
THE DESIGN OF S-BOXES

A Thesis

Presented to the

Faculty of

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Applied Mathematics

by

Jennifer Miuling Cheung

Fall 2010

iii

Copyright c© 2010
by

Jennifer Miuling Cheung

iv

DEDICATION

To My Children
Mitch and Becca

v

ABSTRACT OF THE THESIS

The Design of S-boxes
by

Jennifer Miuling Cheung
Master of Science in Applied Mathematics

San Diego State University, 2010

Substitution boxes (aka S-boxes) are the only nonlinear part of a
substitution-permutation network as a cryptosystem. Without them, adversaries would
compromise the system with ease. Bent functions are a special kind of Boolean functions that
achieve maximum nonlinearity. Therefore, it is important to study bent functions since
S-Boxes are composed of highly nonlinear Boolean functions. Conventionally, researchers
study and analyze Boolean functions in their Algebraic Normal Form. In this work we use
cyclotomic cosets to construct nonlinear Boolean functions in their Univariate Polynomial
Form. We have three conjectures as our research results and we have found one order 4 bent
function with 8 variables. Finally, we analyze the new functions in terms of other design
criteria for S-boxes such as strict avalanche and bit independence.We have found a highly
nonlinear and balanced Boolean function with 6 variables that fulfills the design criteria and
therefore would be a good candidate for constructing an S-box.

vi

TABLE OF CONTENTS
PAGE

ABSTRACT . v

LIST OF TABLES. vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . ix

CHAPTER

1 INTRODUCTION AND BACKGROUND ON CRYPTOGRAPHY 1

1.1 What is a Cryptosystem? . 2

1.2 Where are S-boxes in a Cryptosystem? . 3

1.3 The Data Encryption Standard . 4

1.4 Contribution of This Thesis. 7

1.5 Overview of This Thesis . 8

2 BOOLEAN FUNCTIONS AND S-BOXES . 9

2.1 Preliminaries of Boolean Functions . 9

2.2 The Nonlinearity of Boolean Functions . 12

2.3 Design Criteria for a Good S-Box . 14

2.4 Constructing the S-Boxes . 15

3 BENT FUNCTIONS . 18

3.1 Properties of Bent Functions . 18

3.2 Classes of Bent Functions . 18

3.3 Constructing Bent Functions from Cyclotomic Cosets . 20

3.4 Highly Nonlinear Boolean Functions in Univariate Polynomial Form 21

3.5 Runs Test . 23

4 CONCLUSION AND FUTURE WORK . 26

BIBLIOGRAPHY . 27

APPENDICES

A TRUTH TABLE REPRESENTATION OF S-BOX 1 IN DES CRYPTOSYSTEM 29

B CYCLOTOMIC COSETS . 33

vii

LIST OF TABLES
PAGE

Table 1.1 The Navajo Alphabet Code Used During World War II by America’s
Army as Secret Communication. 2

Table 2.1 Evaluating All Possible Combinations of x1 and x2 with the Function f 9

Table 2.2 Evaluating All Possible Combinations of x1, x2, x3, and x4 with The
Function f . 10

Table 2.3 The Correspondence Between the Primitive Elements and Their 4-bit
Input Vectors of the Boolean Function with 4 Varibles and Minterms
with an Irreducible Polynomial of c4 + c+ 1 . 12

Table 2.4 Evaluating All Possible Combinations of x1 and x2 with All Linear
Functions of fi . 13

Table 2.5 The First S-box from the Date Encryption Standard Cryptosystem
with Hexadecimal Entries . 14

Table 2.6 The Partial Truth Table of S-box 1 in DES System. 16

Table 2.7 The Strict Avalanche Criterion of the Four Nonlinear Boolean Func-
tions from the S-box 1 of the DES . 17

Table 3.1 The Maximum Degree of Bent Functions in Univariate Polynomial
Form for n = 4, 6, 8, 10 . 20

Table 3.2 The Nonlinearity and Balance of Boolean Functions from Cyclotomic
Cosets for n = 4. 22

Table 3.3 The Nonlinearity and Balance of Boolean Functions from Cyclotomic
Cosets for n = 6. 22

Table 3.4 The Strict Avalanche Criterion of C5, C3, and C9 with n = 6 if Used
to Construct Boolean Functions . 23

Table 3.5 The P-values of Boolean Functions from S-box 1 and Cyclotomic Cosets 24

Table A.1 The Truth Table of S-box 1 in DES System . 30

viii

LIST OF FIGURES
PAGE

Figure 1.1 An Enigma machine with 3 rotors or scramblers used by the Germans
for secret communication. 1

Figure 1.2 An Substitution-Permutation Network with 4 S-boxes and 4 rounds. 5

Figure 1.3 One round of Date Encryption Standard and its function where the 8
S-boxes can be found.. 6

Figure 1.4 Data Encryption Standard algorithm and encryption process. 7

ix

ACKNOWLEDGEMENTS
I would like to thank my thesis committee, Professor Carmelo Interlando, Professor

Peter Blomgren, and Professor Carl Eckberg, for their time. Especially Professor Interlando, I
am grateful for his patience with me and his guidance.

Special thanks go to Verónica Requena. She has brought her expertise on Bent
functions and her connections with other scholars on the subject matter. Our collaboration has
advanced my knowledge and skills to analyze such interesting functions. I truly appreciate her
time and assistance.

Parts of chapter two in this thesis are from a class project that I had done with Bridget
Druken. Therefore I would also like to acknowledge her as well. I remember the countless
hours we were trying to learn and compile our LATEX files to create the presentation output. I
really appreciate her contribution, especially her knowledge of the painstaking LATEX
typesetting program.

Towards the end of my research, I was curious about any statistical analysis I could
use to test the bit independence of a Boolean function. Thanks to Dr. Barbara Bailey who
suggested the runs test, I have provided a statistical perspective on my studies also.

I would also like to show my gratitude to my fellow graduate students for their
supports and encouragements along my graduate studies. Their friendships are what I will
miss the most and hope to keep forever.

Of course I cannot forget my parents. Without them, I would not have finished my
degree. I truly appreciate my mom and dad taking great care of my kids while I am in school.

1

CHAPTER 1

INTRODUCTION AND BACKGROUND ON
CRYPTOGRAPHY

Cryptography is the study of hiding information. In other words, it is the study of
writing in secret code or encrypting information that you do not want others to know. From
ancient time to modern era, the ability to communicate secretly has been imperative,
especially during the time of war. Everyone has heard stories about the German’s Enigma
machine. Figure 1.1 shows a German Enigma machine with 3 scramblers [1].

Figure 1.1. An Enigma machine with 3 rotors
or scramblers used by the Germans for secret
communication.

To crack the code from the Enigma machine, one must know the scrambler
orientations, the scrambler arrangements, and which of the six pairs of letters are connected

2

by the plugboard cables. We had also used the American Indian language, Navajo, as
codewords during the World War II. Table 1.1 shows the Navajo alphabet code [2]. These two
are good examples of what cryptography is all about. Nevertheless, the mathematics behind
cryptography is what made this field even more fascinating.

