
NTRU: A PUBLIC KEY CRYPTOSYSTEM

NTRU Cryptosystems, Inc. (www.ntru.com)

Jeff Hoffstein

Daniel Lieman

Jill Pipher

Joseph H. Silverman

Contents

0. Introduction

1. Description of NTRU

1.1. Notation

1.2. Key Creation

1.3. Encryption

1.4. Decryption

1.5. Why Decryption Works

1.6. Parameter choices - notation and a norm estimate

1.7. Sample spaces

1.8. A Decryption Criterion

2. Attributes and Advantages of NTRU

2.1. Theoretical Operating Speci�cations

2.2. Comparison With Other PKCS's

3. Security Considerations

3.1. Security Analysis

3.2. Brute force attacks

3.3. Meet-in-the-middle attacks

3.4. Multiple transmission attacks

3.5. Semantic security

3.6. Lattice based attacks

3.6.1. Lattice attack on an NTRU private key

3.6.2. Lattice attack on an NTRU message

3.6.3. Lattice attack on a spurious key

3.6.4. Experimental results

3.6.5. Zero-forced lattices

3.7. Practical Implementations of NTRU - Speci�c Parameter

Choices

4. Known Limitations and Disadvantages

5. Intellectual Property Issues

Typeset by AMS-TEX

1

2 NTRU CRYPTOSYSTEMS, INC.

0. Introduction

This purpose of this paper is to submit the NTRU public key cryptosystem for

consideration for inclusion into the P1363A standard. NTRU was originally pre-

sented by Je�rey Ho�stein in the rump session at CRYPTO '96, and was published

in [HPS] in 1998. Since that time, NTRU Cryptosystems, Inc. has issued a number

of technical reports. In some cases, these reports have described ampli�cations on

the techniques in [HPS] in order to deal with new attacks (e.g., to deal with issues

of plaintext awareness). In other cases, these reports have described fast algorithms

for carrying out some of the computations required by NTRU. In this document, we

have freely copied from [HPS] and other NTRU Cryptosystems, Inc. publications

whenever appropriate. Although we have attempted to make this present document

self-contained, at times we defer to the original documents and other references for

detailed explanations and discussions. NTRU Cryptosystems, Inc. has also pre-

pared documentation for NTRU in the P1363 format; this present paper does not

include that documentation, since it is not structured in a manner appropriate for

the P1363A call for submissions. In keeping with the format speci�ed for P1363A

submissions, we defer until Section 2 a discussion of the advantages of NTRU.

1. Description of NTRU

NTRU is based on the algebraic structures of certain polynomial rings. The

\hard problem" on which NTRU is based is the Short Vector Problem (�nding a

short vector in a lattice); this is discussed in much more detail in Section 3.6.

1.1 Notation. Before we proceed, we set some notation. The following are all

part of the domain parameters for an implementation of NTRU.

n The dimension of the poynomial ring used in NTRU. (The polynomials

will have degree n� 1.)

p A positive integer specifying a ring Z=pZ over which the coe�cients of

a certain product of polynomials will be reduced during the encryption

and decryption processes

q A positive integer specifying a ring Z=qZ over which the coe�cients of

a certain product of polynomials will be reduced during the encryption

and decryption processes; also used in the construction of the public

key.

k A security parameter which controls resistance to certain types of at-

tacks, including plaintext awareness.

df The distribution of the coe�cients of the polynomial f , below (f is part

of the private key).

dg The distribution of the coe�cients of the polynomial g, below (g is used

to construct the public key).

dr The number of 1s and �1s used in a certain random polynomial r,

below, in the encryption process.

We will also use the following notation.

f A polynomial in Z[X]=(xn� 1).

fp A polynomial in Z[X]=(p;Xn�1) (this is part of the private key). This

polynomial is obtained by reducing the coe�cients of f modulo p.

NTRU: A PUBLIC KEY CRYPTOSYSTEM 3

fq A polynomial in Z[X]=(q;Xn � 1). This polynomial is obtained by

reducing the coe�cients of f modulo q.

Lf The set of polynomials in Z[X]=(xn� 1) whose coe�cients satisfy df

g A polynomial in Z[X]=(q;Xn�1) (used with fq to construct the public

key).

Lg The set of polynomials in Z[X]=(xn� 1) whose coe�cients satisfy dg.

Lr The set of polynomials in Z[X]=(xn� 1) whose coe�cients satisfy dr.

f�1p The inverse of fp in Z[X]=(p;Xn� 1).

f�1q The inverse of fq in Z[X]=(q;Xn� 1).

h The public key, a polynomial in Z[X]=(q;Xn� 1).

r A polynomial in Z[X]=(q;Xn� 1) (used with h to encode a message).

m The plaintext message, a polynomial in Z[X]=(p;Xn� 1).

e The encrypted message, a polynomial in Z[X]=(q;Xn� 1).

G A generating function (de�ned below).

H A hashing function (de�ned below).

Throughout this paper, we work in the ring R = Z[X]=(xn � 1). An element

f 2 R will be written as a polynomial or a vector,

f =

n�1X
i=0

fix
i = [f0; f1; : : : ; fn�1]:

We write~ to denote multiplication in R. This star multiplication is given explicitly

as a cyclic convolution product,

f ~ g = h with hk =

kX
i=0

figk�i +

n�1X
i=k+1

fign+k�i =
X

i+j�k mod n

figj:

When we do a multiplication modulo (say) q, we mean to reduce the coe�cients

modulo q, so the result lies in Z[X]=(q;Xn� 1).

