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1. Adic spaces

(1) Let Γ be a totally ordered abelian group (written multiplicatively). Prove that Γ
embeds into R>0 compatible with the order (i.e., γ < γ′ if and only if their images in
R>0 satisfy the analogous inequality) if and only if {γn}n>0 is cofinal in Γ for every
γ < 1 (i.e., for each γ′ there exists n > 0 such that γn < γ′). We say that Γ is
archimedean when this happens; this means that a non-archimedean valuation can
perfectly well have an archimedean value group.

(2) Let R be a discrete valuation ring with fraction field K and uniformizer t. Assume
its residue field κ is the fraction field of a discrete valuation ring R, and let

R′ = {x ∈ R |x mod mR ∈ R} ⊂ R

be the preimage of R under R→ κ (so mR ⊂ R′ ⊂ R, so Frac(R′) = K). Let u ∈ R′
be the preimage of a uniformizer of R, so R′ is a valuation ring with value group
Z× Z having the lexicographical ordering (so it is not a rank-1 valuation ring).

Prove that the topology on K arising from the valuation v′ on R′ coincides with
the t-adic valuation.

(3) Let A be a commutative ring.
(i) Prove that Spv(A)→ Spec(A) is a continuous surjection, and that its fiber over

any point p is topologically identified with the Riemann–Zariski space RZ(κ(p))
for the residue field at p.

(ii) For a field K and v, w ∈ RZ(K), prove that v ∈ {w} if and only if Rv ⊂ Rw

inside K (which is equivalent to the “generization” relation Rw = (Rv)q for some
prime q of Rv, by 10.1 in Matsumura’s Commutative Ring Theory).

(4) Let A be a k-affinoid algebra, for a non-archimedean field k.
(i) Prove that for any finite collection of quasi-compact admissible open subsets

Ui ⊂ X := Sp(A), the union U = U1 ∪ · · · ∪ Un is admissible open in X with
{Ui} an admissible cover of U .

(ii) Prove the same assertion with X replaced by any rigid-analytic space that is
quasi-compact and quasi-separated; i.e., is quasi-compact and has quasi-compact
diagonal. (This will underlie the definition of an equivalence between specific
categories of rigid-analytic spaces and adic spaces over k.)
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(iii) Give a counterexample to (ii) if the quasi-separatedness assumption is dropped.

(5) Let R be a valuation ring, and assume that its fraction field K with the valuation
topology contains a topologically nilpotent unit $ (so R 6= K).
(i) Prove that K is a Huber ring using A0 = R and I = $eR for e so large that $e

belongs to the open subring R ⊂ K. Also show that R[1/$] = K. (Note that
R need not be a rank-1 valuation ring!)

(ii) Prove an approprimate converse: if S is a nonzero ring and π ∈ S is not a
zero-divisor, then show that S[1/π] has a unique structure of topological ring for
which S is an open subring inheriting the π-adic topology. (Make sure to check
that multiplication S[1/π]× S[1/π]→ S[1/π] is continuous.)

[Note that (ii) cannot be strengthened to permit adic topologies on S arising from
non-principal ideals: there is no topological ring structure on Zp[[x]][1/p] for which
Zp[[x]] is an open subring equipped with the (p, x)-adic topology.]

(6) Let A be a Huber ring.
(i) If Σ,Σ′ ⊂ A are bounded subsets, prove that the subset Σ · Σ′ of finite sums of

products ss′ for s ∈ Σ and s′ ∈ Σ′ is bounded.

(ii) Prove that any open subring of A (equipped with the subspace topology) is a
Huber ring.

(iii) Prove that if A0 is a ring of definition and a ∈ A is power-bounded then A0[a]
is bounded. Deduce that A0 is the union of all rings of definition for A.

(iv) Let B′ be an open subring of A and B ⊂ A a bounded subring that is contained
in B′. Construct a ring of definition A0 satisfying B ⊂ A0 ⊂ B′.

(Note: we didn’t get to the definition of bounded, so we will repeat this exercise
tomorrow.)

(7) Let k be a non-archimedean field.
(i) Prove Spa(k, k0) consists of a single point, corresponding to the given absolute

value.

(ii) Give an example of such a k for which the set Cont(k) is infinite.

2. Perfectoid fields

(1) Let K be a field equipped with a nonarchimedean norm | | : K → R>0, and let K̂ be
its completion.
(i) Suppose that K is henselian (e.g., K is an algebraic extension of a complete

subfield). Show that the categories of étale K-algebras and étale K̂-algebras are
equivalent, so that GK

∼= GK̂ .
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(ii) If K is of characteristic p, show that (i) remains true if we replace K̂ with the
completed perfect closure of K.