Table 1.1. The Navajo Alphabet Code Used During World War
II by America’s Army as Secret Communication

A Ant Wol-la-chee N Nut Nesh-chee
B Bear Shush O Owl Ne-ahs-jsh
C Cat Moasi P Pig Bi-sodih
D Deer Be Q Quiver Ca-yeilth
E Elk Dzeh R Rabbit Gah
F Fox Ma-e S Sheep Dibeh
G Goat Klizzie T Turkey Than-zie
H Horse Lin U Ute No-da-ih
I Ice Tkin V Victor A-keh-di-glini
J Jackass Tkele-cho-gi W Weasel Gloe-ih
K Kid Klizzie-yazzi X Cross Al-an-as-dzoh
L Lamb Dibeh-yazzi Y Yucca Tsah-as-zih
M Mouse Na-as-tso-si Z Zinc Besh-do-gliz

1.1 WHAT IS A CRYPTOSYSTEM?
A cryptographic system or a cryptosystem is a system that allows two parties to

communicate securely. It contains five elements:

• a finite set of possible plaintexts.

• a finite set of possible ciphertexts.

• a finite set of possible keys.

• a set of encryption functions.

• a set of corresponding decryption functions.

We can represent it mathematically as follows:

Definition 1.1 Let P be the plaintext space, C the ciphertext space, and K the key space. Let

ek be the encryption function and dk be the decryption function. Then for each key k ∈ K,

there is an encryption function and a corresponding decryption function such that

dk(ek(x)) = x for every element x ∈ P . Each encryption function has to be injective since the

decryption must be done unequivocally.

3

A cryptosystem can be symmetric (private key cryptography) or asymmetric
(public-key cryptography). Symmetric key encryption uses the same key to encrypt and
decrypt the texts. Therefore, the key has to be private and the distribution of the key could
pose a security problem. Asymmetric key encryption solves this problem by having both a
public and a private key for each party in the communication system. Therefore, no secret key
exchange is necessary. Unlike the symmetric key encryption, the encryption function and the
decryption function in asymmetric key encryption are distinct. While it is relatively easy to
use the public key to encrypt messages, it is usually computationally infeasible to decrypt the
ciphertexts unless you have the private key.

Block and Stream Ciphers are the two main types of ciphers used in classical
cryptography. The difference between the two is the size of the plaintexts processed in each
encryption operation. Block ciphers encrypt the plaintexts in blocks of 64 or 128 bits. Stream
ciphers encrypt plaintexts one bit at a time. The distinction between these two types of ciphers
is not always clear. A stream cipher can be thought of as a block cipher with a very small
block size.

1.2 WHERE ARE S-BOXES IN A CRYPTOSYSTEM?
The focus of this thesis is on a type of cipher known as Substitution-Permutation

Network (SPN) where S-boxes are utilized to provide the only nonlinear part of the
cryptosystem. SPN is a private key cryptosystem. It is a block cipher and will consist of a
number of rounds or stages. In a SPN, plaintexts and ciphertexts are both represented by
binary vectors of certain length. The two components of a SPN are πs and πp. Each
permutation πs is what we call an S-box. It replaces a set of input bits with a different set of
bits known as its output bits. We now formally define the SPN cryptosystem:

Definition 1.2 Let πs and πp be the permutation functions such that πs : {0, 1}l → {0, 1}l

and πp : {1, · · · , lm} → {1, · · · , lm} where l and m are positive integers, lm is the block

length of the cipher, m is the number of S-boxes in the SPN and l is the number of input bits

per S-box. Therefore, P = C = {0, 1}lm. Let K be the initial key and using the key scheduling

algorithm, we can form a key schedule (K1, · · · , KNr+1) where Nr is the number of rounds

in SPN and Ki ∈ {0, 1}lm.

Let ~A = (x1, · · · , xlm) be the plaintext block of length lm, and let wr be the state at
round r:

4

w0 = ~A,

w0 +K1 = u1,

πs(u
1) = v1,

πp(v
1) = w1.

Let Nr be the number of rounds of a SPN. The process is repeated for Nr rounds, for
any particular round r:

wr−1 +Kr = ur,

πs(u
r) = vr,

πp(v
r) = wr.

The ciphertext ~B = (y1, · · · , ylm) is produced at the last round:

wNr−1 +KNr = uNr,

πs(u
Nr) = vNr,

πp(v
Nr) = wNr,

~B = wNr +KNr+1.

Figure 1.2 illustrates the SPN for four rounds with key length of 32 bits and subkey
length of 16 bits. It uses four S-boxes. The same S-boxes are used again during each round.
Each S-box maps four bits to four bits. It serves us well as an example but in reality, this
example would not be secure enough. The key length is small enough to perform an
exhaustive key search and therefore break the system. In the following section, we will see an
example of a real SPN, namely, the Data Encryption Standard (DES) cryptosystem.

1.3 THE DATA ENCRYPTION STANDARD
The algorithm of the DES cryptosystem was designed and developed by an IBM team

during the mid 1970’s. In 1977, it was adopted as the national standard by the National
Institute of Standard and Technology (NIST). The complete description of DES including the
implementation of the system can be found in Federal Information Processing Standards
Publication Series 46 [3]. Single DES is no longer considered secure. In FIPS publication
46-3, dated October 25, 1999, Triple Data Encryption Algorithm (TDES) is mentioned to
replace single DES. Advanced Encryption Standard (AES) is to coexist with TDES and is
believed to provide strong cryptographic security of sensitive information well into the 21st
century.

5

Figure 1.2. An
Substitution-Permutation Network
with 4 S-boxes and 4 rounds.

DES is a special type of iterated cipher called Feistel cipher. It is a 16-round SPN with
a block length of 64 bits. Its key size is 56 bits and 16 round keys of 48 bits are formed from
the 56-bit key to be used in DES 16 rounds. There is a fixed initial permutation applied to the
plaintext before the first round and an inverse of it is applied after the last round to obtain the
ciphertext.

Figure 1.3 shows one round of DES encryption. The plaintext is divided into two
halves, 32 bits each. The right half would become the left half of the next round. The right
half would expand from 32 bits to 48 bits through an expansion function:
f : {0, 1}32 × {0, 1}48 → {0, 1}32 where the nonlinearity of the cryptosystem is located and
S-boxes are found. Then it is added to the 48-bit round key. It results in eight 6-bit strings in
order to go through the eight S-boxes in the DES. Each S-box takes the 6-bit string and output
a 4-bit string, i.e. πs : {0, 1}6 → {0, 1}4. The eight 4-bit strings then permuted with the
permutation function P and resulting in 32 bits. Now we add the left half of the round to
produce the right half of the next round.

6

32 bits

32 bits

48 bits

f

+

32 bits

32 bits

(a) 3a. One round of DES.

 32 bits

E () 48 bits

E

+

 48 bits

P

f () 32 bits

(b) 3b. The 8 S-boxes within the function.

Figure 1.3. One round of Date Encryption Standard and its function where the 8
S-boxes can be found.