Remark. The naive computation of a product f ~ S requires n2 multiplications.

However, in a typical product used by NTRU, one of f or g has small coe�cients

that are all 0's and �1's, so f ~ g may be computed extremely rapidly. Further,

for large values of n one may choose n to be highly divisible by 2, in which case

the convolution product can be computed in O(n logn) operations by using Fast

Fourier Transforms.

In addition to this convolution product, there are two other operations we need

to de�ne on rings of polynomials. These are a generating function and a hashing

function. They are required in order to build a digital envelope into the NTRU

protocol. We �rst let

Pp(n) = fpolynomials of degree at most n� 1 with mod p coe�cientsg;

and we will write

[g]p =

�
g with its coe�cients reduced

modulo p into the range (�p=2; p=2].

4 NTRU CRYPTOSYSTEMS, INC.

We may now describe more precisely what we mean by a generating function G

and a hashing function H,

G : Pp(N) �! Pp(N) and H : Pp(N)� Pp(N) �! Pp(K):

These should be easy to compute, highly non-linear, and unpredictable. There are

numerous examples of such functions, constructed out of shifts and other primitive

operations, in the literature .

The NTRU PKC digital envelope depends on the choice of the functions G andH,

and on an integer k. The probability of forging a valid ciphertext will be p�k.

Remark. The original presentation of NTRU [HPS] did not suggest the use of a

digital envelope (i.e., in the present discussion, both G and H would be functions

which, no matter what the input, produce an output of 0). This provides an insecure

digital envelope, as described in [NT7] (cf. [BKS]).

1.2 Key Creation. To create an NTRU key, Bob randomly chooses 2 polynomials

f 2 Lf and g 2 Lg. The polynomial f must satisfy the additional requirement that

it have inverses modulo q and modulo p. For suitable parameter choices, this will

be true for most choices of f (see [NT9]), and the actual computation of these

inverses is easy using a modi�cation of the Euclidean algorithm (see [NT1, NT14]

for details). As noted above, we will denote these inverses by f�1q and f�1p , that is,

(1) f�1q ~ f � 1 mod q and f�1p ~ f � 1 mod p:

Bob next computes the quantity

(2) h � pf�1q ~ g mod q:

Bob's public key is the polynomial h. Bob's private key is the polynomial f , al-

though in practice he will also want to store f�1p . For an extremely e�cient algo-

rithm to compute f�1p and f�1q , please see [NT14]; for an e�cient algorithm for

multiplication, please see [NT10].

1.3 Encryption. We now describe how Alice wraps and sends a message to Bob

using Bob's NTRU public key h. Alice chooses her plaintext m from the set

m 2 Pp(n� k):

She also chooses a random polynomial r 2 Lr: She computes

e � r ~ h+
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

(mod q):

Alice then sends e to Bob.

1.4 Decryption. Suppose that Bob has received the message e from Alice and

wants to decrypt it using his private key f . To do this e�ciently, Bob should have

precomputed the polynomial f�1p described in Section 1.1.

In order to decrypt e, Bob �rst computes the temporary polynomial a by

a � f ~ e mod q;

NTRU: A PUBLIC KEY CRYPTOSYSTEM 5

where he chooses the coe�cients of a in the interval from �q=2 to q=2. Now

treating a as a polynomial with integer coe�cients, Bob computes the temporary

polynomial t 2 Z[X]=(p;Xn� 1) by

t = f�1p ~ a (mod p);

further computes the two temporary quantities

b � e� t (mod p) and c � t�G(b) (mod p);

and then writes c in the form

c = c0 + c00Xn�k with deg(c0) < n� k and deg(c00) < k.

(Note that the quantity b is supposed to play the role of [r � h]p.) Finally, he

compares the quantities

c00 and H(c0; b):

If they are the same, he accepts c0 as a valid decryption. Otherwise he rejects the

message as invalid.

Remark. For appropriate parameter values, there is an extremely high probability

that the decryption procedure will recover the original message. However, some

parameter choices may cause occasional decryption failure, so one should probably

include a few check bits in each message block. The usual cause of decryption failure

will be that the message is improperly centered. In this case Bob will be able to

recover the message by choosing the coe�cients of a � f ~ e mod q in a slightly

di�erent interval, for example from �q=2+ x to q=2+ x for some small (positive or

negative) value of x. If no value of x works, then we say that we have gap failure

and the message cannot be decrypted as easily. For well-chosen parameter values,

this will occur so rarely that it can be ignored in practice.

1.5 Why Decryption Works. The polynomial a that Bob computes satis�es

a � f ~ e

� f ~ r ~ h+ f ~
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p
(mod q)

= f ~ pr ~ f�1q ~ g + f ~
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

mod q

from (1),

= pr ~ g + f ~
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

mod q

from (2).

Consider this last polynomial. For appropriate parameter choices, we can ensure

that (almost always) all of its coe�cients lie between �q=2 and q=2, so that it

doesn't change if its coe�cients are reduced modulo q. This means that when Bob

reduces the coe�cients of f ~ e modulo q into the interval from �q=2 to q=2, he

recovers exactly the polynomial

a = pr ~ g + f ~
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

in R.

