\qquad

All work on this lab should be your own. The technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. Please be neat and show crucial steps to demonstrate your mastery of the information. This lab has 6 questions.

Section 1.3

1. Below are the graphs of several different linear functions.

(a) List the slopes $m_{1}, m_{2} m_{3}, m_{4}$ from smallest to largest.
\square
(b) List the y-intercepts $b_{1}, b_{2} b_{3}, b_{4}$ from smallest to largest.

2. A real estate agency has fixed monthly costs associated with rent, staff salaries, utilities, and supplies. It earns its money by taking a percentage commission on total real estate sales. During the month of July, the agency had total sales of $\$ 832,000$ and showed a net income (after paying fixed costs) of $\$ 15,704$. In August total sales were $\$ 326,000$ with a net income of only $\$ 523$. [Hint: Make two ordered pairs with this information.]
(a) Use function notation to express the net income, N, as a linear function of total sales, S.
(b) What is the value of the slope of the linear function? What is the meaning of the slope as it relates to the real estate agency?
\qquad
\qquad
\qquad
\qquad
(c) What is the value of the y-intercept? What meaning does the y-intercept have for the real estate agency?
\qquad
\qquad
\qquad
\qquad
3. Consider the graph of a circle that has diameter endpoints at $(-1,-6)$ and $(5,2)$.
(a) Find the equation of the circle.
\square
(b) Find the equation of the line that is tangent to the circle at the point $(5,2)$.
\qquad
(c) Graph the circle, radius, and tangent line.

Section 1.4

4. In the following parts, reference the graphs below.

(a) Graph of f

(c) Graph of h

(b) Graph of g

(d) Graph of k
(a) Which of the graph are function?
(b) Give the domain and range of
i. graph f
\square
ii. graph g
\square
iii. graph h
\square
iv. graph k
\square
5. A simple substitution in which each letter is replaced by a different letter can be thought of as a function f whose domain is the letters of the alphabet A, B, C, \ldots, Z. Suppose that the replacement is defined like so

$$
\begin{array}{llrlrl}
f(A) & =M, & f(B)=D, & f(C)=K, & f(D)=V, & f(E)=X \\
f(F)=B, & f(G)=P, & f(H)=T, & f(I)=J, & f(J)=S \\
f(K)=Z, & f(L)=Q, & f(M)=H, & f(N)=O, & f(O)=A \\
f(P)=L, & f(Q)=W, & f(R)=C, & f(S)=F, & f(T)=Y \\
f(U)=R, & f(V)=G, & f(W)=I, & f(X)=U, & f(Y)=N
\end{array}
$$

(a) What is $f(Z)$?
\square
(b) What value of x satisfies the equation $f(x)=Y$?
\square
(c) Assume that the relationship $f(x y)=f(x) f(y)$ holds true for this function. What would the expression $f(A O H M U N R C J)$ equal?
\square
6. The 2017 tax brackets can be expressed as a piecewise-defined function. Below is the piecewisedefined function, $T(I)$, where I is the taxable income and T is taxes owed, for an individual filing single with no deductions.

$$
T(I)= \begin{cases}0.1 I, & 0 \leq I<9,325 \\ 932.50+.15(I-9,325), & 9,325 \leq I<37,950 \\ 5,226.25+0.25(I-37,950), & 37,950 \leq I<91,900 \\ 18,713.75+0.28(I-91,900), & 91,900 \leq I<191,650 \\ 46,643.75+0.35(I-191,650), & 191,650 \leq I<416,700 \\ 120,910.25+0.35(I-416,700), & 416,700 \leq I<418,400 \\ 121,505.25+0.396(I-418,400), & I \geq 418,400\end{cases}
$$

(a) Use function notation to express how much a single person who makes $\$ 41,250$ during the year 2017 will owe in federal taxes.
\square
(b) Suppose that the United States used a flat-tax of 25% for all taxpayers, rather than the piecewise-defined function above. Compare and contrast the outcomes of $T(I)$ versus a the 25% flat-tax. Who would pay more in taxes? Who would pay less in taxes?
\qquad
\qquad
\qquad
\qquad