To represent the whole DES system mathematically, let IP be the fixed initial
permutation and IP−1 be the inverse permutation. Let L and R denote the left and right size of
the block cipher, with Li and Ri be the i state of the DES. Ki represents the i round key used
in a round i where i = 1, · · · , 16. Then we can produce each round of cipher block of 64 bits
as follow:

IP(x) = L0R0,

Li = Ri−1,

Ri = Li−1 ⊕ f(Ri−1, Ki).

After 16 rounds, we can obtain the ciphertext:

y = IP−1(R16L16).

Figure 1.4 summarizes the DES algorithm and shows the encryption process [3]. The
Triple DES encrypts each 64-bit block three times with two or three keys using the DES
algorithm, therefore increasing the key size from 56 bits to 112 or 168 bits. The Advanced
Encryption Standard (AES) is very similar to the SPN that have mentioned before. It has
block size of 128 bits, allowable key sizes are 128, 192, and 256 bits. Depends on the key

7

Figure 1.4. Data Encryption Standard algorithm and
encryption process.

sizes, its number of round is 10, 12, and 14 respectively. The only difference is it has an
additional linear transformation in each round. It has only one S-box, taking a 8 bits input and
outputting 8 bits also.

Nonetheless, it is not the focus of this thesis to further discuss these cryptosystems and
their algorithms. Now that we know where S-boxes are located and how they are utilized in a
cryptosystem, we will see in details how S-boxes work in the next Chapter.

1.4 CONTRIBUTION OF THIS THESIS
As we can see, S-boxes are a very important component to a cryptosystem. In order to

design cryptographically good S-boxes, we must study the criteria and the mathematical
functions called Boolean functions, behind them. This thesis has provided an overview of
these criteria and the study of the Boolean functions in its Univariate Polynomial Form. While
many of the criteria have conflicting nature, the most important one is the nonlinearity of the
function. During our research, we have found a way to identified good candidate Boolean
functions to construct such S-boxes. Nevertheless, we want the output vectors of the functions
to demonstrate none statistical pattern. This thesis has also utilized a statistical inference
analysis for this matter.

8

1.5 OVERVIEW OF THIS THESIS
Chapter 1 provides necessary background on cryptography and the cryptosystem that

contains S-boxes.
In Chapter 2, we will explore more on S-boxes and how they are designed. We will

introduce the Boolean functions, their general properties, and how they are responsible for the
S-boxes.

In Chapter 3, we present the subset of Boolean functions called bent functions. Since
they achieves maximum nonlinearity, much attention has been given to them. Many have
studied extensively on bent functions, trying to apply them to the construction of S-boxes. We
will present some of our research results here. Our research objective is to construct bent
functions in its univariant polynomial form.

Chapter 4 is the conclusion of the thesis. The last chapter will also suggest some of the
future work that could be done on the design of S-boxes.

9

CHAPTER 2

BOOLEAN FUNCTIONS AND S-BOXES

Recall from the previous chapter that the DES S-boxes are represented by a function
f : {0, 1}6 → {0, 1}4. This function is called a Boolean function. In this chapter, we will
discuss and try to understand these functions before we explain further on the design of
S-boxes.

2.1 PRELIMINARIES OF BOOLEAN FUNCTIONS

Definition 2.1 A Boolean function is a map f : {0, 1}n → {0, 1}m. For simplicity, we will

assume m = 1. Then the function can be represented as a binary vector ~f of length 2n where
~f is the rightmost column of the truth table describing the function.

We denote the set of all Boolean functions as Bn,m and Bn when m = 1. There exist
22n functions in the set of Bn [4]. The truth table is constructed with 2n rows and n columns.
The rows list all possible combinations of n bits. For example, when n = 2, we have 4 rows
and 2 columns. The rightmost column is the output vector from a Boolean function. We will
call this a Boolean vector. Table 2.1 has demostrated the truth table of a Boolean function:
f : {0, 1}2 → {0, 1}.

Table 2.1. Evaluating All Possible Combinations of x1 and x2 with the
Function f

x1 x2
~f

0 0 1
0 1 1
1 0 0
1 1 0

Note that thef is a linear function. Although the truth table is the most common way
to express Boolean functions, there are other ways to represent a Boolean function. They are:
Algebraic Normal Form (ANF), minterms, and Univariate Polynomial Form (UPF).

In ANF, we represent a Boolean function as a polynomial in F2[x1, · · · , xn] with its
bitwise sum of its input bits. For example, the ANF representation of Table 2.1 will be

f(x1, x2) = x1 ⊕ 1.

10

Let us look at another example, say n = 4,:

f(x1, x2, x3, x4) = x1x2 ⊕ x3x4.

We say that the order (or the degree) of the above function is 2. The order of Boolean
functions in ANF is equal to the maximum number of input variables in one single term.
When we have the ANF of a Boolean function, we can always construct the truth table to
obtain the Boolean vector. Table 2.2 shows the turth table for the function.

Table 2.2. Evaluating All Possible Combinations of x1, x2, x3, and x4 with The
Function f

x1 x2 x3 x4
~f

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

To represent the Boolean function in minterms, let us first understand and define a
minterm. Let a = (a1, a2, · · · , an), x = (x1, x2, · · · , xn), where both a and x are ∈ Zn

2 [4] [5].
Then the minterm ma can be expressed as

ma(x) = (1⊕ a1 ⊕ x1)(1⊕ a2 ⊕ x2) · · · (1⊕ an ⊕ xn).

We also know that ma(x) = 1 if and only if x = a. Therefore, we can describe a
Boolean function f(x) =

∨
a∈f−1(1)ma(x) where

∨
represents the operation of logical

disjunction. Sometimes, it is enough to just specify f−1(1) [4]. Again, once the minterms are
known, the truth table can be constructed.

To describe the same Boolean function as in Table 2.1, we would say, the Boolean
function has m0 and m1. When you have a Boolean function with 4 variables, there are

11

24 = 16 possible minterms. From Table 2.2, we can describe the Boolean function with
minterms, m3, m7, m11, m12, m13, and m14. Each minterm is corresponded with each row in
the truth table.

In an UPF, the Boolean function is represented in a finite field, more specifically, the
Galois field with 2n elements. The UPF of a Boolean function is:

f(x) =
2n−1∑
i=0

aix
i,

where ai ∈ GF (2n) = {0, c, c2, · · · , c2n−1} and c ∈ F2n . F2n is a primitive element. For
example, the Boolean function of 4 variables: f(x) = x1x2 + x3x4 can be expressed as:

f(x) = c3x12 + c5x10 + c6x9 + c9x6 + c10x5 + c12x3.

The following equation allows us to convert ANF to UPF:

f(x) =
∑
c∈F2n

f(c)× (1 + (x+ c)2n−1).

For the above Boolean function with 4 variables, the conversion is done in the
GF (24). The primitive element c is defined by c4 + c+ 1. Then,

c4 ≡ c+ 1,

c5 ≡ c2 + c,

c6 ≡ c3 + c2,

c7 ≡ c4 + c3 ≡ c3 + c+ 1,
...