6 NTRU CRYPTOSYSTEMS, INC.

Reducing a modulo p then gives him the polynomial

f ~
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

in R,

and then multiplying by f�1p produces

t = m+H(m; [r ~ h]p)X
n�k +G([r ~ h]p) in Z[X]=(p;Xn� 1).

Thus when Bob computes b = e � t above, he is really recovering b = r ~ h:

Therefore his computation of c yields

c = m+H(m; [r ~ h]p)X
n�k:

Accordingly, c0 is the original message m, and c00 should match up with the hash

H(m; [r ~ h]p) = H(m; b), as noted above.

1.6 Parameter choices - notation and a norm estimate. We de�ne the width

of an element f 2 R to be

jf j
1

= max
0�i�n�1

ffig � min
0�i�n�1

ffig:

As our notation suggests, this is a sort of L1 norm on R. Similarly, we de�ne a

centered L2 norm on R by

jf j2 =

�n�1X
i=0

(fi � �f)2
�1=2

; where �f =
1

n

n�1X
i=0

fi:

(Equivalently, jf j2 =
p
n is the standard deviation of the coe�cients of F .) The

following proposition was suggested to us by Don Coppersmith.

Proposition. For any " > 0 there are constants 1; 2 > 0, depending on " and N ,

such that for randomly chosen polynomials f; g 2 R, the probability is greater than

1� " that they satisfy

1 jf j2 jgj2 � jf ~ gj
1
� 2 jf j2 jgj2 :

Of course, this proposition would be useless from a practical viewpoint if the ratio

2=1 were very large for small "'s. However, it turns out that even for moderately

large values of N and very small values of ", the constants 1; 2 are not at all

extreme. We have veri�ed this experimentally for a large number of parameter

values.

1.7 Sample spaces. The space of messages Lm consists of all polynomials mod-

ulo p. Assuming p is odd, it is most convenient to take

Lm =

(
m 2 R : m has coe�cients lying between �

1

2
(p� 1) and

1

2
(p� 1)

and has degree at most n� k � 1

)
:

NTRU: A PUBLIC KEY CRYPTOSYSTEM 7

To describe the other sample spaces, we will use sets of the form

L(d1; d2) =
n
f 2 R : f has d1 coe�cients equal 1,

d2 coe�cients equal �1, the rest 0

o
:

With this notation, we choose three positive integers df ; dg; dr and set

Lf = L(df ; df � 1); Lg = L(dg; dg); and Lr = L(dr; dr):

(The reason we don't set Lf = L(df ; df) is because we want f to be invertible,

and a polynomial satisfying f(1) = 0 can never be invertible.) Notice that f 2 Lf ,
g 2 Lg, and r 2 Lr have L

2 norms

jf j2 =
q
2df � 1� n�1; jgj2 =

p
2dg; jrj2 =

p
2dr:

Later we will give values for df ; dg; dr that allow decryption while maintaining

various security levels.

1.8 A Decryption Criterion. To ease notation, we let

m0 =
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

be the polynomial used by Alice for encryption. (That is, e � r ~ h+m0 mod q.)

In order for the decryption process to work, it is necessary that

jf ~m0 + pr ~ gj
1
< q:

We have found that this will virtually always be true if we choose parameters so

that

jf ~m0j
1
� q=4 and jpr ~ gj

1
� q=4;

in view of the above Proposition, this suggests that we take

(3) jf j2 jmj2 � q=42 and jrj2 jgj2 � q=4p2

for a 2 corresponding to a small value for ". For example, experimental evidence

suggests that for N = 167 and N = 503, appropriate values for 2 are 0:27 and

0:17 respectively.

2. Attributes and Advantages of NTRU

Compared to other public key cryptosystems at roughly equivalent levels of se-

curity, NTRU o�ers:

� more e�cient encryption and decryption, in both hardware and software im-

plementations;

� much faster key generation, allowing the use of \disposable" keys (because

keys are computationally \cheap" to create).

8 NTRU CRYPTOSYSTEMS, INC.

2.1 Theoretical Operating Speci�cations. In this section we consider the

theoretical operating characteristics of the NTRU PKCS. There are four integer

parameters (n; p; q; k), four sets Lf ;Lg;Lr;Lm determined respectively by inte-

gers df ; dg; dr; p as described in Sections 1.1 and 1.7. The following table summa-

rizes the NTRU PKCS operating characteristics in terms of these parameters.

Plain Text Block (n� k) log2 p bits

Encrypted Text Block n log2 q bits

Encryption Speed� O(n2) operations

Decryption Speed O(n2) operations

Message Expansion�� n
n�k

logp q-to-1

Private Key Length 2n log2 p bits

Public Key Length n log2 q bits
� Precisely, 4n2 additions and N divisions by q with remainder
�� May be reduced, see section 4

2.2 Comparison With Other PKCS's. There are currently a number of public

key cryptosystems in the literature, including:

� the RSA cryptosystem of Rivest, Shamir, and Adelman [RSA] based on the

di�culty of factoring large integers;

� the ElGamal cryptosystem, based on the di�culty of solving the discrete loga-

rithm problem in the multiplicative group of a �eld;

� various elliptic curve cryptosystems (ECC), based on the di�culty of solving the

discrete logarithm problem in the group of points on an elliptic curve;

� the McEliece cryptosystem [MCEL] based on error correcting codes;

� lattice based cryptosystems such as those of Atjai-Dwork [AD] and Goldreich,

Goldwasser, and Halevi [GHH], based on the di�culty of �nding short almost-

orthogonalized bases in a lattice.

