FchkJycTD4+PuTr60vR0dHMeJlbfRYWBakPu3nzJipUqCDYhP3fUCqVqF+/PmbNmsXcFGLJkiWoX79+oZK9CoKoqCjY29sjJCSEKS/HcWjWrBn8/PyYeoYDwPr161G1alXcuHGDKe+LFy9QpkwZLFq0iInbW060a9cObdq04UMyWGH79u2wt7fHjh07mD5zCQkJsLa2xtChQz9q9VrYmsyePXvCw8MDBw8eZNrmffv2wczMDP7+/rzvdmJiomC/5IyMDFhbW8Pb2xuHDx/m/clfvnwpuM3ff/89bG1tMW3aNDx79gwDBgxAaGhooTgSMxOxNmItvDZ65Vlfbb3AGoY+hpi3dp7g+61SqWBrawsnJyfeYW/06NFM0t/GjBkDAwMDODo6gojQqlUrJq59V69e5b3eiQiVK1fGqVOn8ryW44AHD4BNm4BBgwBX14/XYxO9BNEuGBlNwk8//YGMDOH+CNOmTeN9IsRiMb7//nsdf4v/hNVnUVCQhqenp8PHxwcmJiZMgyEATSykVCpF3759mRq+R0dHo2rVqihbtiwiIiKY8WZlZWHUqFEgEp76828cOnQI1tbWcHd3x717Hw4LKCxiY2PRsmVLSKVSLFy4UHC0ohZKpRKLFi2CTCZD/fr18eDBAya8AHDlyhVUr14dxsbGCAgIYHafExISMGLECIhEIjRp0oRZnKVarUZgYCCcnJxgamqKefPm8cEb/3ZRK2xnERkZiZ49e4KIUL9+fZw9exYAsHjxYkECkpaWhqVLl8LOzg5GRkYYO3YsDhw4gJYtWwpy7uM4DmfPnoWPjw+ICFWrVkXbtm3h6Ogo+H7HxsZi1qxZcHBwgFgshpmZGQwMDLBx48Yi8d2Nv4sJJybAJsAmT7G2mWyDNVfXIDWraPeD4zjcuXMHM2bMQJkyZXgRcXd3F3wvEhMTsXXrVshkMh3P93Xr1gky71Eqldi0aVMuO+jevXsXaMLz+jWwdy8wfjzwzTeasI/8BFssTkf9+smYOxc4exYoyvxkz549ICIYGRmhUqVKaNq0KQYOHMhnAXzRAg1ovrQhQ4ZAIpFg8+bNTNtw+vRpWFpaonHjxkwjJ5OTk+Hj4wNDQ0Ps2LGDGS+gmYkZGRkxSf3JiefPn6NRo0YwNjbG77//zmzGpFarsWzZMshkMjRr1oyJe5oW9+7dg5eXFwwNDbFkyRJmA4Ds7GwsWLAAhoaGqF27Nq5fvw5A88wKvS9//fUXGjRoALFYjNGjRyMpKQnBwcGCHdoyMzOxcOFCmJubw9HREdu2bUOHDh10PNSL2ln89ddfaN++PYgILVq0gFQqhb+/v+B7kZmZidWrV6NcuXJ8Z+zl5cXkXbx//z78/Px0BOT48eOCeRUKBT9Q1n5GjRpV5DQrhUqBAw8OwOcPH9CsPFzL5htj4P6BOP/0PNRc4cUvLCwM5cuXh6WlJS+oMpkMy5cvFySmwcHB6NevH/r164e+ffvyn02bNgl6Lnbt2oW1a9fi999/x59//ol9+/bh+PHjRQobSk/XCO+cOWrUrfsOJiaqfAVbIgG8vDQCv3evRvA/hmfPniExMfGD/+cSJ9Br1qyBm5sbHwdXkIZzHMeHbcydO5fpcltkZCRcXFxQsWJFpjMxlUqFyZMng4gwceJEZuIBALdu3ULFihXh6OiIq1evMuNVKBSYOnUqiAj9+vVj4kOuxd9//43q1avD0tISQUFB/L8LtctUKpVYuHAhDAwM0LBhQ0RFReH9+/c6MYtFRXR0NLy9vSEWizF+/Hhs3bqViY2qWq3G1q1bYWNjAxsbG3h5eaFBgwZMthjevHmDESNG8Navpqam/FKsUKvPy5cv88uaRIRx48YxeRdDQ0NhaGjI81atWrXAsbUfglqtxpgxY3SSvSQSieBc+fT0dMydOxdDhgxB+/btUbt2bdja2sLb21tQ3nlSUhJOXT2FH7b9AKdfnfKcVbusdMHcC3PxIrno2QMqlQoZGRlISEgQFJFZEqFUAjdvAr/9BvTuDZQt+/Fl8UqVNEvomzYBkZGFtyktcQKtRVEavnHjRojFYgwbNozpEm98fDwaNmwIKysrZp7eWgQGBsLIyAjt2rVDUlISM97ExER06NABBgYGWLNmDdNBy4kTJ2BjY4MqVarg1q1bAMBkH08ul2PcuHEgIvTp0weJiYkYM2aMYF4AuHv3LurWrQsjIyMMGzYMTk5OTFYYOI7Dli1bYG1tDYlEAiLSGWAIQVJSkk7QSdu2bZn4hj9//hx169blec3NzREeHi5YoI8fPw53d3cd3/eRI0cKHmSFh4djw4YNGD9+PNq2bcsH1kRGRgriBTQDuGfPnuHcuXPYvHkzpk+fzq+IsIRCoWB2hoPjOES8jMDIIyNhtcgqz+COjn92xMGog1+dFzhLcBzw9CmwYwfwww9AjRofF+zSpYHOnYGAAODq1Y+nd31VAg0Ahw8fhrGxMTp27Mj0UFNmZiZ69+4NqVSKLVu2MOMFgOvXr8PR0RFVqlTh9yZYzKjVajXmz58PkUiE/v37IyMjA4cOHRLMCwBxcXHw9vaGoaEh1q1bB09PT2YH306cOAF7e3vY2dmBiIq8j/dvKBQKnVjTRo0aMQlql8vlGD16NM8rk8lw8eJFwbw59+i13H369BEseImJiTh27BhmzpyJVq1awdzcHFZWVrh8+bIggdYiIyMDYWFhWL9+PYYPH46NGzcyP2yZmpqKR48eMeUsiZAr5dh5dyfa7GgD0RxRLrEuu6wsZpydgadJTz93U78IvH8PHDkCTJkCNG2qSefKT7ANDTXXfSi166sTaECzr1K6dGnUr1+f6d6xWq3GjBkzQESYOnUq1Gq1oGWrnHj16hUaNGgAS0tLvvN8zyiL7cSJEyhVqhRq1qwJJycnBAYGMuHVJmVpT1V6e3szW6o/ePAgPxOTyWRMDtTJ5XL06dNHZ39w8ODBgsVDLpfj5MmTmDBhAtzd3UGkid9ktSWSnp6OU6dOYdq0aWjYsCEmTJjAVPBUKhXu3LmDwMBAJgKtx+fB8+TnmHN+DpyW514CF80Roe2OtgiJDIFC9XUtXRcnsrKAK1eAxYs1M+dSpXKLdJkyH176/ioFGtDsD7q4uKBy5cp4