...
...

To see the correspondence between the primitive elements and their 4-bit input vectors
and minterms of the Boolean function, we know,

0 (0000) m0,

1 (1000) m8,

c (0100) m4,

c2 (0010) m2,

c3 (0001) m1,

and the rest of the primitive elements are defined in Table 2.3.
As we mentioned before, the Boolean function has minterms: m3, m7, m11, m12, m13,

and m14. Accordingly,

f(c6) = 1, f(c11) = 1, f(c13) = 1,

f(c4) = 1, f(c7) = 1, f(c10) = 1.

12

Table 2.3. The Correspondence Between the Primitive Elements and Their
4-bit Input Vectors of the Boolean Function with 4 Varibles and Minterms
with an Irreducible Polynomial of c4 + c+ 1

c0 c1 c2 c3 minterm
c4 1 1 0 0 m12

c5 0 1 1 0 m6

c6 0 0 1 1 m3

c7 1 1 0 1 m13

c8 1 0 1 0 m10

c9 0 1 0 1 m5

c10 1 1 1 0 m14

c11 0 1 1 1 m7

c12 1 1 1 1 m15

c13 1 0 1 1 m11

c14 1 0 0 1 m9

Now the conversion is almost complete. Using the formula, we have the following
function in UPF,

f(x) = 1 + (x+ c6)15 + 1 + (x+ c11)15 + 1 + (x+ c13)15

1 + (x+ c4)15 + 1 + (x+ c7)15 + 1 + (x+ c10)15,

and it results in the following UPF after expansion:

f(x) = c3x12 + c5x10 + c6x9 + c9x6 + c10x5 + c12x3.

We have used this coversion throughout our research.

2.2 THE NONLINEARITY OF BOOLEAN
FUNCTIONS

The output of a linear Boolean function can be described as a linear Boolean vector
just like the one in Table 2.1. The output of a nonlinear Boolean function can be described as
a nonlinear Boolean vector. There are a few more definitions we must know before we discuss
how S-boxes are constructed with nonlinear Boolean functions.

Definition 2.2 The Hamming weight (Hw) of a binary vector ~v is the number of 1’s in ~v.

Definition 2.3 The Hamming distance (Hd) between two binary vectors of equal length is the

number of places for which the corresponding entries are different.

For example, the Hamming distance between the two binary vectors x1 = (1, 1, 0, 0)

and x2 = (1, 0, 1, 0) is 2 since x1 and x2 differ in the second and third positions.

13

Notice that the relationship between Hamming weight and Hamming distance is

Hd(a, b) = Hw(a⊕ b),

where a and b are two binary vectors.

Definition 2.4 The nonlinearity of a function in the set Bn is defined as the minimum

Hamming distance between that function and every linear function in the set.

In general, the nonlinearity of a function f ∈ Bn is upper bounded by 2n−1 − 2
n
2
−1.

As an example, let f ∈ B2 and f : {0, 1}2 −→ {0, 1}. Note that the linear functions of the set
are:

f1(x1, x2) = 0, f2(x1, x2) = 1,

f3(x1, x2) = x1, f4(x1, x2) = x2,

f5(x1, x2) = x1 + 1, f6(x1, x2) = x2 + 1,

f7(x1, x2) = x1 + x2, f8(x1, x2) = x1 + x2 + 1.

When we evaluate each of the linear functions, we have the following Table 2.4:

Table 2.4. Evaluating All Possible
Combinations of x1 and x2 with All Linear
Functions of fi

x1 x2
~f1

~f2
~f3

~f4
~f5

~f6
~f7

~f8

0 0 0 1 0 0 1 1 0 1
0 1 0 1 0 1 1 0 1 0
1 0 0 1 1 0 0 1 1 0
1 1 0 1 1 1 0 0 0 1

Since ~f1, ~f2, · · · , ~f8 are linear Boolean vectors, and we know there is a total of 222

sequences of length 22, then there are 16− 8 nonlinear Boolean vectors.
We now show an example of finding the Hamming distance of a nonlinear vector in

order to find the nonlinearity of the vector. From the above table, we can see that the set of
nonlinear vectors gi = set of all vectors − linear vectors = { (0001), (0010), (0100), (1000),
(1110), (1101), (1011), (0111) } [6].

Let ~g1 be a nonlinear vector and ~g1 = (0001), we must take the Hamming distance
between ~g1 and each linear vector fi where i = (1, 2, · · · , 8). Hd(~g1) = {1, 3, 1, 1, 3, 3, 3, 1}.
Min(Hd(~g1)) = 1. The first element in Hd(~g1) is found by comparing the vector ~g1 = (0001) to
~f1 = (0000) and noting the number of places where the two vectors differ.

14

2.3 DESIGN CRITERIA FOR A GOOD S-BOX
What is an S-box then? Table 2.5 shows the first of the eight S-boxes in the DES

cryptosystem. One can look at the numbers or entries of the S-boxes and wonder how they are
generated. There are attempts to generate those numbers randomly and examine them against
the design criteria and guidelines set by the NIST. However, it might result in the construction
of weak S-boxes and therefore weaken the cryptosystem. A better and systematic way to
generate those entries in the S-boxes is by constructing a nonlinear Boolean function,
mapping n input bits to m output bits. A special set of Boolean functions named bent
functions can be used to achieve maximum nonlinearity. There are other criteria that must be
met in designing the S-boxes. By understanding how to create cryptographically good
S-boxes, new S-boxes can be used in the development of new private-key cryptosystems.

Table 2.5. The First S-box from the Date Encryption Standard
Cryptosystem with Hexadecimal Entries

S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

In the first S-box in the DES system in Table 2.5, we can see that there are 16 columns
and the columns are consisted of hexadecimal entries. If we construct a truth table, we will
have 6 input columns and 4 output columns of zeros and ones with 26 rows. The mapping of
the S-box is f : {0, 1}6 → {0, 1}4. Therefore, four highly nonlinear balanced Boolean
functions compose the S-box. The 6 input bits are split into two groups: the middle four bits
indicate the column of the S-box and the two bits on both sides indicate the row of the S-box.
We will explain more in details later on how the entries are generated by the four highly
nonlinear Boolean functions. But first, let us understand the design criteria of S-boxes.

In general, the following five design criteria must be met [7] [8] for Boolean functions
that responsible for a cryptographically good S-box:

1. Bijection requires a one-to-one and onto mapping from input vectors to output vectors
if the S-box is n by n bit. We will explain later how this criterion is achieved when an
S-box is n by m bit instead.

2. Strict avalanche criterion occurs if one input bit i is changed, each output bit will
change with probability of one half. Strict avalanche requires that if there are any slight
changes in the input vector, there will be a significant change in the output vector. To
achieve this effect, we will need a function that has a 50% dependency on each of its n
input bits.

15

3. Bit independence criterion or correlation-immunity requires that output bits act
independently from each others. In other words, there should not be any statistical
pattern or statistical dependencies between output bits from the output vectors.