The NTRU system has some features in common with McEliece's system, in that

~-multiplication in the ring R can be formulated as multiplication of matrices (of

a special kind), and then encryption in both systems can be written as a matrix

multiplication E = AX+Y , where A is the public key. A minor di�erence between

the two systems is that for an NTRU encryption, Y is the message and X is a

random vector, while the McEliece system reverses these assignments. But the real

di�erence is the underlying trap-door that allows decryption. For the McEliece

system, the matrix A is associated to an error correcting (Goppa) code, and de-

cryption works because the random contribution is small enough to be \corrected"

by the Goppa code. For NTRU, the matrix A is a circulant matrix, and decryption

depends on the decomposition of A into a product of two matrices having a special

form, together with a lifting from mod q to mod p.

As far as we can tell, the NTRU system has little in common with the RSA

system. Similarly, although the NTRU system must be set up to prevent lattice

reduction attacks, its underlying decryption method is very di�erent from the AD

and GGH cryptosystems, in which decryption is based on knowledge of short lattice

bases. In this aspect, the AD and GGH systems actually resembles the McEliece

system, since in both cases decryption is performed by recognizing and eliminating

NTRU: A PUBLIC KEY CRYPTOSYSTEM 9

a small random contribution. Contrasting this, NTRU eliminates a much larger

random contribution via divisibility (i.e., congruence) considerations.

Another di�erence of vital practical importance between AD/GHH and NTRU

is the ratio of key size to lattice dimension. For a lattice of dimension D, both AD

and GHH use a key that is a (special) basis for the lattice, hence has size O(D2).

This means that keys become impractically large for lattices of dimension a few

hundred, while it turns out that lattices of lower dimension are susceptible to

lattice reduction attacks. An NTRU key for a lattice of dimension D has size

only O(D logD), hence NTRU remains practical for lattices of high dimension.

The following table compares some of the theoretical operating characteristics of

the RSA, McEliece, GGH, and NTRU cryptosystems. In each case the number N

represents a natural security/block size parameter.

NTRU RSA McEliece GGH

Encryption Speed(1;2) N2 N2 N2 N2

Decryption Speed(3) N2 N3 N2 N2

Public Key N N N2 N2

Private Key N N N2 N2

Message Expansion(4) varies 1{1 2{1 1{1

(1) NTRU encryption requires only additions and shifts, no other multiplications
(2) RSA encryption is O(N3) unless small encryption exponents are used.
(3) Asymptotically, NTRU encryption and decryption are O(N logN) using FFT.
(4) For NTRU, see Section 5.1.

Preliminary security and timing comparisons between NTRU and RSA are given

in Table 1. Public key cryptosystems are primarily used either to exchange a secret

key or a short message (e.g., a credit card number). RSA and NTRU work in units

of message blocks, and in either system, a single message block is large enough to

hold a short message or a secret key of very high security. Thus for comparison

purposes we measure the time to encrypt and decrypt a single message block.

System Security Key Size Create Key Encrypt Decrypt

(MIPS yrs) (bits) (millisecs) (blks/sec) (blks/sec)

RSA 512 4:00 � 105 512 260 2441 122

NTRU 167 2:08 � 106 1169 4:0 5941 2818

RSA 1024 3:00 � 1012 1024 1280 932 22

NTRU 263 4:61 � 1014 1841 7:5 3676 1619

RSA 2048 3:00 � 1021 2048 4195 310 3

RSA 4096 2:00 � 1033 4096 | | |

NTRU 503 3:38 � 1035 4024 17:3 1471 608

Comparison of NTRU and RSA

10 NTRU CRYPTOSYSTEMS, INC.

Notes for Table 1:

(1) \NTRU n" refers to an implementation of the NTRU public key cryptosystem

using the domain parameter n, that is, using polynomials of degree n� 1 in the

ring Z[X]=(xn� 1). See Section 3.7 for details.

(2) Security is measured in MIPS-years required to break the system. Note that

all security times are estimates, based on extrapolation of the breaking time for

lower security levels. The security �gures for NTRU are from [HPS] and [NT12],

see also section 3. The security �gures for RSA are from IEEE P1363 (draft 9),

Standard Speci�cations of Public Key Cryptography, Section D.4.3.4.

(3) Key size refers to public key size in bits. NTRU private keys are shorter than

their public keys. RSA public and private keys are the same size.

(4) NTRU encryption, decryption, and key creation performed using Tao Group's

Tumbler implementation of the NTRU algorithm, programmed in C and running

on a 300 MHz Pentium II operating under Linux.

(5) RSA key creation done on a 255 MHz Digital AlphaStation.

(6) RSA encryption/decryption programmed in Microsoft Visual C++ 5.0 (opti-

mized for speed, Pentium Pro code generation), and run on a Pentium II 266MHz

machine under Windows NT 4.0. RSA encryption uses exponent 17 to increase

speed. See <http://www.eskimo.com/~weidai/benchmarks.txt> for details.

(7) For related timings of ECC, we refer to Certicom's published report: \Certi-

com Releases Security Builder 1.2 Performance Data" According to their report

(available at http://www.certicom.com/secureb.htm), on a Pentium platform

ECC takes 4.57 times as long as RSA to encrypt a message block, and 0.267

times as long to decrypt a message block.