/PgxwsLCmMUKbtu2DQYGBvjuu+8waNAgnYM2QpCVlYXBgwdDJBLBwsICffv2ZcILaMqwLCwsQESwsLBgUvbAcRzmzp0LAwMDXvBmz54tmFepVCIwMBBdunThD644OTkxG2y9ePECa9asQevWrWFgYIBly5Yx4c3Jv2nTJkyaNIk/Mc0SaWlpxbI/qI+b/DKgUqtw9OFRdNnZBZK5klxibbfEDlNOT8Gj9/oVCNZQqzV70Rs3avamK1XSxG5+CF+tQAOaAzF16tSBra0tmjVrhoULFzJr3/nz52FtbQ0iTQ4yi/pBADh16hRsbW15wWNR18xxHFavXg0HBweet0mTJkxmuwqFAkePHoWvry+MjIwgEon4chsWSE5Oxo4dO9C5c2f4+Pgwr2tOTk5GcHAwkpOTmfKWROgF+stDXGocFlxcAOeVznkeLGu5vSV239uNLKXwrR498kZ+u2hftUADwPv37+Hs7MzXoj158oRJ+37//XcYGxvzgufv78+E9+HDh5gwYQKsrKxARLCxsWE2c1QqlTh06BA6d+4MiUSCBQsWMOHVIiUlBVu3bkW/fv2Ybi1okZyczPQgnR660Av0lws1p8bJRyfRc09PSOdJcwl1mYAymHhyIh4mPPzcTf2qUNR37osJy/jzzz9pypQpFBsbS0REPj4+dOTIESbB6WFhYbRixQoKCQkhIqKIiAiqU6eOYF4iTW7zrl27aO3ateTs7Ex79+5lGvb++vVr+vPPP6l///46ed2swHEciUtCnIwePPRe3F8H4tPjafvt7bTp5qY8QzvaVmpLo74ZRR0qdyCJWPIZWvj1QB+WQRrT9p07d9LixYspMjKSQkJCqHv37oxaSvTixQtas2YN3bhxg06ePMnUIB4ARUREUIUKFcje3p4Zrx56/Bt6gf66wIGjC88u0Kabm2jfg325cqvLW5an4XWG09A6Q8nOjP0gXg+9QOuA4zg6evQoBQUF0ebNm8nMzIwJrxbp6emkVCrJOmdMih56lBDoBfrrRUJmAm29tZXW31hPT5Of6vzMQGxAPdx70CivUdSkfBOmK3n/NRTXyl9CQgKVKVMm179/8WlWGRkZBb5WLBZTp06daNeuXR/Ngy5KspCZmdlHxZnjuGJLWkpJSSkW3uTk5GJLcCqupKX3798XG29xJTixTNHJidevXxcL79u3b0mpVDLnVavVFBcXx5yXiOjZs2fFwvv69WvKzMxkzqtWq+nRo9zL0CwQFRXFP8tlTMrQxEYT6dHYR3Ss7zHqWKUjiUgjxEpOSbvu7aJm25pRrf/Vov/d+B+lZX+4f3z58qXO+8fqnqvVarp58yYBoJiYGLp06RITXiKiW7duUUZGBm3atImCgoKY9XfPnj2jmJgY+vHHH2nRokXs3hemO+FFQEE2z0NDQ2FjY8M8zSo7Oxvu7u6YNm0ac4OFmTNnwtPTk6lPNqCx97SyssKBAweY8qrVatSpUwcDBw5kYuqRE4sXL0bFihVx584dprwPHz6EmZkZli1bxvT74zgOTZs2RatWrXIFTQjFunXrYGNjg/379zPljYuLg4mJCUaMGPFRa9bCHljx8fFBjRo1cOXKFRZN5bFjxw6YmJhg/vz5TINqkpOTYWZmhtatWzOxes2J3r17w87ODitXruTbrFAoBJvKHDp0CCKRCL169eLbfPv2bcEH+bKysmBtbY1KlSph1apVSE1NxZw5c3ijJAB4mvQUU05PQZmAMrkOlZkvNMePR3/Evfjc4TnDhw+HTCZD3759ceHCBdSoUQMHDx4U1F4AuHDhAogIbm5uGD9+PMRiMebPny+4GoXjODg6OsLY2Jj3MejVqxcTH4qJEyeCiPhS1Nq1a+v4hn/Rp7jlcjl8fHxgYWGBa9euMf3727Ztg1gsxtixYwW/ZDnx5MkTuLq6wtXVldmJckBzQnvkyJEQiURYvXo1M15AY+FoYWHBPDQkPj4ezZo1g6mpKYKDg5nxchyHxYsXQywWo3v37kxLqG7cuAFXV1fY2NgwCVfQIjU1FUOGDAERwc/Pj9lJao7jsHPnTpQuXRrly5fHiRMnPnhtYTuLR48eoU2bNiAiDBs2jJmxTlZWFhYtWgRTU1M4Oztj3759/EBLaJndxYsXUa9ePYhEIgwYMIAPZxHqZRAfH4+ff/4ZRkZGKFu2LNauXYuHDx9i6NChggREpVJhz5498PT0BBGhXbt2GDt2LDw9PT8aH/oxREVF4ccff4SJiQnMzc1RoUIFWFlZ5SqTzFJmIfB2IBr93ijPUq1vt36L4PvBvK1oWloafv/9d9SrV0/HFGjWrFmC+lKO4xAeHo7Ro0fzJa5EhJYtWwq+F2/fvsWGDRtgYmLC8zo4OAh+x5VKJbZt26ZzHyQSCfz9/ZGZmVnyBLqwYRlZWVno1KkTzM3NmY/kg4ODYWBgAD8/P6ZhFvHx8ahTpw7s7e1x+/ZtZrwcx2HRokV8AAfLgcX9+/fh4uICFxcXppGTCoWCt8mcNm0a0/t84cIF2NnZwdXVlel9Tk1NRf/+/UFE+Pnnn5kZ4ADAgQMHYGNjA2dnZ1y6dIkZb3x8PHr37g0iwvfff4/ExEQA0FlhKEpnwXEcdu3aBXt7e9jY2PB51nfv3hUspnFxcRgwYADfCd+7dw8///yzYJMdjuOwZ88eVKpUCYaGhpg4cSLs7Oywc+dOQbyAxhFw7NixkMlkfIxj3759Bd8LjuNw4sQJfPvtt3xH7+LigocPhZdFJSYm6iRwSaVSbNq0Kc9rb72+heGHhsPkF5NcQu203AmLLi/C+0zNQE2pVPIpZ9pPx44dBZdK3rp1S0egiQi2trY4ffq0IN79+/ejTZs28Pb2RqNGjeDl5QUPDw+sXr1aUF/6559/YuHChVi8eDGWLl2K5cuXY9WqVTh58mTJE2gtCtPw7OxsdOnSBWZmZrh8+TLTdhw9ehSGhobw9fVl6t6UkpKC5s2bw9LSkmlHDABBQUEwMDBA7969mS4Rvn37Fo0bN4aFhQXT2SMAbNmyBTKZDD4+PkxrnV+9eoVmzZrB2NgY27ZtY8YLaKI9TU1N4eXlhZiYGGa8ZBhjrwAAIABJREFU8fHx6Ny5M0QiEfz9/ZGVlQWFQsGLqhDs27cPdnZ2cHBwwMGDB3Hp0iW+YxNSB52UlIRRo0ZBJBKhRYsWGDhwIEaMGMFki+Hq1avw8vKCRCKBlZUVXF1dBc+YAE2/8dtvv6F06dL8zGbPnj2CeQHNMrSpqSkvIN26dRO8RcRxHGbOnKkjTDY2NoLDPeRyOUaNGoX69evD3t6e5/75558/OGBOlifjt7DfUG1NtdwRmAuMMfzQcFx8cBEhISFYt24d5syZg5EjR6JHjx7w8/MTHJ+qUqmQlJSEZ8+e4c6dO7h8+TKOHz/OtL/7FPgqBBrQvGzdunWDqakpk6CCnDh37hxMTU3RuXNnpg+AXC5H9+7dYWRkxCzEQovz58/D0tISTZs2Zbb0CGhWLAYOHAixWMx8KT0sLAxly5ZF5cqVmSQVaaFUKvloz6FDh/LfIYsVhujoaHh6esLc3JxPsTp27JhgXo7jsHnzZpiZmcHDwwMhISFo3749kxWG9+/fY+DAgSAiVKtWDVZWVoiKimJiVBIWFobatWvznTwr977s7Gw0adKE5/Xw8GAyYDlz5gzMzc11lh9ZuPft27cPQ4YMwTfffMMbGrVr106w9WtGRgZu376NPXv2YP78+ejfvz9atGiBsLAwwW3WQi6X4+HDhzh9+vRHt+E4jsOpR6fQ8c+OeYZ1tNzeEoeiDkGlZrcy9iXhswn07NmzUbVqVZiYmMDKygotW7Ys1ENUlIYrFAr07NkTJiYmuHDhQlGa/UFcvXoVlpaWaNWqFdOULJVKheHDh0MikWDr1q3MeAHg3r17cHJyQrVq1Zh4b2vBcRwWLlwIIk0YPUv7zdevX6NRo0YwNzfnD7yxmC0BmgAOS0tLeHp64vHjxxg7diwTwcvKytKJyTQxMWG2DfD48WM0btyYF5Dp06cz4QWgk+zl6uqKp0+fChboly9f8vul2s8ff/whuK2RkZHw9/dHw4YN+XSvhg0bMnkXExMTcerUKcyfPx+dOnVCuXLlmB62VKlUiIqKwu7du3Hy5ElmvP81xLyPwdhjY2G+0DyXUFdcVRErrq1AslxvqZsTn02gg4KCcPr0aTx+/Bj37t3DkCFDYGFhUeBDRkVtuEKhQK9evWBiYsI8u/nmzZsoU6YMGjduzPTgEcdxfErWkiVLmPECmn282rVrw97eHjdu3OD/HguEhITA2NgYbdq0QVJSEs6cOcOEOzs7G8OHDwcRYc6cOWjRogWzA3WPHz+Gp6cnLC0tIRaL8euvvzLhBYA9e/bwyV5ubm5IS0sTzJmZmamzP0jExp89KSkJEyZMgKurq44/u1CBBjTv7sGDBzF69GhUrVoVBgYGgvcHcyI9PR1nz57F7NmzsXjxYqZnLQDN+8FqUPg1IiUrBavCVsH1N9dcQm220Ayjj45GdEL0527mfwL/mSVubUPOnDlTqOuL0lkolUr4+vrC2Ni4wH+voIiMjETZsmVRt25dwfso/8aqVatARJg0aRI4jvtoWUxBkZqairZt28LU1BRHjx7FihUrmO3z3rhxA2XLlkW1atVQrVo1fpmXBf73v//x5QlNmzZlMtvlOA4HDhzgU7KkUimTMj2FQoExY8bA0NCQF7x+/foxGbDExsZi1apVaNasGUQiEczMzHD//n3BvIDmfkRFRWHp0qX8TJ11cMjz588RHBzMPOhEj/821JwaR6KPoPUfrfM8/d3pz0648PQC81LWkoT/hEBnZ2djyZIlsLS0xLt37/K8JisrCykpKfwnNjZW0GheqVSib9++MDIyYr6s9PjxYzg7O6NGjRp4/fo1IiMjmY3ig4KCIJVKMXjwYIwdO5ZZvaZCoYCfnx8kEglKly6NkSNHMuEFNOU22nCPUqVKManx5jgO8+bN04myXLp0qWBetVqNM2fO8M8GEaFixYrMBkNJSUnYsmULWrZsCZFIhI0bNzLh1eL169dYv349Ro0axXSrBfins2CVca6HHlrcf3sfIw6PyPP0t9dGL+y6u4sv0/qa8FkF+vDhwzA1NYVIJELZsmURERHxwWtz7ofl/AhZblOpVBgwYAAMDQ1x/PhxnDhxgllHHBsbi6pVq8LV1RU+Pj4IDAxkwgto6o619XgNGzZkIv4cx+H48eN86YdIJGJSO85xHFatWgUbGxv+O/vuu+8E8wIaMT1+/Di6dOkCsVgMmUzGtMQrKSkJ69evR7169TBw4EBmvFrExcVh/fr1JSYdSp9mpUdxIzEzEQGhAXBa7pRLqCusqIDlV5cjNYtNH10S8EkEOjAwEKampvxHWzaUnp6OmJgYXLt2DX5+fnB2dv7g6Jz1DFoLlUqFwYMHQyaTwc3NDbNmzRLElxNxcXGws7MDEcHR0ZHJjIbjOKxcuVKnRINVedC9e/cwePBgflbq4eHBrHRMLpdj27Zt/AEhFvukOREbG4vZs2ejU6dOTOuOtbh3795XnwmtF2g9PhUUKgWC7gTB83+euYTa8ldLTDo1CbEpsZ+7mcWOTyLQqampiImJ4T+ZmZl5Xufq6lrgsgtWnQXHcbh8+TI/wzM1NWVi06gV0pzOM7NnzxbMC2hmjiEhIahTpw5fhM+yNvjly5eYNGkSLCwsEBAQwIwX0NyXS5cuYfTo0cXS0SuVSsGlKnrkDb1A6/GpwXEczj05B58gn1xCLZ0nRf99/XHr9a3P3cxiQ1HfuUKFZZibm5Orqyv/MTY2zvM6AJSdnV0YasEQiUSkUqmoUqVKRKQJ15g7dy4T3nHjxtHTp09p4sSJZGxsTAEBAXzutBCIxWLq3r073bhxg44dO0aurq40e/ZswbxaODo6UkBAAL148YLMzMyYhneIRCJq2rQprV69mszNzZnxaiGVSsnExIQ5rx566PHpIRKJqLlLczra9yjdH3WfhngOIZlERkREKk5FgXcCyXODJ7X6oxWdeHSiWEJ7SiSEjArS09MxdepUXLt2Dc+ePcNff/2FIUOGwNDQsMB7iAUdWXzo0Nm/oT296+7uDolEggcPHuR7/du3bwt1uvD169cYP348hgwZku91SqWy0Ke/tasAHzNJKa7SkDdv3jAvZQE094J1aIgWsbHFszwWFxfH1FFOC6VSiRcvXjDnBTSHGguCwo7mX7x48cHVMiFQKpVMndly4v79+8VyavjZs2fFskWiVCqZ2tTmxM2bN4vlZP2TJ08ErVK+TnuNGWdnoNTiUrlm1a5LXfHnnT+ZHyi7cuWKTlkkq7NKMTExvOlSUlISX+qqxWc5JCaXy9GtWzeULVsWMpkMDg4O6Ny5c76HxP6NgjRc6wJUGAMUlUqFbdu2Ydy4cfm239nZmS93KgxevXqV70M/YcIEVK9enWnoBKBxcDI2NmaeZqVUKlGtWjX069ePuTDNnj0bTk5OTF3DAE0nLJPJsHLlSqa8HMfBy8sLLVq0YOrOBgDLli2DtbU184qDZ8+ewcDAAKNHj/6o1WRhO4vmzZujevXqzNPINm3aBCMjI6xYsYLpwPDdu3cwNjZG+/bt8fz5c2a8ANC1a1fY2dkhMDCQ6QAgODgYIpEIfn5+TAfgGRkZsLKygpubG/bv38+0zYMHD4aRkRHGjRvHC3V8fHyh+4/07HSsjViLSqsq5RJq+4X2WBe+DtuDtgse5CuVSjg4OMDS0hLjx4/Hw4cP0alTJybubD/99BOICI0aNcLatWthaGio43P+nyizKgoK0nCFQoEOHTqgVKlShe7ks7Ky8n0oAwMDIRKJMG/evELxfgyxsbGoWLEiatasWeDZf0GgVqsxcuRISKVSpslQAHD69GmYmpqiS5cuTK1O379/j8aNG6NUqVK4evUqM16O4xAQEAAiYuYWpsWtW7fg5OQEV1dXpgOLjIwM9O/fHyKRCAsXLmTaYe7evRvm5ubw8vLK1/ClsJ3Fs2fP0KRJExgaGmL16tXM2qxUKjF//nxIpVJ8++23TFPfQkNDUa1aNZiZmQkOQciJ9+/fY8SIERCJRPD29mb2bGjTyJycnGBmZoZff/2VfweFnqWJiYnhA1QaNGiACxcuQC6XY9myZYJ45XI5Vq9eDUdHRxgaGmLs2LHYsmVLka2SVWoVQiJD8M3Gb3IJtcFUA1h3tMZf9/76OFE+SEhIQEBAAJydnUFEkMlkMDQ0FFydo1arcfr0afj6+vLeC0SaxLqvIs0qIyMDTZo0Qbly5ZiPijds2AAiwvLly5nyPn/+HM7OzqhVqxbTmRjHcRg3bhwkEgn+/PNPZryAxurUysoKLVq0YOKQpUVmZiY6d+4MY2NjHDlyhBkvoHH2MjQ0RJcuXZjWDL958wYNGzZkHhqiLVmTSCTo3r07s2U2QJORXatWLVhaWn5wlaUonYVSqcS8efMgkUjQsWNHpitDt27dQo0aNWBmZoaNGzcyGwDI5XLMmDEDUqkUjRo14sWUxf2OiIhA3bp1IZVKMXnyZKSnpyMwMFDwVkBmZibmz58PExMTuLi4YO/evWjcuDFu3RJ+gOrGjRto3bo1iAgtWrRg5jkgl8uxZs0aODo68sLUvHnzIt9njuNw9slZtPqjVS6hFk0RYdD2QYhPF1bDr1Kp+EGL9jN16lTBA7mnT5+icuXKOryenp64fft2yRJoLQrTWSQlJcHDwwNVq1ZlvnS8fPlyEBE2bNjAlPfp06coX748PD09mZj+a8FxHCZOnAixWIzt27cz4wWAv//+G7a2tqhfvz7TgYVSqcTQoUMhkUiwZcsWZryAZm+pTJky8PLyYrpEmDM0ZMWKFUxnvBcvXoStrS3c3NwQFRXFjDczM5O3UJ0wYUKuJUchp7ivXLkCZ2dn2Nvb6yzTC70vWVlZmDx5MsRiMdq3b4+4uDg8efKEyX797du38c0330Amk2HevHlYunQpduzYIZhXpVJh7dq1sLS0RPny5VG9enV07tyZyX5vXFwcBg0apJNm9bHzNAXF6dOnYWFhwXOzsh3WLtNreevVqye4/7jy9AqcfnYCzdYVatlcGUYfHY1nSc+KxJuQkIBFixZh9OjR6Nq1K7y8vGBvb49u3boJmphkZGTgyZMniIiIwLFjx/DHH39g+fLlWLBgwZcv0IBmuadixYrw8vJiOvMAgHnz5kEkEjE1IwE0h3ecnJzg5eXFtIyK4zhMmzYNIpEImzdvZsYLaGZi5cuXR82aNZkKXk4/8l9//ZWp4D169AiVK1dGhQoVmFlkApo2L1myBCKRCEOHDmVanx0bG4v69evrhIawwo4dO2BiYoIGDRrwq05v3rwRXGaVnJyMPn368FGFcXFxzNKsrly5AldXV1hbW8PPzw916tRhckBNpVJh2bJlMDY2hlQqhUwmYxb/+ubNGzRt2pQXpmHDhjF5ru/cuYOKFSvyvI6Ojky2AXbs2AF3d3cdMV28eLEgTo7jEB4ejs2bN2P8+PFo1aoV7O3tUaNGDSblrvfj76NXUC9I5kp0hFoyV4IB+wYg8i2brYbs7OxiKe8scUvcWhSl4Y8ePYKdnR1atGghOHs1JziOg7+/PyQSCfbv38+MF9C02dHREfXq1WMewDFnzhwQEdavX8+MF9As0VepUgWurq549qxoI9UPYc2aNRCJRBg7dizTA0IJCQlo0qQJLC0tcfbsWWa8gMYxz8zMDE2bNuVXcFh0xFlZWRg2bBiICDNmzIBKpcKpU6cE8wIaT/nq1aujVKlS2LdvHzw9PfHmzRvBddAcx+GPP/6AmZkZHB0dIRaLmYXWpKenY+jQocy9zpOSkvDdd9/xvKVLl2ZyivzevXuoV6+ejuCxMEp69+4dDh48CH9/fzRu3BgymQwuLi54+fKlYG4ASEtLw+XLl7FixQr069ePeZ8HaP4PLM8WvEh+gfHHx+eyEhXNEaF3cG/cjb/L7G+xxFcl0IBmGdbS0hI9evRgejiI4ziMGjUKMpkMJ06cYMYLaGalDg4OaNCgAXOTiF9++QVEhFWrVjHlffPmDWrVqoVy5coxW2LTIjg4GDKZDL1792Y60JLL5fD19YVUKuXd2VhtL9y9excuLi5wdnbGnTt3MH36dGYlLBs3boRMJkP79u1hZWVVqGqI/JCenq6zXOrn58fMHGjt2rU8r62tLRPxSExMRPPmzXX28VjslaampmL//v0YNmwYv19apUoVZts479+/x759+/Djjz/Czc2N+YBZLpcjNDSUeaZ8ScS7jHeYdW4WrBdZ59qn7rmnJ26/KZ6StaLiqxNoALh06RKMjIyYLSlpoVarMXDgQBgbG+PixYvMeAEgKioK9vb2aNy4MfMl+iVLljDrzHIiKSkJjRo1go2NDbNQDy3OnTsHCwsLtGzZEikpKbnqB4sKtVqNadOm8c5v3bp1Y3a48N27d2jWrBnMzMxgbGzMNMry7NmzkEgkvHiwWG7Lzs7OFWXJQqAzMjKwZs0aPr6SiNC4cWMmZXocx+Hu3buYO3cuateuDbFYzHTAzHEcbt++jV9//RWzZs1iOsjX4s2bN191gtOnQFp2GgJCA2ATYJNLqLvt6oabr9j2V0VFiRPowp7i/hAOHz4MiUSCadOmMW2fUqlEz549YW5uzmwmo0VkZCRsbW3RtGlT5klF2ihL7Z4gq5rm9PR0tG7dGpaWlggNDcX27duZzXr//vtv2Nvbw9PTE3Xq1MGxY8eY8AKaWlut4HXs2JFJh6lWqxEcHMxHTspkMiZ73iqVCpMnT9bxZx81apRgXkAze9y6dSu8vb15bpZ1zS9evMDSpUvh5eWFCRMmMOPV4smTJ9i2bVuxmMfoUfKRnp2OZVeXwW6JXZ5xl9fjrn/W9pU4gdaChS/w9u3bi6VMKjs7Gz4+PrC2tmZu0nDv3j3Y2NjA29sbGRkZTJ221q1bByLCnDlzMH36dGZ7VllZWejWrRuMjY3h6OiIRYsWMeEFgAcPHsDc3BxEhEqVKjGpw1ar1Zg5c6ZOlOXu3bsF82p9yHv16sWLf7169ZgtdaekpOB///sfH0jCcsACaA4fERF8fX2LRfBiYmKY1tHroUdBkanIxKqwVXBY6pBLqH2CfBAWK9yUpCj4qgUa+KdMinXJUWZmJpo3bw47OztER0cjPDyc2bLVnTt3UKZMGbRo0QLfffcdrl9nN8rbvHkzRCIRZDIZ/Pz8mHBqoyy1JRpmZmbMAkm0tZ9aIZ0zZw6DFmtWQnbt2oVvvvkGRAQ7Ozum5W4vX77EzJkzYWtrK/gkbF64ceMGZs+ezdRqU/vOJScn62ekenyRkCvlWBO+BuWWl8sl1G13tMWVF1c+aXu+eoEGgKlTp0IikeDQoUPYsWMHs84nNTUVDRo0QLly5VCnTh2mhzT+/vtvfkmzdevWTDjVajXmz5/P84pEImY+v+fPn9dZJh00aBATXkCztztz5kxYWVnB0NAQjx49YsatnfV26dIFw4cPZ8arRVZWFvbu3VsiZo76NCs9vhZkKbOw/vp6lF9RPpdQt9nRBuEvwz9JO/QCDU0nPGzYMBgZGcHOzo6ZGYY2xMLIyAhEhNq1azOZRatUKt7DVfthVRqUlpaGBQsWwNLSEkSEtm3bMuHVIqdQh4ezfchTUlIQEBCAIUOGFMshm5iYGKanxksa9AKtx9eGbFU2Nt7YCOeVzrmEuvPOzsV+6vuLF+iC1OFmZWUhICAAUqkURARXV9ePns589uzZR+twlUolVq5cCSsrK15I9+3bl+/vyOVyxMXFfbTNAHD58mU0aNCA38v8mCgVZmb5/v17TJkyBcbGxh8NaHjy5EmhVx3Onz+PKVOm5HsPs7Ky8PTp00LxApp7+LF9XdalX1o8fvy4WGbDWVlZiI6OZs4LaFZjCoLCdhYxMTHFIubZ2dnFluDEcisqJ6Kjo5m7GAKaw5wsfepz4tKlS8WylREVFcXcHwHQ3IsTJ04Uy/d34tQJrL26Nk+h7h3cGw/eFa0/iYyMzPdZ/qIF+siRIzAyMsK1a9c+yhceHs7vNxIRgoKCPnhtRkYG7O3tC3zqNCEhAaNHj4ZEIoGHh0e+ojRixAhUrVq1UDGZe/fuhaura77if/HiRUilUhw8eLBAvFq8evUKmzZt+uBDr1Ao4OLiAl9f3yKVnOT3Mk2ePBlly5ZlLky3bt2CSCTC6tWrmfKq1WrUrFkT3t7exVKvbmlpifPnzzPljYmJgVgsxrhx4z76/RWms+A4Do0aNYK7uzvTLQdAU8khk8mY+m8DmjhWIyMjdOzYsdCRrx+Dj48P7O3tmXqzA0BQUBCICGPGjGFa2ZGcnAxLS0t4eHgwSW3Kif79+8PY2Bjz5s1jOpg9duwY7+fNsqwzKysLDg4OKFOmDBYvXYxVV1ah7LKyOiItnivGoP2D8DixYNGtWowdOxZEpJPmGBYWxpdJljiBLkyZ1f+1d6ZRUV1Z399VBVVQTKIIRTGJYisQRYOKUwQnbBR1OWs6SsyKiMsY0aQdQquYKNi0iUMrsdW04oTaC0XjEMXXIc5xAAVto1FUlPAYkEmUKqj7fz7w1H0lClUFhzHnt9b9ANyza9/NrbPP2eecvcvLyxEaGgpHR0ejRmw6nQ6bN2+Gg4MDfHx8qnWkiYmJICKTOvlbt25hyJAh1VaTys7ORps2bRAQEGDSF06r1VYb5hYEAREREVAoFMw7+ZMnT8LCwgIffvgh0+xeBQUFCAgIqBMnra9mFRcXx1Rueno6nJ2d4e/vz3TG9OrVK4wbNw5yuRy7d+9mJheoKBqid0zV5RM2tbPIysqCv78/7O3tkZKSwkpdlJeXY9GiRSAiTJ06lelGuPPnz8PNzQ2urq44d+4cM7kFBQX4y1/+IjpTVjoLgoDt27fD3t4e7dq1Y5aGFKiIuA0aNAgSiQSzZs1iln9Bo9FgxYoVsLKyQrt27SoVwantiYbz58+jZ8+ekEgkCAsLE0+i1DZbXV5eHhYuXAilUgkXFxes/XYtZifOhuViy0qO2uxLM0z/fjqyCo2rNy8IAg4ePIgePXqIS4qTJ09G79698fz586bnoPUYq3hRURE6d+6MTp06Gf2CPX/+HJ988onBHMexsbGQSqUmz0oNpQn8+eef4eDggGHDhjEtmF5eXo6JEyfC2tqa6c5vADh69CjkcjlmzJjBdFbzupO+e/cuM7kAsHbtWhARli5dylTn+/fvo23btujQoQOTog16dDodIiMjQURYtWoVM7kAcPHiRTg6OqJLly7Iynp751KTzuLly5eYNGkSZDIZ1qxZw9TO33//PVq0aIGuXbsyTQuZl5eHESNGQCaTISYmhumgc9euXbCzs4Ovr6/RSwvG8PTpU4SGhkIikWD27NniDKy29tanZm3VqhVcXV3Fvu7mzZu1lp2VlSVWhgoNDcX9+/cRERFR6+iFIAjYvXs32rRpA0tLSyxevBhKpZLJIPHXX3/FrFmzYG5uDnt7e5Cc0GteL7RY0aKSo