4. Nonlinearity requires that the S-box is not a linear mapping from input to output. This
would make the cryptosystem susceptible to attacks [9]. If the S-box is constructed with
maximally nonlinear Boolean functions, it will give a bad approximation by linear
functions thus making a cryptosystem difficult to break.

5. Balance means that each Boolean vector responsible for the S-box has the same
number of 0’s and 1’s.

These criteria will meet most of the standards set by the National Institute of
Standards and Technology. Nevertheless, it is impossible to achieve all criteria to their full
potential. Their conflicting nature forces us to compromise some of the criteria. For example,
correlation immunity conflicts with high nonlinearity and maximum nonlinearity also
conflicts with balance [8].

2.4 CONSTRUCTING THE S-BOXES
In general when constructing an S-box, f : {0, 1}n → {0, 1}m, with a highly nonlinear

function, there are 2n rows with m columns. A function with its corresponding vector is said
to be highly nonlinear when the resulting vector yi from a function fi has a high Hamming
distance with all the linear vectors in the set of Bn. A truth table is made for the input vector
~x = (x1, · · · , xn). The input vector ~x is evaluated at each Boolean function, fi where
i = 1, ...,m. Each Boolean vector ~fi form the columns of the S-boxes. Therefore, an S-box is
comprised of m nonlinear Boolean vectors if the entries of the S-box are binary numbers.

From the earlier example, we see that the nonlinearity of function g1 is only 1.
However, we want the number to be as large as possible. We want to use functions that have a
high nonlinearity while still fulfilling all the other criteria at the same time.

Table 2.6 shows a partial truth table representation of the first S-box in the DES
cryptosystem. This truth table corresponds to Table 2.5. You can find the complete truth table
in Appendix A. Let us look at the first row of the table. When you convert the middle four
bits, to decimal, it is 0. When you convert the first and last bits to decimal, it is 0 also. The
input bits indicate a row 0 and column 0 entry of the S-box. (Note: All S-boxes start from row
0 and column 0 instead of 1.) The output bits are (1 1 1 0) on the first row of the truth table.
Its decimal representation is 14, which is the row 0 column 0 entry of the S-box.

Let’s look at another example, the second last row of the truth table has input bits (1 1
1 1 1 0). The middle four bits indicate column 15 and the remaining two bits points out to row
2 of the S-box. The entry of row 2 and column 15 of the S-box is 0, which corresponds to the
output bits of (0 0 0 0) on the second last row of the truth table.

16

Table 2.6. The Partial Truth Table of S-box 1
in DES System

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4

0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 1 1 1 1
...

...
...

...
...

...
...

...
...

...
1 1 1 1 0 0 0 1 0 1
1 1 1 1 0 1 0 1 1 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1

As mentioned before, y1, y2, y3, and y4 from the Table 2.6 are nonlinear Boolean
vectors. The Hamming weight of each of the four vectors is 32 (see Appendix A). Therefore
the four Boolean functions are highly nonlinear and balanced. According to [7], if a Boolean
function is highly nonlinear and it has a good avalanche (balanced functions has good
avalanche), then the function also fulfills the BIC. Now, let us now look at the SAC.

For SAC, it can be achieved if the Hamming weight of the bitwise sum of the Boolean
vector is 16 for n = 6 [7]. In general, a function satisfys the SAC when the Hamming weight
of the bitwise sum of the Boolean vector ~f of length 2n is equal to 2n−2. Using the algorithm
[7] proposed in their paper, we can calculate the Hamming weight of the bitwise sum of each
of the four Boolean vectors of the first S-box in the DES as follow:

Let’s ~f be a Boolean vector of 64 bits, & is the bitwise and operation, and ⊕ is the
bitwise sum (XOR) operation. All numbers are hexadecimal representation. The symbol�
represents right shift of the Boolean vector.

1. Hw{(~f & 0x00000000FFFFFFFF) ⊕ ((~f � 32) & 0x00000000FFFFFFFF)} = 16.

2. Hw{(~f & 0x0000FFFF0000FFFF) ⊕ ((~f � 16) & 0x0000FFFF0000FFFF)} = 16.

3. Hw{(~f & 0x00FF00FF00FF00FF) ⊕ ((~f � 8) & 0x00FF00FF00FF00FF)} = 16.

4. Hw{(~f & 0x0F0F0F0F0F0F0F0F) ⊕ ((~f � 4) & 0xF0F0F0F0F0F0F0F)} = 16.

5. Hw{(~f & 0x3333333333333333) ⊕ ((~f � 2) & 0x3333333333333333)} = 16.

6. Hw{(~f & 0x5555555555555555) ⊕ ((~f � 1) & 0x5555555555555555)} = 16.

17

If the Hw of each of the six calculations is equal to 16, we say the ~f has fulfilled the
SAC. Table 2.7 illustrates the above six calculations of the Boolean functions of the first
S-box of the DES.

Table 2.7. The Strict Avalanche Criterion of the Four Nonlinear
Boolean Functions from the S-box 1 of the DES

Boolean vectors f � 32 f � 16 f � 8 f � 4 f � 2 f � 1

~f1 16 18 15 16 20 20
~f2 26 18 15 18 17 18
~f3 18 18 19 14 20 16
~f4 14 18 13 18 18 17

You might wondering how about the bijection criterion. The mapping from six input
bits to four output bits is not bijective for each of the eight S-boxes in the DES. However, if
you look at each row of the S-boxes, you can see that the number 0 to 15 only appeares once.
It is designed in this particular way to prevent the differential cryptanalysis [9]. Moreover, not
all of the eight S-boxes are active in every round of the cryptosystem. The total number of
active S-boxes increases as the number of rounds increases [9] [10].

As we mentioned before, all criteria can not be attained to their maximum effect. But
[7] mentioned that a balanced function has a fairly good avalanche. Moreover, if a function is
highly nonlinear and have a faily good avalanche, the function is also fulfilled the BIC. He
also proposes an algorithm to achieve all of the criteria simultaneously by testing each
candidate Boolean function against each of the other criteria. The algorithm only deals with n
by n S-boxes. The S-boxes they have generated are only fairly good cryptographically. New
methods of generating cryptographically good S-boxes are always in demand.

18

CHAPTER 3

BENT FUNCTIONS

Since nonlinearity is an very important aspect of S-boxes, many have been studies
how to generate such S-boxes with highly nonlinear Boolean functions. Some start with a
balanced Boolean function and then increase its nonlinearity while trying to maintain other
criteria [11]. Others start with a highly nonlinear Boolean function, such as bent function, and
decrease its nonlinearity while balancing the bent function [12]. (Bent function is not
balanced by nature.) Therefore, construction of highly nonlinear Boolean functions such as
bent functions is a research problem. Finding a balanced and highly nonlinear Boolean
functions is even harder and more valuable for constructing S-boxes. In this chapter, we will
learn more about the bent functions and address this reaserch problem.

Definition 3.1 A bent function is a Boolean function which achieves maximum nonlinearity.

Let the bent function be defined as f : {0, 1}n → {0, 1}m where n is an even number. For

simplicity, we will assume m = 1.