3. Security Considerations

In what follows, we will assume that the desired level of \high" security against

o�ine attacks is 280.

3.1 Security Analysis. RSA may be attacked by factoring, so to be secure, it

must use integers su�ciently large so as to make factoring infeasible. Similarly,

NTRU may be attacked by algorithms that �nd short vectors in a lattice, so it

must use parameters su�ciently large so as to make it infeasible to �nd short

vectors. We begin by describing some more elementary attacks, then we give a

detailed description of the lattice attacks.

3.2 Brute force attacks. An attacker can recover the private key by trying all

possible f 2 Lf and testing if f~h mod q has small entries, or by trying all g 2 Lg
and testing if g ~ h�1 mod q has small entries. Similarly, an attacker can recover

a message by trying all possible r 2 Lr and testing if e � r ~ h mod q has small

entries. In practice, Lg will be smaller than Lf , so key security is determined by

#Lg, and individual message security is determined by #Lr. However, as described
in the next section, there is a meet-in-the-middle attack which (assuming su�cient

storage) cuts the search time by the usual square root. Hence the security level is

NTRU: A PUBLIC KEY CRYPTOSYSTEM 11

given by

�
Key

Security

�
=
p
#Lg =

1

dg!

s
n!

(n� 2dg)!�
Message

Security

�
=
p
#Lr =

1

d!

s
n!

(n� 2dr)!
:

3.3 Meet-in-the-middle attacks. Recall that we denote an encrypted message

by e. Andrew Odlyzko has pointed out that there is a meet-in-the-middle attack

that can be used against r, and we observe that a similar attack applies also to the

private key f . Briey, one splits f in half, say f = f1 + f2, and then one matches

f1 ~ e against �f2 ~ e, looking for (f1; f2) so that the corresponding coe�cients

have approximately the same value. Hence in order to obtain a security level of

(say) 280, one must choose f , g, and r from sets containing around 2160 elements.

(For further details, see [NT4].)

3.4 Multiple transmission attacks. This attack only applies when the hash

function H and generating function G are both identically 0, as they were in the

original article introducing NTRU [HPS]. If Alice sends a single message m several

times using the same public key but di�erent random r's, then the attacker Eve will

be able to recover a large part of the message. Briey, suppose that Alice transmits

ei � ri ~ h +m mod q for i = 1; 2; : : : ; l. Eve can then compute (ei � e1) ~ h�1

mod q, thereby recovering ri�r1 mod q. (Actually, h�1 does not exist, see below.)

The coe�cients of the r's are so small that she recovers exactly ri � r1, and from

this Eve will recover many of the coe�cients of r1. If l is of even moderate size

(say 4 or 5), Eve will recover enough of r1 to be able to test all possibilities for

the remaining coe�cients by brute force, thereby recovering m. Thus multiple

transmission are not advised without some further scrambling of the underlying

message. We do point out that even if Eve decrypts a single message in this fashion,

this information will not assist her in decrypting any subsequent messages.

As noted above, h does not have an inverse modulo q. However, it does have an

easily computed \pseudo-inverse" with the property that a~ h ~ h�1 � a mod q

for all polynomials a satisfying a(1) = 0. Eve can use this pseudo-inverse.

3.5. Semantic security. As formulated in this note, the NTRU cryptosystem is

not entirely semantically secure, it leaks approximately log2(q) bits. Recall that

the encrypted message has the form e � r ~ h + m0 mod q. The construction

of h implies that h(1) � 0 mod q, and hence that e(1) � m0(1) mod q. Thus an

attacker recovers the value of m0(1) mod q. If desired, this semantic insecurity can

be eliminated by reserving one coe�cient of m0 and setting this \check coe�cient"

so that m0(1) � 0 mod q.

3.6 Lattice based attacks. The object of this section is to give a brief analysis

of the known lattice attacks on both the public key h and the message m. We

begin with a few words concerning lattice reduction. The goal of lattice reduction

is to �nd one or more \small" vectors in a given lattice. In theory, the smallest

vector can be found by an exhaustive search, but in practice this is not possible if

the dimension is large. The LLL algorithm of Lenstra-Lenstra-Lov�asz [LLL], with

various improvements due to Schnorr and others [SCHN, SCHO, SCEU], will �nd

12 NTRU CRYPTOSYSTEMS, INC.

moderately small vectors in polynomial time, but even LLL will take a long time to

�nd the smallest vector provided that the smallest vector is not too much smaller

than the expected length of the smallest vector. We will make these observations

more precise below, but for full details, see [HPS] and [NT12].

3.6.1 Lattice attack on an NTRU private key. Consider the 2n-by-2n matrix

composed of four n-by-n blocks:0
BBBBBBBBBBBB@

� 0 � � � 0 h0 h1 � � � hn�1
0 � � � � 0 hN�1 h0 � � � hn�2
...

...
. . .

...
...

...
. . .

...

0 0 � � � � h1 h2 � � � h0
0 0 � � � 0 q 0 � � � 0

0 0 � � � 0 0 q � � � 0
...

...
. . .

...
...

...
. . .

...

0 0 � � � 0 0 0 � � � q

1
CCCCCCCCCCCCA

(Here � is a parameter to be chosen shortly.) Let L be the lattice generated by the

rows of this matrix. The determinant of L is qn�n.