1Z8pUDk0Ug8e2HcIF0QBBw/frxSbvZ33nkHd+7cad4OGqjIDe3k5IRhw4aZFIY15NAFQUB4eDiUSiVzh3f58mUolUp89NFHTDs1jUaDkJAQtGrVimm9YgBITk6GTCbDnDlzmoyT3rhxIyQSCRYsWMBU5+zsbHTq1Alubm5MK04BwMqVK8WCEyydR2ZmJnx8fKBWq98aIqzpaF4QBKxYsQISiQQfffQR0412v/zyC/z8/GBvb8/03LcgCFi1ahXMzc0RHByM//mf2pUpfJ2HDx+iX79+kMvl+Mc//gGdTofi4uJaF1MRBAEJCQlo0aIFvLy8cPbsWSQnJzPJxfDbb79hypQpICKMHj0aI0eOZJbP4OTJk/Dx8YFCoYC1tTUCAgKYlKx99eoV4uLixDwJLDM8njp1SsxlQESYOmMqFv2/RbCOsa7kqG1ibPDl6S9RrDH8PFqtFlOnTq20+dfd3b35O2igIq6vUCgwZ84cpnqUlZUhJCQETk5ONdrQVB1HjhyBTCZDVFQUU7n6GtkuLi7MN2vs3r0bUqmUuc4FBQXo0aNHnTjp7du3i+uwLJ308+fP0atXLzg4OODatdoVjP89u3btgrm5OSZOnMjU4eXn52Pw4MFQKpVvRIZqu4v70KFDsLW1Ra9evZhWOispKcGUKVMgkUgQHR0tDlpY/C9/+ukneHp6QqVS4eTJk9BoNDh79myt5ZaXl2PFihUwMzPDgAEDsH37dsycObPWcoGKM/ZDhw6FRCKBt7c32rRpw2y5JSUlpVKlLFbLLQUFBejYsaMoNzg4mEn1t8TExEoJh6ytrWu9qU4QBOzYsQMff/wx/P39IZfLxVz1OUU5mHd8HiyXVQ59O/3DCet/Wg9tefWb7jQaDTIyMvCf//wHS5cuxZgxY/4YDhqocB5E7Gs3FxUVoUuXLvD29maazAIAtm7dCiLCunXrmMrNz89Hly5d0L59e6bZyIAKnSUSCZYtW8ZUbl066b1798LMzAzh4eFMZ6UvXrzAkCFDYGNjg9OnTzOTC1Tk37a1tUX//v2ZVjrTarUIDw+HRCLBN998Izo6Fsesbt++DS8vL7i6uopRJxYbsgRBwLfffgtzc3MMHToUubm5WLBgQa3lAhXv3dixYyGVShEWFgYXFxejN3Ea4urVq+jQoYPoQLZt28ZEriAI+PDDD0W5/fr1Y+LwMjIy4OnpKcqVy+VMBixXrlxBZGQkunTpIlb3mjhxIpPvYm5uLg4dOoSoqCgMGDCg0rvHAq1Wi7S0NGzZskV0/k+LniL8YPgbZS7brWmH3em7oROMe65mvwb9e5YuXQozMzOcOHGCqT5Pnz6Fq6srAgMDmZ+VjY2NhUQiqXZzWU3IyclB+/bt0aVLF6b1pgFgw4YNICJ8/fXXTOXqnbSLiwtzJ33gwAHI5XJMmTKF6dq/RqPB+PHjoVAoTN6vYIi0tDQ4Ozujc+fOzFKzAhUd/MqVKyGRSDBjxgyUlZUhJSWFyTno58+fIzg4GBYWFti5cyd69+7mcqEWAAAVHklEQVTNJKQJVETKXF1doVKpQETM7K0P0+sdU0hICDPnMX78eFGupaUlk7Xpx48f4+OPP4aTk5MoOzw8nElU4dmzZ9i5cycmT54MR0dHtGzZkukmzry8POzfvx+zZ8/Gpk2bmMnVU15ezqwAjiHu/HYHY/aMeeNo1rv/ehcp9w2viTc5B13bYhmCIGDSpElo0aIF87XBmzdvwtbWllkdWj2CIODTTz+FXC5nPgt7+PAhXFxc0LdvX+YFx1etWgUiQnx8PFO5+fn5opNmUZf3dX744QdYWFhg/PjxTM+AlpeXIzw8HDKZTJwlsdrJ+/DhQ3h7e8PNzQ23bt3CqlWrmEUB9u/fD6VSiSFDhsDZ2ZlZopKysjLMnTuXeXEPnU6Hf/3rX6JcBwcHJuH04uJijB07ttL6IKsTALdu3UJ0dDS8vb1BRGjbti2zSJxOp8OFCxewYMECeHt718nRwuvXr2Pv3r28Alc1XH5yGUFbg95w1IO3Dca17KqXv5qcg9ZTm3Dbq1ev0KtXL3h5eTE/75iSkgIzMzP87W9/YypXp9Nh/PjxsLW1ZZ6k4fbt22jVqhVCQkKYhMFeJyYmBkTELDubnvz8fHTv3r1OnPSpU6dgZWWFkSNHorS0lNkOYUEQsHDhQhARVq9ejalTpzKtKdynTx+0aNECNjY22LhxIxO5wP8/Q693TCx01mg0mDFjhhjOJCImUa3S0lLs2rULAwYMEOUOGTKE2YDl0aNHiI2NhY+PD2QyGfMkIRkZGVi8eDHzDYB6Hjx4UCdyOYYRBAFH7x2F37d+bzjqtF/fHjX5QzpooCK86+HhgcDAQOZO6d///jeICN999x1TuaWlpQgKCoJarWa+uevKlSuwtrbGhAkTmNe4XbRoESQSCXbt2gWAzeYd4E0nfezYMWayz58/D1tbWwwZMgR9+/ZlWpVMX39bKpUy2xhUXl6OvXv3ihtW7O3tmew8Lisrw5w5c0S5+mNpLCgpKcHmzZvF6lvu7u5ME7zcv38fUVFRUKvVWLNmDTO5QMU7fO3aNaxatYrpcsjr8vmMtHmiE3TYcWMHPFd7gqIJAxIGVPm/bhQOOjw83OSznSw2rKSnp8PGxob5USagwinJZDKDaTJNpaCgAH5+fujQoQPz2f/JkyehUCgQEREBQRCYJlP4/PPPIZPJsG/fPqxcuZLZoOh1J+3p6cm0IMmlS5dExzR48GAm70hZWRn++te/ijtLpVIpk4iIvmJYXRUkycnJwYIFC0BEUCgUTNf/BUHApUuXMGXKFGYDltcpKyvDiRMneAUuTqNCU67B2ktrcfXp1SrvaXAHvX//fvj5+UGtVte7gwaAw4cPQyqVMs8oJQgCJk+eDBsbG6YJCYCKM7YeHh7o2bMnSkpKqkwsURMOHDgAmUyGL774AlOnTmW2O1gQBMycORPm5uawsbHBhg0bmMjV6XQ4cuSI6PB8fX2ZRADKysowc+bMSmuOrM7ZFhcXIy4uDo6OjuIOW5YDxEuXLmHUqFGQSqVM9yzov3Pr16/Hp59+Wieh0t9++61OZqQcTlOkQR30kydP4OLigoyMDHh4eDSIgwaANWvWQCKRYP/+/bWW9ToajQb9+/eHi4sLsrKymKYOvHPnDlq1aoXQ0FAEBAQwPVe6bds20Sl99dVXTGSWlpaKUQUigouLC5M8vGVlZdi4caO4gYmIsGXLltor/H9cv34doaGhICJ4e3szdR4lJSVYtWoVnJ2dkZiYyEyunjt37uDrr79m5khf/84JgsDXMjmcOqbBHLROp0P//v2xevVqADDooEtLS1FYWCheWVlZBhUXBMGo8KE+T7VSqcT169exefNmg20yMjKMCpnl5+fDx8cHnTt3hqOjo8FkJoWFhUYXF0hOThad0vz586u9V79mZogXL15g9OjRolx7e3uDGdXS09ONcra3b9/GsGHDRNn6/31VFBUVGZ3trKSkBDExMbC1tYWbm5tBfUwtAHDx4kUMGjQI3377bbX33bx50+Scxa9evUJycnK1s+ji4mKmBQBe58yZM0bN4E3tLG7evMl8GQao+F/XVQWnEydO1MnA48aNG0yPwel5+fIl0zznr3PkyJE6Ka9648aNOqnMVlpaiqSkpDpZu09OTmaaa0BPWlqaWCTjbTSYg46Jiam0rmfIQS9ZsqRSuFF/Vad4UlISzM3Njfoya7VaDBo0CCqVCmZmZtU6yeLiYrRq1QqzZ882KDcvLw9ffvmlqG9kZGS190+dOhXt2rUz2LHl5+dXcqQ2NjbVnmU+ceIEJBKJwfziQMWX/quvvoKlpSWICLGxsVXeW1paCldXV4wbN87oju348ePo1KkTHB0dqy0IEhkZCScnJ5OqIeXm5mLu3LnVHif56aefQGRaoRM9t27dqvJv5eXl6NixI/r168e0shAAREdHw9rammkUBqgYNEmlUqPSs5pazapHjx7w9vZmmo8cAFavXg1zc3Ns376dqdzHjx9DoVBg5MiRzM5l6wkODoZKpcL58+eZytVHu+bPn880upObmws7Ozt07dqVuTOdNGkSlEol4uPjmedm1+f1ZjkYKikpgVqthkqlwu7du5nqPGvWLDEF7tsSRtWLg96xYwesrKzE6/Tp03BycqpU97guZtA6nQ6hoaFwcXExuKP1wYMHGDFihOjwDDlffVayhISEau/TaDRYvnw5FAoFiAhWVlbVnnHMycmBu7s7+vfvb9QM/dChQ2Jmn+XLl1d53+tRgqtXq96U8DqPHj3ChAkT4ODgUG2Hdfr0acjlcqPLbwIVzmzTpk3V2q+oqAjdunVD27ZtTQ7hGxrt6pNOGPr/mUpGRgYcHBwwcOBAplWWNBoNRo0aBSsrK6YVi4CKd9nMzAzTpk2rdv3e1M7iyZMn8PX1hZubG9P62zqdTtywtnz5cqYd5rlz59C6dWv4+fkxHVgUFhZixIgRMDc3Z57JcMuWLbCwsEBgYCDTpa579+7B398fVlZWTL8nWq0WixYtglQqRUhICLKzs5nJPnPmDLy8vGBnZ4fvvvuO2buRl5eHadOmicf2WJVQFQQBe/bsgZubG2xtbSttoM3Ozq4fB11UVIR79+6JV0xMDCQSCWQymXjpd7R6eHgYJdNYxfPz89G2bVv079/f4Ajz0KFDcHFxEWekhmTPmzcPCoXCqLRxd+/eFc9mGkoyn5qaCqVSaXTyhpcvX2Lx4sVwc3OrNtmIVqtFcHAwnJ2dTdpYdvr0afzwww/V3qMvv2nqcRZDs+5nz56J2c5Yh5gWLlwIqVRabR3tmpCWloaWLVviz3/+M9MQoVarxZgxY2BlZcUs6b+egwcPQqFQ4P33369yYFiTziIvLw+9e/dGq1atcPnyZVbqAgDi4+MhlUoRHh7OdPaYmZkJX19fqFSqasOPpqLT6cRI4PTp05ke70xLS4OXlxdUKhXTd0Oj0eCzzz4DEeGDDz5gVnISqFg28vLyQsuWLZlmSSwpKcFnn30GqVSKwYMHi0dSWUS1zp07h3feeQcWFhZYtmwZNBoNEhISar0xtaSkBIsXL4aFhQU6dOiAo0ePws/PDzdu3Kj/EHdubi7S09MrXWq1GvPnzzc6u5cpnUVqaiosLCwwb948g/cWFBSIx74MOZvy8nIEBwfD1dXVqDOn+moznTt3NvjlTEpKMjkL1927dw3uGC8oKICPjw/8/PyYh/Hi4uIgkUiQlJTEVG5mZiacnZ0RFBTEtMC7fme5XC7H8ePHmckFgGvXrsHOzg7Dhw9n2hFrtVqMGzcOSqWSeV3vEydOQKlUiglafk9NR/MlJSUYNmwYrKysmNv5wIEDsLS0xNChQ5m+z4WFhQgJCYGFhQX27NnDTC5QcXLF2toaffr0YTrjLSgowKhRoyCTyRAXF8c0snDkyBG0bt0aXl5eYgSOhfzi4mJMnz4dRITJkyejoKAAGRkZTDb/Xrx4Ed7e3rC2tkZ8fDyioqJqXRcaqPgOrlixApaWlvD29oanpyezMruZmZligQwiEqOjptpDAgDEkDZt2lBkZCRFRkYadX9hYSG1aNGCsrKyyNbW1uD9iYmJFBERQdu3b6cRI0YYvP/MmTO0evVqSkpKIqlUWuV9z58/p/79+5NaraaDBw+Subm5Qdm5ubmk1WpJrVZXe19cXBzFxsZScnIyBQYGGpRrLI8ePaIBAwaQv78/JSYmkkwmYyIXAM2bN48SEhLo+++/p4CAACZyiYgyMjIoJCSEAgMDKSEhgZnOgiBQREQEHTx4kJKTk6lnz55M5BIRXb16lUaOHElBQUG0detWo94NYygvL6fw8HA6fPgw7dmzh4KCgpjIJSK6fPkyjR07lrp160Y7d+4kpVIp/q2oqIjc3NyM/s69TllZGc2cOZOSkpJo48aNNGbMGGY6X716lcaPH09ubm60d+9ecnJyYiK3vLycoqKiaMOGDfTFF1/QvHnzSCKRMJF9584dmjRpEr169Yp27NhB3bp1YyIXAK1bt44WL15MISEhFB8fT3Z2dpSfn08tW7asleycnByaPn06nTt3jpYuXUr9+vWj+/fv06hRo2qt97Fjx2jmzJkkl8upT58+9OLFC9q5c2e1fa8xaDQaiouLo2+++YakUilZW1vTyZMnqV27drXW+dGjRzR+/Hi6c+cOEREtWbKE5s6dW2u5Z8+epbCwMMrLyxN/V1BQQHZ2dkbLaHAH/eTJE3Jzc2OpAofD4XA