3.1 PROPERTIES OF BENT FUNCTIONS
Let f(x) be a bent function of n variables, then the followings are some important

properties of bent functions [5]:

• f(x) is not balanced. It consists of 75% ones and 25% zeros or vice verse.

• The Hamming weight of the function is 2n−1 ± 2
n
2
−1.

• 1 + f is also a bent function of n variables.

• f(x) + f(a+ x) is balanced ∀a ∈ Zn
2 .

• The nonlinearity of the function equales to 2n−1 − 2
n
2
−1.

• The degree or order (in ANF form) is bounded by n
2

for n ≥ 4.

3.2 CLASSES OF BENT FUNCTIONS
One of the problems of studying bent functions is its vast space. For n = 2, there are 8

bent functions. For n = 4, there are 896 ent functions. In [5] all of the 896 bent functions have
been constructed. Therefore, we know all of the 896 bent functions in their ANF and minterm
representations. For n = 6, there are 5,425,430,528 bent functions [13]. It is a challenge to
enumerate and construct bent functions of higher dimension. Nevertheless, according to [14],
bent functions can be grouped into different equivalence classes by affine transformation.

19

Fuller listed 14 equivalence classes of bent functions with 8 variables and 46
equivalence classes of bent functions with 10 variables. We say that the two functions g(x)
and f(x) are belong to the same class if

g(~x) = (f(Ax+ b)),

where A is all invertible n by n matrices, and x and b are ∈ Zn
2

We can further differentiate the bent functions in ANF by their orders as follows [14]:

• for n = 6, we have 1 class of order two (quadratic) and 3 classes of order three (cubic);

• for n = 8, we have 1 class of order two, 3 classes of order three, and 10 classes of order
four;

• for n = 10, we have 1 class of order two, 7 classes of order three, 11 classes of order
four, and 27 classes of order five.

In fact, we know all the homogenous quadratic (order 2) bent functions in ANF for all
dimensions. We refer to these quadratic or order two bent functions as Class I and it is in the
form of:

f(x) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn.

Therefore, we can construct all bent functions in this form of all dimensions.
When we studied the bent functions of n variables in the UPF, the degree is also

bounded by n. Using the equation or transformation formula from ANF to UPF,

f(x) =
∑
c∈F2n

f(c)× (1 + (x+ c)2n−1).

We have converted almost all of the examples of bent functions listed by Fuller for
n = 4, 6, 8, 10. We have the following conjectures from our research.

Conjecture 3.1 Let M be the maximum degree of bent functions of n variables in the

Univariant Polynomial Form. Then M = 2n−1 + 2n−2 + · · · 2n−a for n ≥ 4, where a is the

order of the functions.

The number of terms in the equation is equaled to the order of the bent function in
ANF. For example, a bent function with 8 variables and has order 3 would have three terms.
Therefore M = 27 + 26 + 25 = 224. Table 3.1 listed the results on maximum degree of bent
functions in UPF according to their orders in ANF.

Conjecture 3.2 Let Modd be the maximum degree of odd ordered bent functions with n

variables and Meven be the maximum degree of even ordered bent functions with n variables.

Then Modd ≡ 8 (mod 12) and Meven ≡ 0 (mod 12).

20

Table 3.1. The Maximum Degree of Bent Functions in Univariate Polynomial Form
for n = 4, 6, 8, 10

Dimension Order 2 in ANF Order 3 in ANF Order 4 in ANF Order 5 in ANF
n = 4 12 - - -
n = 6 48 56 - -
n = 8 192 224 240 -
n = 10 768 896 960 992

Recall that the UPF of bent functions has coefficient ci. If we can perform an affine
transformation and leaving the equation with the variable x only, it will be useful when we
want to investigate the multiplicative complexity of the bent functions in the future. In [8] it
was concluded that complexity clearly pays a role in designing cryptographically good
S-boxes.

3.3 CONSTRUCTING BENT FUNCTIONS FROM
CYCLOTOMIC COSETS

Since all the bent functions of order 2 of all dimensions are known, as well as all the
bent functions of 4 variables are known, we are interested in constructing bent functions with
higher dimension and higher order. With studying the complexity of these functions in our
mind, we are toying with the idea of constructing these functions with cyclotomic cosets.

Definition 3.2 The operation of multiplying by 2 divides the integers modulus 2n − 1 into sets

called cyclotomic cosets modulus 2n − 1. The cyclotomic coset containing i is Ci = {i× 2j

(mod 2n − 1); j = 0, 1, 2, · · · }.

There are finitely many elements in each set and there is also a finite number of sets in
each dimension. These cyclotomic cosets are easy to construct and the elements in the set are
the exponents of the variable x in the function. (All cyclotomic cosets of n = 4 and n = 6 are
listed in Appendix B.) Once we have constructed the UPF of a Boolean function, we tested
each function using Property 4 of bent functions mentioned in Section 3.1 to see whether the
function is bent or not. Recall f(x) + f(a+ x) is balanced ∀a ∈ Zn

2 . In the case of UPF,
a ∈ F2n instead.

We have an interesting result. Using this method, we can also construct all
homogenous quadratic bent functions of all dimensions. The elements in those cyclotomic
cosets responsible for the bent functions share a common trait. Each element has two ones
when they are converted to binary numbers. In other words, the Hamming weight of these
elements is two when they are represented in their binary forms.

Our result is similar with [15] where the trace functions are involved. We state the
following research result:

21

Conjecture 3.3 Let n = 2k be the dimension of the homogenous quadratic bent functions.

Then f(x) =
k−1∑
i=0

x2(k+1)2
i

is a bent function.

We have tested up to n = 12 by converting from ANF to UPF. It is also consistent with
the maximum degree that we have proposed early. The exponents are never larger than Meven.
Suspecting the strong relationship between the Hamming weight of the elements in their
binary forms and the order of the bent functions, we further found that

f(x) = x15 + x30 + x60 + x120 + x135 + x195 + x225 + x240,

is an order 4 bent function with 8 variables. All the exponents have a Hamming weight of 4 in
their binary forms. You may notice that there are no coefficients ci in the function. It is
because cyclotomic cosets allow one to construct idempotents of degree up to 2n − 1. An
idempotent f(x) is a polynomial such that f(x)2 = f(x), therefore f(x) = 0 or 1. The
coefficients ci are mapped from F2n to 0 or 1.

Unfortunately, this is the only bent function we have found. We tested numerous other
possible bent functions and we were unable to found any more. We tested all elements in the
cyclotomic cosets up to n = 10. We selected a few to test in dimension 12, 14, and 16.
However, the number of cyclotomic cosets increases with dimension, and it becomes
computationally expensive as the dimension increases.

3.4 HIGHLY NONLINEAR BOOLEAN FUNCTIONS
IN UNIVARIATE POLYNOMIAL FORM

In practice, when we construct the S-boxes, we do not want an unbalanced Boolean
function. It is because a balanced Boolean function would give a fairly good avalanche and if
the function has near-maximally nonlinearity, then it would also fulfill the BIC [7].