Since the public key is h = g ~ f�1, the lattice L will contain the vector

� = (�f; g), by which we mean the 2n vector consisting of the n coe�cients of

f multiplied by �, followed by the n coe�cients of g. By the Gaussian heuristic,

the expected size of the smallest vector in a random lattice of dimension N and

determinant D lies between

D1=N

r
N

2�e
and D1=N

r
N

�e
:

In our case, N = 2n and D = qn�n, so the expected smallest length is larger (but

not much larger) than

s =

r
n�q

�e
:

An implementation of a lattice reduction algorithm will have the best chance of

locating � , or another vector whose length is close to � , if the attacker chooses �

to maximize the ratio s= j� j2. Squaring this ratio, we see that an attacker should

choose � so as to maximize

�

�2 jf j22 + jgj22
=
�
� jf j22 + ��1 jgj22

��1
:

This is done by choosing � = jgj2 = jf j2. (Note that jgj2 and jf j2 are both public

quantities.)

When � is chosen in this way, we de�ne a constant ch by setting j� j2 = chs.

Thus ch is the ratio of the length of the target vector to the length of the expected

shortest vector. The smaller the value of ch, the easier it will be to �nd the target

vector. Substituting in above, we obtain

ch =

s
2�e jf j2 jgj2

Nq
:

NTRU: A PUBLIC KEY CRYPTOSYSTEM 13

For a given pair (f; g) used to set up the cryptosystem, ch may be viewed as a

measure of how far the associated lattice departs from a random lattice. If ch is

close to 1, then L will resemble a random lattice and lattice reduction methods will

have a hard time �nding a short vector in general, and �nding � in particular. As

ch decreases, lattice reduction algorithms will have an easier time �nding � . Based

on the experimental evidence we have obtained, the time required to �nd � or a

similarly short vector appears to be (at least) exponential in n, with a constant in

the exponent proportional to ch.

3.6.2 Lattice attack on an NTRU message. A lattice attack may also be

directed against an individual message m, or more precisely, against the digital

envelope

m0 =
�
m+H(m; [r ~ h]p)X

n�k +G([r ~ h]p)
�
p

containing the message m. Here the associated lattice problem is very similar to

that for h, and the target vector will have the form (�m0; r). As before, the attacker

should balance the lattice using � = jrj2 = jm
0j2, which leads to the value

cm =

s
2�e jm0j2 jrj2

Nq
:

This constant cm gives a measure of the vulnerability of an individual message to

a lattice attack, similar to the way ch does for a lattice attack on h. An encrypted

message is most vulnerable if cm is small, and becomes less so as cm gets closer

to 1.

In order to make the attacks on h and m equally di�cult, we want to take

cm � ch, or equivalently, jf j2 jgj2 � jm0j2 jrj2. For concreteness, we will now

restrict to the case p = 3; other values may be analyzed similarly. For p = 3, an

average m0 will consist of N=3 each of 1, 0 and �1, so jm0j2 �
p
2N=3. Similarly, r

consists of d each of 1 and �1, with the rest 0's, so jrj2 =
p
2d. Thus we will want

to set

jf j2 jgj2 �
p
4Nd=3:

This can be combined with the decryption criterion (3) to assist in choosing pa-

rameters.

3.6.3 Lattice attack on a spurious key. Rather than trying to �nd the private

key f , an attacker might use the lattice described above (in Section 3.6.1) and try

to �nd some other short vector in the lattice, say of the form � 0 = (�f 0; g0). If this

vector is short enough, then f 0 will act as a decryption key. More precisely, if it

turns out that with high probability,

f 0 ~ e � pr ~ g0 +m0
~ f 0 mod q

satis�es jpr ~ g0 +m0
~ f 0j

1
< q, then decryption will succeed; and even if this

width is 2q or 3q, it is possible that the message could be recovered via error-

correcting techniques, especially if several such � 0's could be found. This idea, which

is due to Coppersmith and Shamir, is described in [CS]. However experimental

evidence suggests that the existence of spurious keys does not pose a security threat,

because lattice reduction algorithms either terminate with a useless \q-vector" of

the form (0; 0; : : : ; 0; q; 0 : : : ; 0), or they �nd the actual target vector. See Section

4.2 of [HPS] for a further discussion of this point.

14 NTRU CRYPTOSYSTEMS, INC.

3.6.4 Experimental results. We briey report on the experiments described in

more detail in [HPS] and [NT12]. These experiment used Victor Shoup's NTL

implementation of the LLL algorithm with improvements due to Schnorr, Euchner

and Hoerner. The NTL package is available at [SHOU]. The program was run

using increasing block sizes until it found the target vector (or a vector slightly

longer than the target vector). An important observation from the experiments is

that (at least for the NTRU lattices), it appears that LLL generally either �nds

a vector of the exact correct length, or it �nds one that is considerably too long

to be useful for decryption. Thus the idea of Coppersmith and Shamir [CS] to

exploit vectors a little longer than the target vector to attack NTRU, while very

interesting as a theoretical remark, does not appear to be of practical signi�cance.

In practice, LLL generally seems to terminate with a q-vector (i.e., a vector with

one coordinate equal to q and the rest 0) until a su�ciently large block size is used,

at which time it �nds the target vector. Further, the necessary block size appears

to increase more-or-less linearly with the dimension, while the running time of LLL

appears to increase exponentially with the block size. Based on the experiments

in [HPS] and [NT12], we give in the next table the extrapolated breaking times

for the speci�c parameter choices described in Section 3.7 below. Note that these

values are only estimates that may vary due to the particular de�nition of MIPS-

year and to the di�culty of estimating actual processor utilization. All experiments

were run on a 400 MHz Celeron machine.