(iii) Let L be the separable closure of K. Prove that K̂ is algebraically closed, even
if K is of characteristic p.

(2) Let p be odd. Let Kn = Qp(p
1/n), and let Ln = Kn(p1/2). Compute the different

ideal of OLn/OKn , and similarly for OL∞/OK∞ , where K∞ = ∪nKn and Ln = ∪nLn.

(3) Let K be a perfectoid field. Recall that there exists a map ] : K[ → K obtained
from the isomorphism

K[ ∼= lim←−
x→xp

K

of topological multiplicative monoids (by projecting onto the final term). Prove that
the formula

|x| :=
∣∣x]∣∣

defines a nonarchimedean absolute value on K[ which induces the topology on K[,
and that K[ is complete with respect to this absolute value.

(4) (i) Show that Qp(µp∞)∧,[ ∼= Qp(p
1/p∞)∧,[ ∼= Fp((t1/p

∞
)).

(ii) Show that C[
p is isomorphic to the completion of an algebraic closure of Fp((t)).

3. Modular curves

(1) Recall that SL2(R) acts on the upper half-plane H via linear fractional transforma-
tions (

a b
c d

)
(z) =

az + b

cz + d
.

(i) Prove that for any positive integer N , the homomorphism SL2(Z)→ SL2(Z/NZ)
is surjective.

(ii) Let Γ(N) denote the kernel of the map SL2(Z) → SL2(Z/NZ). Prove that if
N ≥ 3, then the action of Γ(N) on H is fixed-point-free.

(iii) Let X(N) be the quotientH/Γ(N). Deduce that for N ≥ 3, X(N) is a connected
Riemann surface admitting an action of SL2(Z/NZ).

(iv) The Riemann surface X(N) is not compact. Prove that it can be compactified
by adding finitely many points corresponding to the quotient of P1(Q) by Γ(N).

(2) For ` prime, the `-th modular polynomial P`(j, j
′) is the monic (in j) polynomial

which vanishes at those pairs (j, j′) which are the j-invariants of elliptic curves which
are connected by an isogeny of degree `. There is a database of these polynomials
included in Sage. Using this database, confirm that for all primes ` < 100, the
polynomial P` has integer coefficients and obeys Kronecker’s congruence:

P`(j, j
′) ≡ (j` − j′)(j − (j′)`) (mod `).
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(3) Compute the modular polynomial P3 from first principles, by explicitly constructing
a family of elliptic curves with nontrivial 3-torsion and comparing the j-invariants.
Optional (somewhat harder): do the same for P5.

(4) Let ∆∗ be the punctured open unit disc in the complex plane. Let E be the quotient
of C× ×∆∗ be the equivalence relation for which (z, q) ∼ (z′, q′) if and only if q = q′

and z′/z ∈ qZ.
(i) Prove that π : C× × ∆∗ → E is a covering map, E → ∆∗ is a proper map

of topological spaces, and E admits a unique complex manifold structure with
respect to which π is a local analytic isomorphism.

(ii) Let e ∈ E(∆∗) be the composition of the 1-section of C× × ∆∗ → ∆∗ with π.
Prove that (E, e) is an elliptic curve over ∆∗ with analytic fiber over q0 equal to
(C×/qZ0 , 1). This is the analytic Tate curve.

(iii) For the Weierstrass family E → C−R, in which the fiber over τ is C/(Z+Zτ),
construct a natural cartesian diagram of elliptic curves

E //

��

E

f
��

C− R // ∆∗

where the bottom map is τ 7→ e2πiτ τ with iτ = ±
√
−1 in the connected compo-

nent of τ . Deduce that the representation of π1(∆
∗, q0) associated to the local

system R1f∗(Z)∨ = H1(E/∆∗) on ∆∗ carries an i-oriented loop through q0 to(
1 1
0 1

)
6= 1, so R1f∗(Z) is nonsplit.

(5) Let X be a compact Riemann surface of genus g > 0. By Hodge theory, the C-linear
sequence

0→ H0(X,Ω1
X)→ H1(X,C)→ H1(X,OX)→ 0

is exact and the conjugate of H0(X,Ω1
X) in H1(X,C) maps isomorphically onto

H1(X,OX). Prove that the R-linear map H1(X,R)→ H1(X,OX) is injective (hence
an isomorphism by counting dimensions), and deduce that H1(X,Z) → H1(X,OX)
is a lattice inclusion (that is, the image is discrete and cocompact). Conclude that
the natural map H1(X,Z(1))→ H1(X,OX) is a lattice inclusion.
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