Our disappointment quickly turned our focus on how to recognize a Boolean function
in UPF has high nonlinearity but not necessary maximum nonlinearity. Recall that the
function has to be balanced for all a ∈ F2n if it is a bent function. However, if the function is
balanced for most of the a’s, not necessary all a, we say the function is highly nonlinear. We
also asked such function will be balanced or not. We adjusted the algorithm that we used to
test whether a function is bent or not to give us the following information:

1. The number of a’s that would result in a balanced function

2. The numbers of 0’s and 1’s in the function.

Table 3.2 and Table 3.3 list the results for n = 4 and n = 6. We have tested all
cyclotomic cosets in these dimensions. For n = 4, the total number of a is 15. The elements

22

Table 3.2. The Nonlinearity and Balance of Boolean Functions from Cyclotomic Cosets for
n = 4

n = 4

cyclotomic cosets # of a’s resulted in Bal # of a’s resulted in Non-Bal # of 0’s # of 1’s
C1 0 15 8 8
C3 12 3 4 12

C5 (bent) 15 0 6 10
C7 9 6 8 8

in C5 can be used to construct the bent function. For n = 6, the total number of a is 63. The
elements in C9 can be used to construct the bent function.

Table 3.3. The Nonlinearity and Balance of Boolean Functions from Cyclotomic Cosets for
n = 6

n = 6

cyclotomic cosets # of a’s resulted in Bal # of a’s resulted in Non-Bal # of 0’s # of 1’s
C1 0 63 32 32
C3 60 3 40 24
C5 60 3 32 32
C7 0 63 50 14

C9(bent) 63 0 28 36
C11 27 36 32 32
C13 27 36 32 32
C15 15 48 40 24
C21 42 21 22 42
C23 0 63 32 32
C27 27 36 28 36
C31 18 45 32 32

As we can see, for n = 4, construction of Boolean function using C3 can produce a
highly nonlinear function since 80% of the a’s resulted in a balanced function. If we use C7,
we would have a balanced function but its nonlinearity perhaps is not as good as the C3. C5

can be used to construct a bent function since all a’s produced balanced function and the
function itself is not balanced.

For n = 6, we can find two highly nonlinear functions if the cosets are used to
construct the Boolean functions. If C5 is used, the Boolean function is also balanced. If C3 is
used, it will produce a non-balanced Boolean function. Once again, we can see all the a’s
used to test the C9 produced balanced function. Therefore, it can be used to construct the bent
function.

23

Furthermore, we want to see how these functions fulfill the SAC. Using the algorithm
we mentioned above in Section 2.4, we created the truth table after we converted the UPF to
ANF. We only created the truth table for C5, C3, and C9 for n = 6. The following Table 3.4
shows the SAC result.

Table 3.4. The Strict Avalanche Criterion of C5, C3, and C9 with n = 6 if
Used to Construct Boolean Functions

cyclotomic cosets f � 32 f � 16 f � 8 f � 4 f � 2 f � 1

C5 (bal) 16 16 20 12 16 11
C3(non-bal) 16 16 16 8 16 15
C9(bent) 16 16 16 16 16 20

We can see C9 has the best avalanche. The non-balanced Boolean function has a better
avalanche then the balanced one if they are both highly nonlinear. It confirms what we have
mentioned earlier. All criteria cannot be achieved fully and balanced function gives only fairly
good avalanche. [7] states that these functions should also fulfill the BIC. In the next section,
we will introduce a statistical method to test the BIC and verify the claim in [7].

3.5 RUNS TEST
As we mentioned before, the Boolean functions must also fulfill the BIC. We do not

want the Boolean vector to give any statistical information or pattern. In other words, we want
to make sure that each individual output bit is statistically independent. We also want to make
certain that there is no statistical dependencies between two or three or more output bits of the
Boolean vector. Runs Test from statistical inference can perform such test. Let us first define
Runs Test and the related statistical background.

The Runs Test can be used to test the hypothesis that the elements of the sequence are
mutually independent. It is a non-parametric statistical test that examines a randomness
hypothesis for a two-valued data sequence by taking the data in the given order. It is perfect to
use on our Boolean vectors since they are composed of two values, 0 and 1.

A run is defined as a group of successive values of one of the two-values in the data
sequence. In our case, runs are groups of successive values of 0 and 1. For example, the
vector ~a = (0,0,1,1,1,0,1,0,1,1,0,0) has seven runs; four of which contain 0’s and three of them
contain 1’s.

Let the number of runs in a data sequence be N . There are N0 runs that contain 0’s
and N1 runs contain 1’s. Therefore, N = N0 +N1. If 0’s and 1’s alternate randomly in the
data sequence, then N is a random variable whose conditional distribution, given there is N0

24

runs of 0’s and N1 runs of 1’s, is approximately normal with [16]

µ = E(N) = 2N0N1

N
+ 1,

σ2 = V ar(N) = (µ−1)(µ−2)
N−1

= 2N0N1(2N0N1−N0−N1)
N2(N−1)

.

The Null hypothesis, H0, states that all permutations of N0 and N1 have equal
probabilities. The alternative hypothesis states otherwise. Therefore, it is a two-sided
hypothesis testing. There are two more terms that need to be defined before we present the
results of the Runs Test of our Boolean functions.

1. P-value is the probability of observing test statistic this extreme or more extreme if the
null hypothesis is true. This value measures how much evidence you have against the
null hypothesis. Small p-value indicates the outcome measured from the sample data is
unlikely to happen if the null hypothesis is true. Small p-value also prompt us to reject
the null hypothesis with a predetermine significance level if the p-value ≤ significance
level.

2. Significance level is the decisive p-value we fix in advance. This states when the null
hypothesis should be rejected. It is also called type I error; the null hypothesis is true,
but we mistakenly reject the null hypothesis. If the p-value is smaller or equal to the
signficance level, we reject the null hypothesis.

Runs Test can be performed in R, the statistical software package. It has a default
setting of significance level = 0.05 which is commonly used in statistical inference. Since the
null hypothesis states that all permutations of N0 and N1 have equal probabilities, therefore
randomly distributed, we do not want to reject the null hypothesis. We want large p-value
which indicate that we do not have enough evidence to reject the null hypothesis and therefore
it stands.

The following Table 3.5 shows the results of the Runs Test on the four Boolean
functions which are responsible for the first S-box of DES and our Boolean functions from the
cyclotomic cosets with 6 variables.

Table 3.5. The P-values of Boolean Functions from S-box 1 and
Cyclotomic Cosets

S-box 1 Boolean functions P-value cyclotomic cosets (n = 6) p-value
f1 0.6143 C5 (bal) 0.3134
f2 0.6143 C3 (non-bal) 2.2 e-16
f3 0.801 C9 (bent) N \ A
f4 0.2077

As we can see from the table, the p-values of the four Boolean functions from the first
S-box are large and therefore according the the Runs Test, the 0’s and 1’s alternate randomly

25

with no particular statistical patterns. The C5 which can be used to construct a highly
nonlinear and balanced Boolean function also has a high p-value. However, we cannot reach
the same conclusion for C3 and C9. Therefore, it has verified the claim that highly nonlinear
and balanced (which give a good avalanche) function implies that the function also fulfills
BIC or correlation-immunity and C5 is a good candidate Boolean function for constructing an
S-box.