System T (seconds) T (MIPS-years)

NTRU 167 1:638 � 1011 2:077 � 106

NTRU 263 3:634 � 1019 4:607 � 1014

NTRU 503 2:663 � 1040 3:375 � 1035

Estimated Breaking Times

3.6.5 Zero-forced lattices. Alexander May [MAY] has described an improved

method of applying LLL to NTRU lattices by exploiting the large number of zeros

in f and g. Briey, his idea is to guess a certain number of (consecutive) indices in

the target vector that are equal to 0 and use this to e�ectively reduce the dimension

of the lattice. Since various rotations of the target vector also serve as target vectors

(due to the circulant nature of the lattice matrix), the probability of guessing

a pattern of a moderate number of zeros is reasonably high, but decreases very

rapidly if one attempts to �nd a pattern with a large number of zeros. May's

paper [MAY] contains some theoretical results and data from his experiments. A

reformulation and slight strengthening of the method, with further analysis, are

given in [NGU] and [NT13]. May also describes a second attack, also analyzed

in [NT13], in which one merely discards some of the coordinates of the target

vector. The �nal conclusion is that the new attacks only marginally a�ect the

security levels of the recommended NTRU parameter sets (N = 167, 263, and 503),

but that the new lattices can be helpful for smaller parameters (e.g., N = 107). We

refer the reader to [NT13], [MAY], and [NGU] for further details.

3.7 Practical Implementations of NTRU

We will now present three distinct sets of parameters that yield three di�erent

levels of security. The norms of f and g have been chosen so that decryption

NTRU: A PUBLIC KEY CRYPTOSYSTEM 15

failure occurs with probability less than 5 � 10�5 (based on extensive computer

experimentation).

Case A: Moderate Security

The Moderate Security parameters are suitable for situations in which the intrinsic

value of any individual message is small, and in which keys will be changed with

reasonable frequency. Examples might include encryption of television, pager, and

cellular telephone transmissions.

(N; p; q; k) = (167; 3; 128; 49)

Lf = L(61; 60); Lg = L(20; 20); Lr = L(18; 18);

In other words, f is chosen with 61 1's and 60 �1's (i.e., df = 61), g is chosen with

20 1's and 20 �1's, (i.e., dg = 12), and r is chosen with 18 1's and 18 �1's (i.e.,
dr = 18). These give key and message sizes

Private Key = 530 bits; Public Key = 1169 bits; and Plaintext = 187 bits;

and (meet-in-the-middle) security levels

Key Security = 282:9 and Message Security = 277:5:

(We note again that meet-in-the-middle attacks require large amounts of computer

storage; for straight search brute force attacks, these security levels should be

squared.) Substituting the above values into the appropriate formulas yields lattice

values

ch = 0:236; cm = 0:225; and s = 0:296q:

Case B: High Security

(N; p; q; k) = (263; 3; 128; 52)

Lf = L(50; 49); Lg = L(24; 24); Lr = L(16; 16)

Private Key = 834 bits; Public Key = 1841 bits; and Plaintext = 335 bits;

Key Security = 2110:6 and Message Security = 282:1

ch = 0:187; cm = 0:195; and s = 0:409q:

Case C: Highest Security

(N; p; q; k) = (503; 3; 256; 107)

Lf = L(216; 215); Lg = L(72; 72); Lr = L(55; 55)

Private Key = 1595 bits; Public Key = 4024 bits; and Plaintext = 628 bits;

Key Security = 2285 and Message Security = 2170;

ch = 0:182; cm = 0:160; and s = 0:0:365q:

The parameter sets described in this section are summarized in the follwoing

table.

16 NTRU CRYPTOSYSTEMS, INC.

N p q k df dg dr

NTRU167 167 3 128 49 61 20 18

NTRU263 263 3 128 52 50 24 16

NTRU503 503 3 256 107 216 72 55

NTRU Parameter Sets

4. Known Limitations and Disadvantages

The NTRU PKCS's for the sample parameters presented in Section 3.7 have

moderately large message expansions. However, as the principal use for PKCS's

is the exchange of a private key in a single message block this is generally not a

signi�cant problem. It may be worth mentioning, though, that there is a simple

masking technique that can be used to sign�cantly reduce message expansion. With

this approach, Alice sends a pair of polynomials (e1; e2). The �rst polynomial is

the encryption e1 � r1~h+ r2 mod q, where r2 is a randomly chosen polynomials

with all coe�cients equal to �1, 0 and 1. The second polynomial is e2 � r2~h+m0

mod q, where m0 is the plaintext message in a suitable digital envelope modulo q.

Since Bob can decrypt e1 to recover r2, he is able to recover m
0 modulo q. In other

words, at the cost of doubling the length of the encrypted message to 2n log2 q bits,

Alice is able to send to Bob a n log2 q bits of information. In principle, this reduces

message expansion to 2-to-1, although the use of a digital envelope will naturally

increase message expansion.