4jY6srCxydXU1+n7mDtpUBEGg7OxssrGxqXJUW5sRf/fu3enKlSsm61Xf7Wra9o9gm/q2S00/s6m0a4h3pjZtm7tteF/T9NsZsg0AKi4uJrVabVI0wcxkTRgjlUqNHlHY2tqa/GLIZLIaddD13a62bZuzberbLrX5zKbSjqh+35natG3utuF9TdNvp6c625gS2tZTu4WBJsDMmTObRLvatq3Pz2sq7WpDU3nGpvLO1KZtc7cN72uafru6osFD3MZQVFREdnZ2VFhYWKvRTXOE2+btcLtUDbdN1XDbVA23TdXUlW1k0dHR0cyk1SEymYyCgoLIzKzBo/KNDm6bt8PtUjXcNlXDbVM13DZVUxe2aRIzaA6Hw+Fw/mg0+zVoDofD4XCaItxBczgcDofTCOEOmsPhcDicRgh30BwOh8PhNEIajYPet28fDRkyhBwcHEgikVBaWprBNlu3biWJRPLGVVpaWg8aNzw1sVlzAwBFR0eTWq0mS0tLCgoKolu3blXbJjo6+o13RqVS1ZPGDU98fDx5enqShYUF+fv709mzZxtapXrFlOf/o/cxREQ//vgjDR8+nNRqNUkkEkpOTm5oleoVU5//9OnTb31n9Lm+TaHROOiSkhLq06cPrVixwqR2tra29Ouvv1a6LCws6kjLxkVNbdac0CfQX7duHV25coVUKhUNHjyYiouLq23n6+tb6Z1JT0+vJ40blj179lBkZCRFRUVRamoqvffeexQSEkKPHz9uaNXqhZo8/x+5jyGq6Gf8/Pxo3bp1Da1Kg1DT5//5558rvTPt27c3/cNrXVeLMZmZmSAipKamGrx3y5YtsLOzqwetGjem2Kw5IQgCVCpVpbrcpaWlsLOzw4YNG6pst2TJEvj5+dWHio2OHj16ICIiotLvOnbsiAULFjSQRvWLqc/P+5jKEBH279/f0Go0GMY8/6lTp0BEyM/Pr/XnNZoZdE158eIFeXh4kKurK4WGhlJqampDq8SpJzIzMyknJ4eCg4PF3ykUCgoMDKQLFy5U2/bevXukVqvJ09OTJk6cSA8ePKhrdRscrVZL165dq2QvIqLg4GCD9moO1PT5eR/DqQldu3YlZ2dnGjhwIJ06dapGMpq0g+7YsSNt3bqVDh48SImJiWRhYUF9+vShe/fuNbRqnHogJyeHiOiNusFOTk7i395GQEAAbdu2jY4dO0abNm2inJwc6t27d6W6rc2R3Nxc0ul0JturuVCT5+d9DMdUnJ2daePGjZSUlET79u2jDh060MCBA+nHH380WVaDOOidO3eStbW1eNV0k0rPnj3pgw8+ID8/P3rvvfdo79699Kc//Yn++c9/Mta44WFls6bM721QVlZGRPRGmVIAVZYuJSIKCQmhMWPGUKdOnWjQoEF0+PBhIiJKSEioO+UbEabaq7lhyvP/kfoYDhs6dOhA06ZNo3fffZd69epF8fHxNGzYMFq5cqXJshokoeqIESMoICBA/NnFxYWJXKlUSt27d2+Wo9u6sllT4vc20Gg0RFQxk3Z2dhZ//+zZszdmSdVhZWVFnTp1apbvzes4ODiQTCZ7Y7Zoqr2aKiyevzn3MZy6o2fPnrRjxw6T2zXIDNrGxoa8vLzEy9LSkolcAJSWllaps24u1JXNmhK/t4GPjw+pVCpKSUkR79FqtXTmzBnq3bu30XI1Gg3997//bZbvzevI5XLy9/evZC8iopSUFJPs1VRh8fzNuY/h1B2pqak1emcaTUmS58+f0+PHjyk7O5uIKraoExGpVCrxjOqUKVPIxcWFYmNjiYho6dKl1LNnT2rfvj0VFRXR2rVrKS0tjdavX98wD1HPGGOz5oxEIqHIyEiKiYmh9u3bU/v27SkmJoaUSiW9//774n0DBw6kUaNG0SeffEJERJ9//jkNHz6c3N3d6dmzZ7Rs2TIqKiqisLCwhnqUemPu3Lk0efJk6tatG/Xq1Ys2btxIjx8/poiIiIZWrV4w9Py8j3mTFy9e0C+//CL+nJmZSWlpadSyZUtyd3dvQM3qB0PPv3DhQnr69Clt27aNiIhWr15Nbdq0IV9fX9JqtbRjxw5KSkqipKQk0z+81vvAGbFlyxYQ0RvXkiVLxHsCAwMRFhYm/hwZGQl3d3fI5XK0bt0awcHBuHDhQv0r30AYY7PmjiAIWLJkCVQqFRQKBfr164f09PRK93h4eFSyyYQJE+Ds7Axzc3Oo1WqMHj0at27dqmfNG47169fDw8MDcrkc7777Ls6cOdPQKtUr1T0/72PeRH9s6PfX63Zqzhh6/rCwMAQGBor3//3vf0e7du1gYWEBe3t79O3bF4cPH67RZ/NykxwOh8PhNEKa9DErDofD4XCaK9xBczgcDofTCOEOmsPhcDicRgh30BwOh8PhNEK4g+ZwOBwOpxHCHTSHw+FwOI0Q7qA5HA6Hw2mEcAfN4XA4HE4jhDtoDofD4XAaIdxBczgcDofTCOEOmsPhcDicRgh30BwOh8PhNEL+F5+xvu7w4UIgAAAAAElFTkSuQmCC",
"text/plain": [
"Graphics object consisting of 4 graphics primitives"
]
},
"execution_count": 32,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"x,y=var('x y');\n",
"xmin=-1.5;\n",
"xmax=-xmin;\n",
"ymin=-4;\n",
"ymax=-ymin;\n",
"Champ=plot_vector_field((1,x+y), (x,xmin,xmax), (y,ymin,ymax), color='black')\n",
"c1=plot(-x-1,(x,xmin,xmax),color=\"blue\", thickness=2)\n",
"c2=plot(e^x-x-1,(x,xmin,xmax),color=\"red\", thickness=2)\n",
"c3=plot(-0.3*e^x-x-1,(x,xmin,xmax),color=\"green\", thickness=2)\n",
"show(Champ+c1+c2+c3,figsize=5);"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}