26

CHAPTER 4

CONCLUSION AND FUTURE WORK

It is important to study bent functions because of its maximally nonlinearity. However,
they are not balance. It is imperative to have a balanced and highly nonlinear Boolean
function since balancing a highly nonlinear function is not an easy task. It is even harder to
maintain the high nonlinearity while balancing the function. These functions are what we
desire for constructing S-boxes.

Using the cyclotomic cosets, we can construct all homogenous quadratic (order 2)
bent functions of all dimensions. We found one order 4 bent function with 8 variables.We
found a highly nonlinear and balanced Boolean function of 6 variables using C5 for
construction. It also fulfills other design criteria. We also found another highly nonlinear
Boolean function of 6 variables but it is not balance.

The next step of our research would be to gain a better understanding on the hill climb
[11] and modified hill climb method [12]. Therefore we can study how to balance a highly
nonlinear Boolean function while maintain the high nonlinearity.

Because of the vast space of bent functions in higher dimension, a better
computational power or algorithm is needed to test the cyclotomic cosets to see whether we
could utilize them to construct bent functions or highly nonlinear Boolean functions. We have
tested all cyclotomic cosets for n = 6 for construction of bent functions. We only selected a
few to test for n = 8, 10, and 12. More work needs to be done in this area.

Due to the statistical nature of analyzing the S-boxes, further investigation of different
statistical approaches besides the Runs Test will be helpful.

27

BIBLIOGRAPHY

[1] Cybertelecom Federal Internet Law & Policy An Educational Project. Crypto, 2010.
http://www.cybertelecom.org/security/crypto.htm, accessed March 2010.

[2] S. Singh. The Code Book. Anchor Books, New York, USA, 1999.

[3] National Institute of Standards and Technology (NIST). FIPS PUB 46-3: Data
Encryption Standard (DES), October 1999.

[4] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd., Teubner,
Stuttgart, 1987.

[5] J. Climent, F. Garcı́a, and V. Requena. On the construction of bent functions of n+ 2
variables from bent functions of n variables. Advances in Mathematics of
Communications, 2(4):421–431, 2008.

[6] C. Adams and S. Tavares. Generating and counting binary bent sequences. IEEE
Transactions on Information Theory, 36(5):1170–1173, September 1990.

[7] C. Adams and S. Tavares. The structured design of cryptographically good s-boxes.
Journal of Cryptology, 3(1):27–41, 1990.

[8] J. Cobas and J. Brugos. Complexity-theoretical approaches to the design and analysis of
cryptographical boolean functions. In Computer Aided Systems Theory–EUROCAST
2005, Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2005.

[9] D. Coppersmith. The data encryption standard and its strength against attacks. IBM
Journal of Research & Development, 38(3):243, May 1994.

[10] D. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC, Ontario,
Canada, third edition, 2006.

[11] W. Millan, A. Clark, and Ed Dawson. Boolean function design using hill climbing
methods. In ACISP ’99: Proceedings of the 4th Australasian Conference on Information
Security and Privacy, pages 1–11, London, UK, 1999. Springer-Verlag.

[12] Y. Izbenko, V. Kovtun, and A. Kuznetsov. The design of boolean functions by modified
hill climbing method. In TNG ’09: Proceedings of the 2009 Sixth International
Conference on Information Technology: New Generations, pages 356–361, Washington,
DC, USA, 2009. IEEE Computer Society.

[13] H. Dobbertin and G. Leander. Cryptographer’s toolkit for construction of 8-bit bent
functions. Cryptology ePrint Archive, Report 2005/089, 2005.
http://eprint.iacr.org/.

[14] J. Fuller. Analysis of Affine Equivalent Boolean Functions for Cryptography. PhD
thesis, Queensland Unversity of Technology, Brisbane, Australia, 2003.

[15] N. Yu and G. Gong. Quadratic bent functions of polynomial forms and their applications
to bent sequences. In 23rd Biennial Symposium on Communications, pages 128–131,

28

Kigston, Ontario, Canada, 2006.

[16] R. V. Hogg and E. A. Tanis. Probability and Statistical Inference. Prentice Hall, Upper
Saddle River, New Jersy, sixth edition, 2001.

29

APPENDIX A

TRUTH TABLE REPRESENTATION OF S-BOX 1
IN DES CRYPTOSYSTEM

30

TRUTH TABLE REPRESENTATION OF S-BOX 1
IN DES CRYPTOSYSTEM

Table A.1. The Truth Table of S-box 1 in DES System

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4

0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 0 1 1 1
0 0 0 1 1 0 0 0 0 1
0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 1 1 1 0
0 0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 0 0 1 0
0 0 1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1 0 1
0 0 1 1 1 0 1 0 0 0
0 0 1 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 1 1 0 1 0
0 1 0 0 1 0 1 0 1 0
0 1 0 0 1 1 0 1 1 0
0 1 0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1 0 0
0 1 0 1 1 0 1 1 0 0
0 1 0 1 1 1 1 0 1 1
0 1 1 0 0 0 0 1 0 1
0 1 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 0 0 1
0 1 1 0 1 1 0 1 0 1

(table continues)

31

Table A.1 (continued)

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4

0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 1 1
0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 1 1 0 0
1 0 0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0 0 0
1 0 0 1 1 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0
1 0 1 0 0 0 1 1 0 1
1 0 1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 1 1 0
1 0 1 0 1 1 1 0 0 1
1 0 1 1 0 0 0 0 1 0
1 0 1 1 0 1 0 0 0 1
1 0 1 1 1 0 1 0 1 1
1 0 1 1 1 1 0 1 1 1
1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 1 0 1 0 1
1 1 0 0 1 0 1 1 0 0
1 1 0 0 1 1 1 0 1 1
1 1 0 1 0 0 1 0 0 1
1 1 0 1 0 1 0 0 1 1
1 1 0 1 1 0 0 1 1 1
1 1 0 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 1 1
1 1 1 0 0 1 1 0 1 0
1 1 1 0 1 0 1 0 1 0
1 1 1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 1 0 1

(table continues)

32

Table A.1 (continued)

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4

1 1 1 1 0 1 0 1 1 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1

33

APPENDIX B

CYCLOTOMIC COSETS

34

CYCLOTOMIC COSETS

For n = 4:
C1 = {1,2,4,8}
C3 = {3,6,12,9}
C5 = {5,10}
C7 = {7,14,13,11}

For n = 6:
C1 = {1,2,4,8,16,32}
C3 = {3,6,12,24,48,33}
C5 = {5,10,20,40,17,34}
C7 = {7,14,28,56,49,35}
C9 = {9,18,36}
C11 = {11,22,44,25,50,37}
C13 = {13,26,52,41,19,38}
C15 = {15,30,60,57,51,39}
C21 = {21,42}
C23 = {23,46,29,58,53,43}
C27 = {27,54,45}
C31 = {31,62,61,59,55,47}