5. Intellectual Property Issues

The NTRU public key cryptosystem is patent pending. All rights have been

assigned to NTRU Cryptosystems, Inc., of Rhode Island. If NTRU is incorporated

into the P1363A standard, NTRU Cryptosystems, Inc. will issue a letter of assur-

ance con�rming that its policy has always been to license NTRU in a \reasonable

and non-discriminatory" manner, and that NTRU Cryptosystems, Inc. will con-

tinue to license NTRU in this way. In the event any text from this submission

or other NTRU Cryptosystems, Inc. supplied documents is incorporated into the

P1363A standard, NTRU Cryptosystems, Inc. will execute any necessary copyright

transfers.

NTRU is a trademark of NTRU Cryptosystems, Inc.

Acknowledgments. We would like to thank Don Coppersmith, Johan H�astad, Hen-

drik Lenstra Jr., Bjorn Poonen, Adi Shamir, Claus Schnorr and Benne de Weger

for their help with lattice reduction methods, Alexander May and Phong Nguyen

for their ideas on using LLL to attack NTRU lattices and for other suggestions,

Philip Hirschhorn for his assistance in implementing NTRU and doing LLL test-

ing, the Tumbler development team at Tao Group, Ltd. for their implementation

and testing of the NTRU cryptosystem, Victor Shoup for his NTL package, Mar-

tin Mohlenkamp for several enlightening conversations about the NTL package,

Andrew Odlyzko for pointing out the meet-in-the-middle attack and other helpful

suggestions and Mike Rosen for his help with polynomial inverses. In particular,

our analysis of lattice-based attacks is an amalgamation of the suggestions of Don

Coppersmith, Johan H�astad, and Adi Shamir, combined with some thoughts of our

NTRU: A PUBLIC KEY CRYPTOSYSTEM 17

own, although we stress that any oversights or errors in this analysis are entirely of

our own devising.

References

[AD] M. Ajtai, C. Dwork, A public-key cryptosystem with worst case/average case equivalence,

Proc. 29th ACM Symposium on Theory of Computing, pp. 284{293.

[BKS] D. Bleichenbacher, B. Kaliski, J. Staddon, Recent results on PKCS#1: RSA encryption

standard, RSA Laboratories' Bulletin, Number 7, June 26, 1998..

[CS] D. Coppersmith, A. Shamir, Lattice attacks on NTRU, Preprint, April 5, 1997; presented

at Eurocrypt 97.

[GGH] O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction

problems, MIT { Laboratory for Computer Science preprint, November 1996.

[HPS] J. Ho�stein, J. Pipher and J. Silverman, NTRU: A ring based public key cryptosystem,

Algorithmic Number Theory (ANTS III), Portland, OR, June 1998, J.P. Buhler (ed.),

Lecture Notes in Computer Science 1423, 267{288.

[LLL] A.K. Lenstra, H.W. Lenstra, L. Lov�sz, Factoring polynomials with polynomial coe�-

cients, Math. Annalen 261, 515{534.

[MCEL] R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL Pasa-

dena, DSN Progress Reports 42{44 (1978), 114{116.

[MAY1] A. May, Cryptanalysis of NTRU, preprint, February 1999 (a portion of a Master's thesis).

[MAY2] A. May, New lattice attacks on NTRU, preprint, April 1999.

[NGU] P. Nguyen, Lattice attacks on NTRU, revisited, preprint, March 1999.

[RSA] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public

key cryptosystems, Communications of the ACM 21, 120{126.

[SCHN] C.P. Schnorr, Block reduced lattice bases and successive minima, Combinatorics, Prob-

ability and Computing 3, 507{522.

[SCEU] C.P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms and

solving subset sum problems, Mathematical Programing 66, 181-199.

[SCHO] C.P. Schnorr, H.H. Hoerner, Attacking the Chor Rivest cryptosystem by improved lattice

reduction, Proc. EUROCRYPT 1995, Lecture Notes in Computer Science 921, Springer-

Verlag, pp. 1{12.

[SHOU] V. Shoup, NTL | A Number Theory Library, http://www.cs.wisc.edu/~shoup/ntl/.

[NT1] J.H. Silverman, NTRU: Pseudo-code implementation, NTRU Cryptosystems Technical

Report 1, available at http://www.ntru.com.

[NT4] J.H. Silverman, A Meet-In-The-Middle Attack on an NTRU Private Key, NTRU Cryp-

tosystems Technical Report 4, available at http://www.ntru.com.

[NT7] Joseph H. Silverman, Plaintext awareness and the NTRU PKCS, NTRU Cryptosystems

Technical Report 7, available at http://www.ntru.com.

[NT9] Joseph H. Silverman, Invertibility in Truncated Polynomial Rings, NTRU Cryptosystems

Technical Report 9, available at http://www.ntru.com.

[NT10] Joseph H. Silverman, High-Speed Multiplication of (Truncated) Polynomials, NTRU

Cryptosystems Technical Report 10, available at http://www.ntru.com.

[NT12] Joseph H. Silverman, Estimated Breaking Times for NTRU Lattices, NTRU Cryptosys-

tems Technical Report 12, available at http://www.ntru.com.

[NT13] Joseph H. Silverman, Dimension-Reduced Lattices, Zero-Forced Lattices, and the NTRU

Public Key Cryptosystem, NTRU Cryptosystems Technical Report 13, available at

http://www.ntru.com.

[NT14] Joseph H. Silverman, Almost Inverses and Fast NTRU Key Creation, NTRU Cryptosys-

tems Technical Report 14, available at http://www.ntru.com.

